Стабилитрон как определить: Проверка стабилитрона на плате с помощью мультиметра

Содержание

Принцип работы и маркировка стабилитронов ⋆ diodov.net

Программирование микроконтроллеров Курсы

Стабилитрон относится к одному из применяемых радиоэлектронных элементов. Каждый более-менее качественный блок питания содержит узел стабилизации напряжения, которое может изменяться при изменении сопротивления нагрузки либо при отклонении входного напряжения от номинального значения.

Стабилитрон

Стабилизация напряжения выполняется главным образом с целью обеспечения нормального режима работы остальных радиоэлементов устройства, например микросхем, транзисторов, микроконтроллеров и т.п.

Стабилитроны широко используются в маломощных блоках питания либо в отдельных его узлах, мощность которых редко превышает десятки ватт.

Главное преимущество стабилитронов – их малая стоимость и габариты, поэтому они до сих пор не могут вытисниться интегральными стабилизаторами напряжения типа LM7805 или 78L05 и т.п.

Стабилитрон очень похож на диод, поскольку его полупроводниковый кристалл помещен в аналогичный корпус.

Стабилитроны

Условное графическое обозначение стабилитрона на чертежах электрических схем также похоже на обозначение диода, только со стороны катода добавлена короткая горизонтальная черточка, направленная в сторону анода.

Обозначение стабилитрона в схеме

Принцип работы стабилитрона

Рассмотрим принцип работы стабилитрона на примере схемы его включения и вольт-амперной характеристике. Для выполнения своей основной функции стабилитрон VD соединяется последовательно с резистором Rб и вместе они подключаются к источнику входного нестабилизированного напряжения Uвх. Уже стабилизированное выходное напряжение Uвых снимается только с выводов 2, 3 VD. Поэтому нагрузка Rн подключается к соответствующим точкам 2 и 3. Как видно из схемы, VD и Rб образуют делитель напряжения. Только сопротивление стабилитрон имеет не постоянно значение и называется динамическим, поскольку зависит от величины электрического тока, протекающего через полупроводниковый прибор.

Схема включения стабилитрона

Величина напряжения Uвх, подаваемого на стабилитрон с резисторов должна быть выше на минимум на пару вольт выходного напряжения Uвых, в противном случае полупроводниковый прибор VD не откроется и не сможет выполнять свою основную функцию.

Допустим, в какой-то произвольный момент времени на выходах 1 и 3 значение Uвх начало возрастать. В схеме начнут протекать следующие процессы. С ростом напряжения согласно закону Ома начнет возрастать ток, назовем его входным током Iвх. С увеличением ток возрастет падение напряжения на резисторе Rб, а на VD она останется неизменным (это будет пояснено далее на характеристике), поэтому и Uвых останется на прежнем уровне. Следовательно, прирост входного напряжения упадет или погасится на резисторе Rб. Поэтому Rб называют гасящим или балластным.

Теперь, допустим, изменилась нагрузка, например, снизилось сопротивление Rн, соответственно возрастет и ток Iн. В этом случае снизится ток, протекающий стабилитрон Iст, а Iвх останется практически без изменений.

Вольт-амперная характеристика стабилитрона

Вольт-амперная характеристика (ВАХ) стабилитрона аналогично ВАХ диода и имеет две ветви: прямую и обратную. Прямая ветвь является рабочей для диода, а обратная ветвь характеризует работу стабилитрона, поэтому он включается в электрическую цепь в обратном направлении (катодом к плюсу, а анодом к минусу) по сравнению с диодом. Поэтому стабилитрон называю

опорным диодом, а источник питания с данным полупроводниковым элементом называют опорным источником напряжения. Такой терминологий будем пользоваться и мы.

Вольт-амперная характеристика стабилитрона ВАХ

На обратной ветви вольт-амперной характеристик опорного диода выделим две характерные точки 1 и 3. Точка 1 отвечает минимальному значению тока стабилизации, который находится в пределах единиц миллиампер. Если ток, протекающий через стабилитрон, будет ниже точки

1, то он не сможет выполнять свои функции (не откроется). В случае превышения тока выше точки 3 опорный диод перегреется и выйдет из строя. Поэтому оптимальной точкой в большинстве случае будет точка посредине обратной ветви ВАХ, то есть точка 2. Тогда при изменении тока в широких пределах (смотрите ось Y) точка 2 будет изменять свое положение, перемещаясь вверх или вниз по обратной ветви, а напряжение будет изменяться незначительно (смотрите ось X).

Встречное, параллельное, последовательное соединение стабилитронов

Для повышения напряжения стабилизации можно последовательно соединять два и более стабилитрона. Например на нагрузке нужно получить 17 В, тогда, в случае отсутствия нужного номинала, применяют опорные диоды на 5,1 В и на 12 В.

Схема последовательного соединения стабилитронов

Параллельное соединение применяется с целью повышения тока и мощности.

Также стабилитроны находят применение для стабилизации переменного напряжения. В этом случае они соединяются последовательно и встречно.

Схема стабилизации переменного напряжения, встречное соединение стабилитронов

В один полупериод переменного напряжения работает один стабилитрон, а второй работает как обычный диод. Во второй полупериод полупроводниковые элементы выполняют противоположные функции. Однако в таком случае форма выходного напряжения будет отличается от входного и выглядит как трапеция. За счет того, что опорный диод будет отсекать напряжение, превышающее уровень стабилизации, верхушки синусоиды будут срезаться.

Переменное напряжение подаваемое на стабилитрон

Осциллограмма стабилизированного стабилитроном переменного напряжения

Маркировка стабилитронов

Маркировка наносится на корпус стабилитрона в виде цифр и букв (или буквы). Различают принципиально два разных типа маркировки. Стабилитрон в стеклянном корпусе имеет привычную для нас маркировку, непосредственно обозначающую номинальное напряжение стабилизации. Цифры могут быть разделены буквой V, выполняющую роль десятичной точки. Например, 5V1 означает 5,1 В.

Маркировка стабилитронов в стеклянном корпусе

Менее понятный способ маркировки состоит из четырех цифр и буквы в конце. Если вы не опытный радиолюбитель, то без даташита никак не обойтись. Для примера расшифруем параметры опорного диода серии 1N5349B. Больше всего нас интересует первый столбец, в котором приведено номинальное напряжение 12 В. Второй столбец – номинальное значения ток – 100 мА.

Маркировка стабилитронов

Катод стабилитрона любого типа обозначается кольцом черного или синего цвета, которое наносится на корпус со стороны соответствующего вывода.

Обозначение выводов стабилитрона анод, катод

Маркировка SMD стабилитронов

Наибольшее распространение получили опорные диоды в стеклянном корпусе и в пластмассовом корпусе с тремя выводами. Маркировка SMD стабилитрона в стеклянном корпусе состоит из цветного кольца, цвет которого обозначает параметры данного полупроводникового прибора.

SMD стабилитрон в стеклянном корпусе

Если вам встретился SMD стабилитрон с тремя выводами, то следует знать, что один вывод – это «пустышка», то есть он не задействован и применяется лишь для надежной фиксации элемента на печатной плате после пайки. Анод и катод такого экземпляра проще всего определить с помощью мультиметра.

SMD стабилитрон с тремя выводами

Мощность рассеивания стабилитрона

Мощность рассеивания стабилитрона Pст характеризует его способность не перегреваться выше определенной температуры на протяжении длительного времени. Чем выше значение Pст, тем больше тепла способен рассеять полупроводниковый прибор. Мощность рассеивания рассчитывается для самых неблагоприятных условий работы прибора, поэтому в ниже приведенную формулу подставляют максимально возможное в работе

Uвх и наименьшие значения и :

Мощность рассеивания стабилитрона формула

Существует ряд стандартных номиналом по данному параметру: 0,3 Вт, 0,5 Вт, 1,3 Вт, 5 Вт и т.п. Чем больше Pст, тем больше габариты полупроводникового прибора.

Стабилитрон мощностью 0,3 Вт, 0,5 Вт, 1,3 Вт, 5 Вт

Как проверить стабилитрон

Проверить стабилитрон на предмет исправности довольно просто и быстро можно с помощью простейшего мультиметра. Для этого мультиметр следует перевести в режим «прозвонка», как правило, обозначенный знаком диода. Затем, если положительным щупом мультиметра прикоснуться анода, а отрицательным – катода, то на дисплее измерительного прибора мы увидим некоторое значение падения напряжения на pn-переходе. Поскольку к полупроводниковому прибору приложено прямое напряжение (смотрите прямую ветвь вольт-амперной характеристики), то опорный диод откроется.

Как проверить стабилитрон

Теперь, если щупы мультиметра поменять местами, тем самым приложить к выводам полупроводникового прибора обратное напряжение (смотрите обратную ветвь ВАХ), то он окажется заперт и не будет проводить ток. На дисплее измерительного прибора отобразится единица, обозначающая бесконечно высокое сопротивление.

Как проверить стабилитрон мультиметром

Если в обеих случаях мультиметр покажет единицу или будет звенеть, то стабилитрон непригоден.

Электроника для начинающих

Еще статьи по данной теме

Принцип работы стабилитрона – параметры, характеристики, маркировка

Принцип работы стабилитрона основан на подаче на диод через резистор запирающего напряжения, величина которого больше напряжения пробоя диода. У стабилизатора высокое сопротивление, до пробоя через него идут незначительные токи утечки. Когда наступает пробой, величина протекающего тока существенно увеличивается, а сопротивление снижается. В результате напряжение поддерживается достаточно точно в широком диапазоне обратных токов.

Главной характеристикой стабилитрона является стабилизация выходного напряжения. Устройство работает в цепях постоянного тока, напряжение подается в обратной полярности: на катод – «плюс», на анод – «минус». Параметры входного напряжения могут изменяться, а на стабилитроне будет меняться только обратный ток, напряжение при нагрузке будет оставаться стабильным.

Параметры и характеристики

При разработке схем применения устройства необходимо знать:

  • напряжение стабилизации;
  • минимальные токи;
  • предельно-допустимый обратный ток.

Основной характеристикой стабилитрона является стабилизирующее напряжение – средняя величина между минимальным и максимальным значением. Также устройство характеризует минимальный ток, соответствующий минимальному значению стабилизирующего напряжения, при котором происходит обратный пробой. Если прибор используется в схеме переменного тока и ток должен проводиться в оба полупроводника, используют величину предельно допустимого прямого тока. Максимально допустимый прямой ток – это величина прямого тока, которую p-n переход (электронно-дырочный) может выдерживать длительное время, не разрушаясь от выделяемого тепла.


Маркировка

Стабилитроны имеют цветную маркировку, в которой:

  • первая полоска указывает на тип устройства;
  • вторая – тип полупроводника;
  • третья – прибор и проводимость;
  • четвертая – номер разработки;
  • пятая – модификация.

Обозначение стабилитрона может включать букву и цифру или только букву. По маркировке определяют тип устройства, дату изготовления. Для СМД обозначают тип микросхемы.

Типы устройств

  • Прецизионные – отличаются повышенной стабильностью напряжения.
  • Двухсторонние – стабилизируют и ограничивают двухполярное напряжение.
  • Быстродействующие – имеют пониженную величину барьерной емкости, отличаются коротким периодом переходного процесса. Устройства можно использовать в области кратковременных импульсов напряжений.

По распределению мощности выделяют мощные и маломощные приборы.

Как проверить стабилитрон?

Процедура проводится с помощью любого мультиметра в режиме прозвона диода либо определения величины сопротивления.

Порядок действий при проверке стабилитрона:

  • установка диапазона измерения Омов;
  • присоединение измерительных щупов к выводам радиодетали;
  • оценка показаний: мультиметр должен показать доли Ом при подключении источника питания «плюсом» к аноду;
  • замена щупов местами, изменение полярности напряжения на выводах полупроводника для получения сопротивления, близкого к бесконечности (показывает исправность прибора).

Чтобы быть уверенным в исправности устройства, нужно переключить мультиметр на диапазон измерения в килоомах и провести измерение. Если оборудование исправно, показания должны быть в пределах десятков и сотен тысяч Ом. Это означает, что прибор пропускает ток, как диод.

Как выбрать устройство?

Элементы различаются по показателю напряжения стабилизации. Для получения точного значения Uн приборы выбирают из одной партии. Подбирают изделия по параметрам. Для правильного выбора предлагается проконсультироваться с квалифицированными специалистами.



Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Маркировка стабилитронов: детальное описание | 1posvetu.ru

 

Имея дома радиоэлектронную лабораторию, можно своими руками сделать самые различные приспособления для электрооборудования или сами приборы, что позволит значительно сэкономить на покупке техники. Важным элементом многих электрических схем приборов является стабилитрон.

Такой элемент (smd, смд) является необходимой частью многих электросхем. Благодаря обширной области применения, стабилитрон имеет различную маркировку. Маркировка, нанесенная на корпус такого диода, дает подробную, но зашифрованную, информацию о данном элементе. Наша сегодняшняя статья поможет вам разобраться в том, какая цветовая маркировка встречается на корпусе (стеклянном и нет) импортных стабилитронов.

Что представляет собой данный элемент электрических схем

Прежде чем приступить к рассмотрению вопроса о том, какая цветовая маркировка таких элементов существует, нужно разобраться, что это вообще такое.

Характеристики стабилитрона

Вольт-амперная характеристика стабилитрона

Стабилитрон представляет собой полупроводниковый диод, который предназначается для стабилизации в электросхеме постоянного напряжения на нагрузке. Наиболее часто такой диод используется для стабилизации напряжения в различных источниках питания. Данный диод (smd) имеет участок с обратной веткой вольт-амперной характеристики, которая наблюдается в области электрического пробоя.

Имея такую область, стабилитрон в ситуации изменения параметра тока, протекающего через диод от IСТ.МИН до IСТ.МАКС практически не наблюдается изменений показателя напряжения. Данный эффект применяется для стабилизации напряжения. В ситуации, когда к смд подключена параллельно нагрузка RH, тогда напряжение диода будет оставаться постоянным, причем в указанных пределах изменения тока, текущего через стабилитрон.

Обратите внимание! Стабилитрон (smd) способен стабилизировать напряжение выше 3,3 В.

Кроме смд существуют еще и стабистроны, которые включаются при прямом включении. Они применяются в ситуации, когда есть необходимость стабилизировать напряжение в определенном диапазоне. Обычный диод можно использовать тогда, когда нужно стабилизировать напряжение в диапазоне от 0,3 до 0,5 В. Область их прямого смещения наблюдается при падении напряжения до 0,7 – 2v. При этом оно практически не зависит от силы тока. Стабисторы в своей работе применяют прямую ветвь вольт-амперной характеристики.
Их также следует включать при прямом подключении. Хотя это будет не самое лучшее решение, поскольку стабилитрон в такой ситуации будет все же более эффективен.
Стабисторы, как и smd, производятся зачастую из кремния.
Стабилитроны маркируют по их основным характеристикам. Эта маркировка имеет следующий вид:

  • UСТ. Эта маркировка означает номинальное напряжение для стабилизации;
  • ΔUСТ. Означает отклонение показателя напряжения номинального напряжения стабилизации;
  • IСТ. Обозначает ток, который протекает через диод при номинальном напряжении стабилизации;
  • IСТ.МИН — минимальное значение тока, которые течет через стабилитрон. При этом значении такой smd диод будет иметь напряжение в диапазоне UСТ ± ΔUСТ;
  • IСТ.МАКС. Означает максимально допустимую величину тока, которая может течь через стабилитрон.

Такая маркировка важна при выборе элемента под определенную электросхему.

Обозначения работы элемента электросхемы

Схематические обозначения

Схематическое обозначение стабилитрона

Поскольку стабилитрон представляет собой специальный диод, то его обозначение не отличается от них. Схематически smd обозначается следующим образом:

Стабилитрон, как и диод, имеет в своем составе катодную и анодную часть. Из-за этого имеется прямое и обратное включение данного элемента.

Включение на схеме

Включение стабилитрона

На первый взгляд, включение такой диод имеет неправильное, ведь он должен подключаться «наоборот». В ситуации подачи на смд обратного напряжения наблюдается явление «пробоя». В результате чего напряжение между его выводами остается неизменным. Поэтому он должен быть последовательно подключен к резистору с целью ограничения проходящего через него тока, что будет обеспечивать падение «лишнего» напряжения от выпрямителя.

Обратите внимание! Каждый диод, предназначенный для стабилизации напряжения, обладает своим напряжением «пробоя» (стабилизации), а также имеет свой рабочий ток.

Из-за того, что каждый стабилитрон обладает такими характеристиками, для него можно рассчитать номинал резистора, который будет подключаться с ним последовательно. У импортных стабилитронов их напряжение стабилизации представлено в виде маркировки, нанесенной на корпусе (стеклянном или нет). Обозначение такого диода smd всегда начинается с BZY… или BZX…, а их напряжение пробоя (стабилизации) имеет маркировку V. Например, обозначение 3V9 расшифровывается как 3.9 вольта.

Обратите внимание! Минимальное напряжение для стабилизации у таких элементов составляет 2 В.

Принцип функционирования стабилизационных диодов

Несмотря на то, что смд похож на диод, он по сути является иным элементом электросхемы. Конечно, он может выполнять функцию выпрямителя, но обычно используется для стабилизации напряжения. Данный элемент способен поддерживать в цепи постоянного тока постоянное напряжение. Этот его принцип работы применяется в питании различного радиотехнического оборудования.

 

Стабилитрон и диод

Стабилитрон и диод

Внешне смд очень похож на стандартный полупроводник. Схожесть сохраняется и в конструкционных особенностях. Но при обозначении такого радиотехнического элемента, в отличие от диода, на схеме ставится буква Г.
Если не вникать в математические расчеты и физические явления, то принцип функционирования smd будет достаточно понятным.

Обратите внимание! При включении такого smd диода нужно соблюдать обратную полярность. Это означает, что подключение проводится анодом к минусу.

Проходя через этот элемент, небольшое напряжение цепи провоцирует сильный ток. При увеличении обратного напряжения ток так же растет, только в этом случае его рост будет наблюдаться слабо. Доходя до отметки, она может быть любой. Все зависит от типа устройства. При достижении отметки происходит «пробой». После случившегося «пробоя» через smd начинает течь обратный ток большого значения. Именно в этот момент и начинается работа данного элемента до времени превышения его допустимого предела.

Как отличить стабилизационный диод от обычного полупроводника

Очень часто люди задаются вопросом, как можно отличить стабилитрон от стандартного полупроводника, ведь, как мы выяснили раньше, оба этих элемента имеют практически идентичное обозначение на электросхеме и могут выполнять схожие функции.
Самым простым способом отличить стабилизационный полупроводник от обычного является использование схемы приставки к мультиметру. С его помощью можно не только отличить оба элемента друг от друга, но и выявить напряжение стабилизации, которое характерно для данного смд (если оно, конечно, не превышает 35В).
Схема приставки мультиметра является DC-DC преобразователем, в которой между входом и выходом имеется гальваническая развязка. Эта схема имеет следующий вид:

Приставка мультиметра

Схема приставки мультиметра

В ней генератор с широтно-импульсной модуляцией выполняется на специальной микросхеме МС34063, а для создания гальванической развязки между измерительной частью схемы и источником питания контрольное напряжение следует снимать с первичной обмотки трансформатора. Для этой цели имеется выпрямитель на VD2. При этом величина для выходного напряжения или тока стабилизации устанавливается путем подбора резистора R3. На конденсаторе С4 происходит выделение напряжения примерно в 40В.
При этом проверяемый смд VDX и стабилизатор для тока А2 будут формировать параметрический стабилизатор. Мультиметр, который подключили к выводам Х1 и Х2, будет измерять на данном стабилитроне напряжение.
При подключении катода к «-«, а анода к «+» диода, а также к несимметричному смд мультиметра, последний покажет незначительное напряжение. Если подключать в обратной полярности (как на схеме), то в ситуации с обычным полупроводником прибор будет регистрировать напряжение около 40В.

Обратите внимание! Для симметричного смд напряжение пробоя будет появляться при наличии любой полярности подключения.

Здесь трансформатор Т1 будет намотан на торообразном ферритовом сердечнике с внешним диаметром в 23 мм. Такая обмотка 1 будет содержать 20 витков, а вторая обмотка — 35 витков провода ПЭВ 0,43. При этом важно при намотке укладывать виток к витку. Следует помнить, что первичная обмотка идет на одной части кольца, а вторая – на другой.
Проводя настройку прибора, подключите резистор вместо smd VDX. Этот резистор должен иметь номинал 10 кОм. А сопротивление R3 нужно подбирать для того, чтобы добиться напряжения в 40В на конденсаторе С4
Вот так можно выяснить, стабилитрон у вас или обычный диод.

Подробно о цветовой маркировке стабилизирующего диода

Маркировка стабилитрона

Маркировка стабилитрона

Любой диод (стабилитрон и т.д.) на своем корпусе содержит специальную маркировку, которая отражает то, какой материал использовался для изготовления каждого конкретного полупроводника. Такая маркировка может иметь следующий вид:

  • буква или цифра;
  • буква.

Кроме этого маркировка отражает электрические свойства и назначение прибора. Обычно за это отвечает цифра. Буква, в свою очередь, отражает соответствующую разновидность устройства. Кроме этого маркировка содержит дату изготовления и условное обозначение изделия.
Смд интегрального типа часто содержат полную маркировку. В такой ситуации на корпусе изделия имеется условный код, который обозначает тип микросхемы. Пример расшифровки нанесенной на корпус кодовой маркировки для микросхем приведен на рисунке:

Маркировка микросхем

Пример маркировки микросхем

Кроме этого имеется еще и цветовая маркировка. Она существует в нескольких вариантах, но наиболее часто используется японская маркировка (JIS-C-7012). Обозначения цветовой маркировки приведены в следующей таблице.

Цветовая маркировка стабилитрона

В ней:

  • первая полоска обозначает тип устройства;
  • вторая – полупроводник;
  • третья – что это за прибор, а также, какая у него проводимость;
  • четвертая — номер разработки;
  • пятая — модификация устройства.

Нужно отметить, что четвертая и пятая полоски не очень важны для выбора изделия.

Заключение

Как видим, существует много разных маркировок и обозначений для стабилитрона, о которых нужно помнить при его выборе для домашней лаборатории и изготовления своими руками различных электротехнических приборов. Если хорошо владеть этим вопросом, то это залог правильного выбора.

 

Как определить номинал стабилитрона

Всех приветствую на станицах сайта посвящённых электроники, сегодня изучим способ, как определить номинал стабилитрона. Это статья немного дополняет предыдущую, не менее важную страницу. Для определения рабочего напряжения стабилитрона, маркировка которого не вида, затёрта или просто очень мелко написана, задача выполнимая любому начинающему ремонтнику электроники.

Как узнать напряжение стабилизации неизвестного стабилитрона

Перебирая скопившиеся радиоэлементы, я набрал внушительное количество стабилитронов, некоторые были без опознавательных знаков. Подобная незадача и подтолкнула, написаю данной инструкции. Для внесения порядка на рабочем столе. Сегодня рассмотрим пару способом определения номинала стабилитрона.

Устройство для определения напряжения стабилизации неизвестного стабилитрона

Схема данного устройства, очень проста в использовании и изготовлении, сейчас поясню принцип её работы.
Для этого нам необходимо, блок питания с регулировкой напряжения и его индикации, если такого нет в наличии, ниже рассмотрим способ проверки без него. Плюс ко всему необходим ограничительный резистор номиналом от 1 до 2 кОм и соединительные провода.

На фото все видно наглядно, к блоку питания с регулировкой последовательно подключается ограничительный резистор соответствующего номинала, далее подключаем сам испытуемый стабилитрон, катодом к плюсу. После, замыкаем цепь на отрицательный вывод блока питания. Параллельно неизвестному стабилитрону, подключаем мультиметр в режиме измерения напряжения.

kak-opredelit-nominal-stabilitrona

Будет очень хорошо, если ваш лабораторный блок питания имеет встроенную защиту от короткого замыкания, в некоторых случаях это, спасёт вас от лишнего ремонта. Начинаем потихоньку, добавлять выходное напряжение, и смотрим за изменением на дисплее мультиметра.

Для определения напряжения стабилитрона, мы возьмём 1N4742A очень распространённая модель. Для любопытных, его аналогом является С12 5Т, они стабилизируют 12 вольт. Подключаем всё согласно схеме и регулируем источник питания, мой имеет придел 14 вольт. Всё работает отлично и небольшими погрешностями приборов, но в целом всё нормально.

sxema-ustrojstva-dlya-opredelenie-stabilitrona
Подобным способом можно проверить любой стабилитрон, насколько вам позволит выбранный источник питания. Способ действительно хороший и простой.

Как узнать, насколько стабилитрон без регулируемого блока питания

Это действительно сложнее, но в некоторых случаях под силу. Можно использовать зарядное устройство для сотового телефона, или зарядку от видео регистратора, зарядное устройство для автомобильного аккумулятора. Но лучше всего, иметь в наличии несколько батареек, из них постепенно собираем батарею и меряем напряжение на них и сравниваем с напряжением на стабилитроне, бюджетный вариант, но рабочий. Главное условие, без мультиметра, не обойтись. Интересуйтесь подобными вопросами, и сложности станут под силу.

Сегодня мы научились способам, как определить номинал стабилитрона, у кого есть соображения поэтому и другим вопросам, пишите, все почитаем и обсудим.

ОПРЕДЕЛЕНИЕ ВОЛЬТАЖА ЛЮБОГО СТАБИЛИТРОНА

Как мы проверяем стабилитрон? Подключив к регулируемому блоку питания и отслеживая ток. А если такого БП под рукой нет, а если он на максимум 20, а стабилитрон на 30 вольт (да и конденсатор в источнике питания может повредить измеряемый диод)? Поэтому не лишним будет обзавестись простым цифровым тестером стабилитронов. При этом схема должна быть эквивалентна функции «проверки диодов» в мультиметре, диапазон напряжений не менее 30 В, питание типовое 5 В, сборка из самых простых и дешманских радиоэлементов. 

Схема и чертеж печатной платы измерителя

Вот принципиальная схема тестера для определения напряжения стабилитрона — на сколько он вольт. Тут выбран инвертор на базе NE555 в качестве преобразователя. Сначала использовался дроссель 470uH и транзистор BC337 в качестве ключа. Удалось выжать около 70 В из схемы, но и транзистор, и дроссель были сильно нагретыми. Заменили ключевой транзистор на MJE13007 от какого-то блока питания ATX.

Далее источник тока. Ничего нового, простая схема с транзистором, здесь применен BC327, два выпрямительных диода и измерительный резистор. 

Теперь измерение. Берем цифровой китайский вольтметр, измеряющий напряжение на стабилитроне. Эти индикаторы имеют диапазон 3-30 В обычно. Этот факт, а также применяемый транзистор с Uce max 40V вынуждают выполнить некоторое ограничение напряжения на тестируемом устройстве.

Элементами ответственными за ограничение являются D4, T1, R3, R4 — перенапряжение 33 В вызывает сброс низкого состояния на входе сброса NE555 и инвертор выключается.

Источник питания — импульсный 5 В 1 A. Соответствующее гнездо установлено в корпусе. Готовое устройство также имеет переключатель настройки источника тока — трехпозиционный переключатель, замыкающий точку A на точку B или C или оставляющий ее не подключенной, что дает установки тока 1,4 мА, 3,8 мА и 0,7 мА. С этими значениями полезно проверить, как стабилитроны держат разный ток. 

Если напряжение питания будет выше 8,5 В, то можно использовать UC3843 + Мосфет, который дает очень высокую эффективность (более 90%) и возможность тестировать диоды с еще более высокими напряжениями, после добавления делителя 1:10 на вольтметре. Схему похожего прибора можно посмотреть в этой статье.

   Форум по измерительным приборам

   Обсудить статью ОПРЕДЕЛЕНИЕ ВОЛЬТАЖА ЛЮБОГО СТАБИЛИТРОНА


Как работает стабилитрон | Характеристика стабилитрона.

Немного теории

Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно :-).  Если глянуть в толковый словарик, то можно толково разобрать, что же такое “стабильность”. На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный – это значит постоянный, устойчивый, не изменяющийся.

Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока, напряжение, частота сигнала и другие его характеристики. Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке. Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев.

В электронике и электротехнике стабилизируют напряжение. От значения напряжения зависит работа  радиоэлектронной аппаратуры.  Если оно изменится в меньшую,  или даже еще хуже, в большую сторону, то аппаратура  в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем.

Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать “играющее” напряжение.

Стабилитрон или диод Зенера

Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон. Иногда его еще называют диодом Зенера. На схемах стабилитроны обозначаются примерно так:

Вывод с “кепочкой” называется также как и у диода – катод, а другой вывод – анод.

Стабилитроны выглядят также, как и диоды. На фото ниже, слева  популярный вид современного стабилитрона, а справа один из  образцов Советского Союза

Если присмотреться поближе к советскому стабилитрону, то можно  увидеть это схематическое обозначение на нем самом, указывающее, где у него находится  катод, а где анод.

Напряжение стабилизации

Самый главный параметр стабилитрона – это конечно же, напряжение стабилизации. Что это за параметр?

Давайте возьмем стакан и будем наполнять его водой…

Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана. Думаю, это  понятно и дошкольнику.

Теперь  по аналогии с электроникой. Стакан – это стабилитрон. Уровень воды в полном до краев стакане – это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом  большой кувшин с водой. Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один – лить воду из кувшина, пробив отверстие в самом кувшине. Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан. Если объяснить языком электроники – кувшин обладает “напряжением” больше, чем “напряжение” стакана.

Так  вот, дорогие читатели,  в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо обязательно сверху. Это значит,  напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:

Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.

Как работает стабилитрон

Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:

5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта.  Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой

Как проверить стабилитрон

Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого PN-перехода.

Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.

Ну что же, настало время опытов.  В схемах стабилитрон включается последовательно с резистором:

где Uвх – входное напряжение, Uвых.ст.  – выходное стабилизированное напряжение

Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения.  Здесь все элементарно и просто:

Uвх=Uвых.стаб +Uрезистора

Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.

Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл 😉

Итак, собираем схемку.  Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем блок питания, а справа замеряем мультиметром полученное напряжение:

Теперь внимательно следим за показаниями мультиметра и блока питания:

Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт!  Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.

Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне  5,17 Вольт! Изумительно!

Еще добавляем… Входное напряжение 20 Вольт,  а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт  – это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.

Вольт-амперная характеристика стабилитрона

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:

где

Iпр – прямой ток, А

Uпр  – прямое напряжение, В

Эти два параметра в стабилитроне не используются

Uобр – обратное напряжение, В

Uст – номинальное напряжение стабилизации, В

Iст – номинальный ток стабилизации, А

Номинальный – это значит нормальный параметр, при котором  возможна долгосрочная работа радиоэлемента.

Imax – максимальный ток стабилитрона, А

Imin – минимальный ток стабилитрона, А

Iст, Imax, Iminэто  сила тока, которая течет через стабилитрон при его работе.

Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а  диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.

рабочая область стабилитрона

Как мы видим, при каком-то напряжении Uобр  у нас график начинает падать вниз. В это время в стабилитроне происходит  такая интересная штука,  как пробой. Короче говоря,  он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока  в стабилитроне. Самое  главное – не переборщить силу тока, больше чем Imax, иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим,  при котором сила тока через стабилитрон  находится где-то в середине между максимальным и минимальным его значением.  На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).

Заключение

Раньше, во времена дефицитных деталей и начала расцвета электроники, стабилитрон часто использовался, как ни странно, для стабилизации выходного напряжения блока питания. В старых советских книгах по электронике можно увидеть вот такой участок цепи различных источников питания:

Слева, в красной рамке, я пометил знакомый вам участок цепи блока питания. Здесь мы получаем постоянное напряжение из переменного. Справа же, в зеленой рамке, схема стабилизации ;-).

В настоящее время трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, так как они в разы лучше стабилизируют напряжение и обладают хорошей мощностью рассеивания.стабилизатор LM7805

На Али можно взять сразу целый набор стабилитронов, начиная от 3,3 Вольт и до 30 Вольт.  Выбирайте на ваш вкус и цвет.

ПРОБНИК ДЛЯ ПРОВЕРКИ СТАБИЛИТРОНОВ

Долгое время использовал такой пробник стабилитронов. У него только один единственный недостаток – необходимо наличие стационарной телефонной линии, ибо питается он от неё, от её 50 вольт с уникальным током в 20 миллиампер. Очевидно, что напряжение линии покрывает всю обозримую линейку вольтажа применяющихся в практике радиолюбителей стабилитронов. Слов нет как удобно.

Но вот телефона не стало, а потребность в измерениях осталась, пришлось делать новый пробник, схема при этом подверглась изменениям только в плане количества задействованных электронных компонентов, причём в сторону уменьшения. Питание пробника будет осуществляться от лабораторного БП с регулируемым выходным напряжением 0 – 30 вольт.

В набор необходимого для изготовления входят:

  • конденсатор на 22 нФ, резистор 2,4 МОм / 0,5 Вт, резистор 10 кОм / 2 Вт
  • две крышки и горлышко от любой подходящей пластиковой ёмкости 
  • пара соединительных контактов, пара сетевых штырей и гайки с винтами М4 

В крышках шилом протыкаются отверстия, в одной на расстоянии 19 мм друг от друга и в них устанавливаются штыри, в другой на произвольном расстоянии для соединительных контактов. Электронные компоненты соединяются между собой пайкой (смотрите на фото и схему).

Компонентная сборка устанавливается по месту, крепиться при помощи гаек. Одна из крышек закручивается по резьбе, втора надевается «в натяг» на противоположную сторону горлышка (получается подобие защёлки, надо только правильно подрезать края – «поймать» необходимый диаметр). И не забываем организовать подвод питания.

На верхнюю крышку корпуса готового пробника ставим информационные наклейки и им можно пользоваться. Схема пробника и метод проверены пятью годами эксплуатации. Это именно тот случай, когда изделие характеризуют поговоркой «и дёшево и сердито». Время необходимое на его изготовление составляет не более часа.

Как пользоваться пробником

Порядок пользования пробником следующий: пробник вставляется штырями в соответствующие гнёзда мультиметра, предел измерения выбирается «20» или «200» вольт постоянного тока в зависимости от ожидаемого напряжения стабилизации стабилитрона. Далее идёт подключение к источнику постоянного тока, лучший вариант блок питания с регулировкой выходного напряжения от нуля и током до 1 ампера. Правильно ставим на контакты тестируемый стабилитрон, не спеша увеличиваем выходное напряжение и смотрим на дисплей мультиметра. Там и увидим напряжение стабилизации интересующего нас стабилитрона. Но всё получиться, даже если и нет регулируемого блока питания, можно использовать обычные батарейки, подключая их последовательно до достижения необходимого напряжения.

Из пользовательского опыта: контакты для установки проверяемого стабилитрона не должны быть короткими, зато должны иметь возможность поворота вокруг своей оси, это даст удобство тестирования деталей, как с короткими выводами, так и с длинными. А если на верхнем ребре сделать парные пропилы, то отпадёт необходимость удержания электронного компонента при его проверке. Пробник собирал Babay iz Barnaula.

   Форум

   Обсудить статью ПРОБНИК ДЛЯ ПРОВЕРКИ СТАБИЛИТРОНОВ


Решенные проблемы на стабилитроне

Q1. Для схемы, показанной на рисунке 1 (i), найдите: (i) выходное напряжение (ii) падение напряжения на последовательном сопротивлении (iii) ток через стабилитрон.

Рис.1 (i)

Решение:

Если вы удалите стабилитрон на рис. 1, напряжение V на разомкнутой цепи будет равно:

Поскольку напряжение на стабилитроне больше VZ (= 50 В), стабилитрон находится во включенном состоянии.Следовательно,
может быть представлен батареей на 50 В, как показано на рис. 1 (ii).

Рис. 1 (ii)

(i) Ссылаясь на рис. 1 (ii),

(ii)

(iii)

Q2. Для схемы, показанной на рис. 2 (i), найдите максимальное и минимальное значения тока стабилитрона.

Рис.2

Решение:

Первым делом нужно определить состояние стабилитрона.Легко видеть, что для данного диапазона напряжений (80 — 120 В) напряжение на стабилитроне больше VZ (= 50 В). Следовательно, стабилитрон будет во включенном состоянии для этого диапазона приложенных напряжений. Следовательно, его можно заменить батареей на 50 В, как показано на рис. 2 (ii).

Максимальный ток стабилитрона: Стабилитрон будет проводить максимальный ток при максимальном входном напряжении, т.е. 120 В. При таких условиях:

Минимальный ток стабилитрона: Стабилитрон будет проводить минимальный ток, когда входное напряжение составляет минимум
i.е. 80 В. При таких условиях имеем

Q3. В схеме, показанной на рис. 3, используется стабилитрон на 7,2 В, а ток нагрузки должен изменяться от 12 до 100 мА. Найдите значение последовательного сопротивления R, чтобы напряжение на нагрузке составляло 7,2 В. Входное напряжение составляет 12 В, минимальный ток стабилитрона составляет 10 мА.

Фиг.3

Решение:

Напряжение на R должно оставаться постоянным на уровне 12-7.2 = 4,8 В при изменении тока нагрузки от 12 до 100 мА. Минимальный ток стабилитрона будет иметь место при максимальном токе нагрузки.

Если в цепь вставлено сопротивление R = 43,5 Ом, выходное напряжение будет оставаться постоянным во всем диапазоне регулирования. По мере уменьшения тока нагрузки IL ток стабилитрона IZ увеличится до такого значения, что IZ + IL = 110 мА.

Обратите внимание, что если сопротивление нагрузки разомкнуто, то IL = 0 и ток стабилитрона становится 110 мА.

Q4.Стабилитрон, показанный на рис. 4, имеет VZ = 18 В. Напряжение на нагрузке остается на уровне 18 В, пока IZ поддерживается в диапазоне от 200 мА до 2 А. Найдите значение последовательного сопротивления R так, чтобы E0 оставалось 18 В, в то время как входное напряжение Ei может варьироваться от 22 до 28 В.

Фиг.4

Решение:

Ток стабилитрона будет минимальным (например, 200 мА) при минимальном входном напряжении (например, 22 В). Ток нагрузки остается на постоянном значении IL = VZ / RL = 18 В / 18 Ом = 1 А = 1000 мА.

Q5. Стабилитрон 10 В используется для регулирования напряжения на резисторе переменной нагрузки
[см. Рис. 5]. Входное напряжение колеблется от 13 до 16 В, а ток нагрузки от 10 до 85 мА. Минимальный ток стабилитрона 15 мА. Рассчитайте значение последовательного сопротивления R.

Фиг.5

Решение:

Стабилитрон будет проводить минимальный ток (например, 15 мА) при минимальном входном напряжении (например, 13 В).

Q6.В схеме на рис. 6 используются два стабилитрона, каждый на 15 В, 200 мА. Если цепь подключена к нерегулируемому источнику питания на 45 В, определите: (i) регулируемое выходное напряжение (ii) значение последовательного сопротивления R.

Фиг.6

Решение:

Когда желаемое регулируемое выходное напряжение выше, чем номинальное напряжение стабилитрона, два или более стабилитрона подключаются последовательно, как показано на рис. 6. Однако в таких схемах следует выбирать те стабилитроны, которые имеют одинаковые текущий рейтинг.

Q7. Какое значение последовательного сопротивления требуется, когда три стабилитрона 10 Вт, 10 В, 1000 мА подключены последовательно для получения регулируемого выхода 30 В от источника постоянного тока 45 В. источник питания?

Решение:

На рис. 7 показана желаемая схема. Худший случай — без нагрузки, потому что тогда стабилитроны несут максимальный ток.

Фиг.7

Q8. В каком диапазоне входных напряжений будет схема стабилитрона, показанная на рис.8 поддерживать 30 В на нагрузке 2000 Ом, предполагая, что последовательное сопротивление R = 200 Ом и номинальный ток стабилитрона
равен 25 мА?

Фиг.8

Решение:

Минимальное необходимое входное напряжение будет при IZ = 0. При этом условии

Q9. В схеме, показанной на рисунке 9, напряжение на нагрузке должно поддерживаться на уровне 12 В при изменении тока нагрузки от 0 до 200 мА. Разработайте регулятор. Также найдите максимальную номинальную мощность стабилитрона.

Фиг.9

Решение:

Под проектированием регулятора здесь подразумевается найти значения VZ и R. Поскольку напряжение нагрузки должно поддерживаться на уровне 12 В, мы будем использовать стабилитрон с напряжением стабилитрона 12 В, т.е.

Напряжение на резисторе R должно оставаться постоянным на уровне 16–12 = 4 В при изменении тока нагрузки от 0 до 200 мА. Минимальный ток стабилитрона будет иметь место при максимальном токе нагрузки.

Максимальная мощность стабилитрона

Q10.На рис. 10 показаны основные схемы стабилитронов. Каково будет поведение схемы, если стабилитрон (i) работает правильно (ii) закорочен (iii) разомкнут?

Фиг.10

Решение:

Стабилитроны

нельзя тестировать мультиметром по отдельности. Это связано с тем, что мультиметры обычно не имеют достаточного входного напряжения, чтобы перевести стабилитрон в область пробоя.

(i) Если стабилитрон работает правильно, напряжение V0 на нагрузке (= 5 кОм) будет почти 6 В [см. Рис.10 (i)].

(ii) Если стабилитрон короткий [см. Рис. 10 (ii)], вы измеряете V0 как 0В. Та же проблема может быть вызвана коротким замыканием нагрузочного резистора (= 5 кОм) или резистором с открытым истоком (= 1 кОм). Единственный способ узнать, какое устройство вышло из строя, — снять резисторы и проверить их омметром. Если резисторы хорошие, значит стабилитрон плохой.

(iii) Если стабилитрон разомкнут, напряжение V0 на нагрузке (= 5 кОм) будет 10 В.

Q11. На рис. 11 показан стабилизированный источник питания с использованием стабилитрона. Каково будет поведение схемы, если (i) закоротит конденсатор фильтра (ii) конденсатор фильтра разомкнется?

Фиг.11

Решение:

Распространенные неисправности стабилитрона — это короткое замыкание конденсатора фильтра или обрыв конденсатора фильтра.

(i) При коротком замыкании конденсатора фильтра:

При коротком замыкании конденсатора фильтра сгорает первичный предохранитель. Причина этого показана на рис.11.Когда конденсатор фильтра закорачивает, он замыкает сопротивление нагрузки RL. Это имеет тот же эффект, что и соединение двух сторон моста вместе (см. Рис. 11).

Если вы проследите путь от верхней стороны моста к нижней стороне, вы увидите, что единственное сопротивление на вторичной обмотке трансформатора — это прямое сопротивление двух диодов ON . Это эффективно закорачивает вторичную обмотку трансформатора. В результате чрезмерный ток течет во вторичной обмотке и, следовательно, в первичной обмотке.Следовательно, перегорит первичный предохранитель.

(ii) Когда конденсатор фильтра открывается:

Когда конденсатор фильтра размыкается, пульсации на выходе блока питания резко возрастают. В то же время постоянный ток. выходное напряжение покажет значительное падение. Поскольку открытый конденсатор фильтра — единственная неисправность, которая вызывает оба этих симптома, дальнейшие испытания не требуются. При появлении обоих симптомов замените конденсатор фильтра.

Сасмита

Привет! Я Сасмита.В ElectronicsPost.com я продолжаю свою любовь к преподаванию. Я магистр электроники и телекоммуникаций. И, если вы действительно хотите узнать обо мне больше, посетите мою страницу «О нас». Узнать больше

.

Как использовать стабилитроны

AN008 — Как использовать стабилитроны
Продукты Elliott Sound АН-008
Род Эллиотт (ESP)
Прил. Индекс банкнот
Основной индекс

О стабилитронах Стабилитроны
очень часто используются для базовых задач регулирования напряжения. Они используются в качестве дискретных компонентов, а также в пределах ИС, которые требуют опорного напряжения.Стабилитроны (также иногда называемые опорное напряжение диоды) действует как обычный диод кремния в прямом направлении, но предназначены для разрушения при определенном напряжении, когда подвергается воздействию обратного напряжения.

Все диоды делают это, но обычно при напряжениях, которые непредсказуемы и слишком высоки для обычных задач регулирования напряжения. В стабилитронах используются два разных эффекта …

  • Ударная ионизация (также называемая лавинным пробоем) — положительный температурный коэффициент
  • Пробой стабилитрона — отрицательный температурный коэффициент

Ниже около 5.При напряжении 5 В преобладает стабилитрон, при лавинном пробое — первичный эффект при напряжении 8 В и более. Хотя у меня нет намерения вдаваться в подробности, в сети есть много информации (см. Ссылки) для тех, кто хочет знать больше. Поскольку эти два эффекта имеют противоположные тепловые характеристики, стабилитроны при напряжении около 6 В обычно имеют очень стабильную работу в отношении температуры, поскольку положительный и отрицательный температурные коэффициенты компенсируются.

Очень высокая термостойкость может быть получена путем последовательного включения стабилитрона с обычным диодом.Здесь нет жестких правил, и обычно требуется выбор устройства, чтобы комбинация была как можно более стабильной. Можно выбрать стабилитрон около 7-8 В для работы с диодом, чтобы компенсировать температурный дрейф. Излишне говорить, что диодный и стабилитронный переходы должны находиться в тесном тепловом контакте, иначе температурная компенсация не будет успешной.

Стабилитрон — это уникальный полупроводниковый прибор, который выполняет множество различных задач в отличие от любого другого компонента. Похожее устройство (которое, по сути, является самим специализированным стабилитроном) — это TVS-диод (ограничитель переходных напряжений).Однако есть несколько альтернатив TVS-диодам, в отличие от стабилитронов. Прецизионные опорное напряжение ИС можно рассматривать как аналогичные Zeners, но они не являются — они ИСЫ, которые используют ссылку запрещенной зоны (как правило, около 1.25V). Это ИС, содержащие множество внутренних деталей. Стабилитрон — это цельная деталь с одним P-N переходом.


Использование стабилитронов
По непонятным мне причинам в сети почти нет информации о том, как именно использовать стабилитрон.Вопреки тому, что можно было ожидать, существуют ограничения для правильного использования, и если они не будут соблюдены, производительность будет намного хуже, чем ожидалось. На рисунке 1 показаны стандартные характеристики стабилитрона, но, как и почти на всех подобных диаграммах, отсутствует важная информация.


Рисунок 1 — Проводимость стабилитрона

Итак, чего не хватает? Важная часть, которую легко упустить, — это то, что наклон секции разбивки составляет , а не прямую . Стабилитроны обладают так называемым «динамическим сопротивлением» (или импедансом), и это следует учитывать при проектировании схемы с использованием стабилитрона.

Фактическое напряжение, при котором начинается пробой, называется изломом кривой, и в этой области напряжение довольно нестабильно. Он довольно сильно меняется в зависимости от тока, поэтому важно, чтобы стабилитрон работал выше колена, где наклон наиболее линейный.

В некоторых технических паспортах приводится значение динамического сопротивления, которое обычно составляет около 0,25 от максимального номинального тока. Динамическое сопротивление при таком токе может составлять всего пару Ом, а стабилитроны около 5-6 В дают лучший результат.Обратите внимание, что это также соответствует лучшим тепловым характеристикам.

Это все хорошо, но что такое динамическое сопротивление? Это просто «кажущееся» сопротивление, которое можно измерить, изменив силу тока. Лучше всего это пояснить на примере. Предположим, что динамическое сопротивление для конкретного стабилитрона составляет 10 Ом. Если мы изменим ток на 10 мА, напряжение на стабилитроне изменится на …

В = R × I = 10 Ом * 10 мА = 0.1 В (или 100 мВ)

Таким образом, напряжение на стабилитроне изменится на 100 мВ при изменении тока на 10 мА. Хотя, например, для стабилитрона 15 В это может показаться не очень большим, это все же представляет собой значительную ошибку. По этой причине стабилитроны в схемах регуляторов обычно запитываются от источника постоянного тока или через резистор от регулируемого выхода. Это минимизирует колебания тока и улучшает регулирование.

В технических паспортах производителей часто указывается динамическое сопротивление как в колене, так и при заданном токе.Стоит отметить, что, хотя динамическое сопротивление стабилитрона может составлять всего 2-15 Ом при 25% максимального тока (в зависимости от номинального напряжения и мощности), оно может быть более 500 Ом на уровне колена, так же как и стабилитрон начинает выходить из строя. Фактические цифры меняются в зависимости от напряжения пробоя, при этом стабилитроны высокого напряжения имеют гораздо более высокое динамическое сопротивление (на всех участках кривой пробоя), чем блоки низкого напряжения. Точно так же детали с более высокой мощностью будут иметь более низкое динамическое сопротивление, чем версии с низким энергопотреблением (но для достижения стабильной рабочей точки требуется больший ток).

Наконец, полезно посмотреть, как определить максимальный ток стабилитрона, и установить практическое правило для оптимизации тока для достижения наилучших характеристик. В технических паспортах стабилитронов обычно указывается максимальный ток для различных напряжений, но это можно очень легко решить, если у вас нет таблицы данных под рукой …

I = P / V , где I = ток, P = номинальная мощность стабилитрона и V = номинальное напряжение стабилитрона.

Например, стабилитрон 27 В, 2 Вт может выдерживать максимальный непрерывный ток…

I = 2/27 = 0,074 A = 74 мА (при 25 ° C)

Как указано в примечании к приложению «Стабилитрон с использованием транзисторов» (AN-007), для оптимальной работы стабилитрона лучше всего поддерживать ток на уровне максимум 0,7 от номинального тока, поэтому стабилитрон 27 В / 2 Вт не должен работать с током более 47 мА. Идеальное значение составляет 20-30% от максимума, так как это сводит к минимуму потери энергии, поддерживает разумную температуру стабилитрона и гарантирует, что стабилитрон работает в пределах наиболее линейной части кривой.Если вы посмотрите на таблицу данных стабилитрона ниже, вы увидите, что испытательный ток обычно составляет от 25% до 36% от максимального продолжительного тока. Мудрый читатель поймет, что этот диапазон был выбран, чтобы показать диод в лучшем свете, и, следовательно, это рекомендуемый рабочий ток.

Хотя все это не является сложным, оно показывает, что в скромном стабилитроне (не очень) есть нечто большее, чем склонны осознавать новички (и многие профессионалы в том числе). Только поняв, какой компонент вы используете, вы сможете добиться от него максимальной производительности.Конечно, это относится не только к стабилитронам — большинство (так называемых) простых компонентов имеют характеристики, о которых многие не подозревают.

Помните, что стабилитрон очень похож на обычный диод, за исключением того, что он имеет определенное обратное напряжение пробоя, которое намного ниже, чем у любого стандартного выпрямительного диода. Стабилитроны всегда подключены с обратной полярностью по сравнению с выпрямительным диодом, поэтому катод (клемма с полосой на корпусе) подключается к самой положительной точке в цепи.


Зажимы Зенера

Часто необходимо применять зажим, чтобы напряжение переменного тока не превышало заданное значение. На рисунке 2 показаны два способа сделать это. Первый явно неверен — хотя он будет работать как фиксатор, пиковое выходное напряжение (на стабилитронах) будет всего 0,65 В. Стабилитроны действуют как обычные диоды с примененной обратной полярностью, поэтому первая цифра идентична паре обычных диодов.


Рисунок 2 — Зажим для переменного тока на стабилитроне

В первом случае оба стабилитрона будут вести себя как обычные диоды, потому что напряжение стабилитрона никогда не будет достигнуто.Во втором случае фактическое зафиксированное напряжение будет на 0,65 В выше напряжения стабилитрона из-за последовательного диода. Таким образом, стабилитроны на 12 В будут фиксировать напряжение около 12,65 В — R1 предназначен для ограничения тока до безопасного значения для стабилитронов, как описано выше.

Важно помнить, что стабилитроны идентичны стандартным диодам при напряжении ниже своего стабилитрона — на самом деле, обычные диоды могут использоваться как стабилитроны. Фактическое напряжение пробоя обычно намного выше, чем обычно используется, и каждый диод (даже из одного производственного цикла) будет иметь другое напряжение пробоя, которое обычно слишком велико, чтобы быть полезным.


Данные стабилитрона

Приведенные ниже данные довольно типичны для стабилитронов мощностью 1 Вт в целом и показывают напряжение стабилитрона и одно из самых важных значений — динамическое сопротивление. Это полезно, потому что показывает, насколько хорошо стабилитрон будет регулировать и (с небольшими расчетами), сколько пульсаций вы получите, когда стабилитрон будет питаться от типичного источника питания. Пример расчета показан ниже.

Если вы хотите самостоятельно измерить динамическое сопротивление, это довольно просто сделать.Во-первых, используйте ток около 20% от номинального максимума от регулируемого источника питания через подходящий резистор. Измерьте и запишите напряжение на стабилитроне. Теперь увеличьте ток (скажем) на 10 мА для стабилитронов менее 33 В. Вам нужно будет использовать меньшее увеличение тока для более высоких типов напряжения. Снова измерьте напряжение стабилитрона и отметьте точное увеличение тока.

Например, вы можете измерить следующее …

Напряжение стабилитрона = 11,97 В при 20 мА
Напряжение стабилитрона = 12.06 В при 30 мА
ΔV = 90 мВ, ΔI = 10 мА
R = ΔV / ΔI = 0,09 / 0,01 = 9 Ом

Этот процесс можно использовать с любым стабилитроном. Вам просто нужно настроить ток в соответствии с требованиями, убедившись, что начальный и конечный испытательные токи находятся в пределах линейной части характеристик стабилитрона. Точность зависит от точности вашего испытательного оборудования, и важно убедиться, что температура стабилитрона остается стабильной во время теста, иначе вы получите неправильный ответ из-за теплового коэффициента стабилитрона.По возможности, испытания должны быть очень короткими с использованием импульсов, но это очень сложно без специального оборудования.

Следующие данные представляют собой полезный краткий справочник для стандартных стабилитронов мощностью 1 Вт. Основная информация взята из таблицы данных Semtech Electronics для стабилитронов серии 1N47xx. Обратите внимание, что суффикс «A» (например, 1N4747A) означает допуск 5%, а стандартный допуск обычно составляет 10%. Напряжение стабилитрона измеряется в условиях теплового равновесия и постоянного тока при указанном испытательном токе (I zt ).

Обратите внимание, что стабилитрон 6,2 В (1N4735) имеет самое низкое динамическое сопротивление из всех показанных, и, как правило, также показывает близкий к нулю температурный коэффициент. Это означает, что это один из лучших значений для использования, где требуется достаточно стабильное опорное напряжение. Поскольку это очень полезное значение, оно выделено в таблице. Если вам нужна ссылка стабильного напряжения на действительно , то не использовать стабилитрон, но использовать специальную ссылку точности напряжения IC вместо этого.

000 000 0004 1 00057 000 000 70005 000 70004 1 000 000 2 000 0004 37 000 4 1212 0004 0004 5,0 7 000 000 000 000 000 0005 000 000 000 0004 205 0005 0005 150 0 000 0005 000 0004 115 75 000 0004 0005 0004 90 00040004 0 000 50004 0 000500050004 0004
Тип V Z (Ном.) I Zt мА R Zt Ом R Z Ом при … Колено
Ток
(мА)
Утечка
мкА
Утечка
Напряжение
Пик
Ток (мА)
Продолж.
Ток (мА)
1N4728 3,3 76 10 400 1 150 1 1375 275 6 69 10 400 1 100 1 1260 252
1N4730 3,9 64 000 1190 234
1N4731 4,3 58 9,0 400 1 50 1 1070700050004 107070005 53 8,0 500 1 10 1 970 193
1N4733 5,1 49 49 890 178
1N4734 5,6 45 5,0 600 1 10 2 810
810
41 2,0 ​​ 700 1 10 3 730 146
1N4736 6.8 37 660 133
1N4737 7,5 34 4,0 700 0,5 10 5 605
31 4,5 700 0,5 10 6 550 110
1N4739 9,1 28 500 100
1N4740 10 25 7,0 700 0,25 10 7,6 454 8.0 700 0,25 5 8,4 414 83
1N4742 12 21 9.0 700 700 76
1N4743 13 19 10 700 0,25 5 9,9 344 69
74 0.25 5 11,4 304 61
1N4745 16 15,5 16 700 0,25 5 0005000 00050004 18 14 20 750 0,25 5 13,7 250 50
1N4747 20 12.5 22 750 0,25 5 15,2 225 45
1N4748 22 11,5 23 41
1N4749 24 10,5 25 750 0,25 5 18,2 190 38 74 5 35 750 0,25 5 20,6 170 34
1N4751 30 8,5 40 40 30
1N4752 33 7,5 45 1000 0,25 5 25,1 135 27 0003
50 1000 0,25 5 27,4 125 25
1N4754 39 6,5 60 6,5 60 23
1N4755 43 6,0 70 1500 0,25 5 32,7 110 22
5 80 1500 0,25 5 35,8 95 19
1N4757 51 5,0 1500 18
1N4758 56 4,5 110 2000 0,25 5 42,6 80 16
125 2000 0,25 5 47,1 70 14
1N4760 68 3,7 150 20004 3,7 150 20004 65 13
1N4761 75 3,3 175 2000 0,25 5 56,0 60 12 74
200 3000 0,25 5 62,2 55 11
1N4763 91 2,8 250 50 10
1N4764 100 2,5 350 3000 0,25 5 76,0 45
47 Таблица 9 — 1000N 900-1 900
  1. I Zt = испытательный ток стабилитрона
  2. R Zt = динамическое сопротивление при заявленном испытательном токе
  3. R Z = динамическое сопротивление при токе, показанном в следующем столбце (Ток в колене (мА))
  4. Ток утечки = ток через стабилитрон ниже изгиба кривой проводимости стабилитрона при напряжении, указанном в следующем столбце (Напряжение утечки)
  5. Пиковый ток = максимальный неповторяющийся кратковременный ток (обычно <1 мс)
  6. Непрерывный ток = максимальный непрерывный ток, при условии, что выводы на расстоянии 10 мм от тела имеют температуру 25 ° C (на практике маловероятно)


Рисунок 3 — Температурное снижение характеристик стабилитрона

Как и все полупроводники, стабилитроны должны быть снижены, если их температура превышает 25 ° C.Это всегда случай при нормальном использовании, и если используются приведенные выше рекомендации, вам обычно не нужно беспокоиться. На приведенном выше графике показана типичная кривая снижения характеристик стабилитронов, и это необходимо соблюдать для обеспечения надежности. Как и любой другой полупроводник, если стабилитрон слишком горячий, чтобы дотронуться до него, он горячее, чем должен быть. Уменьшите ток или используйте усиленный стабилитрон, описанный в AN-007.

Стабилитроны можно использовать последовательно, либо для увеличения мощности, либо для получения напряжения, недоступного иным образом. Не используйте параллельно стабилитроны, так как они не будут делить ток поровну (помните, что большинство из них имеют допуск 10%). Стабилитрон с более низким напряжением «перехватит» ток, перегреется и выйдет из строя. При последовательном использовании старайтесь поддерживать отдельные напряжения стабилитрона близкими к одинаковым, так как это гарантирует, что оптимальный ток через каждый находится в оптимальном диапазоне. Например, использование стабилитрона на 27 В последовательно с стабилитроном на 5,1 В было бы плохой идеей, потому что невозможно легко достичь оптимального тока через оба.


Применение стабилитронов

Использовать стабилитроны в качестве стабилизаторов достаточно просто, но есть некоторые вещи, которые вам нужно знать, прежде чем все подключать. Типичная схема показана ниже для справки и не предназначена для чего-либо конкретного — это просто пример. Обратите внимание, что если вам нужен двойной источник питания (например, ± 15 В), тогда цепь просто дублируется для отрицательного источника питания, меняя полярность стабилитрона и C1 по мере необходимости. Мы будем использовать стабилитрон 1 Вт, в данном случае 1N4744, диод 15 В.Максимальный ток, который мы хотели бы использовать, составляет примерно половину расчетного максимума (не более 33 мА). Минимально допустимый ток составляет около 10% (достаточно близко к 7 мА).


Рисунок 4 — Типовая схема стабилитрона

Во-первых, вам необходимо знать следующие подробности о предполагаемой схеме …

  1. Источник напряжения — например, от источника питания усилителя мощности (включая любые пульсации напряжения)
  2. Максимальное и минимальное значения напряжения источника — оно будет меняться в зависимости от напряжения сети, тока нагрузки и пульсаций
  3. Желаемое регулируемое напряжение — желательно с использованием стабилитрона стандартного значения.Мы будем использовать 15V
  4. Ток нагрузки — ожидаемый ток потребления схемы, питаемой от стабилизированного источника питания.

Когда у вас есть эта информация, вы можете определить последовательное сопротивление, необходимое для стабилитрона и нагрузки. Резистор должен пропускать достаточный ток, чтобы стабилитрон находился в пределах своей линейной области, но значительно ниже максимального значения, чтобы уменьшить рассеиваемую мощность. Если напряжение источника изменяется в широком диапазоне, может оказаться невозможным успешно использовать простой стабилизатор стабилитрона.

Предположим, что напряжение источника поступает от источника питания 35 В, используемого для усилителя мощности. Максимальное напряжение может достигать 38 В и падать до 30 В, когда усилитель мощности работает на полную мощность при низком сетевом напряжении. Между тем, предусилитель, которому требуется регулируемое питание, использует пару операционных усилителей и потребляет 10 мА. Вы хотите использовать источник питания 15 В. для операционных усилителей. Это вся необходимая информация, поэтому мы можем провести расчеты. Vs — напряжение источника, Is — ток источника, Iz — ток стабилитрона, I L — ток нагрузки, Rs — сопротивление источника.

Iz (макс.) = 30 мА (наихудший случай, отсутствие нагрузки на сеть и максимальное сетевое напряжение)
I L = 10 мА (ток, потребляемый операционными усилителями)
Is (макс.) = 40 мА (опять же, полный ток от источника в наихудшем случае)

Из этого мы можем определить сопротивление Rs. Напряжение на Rs составляет 23 В, когда напряжение источника максимально, поэтому Rs должно быть …

.
Rs = Vs / I = 23 / 40м = 575 Ом

Когда напряжение источника минимально, на Rs будет только 15 В, поэтому нам нужно проверить, будет ли ток стабилитрона достаточным…

Is = V / R = 15/575 Ом = 26 мА
Iz = Is — I L = 26 мА — 10 мА = 16 мА

Когда мы убираем ток нагрузки (10 мА для операционных усилителей), у нас все еще остается доступный ток стабилитрона 16 мА, так что регулирование будет вполне приемлемым, и стабилитрон не будет нагружен. 575 Ом — нестандартное значение, поэтому вместо него мы будем использовать резистор 560 Ом. Нет необходимости пересчитывать все заново, потому что изменение небольшое, и мы позаботились о том, чтобы дизайн изначально был консервативным.Следующим шагом является определение мощности, рассеиваемой в истоковом резисторе Rs …

в наихудшем случае.
Is = 23 В / 560 Ом = 41 мА P = Is² × R = 41 мА² * 560 Ом = 941 мВт

В этом случае было бы неразумно использовать резистор менее 2 Вт, но лучше с проволочной обмоткой 5 Вт. Точно так же, как рассчитывалась мощность резистора, неплохо еще раз проверить рассеивание стабилитрона в худшем случае. Возможно, удастся отключить операционные усилители, и в этом случае стабилитрон должен будет полностью поглотить 41 мА, поэтому рассеиваемая мощность составит 615 мВт.Это выше, чем цель, установленная в начале этого упражнения, но находится в пределах рейтинга стабилитрона 1W и никогда не будет проблемой в долгосрочной перспективе. Нормальное рассеивание в худшем случае составляет всего 465 мВт при подключенных операционных усилителях, и это вполне приемлемо.

На рис. 4 показан конденсатор 220 мкФ, подключенный параллельно стабилитрону. Это не имеет никакого отношения к выходному шуму , а не , потому что импеданс (он же динамическое сопротивление) стабилитрона очень низок. Мы использовали пример стабилитрона на 15 В, поэтому мы ожидаем, что его полное сопротивление будет около 14 Ом (из таблицы).Чтобы быть полезным для снижения шума, C1 должен быть не менее 1000 мкФ, но в большинстве случаев используются гораздо более низкие значения (обычно 100–220 мкФ). Цель состоит в том, чтобы подавать мгновенный (импульсный) ток, который может потребоваться для схемы или в случае операционных усилителей, чтобы гарантировать, что полное сопротивление источника питания останется низким, по крайней мере, до 2 МГц или около того.

Поскольку стабилитроны имеют динамическое сопротивление, на выходе будет некоторая пульсация. Его можно рассчитать, исходя из входной пульсации, изменения тока источника и динамического сопротивления стабилитрона.Предположим, что на источнике есть пульсации 2В P-P. Это означает, что ток через Rs будет изменяться на 3,57 мА (I = V / R). Стабилитрон имеет динамическое сопротивление 14 Ом, поэтому изменение напряжения на стабилитроне должно быть …

V = R × I = 14 × 3,57 м = 50 мВ пик-пик (менее 20 мВ RMS)

При условии, что активная схема имеет хороший коэффициент отклонения источника питания (PSRR), пульсация 20 мВ при 100 Гц (или 120 Гц) не будет проблемой. Если по какой-то причине это недопустимо, то дешевле использовать трехконтактный регулятор, чем любой из известных методов уменьшения пульсаций.Наиболее распространенным из них является использование двух резисторов вместо резисторов Rs и установка конденсатора высокого номинала (не менее 470 мкФ) от места соединения резисторов с землей. Это снизит пульсации до уровня ниже 1 мВ, в зависимости от размера дополнительного конденсатора.


Максимальное увеличение стабильности (опорного напряжения)

Стандартный резистор стабилитрона подвержен большим колебаниям тока и рассеиваемой мощности при изменении входного напряжения. Простая цепь обратной связи может помочь поддерживать очень стабильный ток через стабилитрон и, следовательно, обеспечить более стабильное опорное напряжение.Как обсуждалось ранее, стабилитрон 6,2 В имеет очень низкий тепловой коэффициент напряжения, и если мы сможем обеспечить стабильный ток, это еще больше улучшит регулирование напряжения. Питание стабилитрона источником тока является стандартной практикой при изготовлении ИС, и это достаточно просто сделать и в дискретных конструкциях.

Устройство, показанное ниже не предназначено для использования в качестве источника питания, но, чтобы обеспечить фиксированное опорное напряжение для других схем, которые могут потребовать напряжения для стабильных компараторов (к примеру).Схема не может конкурировать с выделенной ссылкой точности напряжения, но это будет удивительно хорошо для многих применений общего назначения. Токовое зеркало (Q2b и Q3b) питается от источника тока (Q1b), опорная точка которого поступает от стабилитрона, поэтому существует замкнутый контур, и изменение тока через сам стабилитрон может быть очень небольшим. При указанных значениях ток стабилитрона составляет всего 2,5 мА, что, похоже, противоречит приведенным ранее рекомендациям. Однако увеличение тока стабилитрона не очень помогает, но увеличивает рассеиваемую мощность в транзисторах.Например, если R1b уменьшается до 1 кОм, ток стабилитрона увеличивается до 5,4 мА, рассеивание в Q1b и Q3b удваивается, но регулирование улучшается лишь незначительно.


Рисунок 5 — «Обычные» по сравнению с Схема прецизионного стабилитрона

Сравните (a) и (b) в схемах на Рисунке 5, и сразу станет очевидным, что напряжение от стабилизированной версии (b) должно быть действительно очень стабильным, даже при большом изменении входного напряжения. При моделировании в диапазоне напряжений от 10 В до 30 В изменение напряжения на стабилитроне составляет менее 3 мВ, из чего следует, что ток стабилитрона и рассеиваемая мощность стабилитрона практически не изменяются во всем диапазоне напряжений.Это также означает, что пульсация отказ чрезвычайно высокий, так и с добавлением трех дешевых транзисторов и четыре резисторов, мы можем приблизиться к опорному напряжению цепи реальной точности. R4b необходим, чтобы схема могла запускаться при подаче напряжения, но, к сожалению, это отрицательно влияет на производительность. Более высокое сопротивление снижает эффекты, но может вызвать ненадежный запуск.

Стандартный стабилизатор стабилитрона (a) будет показывать типичное изменение напряжения около 110 мВ от входного напряжения 10-30 В, при изменении тока стабилитрона от 1.От 7 мА до более 15 мА. Это значительно хуже, чем у стабилизированной версии, но может вообще не представлять проблемы, если входное напряжение достаточно стабильно. В действительности маловероятно, что вам когда-либо понадобится использовать более сложный стабилизированный стабилитрон, и он включен сюда исключительно в интересах полноты картины.


Список литературы
1 Обратное смещение / пробой — обсуждение явления, когда диод имеет обратное смещение / пробой. Билл Уилсон
2 Радиоэлектроника.com — Обзор стабилитрона
3 Архив технических данных — Коммерческие микрокомпоненты BZX2C16V Стабилитрон 2 Вт, от 3,6 до 200 В.
4 Теория стабилитронов — Руководство OnSemi HBD854 / D (Больше не выпускается в OnSemi.)


Прил. Индекс банкнот
Основной указатель
Уведомление об авторских правах. Эта статья, включая, но не ограничиваясь, весь текст и диаграммы, является интеллектуальной собственностью Рода Эллиотта и защищена авторским правом © 2004.Воспроизведение или переиздание любыми средствами, электронными, механическими или электромеханическими, строго запрещено международными законами об авторском праве. Автор (Род Эллиотт) предоставляет читателю право использовать эту информацию только в личных целях, а также разрешает сделать одну (1) копию для справки во время создания проекта. Коммерческое использование запрещено без письменного разрешения Рода Эллиотта.

Страница создана и © Род Эллиотт 30 июня 2005 г./ Июл 2015 — обновлена ​​информация, добавлен рисунок 4.


.

Добавить комментарий

Ваш адрес email не будет опубликован.