Tranzistor ru: Все транзисторы. Даташиты. Описания. Основные характеристики. Справочник транзисторов

Содержание

Все транзисторы. Даташиты. Описания. Основные характеристики. Справочник транзисторов

 

В справочнике приведены описания, характеристики и даташиты более 100 000 транзисторов

BJT. TOP50: 2N2222 — 2N3055 — BC547 — 2N3904 — 2N2222A — BC107 — C945 — BC548 — BD139 — 8050 — S8050 — BC557 — BC337 — TIP31 — D882 — AC128 — BC108 — S9014 — C1815 — BD140 — 2N3906 — S8550 — 8550 — 2SC945 — 2SC5200 — BC547B — 2N5551 — MJE13003 — 9014 — BC549 — BC148 — TIP122 — 9013 — 2N2907 — BC558 — BC327 — C102 — A733 — 2SC1815 — 2N60C — 2N222 — 2N4401 — BC109 — BD135 — S9013 — BC546 — A1015 — 9012 — 431 — 2N3773 —

MOSFET. TOP30: IRF3205 — IRFZ44N — IRF740 — IRF540 — IRF840 — BS170 — IRFZ44 — IRF640 — IRF540N — 2N7000 — IRF630 — IRFP460 — IRFZ46N — IRF530 — IRF1404 — IRF3710 — IRFZ34N — IRFP250 — BUZ11 — RFP50N06 — IRF520 — IRFP450 — IRFB3306 — IRF510 — IRF830 — 2N5484 — IRF730 — IRF150 — STF5N52U — IRF2807 —

IGBT. TOP15: IRGP4086 — CT60AM-18F — FGPF4633 — G40N60B3 — IRG7IC28U — G20N60B3D — IXGR40N60C2D1 — G7N60C3D — RJP30h2DPD — IKW50N60h4 — 10N40F1D — GT60M303 — FGh50N60SFD — IRG4BC30W-S — IRG4PC50UD —
 

 

BUY TRANSISTORS

 

Подбор биполярного транзистора по параметрам. Поиск аналогов

Material =

Struct =

Pc > W

Ucb > V

Uce > V

Ueb > V

Ic > A

Tj > C

Ft > MHz

Cc pF

Hfe >

Caps =

R1 = kOhm

R2 = kOhm

R1/R2 =

Пустые или нулевые поля игнорируются при поиске

Как подобрать замену для биполярного транзистора 🔗

Сейчас в справочнике описаны 124323 транзисторов.

 

 
Back to Top

 

IRFZ24N характеристики транзистора, datasheet, цоколевка и аналоги

По своим техническим характеристикам IRFZ24N является мощным n-канальным МОП (MOSFET) транзистором. Он изготавливается по технологии HEXFET® пятого поколения, разработанной компанией International Rectifier (IR). Этот способ производства позволяет добиться минимального сопротивления n-канала полевика, при большой скорости переключения и высокой надежности. Благодаря этим преимуществам хорошо подходит для использования в импульсных блоках питания, системах управления электрическим приводом.

Многие путают рассматриваемое устройство с транзистором IRFZ24. Имейте ввиду, что последний имеет близкие по своим значениям, но все же немного другие параметры.

Цоколевка

Распиновка IRFZ24N у большинства производителей выполнена в стандартном пластиковом корпусе ТО-220AB, с максимальной рассеиваемой мощностью около 50 Вт. Благодаря низкому тепловому сопротивлению и невысокой стоимости эта упаковка завоевала широкое распространение. Расположение выводов показано на рисунке. Цифрой 1 обозначен затвор (G), под номером 2 – сток (D), 3 – исток (S). Радиатор имеет характерное отверстие для крепления устройства на печатную плату и физический контакт со стоком.

irfz24n распиновка

На российском рынке встречаются и более совершенные транзисторы данного типа. Таким устройством является IRFZ24N, также в корпусе ТО220AB, от компании Philips Semiconductor. Они отличаются от классических тем, что выпускаются с применением так называемой «траншейной» технологии  (Trench MOSFET) и имеют в сравнении с ними немного лучшие характеристики. Например, сопротивление открытого n-канала у них меньше, чем у обычного планарного полевого транзистора MOSFET. Кроме того предусмотрена защита от электростатических разрядов, при использовании в импульсных источниках питания до 2 кВ.

Технические характеристики

Рассмотрим максимально возможные характеристики MOSFET-транзистора IRFZ24N:

  • напряжение сток-исток (VDSSmax) до 55 В;
  • сопротивление открытого N-канала (RDS(ON)) до 0.07 Ом;
  • допустимый рабочий ток стока(I
    D
    max): при температуре кристалла TC = +25ОС до 17 А; при TC = +100ОС до 12 А;
  • пиковый (импульсный) ток стока (Imax) — 68 А;
  • рассеиваемая мощность при TC = +25ОС (PD) — 45 Вт;
  • предельно допустимое отпирающее напряжение между затвором и истоком (VGS max) ±20 В;
  • максимальная энергия единичного импульса (EAS) – 71 мДж;
  • пиковый неповторяющийся ток, допустимый в лавинных условиях (IAR) – 10 А;
  • неповторяющаяся энергия, которая может быть рассеяна в условиях лавинного пробоя (EAR) – 4,5 мДж;
  • наибольший возможный импульс на восстанавливающемся диоде dv/dt – 5.0 В/нс;
  • диапазон температур, при которых может храниться изделие от — 55 до +175 °C;
  • температура пайки (не более 10 секунд) – 300 (на расстоянии 1,6 миллиметра от упаковки).

При этом надо знать, что реальные рабочие значения у устройства должны быть меньше предельно допустимых примерно на 20-30%.

Электрические

Электрические параметры IRFZ24N приведены в таблице ниже. Других значения при которых производились измерения, приведены в отдельном столбе. Температура перехода (TJ) равна +25ОС, если не указано другого.электрические параметры irfz24n

Аналоги

Полным аналогом irfz24n считается транзистор STB140NF55 (STMicroelectronics) . Правда у них корпус ТО220, но расположение выводов (распиновка) совпадает с оригиналом. В большинстве случаев, при его использовании, не потребуется вносить дополнительных изменений в схему. А вот еще возможные варианты замены для рассматриваемого устройства с похожими параметрами: 2SK1114, BUZ10, BUZ101, BUZ101S, BUZ104, BUZ104S, HUF75307P3, HUF75309P3, IRFZ24A, MTP15N06V, MTP20N06V, RFP14N05, RFP14N06, RFP15N06, SFP16N06, STP140NF55, STP16NE06, STP20N06, STPNE06, STP20NF06, 2SK2311, IRFIZ24A, 2SK2311, IRFWZ24A, STB16NF06LT.

Производители

Выпуском этого изделия занимаются такие зарубежные фирмы: Inchange Semiconductor, International Rectifier, TRANSYS Electronics, Philips Semiconductors, ARTSCHIP ELECTRONICS, Kersemi Electronic, NXP Semiconductors.

В России продаются транзисторы, изготовленные следующими компаниями: International Rectifier, Philips Semiconductors. Нажав на название можно скачать datasheet на irfz24n от интересующего производителя.

Биполярный транзистор

Биполярный транзистор — электронный полупроводниковый прибор, один из типов транзисторов, предназначенный для усиления, генерирования и преобразования электрических сигналов. Транзистор называется

биполярный, поскольку в работе прибора одновременно участвуют два типа носителей заряда – электроны и дырки. Этим он отличается от униполярного (полевого) транзистора, в работе которого участвует только один тип носителей заряда.

Принцип работы обоих типов транзисторов похож на работу водяного крана, который регулирует водяной поток, только через транзистор проходит поток электронов. У биполярных транзисторов через прибор проходят два тока — основной «большой» ток, и управляющий «маленький» ток. Мощность основного тока зависит от мощности управляющего. У полевых транзисторов через прибор проходит только один ток, мощность которого зависит от электромагнитного поля. В данной статье рассмотрим подробнее работу биполярного транзистора.

Устройство биполярного транзистора.

Биполярный транзистор состоит из трех слоев полупроводника и двух PN-переходов. Различают PNP и NPN транзисторы по типу чередования дырочной и электронной проводимостей. Это похоже на два диода, соединенных лицом к лицу или наоборот.

У биполярного транзистора три контакта (электрода). Контакт, выходящий из центрального слоя, называется база (base). Крайние электроды носят названия коллектор и эмиттер (collector и emitter). Прослойка базы очень тонкая относительно коллектора и эмиттера. В дополнение к этому, области полупроводников по краям транзистора несимметричны. Слой полупроводника со стороны коллектора немного толще, чем со стороны эмиттера. Это необходимо для правильной работы транзистора.

Работа биполярного транзистора.

Рассмотрим физические процессы, происходящие во время работы биполярного транзистора. Для примера возьмем модель NPN. Принцип работы транзистора PNP аналогичен, только полярность напряжения между коллектором и эмиттером будет противоположной.

Как уже говорилось в статье о типах проводимости в полупроводниках, в веществе P-типа находятся положительно заряженные ионы — дырки. Вещество N-типа насыщено отрицательно заряженными электронами. В транзисторе концентрация электронов в области N значительно превышает концентрацию дырок в области P.

Подключим источник напряжения между коллектором и эмиттером VКЭ (VCE). Под его действием, электроны из верхней N части начнут притягиваться к плюсу и собираться возле коллектора. Однако ток не сможет идти, потому что электрическое поле источника напряжения не достигает эмиттера. Этому мешает толстая прослойка полупроводника коллектора плюс прослойка полупроводника базы.

Теперь подключим напряжение между базой и эмиттером VBE, но значительно ниже чем VCE (для кремниевых транзисторов минимальное необходимое VBE — 0.6V). Поскольку прослойка P очень тонкая, плюс источника напряжения подключенного к базе, сможет «дотянуться» своим электрическим полем до N области эмиттера. Под его действием электроны направятся к базе. Часть из них начнет заполнять находящиеся там дырки (рекомбинировать). Другая часть не найдет себе свободную дырку, потому что концентрация дырок в базе гораздо ниже концентрации электронов в эмиттере.

В результате центральный слой базы обогащается свободными электронами. Большинство из них направится в сторону коллектора, поскольку там напряжение намного выше. Так же этому способствует очень маленькая толщина центрального слоя. Какая-то часть электронов, хоть гораздо меньшая, все равно потечет в сторону плюса базы.

В итоге мы получаем два тока: маленький — от базы к эмиттеру IBE, и большой — от коллектора к эмиттеру ICE.

Если увеличить напряжение на базе, то в прослойке P соберется еще больше электронов. В результате немного усилится ток базы, и значительно усилится ток коллектора. Таким образом, при небольшом изменении тока базы IB, сильно меняется ток коллектора IС. Так и происходит усиление сигнала в биполярном транзисторе. Cоотношение тока коллектора IС к току базы IB называется коэффициентом усиления по току. Обозначается β, hfe или h31e, в зависимости от специфики расчетов, проводимых с транзистором.

β = IC / IB

Простейший усилитель на биполярном транзисторе

Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы. Заранее оговорюсь, что такая схема не совсем правильная. Никто не подключает источник постоянного напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для понимания самого механизма усиления с помощью биполярного транзистора. Так же, сама техника расчетов в приведенном ниже примере носит несколько упрощенный характер.

1.Описание основных элементов цепи

Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200). Со стороны коллектора подключим относительно мощный источник питания в 20V, за счет энергии которого будет происходить усиление. Со стороны базы транзистора подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить. Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала, обычно обладающего слабой мощностью.

2. Расчет входного тока базы Ib

Теперь посчитаем ток базы Ib. Поскольку мы имеем дело с переменным напряжением, нужно посчитать два значения тока – при максимальном напряжении (Vmax) и минимальном (Vmin). Назовем эти значения тока соответственно — Ibmax и Ibmin.

Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер VBE. Между базой и эмиттером располагается один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение, при котором полупроводниковый диод начинает проводить — около 0.6V. Не будем вдаваться в подробности вольт-амперных характеристик диода, и для простоты расчетов возьмем приближенную модель, согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между базой и эмиттером VBE = 0.6V. А поскольку эмиттер подключен к земле (VE = 0), то напряжение от базы до земли тоже 0.6V (VB = 0.6V).

Посчитаем Ibmax и Ibmin с помощью закона Ома:

2. Расчет выходного тока коллектора IС

Теперь, зная коэффициент усиления (β = 200), можно с легкостью посчитать максимальное и минимальное значения тока коллектора ( Icmax и Icmin).

3. Расчет выходного напряжения Vout

Осталось посчитать напряжение на выходе нашего усилителя Vout. В данной цепи — это напряжение на коллекторе VC.

Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:

4. Анализ результатов

Как видно из результатов, VCmax получился меньше чем VCmin. Это произошло из-за того, что напряжение на резисторе VRc отнимается от напряжения питания VCC. Однако в большинстве случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда, которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же, соотношение Vout/Vin в десять раз — далеко на самый лучший показатель для усилителя, однако для иллюстрации процесса усиления вполне подойдет.

Итак, подытожим принцип работы усилителя на биполярном транзисторе. Через базу течет ток Ib, несущий в себе постоянную и переменную составляющие. Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся». Переменная составляющая – это, собственно, сам сигнал (полезная информация). Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β. В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.

Таким образом, на вывод Vout поступает сигнал с увеличенной амплитудой колебаний, но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор берет у источника питания VCC. Если напряжения питания будет недостаточно, транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.

Режимы работы биполярного транзистора

В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:

  • Режим отсечки (cut off mode).
  • Активный режим (active mode).
  • Режим насыщения (saturation mode).
  • Инверсный ражим (reverse mode ).

Режим отсечки

Когда напряжение база-эмиттер ниже, чем 0.6V — 0.7V, PN-переход между базой и эмиттером закрыт. В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки.

Активный режим

В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся. В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления.

Режим насыщения

Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора, которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным, который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы.

В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».

Инверсный режим

В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном. В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру, и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме. Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме. Поэтому в инверсном режиме транзистор практически не используют.

Основные параметры биполярного транзистора.

Коэффициент усиления по току – соотношение тока коллектора IС к току базы IB. Обозначается β, hfe или h31e, в зависимости от специфики расчетов, проводимых с транзисторов.

β — величина постоянная для одного транзистора, и зависит от физического строения прибора. Высокий коэффициент усиления исчисляется в сотнях единиц, низкий — в десятках. Для двух отдельных транзисторов одного типа, даже если во время производства они были “соседями по конвейеру”, β может немного отличаться. Эта характеристика биполярного транзистора является, пожалуй, самой важной. Если другими параметрами прибора довольно часто можно пренебречь в расчетах, то коэффициентом усиления по току практически невозможно.

Входное сопротивление – сопротивление в транзисторе, которое «встречает» ток базы. Обозначается Rin (Rвх). Чем оно больше — тем лучше для усилительных характеристик прибора, поскольку со стороны базы обычно находиться источник слабого сигнала, у которого нужно потреблять как можно меньше тока. Идеальный вариант – это когда входное сопротивление равняется бесконечность.

Rвх для среднестатистического биполярного транзистора составляет несколько сотен КΩ (килоом). Здесь биполярный транзистор очень сильно проигрывает полевому транзистору, где входное сопротивление доходит до сотен ГΩ (гигаом).

Выходная проводимость — проводимость транзистора между коллектором и эмиттером. Чем больше выходная проводимость, тем больше тока коллектор-эмиттер сможет проходить через транзистор при меньшей мощности.

Также с увеличением выходной проводимости (или уменьшением выходного сопротивления) увеличивается максимальная нагрузка, которую может выдержать усилитель при незначительных потерях общего коэффициента усиления. Например, если транзистор с низкой выходной проводимостью усиливает сигнал в 100 раз без нагрузки, то при подсоединении нагрузки в 1 КΩ, он уже будет усиливать всего в 50 раз. У транзистора, с таким же коэффициентом усиления, но с большей выходной проводимостью, падение усиления будет меньше. Идеальный вариант – это когда выходная проводимость равняется бесконечность (или выходное сопротивление Rout = 0 (Rвых = 0)).

Частотная характеристика – зависимость коэффициента усиления транзистора от частоты входящего сигнала. С повышением частоты, способность транзистора усиливать сигнал постепенно падает. Причиной тому являются паразитные емкости, образовавшиеся в PN-переходах. На изменения входного сигнала в базе транзистор реагирует не мгновенно, а с определенным замедлением, обусловленным затратой времени на наполнение зарядом этих емкостей. Поэтому, при очень высоких частотах, транзистор просто не успевает среагировать и полностью усилить сигнал.

Полевой транзистор

Часть 2. Полевой транзистор с изолированным затвором MOSFET

Полевой транзистор с изолированным затвором – это транзистор, затвор которого электрически изолирован от проводящего канала полупроводника слоем диэлектрика. Благодаря этому, у транзистора очень высокое входное сопротивление (у некоторых моделей оно достигает 1017 Ом).

Принцип работы этого типа полевого транзистора, как и полевого транзистора с управляющим PN-переходом, основан на влиянии внешнего электрического поля на проводимость прибора.

В соответствии со своей физической структурой, полевой транзистор с изолированным затвором носит название МОП-транзистор (Металл-Оксид-Полупроводник), или МДП-транзистор (Металл-Диэлектрик-Полупроводник). Международное название прибора – MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).

МДП-транзисторы делятся на два типа – со встроенным каналом и с индуцированным каналом. В каждом из типов есть транзисторы с N–каналом и P-каналом.

Устройство МДП-транзистора (MOSFET) с индуцированным каналом.

На основании (подложке) полупроводника с электропроводностью P-типа (для транзистора с N-каналом) созданы две зоны с повышенной электропроводностью N+-типа. Все это покрывается тонким слоем диэлектрика, обычно диоксида кремния SiO2. Сквозь диэлектрический слой проходят металлические выводы от областей N+-типа, называемые стоком и истоком. Над диэлектриком находится металлический слой затвора. Иногда от подложки также идет вывод, который закорачивают с истоком

Работа МДП-транзистора (MOSFET) с индуцированным каналом N-типа.

Подключим напряжение любой полярности между стоком и истоком. В этом случае электрический ток не пойдет, поскольку между зонами N+ находиться область P, не пропускающая электроны. Далее, если подать на затвор положительное напряжение относительно истока Uзи, возникнет электрическое поле. Оно будет выталкивать положительные ионы (дырки) из зоны P в сторону подложки. В результате под затвором концентрация дырок начнет уменьшаться, и их место займут электроны, притягиваемые положительным напряжением на затворе.

Когда Uзи достигнет своего порогового значения, концентрация электронов в области затвора превысит концентрацию дырок. Между стоком и истоком сформируется тонкий канал с электропроводностью N-типа, по которому пойдет ток Iси. Чем выше напряжение на затворе транзистора Uзи, тем шире канал и, следовательно, больше сила тока. Такой режим работы полевого транзистора называется режимом обогащения.

Принцип работы МДП-транзистора с каналом P–типа такой же, только на затвор нужно подавать отрицательное напряжение относительно истока.

Вольт-амперные характеристики (ВАХ) МДП-транзистора с индуцированным каналом.

ВАХ полевого транзистора с изолированным затвором похожи на ВАХ полевого транзистора с управляющим PN-переходом. Как видно на графике а), вначале ток Iси растет прямопропорционально росту напряжения Uси. Этот участок называют омическая область (действует закон Ома), или область насыщения (канал транзистора насыщается носителями заряда ). Потом, когда канал расширяется почти до максимума, ток Iси практически не растет. Этот участок называют активная область.

Когда Uси превышает определенное пороговое значение (напряжение пробоя PN-перехода), структура полупроводника разрушается, и транзистор превращается в обычный проводник. Данный процесс не восстановим, и прибор приходит в негодность.

Устройство МДП-транзистора (MOSFET) со встроенным каналом.

Физическое устройство МДП-транзистора со встроенным каналом отличается от типа с индуцированным каналом наличием между стоком и истоком проводящего канала.

Работа МДП-транзистора (MOSFET) со встроенным каналом N-типа.

Подключим к транзистору напряжение между стоком и истоком Uси любой полярности. Оставим затвор отключенным (Uзи = 0). В результате через канал пойдет ток Iси, представляющий собой поток электронов.

Далее, подключим к затвору отрицательное напряжение относительно истока. В канале возникнет поперечное электрическое поле, которое начнет выталкивать электроны из зоны канала в сторону подложки. Количество электронов в канале уменьшиться, его сопротивление увеличится, и ток Iси уменьшиться. При повышении отрицательного напряжения на затворе, уменьшается сила тока. Такое состояние работы транзистора называется режимом обеднения.

Если подключить к затвору положительное напряжение, возникшее электрическое поле будет притягивать электроны из областей стока, истока и подложки. Канал расшириться, его проводимость повыситься, и ток Iси увеличиться. Транзистор войдет в режим обогащения.

Как мы видим, МДП-транзистор со встроенным каналом способен работать в двух режимах — в режиме обеднения и в режиме обогащения.

Вольт-амперные характеристики (ВАХ) МДП-транзистора со встроенным каналом.

Преимущества и недостатки полевых транзисторов перед биполярными.

Полевые транзисторы практически вытеснили биполярные в ряде применений. Самое широкое распространение они получили в интегральных схемах в качестве ключей (электронных переключателей)

Главные преимущества полевых транзисторов

  • Благодаря очень высокому входному сопротивлению, цепь полевых транзисторов расходует крайне мало энергии, так как практически не потребляет входного тока.
  • Усиление по току у полевых транзисторов намного выше, чем у биполярных.
  • Значительно выше помехоустойчивость и надежность работы, поскольку из-за отсутствия тока через затвор транзистора, управляющая цепь со стороны затвора изолирована от выходной цепи со стороны стока и истока.
  • У полевых транзисторов на порядок выше скорость перехода между состояниями проводимости и непроводимости тока. Поэтому они могут работать на более высоких частотах, чем биполярные.

Главные недостатки полевых транзисторов

  • У полевых транзисторов большее падение напряжения из-за высокого сопротивления между стоком и истоком, когда прибор находится в открытом состоянии.
  • Структура полевых транзисторов начинает разрушаться при меньшей температуре (150С), чем структура биполярных транзисторов (200С).
  • Несмотря на то, что полевые транзисторы потребляют намного меньше энергии, по сравнению с биполярными транзисторами, при работе на высоких частотах ситуация кардинально меняется. На частотах выше, примерно, чем 1.5 GHz, потребление энергии у МОП-транзисторов начинает возрастать по экспоненте. Поэтому скорость процессоров перестала так стремительно расти, и их производители перешли на стратегию «многоядерности».
  • При изготовлении мощных МОП-транзисторов, в их структуре возникает «паразитный» биполярный транзистор. Для того, чтобы нейтрализовать его влияние, подложку закорачивают с истоком. Это эквивалентно закорачиванию базы и эмиттера паразитного транзистора. В результате напряжение между базой и эмиттером биполярного транзистора никогда на достигнет необходимого, чтобы он открылся (около 0.6В необходимо, чтобы PN-переход внутри прибора начал проводить).

    Однако, при быстром скачке напряжения между стоком и истоком полевого транзистора, паразитный транзистор может случайно открыться, в результате чего, вся схема может выйти из строя.

  • Важнейшим недостатком полевых транзисторов является их чувствительность к статическому электричеству. Поскольку изоляционный слой диэлектрика на затворе чрезвычайно тонкий, иногда даже относительно невысокого напряжения бывает достаточно, чтоб его разрушить. А разряды статического электричества, присутствующего практически в каждой среде, могут достигать несколько тысяч вольт.

    Поэтому внешние корпуса полевых транзисторов стараются создавать таким образом, чтоб минимизировать возможность возникновения нежелательного напряжения между электродами прибора. Одним из таких методов является закорачивание истока с подложкой и их заземление. Также в некоторых моделях используют специально встроенный диод между стоком и истоком. При работе с интегральными схемами (чипами), состоящими преимущественно из полевых транзисторов, желательно использовать заземленные антистатические браслеты. При транспортировке интегральных схем используют вакуумные антистатические упаковки

Транзистор — Википедия

Дискретные транзисторы в различном конструктивном оформлении

Транзи́стор (англ. transistor), полупроводнико́вый трио́д — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами[1], способный от небольшого входного сигнала управлять значительным током в выходной цепи, что позволяет его использовать для усиления, генерирования, коммутации и преобразования электрических сигналов. В настоящее время транзистор является основой схемотехники подавляющего большинства электронных устройств и интегральных микросхем.

Транзисторами также называются дискретные электронные приборы, которые, выполняя функцию одиночного транзистора, имеют в своем составе много элементов, конструктивно являясь интегральной схемой, например составной транзистор или многие транзисторы большой мощности[2].

Транзисторы по структуре, принципу действия и параметрам делятся на два класса — биполярные и полевые (униполярные). В биполярном транзисторе используются полупроводники с обоими типами проводимости, он работает за счет взаимодействия двух, близко расположенных на кристалле, p-n переходов и управляется изменением тока через база-эмиттерный переход, при этом вывод эмиттера всегда является общим для управляющего и выходного токов. В полевом транзисторе используется полупроводник только одного типа проводимости, расположенный в виде тонкого канала, на который воздействует электрическое поле изолированного от канала затвора[3], управление осуществляется изменением напряжения между затвором и истоком. Полевой транзистор, в отличие от биполярного, управляется напряжением, а не током. В настоящее время в аналоговой технике доминируют биполярные транзисторы (БТ) (международный термин — BJT, bipolar junction transistor). В цифровой технике, в составе микросхем (логика, память, процессоры, компьютеры, цифровая связь и т. п.), напротив, биполярные транзисторы почти полностью вытеснены полевыми. В 1990-е годы был разработан новый тип гибридных биполярно-полевых транзисторов — IGBT которые сейчас широко применяются в силовой электронике.

В 1956 году за изобретение биполярного транзистора Уильям Шокли, Джон Бардин и Уолтер Браттейн получили Нобелевскую премию по физике.

К 1980-м годам транзисторы, благодаря своей миниатюрности, экономичности, устойчивости к механическим воздействиям и невысокой стоимости практически полностью вытеснили электронные лампы из малосигнальной электроники. Благодаря своей способности работать при низких напряжениях и значительных токах, транзисторы позволили уменьшить потребность в электромагнитных реле и механических переключателях в оборудовании, а благодаря способности к миниатюризации и интеграции позволили создать интегральные схемы, заложив основы микроэлектроники. С 1990-х в связи с появлением новых мощных транзисторов, стали активно вытесняться электронными устройствами трансформаторы, электромеханические и тиристорные ключи в силовой электротехнике, начал активно развиваться Частотно-регулируемый привод и инверторные преобразователи напряжения.

На принципиальных схемах транзистор обычно обозначается «VT» или «Q» с добавленим позиционного индекса, например, VT12. До 1970-х гг. в русскоязычной литературе и документации также применялись обозначения «Т», «ПП» (полупроводниковый прибор) или «ПТ» (полупроводниковый триод).

История

Изобретение транзистора, являющееся одним из важнейших достижений XX века[4], стало следствием длительного развития полупроводниковой электроники, которое началось в 1833 году, когда Майкл Фарадей провёл первые эксперименты с полупроводниковым материалом — сульфидом серебра.

В 1874 году немецкий физик Карл Фердинанд Браун впервые обнаружил явление односторонней проводимости контакта металл—полупроводник.

В 1906 году инженер Гринлиф Виттер Пиккард изобретает точечный полупроводниковый диод-детектор.

В 1910 году английский физик Уильям Икклз (англ.)русск. обнаружил у некоторых полупроводниковых диодов способность генерировать электрические колебания, а инженер Олег Лосев в 1922 году самостоятельно разработал диоды, обладающие при некоторых напряжениях смещения отрицательным дифференциальным сопротивлением, с помощью которых впервые успешно использовал усилительные и генераторные свойства полупроводников (Кристадинный эффект), в детекторных и гетеродинных радиоприёмниках собственной конструкции.

Особенностью этого периода развития было то, что физика полупроводников была ещё плохо изучена, все достижения являлись следствием экспериментов, учёные затруднялись объяснить, что происходит внутри кристалла, часто выдвигая ошибочные гипотезы.

В то же время на рубеже 1920—1930 годов в радиотехнике началась эпоха бурного индустриального развития электронных ламп, физика которых была изучена, и в этом направлении работала основная масса учёных-радиотехников, в то время как хрупкие и капризные полупроводниковые детекторы открытой конструкции, в которых нужно было при помощи металлической иглы вручную искать на кристалле «активные точки», стали уделом кустарей-одиночек и радиолюбителей, строивших на них простейшие радиоприемники. Потенциальных перспектив полупроводников никто не видел.

Создание биполярного и полевого транзисторов произошло разными путями.

Полевой транзистор

Первый шаг в создании полевого транзистора сделал австро-венгерский физик Юлий Эдгар Лилиенфельд, который предложил метод управления током в образце путём подачи на него поперечного электрического поля, которое, воздействуя на носители заряда, будет управлять проводимостью. Патенты были получены в Канаде (22 октября 1925 года) и Германии (1928 год)[5][6].

В 1934 году немецкий физик Оскар Хайл (англ.)русск. в Великобритании также запатентовал «бесконтактное реле», основанное на аналогичном принципе. Однако несмотря на то, что полевые транзисторы основаны на простом электростатическом эффекте поля и по протекающим в них физическим процессам проще биполярных, создать работоспособный образец полевого транзистора долго не удавалось.

Разработчики не могли обойти неизвестные на тот момент явления в поверхностном слое полупроводника, которые не позволяли управлять электрическим полем внутри кристалла у транзисторов такого типа (МДП-транзистор — металл, диэлектрик, полупроводник). Работоспособный полевой транзистор был создан уже после открытия биполярного транзистора. В 1952 году Уильям Шокли теоретически описал модель полевого транзистора другого типа, модуляция тока в котором, в отличие от ранее предложенных МДП[7] структур, осуществлялась изменением толщины проводящего канала за счёт расширения или сужения обеднённой области, прилегающего к каналу р-n-перехода. Это происходило при подаче на переход управляющего напряжения запирающей полярности затворного диода. Транзистор получил название «полевой транзистор с управляющим р-n-переходом» (мешающие работе поверхностные явления устранялись, так как проводящий канал находился внутри кристалла).

Первый полевой МДП-транзистор, запатентованный ещё в 1920-е годы и сейчас составляющий основу компьютерной индустрии, впервые был создан в 1960 году после работ американцев Канга и Аталлы, предложивших в качестве слоя затворного диэлектрика формировать на поверхности кремниевого кристалла с помощью окисления поверхности кремния тончайший слой диоксида кремния, изолирующий металлический затвор от проводящего канала, такая структура получила название МОП-структура (Металл-Окисел-Полупроводник).

В 90-х годах XX века МОП-технология стала доминировать над биполярной[8]

Биполярный транзистор

Копия первого в мире работающего транзистора

В отличие от полевого, первый биполярный транзистор создавался экспериментально, а его физический принцип действия был объяснён уже позднее.

В 1929—1933 гг., в ЛФТИ, Олег Лосев под руководством А. Ф. Иоффе провёл ряд экспериментов с полупроводниковым устройством, конструктивно повторяющим точечный транзистор на кристалле карборунда (SiC), однако достаточного коэффициента усиления получить тогда не удалось. Изучая явления электролюминесценции в полупроводниках, Лосев исследовал около 90 различных материалов, особенно выделяя кремний, и в 1939 году он вновь упоминает о работах над трёхэлектродными системами в своих записях, но начавшаяся война и гибель инженера в блокадном Ленинграде зимой 1942 года привели к тому, что некоторые его работы оказались утеряны и сейчас неизвестно, насколько далеко он продвинулся в создании транзистора. В начале 1930-х годов точечные трёхэлектродные усилители изготовили также радиолюбители Ларри Кайзер из Канады и Роберт Адамс из Новой Зеландии, однако их работы не были запатентованы и не подвергались научному анализу[4].

Успеха добилось опытно-конструкторское подразделение Bell Telephone Laboratories фирмы American Telephone and Telegraph, с 1936 года в нём, под руководством Джозефа Бекера, работала группа ученых специально нацеленная на создание твердотельных усилителей. До 1941 года изготовить полупроводниковый усилительный прибор не удалось (предпринимались попытки создания прототипа полевого транзистора). После войны, в 1945 году, исследования возобновились под руководством физика-теоретика Уильяма Шокли, после ещё 2 лет неудач, 16 декабря 1947 года, исследователь Уолтер Браттейн, пытаясь преодолеть поверхностный эффект в германиевом кристалле и экспериментируя с двумя игольчатыми электродами, перепутал полярность приложенного напряжения и неожиданно получил устойчивое усиление сигнала. Последующее изучение открытия, совместно с теоретиком Джоном Бардиным показало, что никакого эффекта поля нет, в кристалле идут ещё не изученные процессы, это был не полевой, а неизвестный прежде, биполярный транзистор. 23 декабря 1947 года состоялась презентация действующего макета изделия руководству фирмы, эта дата стала считаться датой рождения транзистора. Узнав об успехе, уже отошедший от дел Уильям Шокли, вновь подключается к исследованиям и за короткое время создает теорию биполярного транзистора, в которой уже наметил замену точечной технологии изготовления, более перспективной, плоскостной.

Первоначально новый прибор назывался «германиевый триод» или «полупроводниковый триод», по аналогии с вакуумным триодом — электронной лампой схожей структуры, в мае 1948 года в лаборатории прошел конкурс на оригинальное название изобретения, в котором победил Джон Пирс (John R. Pierce), предложивший слово «transistor», образованное путём соединения терминов «transconductance» (активная межэлектродная проводимость) и «variable resistor» или «varistor» (переменное сопротивление, варистор) или, по другим версиям, от слов «transfer» — передача и «resist» — сопротивление.

30 июня 1948 г. в штаб-квартире фирмы в Нью-Йорке состоялась официальная презентация нового прибора, на транзисторах был собран радиоприемник. И все же, мировой сенсации не состоялось, первоначально открытие не оценили по достоинству, ибо первые точечные транзисторы, в сравнении с электронными лампами, имели очень плохие и неустойчивые характеристики.

В 1956 году Уильям Шокли (en:William Shockley), Уолтер Браттейн (en:Walter Houser Brattain) и Джон Бардин (en:John Bardeen) были награждены Нобелевской премией по физике «за исследования полупроводников и открытие транзисторного эффекта»[9]. Интересно, что Джон Бардин вскоре был удостоен Нобелевской премии вторично за создание теории сверхпроводимости.

Создание биполярного транзистора в Европе

Параллельно с работами американских ученых, в Европе, биполярный транзистор был создан физиком-экспериментатором Гербертом Матаре (en:Herbert Mataré) и теоретиком Генрихом Велкером (en:Heinrich Welker). В 1944 году, Герберт Матаре, работая в фирме Телефункен, разработал полупроводниковый «дуодиод» (двойной диод), который, конструктивно был похож на будущий точечный биполярный транзистор. Прибор использовался в качестве смесителя в радиолокационной технике, как два, близких по параметрам, выпрямительных точечных диода, выполненных на одном кристалле германия. Тогда же Матаре впервые обнаружил влияние тока одного диода на параметры другого и начал исследования в этом направлении. После войны Герберт Матаре, в Париже, встретился с Иоганном Велкером, где оба физика, работая в филиале американской корпорации Westinghouse Electric, продолжили эксперименты над дуодиодом в инициативном порядке. В начале июня 1948 года, ещё не зная о результатах исследований группы Шокли в Bell Labs, они на основе дуодиода создали стабильно работающий биполярный транзистор, который был назван «транзитрон», однако, патентная заявка на изобретение, отправленная в августе 1948 года, рассматривалась французским бюро патентов очень долго и только в 1952 году был получен патент на изобретение. Серийно выпускаемые фирмой Westinghouse транзитроны, несмотря на то что по качеству они успешно конкурировали с транзисторами, также не смогли завоевать рынок и вскоре работы в этом направлении прекратились[4].

Развитие транзисторных технологий

Несмотря на миниатюрность и экономичность, первые транзисторы отличались высоким уровнем шумов, маленькой мощностью, нестабильностью характеристик во времени и сильной зависимостью параметров от температуры. Точечный транзистор, не являясь монолитной конструкцией, был чувствителен к ударам и вибрациям. Фирма-создатель Bell Telephone Laboratories не оценила перспективы нового прибора, выгодных военных заказов не ожидалось и лицензия на изобретение вскоре начала продаваться всем желающим за 25 тыс. долларов. В 1951 году был создан плоскостной транзистор, конструктивно представляющий собой монолитный кристалл полупроводника, и примерно в это же время появились первые транзисторы на основе кремния. Характеристики транзисторов быстро улучшались и вскоре они стали активно конкурировать с электронными радиолампами.

Позднее транзисторы заменили вакуумные лампы в большинстве электронных устройств, совершив революцию в создании интегральных схем и компьютеров. В начале 21-го века транзистор стал одним из самых массовых изделий, производимых человечеством. В 2013 году на каждого жителя Земли было выпущено около 15 миллиардов транзисторов (большинство из них — в составе интегральных схем)[10].

С появлением интегральных микросхем началась борьба за уменьшение размера элементарного транзистора. В 2012 году самые маленькие транзисторы содержали считанные атомы вещества[11]. Транзисторы стали основной частью компьютеров и других цифровых устройств. В некоторых конструкциях процессоров их количество превышало миллиард штук.

Классификация транзисторов

p-n-p канал p-типа
n-p-n канал n-типа
Биполярные Полевые

Обозначение транзисторов разных типов.
Условные обозначения:
Э — эмиттер, К — коллектор, Б — база;
З — затвор, И — исток, С — сток.

Ниже приведена формальная классификация транзисторов, где ток образуется потоком носителей заряда, а состояния, между которыми переключается прибор, определяются по величине сигнала: малый сигнал — большой сигнал, закрытое состояние — открытое состояние, на которых реализуется двоичная логика работы транзистора. Современная технология может оперировать не только электрическим зарядом, но и магнитными моментами, спином отдельного электрона, фононами и световыми квантами, квантовыми состояниями в общем случае.

По основному полупроводниковому материалу

Помимо основного полупроводникового материала, применяемого обычно в виде легированного в некоторых частях монокристалла, транзистор содержит в своей конструкции металлические выводы, изолирующие элементы, корпус (пластиковый, металлостеклянный или металлокерамический). Иногда употребляются комбинированные наименования, частично описывающие технологические разновидности (например, «кремний на сапфире» или «металл-окисел-полупроводник»). Однако основная классификация указывает на применённый полупроводниковый материал — кремний, германий, арсенид галлия и др.

Другие материалы для транзисторов до недавнего времени не использовались. В настоящее время имеются транзисторы на основе, например, прозрачных полупроводников для использования в матрицах дисплеев. Перспективный материал для транзисторов — полупроводниковые полимеры. Также имеются отдельные сообщения о транзисторах на основе углеродных нанотрубок[12], о графеновых полевых транзисторах.

По структуре

 

 

 

 

Транзисторы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Биполярные

 

 

 

 

 

 

Полевые

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p-n-p

 

n-p-n

 

С затвором в виде p-n-перехода

 

С изолированным затвором

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

С каналом n-типа

 

С каналом p-типа

 

Со встроенным каналом

 

С индуцированным каналом

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

С каналом n-типа

 

С каналом p-типа

 

С каналом n-типа

 

С каналом p-типа

 

 

Принцип действия и способы применения транзисторов существенно зависят от их типа и внутренней структуры.

  • Биполярные
    • n-p-n структуры, «обратной проводимости».
    • p-n-p структуры, «прямой проводимости».
В биполярном транзисторе носители заряда движутся от эмиттера через тонкую базу к коллектору. База отделена от эмиттера и коллектора p-n переходами. Ток протекает через транзистор лишь тогда, когда носители заряда инжектируются из эмиттера в базу через p-n переход. В базе они являются неосновными носителями заряда и легко захватываются другим p-n переходом между базой и коллектором, ускоряясь при этом. В базовом слое носители заряда распространяются за счёт диффузионного механизма, если нет градиента легирующей примеси в слое базы, или по действием электрического поля при неравномерном легировании базы, для повышения быстродействия прибора толщина базового слоя должна быть как можно тоньше, но чрезмерное снижение толщины базы вызывает снижение предельно допустимого напряжения коллектора. Управление током между эмиттером и коллектором осуществляется изменением напряжения между базой и эмиттером, от которого зависят условия инжекции носителей заряда в базу и ток базы.
В полевом транзисторе ток протекает от истока к стоку через канал под затвором. Канал существует в легированном полупроводнике в промежутке между затвором и нелегированной подложкой, в которой нет носителей заряда, и она не может проводить ток. Преимущественно под затвором существует область обеднения, в которой тоже нет носителей заряда благодаря образованию между легированным полупроводником и металлическим затвором контакта Шоттки. Таким образом ширина канала ограничена пространством между подложкой и областью обеднения. Приложенное к затвору напряжение увеличивает или уменьшает ширину области обеднения и, тем самым, площадь поперечного сечения канала, управляя током стока и равного ему током истока.

Другие разновидности транзисторов

Составные транзисторы

  • Транзисторы со встроенными резисторами (Resistor-equipped transistors (RETs)) — биполярные транзисторы со встроенными в один корпус резисторами.
  • Транзистор Дарлингтона, пара Шиклаи — комбинация двух биполярных транзисторов, работающая как биполярный транзистор с высоким коэффициентом усиления по току.
    • на транзисторах одной структуры;
    • на транзисторах разной структуры.
  • Лямбда-диод — двухполюсник, сочетание из двух полевых транзисторов, имеющая, как и туннельный диод, значительный участок с отрицательным дифференциальным сопротивлением.
  • Биполярный транзистор, управляемый полевым транзистором с изолированным затвором (IGBT) — силовой электронный прибор, предназначенный, в основном, для управления электрическими приводами.

По мощности

По рассеиваемой в виде тепла мощности различают:

  • маломощные транзисторы до 100 мВт;
  • транзисторы средней мощности от 0,1 до 1 Вт;
  • мощные транзисторы (больше 1 Вт).

По исполнению

  • дискретные транзисторы;
    • корпусные
      • для свободного монтажа
      • для установки на радиатор
      • для автоматизированных систем пайки
    • бескорпусные
  • транзисторы в составе интегральных схем.

По материалу и конструкции корпуса

  • В металлостеклянном/металлокерамическом корпусе.
Материал корпуса — металл. Материал изоляторов, через которые проходят выводы — стекло, либо керамика. Имеют наибольший диапазон температур окружающей среды и максимальную защищённость от воздействия внешних факторов.
  • В пластмассовом корпусе.
Отличаются меньшей стоимостью и более мягкими допустимыми условиями эксплуатации. У мощных приборов в пластмассовом корпусе кроме выводов часто имеется металлический теплоотвод — кристаллодержатель для монтажа прибора на внешний радиатор.

Прочие типы

Выделение по некоторым характеристикам

Транзисторы BISS (Breakthrough in Small Signal, дословно — «прорыв в малом сигнале») — биполярные транзисторы с улучшенными малосигнальными параметрами. Существенное улучшение параметров транзисторов BISS достигнуто за счёт изменения конструкции зоны эмиттера. Первые разработки этого класса устройств также носили наименование «микротоковые приборы».

Транзисторы со встроенными резисторами RET (Resistor-equipped transistors) — биполярные транзисторы со встроенными в один корпус с кристаллом резисторами. RET — это транзистор общего назначения со встроенным одним или двумя резисторами. Такая конструкция транзистора позволяет сократить количество внешних навесных компонентов и минимизирует необходимую площадь монтажа. RET транзисторы применяются для непосредственного подключения к выходам микросхем без использования токоограничивающих резисторов.

Применение гетеропереходов позволяет создавать высокоскоростные и высокочастотные полевые транзисторы, такие как например, HEMT.

Схемы включения транзистора

Для включения в схему транзистор должен иметь четыре вывода — два входных и два выходных. Но транзисторы почти всех разновидностей имеют только три вывода. Для включения трёхвыводного прибора необходимо один из выводов назначить общим, и, поскольку таких комбинаций может быть только три, то существуют три основные схемы включения транзистора:

Схемы включения биполярного транзистора

  • с общим эмиттером (ОЭ) — осуществляет усиление как по току, так и по напряжению — наиболее часто применяемая схема;
  • с общим коллектором (ОК) — осуществляет усиление только по току — применяется для согласования высокоимпедансных источников сигнала с низкоомными сопротивлениями нагрузок;
  • с общей базой (ОБ) — усиление только по напряжению, в силу своих недостатков в однотранзисторных каскадах усиления применяется редко (в основном в усилителях СВЧ), обычно в составных схемах (например, каскодных).

Схемы включения полевого транзистора

Полевые транзисторы, как с p-n переходом (канальные), так и МОП (МДП) имеют следующие схемы включения:

  • с общим истоком (ОИ) — аналог ОЭ биполярного транзистора;
  • с общим стоком (ОС) — аналог ОК биполярного транзистора;
  • с общим затвором (ОЗ) — аналог ОБ биполярного транзистора.

Схемы с открытым коллектором (стоком)

«Открытым коллектором (стоком)» называют включение транзистора по схеме с общим эмиттером (истоком) в составе электронного модуля или микросхемы, когда коллекторный (стоковый) вывод не соединяется с другими элементами модуля (микросхемы), а непосредственно выводится наружу (на разъем модуля или вывод микросхемы). Выбор нагрузки транзистора и тока коллектора (стока) при этом оставляется за разработчиком конечной схемы, в составе которой применяются модуль или микросхема. В частности, нагрузка такого транзистора может быть подключена к источнику питания с более высоким или низким напряжением, чем напряжение питания модуля/микросхемы. Такой подход значительно расширяет рамки применимости модуля или микросхемы за счет небольшого усложнения конечной схемы. Транзисторы с открытым коллектором (стоком) применяются в логических элементах ТТЛ, микросхемах с мощными ключевыми выходными каскадами, преобразователях уровней, шинных формирователях (драйверах) и т. п.

Статья с подробным описанием принципа (в англоязычном разделе).

Реже применяется обратное включение — с открытым эмиттером (истоком). Оно также позволяет выбирать нагрузку транзистора изменением внешних компонентов, подавать на эмиттер/сток напряжение полярности, противоположной напряжению питания основной схемы (например, отрицательное напряжение для схем с биполярными транзисторами n-p-n или N-канальными полевыми), и т. п.

Применение транзисторов

Вне зависимости от типа транзистора, принцип применения его един:

  • Источник питания питает электрической энергией нагрузку, которой может быть громкоговоритель,

Все транзисторы. Даташиты. Описания. Основные характеристики. Справочник транзисторов

В справочнике приведены описания характеристик и даташиты более 100 000 транзисторов.

BJT. ТОП50: 2N2222 — 2Н3055 — BC547 — 2Н3904 — 2Н2222А — BC107 — C945 — BC548 — BD139 — 8050 — S8050 — BC557 — BC337 — TIP31 — D882 — AC128 — BC108 — S9014 — C1815 — BD140 — 2Н3906 — S8550 — 8550 — 2SC945 — 2SC5200 — BC547B — 2N5551 — MJE13003 — 9014 — BC549 — BC148 — TIP122 — 9013 — 2Н2907 — BC558 — BC327 — C102 — A733 — 2SC1815 — 2N60C — 2Н222 — 2N4401 — BC109 — BD135 — S9013 — BC546 — A1015 — 9012 — 431 — 2Н3773 —

МОП-транзистор.ТОП30: IRF3205 — IRFZ44N — IRF740 — IRF540 — IRF840 — BS170 — IRFZ44 — IRF640 — IRF540N — 2Н7000 — IRF630 — IRFP460 — IRFZ46N — IRF530 — IRF1404 — IRF3710 — IRFZ34N — IRFP250 — BUZ11 — RFP50N06 — IRF520 — IRFP450 — IRFB3306 — IRF510 — IRF830 — 2N5484 — IRF730 — IRF150 — STF5N52U — IRF2807 —

IGBT. ТОП15: IRGP4086 — CT60AM-18F — FGPF4633 — G40N60B3 — IRG7IC28U — G20N60B3D — IXGR40N60C2D1 — G7N60C3D — РДЖП30х2ДПД — IKW50N60h4 — 10Н40Ф1Д — GT60M303 — ФГх50Н60СФД — IRG4BC30W-S — IRG4PC50UD —


КУПИТЬ ТРАНЗИСТОРЫ

Подбор биполярного транзистора по параметрам.Поиск 900 аналогов29

Материал =

Структура =

Pc> W

Ucb> V

Uce> V

Ueb> V

Ic> А

Tj> C

футов> МГц

куб.см пФ

Hfe>

Caps =

R1 = кОм

R2 = кОм

R1 / R2 =

Пустые или нулевые поля игнорируются при поиске

Как подобрать замену для биполярного транзистора 🔗

Сейчас в справочнике развития 124323 транзисторов.


Back to Top

.

Транзисторы. Общие сведения.

Что такое транзистор?

Транзистор — электронный полупроводниковый прибор, предназначенный для усиления, генерирования и преобразования электрических сигналов. Если бытьнее, то транзистор позволяет регулировать силу электрического тока аналогично тому, как водяной кран регулирует поток воды . Отсюда следуют две основные функции прибора электрической цепи — это усилитель и переключатель.

Существует бесконечное множество типов транзисторов — от огромных усилителей высокой мощности размером с кулак, до миниатюрных переключателей на кристалле процессора размером в считанные десятки нанометров (в одном метре 10 9 нанометров).

Что значит слово «транзистор» и как это связано с его работой?

Слово «транзистор» происходит от двух английских слов — «передача» (переносить) и «резистор» (сопротивление).Что можно буквально перевести, как «переходное сопротивление». Однако, лучше всего для описания работы этого прибора, подойдет название «переменное сопротивление». Электронная схема в электронной цепи, транзистор ведет себя как переменное сопротивление. Только если у таких чисел резисторов, как потенциометр и обычный выключатель, нужно сопротивление с помощью механического воздействия, то транзистора его меняют посредством напряжения, которое подается на один из электродов прибора.

Обозначения и тип транзисторов.

Устройство и обозначение транзисторов разделяют на две большие группы. Первая — это биполярные транзисторы (БТ) (международный термин — BJT, Bipolar Junction Transistor). Вторая группа — это униполярные транзисторы, еще их называют полевыми (ПТ) (международный термин — FET, полевой транзистор).

Полевые, в свою очередь, делятся на транзисторы с PN-переходом (JFET — Junction FET) и с изолированным затвором (MOSFET-Metal-Oxide-Semiconductor FET).

Применение биполярных транзисторов.

На сегодняшний день биполярные транзисторы получили самое широкое распространение в аналоговой электронике. Если быть точнее, то чаще всего их используют в качестве усилителей в дискретных цепях (схемах, состоящих из отдельных электронных компонентов).

Также нередко отдельные БТ используются совместно с интегральными (состоящими из многих компонентов на одном кристалле полупроводника) налоговыми и цифровыми микросхемами.В этой необходимости возникает необходимость, например, когда нужно усилить слабый сигнал на выходе из интегральной схемы, обычно не располагающей высокой мощностью.

Применение полевых транзисторов.

В области цифрового электроники, полевые транзисторы, именно полевые транзисторы с изолированным затвором (MOSFET), практически полностью вытеснили биполярные благодаря многократному превосходству в скорости и экономичности. Внутри архитектуры логики процессоров, памяти, и других различных цифровых микросхем, находятся сотни миллионов, и даже миллиарды MOSFET, играющих роль электронных переключателей.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *