Проверка резистор: Страница не найдена — EvoSnab

Содержание

Как проверить резистор

К наиболее часто встречающимся неисправностям непроволочных резисторов относятся: частичное или полное выгорание токопроводящего слоя и нарушение электрического контакта этого слоя с хомутиком. Обе эти причины ведут к изменению номинальной величины сопротивления, что может быть выявлено с помощью омметра. Если параллельно проверяемому резистору включены другие элементы, при измерении номинала резистор отпаивают. Резистор считается неисправным, если величина сопротивления имеет отклонение от номинала более чем на 25 %. На неисправность резистора указывают изменяющиеся показания измерительного прибора при незначительных покачиваниях его выводов. Как правило, неисправные проволочные резисторы не ремонтируются, а заменяются исправными. Перед заменой следует выяснить причину, приведшую к выходу резистора ив строя, и устранить ее. При отсутствии исправного резистора, соответствующего параметрам вышедшего из строя, последний может быть составлен из нескольких резисторов, соединенных параллельно или последовательно для достижения нужного номинала.

Неисправности переменных непроволочных резисторов в большинстве случаев обусловлены отсутствием надежного контакта между скользящим контактом и токопроводящим слоем (загрязнением, деформацией скользящего контакта или токопроводящего слоя), а также заниженной величины сопротивления изоляции между металлическим корпусом резистора и выводами.

Переменные проволочные резисторы реже выходят из строя. Причинами их неисправности

могут быть: плохой контакт между проволокой и подвижным контактом или обрыв токопроводящего элемента. Эти неисправности легко выявляются с помощью омметра. В исправном резисторе отклонение номинальной величины сопротивления не должно превышать 15—20 %. Начальная величина сопротивления резистора должна быть не более 10 Ом для резисторов с номиналом сопротивления до 15 кОм и 50 Ом для резисторов с номиналом сопротивления выше 15 кОм. Сопротивление изоляции между корпусом и выводами не должно быть менее 200 кОм.

У исправных резисторов ход подвижного контакта по токопроводящему элементу должен быть плавным, без разрывов цепи. Выявленные неисправности можно устранить некоторым увеличением давления в месте контакта, пайкой или сваркой оборванного элемента в проволочных резисторах. Если ремонт не дает желаемого результата, неисправный резистор заменяют другим, предварительно проверенным.

В этом видео показано как проверить резистор мультиметром:

Добавить комментарий

Проверка, ремонт и взаимозаменяемость резисторов

Проверку исправности резисторов осуществляют в следующей последовательности:

  1. внешний осмотр;
  2. проверка сопротивления;
  3. снятие дополнительных характеристик.

При внешнем осмотре следует обращать внимание на целостность корпуса, отсутствие на его поверхности трещин и сколов, надежность крепления выводов. У неисправного резистора можно обнаружить обуглившиеся поверхности лакового или эмалевого покрытия, а в ряде случаев колечки.


Небольшое потемнение лакового покрытия допустимо, но у таких резисторов необходимо проверить значение сопротивления. В ряде случаев обрыв токопроводящего элемента не вызывает изменений внешнего вида резистора.

Поэтому проверку на его на соответствие номинальному значению производят с помощью омметра либо при необходимости с помощью других измерительных приборов или способов. Если измерение сопротивления резистора осуществляется без выпаивания из схемы, необходимо учитывать влияние шунтирующих цепей.

Наиболее часто встречающейся неисправностью у резисторов является перегорание токопроводящего слоя. Оно может быть вызвано прохождением через резистор недопустимо большого тока в результате различных замыканий в монтаже или пробоя конденсаторов.

Резисторы проволочные довольно редко выходят из строя. Основные их неисправности (обрыв или перегорание проволоки) обычно устанавливаются с помощью омметра.

Исправность переменных резисторов определяется омметром. Для этого подключают один щуп омметра к среднему лепестку резистора, а другой — к одному из крайних лепестков.

Ось переменного резистора при этом вращают очень медленно. Если резистор исправен, то при вращении его оси стрелка омметра будет отклонятся плавно. Дрожание, рывки свидетельствуют о плохом контакте щетки с токопроводящим элементом.

Если стрелка омметра вообще не отклоняется, то резистор неисправен. Проверку рекомендуется повторить, переключив другой щуп омметра ко второму крайнему лепестку резистора.

Неисправный переменный резистор необходимо заменить новым или отремонтировать, если это возможно.

Для этого вскрывают корпус резистора, спиртом промывают токопроводящий элемент, внимательно его осматривают и при отсутствии видимых повреждений наносят тонкий слой машинного масла. Затем его собирают и вновь проверяют надежность контакта.

Непригодные

постоянные резисторы заменяют новыми с соответствующими техническими параметрами:

  • номинальным омическим сопротивлением,
  • номинальной мощностью рассевания и др.

При отсутствии резистора с соответствующим сопротивлением его можно заменить двумя (или несколькими), соединенными параллельно или последовательно.

При последовательном соединении общее сопротивление равно сумме значений сопротивлений резисторов, включенных в электрическую цепь:

Rпосл. = R1+R2

При параллельном соединении двух резисторов общее сопротивление можно рассчитать по формуле:

Rпарал.

 = (R1*R2)/(R1+R2)

При установке исправных резисторов взамен вышедших из строя необходимо учитывать мощность рассеяния.

Без особой нужды не следует завышать ее, так как резистор большой мощности имеет большие геометрические размеры. В современной радиоаппаратуре монтаж очень плотный и разместить несколько резисторов вместо одного или один большого размера довольно трудно. Кроме того, это может привести к соответствующему увеличению паразитных связей, отрицательно влияющих на работу радиоаппарата.

При определении взаимозаменяемости переменных резисторов, кроме вышеназванных параметров для постоянных резисторов учитывают и характеристику изменения сопротивления от угла поворота его оси. Выбор резистора с соответствующей характеристикой определяют его схемным назначением.

Например, для получения равномерного регулирования громкости в усилителе звуковой частоты следует выбирать переменные резисторы с зависимостью изменения сопротивления (группы В). В цепях точной и плавной настройки, например, для регулировки линейности по кадрам в телевизорах применяют резисторы с линейной зависимостью (группы А).

Исправность терморезисторов, фоторезисторов и варисторов устанавливают специальными измерениями, малодоступными широкому кругу радиолюбителей. О выходе из строя такого резистора приходится судить по внешнему проявлению дефекта.

Источник: Бердский электромеханический техникум

Опубоиковано на: www.mini-soft.ru

<< Предыдущая  Следующая >>

Как проверить резистор, конденсатор, диод и транзистор на исправность?

Эксплуатация полупроводниковых устройств

Проверка состояния и качества изготовления полупроводниковых систем автоматического управления и контроля выполняется электрогруппой судна или при ее участии. Наиболее полные проверки производятся при приемке судна после постройки или заводского ремонта. 

В процессе приемо-сдаточных испытаний проверяют конструктивное выполнение, состояние монтажа и функционирование систем. Проверка конструктивного выполнения и монтажа должна охватывать все части автоматической системы: блоки системы управления, которые монтируются в щите или панели, датчики и кабельные соединения. Проверка производится при полностью обесточенной системе.

Отдельные блоки полупроводниковых устройств собраны на платах с печатным монтажом. Сначала производят внешний осмотр щита (пульта, панели). Все поверхности, как внешние, так и внутренние, должны быть ровными, чистыми и хорошо окрашенными. Места ввода кабелей должны иметь сальниковые уплотнения; в отверстия на корпусе должны быть установлены заглушки. Не допускается, чтобы над щитом проходили трубопроводы с фланцами. 

Расположение щита должно быть удобным для обслуживания. Необходимо, чтобы дверца легко и полностью открывалась и закрывалась и имела уплотнительные прокладки, а на щите была табличка с его наименованием.

При осмотре внутренней части щита необходимо проверить, как разведены кабели, как выполнены выводные соединения, имеется ли маркировка проводов на выводных соединениях и маркировка гнезд для печатных плат. 

Если на дверце установлены какие-либо устройства (сигнальные лампы, нажимные кнопки, переключатели и др.), то надо проверить крепление этих устройств и подводку проводов к ним. Гибкие многожильные провода должны быть собраны в жгут, связанный суровой нитью, пластмассовой лентой или заключенный в гибкую трубку. Жгут должен быть такой длины, чтобы не было натяжения при крайних положениях дверцы.

Для осмотра печатных плат каждую поочередно нужно вынуть из гнезда, осмотреть обе ее стороны и установить на место. Правильно установленная плата должна прочно удерживаться в своем гнезде и не качаться при умеренном нажатии пальцем на внешнюю торцевую кромку. При извлечении платы вначале требуется значительное усилие, а после выхода штырей из штепсельного разъема плата должна легко и свободно скользить в направляющих. Если на плате нет оправки, специально предназначенной для того, чтобы держать плату в руке, рекомендуется брать плату за боковые кромки или за раму электрического соединителя.

При осмотре платы с монтажной стороны следует обратить внимание на внешний вид элементов, не допускаются потемнения, царапины и т. п. Если элементы удерживаются на плате только своими внешними выводами, то они должны быть такой длины, чтобы расстояние между элементом и платой было в пределах от 3 до 8 мм. Изгибы внешних выводов непосредственно у корпуса элемента недопустимы. Со стороны пайки проверяют качество соединений: соединения должны иметь вид небольшого конуса, без раковин и лишнего припоя, провода хорошо облужены. Токопроводящие полосы печатной платы не должны иметь отслоений. 

Поверхность платы должна быть покрыта лаком. Необходимо убедиться, что подстроечные потенциометры и переменные емкости не находятся в крайних положениях и дают возможность для регулировки. Ползунки потенциометров и переменных емкостей должны быть надежно законтрены от случайных перемещений. Проверяется качество подсоединения проводов к электрическим соединителям плат и крепление гнезд неподвижной части разъемов в каркасе щита. Соединительные провода должны быть собраны в жгуты.

При проверке монтажа датчиков следует убедиться, что места их установки выбраны правильно, т. е. исключается влияние внешней среды (температуры, вибрации, давления и т. д.). 

Следует проверить плотность в месте ввода соединительного кабеля в корпус датчика, надежное закрепление органов регулировки датчика, наличие четкой разметки положения этих органов. Необходимо следить, обеспечена ли возможность снятия датчика для замены. Каждый датчик должен иметь табличку с наименованием или условным обозначением контролируемого им параметра.

При проверке кабельных соединений между отдельными частями автоматических систем следует обратить внимание на расположение кабелей, соединяющих датчики и устройства автоматики.

Эти кабели не должны располагаться в одной трассе с силовыми кабелями, так как переменное магнитное поле силовых кабелей может наводить ложные сигналы в жилах, идущих от датчиков.

В случае неполадок в работе полупроводниковой автоматической системы необходимо прежде всего выяснить, в каком узле или блоке произошел отказ. Неисправность можно устранить в сравнительно короткое время, заменив отказавший блок исправным, взятым из судового комплекта запасных частей. Необходимо убедиться в том, что неисправность полупроводниковой автоматической системы вызвана отказом в ее логической части, а не в каком-либо периферийном устройстве — датчике или исполнительном органе. Для определения неисправности в логической части схемы необходимо с помощью технической документации выяснить, какие контуры участвуют в формировании той функции системы, которая не выполняется или выполняется неправильно. Следует проверить состояние электрических соединителей плат, так как окисление или ослабление контактов приводит к резкому возрастанию переходного сопротивления и к нарушению соединения. Контактные поверхности протирают спиртом.

Что чаще всего выходит из строя на плате?

Самые простые и наиболее распространённые поломки плат, являются вышедшие из строя конденсаторы или сгоревшие предохранители, но также встречаются и более серьёзные поломки и для этого уже нужен не только внешний осмотр, но использование специальных приборов.

При осмотре платы, на которой расположены отказавшие контуры, следует обратить внимание на обуглившиеся резисторы, вспученные конденсаторы, оплавленные концы, потемневшие участки на печатной плате, отслоение полос и т. д. Все эти признаки помогают уточнить место неисправности.  

Иногда неисправность определить внешним осмотром не удается. Простейшие измерения могут быть выполнены тестером. Для выявления отказавших элементов схемы следует разбить контур на участки так, чтобы выход одного участка являлся входом другого. На каждом выделенном участке контура измеряют выходную и входную величину (обычно напряжение), чтобы убедиться, что между этими величинами существует правильная функциональная связь, вытекающая из построения контура. Если эта связь нарушена, то участок следует считать неисправным. Дальнейшая задача заключается в поиске вышедших из строя элементов, входящих в состав данного участка контура.

Как проверить резистор на исправность?

Резисторы проверяют путем измерения сопротивления при снятом питании. Один конец резистора следует выпаять, чтобы в цепь не включались параллельные участки. Дефектные резисторы должны быть заменены новыми. Новый резистор должен иметь то же сопротивление и ту же мощность, что и вышедший из строя.

Как проверить конденсатор?

Характерные неисправности конденсаторов: пробой изоляции, внутренний обрыв, утечка заряда. В электролитических конденсаторах может произойти заметное вспучивание корпуса и даже его разрыв. Иногда можно наблюдать потеки электролита. 

Если внешних признаков неисправности конденсатора нет, его следует для проверки снять с печатной платы. 

Грубую проверку исправности конденсатора можно сделать омметром. Исправный конденсатор показывает сопротивление бесконечно большое, пробитый — порядка нескольких ом.

Как проверить диод на исправность?

Наиболее распространенные неисправности диодов: пробой, обрыв, утечка и нарушение герметичности корпуса. Эти дефекты не выявляются по внешнему виду и требуют проведения электрических измерений. 

Диоды можно проверить, измерив сопротивление в прямом и обратном направлениях. Сопротивление в прямом направлении значительно меньше, чем в обратном. Диоды можно проверять без выпаивания на плате при снятом напряжении.  

При пробое прямое и обратное сопротивления малы, при обрыве внутреннее сопротивление в обоих направлениях равно бесконечности. 

Причиной пробоя или обрыва диодов может быть короткое замыкание или увеличение температуры в месте установки диода. Пробой может быть вызван всплеском напряжения в момент включения или выключения схемы. Пробой диода является следствием других неисправностей, которые нужно найти.

При наличии утечки сопротивление диода в прямом направлении нормальное, как у исправного прибора. В обратном направлении в течение первых нескольких секунд сопротивление велико, а затем медленно уменьшается. Если есть утечка, диод должен быть заменен. При пайке диода на плате необходим теплоотвод.

Как проверить транзистор?

Транзисторы используются в усилительных и ключевых схемах. В первом случае дефектный транзистор должен быть заменен не только идентичным по параметрам, но и имеющим такие же вольт-амперные характеристики, поэтому замена транзистора в этих схемах связана с известными трудностями.

В ключевых схемах транзистор работает в режиме «открыт — закрыт», поэтому при замене достаточно подобрать транзистор того же типа. 

Припайка выводов должна производиться в такой последовательности: первым припаивается вывод базы, затем — эмиттера и последним — коллектора. При выпаивании транзистора соблюдают обратную последовательность: коллектор — эмиттер — база.

Транзистор можно проверять вольтметром непосредственно на печатной плате при включенном питании.

Недопустимо проверять транзистор с помощью омметра, так как для многих транзисторов максимально допустимое напряжение между базой и эмиттером очень мало. 

Напряжение батареи прибора может оказаться выше этого значения, и произойдет пробой перехода. При проверке исправности транзистора вольтметром на базу сначала подается минимальное напряжение, предусмотренное схемой и производятся измерения 1 и 2 (рис. 1). 

Затем напряжение доводится до наибольшего значения, предусмотренного схемой, и снова производятся эти же измерения. В первом случае измерение 2 дает показание, близкое к напряжению питания (транзистор закрыт), во втором такое же измерение дает результат, близкий к нулю (транзистор открыт). 

Рис. 1. Схема проверки транзистора

Если транзистор пробит, то в обоих случаях результаты измерения 2 равны нулю. При внутреннем обрыве в обоих случаях измерение 2 дает напряжение питания. При утечке измерение 2 на закрытом транзисторе показывает постепенное уменьшение напряжения от напряжения питания до 70—80% его значения. Все эти неисправности свидетельствуют о выходе транзистора из строя и необходимости его замены, причем следует искать причины выхода транзистора из строя. 

Причинами пробоев и внутренних обрывов могут быть перегрузки транзисторов по току или высокая температура в месте установки транзистора. Перегрузка может произойти из-за короткого замыкания в цепи коллектора (зашунтировано сопротивление R3) или перенапряжения на базе.

⇓ДОБАВИТЬ В ЗАКЛАДКИ⇓

⇒ВНИМАНИЕ⇐

  • Материал на блоге⇒ Весь материал предоставляется исключительно в ознакомительных целях! При распространении материала используйте пожалуйста ссылку на наш блог!
  • Ошибки⇒ Если вы обнаружили ошибки в статье, то сообщите нам через контакты или в комментариях к статье. Мы будем очень признательны!
  • Файлообменники⇒ Если Вам не удалось скачать материал по причине нерабочих ссылок или отсутствующих файлов на файлообменниках, то сообщите нам через контакты или в комментариях к статье.
  • Правообладателям⇒ Администрация блога отрицательно относится к нарушению авторских прав на www.electroengineer.ru. Поэтому, если Вы являетесь правообладателем исключительных прав на любой материал, предоставленный на ресурсе, то сообщите нам через контакты и мы моментально примем все действия для удаления Вашего материала.

⇓ОБСУДИТЬ СТАТЬЮ⇓

Как проверить резистор мультиметром на исправность: инструкция :: SYL.ru

Рубрика: Статьи обо всем, Статьи про радиодетали, Электрические измерения Опубликовано 01.03.2020 · Комментарии: · На чтение: 3 мин · Просмотры: Post Views: 577

Проверить номинал резистора можно с помощью измерения сопротивления (омметр).

В разъем COM вставляется черный щуп, а в VΩ красный. VΩ — это измерение напряжения и сопротивления.

Переводим мультиметр в режим измерения сопротивления. Диодная прозвонка не поможет. Прозвонка измеряет только падение напряжения, но не сопротивление. Начинаем с малого значения в 200 Ом.

Единица обозначает две ситуации. Если у резистора сопротивление выше, чем выбранный предел, мультиметр покажет зашкаливающее значение. Так же единица обозначает, что прибор не видит радиодеталь или есть плохой контакт между щупами и деталью.

Точка на экране показывает предел измерения. Здесь выбран предел 20 кОм.

Мультиметр показывает 2,7 кОм. При измерениях нельзя касаться одновременно двух металлических оснований щупов. Ваше тело может шунтировать измеряемую деталь, и показания пробора будут ложными.

Неисправный резистор труднее всего диагностировать. Он может быть как пробитым (короткое замыкание) так и с обрывом. Проблема в том, что если вы не знаете маркировку или у вас нет схемы, определить неисправную деталь будет труднее.

Пробитый резистор мультиметр определит как с 0 сопротивлением. А в режиме диодной прозвонки, мультиметр начнет пищать. Однако, если реальное сопротивление резистора было 1 Ом, то прибор может пищать, а в режиме измерения сопротивления будет показывать погрешности.

Тоже самое с резисторами, чьи номиналы сопротивления выше, чем у измеряемого прибора. Можно его проверить и с помощью диодной прозвонки. При исправном резисторе диодная прозвонка не будет пищать, она покажет падение напряжения. Но и тут проблема.

Если сопротивление очень высоко, аккумулятора и измеряемых цепей мультиметра не хватит для таких высоких значений. И прибор покажет обрыв.

Если требуется проверить резистор на плате, лучше выпаивайте один контакт, иначе прибор будет показывать ложные значения. Другие радиодетали на плате будут шунтировать и вносить свои искажения при измерениях.

Основные этапы тестирования

Несмотря на разнообразие резисторов, у обычных элементов этого класса линейная ВАХ, что существенно упрощает проверку, сводя ее к трем этапам:

  1. внешний осмотр;
  2. радиодеталь тестируется на обрыв;
  3. осуществляется проверка соответствия номиналу.

Если с первым и вторым пунктом все понятно, то с последним есть нюансы, а именно, необходимо узнать номинальное сопротивление. Имея принципиальную схему, сделать это не составит труда, но вся беда в том, что современная бытовая техника довольно редко комплектуется технической документацией. Выйти из создавшего положения можно, определив номинал по маркировке. Кратко расскажем как это сделать.


Какие установить настройки

Прежде чем снимать показания мультиметромом, необходимо убедиться в том, что его аккумуляторы заряжены. Режим нужно выбрать соответствующий «прозвону» электропроводки, концы щупов мыкают (соприкасают) друг с другом. Прибор будет издавать звуки, по громкости которых можно определить, насколько пригодна его батарейка.


В зависимости от модификации прибора режим прозвона может обозначаться разными символами – встречается колокольчик, точка со скобками (радиоволны). При проверке электрических цепей или радиодеталей мультиметр издает определенные звуки, «звонит», отсюда и сленговое название данной операции.

Для того чтобы проверить резистор с помощью мультиметра, нужно поставить переключатель прибора в положение, соответствующее номинальному сопротивлению элемента, который вы собираетесь проверять. Значения нанесены на переднюю панель устройства, можно различить их градацию по диапазонам. Нужно правильно выбрать диапазон, иначе величина сопротивления не совпадет, и результат проверки не будет достоверным. Например, при сопротивлении 1 кОм прибор нужно ставить в режим Ω – 20 кОм.

Для того чтобы проверить радиодеталь, щупы прибора подносят к ее выводам вне зависимости от того, соблюдена полярность или нет.

Виды маркировок

На компонентах, выпущенных во времена Советского Союза, было принято указывать номинал на корпусе детали (см. рис.1). Этот вариант не требовал расшифровки, но при повреждении целостности конструкции или выгорании краски могли возникнуть проблемы с распознаванием текста. В таких случаях всегда можно было обратиться к принципиальной схеме, которой комплектовалась вся бытовая техника.


Рисунок 1. Резистор «УЛИ», на корпусе виден номинал детали и допуск

Виды неисправностей

Резистором называют электронный компонент с определенным или переменным значением электрического сопротивления. Перед тем как проверить резистор мультиметром, его осматривают, визуально проверяя исправность. Прежде всего определяется целостность корпуса по отсутствию на поверхности трещин и сколов. Выводы должны быть надежно закреплены.

Неисправный резистор часто имеет полностью обгоревшую поверхность или частично — в виде колечек. Если покрытие немного потемнело, это еще не характеризует наличие неисправности, а говорит лишь о его нагреве, когда выделяемая на элементе мощность в какой-то момент превысила величину допустимой.

Деталь может выглядеть как новая, даже если внутри оборвется контакт. У многих здесь возникают проблемы. Как проверить резистор мультиметром в данном случае? Необходимо наличие принципиальной схемы, по которой производятся замеры напряжения в определенных точках. Для облегчения поиска неисправностей в электрических цепях бытовой техники выделяются контрольные точки с указанием на них величины этого параметра.

Проверка резисторов производится в самую последнюю очередь, когда нет сомнений в следующем:

  • полупроводниковые детали и конденсаторы исправны;
  • на печатных платах нет сгоревших дорожек;
  • отсутствуют обрывы в соединительных проводах;
  • соединения разъемов надежны.

Все вышеперечисленные дефекты появляются со значительно большей вероятностью, чем выход из строя резистора.

Цветовое обозначение

Сейчас принята цветовая маркировка, представляющая собой от трех до шести колец разной окраски (см. рис. 2). Не надо видеть в этом происки врагов, поскольку данный способ позволяет установить номинал даже на сильно поврежденной детали. А это весомый фактор, учитывая, что современные бытовые электроприборы не комплектуются принципиальными схемами.


Рис. 2. Пример цветовой маркировки

Информацию по расшифровке данного обозначения на компонентах несложно найти в интернете, поэтому приводить ее в рамках этой статьи не имеет смысла. Есть также множество программ-калькуляторов (в том числе и онлайн), позволяющих получить необходимую информацию.

Порядок тестирования

Резисторы могут иметь различный вид, но у стандартных моделей присутствует линейная ВАХ. Проверка устройства состоит из трех этапов:

  1. Осмотр внешнего состояния прибора.
  2. Тестирование детали на обрыв.
  3. Сравнение показателей с номиналом.

Два первых пункта не составляют труда при выполнении, а с последним этапом проверки резистора мультиметром могут возникнуть трудности. Проблема заключается в определении номинального значения сопротивления. С принципиальной схемой узнать показатель несложно. Но многие современные приборы не снабжены сопутствующей документацией с техническими характеристиками. В этом случае можно определить значение номинала при помощи маркировки.

Мультиметры могут быть цифровыми и стрелочными. Последние работают без дополнительного питания, наподобие микроамперметра. Делители напряжения переключаются вместе с шунтами в определенные режимы для измерения. Цифровые модели отображают на дисплее различие между полученной величиной и эталоном. Этот тип приборов нуждается в источнике питания, который обеспечивает точность замеров, снижающуюся при разрядке батареи. Эти устройства применяются для определения состояния радиодеталей.

Маркировка SMD элементов

Компоненты навесного монтажа (например, smd резистор, диод, конденсатор и т.д.) стали маркировать цифрами, но ввиду малого размера деталей эту информацию требовалось зашифровать. Для сопротивлений, в большинстве случаев, принято обозначение из трех цифр, где первые две — это значение, а последняя — множитель (см. рис. 3).


Рис. 3. Пример расшифровки номинала SMD резистора

Номинальное сопротивление

Основной параметр любого резистора — это номинал сопротивления. Равномерностью этого сопротивления является единица измерения Ом. Номинальное значение любого приобретенного резистора маркируется на нем самом, то есть на его корпусе с помощью обозначений в виде полосочек различного цвета. Это было сделано в первую очередь для удобства конвейерного монтажа, где автоматы с машинным зрением с легкостью определяют элемент, который нужно использовать.


На некоторых резисторах указано номинальное сопротивление

Важно! Узнать номинал можно несколькими способами: с помощью специальных справочников и таблиц обозначений, а также любым измерительным прибором.

Таблицы представлены в любом справочнике по электронике и электротехнике, а также идут в комплекте с купленным набором резисторов. Второй способ определения более удобный и понятный, так как все, что нужно сделать — это измерить сопротивление собственноручно. Это поможет определить, насколько сопротивление отличается от номинального, и даст характеристику элемента.


Проверка сопротивляемости и исправности с помощью цифрового мультиметра

Внешний осмотр

Нарушение штатного режима работы вызывает перегрев детали, поэтому, в большинстве случаев, определить проблемный элемент можно по внешнему виду. Это может быть как изменение цвета корпуса, так и его полное или частичное разрушение. В таких случаях необходимо заменить сгоревший элемент.


Рисунок 4. Яркий пример того, как может сгореть резистор

Обратите внимание на фото сверху, компонент, о, явно нуждается в замене, в то время как соседние детали «2» и «3» могут оказаться рабочими, но их требуется проверить.

Как проверить резистор мультиметром

225 Проверить неисправность резисторов можно как внешним осмотром, так и проверкой сопротивления резистора мультиметром. Резистор представляет собой электронный элемент с нанесенным слоем графита в виде спирали. Этот графитовый слой элемента может подгорать частично или полностью выгорать. В этом случае его сопротивление значительно вырастает и становится близким к бесконечности. При механических воздействиях возможен обрыв контакта графитовой дорожки с контактной площадкой вывода резистора.

Резисторы

Проверка на обрыв

Действия производятся в следующем порядке:

  1. Включаем прибор в режим «прозвонки». На рисунке 5 отмечена эта позиция как «1».


    Рис. 5. Установка режима (1) и подключение щупов (2 и 3)

  2. Подключаем щупы к гнездам «2» и «3» (см. рис.5). Несмотря на то, что в нашем тестировании полярность не имеет значения, лучше сразу приучить себя подключать щупы правильно. Поэтому к гнезду «2» подключаем красный провод (+), а к «3» — черный (-).

Если модель прибора, которым вы пользуетесь, отличается от того, что приведен на рисунке, ознакомьтесь с прилагающейся к мультиметру инструкцией.

  1. Касаемся щупами выводов проблемного элемента на плате. Если деталь «не звонится» (мультиметр покажет цифру 1, то есть бесконечно большое сопротивление), можно констатировать, что проверка показала обрыв в резисторе.

Обратим внимание, что данное тестирование можно проводить, не выпаивая элемент с платы, но это не гарантирует 100% результат, поскольку тестер может показать связь через другие компоненты схемы.

Проверка тестером

Обычный мультиметр (тестер), используемый в быту, сможет стать незаменимым помощником. Вне зависимости от типа устройства, с его помощью можно проводить комплексную диагностику схем и деталей. Надо всего лишь знать, как правильно применять настройки прибора.

Для того чтобы проверить, исправна ли деталь, потребуется отсоединить устройство, в котором она установлена, от источника питания (сети или батареи). После из резистора нужно будет выпаять вывод. Некоторые элементы можно снять с платы, не выпаивая. Важно удалить резистор, потому что, находясь в плате, он может передавать напряжение соседнего участника цепи, и определить исправность интересующего элемента будет нельзя.

Сопротивление резистора небольшое, из-за чего, если проверять его в плате, оно не всегда заметно.

Проверка на номинал

Если деталь выпаяна, то этот этап позволит гарантированно показать ее работоспособность. Для тестирования нам необходимо знать номинал. Как определить его по маркировке, было написано выше.

Алгоритм наших действий следующий:

  1. Подключаем щупы, так как на предыдущем тестировании.
  2. Включаем измерение сопротивления (диапазон приведен на рисунке 6) в режиме большем, чем номинал, но максимально близким к нему. Например, нам необходимо проверить резистор 47 кОм, следовательно, нужно выбрать диапазон «200К».


    Рисунок 6. Диапазоны измерения сопротивления (отмечены красным)

  3. Касаемся щупами выводов, снимаем показания и сравниваем их с номиналом. Если они не совпадают, а это можно гарантировать с вероятностью близкой к 100%, не стоит отчаиваться. Следует учитывать как погрешность прибора, так и допуск самого элемента. Здесь необходимо сделать небольшое пояснение.

Проверка исправности резистора на плате

Сопротивление замеряют, когда элемент не подключен к остальным в схеме. Для этого нужно освободить одну из ножек. Как проверить резистор мультиметром, не выпаивая из схемы? Это делается только в особых случаях. Здесь необходимо проанализировать схему подключений на наличие шунтирующих цепей. Особенно на показания прибора влияют полупроводниковые детали.

Что такое допуск, и насколько он важен?

Эта величина показывает возможное отклонение у данной серии от указанного номинала. В правильно рассчитанной схеме должен учитываться этот показатель, либо после сборки производится соответствующая наладка. Как вы понимаете, наши друзья из «Поднебесной» не утруждают себя этим, что положительно отражается на стоимости их товара.

Результат такой политики был показан на рисунке 4, деталь работает какое-то время, пока не наступает предел запаса ее прочности.

  1. Принимаем решение, сравнив показания мультметра с номиналом, если расхождение выходит за пределы погрешности, деталь однозначно нуждается в замене.

Что такое мультиметр

Мультиметр или мультитестер — это компактный, эргономичный и многофункциональный прибор для проведения замера основных параметров электрической сети в любых целях. Все мультиметры позволяют с определенной точностью производить измерения силы тока, напряжения, сопротивления и даже температуры с помощью своих щупов.


Внешний вид типичного цифрового мультиметра из диэлектрического пластика

Мультиметры бывают двух видов:

  • Аналоговые, которые выводят результаты измерений с помощью механических инструментов отображения: стрелок, столбиков и цены делений, показывающей количественную характеристику измеряемой величины;
  • Цифровые. Наиболее часто используемые типы приборов, вывод информации у которых производится через встроенный дисплей, а все данные рассчитываются в цифровом виде.


Мегаомметр GM3123 для использования в промышленных сетях высокого напряжения

Как тестировать переменный резистор?

Принцип действий в данном случае не сильно отличается, распишем их на примере детали, изображенной на рисунке 7.


Рис. 7. Подстроечный резистор (внутренняя схема отмечена красным кругом)

Алгоритм следующий:

  1. Проводим измерение между ножками «1» и «3» (см. рис. 7) и сравниваем полученное значение с номиналом.
  2. Подключаем щупы к выводам «2» и любому из оставшихся («1» или «3», значения не имеет).
  3. Вращаем подстроечную ручку и наблюдаем за показаниями прибора, они должны меняться в диапазоне от 0 до величины, полученной в пункте 1.

Полезные проверке резисторов режимы мультиметра

Новички считают: лишено смысла мерить сопротивление проводника при прозвонке, проще зафиксировать обрыв, короткое замыкание. Вопрос тривиальный, дадим ответ: дело вкуса или удобства ситуации. Вообще говоря, при прозвонке диода падение напряжение в прямом направлении известно. Номинал, формируемый неидеальностью тестера плюс известное значение, прибавляемое материалом (кремний, германий). На клеммах присутствует некий уровень напряжения, начиная сотнями милливольт, заканчивая единицами вольта, пользуясь помощью которого проводятся измерения параметров.

Будет интересно➡ Способы проверки транзисторов на работоспособность

Касаемо нелинейных элементов (диодов, транзисторов) знание недокументированных сведений позволит на вольт-амперной характеристике отыскать соответствующую точку, проверить, соответствуют ли эмпирические (измеренные) числа теоретическим (справочные). Выполненный аудит позволит оценить исправность диода. Известный номинал делает доступным проводить необычные операции оценки:

  1. Собственная емкость. Импеданс резистора не чисто активный за малым исключением. Выбор элементов цепей высокой частотой (мегагерцы, гигагерцы) учитывает особенность. Сопротивление реактивной части напрямую определено круговой частотой, определяемой формулой ω = 2Пf (П = 3,14 – число Пи, f – частота, Гц). Понятно, сложно одним мультиметром обойтись, формирует постоянное напряжение измерений. Реактивная (мнимая) часть импеданса становится нулем, согласно формулам Z = R + i (ωL – 1/ωC), где L – собственная индуктивность резистора, С – емкость. Внимательный читатель заметит: на фиксированной частоте индуктивная и емкостная составляющие уравновешиваются взаимно, импеданс Z станет чисто активным. Резонансная частота резистора, лучше будет изделие работать. Таким образом, нет правила, чем меньше емкость, индуктивность радиоэлемента, тем лучше, действует закон золотой середины. Определить границу не сложно: ω = √LC – известная формула.
  2. Собственная индуктивность. Прославленные МЛТ резисторы, частый гость аппаратуры, на высоких частотах неприменимы. Керамическое основание наматывается высокоомной жилой (константан, манганин, нихром). Образуется, форменная индуктивность. Отличие ограничено материалом сердечника. Причем типичными формулами, зная количество витков, индуктивность резистора вычислим, заручившись помощью стандартных методик.

Опишем процесс работы. Первый взгляд представляет задачу неразрешимой. Многим невдомек: тестер неспособен обработать напрямую параметры высокочастотных цепей. Зафиксирован некий верхний предел, выше которого мультиметр безбожно врет.


Контакты мультиметра

Решая проблему, радиолюбители предлагают спаять специальную схему, сформированную несколькими пассивными элементами, посредством которой ведутся измерения. Плата выступит мостиком между измеряемым переменным напряжением и щупом. Работы проводятся на соответствующем диапазоне напряжений (обозначается тильдой ~ и буквой U). Схема невероятно проста. Давайте кратко обсудим вопросы, тревожащие начинающих:

  • Зачем нужна приставка мультиметру. Прибор перестанет врать, смущенный высокими частотами. Сможете работать с широким кругом электроники. Собираемся провести тест измерения импеданса резистора. Понадобится цепь переменного высокочастотного тока.
  • Где взять землю для этой схемы. Значок горизонтальной черты украшает лицевую панель тестера, даст ответ на вопрос. Схема требует наличия красного, черного щупов, профи тривиальные аспекты пропускают. Электрически соедините землю. Черный щуп мультиметра – горизонтальная черточка электрической схемы.
  • Отсутствуют диоды КД522Б, необходимы варианты замены. Граничная частота радиоэлементов составляет 100 МГц. Подберем аналоги, руководствуясь очевидным соображением: новый элемент пригоден быть составной частью импульсных цепей. Поставьте 1N4148 (импортный эквивалент).
  • Назначение косых черточки схемы, пересекающих резисторы. Максимальная рассеиваемая мощность. Две косые черты соответствуют 0,125 Вт. Посчитать параметр можно просто – ток резистора помножите на приложенное напряжение. Параметр вряд ли сыграет великую роль, входное сопротивление мультиметра традиционное высокое (1 МОм). Сравните: сопротивление изоляции цепи не менее 20 МОм. Ток потребления будет низким, мощности резисторы рассеивают мало (закон Джоуля-Ленца).
  • Принцип действия приставки. Простейший интегратор. Будет брать высокочастотные импульсы, формируя постоянное напряжение. Номиналы резисторов образуют делитель, служа целям согласования с входным сопротивлением тестера. Приготовьтесь подбирать опытным путем. Проще найти высокочастотный генератор с регулируемой амплитудой, выполняя проверку.
  • Единицы указания номиналов емкости, резисторов. По-умолчанию конденсаторы маркируются пФ. Приставка включает радиоэлементы 68 пФ. Резисторы 2 МОм, 180 кОм.
  • Процесс измерения.

Будет интересно➡ Как проверить дроссель при помощи мультиметра

Как обозначается

Как уже стало понятно, померить сопротивление мультиметром не сложно и никаких проблем это принести не должно. Измеряется параметр в Омах в честь немецкого физика, который первый подтвердил связь между силой тока, напряжением и сопротивлением. На мультиметрах и тестерах эта величина имеет обозначение греческой буквы «омега» — Ω.


Искомая величина изображается на приборах греческой буквой «омега»

Как мультиметр измеряет сопротивление

Принцип измерения сопротивления основан на законе Ома, который в упрощенном варианте гласит, что сопротивление проводника равно отношению напряжения на этом проводе к силе тока, которая по нему протекает. Формула выглядит как R (сопротивление) = U (напряжение) / I (сила тока). То есть, 1 Ом сопротивления говорит о том, что по проводу протекает ток номиналом в 1 Ампер и напряжением 1 Вольт.

Соответственно, при пропускании заранее измеренного тока с известным напряжением через проводник, можно вычислить его сопротивление. По сути, омметр (прибор, которым измеряют сопротивление) представляет собой источник тока и амперметр, шкала которого проградуирована в Омах.

Онлайн-калькулятор номиналов сопротивления DIP и SMD резисторов

Онлайн-калькулятор маркировки SMD резисторов


Представляем простой и удобный калькулятор сопротивлений SMD резисторов. Чтобы узнать номинал своего резистора, введите его код в черное поле:

Наш калькулятор позволяет определять сопротивление SMD резисторов, маркированных по стандарту EIA-96, по которому на корпус наносится 3 или 4 цифры, либо 2 цифры и 1 буква.

Обозначения маркировок SMD резисторов


При использовании маркировки с тремя или четырьмя цифрами, первые 2 или 3 из которых обозначают количественное значение сопротивления резистора, а последняя — показатель множителя. Множитель равен степени, в которую необходимо возвести количество, чтобы получить итоговый номинал.

Приведем нескольлко примеров определения номинала SMD резистора, исходя из его маркировки:

  • 473 = 47kΩ ± 5%
  • 103 = 10kΩ ± 5%
  • 312 = 3.1kΩ ± 5%
  • 106 = 10MΩ ± 5%

При маркировке сопротивлений менее 10Ω используется Буква R. Она указывает на положене десятичной точки деления:

  • 0R5 = 0.5Ω
  • 0R3 = 0.3Ω
  • 0R7 = 0.7kΩ

У высокоточных резисторов, показатель погрешности которых составляет 1%, буква ставится в конце номинала и является множителем. Две цифры в начале обозначают код, по которому определяется сопротивление:

  • 92Z = 0.89Ω ± 1%
  • 32D = 210kΩ ± 1%
  • 24E = 1. 74MΩ ± 1%

Где купить недорогие резисторы?


Заходите в наш интернет-магазин, там большой выбор недорогих резисторов с быстрой доставкой по России и СНГ.

Вольтик.ру — это более 800 товаров для мейкеров, радиолюбителей и инженеров.

В магазине представлены:

И многое-многое другое!

Рекомендуем ознакомиться с другими тематическими материалами


Резисторы постоянные-проверка исправности — Резисторы — РАДИОДЕТАЛИ — Каталог статей

      Проверку исправности постоянных резисторов начинают с внешнего осмотра. При этом обращают внимание на:
  • Целостность корпуса;
  • Отсутствие на поверхности трещин и сколов;
  • Надежность крепления выводов

     У неисправного резистора можно обнаружить обуглившуюся поверхность лакового или эмалевого покрытия, в ряде случаев — колечки. Небольшое потемнение лакового покрытия допустимо (однако говорит о существенном нагреве резистора при работе), но в этом случае рекомендуется проверить значение номинального сопротивления. В ряде случаев обрыв токопроводящего элемента не вызывает никаких изменений внешнего вида резистора. Поэтому проверку его на соответствии номинальному значению проводят с помощью омметра, например YX-2000A

    Для проверки значения сопротивления резистора необходимо щупы омметра подключить к его выводам. Полярность подключения щупов не важна (Рис.1).

 

Рис.1

      Если при этом прибор зафиксирует сопротивление, равное нулю — резистор неисправен. Неисправность называется пробой (у резисторов встречается редко). 

      Если прибор фиксирует сопротивление, равное бесконечности даже на максимальном пределе измерения — резистор неисправен, неисправность — обрыв.

      Если прибор фиксирует некоторое значение сопротивления, то при совпадении этого значения с маркированным на корпусе резистора значением номинального сопротивления с учетом допустимого отклонения — резистор исправен. 

      Если отклонение измеренного значения сопротивления значительно превышает допутимое (допуск) — резистор считается неисправным. Отклонение от номинального значения не должно превышать допустимого. У исправного резистора в любом случае не должно превышать 20%.

      Измерение сопротивления резисторов без выпаивания из печатной платы производится только после полного отключения от электрической сети и разрядки электролитических конденсаторов. При этом измеренное значение скорей всего будет меньше номинального из-за влияния шунтирующих (подключённых в схеме параллельно резистору) элементов схемы.
      Для более точного и однозначного измерения сопротивления резистора необходимо демонтировать его из схемы (можно одну ножку). При измерении должен быть обеспечен надежный контакт между выводами резистора и щупами прибора.

     При проведении измерений не касаться обеими руками металлических частей щупов омметра и обоих выводов резистора, чтобы не шунтировать измерительный прибор сопротивлением тела человека, так как это приведёт к искажению результатов измерения (особенно актуально для элементов с большим сопротивлением).
      Часто встречающейся неисправностью является перегорание токопроводящего слоя. Оно является следствием протекания через резистор недопустимо большого тока в результате замыкания в монтаже или пробое конденсатора. В данном случае перегорание резистора является не причиной, а следствием неисправности. Простая замена сгоревшего резистора на новый приведет к повторению дефекта. Поэтому прежде чем производить замену неисправного резистора необходимо выяснить и устранить причину протекания недопустимо большого тока через него.

       Проволочные постоянные резисторы выходят из строя реже. Основные их исправности (обрыв или перегорание проволоки) обычно устанавливают при помощи омметра.

       Всё что описано в статье достаточно точно показано в видеоролике от магазина Чип и Дип.

Переменный резистор: характеристики, виды, проверка мультиметром

В аппаратуре часто присутствуют подстраиваемые параметры. Для реализации используют переменный резистор. В зависимости от подключения они позволяют менять ток или напряжение в цепи. 

Содержание статьи

Что такое резистор с изменяемым (переменным) сопротивлением

Среди радиоэлементов существуют детали, которые могут изменять свой основной параметр. Именно такими являются переменные или регулируемые резисторы. Они отличаются от постоянных тем, что их сопротивление можно плавно менять практически от нуля до определенного значения. Изменение происходит путем механического перемещения ползунка.

Регулируемые или переменные резисторы — виды и размеры разные

Есть у переменных резисторов разновидности — подстроечные и регулировочные. Чем отличаются переменные резисторы от подстроечных? Тем что подстроечные рассчитаны на небольшое количество регулировок. У некоторых моделей их количество может исчисляться сотнями или десятками (например, у НР1-9А перемещать ползунок можно не более 100 раз). Если посмотреть на таблицу ниже, можно увидеть что у некоторых подстроечных SMD резисторов циклов регулировки всего 10.

Пример характеристик подстроечных резисторов SMD

У переменных резисторов этот показатель значительно выше. Количество перемещений регулятора может исчисляться десятками и даже сотнями тысяч. Так что использовать подстроечные резисторы вместо переменных явно не стоит.

Основной недостаток переменных резисторов — их недолговечность. Контакт между резистивным слоем и щеткой постепенно ухудшается. Для акустической аппаратуры это может выражаться во все усиливающихся шумах, при подстройке частоты в радиоприемниках все тяжелее «поймать»  нужную длину волны и т.д.

Анимация дает понять, как работает переменный резистор и почему выходит из строя

Способы производства

Переменный резистор может быть двух типов: проволочным и пленочным. У проволочных на диэлектрическую трубку намотана проволока, вдоль нее перемещается металлический передвижной контакт — ползунок. Его местоположение и определяет сопротивление элемента. Витки проволоки уложены вплотную друг к другу, но они разделены слоем лака с высокими диэлектрическими свойствами.

Ползунковые переменные резисторы проволочного типа

Переменные проволочные резисторы — это необязательно трубка с намотанной на нее проволокой как на фото выше. Такие элементы выпускались в основном несколько десятков лет назад. Современные мало чем отличаются от пленочных, разве что корпус чуть выше, так как проволока все-таки занимает больше места, чем пленка.

Со снятой крышкой видна проволочная спираль и бегунок

У пленочных переменных резисторов на диэлектрическую пластину (обычно выполнена в виде подковы) нанесен слой токопроводящего углерода. В этом случае контакт тоже подвижный, но он закреплен на стержне в центре подковы и чтобы изменить сопротивление, надо повернуть стержень.

Пленочный регулируемый резистор

Регулировочное переменное сопротивление может быть и проволочным, и пленочным, а подстроечные, в основном, делают пленочными. Есть у них внешнее отличие: нет стержня с ручкой, а есть плоский диск с отверстием под отвертку. Сопротивления этого типа используются только для наладки параметров при пуске или техническом обслуживании аппаратуры.

Переменные резисторы SMD

Кроме способа производства есть еще две формы выпуска: для обычного навесного монтажа и SMD-элементы для поверхностного монтажа. SMD резисторы отличаются миниатюрными размерами, выполнены по пленочной технологии.

Схематическое обозначение  и цоколевка

В отличие от постоянных резисторов, у регулируемых не два вывода, а как минимум три.  Почему как минимум? Потому что есть модели с дополнительными выводами — их может быть несколько. На электрических схемах  переменные и подстроечные резисторы обозначаются прямоугольниками как постоянные, но имеют дополнительный вывод, который схематически представлен как ломанная линия, упирающаяся в середину изображения. Чтобы можно было отличить переменный от подстроечного, у переменного на конце третьего ввода рисуют стрелку, подстроечный изображается более длинной перпендикулярной линией без стрелки.

Обозначение на схемах переменных и подстроечных резисторов

Если говорить о расположении выводов, то средний вывод подключен к ползунку, крайние — к началу и концу резистивного элемента.

Цоколевка переменного резистора

Виды и особенности применения

Переменных резисторов существует немалое количество, с их помощью регулируют звук, громкость, подстраивают частоту, регулируют яркость света. В общем, практически везде, где происходят изменения настроек при помощи бегунков или вращением рукояток стоят эти элементы. Но для разных задач нужны резисторы с различным характером изменений или с разным числом выводов. Вот о разных видах регулируемых сопротивлений и поговорим.

Переменные резисторы бывают разных видов

Характер изменения сопротивления

Не стоит думать, что при перемещении подвижного контакта сопротивление изменяется линейно. Такие модели есть, но они используются в основном для регулировки или настройки, в делителях частоты. Гораздо чаще требуется нелинейная зависимость. Переменные резисторы с нелинейной характеристикой бывают двух типов:

  • сопротивление изменяется по логарифмическому закону;
  • по показательному типу (обратному логарифмическому).

    Характер изменения сопротивления в переменных резисторах

В акустике используют нелинейные элементы с сопротивлением, которое имеет потенциальную зависимость, в измерительной аппаратуре — по логарифмическому.

Сдвоенные, тройные, счетверенные

В плеерах, радиоприемниках и некоторых других видах бытовой аппаратуры часто применяются сдвоенные (двойные) переменные резисторы. В корпусе элемента скрыты две резистивные пластины. Внешне от обычных они отличаются наличием двух рядов выводов. Бывают двух типов:

  • С одновременным изменением параметров. Обычно применяются в стереоаппаратуре для одновременного изменения параметров двух каналов. Такие резисторы имеют запараллеленные бегунки. Поворачивая или сдвигая рукоятку, меняем сопротивление сразу двух резисторов.
  • С раздельным изменением параметров. Называются еще соосными,  так как ось одного находится внутри оси другого. Если надо одной ручкой изменять различные параметры (громкость и баланс) подойдет этот тип резисторов. Механическая связь бегунков отсутствует, что позволяет менять сопротивление независимо друг от друга.

    Сдвоенный регулируемый резистор и его обозначение

Обозначаются разные типы сдвоенных переменных резисторов на схемах по-разному. С наличием механической связи бегунков при близком расположении изображений резисторов на схеме, ставят связанные между собой стрелочки (на рисунке выше слева). Принадлежность к одному резистору указывается через нумерацию: две части обозначаются как R1.1 и R 1.2. Если обозначение частей спаренного переменного резистора находятся на схеме далеко друг от друга, связь указывается при помощи пунктирных линий (на рисунке выше справа). Буквенное обозначение такое же.

Так выглядят сдвоенные и тройные переменные сопротивления

Двойной регулируемый резистор без физической связи между бегунками на схемах ничем не отличается от обычного регулируемого. Отличают их по буквенному обозначению с двумя цифрами, разделенными точкой через — как у спаренного —  R15.1 и R15.2.

Частный случай сдвоенного переменного резистора — строенный, счетверенный и т.д. Они встречаются не так часто, все больше в акустической аппаратуре.

Дискретный переменный резистор

Чаще всего, изменение сопротивления при повороте ручки или передвижении ползунка происходит плавно. Но для некоторых параметров необходимо ступенчатое изменение параметров. Такие переменные сопротивления называют дискретными. Используют их для ступенчатого изменения частоты, громкости, некоторых других параметров.

Дискретный переменный резистор (со ступенчатой регулировкой) и его обозначение на схеме

Устройство этого типа резисторов отличается. По сути, внутри находится набор из постоянных резисторов, подключенных к каждому из выходов. При переключении подвижный контакт перескакивает с выхода на выход, подключая к цепи нужный в данный момент резистор. Принцип действия можно сравнить с многопозиционным переключателем.

С выключателем

Такие резисторы мы встречаем часто — в радио и других устройствах. Это с их помощью поворотом ручки включается питание, а затем регулируется громкость. Внешне их отличить невозможно, только по описанию.

Переменный резистор с выключателем в одном корпусе: внешний вид и обозначение на схемах

На схемах переменные резисторы с выключателем отображаются рядом с контактной группой, то что это единое устройство, отображается при помощи пунктирной линии, которая соединяет контактную группу с корпусом переменного резистора. С одной стороны — возле изображения сопротивления — пунктир заканчивается точкой. Она показывает, возле какого из выводов происходит разрыв цепи. При повороте руки регулятора в эту сторону питание отключается.

Способы подключения: реостат и потенциометр

Любое регулируемое сопротивление может подключаться как реостат или потенциометр. Реостат изменяет силу тока в цепи, для этого подключается подвижный контакт и один из крайних выводов.

Переменный резистор может использоваться как реостат или потенциометр

Потенциометр изменяет напряжение, при подключении задействуют все контакты, получая таким образом делитель напряжения.

Основные параметры

Выбирать переменный резистор необходимо не только по стандартным параметрам — сопротивлению, рассеиваемой мощности и допустимой погрешности. Как вы уже, наверное, поняли, придется еще и другие принять во внимание:

  • Диапазон изменения сопротивлений. Стоит обычно две цифры — минимальная и максимальная.
  • Рабочая температура.
  • Тепловое сопротивление. Показывает насколько увеличивается сопротивление при нагреве.
  • Эффективный угол поворота регулятора.

Параметры мощных переменных резисторов

Конечно, основные параметр важны и именно они являются определяющими. Но стоит обращать внимание и на температурный режим. Если оборудование будет работать в помещении, важно, чтобы резистор не перегревался. Для техники, которая будет эксплуатироваться на открытом воздухе, важен нижний диапазон — если предусматривается работа в зимнее время, они должны переносить минусовые температуры.

Как проверить переменный резистор при помощи тестера

Проверка переменных резисторов не слишком отличается от тестирования обычных. Нужен будет мультиметр с функцией омметра. Положение щупов стандартное, диапазон измерений выбираем в зависимости от измеряемого параметра. Если меряем минимальное сопротивление, имеет смысл поставить самый малый диапазон. Для измерения максимального сопротивления, подбираем в зависимости от заявленной характеристики. При измерениях положение щупов произвольное, так как полярность подаваемого тестового напряжения неважна.

Как проверить переменное сопротивление тестером

Провести надо будет несколько несложных замеров:

  • Максимальное сопротивление измеряется между крайними выводами.
  • Чтобы измерить минимальное сопротивление, бегунок переводят в крайнее левое положение. Измерения проводят между крайним левым и средним (первым и вторым выводами). Полученные измерения сравнивают с заявленным диапазоном. Обычно бывают отклонения в ту или другую сторону. Это не страшно, если величина отклонений находится в рамках допуска (зависит от точности).
  • Главная проблема переменных резисторов — ухудшение контакта между щеткой и токопроводящим элементом. Подключаем мультиметр в режиме омметра к одному из крайних выводов и центральному, затем медленно вращаем ось резистора и наблюдаем за показаниями мультиметра. Если резистор исправен, но показания должны изменяться плавно. Проверку рекомендуется повторить переключив мультиметр ко второму крайнему выводу резистора (см. видео ниже).

Калькулятор и диаграмма цветового кода резистора

(4-полосный, 5-полосный или 6-полосный)

Удобный инструмент для считывания значений цветового кода резистора

Как пользоваться калькулятором цветового кода резистора

У вас проблемы с считыванием цветовой кодировки резистора? Если ваш ответ утвердительный, значит, этот инструмент создан специально для вас! Наш калькулятор цветовой кодировки резисторов — это удобный инструмент для считывания значений резисторов углеродного состава, будь то 4-полосный, 5-полосный или 6-полосный.

Чтобы использовать этот инструмент, просто нажмите на определенный цвет и номер и посмотрите, как меняются фактические полосы на иллюстрации резистора.Значение сопротивления отображается в поле ниже вместе с допуском и температурным коэффициентом.

Цвета полосы резистора

Как показано выше, резистор из углеродной композиции может иметь от 4 до 6 полос. 5-полосный резистор более точен по сравнению с 4-полосным из-за включения третьей значащей цифры. 6-полосный резистор похож на 5-полосный, но включает полосу температурных коэффициентов (6-ю полосу).

4-диапазонный 5-диапазонный 6-полосный
1-я полоса 1-я значащая цифра 1-я значащая цифра 1-я значащая цифра
2-я полоса 2-я значащая цифра 2-я значащая цифра 2-я значащая цифра
3-я полоса множитель 3-я значащая цифра

3-я значащая цифра

4-я полоса допуск множитель множитель
5-я полоса НЕТ допуск допуск
6 диапазон НЕТ НЕТ температурный коэффициент

Каждый цвет представляет собой номер, если он расположен от 1-го до 2-го диапазона для 4-х полосного типа или с 1-го по 3-й диапазон для 5-ти или 6-ти полосного типа.

Цвет Значение

Черный (только 2-й и 3-й диапазоны)

0
Коричневый 1
Красный 2
Оранжевый 3
Желтый 4
Зеленый 5
Синий 6
фиолетовый 7
Серый 8
Белый 9

Мнемоника была создана, чтобы легко запоминать последовательность цветов.Самая популярная мнемоника — « B ig B oys R ace O ur Y oung G irls B ut V iolet G eneally ins W», где первый буква каждого слова соответствует первой букве цвета.

Если цвет находится на 3-м диапазоне для 4-х полосного типа или на 4-м диапазоне для 5-ти и 6-ти полосного типа, то это множитель.

Цвет Значение

Черный

х1
Коричневый x10
Красный x100
Оранжевый x1000
Желтый x10000
Зеленый x100000
Синий x1000000
фиолетовый x10000000
Серый x100000000
Белый x1000000000

Обратите внимание, что количество нулей равно номеру цвета, как в предыдущей таблице.

Четвертая полоса (или пятая для 5-ти и 6-ти полосной) указывает значения допуска. Здесь добавлены два цвета (золотой и серебряный).

Цвет Значение

Черный

НЕТ

Коричневый ± 1%
Красный ± 2%
Оранжевый ± 3%
Желтый ± 4%
Зеленый ± 0.5%
Синий ± 0,25%
фиолетовый ± 0,10%
Серый ± 0,05%
Белый НЕТ
Золото ± 5%
Серебро ± 10%

Шестая полоса для резистора 6-полосного типа — это температурный коэффициент. Это показывает, насколько изменяется фактическое значение сопротивления резистора при изменении температуры.

Цвет Значение

Черный

НЕТ
Коричневый 100 частей на миллион / ºC
Красный 50 частей на миллион / ºC
Оранжевый 15 частей на миллион / ºC
Желтый 25 частей на миллион / ºC
Зеленый НЕТ
Синий 10 частей на миллион / ºC
фиолетовый 5 частей на миллион / ºC
Серый НЕТ
Белый НЕТ

Исключения цветового кода

5-полосный резистор с 4-й полосой из золота или серебра

Пятиполосные резисторы с четвертой полосой из серебра или золота составляют исключение и используются в определенных или более старых резисторах. Первые две полосы представляют собой значащие цифры, третья полоса — коэффициент умножения, четвертая полоса — для допуска, а пятая — для температурного коэффициента (ppm / K).

Разные цвета

Чтобы предотвратить попадание металла и других частиц на покрытие высоковольтных резисторов, золотые и серебряные полосы часто заменяют желто-серой полосой.

Резистор с одной черной полосой или нулевым сопротивлением

Одна черная полоса на резисторе называется резистором с нулевым сопротивлением.По сути, это проводная связь, используемая для соединения дорожек на печатной плате (PCB), которая упакована в тот же физический формат корпуса, что и резистор. Такая упаковка позволяет размещать резистор с нулевым сопротивлением на печатной плате с использованием того же оборудования, которое обычно используется для установки других резисторов.

Группа надежности

Когда резисторы производятся в соответствии с военными спецификациями, они часто включают полосу, указывающую на надежность. Этот диапазон предназначен специально для процента отказов на 1000 часов службы.Этот ремешок практически не используется в коммерческой электронике. Этот диапазон надежности обычно используется для четырехполосных резисторов. Дополнительную информацию об этом можно найти в военном справочнике США MIL-HDBK-199.


Дополнительная литература

Учебное пособие — Резистор: закон Ома

Учебник — Цветовые коды резисторов

Рабочий лист — резисторы

Общие сведения об электрическом сопротивлении

Как проверить резистор

Как проверить резистор | Блог Romel Electronics
Есть два способа проверки резистора: с помощью аналогового или цифрового мультиметра.Обычно, если резистор выходит из строя, его значение увеличивается или размыкается. Вы можете проверить сопротивление резистора, выбрав диапазон омметра в аналоговом и цифровом мультиметре. Если резистор находится в цепи, вам, как правило, придется удалить резисторы в плате, чтобы вы проверяли только номинал резистора, а не другие компоненты в цепи.
Использование аналогового мультиметра для проверки резистора
Прежде чем проводить какие-либо измерения, вы должны узнать номинал резистора.Предположим, вы измеряете резистор желтого, пурпурного, черного и золотого цвета — из расчета, это резистор 47 Ом с допуском 5%.
Установите аналоговый измеритель на X1 Ом, закоротив зонды и откалибруйте указатель так, чтобы он оставался на нулевом сопротивлении. Поместите щупы мультиметра в две точки резисторов. Не имеет значения, какие щупы к каким двум точкам, потому что резистор не имеет полярности (отрицательной и положительной). Наблюдая за стрелкой, вы должны получить около 47 Ом.
, если вы получаете более 47 Ом, скажем 150 Ом, это означает, что сопротивление резистора увеличилось и его нужно заменить. если он не показывает никакой реакции после подключения зондов к двум точкам резистора, цепь разомкнута. Не забудьте слегка надавить на выводы резистора при его измерении, иначе вы не сможете получить точные показания или могут возникнуть прерывистые показания.
Аналогичным образом, если вы хотите проверить резистор на 15 кОм, закоротите два щупа вместе и откалибруйте, отрегулировав регулятор (ручку).Вы должны установить измеритель на диапазон X1 кОм, чтобы измерения находились в пределах диапазона. Использование диапазона X1 Ом для проверки резистора на 15 кОм вообще не приведет к перемещению указателя. Даже если указатель может перемещаться, он будет перемещаться только немного выше.
Проверьте результат, чтобы увидеть, соответствует ли указатель близкому или точному значению 15 кОм. Если резистор имеет допуск 5%, стрелка должна указывать между значениями от 14,25 кОм до 15,75 кОм. Любое полученное значение, выходящее за рамки допустимых значений, следует заменить резистор.
Использование аналогового мультиметра для проверки резистора
При использовании цифрового измерителя ЖК-дисплей вашего измерителя покажет вам точное значение тестируемого сопротивления. Это более точно, чем при использовании аналогового измерителя.
Сначала выберите диапазон Ом и поместите измерительные щупы через две точки резистора. Цифровой измеритель не требует какой-либо калибровки по сравнению с аналоговым измерителем, где вы должны отрегулировать регулятор, чтобы он достиг нулевого сопротивления, прежде чем вы начнете проводить измерения.Результатом, отображаемым на ЖК-дисплее цифрового измерителя, является точное значение сопротивления резистора.
Цифровой измеритель действительно устранил все догадки! Мало того, многие цифровые измерители имеют автоматический диапазон, что означает, что какое бы значение резистора вы ни хотели проверить, он автоматически подскажет вам результат, и вам не придется настраивать соответствующий диапазон для проверки резистора. Это экономит время и точность!

Нравится:

Нравится Загрузка …

Калькулятор цветового кода резистора

— 3-, 4- и 5-полосные резисторы

Калькулятор цветового кода резистора

Калькулятор выше отобразит значение , допуск и выполнит простую проверку, чтобы проверить, соответствует ли рассчитанное сопротивление одному из стандартных значений EIA. Выберите первые 3 или 4 полосы для резисторов 20%, 10% или 5% и все 5 полос для прецизионных (2% или меньше) 5-полосных резисторов. Наведите указатель на значение выше допуска мин. и макс. значения диапазона.

Если вы хотите узнать цветовые полосы для значения, используйте инструмент слева. Введите значение, выберите множитель (Ω, K или M), желаемую точность и нажмите «Display resistor» или ENTER. Вы также можете ввести значения резистора в сокращенном обозначении , например 1k5, 4M7 или 100R.

Значения резисторов для декад, соответствующих стандарту EIA:

Серия E6: (допуск 20%)
10, 15, 22, 33, 47, 68

Серия E12: (допуск 10%)
10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82

Серия E24: (допуск 5%)
10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91

Серия E48: (допуск 2%)
100, 105, 110, 115, 121, 127, 133, 140, 147, 154, 162, 169, 178, 187, 196, 205, 215, 226, 237, 249, 261, 274, 287, 301, 316, 332, 348, 365, 383, 402, 422, 442, 464, 487, 511, 536, 562, 590, 619, 649, 681, 715, 750, 787, 825, 866, 909, 953

Серия E96: (допуск 1%)
100, 102, 105, 107, 110, 113, 115, 118, 121, 124, 127, 130, 133, 137, 140, 143, 147, 150, 154 , 158, 162, 165, 169, 174, 178, 182, 187, 191, 196, 200, 205, 210, 215, 221, 226, 232, 237, 243, 249, 255, 261, 267, 274, 280 , 287, 294, 301, 309, 316, 324, 332, 340, 348, 357, 365, 374, 383, 392, 402, 412, 422, 432, 442, 453, 464, 475, 487, 491, 511 , 523, 536, 549, 562, 576, 590, 604, 619, 634, 649, 665, 681, 698, 715, 732, 750, 768, 787, 806, 825, 845, 866, 887, 909, 931 , 959, 976

Серия E192: (0. 5, 0,25, 0,1 и 0,05%)
100, 101, 102, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 120, 121, 123, 124, 126, 127, 129, 130, 132, 133, 135, 137, 138, 140, 142, 143, 145, 147, 149, 150, 152, 154, 156, 158, 160, 162, 164, 165, 167, 169, 172, 174, 176, 178, 180, 182, 184, 187, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213, 215, 218, 221, 223, 226, 229, 232, 234, 237, 240, 243, 246, 249, 252, 255, 258, 261, 264, 267, 271, 274, 277, 280, 284, 287, 291, 294, 298, 301, 305, 309, 312, 316, 320, 324, 328, 332, 336, 340, 344, 348, 352, 357, 361, 365, 370, 374, 379, 383, 388, 392, 397, 402, 407, 412, 417, 422, 427, 432, 437, 442, 448, 453, 459, 464, 470, 475, 481, 487, 493, 499, 505, 511, 517, 523, 530, 536, 542, 549, 556, 562, 569, 576, 583, 590, 597, 604, 612, 619, 626, 634, 642, 649, 657, 665, 673, 681, 690, 698, 706, 715, 723, 732, 741, 750, 759, 768, 777, 787, 796, 806, 816, 825, 835, 845, 856, 866, 876, 887, 898, 909, 920, 931, 942, 953, 965, 976 , 988


Часто задаваемые вопросы

У меня резистор 6-полосный.
Как я могу рассчитать его стоимость?

Введите первые пять цветов. Резисторы с 6 полосами в основном представляют собой 5-полосные резисторы с дополнительным кольцом, указывающим надежность или температурный коэффициент .

Резистор всего 3 полосы

Вам не нужно вводить 4-ю полосу, так как резисторы 20% не имеют кольца допуска. Они будут рассчитаны с использованием правила четырех диапазонов (цифра, цифра, множитель).

Примеры:
Красный, красный, коричневый — резистор 220 Ом, 20%.
Коричневый, черный, оранжевый — резистор 10 кОм, 20%

Какая группа первая?

Короткий ответ: вы узнаете это по опыту! Но есть несколько правил, которым вы можете следовать:

1.) На некоторых резисторах цветные полосы сгруппированы вместе и / или близко к одному концу. Держите резистор с плотно сгруппированными полосами слева от вас и считайте резистор слева направо.

2.) С резисторами 5% и 10% процедура проста: удерживайте резистор серебряной или золотой полосой вправо и считайте показания резистора слева направо.

3.) Первая полоса не может быть серебряной или золотой, поэтому, если вы держите такой резистор, вы сразу поймете, с чего начать.Кроме того, 3-й цвет для 4-полосных резисторов будет синим (10 6 ) или меньше, а 4-й цвет для 5-полосных резисторов будет зеленым (10 5 ) или меньше, поскольку значения базового резистора варьируются от 0,1 Ом до 10 МОм.

Что произойдет, если я начну читать не с того конца?

Вы всегда должны пытаться вычислить значение, а затем сверять свой результат с таблицей значений резистора, чтобы увидеть, указано ли оно там. Если это не так, попробуйте прочитать его еще раз, начиная с другого конца, и проверьте еще раз.Это необходимый шаг, особенно с пяти- и шестиполосными металлопленочными резисторами.

Наш калькулятор цветового кода автоматически выполняет эту проверку, и, если результат не является стандартным, отобразится небольшая подсказка. Предупреждения предназначены только для вашего сведения и не всегда означают, что резистор был прочитан неправильно — см. Примечания ниже.


Банкноты

1.) Цветовой код резистора и предпочтительные значения EIA являются международно признанными стандартами, но у некоторых производителей есть свои собственные методы работы.Например, многие производители резисторов делают каждое значение в списке E24 с допуском 1% и 2%, хотя такая практика имеет мало математического смысла.

2.) Несмотря на то, что программа была тщательно протестирована, в ней все же может быть несколько ошибок. Поэтому в случае сомнений (и когда это возможно) не стесняйтесь использовать своего старого надежного друга — мультиметр — для перепроверки критически важных компонентов.


Примеры
3 диапазона:

Желтый, фиолетовый, черный -> 47 Ом 20%

Оранжевый, оранжевый, коричневый -> 330 Ом 20%

Коричневый, черный, красный -> 1k 20%

4 диапазона:

Зеленый, синий, красный, золотой -> 5.6кОм 5%

Красный, желтый, оранжевый, золотой -> 24 кОм 5%

Синий, серый, желтый, серебристый -> 680k 10%

Еще примеры цветовой маркировки 4-х полосных резисторов: серии E12 и E24.

5 полос:

Красный, желтый, оранжевый, черный, коричневый -> 243 Ом, 5-полосный резистор с точностью 1%

Желтый, фиолетовый, золотой, золотой, желтый -> 4,7 Ом, 5% — этот резистор рассчитан по 4-полосному правилу (желтая полоса игнорируется).

Оранжевый, черный, черный, коричневый, коричневый -> 3,00 кОм, 1% — примечание: это нестандартный резистор 1% (E96), но некоторые производители делают каждое значение из серии E24 с допуском 1%!

Подробнее: Примеры цветовой маркировки 5-полосных резисторов серии E48 (2%).

6 полос:

Красный, красный, коричневый, коричневый, коричневый, красный -> 2,21k, 1% 50 ppm / ° C

Белый, черный, белый, коричневый, красный, красный -> 9,09 К, 2% 50 частей на миллион / ° C

— не вводите последнюю полосу (красный в двух примерах выше)

Хобби Электроника -> Таблица цветовых кодов резисторов -> Калькулятор цветового кода резистора

Цветовой код резистора | Стандарты и коды резисторов

Как работает цветовой код резистора?

Узнайте все о схемах Калькулятор цветового кода резистора, удобный инструмент для считывания значений цветового кода резистора.

Номиналы резисторов часто обозначаются цветовыми кодами. Практически все резисторы с выводами мощностью до одного ватта отмечены цветными полосами. Кодировка определена в международном стандарте IEC 60062. Этот стандарт описывает коды маркировки резисторов и конденсаторов. Он также включает числовые коды, как, например, часто используемые для резисторов SMD. Цветовой код дается несколькими полосами. Вместе они определяют значение сопротивления, допуск, а иногда и надежность или интенсивность отказов.Количество полос варьируется от трех до шести. Как минимум, две полосы указывают значение сопротивления, а одна полоса служит множителем. Значения сопротивления стандартизированы, эти значения называются предпочтительными значениями.

Таблица цветов резистора

В таблице ниже показано, как определить сопротивление и допуск для резисторов. Таблица также может использоваться для указания цвета полос, если значения известны. Для быстрого определения номиналов резисторов можно использовать автоматический калькулятор резисторов.

Советы по считыванию кодов резисторов

В нижеследующих разделах приведены примеры для разного количества полос, но сначала дается несколько советов по чтению цветового кода:

  • Направление чтения не всегда может быть четким. Иногда увеличенное расстояние между полосами 3 и 4 выдает направление чтения. Кроме того, первая полоса обычно находится ближе всего к отведению. Золотая или серебряная полоса (допуск) всегда последняя полоса.
  • Рекомендуется проверять документацию производителя, чтобы убедиться в используемой системе кодирования.Еще лучше измерить сопротивление мультиметром. В некоторых случаях это может быть даже единственный способ определить сопротивление; например, когда цветные полосы выгорели.

Резисторы

4-х полосный резистор

Четырехполосный цветовой код является наиболее распространенным вариантом. Эти резисторы имеют две полосы для значений сопротивления, один множитель и одну полосу допуска.В примере слева это зеленые, синие, красные и золотые полосы. Используя таблицу цветовых кодов, можно найти, что зеленый означает 5, а синий — 6. Таким образом, значение составляет 56 · 100 = 5600 Ом. Золотая полоса означает, что резистор имеет допуск 5%. Таким образом, значение сопротивления находится между 5320 и 5880 Ом. Если оставить поле допуска пустым, получится трехполосный резистор. Это означает, что значение сопротивления остается прежним, но допуск составляет 20%.

5-ти полосный резистор

Резисторы с высокой точностью имеют дополнительную полосу для обозначения третьей значащей цифры.Следовательно, первые три полосы указывают значащие цифры, четвертая полоса — это коэффициент умножения, а пятая полоса представляет допуск. Из этого есть исключения. Например, иногда дополнительная полоса указывает интенсивность отказов (военная спецификация) или температурный коэффициент (старые или специализированные резисторы). Пожалуйста, прочтите раздел «Исключения цветового кода» для получения дополнительной информации. Показанный пример: коричневый (1), желтый (4), фиолетовый (7), черный (x1), зеленый (0,5%): 147 Ом 0,5%.

6-ти полосный резистор

с 6 полосами обычно предназначены для высокоточных резисторов, у которых есть дополнительная полоса для определения температурного коэффициента (ppm / K).Самый распространенный цвет шестой полосы — коричневый (100 ppm / K). Это означает, что при изменении температуры на 10 ˚C значение сопротивления может измениться на 0,1%. Для специальных применений, где критический температурный коэффициент, другие цвета Показанный пример: оранжевый (3), красный (2), коричневый (1), зеленый (x10), коричневый (1%), красный (50 ppm / K): 3,21 кОм 1% 50 частей на миллион / K.

Исключения цветового кода

Диапазон надежности

Резисторы

, которые производятся в соответствии с военными спецификациями, иногда включают дополнительную полосу для обозначения надежности. Это указывается в количестве отказов (%) на 1000 часов работы. Это редко используется в коммерческой электронике. Чаще всего диапазон надежности можно найти на четырех полосных резисторах. Более подробную информацию о надежности можно найти в военном справочнике США MIL-HDBK-199.

Одиночная черная полоса или резистор с нулевым сопротивлением

Резистор с одной черной полосой называется резистором с нулевым сопротивлением. По сути, это проводное соединение с функцией только соединения дорожек на печатной плате. Использование пакета резисторов дает возможность использовать одни и те же автоматизированные машины для размещения компонентов на печатной плате.

5-полосный резистор с 4-й полосой из золота или серебра

Пятиполосные резисторы с четвертой полосой из золота или серебра составляют исключение и используются в специализированных и старых резисторах. Первые две полосы представляют собой значащие цифры, 3-я — коэффициент умножения, 4-я — допуск и 5-я — температурный коэффициент (ppm / K).

Отклоняющиеся цвета

Для высоковольтных резисторов часто золотой и серебряный цвета заменяются желтым и серым. Это необходимо для предотвращения попадания металлических частиц в покрытие.

Как проверить мобильный резистор с помощью цифрового мультиметра

Мы можем зарабатывать деньги, просматривая продукты по партнерским ссылкам на этом сайте. Спасибо вам всем!

Вы задаетесь вопросом обо всех частях вашего мобильного телефона и о том, что заставляет его работать? Ну, есть детали на уровне микросхемы или электронные компоненты. Некоторые примеры этих компонентов: катушка, диод, конденсатор, регулятор, транзистор, резистор и многие другие. Когда вам нужно проверить или отремонтировать мобильное устройство, важно знать об этих мелких деталях.

Икс

Для просмотра этого видео включите JavaScript и рассмотрите возможность обновления до веб-браузер, который поддерживает видео HTML5

Но мы не будем говорить обо всех мелких деталях — только об одной. Это резистор или подвижный резистор. Я также покажу вам, как проверить подвижный резистор с помощью цифрового мультиметра и многое другое.

Что такое мобильный резистор?

Мобильный резистор состоит из компонентов с двумя выводами, которые предназначены для ограничения тока в других частях или компонентах. Между двумя выводами происходит падение напряжения. Вы можете рассчитать или измерить сопротивление, используя закон Ома: R = V / I. Здесь:

«R» означает сопротивление
«В» означает напряжение
«I» означает Текущий

Хорошо, формула у вас есть, но как проверить подвижный резистор? Это легко.Отсюда цифровой мультиметр поможет вам измерить сопротивление.

Мультиметры

используют тот же принцип при измерении сопротивления. (Этот принцип применим даже к аналоговым мультиметрам.) Другое испытательное оборудование также использует основной принцип:

Идея состоит в том, что цифровой мультиметр или цифровой мультиметр подает напряжение на щупы, заставляя ток течь к предмету, в котором измеряется сопротивление. Используя мультиметр, вы не только проверяете подвижный резистор, но и определяете сопротивление на щупах измерительного прибора.

Обратите внимание на : Помимо проверки мобильного резистора с помощью мультиметра, вы также можете проверить, исправен ли резистор. Это не все. Мультиметры также могут проверять, есть ли в компонентах обрыв или короткое замыкание.

Как проверить мобильный резистор с помощью цифрового мультиметра?

Цифровые мультиметры

удобны в качестве измерительных инструментов для проверки подвижного резистора. Например, вам легче и быстрее измерить сопротивление резистора.Почему? В отличие от аналоговых мультиметров вам не нужно обнулять цифровой мультиметр.

Цифровой мультиметр обеспечивает прямое считывание измерения сопротивления. Итак, давайте поговорим о том, как проверить мобильный резистор с помощью цифрового мультиметра, выполнив следующие простые шаги:

  1. Возьмите подвижный резистор, который вы бы проверили.
  2. Вставьте щупы измерительного прибора в правые гнезда. (У большинства цифровых мультиметров есть несколько гнезд для датчиков.) Вставьте датчики и правильно поместите их в требуемые гнезда.Разъемы помечены как COM для Common, и есть знак Ом. Вы также можете увидеть гнездо для измерения напряжения.
  3. Включите мультиметр.
  4. Вы выбираете необходимый диапазон для измерения. Правильный диапазон дает вам наилучшие показания, которые вы можете получить от тестового глюкометра.

Обратите внимание на : На переключателе тестового прибора указано максимальное значение сопротивления. Выберите тот, при котором расчетное значение сопротивления ниже, но близко к максимальному диапазону.Таким образом вы сможете получить точное значение сопротивления.

  1. Вы проводите испытание или измерение, прикладывая щупы к подвижному резистору. При необходимости вы можете отрегулировать диапазон.
  2. После проверки подвижного резистора выключите цифровой мультиметр для экономии батарей. Не забудьте установить переключатель функций в высокое положение. Почему? Таким образом, мультиметр не повредится.

Советы по безопасности при проверке мобильного резистора мультиметром

Если вы профессионал или новичок в использовании цифрового мультиметра, не забывайте соблюдать меры предосторожности.Мультиметр — надежный прибор для проверки мобильного резистора, потому что он дает вам точные показания.

Но если вы не будете следовать правильным инструкциям по использованию тестового глюкометра, это может привести к неточным показаниям. В худшем случае мультиметр может сломаться, если вы не используете его правильно. Итак, вот полезные советы, которые следует помнить при проверке мобильного резистора с помощью тестового прибора.

Проверьте сопротивление, если компоненты резистора не подключены к цепи.

Технические специалисты и электрики советуют не измерять сопротивление подвижного резистора, когда он подключен к цепи. Правильный способ — проверить резистор, когда его нет в цепи. Если вы сделаете внутрисхемное измерение, это повлияет на компоненты резистора. Кроме того, вы не получите точных показаний, если резистор включен в цепь.

Выключить мультиметр при замере подвижного резистора

В качестве правила безопасности не забывайте выключать тестер при проверке резистора. Мультиметр выйдет из строя, если во время тестирования включить резистор.Кроме того, любой ток, протекающий внутри счетчика, может повлиять на показания.

Проверка путей утечки при проверке подвижного резистора

Знаете ли вы, что путь утечки ваших пальцев может повлиять на показания мультиметра? Если вы проверяете сопротивление, путь утечки заметен. (Путь утечки может добавить небольшое измерение, например несколько мегаом.

К счастью, уровни сопротивления в большинстве мультиметров низкие, поэтому не беспокойтесь о путях утечки.Но когда вы используете цифровой мультиметр, все по-другому. (В специализированных измерительных приборах часто используется высокое напряжение, поэтому все же рекомендуется проверять путь утечки.)

Если вы хотите сэкономить, вы можете купить резисторы в различных упаковках в магазинах электронных компонентов или в универмагах. Лучше покупать цифровой мультиметр, чем аналоговый, из-за его простоты использования и точных показаний.

Помните : с помощью цифрового мультиметра легко и удобно проверить мобильный резистор.Вы можете получить точные показания на экране дисплея измерителя, если это не повлияет на его компоненты. (См. Советы по безопасности выше.) Но в некоторых случаях измерить сопротивление резистора непросто из-за высокого сопротивления.

В заключение…

Теперь, когда вы знаете, как проверить подвижный резистор с помощью цифрового мультиметра, вы можете безопасно и правильно опробовать эту процедуру. Не забудьте проверить детали цифрового мультиметра перед его использованием, чтобы получить наилучшие результаты измерений.

Следуйте правильным процедурам, проверяя подвижный резистор с помощью мультиметра, чтобы гарантировать успешные результаты. Вы не столкнетесь с трудностями при проверке резистора, если будете часто помнить советы по безопасности. Кроме того, попросите совета у экспертов, потому что они могут помочь вам эффективно протестировать мобильный резистор.

Итак, приходите и проверьте свой мобильный резистор с помощью цифрового мультиметра!

Калькулятор резисторов

Ниже приведены инструменты для расчета значения сопротивления и допусков на основе цветовой кодировки резисторов, общего сопротивления группы резисторов, включенных параллельно или последовательно, и сопротивления проводника в зависимости от размера и проводимости.

Калькулятор цветового кода резистора

Используйте этот калькулятор, чтобы узнать значение сопротивления и допуск на основе цветовой кодировки резистора.

Вычислитель параллельных резисторов

Введите все значения сопротивления параллельно, разделенные запятой «,» и нажмите кнопку «Рассчитать», чтобы определить общее сопротивление.


Последовательный калькулятор резисторов Введите все значения сопротивления последовательно, разделенные запятой «,» и нажмите кнопку «Рассчитать», чтобы определить общее сопротивление.


Сопротивление проводника

Используйте следующее для расчета сопротивления проводника. В этом калькуляторе предполагается, что проводник круглый.

Калькулятор закона Омса
Цветовой код резистора

Электронный цветовой код — это код, который используется для указания номинальных характеристик определенных электрических компонентов, например сопротивления резистора в Ом. Электронные цветовые коды также используются для оценки конденсаторов, катушек индуктивности, диодов и других электронных компонентов, но чаще всего используются для резисторов.Калькулятор рассчитывает только резисторы.

Как работает цветовая кодировка:

Цветовая кодировка резисторов является международным стандартом, который определен в IEC 60062. Цветовая кодировка резистора, показанная в таблице ниже, включает различные цвета, которые представляют значащие числа, множитель, допуск, надежность и температурный коэффициент. К какому из них относится цвет, зависит от положения цветовой полосы на резисторе. В типичном четырехполосном резисторе существует интервал между третьей и четвертой полосами, чтобы указать, как следует считывать показания резистора (слева направо, при этом одинокая полоса после промежутка является самой правой полосой).В объяснении ниже будет использоваться четырехполосный резистор (конкретно показанный ниже). Другие возможные варианты резистора будут описаны позже.

Составляющая значащей фигуры:

В типичном четырехполосном резисторе первая и вторая полосы представляют собой значащие цифры. Для этого примера обратитесь к рисунку выше с зеленой, красной, синей и золотой полосой. В таблице, представленной ниже, зеленая полоса представляет собой цифру 5, а красная полоса — 2.

Множитель:

Третья синяя полоса — множитель.Таким образом, множитель по таблице равен 1 000 000. Этот множитель умножается на значащие числа, определенные из предыдущих диапазонов, в данном случае 52, в результате получается значение 52 000 000 Ом или 52 МОм.

Допуск:

Четвертая полоса присутствует не всегда, но когда она есть, представляет собой допуск. Это процентное значение, на которое может изменяться номинал резистора. Золотая полоса в этом примере указывает на допуск ± 5%, который может быть обозначен буквой J. Это означает, что значение 52 МОм может изменяться до 5% в любом направлении, поэтому номинал резистора равен 49.4 МОм — 54,6 МОм.

Надежность, температурный коэффициент и другие вариации:

Кодированные компоненты имеют как минимум три полосы: две полосы значащих цифр и множитель, но есть и другие возможные варианты. Например, компоненты, изготовленные в соответствии с военными спецификациями, обычно представляют собой четырехполосные резисторы, которые могут иметь пятую полосу, которая указывает на надежность резистора с точки зрения процента отказов на 1000 часов службы. Также возможно иметь полосу 5 th , которая представляет собой температурный коэффициент, который указывает изменение сопротивления компонента в зависимости от температуры окружающей среды в единицах ppm / K.

Чаще встречаются пятиполосные резисторы, которые более точны из-за третьей значащей полосы. Это смещает положение множителя и диапазона допуска в положение 4 и 5 по сравнению с типичным четырехполосным резистором.

На самых точных резисторах может присутствовать полоса 6 и . Первые три полосы будут значительными диапазонами цифр, 4 — множителем, 5 — допуском, а 6 может быть либо надежностью, либо температурным коэффициентом.Возможны и другие варианты, но это одни из наиболее распространенных конфигураций.

Цвет 1 st , 2 nd , 3 rd
Band Значимые цифры
Множитель Допуск Температурный коэффициент

Черный
0 × 1 250 частей на миллион / К (ед. )

Коричневый
1 × 10 ± 1% (F) 100 частей на миллион / K (S)

Красный
2 × 100 ± 2% (г) 50 частей на миллион / K (R)

Апельсин
3 × 1 К ± 0.05% (Вт) 15 частей на миллион / K (P)

Желтый
4 × 10 К ± 0,02% (P) 25 частей на миллион / K (Q)

Зеленый
5 × 100 К ± 0,5% (D) 20 частей на миллион / K (Z)

Синий
6 × 1М ± 0. 25% (С) 10 частей на миллион / K (Z)

Фиолетовый
7 × 10М ± 0,1% (В) 5 частей на миллион / K (M)

Серый
8 × 100М ± 0,01% (L) 1 частей на миллион / К (К)

Белый
9 × 1 г

Золото
× 0.1 ± 5% (Дж)

Серебро
× 0,01 ± 10% (К)

Нет
± 20% (М)

Резисторы — это элементы схемы, которые придают электрическое сопротивление. Хотя схемы могут быть очень сложными, и существует множество различных способов размещения резисторов в схеме, резисторы в сложных схемах обычно могут быть разбиты и классифицированы как соединенные последовательно или параллельно.

Сопротивление параллельно:

Общее сопротивление резисторов, включенных параллельно, равно обратной сумме обратных величин каждого отдельного резистора. Обратитесь к уравнению ниже для пояснения:

R итого =
1
+ + + … +

Последовательный резистор:

Общее сопротивление параллельно включенных резисторов — это просто сумма сопротивлений каждого резистора.Обратитесь к уравнению ниже для пояснения:

рэнд всего = рэнд + р 2 + р 3 . .. + рэнд


Сопротивление жилы:

Где:
L — длина жилы
A — площадь поперечного сечения проводника
C — проводимость материала

Калькулятор цветовой маркировки резистора

Для 4 — 5

Как читать цветовую маркировку резистора?

Цветные полосы — это простой и дешевый способ обозначить стоимость электронных компонентов.На крошечных резисторах напечатанные буквенно-цифровые коды были бы слишком маленькими для чтения, поэтому цветовой код был разработан в начале 1920-х годов.

Первый вопрос, который обычно возникает, это: как мне узнать, с какого конца мне начинать считывать цветовой код резистора? К счастью, есть пара визуальных подсказок!

  • В обычном случае полосы не расположены равномерно — есть разрыв, и полосы как-то сгруппированы . Больший зазор возникает перед полосой допуска .Поместите большую группу на левую сторону и считайте резисторы слева направо.
  • Очень часто допуск резистора равен 5% или 10%. Эти значения отмечены металлическими цветами — золотым и серебряным соответственно. Однако цветовой код резистора никогда не начинается с такого цвета, поэтому , если вы обнаружите металлический цвет на своем резисторе, это определенно значение допуска, поэтому его необходимо разместить с правой стороны. Снова прочтите резистор слева направо.
  • Обычно первая полоса будет ближе всего к концу (но не всегда, поэтому используйте другие подсказки).

Если ничего из вышеперечисленного не помогает решить вашу проблему, вы всегда можете использовать мультиметр для определения двух возможных значений сопротивления и направления считывания.

Хорошо, перейдем к латунным кнопкам: Как читать цветовой код резистора?

Величина сопротивления обозначена цветами. У каждого цвета свой номер:

Это цветовой код, работающий для первых 2 или 3 полос с левой стороны.

Затем у нас есть полоса, называемая , множитель , и значение цветов другое:

Здесь цвет представляет степень 10, на которую нужно умножить число, созданное из предыдущих полос.Вы можете выразить множители с помощью префиксов, таких как кило, мега или гига (кОм, МОм, ГОм), но также используются научные обозначения, например 10 Ом (гигаом).

И, наконец, последняя полоса, которая встречается во всех типах резисторов — 4, 5 и 6 — это полоса допуска . Он выражается в процентах, а изменение сопротивления компонентов в основном носит статистический характер (нормальное распределение):

Это все, что вам нужно знать о значениях цветов для цветовых кодов 4- и 5-полосных резисторов.Для 6-ти полосных есть дополнительное кольцо с указанием температурного коэффициента — подробнее об этом читайте в разделе, посвященном 6-ти полосным резисторам. Прокрутите вниз и узнайте формулы в зависимости от типа вашего резистора!

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *