Схема электрическая пускателя: Электрическая схема пускателя, самый простой вариант электросхемы. _v_

Содержание

Электрическая схема пускателя, самый простой вариант электросхемы. _v_

 

 

 

Тема: самый простой вариант электрической схемы пускателя (магнитный).

 

 

Это простейшая схема пускателя (упрощенный вариант), которая лежит в основе всех или, по крайней мере, большинства схем запуска асинхронных электродвигателей, применяемых очень широко, как в промышленности, так и в обычном быте. Плох тот электрик, который не знает данной схемы (как ни странно, но есть и такие люди). Хоть Вы, возможно, конечно знаете принцип её работы, но для освежения памяти или для новичков все же опишу вкратце эту работу. И так, вся схема кроме электродвигателя, который установлен непосредственно на конкретном оборудовании или устройстве, монтируется либо в щитке или в специальной коробке (ПМЛ).

 

Кнопки ПУСКА и СТОПА, могут находится как на передней стороне этого щитка, так в не его (монтируются на месте, где удобно управлять работой), а может быть и там и там, в зависимости от удобства. К данному щитку подводится трёхфазное напряжение от ближайшего места запитки (как правило, от распределительного щита), а с него уже выходит кабель, идущий на сам электродвигатель.

 

А теперь о принципе работы: на клеммы Ф1, Ф2, Ф3 подается трехфазное напряжение. Для запуска асинхронного электродвигателя требуется срабатывание магнитного пускателя (ПМ) и замыкания его контактов ПМ1, ПМ2 и ПМ3. Для срабатывания ПМ, необходимо подать на его обмотку напряжение (кстати, величина его зависит от самой катушки, то есть, на какое именно напряжение она рассчитана. Это так же зависит от условий и места работы оборудования. Они бывают на 380в, 220в, 110в, 36в, 24в и 12в) (данная схема рассчитана на напряжение 220в, поскольку берётся с одной из имеющихся фаз и нуля).

 

 

 

 

Подача электропитания на катушку магнитного пускателя осуществляется по такой цепи: С ф1 поступает фаза на нормально замкнутый контакт тепловой защиты электродвигателя ТП1, далее проходит через катушку самого пускателя и выходит на кнопку ПУСК (КН1) и на контакт самоподхвата ПМ4 (магнитного пускателя). С них питание выходит на нормально замкнутую кнопку СТОП и после замыкается на нуле. Для запуска требуется нажать кнопку ПУСК, после чего цепь катушки магнитного пускателя замкнётся и притянет (замкнёт) контакты ПМ1-3 (для пуска двигателя) и контакт ПМ4, который даст возможность при отпускании кнопки пуска, продолжать работу и не отключить магнитный пускатель (называется самоподхватом). Для остановки электродвигателя, требуется всего лишь нажать кнопку СТОП (КН2) и тем самым разорвать цепь питания катушки ПМ. В результате контакты ПМ1-3 и ПМ4 отключатся, и работа будет остановлена до следующего запуска ПУСКа.

 

Для защиты обязательно ставятся тепловые реле (на нашей схеме это ТП). При перегрузки электродвигателя, соответственно повышается ток, и двигатель резко начинает  нагреваться, вплоть до выхода из строя. Данная защита срабатывает именно при повышении тока на фазах, тем самым размыкает свои контакты ТП1, что подобно нажатию кнопки СТОП. Данные случаи бывают в основном при полном заклинивании механической части или при большой механической перегрузки в оборудовании, на котором работает электродвигатель. Хотя и не редко причиной становится и сам движок, из-за высохших подшипников, плохой обмотки, механического повреждения и т.д. Думаю для тех, кто этого не знал, данная статья, электрическая схема магнитного пускателя, упрощенный вариант, была весьма полезна и однажды не раз пригодится в жизни. Ну а пока на этом всё.

 

Видео по этой теме:

 

 

P.S. Данная принципиальная электрическая схема магнитного пускателя является наболее простым вариантом, который лежит в основе большинства рабочих схем в сфере электрики. Хорошо понимая выше описаный принцип работы этой схемы пускателя Вы будете в состоянии разобраться и с другими, более сложными, вариантами схем.

Схемы подключения магнитного пускателя для управления асинхронным электродвигателем

 

Магнитный пускатель представляет собой простейший комплект аппаратов для дистанционного управления электродвигателями и кроме самого контактора часто имеет кнопочную станцию и аппараты защиты.

Схема подключения нереверсивного магнитного пускателя

На рис. 1, а, б показаны соответственно монтажная и принципиальная схемы включения нереверсивного магнитного пускателя для управления асинхронным электродвигателем с короткозамкнутым ротором. На монтажной схеме границы одного аппарата обводят штриховой линией. Она удобна для монтажа аппаратуры и поиска неисправностей. Читать эти схемы трудно, так как они содержат много пересекающихся линий.

Рис. 1. Схема включения нереверсивного магнитного пускателя: а — монтажная схема включения пускателя, электрическая принципиальная схема включения пускателя

На принципиальной схеме все элементы одного магнитного пускателя имеют одинаковые буквенно-цифровые обозначения. Это позволяет не связывать вместе условные изображения катушки контактора и контактов, добиваясь наибольшей простоты и наглядности схемы.

Нереверсивный магнитный пускатель имеет контактор КМ с тремя главными замыкающими контактами (Л1 — С1, Л2 — С2, Л3 — С3) и одним вспомогательным замыкающим контактом (3-5).

Главные цепи, по которым протекает ток электродвигателя, принято изображать жирными линиями, а цепи питания катушки пускателя (или цепи управления) с наибольшим током — тонкими линиями.

Принцип действия схемы включения нереверсивного магнитного пускателя

Для включения электродвигателя М необходимо кратковременно нажать кнопку SB2 «Пуск». При этом по цепи катушки магнитного пускателя, потечет ток, якорь притянется к сердечнику. Это приведет к замыканию главных контактов в цепи питания электродвигателя. Одновременно замкнется вспомогательный контакт 3 — 5, что создаст параллельную цепь питания катушки магнитного пускателя.

Если теперь кнопку «Пуск» отпустить, то катушка магнитного пускателя будет включена через собственный вспомогательный контакт. Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя. Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то магнитный пускатель отключается и его вспомогательный контакт размыкается.

После восстановления напряжения для включения электродвигателя необходимо повторно нажать кнопку «Пуск». Нулевая защита предотвращает непредвиденный, самопроизвольный пуск электродвигателя, который может привести к аварии.

Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют управление с использованием магнитных пускателей.

Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки магнитного пускателя.

Схема подключения реверсивного магнитного пускателя

В том случае, когда необходимо использовать два направления вращения электродвигателя, применяют реверсивный магнитный пускатель, принципиальная схема которого изображена на рис. 2, а.

Рис. 2. Схемы включения реверсивного магнитного пускателя

Принцип действия схем включения реверсивного магнитного пускателя

Для изменения направления вращения асинхронного электродвигателя необходимо изменить порядок чередования фаз статорной обмотки.

В реверсивном магнитном пускателе используют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи главного тока произойдет короткое замыкание. Для исключения этого схема снабжена блокировкой.

Если после нажатия кнопки SB3 «Вперед» к включения контактора КМ1 нажать кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.

Электрическая схема цепи управления реверсивного пускателя с блокировкой на вспомогательных размыкающих контактах изображена на рис. 2, б.

В этой схеме включение одного из контакторов, например КМ1, приводит к размыканию цепи питания катушки другого контактора КМ2. Для реверса необходимо предварительно нажать кнопку SB1 «Стоп» и отключить контактор КМ1. Для надежной работы схемы необходимо, чтобы главные контакты контактора КМ1 разомкнулись раньше, чем произойдет замыкание размыкающих вспомогательных контактов в цепи контактора КМ2. Это достигается соответствующей регулировкой положения вспомогательных контактов по ходу якоря.

В серийных магнитных пускателях часто применяют двойную блокировку по приведенным выше принципам. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному срабатыванию электромагнитов контакторов. В этом случае оба контактора должны быть установлены на общем основании.

Магнитный пускатель: устройство, применение и электрические схемы

В этой статье мы рассмотрим магнитный пускатель, который позволяет нам управлять двигателями различных исполнительных механизмов, его устройство и принцип работы.

Сфера применения пускателей достаточно широка. Их применяют там, где нужно включить, отключить двигатель и защитить его от перегрузки. Это и сельское хозяйство, и промышленность, и вспомогательное обеспечение инфраструктурных объектов, и частные дома. Самым распространенным применением пускателей является: включение или отключение вентиляции, запуск различных насосов, открытие или закрытие дверей и ворот, управление малыми конвейерами.

Структура магнитного пускателя

Прежде чем рассматривать устройство магнитного пускателя, необходимо дать ему определение. Пускатель в соответствии с МЭС 441-14-38 – это комбинация всех коммутационных устройств, необходимых для пуска и остановки двигателя с защитой от перегрузок.

Всеми этими свойствами в полной мере обладают магнитные пускатели КМЭ в корпусе IP65 9-95А EKF PROxima.

Они состоят из:

  1. Корпуса
  2. Кнопочного поста
  3. Контактора КМЭ (электромагнитного реле)
  4. Теплового реле

Корпус магнитного пускателя обеспечивает защиту IP65. Для этого используются сальники, которые поставляются в комплекте с пускателем, на разъёме корпуса и в кнопках имеется специальный уплотнитель, не позволяющий влаге и пыли проникать внутрь прибора.

Корпуса пускателей КМЭ IP65 на токи до 32 А выполнены из пластика, на токи от 40 до 95 А – из железа.

Тепловое реле установлено непосредственно на контактор.

Как работает пускатель

Нажатие зеленой кнопки «Пуск» замыкает контактную группу и включает электромагнитный контактор. Происходит это почти мгновенно. После этого кнопка может быть отпущена. Дальше работу электромагнитного контактора обеспечивает встроенный нормально открытый контакт. Через него происходит «самоподхват» цепи питания катушки управления контактором. Также в его цепи питания задействовано тепловое реле своими дополнительными клеммами. В рабочем состоянии ток проходит через силовой контакт магнитного контактора, далее через тепловое реле перегрузки и поступает на нагрузку через кабель. При нажатии на кнопку «Стоп» толкатель нажимает на кнопку «остановка» теплового реле, которая прерывает питание.

Таким образом, исполнительным механизмом пускателей для включения и отключения нагрузки служит контактор. Тепловое реле играет роль защиты двигателя от перегрузок и неполнофазных режимов работ. Основным элементом, обеспечивающим защиту от перегрузки, в нем является биметалическая пластина. Эта пластина, как видно из названия, состоит из двух металлов с разным тепловым расширением, и при нагревании такая пластина изгибается в сторону металла с меньшим тепловым расширением. На этом эффекте и основана защита. Биметаллическая пластина находится рядом с проводником, по которому протекает рабочий ток, и, нагреваясь от него, изгибается. При определенном изгибе биметалическая пластина размыкает контакты теплового реле, а поскольку катушка магнитного пускателя запитана через эти контакты, то при их размыкании происходит отключение контактора. Тепловое реле имеет 2 контакта: нормально закрытый – он используется при подключении катушки – и нормально открытый. Этот контакт используется как сигнальный контакт для подачи сигнала о срабатывании теплового реле по схемам перегрузок.

В тепловом реле есть 2 режима работы – автоматический, когда после остывания тепловое реле включает контактор без участия человека, и ручной, когда оператор должен устранить причину срабатывания и вручную включить реле.

Тепловое реле срабатывает при повышении тока на любой из фаз свыше нормы. На этом и основана защита от неполнофазных режимов работы двигателя, ведь когда пропадает одна из фаз для работы двигателя, необходимо пропорционально увеличить ток на оставшихся фазах. Поскольку ток на оставшихся двух фазах будет увеличен, то происходит срабатывание теплового реле по перегрузке.

Магнитные пускатели КМЭ в корпусе IP65 9-95А EKF PROxima имеют в номенклатуре исполнения и с опцией индикации включения. Такая индикация осуществляется световым индикатором, который расположен на передней панели магнитного пускателя. Индикатор зажигается при подаче напряжения на катушку управления и гаснет при его снятии. Такая опция удобна, когда исполнительный механизм находится не в прямой видимости и слышимости от самого пускателя.

Область применения

Магнитные пускатели КМЭ в корпусе IP65 9-95А EKF PROxima могут быть применены везде, где необходимо управление и защита двигателя. Это и местная вентиляция, и открытие и закрытие ворот, различные электрические помпы от полива воды до включения погружного насоса, компрессоры.

Поскольку вся внутренняя схема управления магнитным аппаратом собрана, то это значительно экономит время для его подключения. Пользователю остаётся только подвести силовой кабель.

Электрические схемы

Магнитные пускатели КМЭ в корпусе IP65 9-95А EKF PROxima производятся с управляющим напряжением 400 В и 230 В переменного тока 50 Гц. Электрические схемы этих магнитных пускателей разные.

Электрическая схема пускателя КМЭ 9А-32А с катушками управления 400 В

Электрическая схема пускателя КМЭ 9А-32А с катушками управления 230 В

Если пускатель с управляющим напряжением 400 В может быть интегрирован в трехпроводную систему питания двигателя, то для инсталляции магнитного пускателя с управляющим напряжением 230 В необходима четырехпроводная система с нейтралью, при этом нейтральный провод при выключении контактора не разрывается.

Как видно из электрической схемы на тепловом реле остается не задействован один нормальнооткрытый дополнительный контакт. На схематическом изображении он обозначен 97-98. Этот контакт может быть использован для дистанционного подачи сигнала об аварийном отключении устройства, которым управляет пускатель.

Схемы передачи электричества магнитными пускателями собраны для ручного управления пускателем, но это не отменяет возможности и дистанционного управления пускателями КМЭ в корпусе IP65 EKF PROxima.

Для организации универсального – дистанционного и ручного управления подключением двух кнопок импульсного действия необходимо:

  1. К клеммам теплового реле 95 и катушки управления контактором А2 с помощью проводников подключить дистанционную кнопку управления на замыкание с контактом 1NO. Она будет дублировать кнопку «Пуск».
  2. В разрез линии питания контактора у клеммы 95 теплового реле необходимо установить кнопку на размыкание 1NC – она будет дублировать кнопку «Стоп».

Таким образом, магнитные пускатели КМЭ в корпусе IP65 9-95А EKF PROxima могут применяться как для ручного, так и для дистанционного пуска устройств, имеют функцию защиты двигателя по перегрузке, обратную связь по аварийной остановке магнитного пускателя и могут применяться в автоматизированных системах управления процессами.

Складская номенклатура пускателей КМЭ в корпусе IP65 EKF PROxima начинается с номинальных токов 9 А и заканчивается токами на 93 А. В 2017 году компания EKF открыла сборочный участок, и теперь доступны для заказа пускатели на номинальные токи от 0,4 до 7 А. Эти пускатели имеют в своём составе тепловые реле на малые токи и контакторы на 9 А. Срок изготовления пускателей КМЭ в оболочке на малые токи составляет около недели. И это значит, что заказчик, например, из Владивостока может получить свой заказ через 2–2,5 недели после его оформления.

Схема нереверсивного магнитного пускателя — Стройпортал Biokamin-Doma.ru

Схемы подключения магнитного пускателя для управления асинхронным электродвигателем

Магнитный пускатель представляет собой простейший комплект аппаратов для дистанционного управления электродвигателями и кроме самого контактора часто имеет кнопочную станцию и аппараты защиты.

Схема подключения нереверсивного магнитного пускателя

На рис. 1, а, б показаны соответственно монтажная и принципиальная схемы включения нереверсивного магнитного пускателя для управления асинхронным электродвигателем с короткозамкнутым ротором. На монтажной схеме границы одного аппарата обводят штриховой линией. Она удобна для монтажа аппаратуры и поиска неисправностей. Читать эти схемы трудно, так как они содержат много пересекающихся линий.

Рис. 1. Схема включения нереверсивного магнитного пускателя: а — монтажная схема включения пускателя, электрическая принципиальная схема включения пускателя

На принципиальной схеме все элементы одного магнитного пускателя имеют одинаковые буквенно-цифровые обозначения. Это позволяет не связывать вместе условные изображения катушки контактора и контактов, добиваясь наибольшей простоты и наглядности схемы.

Нереверсивный магнитный пускатель имеет контактор КМ с тремя главными замыкающими контактами (Л1 — С1, Л2 — С2, Л3 — С3) и одним вспомогательным замыкающим контактом (3-5).

Главные цепи, по которым протекает ток электродвигателя, принято изображать жирными линиями, а цепи питания катушки пускателя (или цепи управления) с наибольшим током — тонкими линиями.

Принцип действия схемы включения нереверсивного магнитного пускателя

Для включения электродвигателя М необходимо кратковременно нажать кнопку SB2 «Пуск». При этом по цепи катушки магнитного пускателя, потечет ток, якорь притянется к сердечнику. Это приведет к замыканию главных контактов в цепи питания электродвигателя. Одновременно замкнется вспомогательный контакт 3 — 5, что создаст параллельную цепь питания катушки магнитного пускателя.

Если теперь кнопку «Пуск» отпустить, то катушка магнитного пускателя будет включена через собственный вспомогательный контакт. Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя. Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то магнитный пускатель отключается и его вспомогательный контакт размыкается.

После восстановления напряжения для включения электродвигателя необходимо повторно нажать кнопку «Пуск». Нулевая защита предотвращает непредвиденный, самопроизвольный пуск электродвигателя, который может привести к аварии.

Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют управление с использованием магнитных пускателей.

Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки магнитного пускателя.

Схема подключения реверсивного магнитного пускателя

В том случае, когда необходимо использовать два направления вращения электродвигателя, применяют реверсивный магнитный пускатель, принципиальная схема которого изображена на рис. 2, а.

Рис. 2. Схемы включения реверсивного магнитного пускателя

Принцип действия схем включения реверсивного магнитного пускателя

Для изменения направления вращения асинхронного электродвигателя необходимо изменить порядок чередования фаз статорной обмотки.

В реверсивном магнитном пускателе используют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи главного тока произойдет короткое замыкание. Для исключения этого схема снабжена блокировкой.

Если после нажатия кнопки SB3 «Вперед» к включения контактора КМ1 нажать кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.

Электрическая схема цепи управления реверсивного пускателя с блокировкой на вспомогательных размыкающих контактах изображена на рис. 2, б.

В этой схеме включение одного из контакторов, например КМ1, приводит к размыканию цепи питания катушки другого контактора КМ2. Для реверса необходимо предварительно нажать кнопку SB1 «Стоп» и отключить контактор КМ1. Для надежной работы схемы необходимо, чтобы главные контакты контактора КМ1 разомкнулись раньше, чем произойдет замыкание размыкающих вспомогательных контактов в цепи контактора КМ2. Это достигается соответствующей регулировкой положения вспомогательных контактов по ходу якоря.

В серийных магнитных пускателях часто применяют двойную блокировку по приведенным выше принципам. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному срабатыванию электромагнитов контакторов. В этом случае оба контактора должны быть установлены на общем основании.

Реверсивный контактор

Реверсивный контактор, представляющий собой одну из разновидностей электромагнитных пускателей. Он обеспечивает вращение вала в обоих направлениях, поддерживает устойчивую работу двигателей, своевременно отключает питание, защищает оборудование в аварийных ситуациях.

С точки зрения устройства, такие контакторы являются улучшенным образцом электромагнитного пускового аппарата и предназначаются для прямой работы с двигателями. Некоторые модели оборудованы дополнительными устройствами, выполняющими аварийное отключение при обрывах фаз и коротких замыканиях.

Устройство и принцип работы

Магнитные контакторы или пускатели относятся к коммутационным устройствам, выполняющим дистанционный пуск электродвигателей и прочего оборудования.

Конструкция и схема этих приборов очень похожа на электромагнитное реле. Важной дополнительной функцией является возможность своевременно подключать и отключать трехфазную нагрузку. Основным конструктивным элементом служит магнитный сердечник, изготовленный в виде буквы Ш. В качестве материала использовалась электротехническая сталь в виде тонких листов.

Сам сердечник состоит из двух половинок, одна из которых является неподвижной и закрепляется на основании прибора. Другая часть – подвижная – при отсутствии тока удерживается на некотором расстоянии от неподвижной части при помощи пружины. Таким образом, между обеими частями возникает воздушный зазор.

Управление пускателем осуществляется через катушку, помещенную на центральный стержень сердечника, расположенный в неподвижной части. К подвижному магнитопроводу закрепляются контакты посредством мостового соединения. В момент срабатывания пускателя эти мостики перемещаются одновременно с магнитопроводом и совершают замыкание с неподвижной контактной группой.

Пусковое устройство срабатывает после того, как на катушку управления будет подано напряжение. Возникает электромагнитная сила, под действием которой происходит притягивание подвижной части сердечника к неподвижной детали. В результате, силовые контактные группы оказываются замкнутыми, и ток начинает поступать к выходным клеммам. После прекращения подачи напряжения катушка обесточивается, и подвижная часть возвращается на свое место. В этот момент в работу включается возвратная пружина, обеспечивающая размыкание контактов.

Во время выключения на каждом полюсе контактов образуется двойной разрыв, способствующий более эффективному гашению электрической дуги. Функцию дугогасительной камеры выполняет крышка устройства, под которой располагаются контакты.

В пускателе имеется не только основная контактная группа, но и дополнительная – в виде блок-контактов, используемая для вспомогательных целей. В основном, они используются в управлении, в сигнальных и блокирующих схемах.

Типы и модификации пусковых устройств

Основными параметрами, по которым выполняется классификация пускателей:

  • Величина рабочего тока, коммутируемого главными контактами.
  • Значение рабочего напряжения в подключенной нагрузке.
  • Параметры тока и напряжения в катушке управления.
  • Категория и область применения.

Значения номинальных токов коммутационной аппаратуры представлены стандартным рядом в границах 6,3-250 А. Подобная классификация использовалась для устаревших приборов, которые в настоящее время используются все реже. Номинальному току соответствовал определенный класс – от 0 до 7.

Подобная классификация утратила свое значение с появлением на отечественном рынке зарубежной продукции. При выборе того или иного устройства в первую очередь рассматривается величина номинального тока. Поскольку электромагнитные пускатели, в том числе и контакторы с функцией реверса, являются низковольтными устройствами, следовательно, они могут работать с напряжением, не превышающим 1000 В. Эти границы предполагают использование двух видов стандартных напряжений – 380 и 660 вольт. Конкретное значение для данной модели отображается на корпусе и в технической документации устройства.

Значительно большим разнообразием отличаются напряжения, с которыми могут работать катушки управления. Это связано с тем, что магнитные пускатели и контакторы используются в разных условиях, и подключаются к различным типам потребителей и автоматическим системам управления. Для подобных систем вовсе недостаточно обычных сетевых фаз. Питание осуществляется с помощью специальных цепей оперативного тока с собственными параметрами тока и напряжения. Обычно, катушки управления рассчитаны на переменное напряжение 12-660 вольт и постоянное – 12-440 В.

Кроме того, контакторы и магнитные пускатели различаются внешним видом и комплектацией. В большинстве случаев, это модели, помещаемые в пластиковый корпус с кнопками запуска и остановки, расположенными снаружи. Многие приборы изначально комплектуются тепловыми защитными реле.

Отличия реверсивных и обычных контакторов-пускателей

Прежде чем рассматривать отличия обоих устройств следует отметить, что магнитный пускатель является усовершенствованной версией контактора, предназначенной для работы с низковольтным оборудованием и установками.

По сравнению с обычными контакторами, магнитные пускатели отличаются более компактными размерами и меньшим весом. Они предназначены для узкоспециализированных действий по включению и отключению электродвигателей. Контакторы же выполняют более широкий круг задач в силовых электрических цепях.

Многие пускатели дополнительно оборудуются тепловыми реле, выполняющими аварийные отключения и защищающие при обрывах фазы. Управление пуском и отключением производится с помощью специальных кнопок или отдельной системой, состоящей из катушки и слаботочной контактной группы. В некоторых модификациях могут использоваться оба варианта.

Все магнитные пускатели разделяются на два вида. Они могут быть реверсивными и нереверсивными. Реверсивный контактор состоит из двух отдельных магнитных пускателей, объединенных в общем корпусе и соединенных друг с другом электрическим путем. Оба компонента устанавливаются на общее основание, но одновременно работать они не могут. По команде оператора включается лишь один из них – первый или второй.

Управление реверсивным магнитным пускателем осуществляется при помощи блокировочных контактов нормально-замкнутого типа. Их основная функция заключается в предотвращении одновременного включения обеих контактных групп – реверсивной и обычной. В противном случае может произойти межфазное замыкание. Для этой же цели некоторые модели выпускаются с механической блокировкой. Поочередный запуск контакторов обеспечивает такое же поочередное переключение фаз. В результате, прибор начинает выполнять свою основную задачу – изменять направление вращения вала электродвигателя.

Оба варианта включения необходимо рассмотреть более подробно. Чтобы лучше понять суть реверсного запуска, необходимо вначале остановиться на обычном способе включения.

Обычная нереверсивная схема включения

Простейшим вариантом включения считается нереверсивная схема, обеспечивающая вращение вала электродвигателя только в одну сторону. В качестве примера можно взять обычный пускатель с управляющей катушкой на 220 В.

Подключение схемы начинается в трехфазном автомате, подходит к силовым клеммам пускового устройства, и далее соединяется с тепловым реле. Управляющая катушка с одной из сторон соединяется с нулевым проводником, а с противоположной – с фазой путем использования в этой цепи функциональных кнопок.

В состав кнопочного поста входят две кнопки: ПУСК – с контактами нормально-разомкнутого типа и СТОП – с нормально-замкнутыми контактами. Одновременно с кнопкой запуска выполняется подключение нормально-замкнутого контакта управляющего катушечного элемента. За счет теплового реле, включенного в промежуток фазной линии, обеспечивается защита двигателя от чрезмерных перегрузок. Его нормально-замкнутый контакт оказывается соединенным с элементами управления.

Когда трехфазный автомат оказывается включенным, начинается течение тока в сторону силовых контактов пусковой аппаратуры и к управляющей цепи. После этого схема приходит в работоспособное состояние. С целью запуска электродвигателя вполне достаточно воздействия на пусковую кнопку. Далее, в управляющие компоненты подается питание. Цепь оказывается замкнутой, после чего якорь начинает втягиваться и в то же время замыкать контакт прибора управления. К силовой контактной группе двигателя подается ток, и вал начинает вращение. После возврата в исходное состояние пусковой кнопки, питание к обмотке контактора будет поступать, проходя по вспомогательному контакту, благодаря чему работа двигателя продолжится без перерыва.

Прекратить работу нереверсивного агрегата возможно имеющейся кнопкой СТОП. Это вызовет разрыв цепи, и питающее напряжение перестает подходить к блоку управления. Начинается размыкание шунтирующего контакта и возврат якоря в исходное состояние с одномоментным размыканием основных контактов. По окончании этого процесса, наступает остановка электродвигателя. Когда кнопка СТОП окажется отпущенной, контакт управляющего элемента будет пребывать в разомкнутом положении до следующего запуска схемы.

Чтобы защитить электродвигатель во время нереверсивного пуска, применяется тепловое реле на основе биметаллических контактных пластин. Под влиянием возрастающего тока они начинают выгибаться. Поскольку эпластины соединяются с расцепителем, контакт в управляющей обмотке прерывает поступление питающего напряжения. Контакты прибора разъединяются и переходят в первоначальное состояние.

Реверсивная схема

Для того чтобы создать реверсивную схему включения электродвигателя, потребуется использование двух магнитных контакторов и трех кнопок управления. Оба пускателя устанавливаются в непосредственной близости для удобства соединений и подключений в том числе и с механической блокировкой.

Клеммы для подключения питания соединяются между собой на обоих устройствах. Контакты, подключаемые к электродвигателю, соединяются перекрестным способом. Провод питания электродвигателя может соединяться с любыми питающими клеммами одного из пускателей.

Следует помнить, что перекрестная схема подключения, категорически запрещает одновременное включение двух пускателей, поскольку это обязательно вызовет короткое замыкание. В связи с этим, проводники блокирующих цепей в каждом из приборов вначале соединяются с замкнутым контактом управления другого устройства, а потом – с разомкнутым контактом собственного. При включении второго контактора первый будет отключаться и наоборот.

Вторая клемма кнопки СТОП, находящейся в замкнутом положении, соединяется не с двумя, как обычно, а с тремя проводами. Два из них являются блокирующими, а через третий – подается питание на пусковые кнопки, соединенные параллельно между собой. Подобная схема позволяет отключить кнопкой остановки любой включенный пускатель и остановить вращение электродвигателя.

Нереверсивная схема подключения магнитного пускателя

В этой статье мы подробно рассмотрим нереверсивную схему подключения магнитного пускателя для управления трехфазным асинхронным электродвигателем.

Также я для Вас записал видео с подробным описанием работы схемы, которое Вы можете просмотреть в конце этой статьи.

Вначале давайте рассмотрим схему подключения магнитного пускателя с катушкой на 220В.

Три фазы питающего напряжения подаются на клеммы асинхронного двигателя через:

— силовые контакты магнитного пускателя КМ;

— тепловое реле Р.

Обмотка катушки магнитного пускателя подключена с одной стороны к нулевому рабочему проводу N, с другой, через кнопочный пост к одной из фаз, в нашей схеме — к фазе С.

Кнопочный пост содержит 2 кнопки:

1) нормально-разомкнутую кнопку ПУСК ;

2) нормально-замкнутую — СТОП .

Нормально-разомкнутый вспомогательный контакт пускателя КМ подключен параллельно кнопке ПУСК .

Для защиты электродвигателя от перегрузок используется тепловое реле Р, которое устанавливается в разрыв питающих фаз. Вспомогательный нормально-замкнутый контакт теплового реле Р включен в цепь обмотки магнитного пускателя.

Рассмотрим работу схемы.

Включаем трехполюсный автоматический выключатель , его контакты замыкаются, питающее напряжение подается к силовым контактам пускателя и в цепь управления. Схема готова к работе.

Запуск.

Для запуска двигателя нажимаем кнопку ПУСК . Цепь питания обмотки магнитного пускателя замыкается, якорь катушки притягивается, замыкая силовые контакты КМ и подавая три питающих фазы на обмотки двигателя. Происходит запуск и двигатель начинает вращаться.

Одновременно с этим замыкается вспомогательный контакт пускателя КМ, шунтируя кнопку ПУСК .

Теперь, отпуская кнопку ПУСК , питание на обмотку пускателя продолжает поступать через его замкнутый вспомогательный контакт КМ. Двигатель запущен и продолжает работать.

Останов.

Чтобы остановить двигатель, нажимаем кнопку СТОП . Цепь питания обмотки пускателя разрывается. Якорь под действием пружины возвращается в исходное состояние, размыкая силовые контакты, обесточивая тем самым обмотки электродвигателя. Он начинает останавливаться.

Одновременно с этим размыкается вспомогательный контакт КМ в цепи питания обмотки пускателя.

После отпускания кнопки СТОП питание на обмотку не подается, поскольку вспомогательный контакт КМ разомкнут. Двигатель выключен и цепь готова к следующему запуску.

Защита от перегрузок.

Предположим, что двигатель запущен. Если по каким-то причинам ток нагрузки двигателя увеличится, биметаллические пластины теплового реле Р под действием повышенного тока начнут изгибаться, и приведут в действие механизм расцепителя. Он разомкнет вспомогательный контакт Р в цепи обмотки магнитного пускателя. Цепь обмотки пускателя разомкнется, силовые и вспомогательный контакты пускателя вернуться в исходное разомкнутое состояние, двигатель остановится.

Если катушка магнитного пускателя рассчитана на 380В, то схема подключения будет, как на рисунке ниже.

В этом случае, обмотка пускателя подключается к любым двум фазам, на схеме к фазам В и С.

Для дополнительной защиты цепи управления магнитным пускателем устанавливают предохранитель FU. В случае, например, межвиткового замыкания в катушке пускателя, плавкая вставка предохранителя перегорит, обесточив цепь управления.

Для большей наглядности я записал видео, в котором поэтапно показан весь процесс работы схемы.

Если видео оказалось для Вас полезным, нажмите НРАВИТЬСЯ при просмотре на YouTube. Подписывайтесь на мой канал, и Вы первым узнаете о выходе новых интересных видео по электрике!

Рекомендую также прочитать:

Реверсивная и нереверсивная схема подключения пускателя

Магнитный пускатель – это коммутационный прибор, с помощью которого на расстоянии многократно можно включать и отключать потребителя (электродвигатели, электрические ТЭНы, электрокотлы и так далее). Перед тем как разбираться в теме статьи – схема подключения пускателя, необходимо понять принцип его работы.

В основном магнитные пускатели используются сегодня для управления двигателей асинхронного типа. С его помощью производится «пуск», «стоп» и реверс мотора. Но есть еще один момент, который не надо упускать из вида. Это возможность разгружать маломощные электрические сети, где установлены обычные автоматические выключатели (автоматы). Для того чтобы это понять, необходимо привести пример.

Если в распределительном щите установлен автомат номиналом 10 ампер, то его пропускная мощность рассчитывается по закону Ома: P=UI=220х10=2200 Вт или 2,2 кВт. По сути, такой автомат может выдержать освещение, в котором присутствует двадцать две лампочки по 100 ватт каждая. Чтобы увеличить мощность потребления электрической цепочки, к примеру, в два раза, не стоит разделять ее на участки, куда придется устанавливать несколько автоматических выключателей и делать монтаж отдельной электропроводки. Достаточно установить магнитный пускатель, к примеру, третьей величины.

У такого прибора контакты рассчитаны на 40 ампер. Отсюда и возможность выдерживать потребляемую мощность: 40х220=8800 Вт или 8,8 кВт. То есть, соединив последовательно 88 лампочек мощностью по 100 Вт, можно одним щелчком включать и отключать их одновременно.

В основе конструкции магнитного пускателя лежит электромагнитная катушка. Так вот в момент пуска (включения) прибор потребляет 200 ватт. В рабочем состоянии мощность не превышает 25 Вт. Даже если рассчитать силу тока в момент пуска, то на будет незначительных параметров: 200 Вт/220 В = 0,9 ампер. То есть, этой величины достаточно, чтобы прибор включил основную электрическую цепь. Получается так, что даже самый небольшой магнитный пускатель может легко управлять автоматом. При этом на контактах последнего всегда будет сниженный ток, что не приведет к их подгоранию. А, значит, автоматический выключатель будет отключать своими контактами достаточно большие мощности.

Внимание! Существует несколько видов магнитных пускателей, у которых катушка рассчитана на разное напряжение. Это 220 вольт, 380 и 36.

Тепловое реле в пускателе

Это обязательная составляющая часть пускателя, которая будет отключать сеть от перегрузов и от неполнофазного режима (когда отсутствует одна из трех фаз). Причины последнего – большое разнообразие.

  • От вибрации открутился соединительный винтик.
  • Подгорел контакт.
  • Перегорела вставка (плавкая) на фазе.
  • Некачественный неплотный контакт.

Обе причины создают увеличение силы тока, который проходит через тепловое реле. При этом в самом приборе начинают нагреваться биметаллические пластины, которые под действием тепла начинают выгибаться, размыкая контакт в самом реле. Последний отключает пускатель, а тот в свою очередь, к примеру, электродвигатель.

Схемы подключения

Итак, теперь переходим к основной теме статьи – схемы подключения пускателя. Их две:

Как подключить нереверсивную схему. Она является стандартной, когда подключаемый к сети электродвигатель будет вращаться в одну сторону.

На схеме четко видно, что запуск мотора производится кнопкой «Пуск», расположенной на магнитном пускателе КМ 1. Чтобы не удерживать данную кнопку, ее шунтируют с контактами аппарата. То есть, при нажатии кнопки «Пуск» она замыкает контакты пускателя, через которые ток будет подаваться на электромагнитную катушку прибора.

Отключение производится кнопкой «Стоп». На схеме пускателя она обозначена буквой «С». Эта кнопка просто размыкает контакты. При этом сердечник под действием пружин возвращается в нормальное состояние, электродвигатель отключается.

В принципе, точно также работает и тепловое реле, обозначенное на схеме подключения пускателя буквой «Р».

Реверсивная схема

По сути, данная схема в независимости от величины пускателя работает аналогично предыдущей. Конечно, она более сложная, потому что в нее добавляется еще одна кнопка – реверс, и еще один магнитный пускатель.

Сам по себе реверс – это переподключение двух фаз местами. Но тут необходимо соблюсти один момент – нужно, чтобы второй пускатель в это время не включался. То есть, необходима его блокировка. По схеме понятно, что если включатся два пускателя одновременно, то произойдет короткое замыкание.

Вот динамика работы схемы:

  • включается автомат QF;
  • нажимается кнопка «Пуск 1»;
  • напряжение подается на электродвигатель, который начинает работать.

При реверсе происходит следующее:

  • нажимается кнопка «Стоп 1», с помощью которой производится отключение электродвигателя от питания;
  • затем необходимо нажать на кнопку «Пуск 2», которая подает напряжение на КМ 2;
  • начинает работать двигатель только его вращение меняется на противоположное.

Обе рассмотренные схемы подключения относятся к трехфазным потребителям. Двухфазные системы по принципу работы ничем от них не отличаются. Правда, схема подключения здесь проще. Вот эта нереверсивная схема:

Технические характеристики

Не будем здесь рассматривать все параметры прибора, потому что выбор всегда делается по величине пускателя, которая характеризуется номинальным током нагрузки, действующей на контакты прибора. Существует семь величин пускателя, каждой из которых соответствует допустимая токовая нагрузка. На фотографии ниже обозначены эти самые величины, и в каких областях такие магнитные пускатели применяются.

Необходимо отметить, что небольшие погрешности в параметрах допустимы. Но в некоторых случаях надо учитывать, в каком диапазоне срабатывает тепловое реле. Если величины пускателей имеют завышенную нагрузку, а реле заниженный минимальный показатель теплового отключения, то может быть несоответствие заданной мощности электрической цепочки или потребителя.

Что такое реверсивный пускатель: принципы работы и структурные особенности

Всем нам известна пара слов – «аверс и реверс». Эти лексемы — латинского происхождения. Имеют семантику, противоположную друг другу, означая: «прямой и обратный», «лицевая сторона и оборотная сторона» и так далее. Эти понятия часто используют в нумизматике, но физика и математика не являются в этом плане исключением. Например, существует реверсивный пускатель, который просто незаменим в электромеханике, ему и будет посвящена данная статья. Но прежде чем разбираться, как устроен реверсивный пускатель, стоит понять принципы его работы. Для этого рекомендуем обратить внимание на ключевые понятия, связанные с магнитным пускателем.

Что такое магнитный пускатель, и какое он имеет предназначение?

Стандартный магнитный пускатель – это типичное электромеханическое устройство, которое нацелено на работу с трехфазными электродвигателями. Его целевое назначение – обеспечение непрерывной и безопасной работы двигателя, включая контроль отключения питания агрегата, если будут возникать внештатные или аварийные ситуации.

Используемая схема реверсивного пускателя позволяет успешно его применять для электрокотлов, тэнов, электродвигателей, то есть когда необходимо проявить функционал коммутационного аппарата или осуществить автоматическое подключение или отключение от электрического источника.

Определим основные задачи магнитного пускателя, а они следующие:

  • дистанционное управление агрегатами. Например, асинхронным двигателем. Созданная схема реверсивного пускателя с кнопками позволяет менять направление вращения вала.
  • контроль нагрузок агрегата. Применятся для разгрузки маломощных контактов. Даже есть возможность подключить магнитный пускатель к домашнему выключателю, подготавливая его к работе с большим количеством лампочек.

Как устроен магнитный пускатель: все его основные составляющие

Стандартный магнитный пускатель состоит из следующих основополагающих элементов:

  • внешнего защитного кожуха;
  • основного инструмента управления;
  • специального контактора;
  • тепловогореле.

Конструктивные особенности реверсивного магнитного пускателя простые, но достаточно эффективные и надежные. Все агрегаты усовершенствованы и модифицированы настолько, что их компактность и функциональность переоценить просто нельзя. Они легкие и удобные в применении, особенно те виды оборудования, которые оснащены специальными тепловыми реле, отвечающими за аварийное отключение. С такой защитой работа выполняется бесперебойно и без отклонения от норм, так как просто не может произойти обрыва фаз, и следовательно, аварийная ситуация и долгий простой оборудования практически исключаются.

Имеющаяся в устройстве катушка отвечает за необходимую коммутацию всех силовых контактов и провоцирует замыкание силовой цепи, а когда выполняется отключение питания, то происходит, соответственно, размыкание созданной цепи. Существующая схема подключения реверсивного пускателя включает и блокировочные контакты, которые служат для управления силовыми элементами цепи, не исключая контроль. Причем все имеющиеся в схеме контакты могут находиться в двух состояниях: нормально-разомкнутом и нормально-замкнутом.

Что такое реверсивный магнитный пускатель и в чем его преимущества?

Пришло время более детально обсудить технические особенностии узнать, что же это такое реверсивный пускатель трехфазный. Как уже становится ясно, существует два вида магнитных пускателей. Первый – прямой или нереверсивный. Второй – реверсивный, о котором дальше пойдет в речь в статье.

Обычно стандартные реверсивные пускатели оснащаются двумя магнитными пускателями, собранными в одном корпусе и соединенными между собой. Если присмотреться к схеме, то можно рассмотреть место крепления и соединения на общем основании двух этих магнитных элементов. Ну а теперь о главной особенности реверсивного пускателя – может работать только один из элементов, то если либо первый, либо второй. Такая переменность необходима, чтобы исключить межфазное замыкание.

По принятому режиму работы, да и по схеме реверсивного магнитного пускателя запуск происходит через замкнутые блокировочные контакты, которые обеспечивают попеременное, то есть неодновременное включение реверсивных и нереверсивных режимов. При этом реализуется главенствующая задача реверсивного пускателя – смена направлений вращения того или иного электрического двигателя, иными словами: все взаимосвязано, если изменился порядок чередования фаз, то, соответственно, выполняются преобразования имеющегося у оборудования ротора, меняется направление вращения.

Где и когда используются реверсивные магнитные пускатели?

Сфера применения реверсивных магнитных пускателей расширена. Например, при помощи бесконтактного реверсивного пускателя не обходится работа асинхронных двигателей, которые применяются в различных станках и мощных насосах.

Нередки случаи, что выполняется подключение реверсивного пускателя для расширенных систем вентиляции, для надежности запорной арматуры. Всегда ценится специалистами «беспроблемное оборудование», управлять которым несложно, а эксплуатация длительная и надежная. К современным бонусам относят дистанционное управление – это достаточно выгодная опция, которая может быть обеспечена применением магнитного пускателя. Многие виды надежных электрических замков используют специальные пускатели для управления, а также выполняется внедрение такого незаменимого электромеханического элемента в систему отопления, работу лифтов.

Чем отличается схема магнитного реверсивного пускателя: правила комплектации

Представим, что появилась необходимость разобраться в особенностях устройства, в котором электрический двигатель способен работать в двух направления – прямом и обратном, то есть реверсивном. И если такая особенность очевидна, значит, в схеме агрегата предусмотрено наличиемагнитного реверсивного пускателя. Его использование не такое и простое, необходимо продумать режим работы, чтобы не допустить опасное замыкание фаз.

В схеме обязательно можно найти обозначение дополнительной цепи управления и кнопки запуска реверса. В виду такой продуманности, созданная схема отличается надежностью, так как защищена от короткого замыкания.

А за счет чего проходит реверс? Это легко объяснимо. — За счет переворачивания местами двух имеющихся в системе фаз: когда одна прекращает работу, а другая, наоборот, запускается. Для более надежной защиты, обязательно в схеме продумана блокировка, отвечающая за точную и своевременную остановку одного из пускателей, первого или второго. Все зависит от поставленных задач. Напомним, что в случае срабатывания двух пускателей мгновенно произойдет короткое замыкание на силовых контактах агрегата.

Отметим, что реверсивное движение запускается не мгновенно, так как требуется срабатывание нескольких важных пунктов. Во-первых, обязательно рекомендуется остановить работу двигателя, нажать кнопку «Стоп». Во-вторых, надо обратить внимание на состояние катушки, снять с нее напряжение, иначе процесс реверсивного запуска даст сбой. Если все сделано правильно, то пускатель вернется в исходное положение под действием пружины. Все, агрегат готов к реверсу. Нажимаем кнопку «Пуск», соответственно, подается нужное напряжение на катушку, значит, процесс запущен. С панели управления устройства можно считать информацию замыкании электрической цепи. А это значит, что в систему поступил ток, и он постепенно подается в катушку. Одновременно выполняется блокирование всех не вступивших в работу контактов. Этого требует безопасность.

Отметим, что в случае срабатывания теплового реле, произойдет остановка агрегата во избежание аварийной ситуации.

Таким образом, магнитный пускатель играет важную роль в работе двигателей. Свое место назначения также достойно занимаем и реверсивный пускатель, обеспечивая бесперебойную работу станков, тэнов, лифтов и другого электрического оборудования. Пускатели относятся в надежным и безопасным образцам, особенно если они дополнительно оснащены блокировочными системными механизмами. Они находятся внутри кожуха и не допускают срабатывание одновременно двух катушек, не доводя до замыкания фаз.

Схема реверсивного пускателя

Для переключения вращения электропривода в прямом и обратном направлении применяется схема реверсивного пускателя. Ниже рассмотрены пусковые и рабочие режимы, защитные мероприятия. Дополнительные рекомендации предотвратят ошибки при монтаже и аварии в процессе эксплуатации.

Нереверсивное подключение электродвигателя

Сначала следует рассмотреть относительно простой вариант, когда электрический двигатель выполняет свои функции с вращением только в одном направлении. Такие решения вполне достаточны для насосных станций, компрессорных установок.

В этом варианте подключен трехфазный источник питания 220 V последовательно через автомат и магнитный пускатель «КМ». Реле «Р» в нулевой цепи обеспечивает защиту при чрезмерном нагреве силового агрегата. Второй контакт обмотки пускателя подсоединен к одной из фаз «С» через плавкий предохранитель «FU», ограничивающий силу тока. Двумя кнопками устанавливают соответствующие режимы: «Пуск» и «Стоп».

Нереверсивный запуск

Включение автомата – подготовительный этап. Электродвигатель начинает вращение после нажатия кнопки «Пуск». Это действие подключает питание обмоток. Силой магнитной индукции якорь перемещается в нужное положение. Комбинированный контактор пускателя подает напряжение на рабочие обмотки. В этом положении шунт замыкает вспомогательную цепь, что сохраняет питание силового агрегата в рабочем режиме при отжатой кнопке.

Остановка

Для остановки нажимают «Стоп». В этом положении отключается питание катушек пускателя. Пружина перемещает якорь в исходное положение с одновременным размыканием силовых контактов.

Защита двигателя при нереверсивном пуске

При попадании в механический привод посторонних предметов ток в обмотках двигателя увеличивается. Нагрев изгибает биметаллические элементы теплового реле. На определенном уровне повышения температуры цепь нулевого провода разрывается. Контактные группы «КМ» возвращаются в исходное положение. Плавкий предохранитель выполняет свои функции при коротком замыкании между витками катушки индукции магнитного пускателя.

Устройство магнитного пускателя для реверсного пуска

Стандартный пускатель состоит из следующих компонентов:

  • сердечник с закрепленной на нем катушкой индукции;
  • якорь с механизмом перемещения контактных групп;
  • корпус, обеспечивающий целостность конструкции вместе с защитой от внешних воздействий.

При подаче (отключении) тока питания движением якоря замыкаются (отсоединяются) соответствующие контакты силовых цепей. Реверсивные модификации создают из двух обычных пускателей, установленных на одной монтажной панели. Дополнительными проводниками обеспечивается блокировка, препятствующая одновременному включению двух изделий.

К сведению. В некоторых моделях блокировка организована с применением специальных механических приспособлений.

В этом варианте используют отдельные клавиши, которые инициируют вращение ротора в прямом и обратном направлении. Первый рабочий режим сопровождается шунтированием контактной группой «КМ1» соответствующей цепи. Если нажать после этого клавишу «Назад», ничего не произойдет.

Для активизации обратного вращения следует сначала остановить двигатель, чтобы исключить поломку. Нажатием «Стоп» (С – на рисунке ниже) отключают питающее напряжение 380 V. После можно подать ток в нужные обмотки через силовые контактные группы «КМ2».

Как подключается реверсивный пускатель

Такие пускатели применяют в станках и других устройствах, где необходимо попеременное вращение двигателя в разных направлениях. Принцип подключения однофазной сети аналогичен рассматриваемому варианту. В обоих случаях устанавливают плавкие предохранители для предотвращения повреждения цепей сильными токами.

Как происходит включение

На первой стадии основной выключатель «QF» обеспечивает подачу трех фаз на все входные контакты двух пускателей. Разомкнутая цепь управления отключает питание обмоток двигателя.

Как происходит переключение

Нажатием второй клавиши «Пуск-2» подают ток в обмотки для вращения двигателя в обратном направлении. Как видно по схеме, одновременное включение двух устройств невозможно.

Реверсивное подключение трехфазного двигателя

В остановленном положении система управления готова к работе. Однократным нажатием «Пуск-1» подают питание на обмотки для вращения ротора в прямом направлении. Шунт поддерживает целостность электрической цепи после возврата кнопки пружиной в исходное положение.

Переключение системы при противоположном вращении

Первый пускатель отключается, так как электромагнитный привод второго разрывает цепь контактной группы «КМ2» (схема реверс).

Изменение поворотного движения

Изменение режимов через остановку предотвращает быструю подачу напряжения на другие обмотки электродвигателя. Действие с определенной временной задержкой предотвращает механические повреждения, исключает сильные броски напряжения при подключении к источнику нагрузки с индуктивными характеристиками.

Схема подключения

Далее подробно рассмотрена однолинейная схема подключения реверсивного магнитного пускателя.

После включения силового автомата QF питание поступает на верхнюю группу контактов пускателей. Цепь управления подключается к фазе «А» и нейтральному проводнику, но находится в разомкнутом состоянии, которое поддерживается соответствующим положением элементов: SB2 (3), КМ 1.1. (2.1.).

Работа цепей управления при вращении двигателя влево

Однократное нажатие кнопки «Влево» подает питание на катушку для перемещения якоря и замыкания контактов КМ2. Шунт КМ 1.1. поддерживает целостность электрической цепи в рабочем режиме.

Работа цепей управления при вращении двигателя вправо

Для активации противоположного вращения меняют местами две фазы на обмотках двигателя. Предварительно нажимают «Стоп» (SB1), так как без этой промежуточной операции включить второй реверсивный магнитный пускатель не получится.

Силовые цепи

На следующих рисунках показано, как именно переключаются обмотки в схеме реверсивного пуска для вращения ротора в одну и другую стороны. Фаза «А» остается на том же месте. Меняются местами «В» и «С».

Защита силовых цепей от короткого замыкания или «защита от дурака»

Если переключение пускателей выполнить без перерыва, две фазы будут одновременно поданы на силовые клеммы КМ1. Короткое замыкание повредит конструкцию. Для предотвращения подобных ситуаций применяют отдельные контактные группы (КМ 2.2. и КМ1.2.), которые устанавливают перед катушками КМ1 и КМ2. При подключении этих устройств, кроме соответствия по нагрузкам, отдельное внимание следует уделить корректному монтажу и защитным мероприятиям.

Следует учитывать особенности решения разных практических задач. Так, асинхронный двигатель подключают через пусковой конденсатор. Обеспечить функциональность пускателя от источника постоянного напряжения можно. Однако в этом случае понадобится ограничить силу тока специальным резистором, чтобы предотвратить повреждение катушки. Придется подобрать оптимальное электрическое сопротивление для сохранения работоспособности привода якоря.

Видео

Схема магнитного пускателя. Принцип работы

Для включения освещения применяются выключатели, для бытовых электроприборов — кнопки и переключатели. Это электрооборудование объединяет одно: они потребляют небольшую мощность. А также – не включаются дистанционно или устройствами автоматики. Эти задачи решаются с помощью магнитных пускателей.

Cхема магнитного пускателя. Устройство

Пускатель состоит из двух частей, расположенных в одном корпусе: электромагнита управления и контактной системы.

Электромагнит управления включает в себя катушку с магнитопроводом, включающим в себя подвижную и неподвижную части, удерживаемых в разомкнутом состоянии пружиной. При подаче напряжения на катушку подвижная часть магнитопровода притягивается к неподвижной. Подвижная часть механически связана с контактной системой.

В контактную систему входят подвижные и неподвижные группы контактов. При подаче напряжения на катушку пускателя магнитопровод притягивает подвижные контакты к неподвижным и силовые цепи замыкаются. При снятии напряжения с катушки под действием пружины подвижная часть магнитопровода вместе с контактами приводятся в исходное положение.

Устройство магнитного пускателя и его работа

К силовым контактам пускателя добавляется дополнительная контактная группа, предназначенная для использования в цепях управления. Контакты ее выполняются нормально разомкнутыми (обознаются номерами «13» и «14») или нормально замкнутыми («23» и «24»).

Маркировка контактов пускателя

Электрические характеристики магнитных пускателей

Номинальный ток пускателя – это ток, выдерживаемый силовыми контактами в течение продолжительного времени. У некоторых моделей устаревших пускателей для разных диапазонов токов меняются габаритные размеры или «величина».

Номинальное напряжение – напряжение питающей сети, которое выдерживает изоляция между силовыми контактами.

Напряжение катушки управления – рабочее напряжение, на котором работает катушка управления пускателя. Выпускаются пускатели с катушками, работающие от сети постоянного или переменного тока.

Управление пускателем не обязательно питается напряжением силовых цепей, в некоторых случаях схемы управления имеют независимое питание. Поэтому катушки управления выпускаются на широкий ассортимент напряжений.

Напряжения катушек управления пускателей
Переменный ток123648110220380
Постоянный ток123648110220

Реверсивный магнитный пускатель, кнопочная станция

Самое распространенное применение пускателей – управление электродвигателями. Изначально и название устройства образовано от слова «пуск». В схемах используются дополнительные контакты, встроенные в корпус: для подхвата команды от кнопки «Пуск». Нормально замкнутыми контактами кнопки «Стоп» цепь питания катушки разрывается, и пускатель отпадает.

Типовая схема управления пускателем

Выпускаются реверсивные блоки, имеющие в своем составе два обычных пускателя, соединенные электрически и механически. Механическая блокировка не позволяет им включиться одновременно. Электрические соединения обеспечивают реверс двух фаз при работе разных пускателей, а также исключение возможности подачи питания на обе катушки управления одновременно.

Внешний вид реверсивного магнитного пускателяСхема управления реверсивным магнитным пускателем

Для удобства монтажа пускатели выпускают в корпусах совместно с кнопками управления. Для подключения достаточно подсоединить к ним кабель питания и отходящий кабель.

Пускатель в корпусе с кнопками управления

В других случаях для управления работой используются кнопочные станции, коммутирующие цепь катушки управления и связанные с пускателем контрольным кабелем. Для обычных пускателей используются две кнопки, объединенные в одном корпусе – «Пуск» и «Стоп», для реверсивных – три: «Вперед», «Назад» и «Стоп». Кнопку «Стоп» для быстрого отключения в случае аварии или опасности выполняют грибовидной формы.

Виды кнопочных станций

В зависимости от назначения пускатели выполняют трех- или четырехполюсными. Но есть и аппараты, имеющие один или два полюса.

Производители дополняют линейку выпускаемых аппаратов аксессуарами, расширяющими их возможности. К ним относятся:

  • дополнительные контактные блоки, позволяющие подключать к схеме управления сигнальные лампы и формировать команды, зависящие от состояния пускателя, для работы других устройств;
  • блоки выдержки времени, задерживающие срабатывание или отключение пускателя;
  • наборы аксессуаров, превращающих два пускателя в сборку реверсивных;
  • контактные площадки, позволяющие подключить к пускателю кабели большего сечения.
Магнитный пускатель с тепловым реле

Для защиты электродвигателей от перегрузок совместно с пускателями применяются тепловые реле. Производители выпускают их под соответствующие модели аппаратов. Тепловое реле содержит контакт, размыкающийся при срабатывании и разрывающий цепь питания катушки пускателя. Для повторного включения контакт нужно вернуть в исходное положение нажатием кнопки на корпусе. Для защиты от коротких замыканий перед пускателем устанавливается автоматический выключатель, отстроенный от пусковых токов электродвигателя.

Оцените качество статьи:

Схема нереверсивного магнитного пускателя — Всё о электрике

Схемы подключения магнитного пускателя для управления асинхронным электродвигателем

Магнитный пускатель представляет собой простейший комплект аппаратов для дистанционного управления электродвигателями и кроме самого контактора часто имеет кнопочную станцию и аппараты защиты.

Схема подключения нереверсивного магнитного пускателя

На рис. 1, а, б показаны соответственно монтажная и принципиальная схемы включения нереверсивного магнитного пускателя для управления асинхронным электродвигателем с короткозамкнутым ротором. На монтажной схеме границы одного аппарата обводят штриховой линией. Она удобна для монтажа аппаратуры и поиска неисправностей. Читать эти схемы трудно, так как они содержат много пересекающихся линий.

Рис. 1. Схема включения нереверсивного магнитного пускателя: а – монтажная схема включения пускателя, электрическая принципиальная схема включения пускателя

На принципиальной схеме все элементы одного магнитного пускателя имеют одинаковые буквенно-цифровые обозначения. Это позволяет не связывать вместе условные изображения катушки контактора и контактов, добиваясь наибольшей простоты и наглядности схемы.

Нереверсивный магнитный пускатель имеет контактор КМ с тремя главными замыкающими контактами (Л1 – С1, Л2 – С2, Л3 – С3) и одним вспомогательным замыкающим контактом (3-5).

Главные цепи, по которым протекает ток электродвигателя, принято изображать жирными линиями, а цепи питания катушки пускателя (или цепи управления) с наибольшим током — тонкими линиями.

Принцип действия схемы включения нереверсивного магнитного пускателя

Для включения электродвигателя М необходимо кратковременно нажать кнопку SB2 «Пуск». При этом по цепи катушки магнитного пускателя, потечет ток, якорь притянется к сердечнику. Это приведет к замыканию главных контактов в цепи питания электродвигателя. Одновременно замкнется вспомогательный контакт 3 – 5, что создаст параллельную цепь питания катушки магнитного пускателя.

Если теперь кнопку «Пуск» отпустить, то катушка магнитного пускателя будет включена через собственный вспомогательный контакт. Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя. Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то магнитный пускатель отключается и его вспомогательный контакт размыкается.

После восстановления напряжения для включения электродвигателя необходимо повторно нажать кнопку «Пуск». Нулевая защита предотвращает непредвиденный, самопроизвольный пуск электродвигателя, который может привести к аварии.

Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют управление с использованием магнитных пускателей.

Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки магнитного пускателя.

Схема подключения реверсивного магнитного пускателя

В том случае, когда необходимо использовать два направления вращения электродвигателя, применяют реверсивный магнитный пускатель, принципиальная схема которого изображена на рис. 2, а.

Рис. 2. Схемы включения реверсивного магнитного пускателя

Принцип действия схем включения реверсивного магнитного пускателя

Для изменения направления вращения асинхронного электродвигателя необходимо изменить порядок чередования фаз статорной обмотки.

В реверсивном магнитном пускателе используют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи главного тока произойдет короткое замыкание. Для исключения этого схема снабжена блокировкой.

Если после нажатия кнопки SB3 «Вперед» к включения контактора КМ1 нажать кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.

Электрическая схема цепи управления реверсивного пускателя с блокировкой на вспомогательных размыкающих контактах изображена на рис. 2, б.

В этой схеме включение одного из контакторов, например КМ1, приводит к размыканию цепи питания катушки другого контактора КМ2. Для реверса необходимо предварительно нажать кнопку SB1 «Стоп» и отключить контактор КМ1. Для надежной работы схемы необходимо, чтобы главные контакты контактора КМ1 разомкнулись раньше, чем произойдет замыкание размыкающих вспомогательных контактов в цепи контактора КМ2. Это достигается соответствующей регулировкой положения вспомогательных контактов по ходу якоря.

В серийных магнитных пускателях часто применяют двойную блокировку по приведенным выше принципам. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному срабатыванию электромагнитов контакторов. В этом случае оба контактора должны быть установлены на общем основании.

Схема подключения реверсивного магнитного пускателя.

08 Апр 2014г | Раздел: Электрика

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем разбираться с магнитным пускателем и сегодня мы рассмотрим еще одну классическую схему подключения магнитного пускателя, которая обеспечивает реверс вращения эл. двигателя.

Такая схема используется в основном, где нужно обеспечить вращение эл. двигателя в обе стороны, например, сверлильный станок, подъемный кран, лифт и т.д.

На первый взгляд может показаться, что эта схема намного сложнее, чем схема с одним пускателем, но это только на первый взгляд.

В схему добавилась еще одна цепь управления, состоящая из кнопки SB3, магнитного пускателя КМ2, и немного видоизменилась силовая часть подачи питания на эл. двигатель. Названия кнопок SB2 и SB3 даны условно.

Для защиты от короткого замыкания в силовой цепи, перед катушками пускателей добавились два нормально-замкнутых контакта КМ1.2 и КМ2.2, взятые от контактных приставок, установленных на магнитных пускателях КМ1 и КМ2.

Для удобства понимания схемы, цепи управления и силовые контакты пускателей раскрашены в разные цвета. А чтобы визуально не усложнять схему, цифробуквенные обозначения пар силовых контактов пускателей не указываются. Ну а если возникнут вопросы или сомнения, прочитайте еще раз предыдущую часть статьи о подключении магнитного пускателя.

1. Исходное состояние схемы.

При включении автоматического выключателя QF1 фазы «А», «В», «С» поступают на верхние силовые контакты магнитных пускателей КМ1 и КМ2 и там остаются дежурить.

Фаза «А», питающая цепи управления, через автомат защиты цепей управления SF1 и кнопку SB1 «Стоп» поступает на контакт №3 кнопок SB2 и SB3, вспомогательный контакт 13НО пускателей КМ1 и КМ2, и остается дежурить на этих контактах. Схема готова к работе.

На рисунке ниже показана часть реверсивной схемы, а именно, монтажная схема цепей управления с реальными элементами.

2. Работа цепей управления при вращении двигателя влево.

При нажатии на кнопку SB2 фаза «А» через нормально-замкнутый контакт КМ2.2 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват, а при замыкании силовых контактов КМ1 фазы «А», «В», «С» поступают на соответствующие контакты обмоток эл. двигателя и двигатель начинает вращение, например, в левую сторону.

Здесь же, нормально-замкнутый контакт КМ1.2, расположенный в цепи питания катушки пускателя КМ2, размыкается и не дает включиться магнитному пускателю КМ2 пока в работе пускатель КМ1. Это так называемая «защита от дурака», и о ней чуть ниже.

На следующем рисунке показана часть схемы управления, отвечающая за команду «Влево». Схема показана с использованием реальных элементов.

3. Работа цепей управления при вращении двигателя вправо.

Чтобы задать двигателю вращение в противоположную сторону достаточно поменять местами любые две питающие фазы, например, «В» и «С». Вот этим, как раз, и занимается пускатель КМ2.

Но прежде чем нажать кнопку «Вправо» и задать двигателю вращение в обратную сторону, нужно кнопкой «Стоп» остановить прежнее вращение.

При этом разорвется цепь и управляющая фаза «А» перестанет поступать на катушку пускателя КМ1, возвратная пружина вернет сердечник с контактами в исходное положение, силовые контакты разомкнутся и отключат двигатель М от трехфазного питающего напряжения. Схема вернется в начальное состояние или ждущий режим:

Нажимаем кнопку SB3 и фаза «А» через нормально-замкнутый контакт КМ1.2 поступает на катушку магнитного пускателя КМ2, пускатель срабатывает и через свой контакт КМ2.1 встает на самоподхват.

Своими силовыми контактами КМ2 пускатель перебросит фазы «В» и «С» местами и двигатель М станет вращаться в другую сторону. При этом контакт КМ2.2, расположенный в цепи питания пускателя КМ1, разомкнется и не даст пускателю КМ1 включиться пока в работе пускатель КМ2.

4. Силовые цепи.

А теперь посмотрим на работу силовой части схемы, которая и отвечает за переброс питающих фаз для осуществления реверса вращения эл. двигателя.

Обвязка силовых контактов пускателя КМ1 выполнена так, что при их срабатывании фаза «А» поступает на обмотку №1, фаза «В» на обмотку №2, и фаза «С» на обмотку №3. Двигатель, как мы определились, получает вращение влево. Здесь переброс фаз не осуществляется.

Обвязка силовых контактов пускателя КМ2 выполнена таким-образом, что при его срабатывании фазы «В» и «С» меняются местами: фаза «В» через средний контакт подается на обмотку №3, а фаза «С» через крайний левый подается на обмотку №2. Фаза «А» остается без изменений.

А теперь рассмотрим нижний рисунок, где показан монтаж всей силовой части на реальных элементах.

Фаза «А» белым проводом заходит на вход левого контакта пускателя КМ1 и перемычкой заводится на вход левого контакта пускателя КМ2. Выхода обоих контактов пускателей также соединены перемычкой, и уже от пускателя КМ1 фаза «А» поступает на обмотку №1 двигателя М — здесь переброса фазы нет.

Фаза «В» красным проводом заходит на вход среднего контакта пускателя КМ1 и перемычкой заводится на правый вход пускателя КМ2. С правого выхода КМ2 фаза перемычкой заводится на правый выход КМ1, и тем самым, встает на место фазы «С». И теперь на обмотку №3, при включении пускателя КМ2 будет подаваться фаза «В».

Фаза «С» синим проводом заходит на вход правого контакта пускателя КМ1 и перемычкой заводится на средний вход пускателя КМ2. С выхода среднего контакта КМ2 фаза перемычкой заводится на средний выход КМ1, и тем самым, встает на место фазы «В». Теперь на обмотку №2, при включении пускателя КМ2 будет подаваться фаза «С». Двигатель будет вращаться в правую сторону.

5. Защита силовых цепей от короткого замыкания или «защита от дурака».

Как мы уже знаем, что прежде чем изменить вращение двигателя, его нужно остановить. Но не всегда так получается, так как никто не застрахован от ошибок.
И вот представьте ситуацию, когда нет защиты.

Двигатель вращается в левую сторону, пускатель КМ1 в работе и с его выхода все три фазы поступают на обмотки, каждая на свою. Теперь не отключая пускатель КМ1 мы включаем пускатель КМ2. Фазы «В» и «С», которые мы поменяли местами для реверса, встретятся на выходе пускателя КМ1. Произойдет межфазное замыкание между фазами «В» и «С».

А чтобы этого не случилось, в схеме используют нормально-замкнутые контакты пускателей, которые устанавливают перед катушками этих же пускателей, и таким-образом исключается возможность включения одного магнитного пускателя пока не обесточится другой.

6. Заключение.

Конечно, все это с первого раза понять трудно, я и сам, когда начинал осваивать работу эл. приводов, не с первого раза понял принцип реверса. Одно дело прочитать и запомнить схему на бумаге, а другое дело, когда все это видишь в живую. Но если собрать макет и несколько дней посвятить изучению схемы, то успех будет гарантирован.

И уже по традиции посмотрите видеоролик о подключении реверсивного магнитного пускателя.

А у нас еще осталось разобраться с электротепловой защитой эл. двигателя и тема о магнитных пускателях может быть смело закрыта.
Продолжение следует.
Удачи!

Что такое реверсивный пускатель: принципы работы и структурные особенности

Всем нам известна пара слов – «аверс и реверс». Эти лексемы – латинского происхождения. Имеют семантику, противоположную друг другу, означая: «прямой и обратный», «лицевая сторона и оборотная сторона» и так далее. Эти понятия часто используют в нумизматике, но физика и математика не являются в этом плане исключением. Например, существует реверсивный пускатель, который просто незаменим в электромеханике, ему и будет посвящена данная статья. Но прежде чем разбираться, как устроен реверсивный пускатель, стоит понять принципы его работы. Для этого рекомендуем обратить внимание на ключевые понятия, связанные с магнитным пускателем.

Что такое магнитный пускатель, и какое он имеет предназначение?

Стандартный магнитный пускатель – это типичное электромеханическое устройство, которое нацелено на работу с трехфазными электродвигателями. Его целевое назначение – обеспечение непрерывной и безопасной работы двигателя, включая контроль отключения питания агрегата, если будут возникать внештатные или аварийные ситуации.

Используемая схема реверсивного пускателя позволяет успешно его применять для электрокотлов, тэнов, электродвигателей, то есть когда необходимо проявить функционал коммутационного аппарата или осуществить автоматическое подключение или отключение от электрического источника.

Определим основные задачи магнитного пускателя, а они следующие:

  • дистанционное управление агрегатами. Например, асинхронным двигателем. Созданная схема реверсивного пускателя с кнопками позволяет менять направление вращения вала.
  • контроль нагрузок агрегата. Применятся для разгрузки маломощных контактов. Даже есть возможность подключить магнитный пускатель к домашнему выключателю, подготавливая его к работе с большим количеством лампочек.

Как устроен магнитный пускатель: все его основные составляющие

Стандартный магнитный пускатель состоит из следующих основополагающих элементов:

  • внешнего защитного кожуха;
  • основного инструмента управления;
  • специального контактора;
  • тепловогореле.

Конструктивные особенности реверсивного магнитного пускателя простые, но достаточно эффективные и надежные. Все агрегаты усовершенствованы и модифицированы настолько, что их компактность и функциональность переоценить просто нельзя. Они легкие и удобные в применении, особенно те виды оборудования, которые оснащены специальными тепловыми реле, отвечающими за аварийное отключение. С такой защитой работа выполняется бесперебойно и без отклонения от норм, так как просто не может произойти обрыва фаз, и следовательно, аварийная ситуация и долгий простой оборудования практически исключаются.

Имеющаяся в устройстве катушка отвечает за необходимую коммутацию всех силовых контактов и провоцирует замыкание силовой цепи, а когда выполняется отключение питания, то происходит, соответственно, размыкание созданной цепи. Существующая схема подключения реверсивного пускателя включает и блокировочные контакты, которые служат для управления силовыми элементами цепи, не исключая контроль. Причем все имеющиеся в схеме контакты могут находиться в двух состояниях: нормально-разомкнутом и нормально-замкнутом.

Что такое реверсивный магнитный пускатель и в чем его преимущества?

Пришло время более детально обсудить технические особенностии узнать, что же это такое реверсивный пускатель трехфазный. Как уже становится ясно, существует два вида магнитных пускателей. Первый – прямой или нереверсивный. Второй – реверсивный, о котором дальше пойдет в речь в статье.

Обычно стандартные реверсивные пускатели оснащаются двумя магнитными пускателями, собранными в одном корпусе и соединенными между собой. Если присмотреться к схеме, то можно рассмотреть место крепления и соединения на общем основании двух этих магнитных элементов. Ну а теперь о главной особенности реверсивного пускателя – может работать только один из элементов, то если либо первый, либо второй. Такая переменность необходима, чтобы исключить межфазное замыкание.

По принятому режиму работы, да и по схеме реверсивного магнитного пускателя запуск происходит через замкнутые блокировочные контакты, которые обеспечивают попеременное, то есть неодновременное включение реверсивных и нереверсивных режимов. При этом реализуется главенствующая задача реверсивного пускателя – смена направлений вращения того или иного электрического двигателя, иными словами: все взаимосвязано, если изменился порядок чередования фаз, то, соответственно, выполняются преобразования имеющегося у оборудования ротора, меняется направление вращения.

Где и когда используются реверсивные магнитные пускатели?

Сфера применения реверсивных магнитных пускателей расширена. Например, при помощи бесконтактного реверсивного пускателя не обходится работа асинхронных двигателей, которые применяются в различных станках и мощных насосах.

Нередки случаи, что выполняется подключение реверсивного пускателя для расширенных систем вентиляции, для надежности запорной арматуры. Всегда ценится специалистами «беспроблемное оборудование», управлять которым несложно, а эксплуатация длительная и надежная. К современным бонусам относят дистанционное управление – это достаточно выгодная опция, которая может быть обеспечена применением магнитного пускателя. Многие виды надежных электрических замков используют специальные пускатели для управления, а также выполняется внедрение такого незаменимого электромеханического элемента в систему отопления, работу лифтов.

Чем отличается схема магнитного реверсивного пускателя: правила комплектации

Представим, что появилась необходимость разобраться в особенностях устройства, в котором электрический двигатель способен работать в двух направления – прямом и обратном, то есть реверсивном. И если такая особенность очевидна, значит, в схеме агрегата предусмотрено наличиемагнитного реверсивного пускателя. Его использование не такое и простое, необходимо продумать режим работы, чтобы не допустить опасное замыкание фаз.

В схеме обязательно можно найти обозначение дополнительной цепи управления и кнопки запуска реверса. В виду такой продуманности, созданная схема отличается надежностью, так как защищена от короткого замыкания.

А за счет чего проходит реверс? Это легко объяснимо. – За счет переворачивания местами двух имеющихся в системе фаз: когда одна прекращает работу, а другая, наоборот, запускается. Для более надежной защиты, обязательно в схеме продумана блокировка, отвечающая за точную и своевременную остановку одного из пускателей, первого или второго. Все зависит от поставленных задач. Напомним, что в случае срабатывания двух пускателей мгновенно произойдет короткое замыкание на силовых контактах агрегата.

Отметим, что реверсивное движение запускается не мгновенно, так как требуется срабатывание нескольких важных пунктов. Во-первых, обязательно рекомендуется остановить работу двигателя, нажать кнопку «Стоп». Во-вторых, надо обратить внимание на состояние катушки, снять с нее напряжение, иначе процесс реверсивного запуска даст сбой. Если все сделано правильно, то пускатель вернется в исходное положение под действием пружины. Все, агрегат готов к реверсу. Нажимаем кнопку «Пуск», соответственно, подается нужное напряжение на катушку, значит, процесс запущен. С панели управления устройства можно считать информацию замыкании электрической цепи. А это значит, что в систему поступил ток, и он постепенно подается в катушку. Одновременно выполняется блокирование всех не вступивших в работу контактов. Этого требует безопасность.

Отметим, что в случае срабатывания теплового реле, произойдет остановка агрегата во избежание аварийной ситуации.

Таким образом, магнитный пускатель играет важную роль в работе двигателей. Свое место назначения также достойно занимаем и реверсивный пускатель, обеспечивая бесперебойную работу станков, тэнов, лифтов и другого электрического оборудования. Пускатели относятся в надежным и безопасным образцам, особенно если они дополнительно оснащены блокировочными системными механизмами. Они находятся внутри кожуха и не допускают срабатывание одновременно двух катушек, не доводя до замыкания фаз.

{SOURCE}

Монтажная схема реверсивного пускателя

Использование реверсивной схемы управления даёт возможность запустить электродвигатель как в прямом, так и в обратном направлении, а также остановить его в нужный момент.

По сравнению с технологией подключения пускателя для одинарной схемы, потребуется дополнительная цепь управления и некоторые изменения в силовой части.

Пускатель

Действие самого пускового электромагнита заключается в следующем: если подать на его катушку напряжение, то сердечник (к которому прикреплены пары контактов) втянется внутрь катушки. Это позволит контактам замкнуться. Если напряжение будет снято, то соответственно произойдёт размыкание контактов.

Когда пускатель срабатывает, то все четыре пары его контактов замыкаются при этом коммутируют основной объём нагрузки лишь три пары (1-2, 3-4, 5-7), а четвёртая (блок-контакт) подаёт напряжение в момент опускания кнопки «Пуск».

Кнопочный пост

Стандартный кнопочный пост для реверсивного двигателя подразумевает трёхкнопочную конструкцию: нормально-разомкнутые кнопки «Вперёд» и «Назад» (чёрные) и нормально-замкнутая кнопка «Стоп» (красная). Кнопки поста ничем не различаются — у каждой в наличии по 2 контакта (4 клеммы). Разница в функциональном значении возникает из-за разницы в принципе подключения.

Если взглянуть с «изнанки», то можно увидеть нумерацию клемм для каждой кнопки (1, 2, 3, 4). Изначально пара 1-2 разомкнута, а 3-4 замкнута. Во время нажатия кнопки: 1-2 замыкается, а 3-4 размыкается.

Особенности подключения пускателя

Для тех, кому не принципиально самостоятельное подключение пускателя, возможно приобретение уже объединённого с кнопочным постом экземпляра. Его потребуется только подключить к питанию.

Всем остальным понадобятся некоторые разъяснения.

До того, как приступать к подключению магнитного пускателя потребуется:

  • Обесточить весь фронт работ. Для пущей достоверности проверить возможное наличие напряжения при помощи специальных индикаторов.
  • Уточнить подходящий для выбранной катушки диапазон рабочего напряжения (380 вольт и 220 вольт). В случае, если это 220 В, требуется подать на катушку фазу и ноль. При 380 В — должны быть разноимённые фазы. Если это не учитывать, то разность напряжений выведет прибор из строя.

В большинстве случаев магнитный пускатель и двигатель соединяются через тепловое реле. Этот необходимо для обеспечения безопасного поступления тока к устройству, а также даёт возможность не прекращать рабочий процесс, даже если одна из фаз перегорела.

Чтобы вращение электродвигателя изменило направление, две из трёх используемых фаз должны быть поменяны местами (например, вместо ABC — CBA). Обеспечить такую смену фаз помогает дополнительный пускатель. Проблема в том, что одновременное выключение двух приборов может вызвать короткое замыкание. Эта ситуация благополучно избегается благодаря постоянно-замкнутым контактам. Они обеспечивают разрыв одной цепи или просто блокируют её. Есть вариант и с механической блокировкой второго пускателя.

Процесс подключения

К прибору подключаются три разноимённого характера фазы (A, B, C). После этого они перенаправляются к силовым контактам пускателей КМ1 (A1, B1, C1) и КМ2 (A2, B2, C2).

Между центральными фазами B1-B2, а также между A1-C2 и C1-A2 делаются перемычки. К электродвигателю фазы, как уже говорилось ранее, проводятся через тепловое реле, которое по сути отвечает за контроль всего лишь двух фаз, поскольку они взаимозависимы. Если сила тока в одной увеличится, то и в другой происходит то же самое. В критической ситуации будут разомкнуты обе катушки.

Нужно учитывать, что центральная фаза (та, которая не меняет своего положения при смене направления работы двигателя) отвечает за питание всей цепи и проходит через защитный автомат, схему управления и кнопку «Стоп».

Лишь после этого подаётся нужная сила напряжения для контактной группы (кнопки «Вперёд» и «Назад»). Кроме этого существует «дежурный» контакт, он дублирует контактную группу.

Кнопка » Вперёд» имеет параллельное соединение с нормально-разомкнутым вспомогательным контактом пускателя КМ1. Аналогично, кнопка «Назад» соединяется с нормально-разомкнутым вспомогательным контактом КМ2.

Чтобы гарантировать рабочую стабильность, цепь питания обмотки пускателя КМ1 включает в себя нормально-замкнутый контакт пускателя КМ2, и наоборот. В результате запуск двигателя по любому направлению возможен только после полной остановки.

Принцип действия

Как только к трёхкнопочному выключателю подведён источник питания — устройство готово к работе.

При нажатии кнопки «Вперёд»: происходит замыкание цепи питания обмотки у КМ1, сердцевина катушки погружается, что вызывает замыкание силовых контактов. Одновременно с этим цепь управления КМ2 размыкается, благодаря включённому в неё вспомогательному контакту КМ1. Когда кнопка отпускается, питание продолжает подаваться по замкнутому вспомогательному контакту КМ1.

При нажатии кнопки «Назад» картина аналогичная, а если воспользоваться кнопкой «Стоп», то сердцевина КМ1 благодаря действию пружины вернётся в исходное положение, и работа прекратится.

Реверсивный контактор, представляющий собой одну из разновидностей электромагнитных пускателей. Он обеспечивает вращение вала в обоих направлениях, поддерживает устойчивую работу двигателей, своевременно отключает питание, защищает оборудование в аварийных ситуациях.

С точки зрения устройства, такие контакторы являются улучшенным образцом электромагнитного пускового аппарата и предназначаются для прямой работы с двигателями. Некоторые модели оборудованы дополнительными устройствами, выполняющими аварийное отключение при обрывах фаз и коротких замыканиях.

Устройство и принцип работы

Магнитные контакторы или пускатели относятся к коммутационным устройствам, выполняющим дистанционный пуск электродвигателей и прочего оборудования.

Конструкция и схема этих приборов очень похожа на электромагнитное реле. Важной дополнительной функцией является возможность своевременно подключать и отключать трехфазную нагрузку. Основным конструктивным элементом служит магнитный сердечник, изготовленный в виде буквы Ш. В качестве материала использовалась электротехническая сталь в виде тонких листов.

Сам сердечник состоит из двух половинок, одна из которых является неподвижной и закрепляется на основании прибора. Другая часть – подвижная – при отсутствии тока удерживается на некотором расстоянии от неподвижной части при помощи пружины. Таким образом, между обеими частями возникает воздушный зазор.

Управление пускателем осуществляется через катушку, помещенную на центральный стержень сердечника, расположенный в неподвижной части. К подвижному магнитопроводу закрепляются контакты посредством мостового соединения. В момент срабатывания пускателя эти мостики перемещаются одновременно с магнитопроводом и совершают замыкание с неподвижной контактной группой.

Пусковое устройство срабатывает после того, как на катушку управления будет подано напряжение. Возникает электромагнитная сила, под действием которой происходит притягивание подвижной части сердечника к неподвижной детали. В результате, силовые контактные группы оказываются замкнутыми, и ток начинает поступать к выходным клеммам. После прекращения подачи напряжения катушка обесточивается, и подвижная часть возвращается на свое место. В этот момент в работу включается возвратная пружина, обеспечивающая размыкание контактов.

Во время выключения на каждом полюсе контактов образуется двойной разрыв, способствующий более эффективному гашению электрической дуги. Функцию дугогасительной камеры выполняет крышка устройства, под которой располагаются контакты.

В пускателе имеется не только основная контактная группа, но и дополнительная – в виде блок-контактов, используемая для вспомогательных целей. В основном, они используются в управлении, в сигнальных и блокирующих схемах.

Типы и модификации пусковых устройств

Основными параметрами, по которым выполняется классификация пускателей:

  • Величина рабочего тока, коммутируемого главными контактами.
  • Значение рабочего напряжения в подключенной нагрузке.
  • Параметры тока и напряжения в катушке управления.
  • Категория и область применения.

Значения номинальных токов коммутационной аппаратуры представлены стандартным рядом в границах 6,3-250 А. Подобная классификация использовалась для устаревших приборов, которые в настоящее время используются все реже. Номинальному току соответствовал определенный класс – от 0 до 7.

Подобная классификация утратила свое значение с появлением на отечественном рынке зарубежной продукции. При выборе того или иного устройства в первую очередь рассматривается величина номинального тока. Поскольку электромагнитные пускатели, в том числе и контакторы с функцией реверса, являются низковольтными устройствами, следовательно, они могут работать с напряжением, не превышающим 1000 В. Эти границы предполагают использование двух видов стандартных напряжений – 380 и 660 вольт. Конкретное значение для данной модели отображается на корпусе и в технической документации устройства.

Значительно большим разнообразием отличаются напряжения, с которыми могут работать катушки управления. Это связано с тем, что магнитные пускатели и контакторы используются в разных условиях, и подключаются к различным типам потребителей и автоматическим системам управления. Для подобных систем вовсе недостаточно обычных сетевых фаз. Питание осуществляется с помощью специальных цепей оперативного тока с собственными параметрами тока и напряжения. Обычно, катушки управления рассчитаны на переменное напряжение 12-660 вольт и постоянное – 12-440 В.

Кроме того, контакторы и магнитные пускатели различаются внешним видом и комплектацией. В большинстве случаев, это модели, помещаемые в пластиковый корпус с кнопками запуска и остановки, расположенными снаружи. Многие приборы изначально комплектуются тепловыми защитными реле.

Отличия реверсивных и обычных контакторов-пускателей

Прежде чем рассматривать отличия обоих устройств следует отметить, что магнитный пускатель является усовершенствованной версией контактора, предназначенной для работы с низковольтным оборудованием и установками.

По сравнению с обычными контакторами, магнитные пускатели отличаются более компактными размерами и меньшим весом. Они предназначены для узкоспециализированных действий по включению и отключению электродвигателей. Контакторы же выполняют более широкий круг задач в силовых электрических цепях.

Многие пускатели дополнительно оборудуются тепловыми реле, выполняющими аварийные отключения и защищающие при обрывах фазы. Управление пуском и отключением производится с помощью специальных кнопок или отдельной системой, состоящей из катушки и слаботочной контактной группы. В некоторых модификациях могут использоваться оба варианта.

Все магнитные пускатели разделяются на два вида. Они могут быть реверсивными и нереверсивными. Реверсивный контактор состоит из двух отдельных магнитных пускателей, объединенных в общем корпусе и соединенных друг с другом электрическим путем. Оба компонента устанавливаются на общее основание, но одновременно работать они не могут. По команде оператора включается лишь один из них – первый или второй.

Управление реверсивным магнитным пускателем осуществляется при помощи блокировочных контактов нормально-замкнутого типа. Их основная функция заключается в предотвращении одновременного включения обеих контактных групп – реверсивной и обычной. В противном случае может произойти межфазное замыкание. Для этой же цели некоторые модели выпускаются с механической блокировкой. Поочередный запуск контакторов обеспечивает такое же поочередное переключение фаз. В результате, прибор начинает выполнять свою основную задачу – изменять направление вращения вала электродвигателя.

Оба варианта включения необходимо рассмотреть более подробно. Чтобы лучше понять суть реверсного запуска, необходимо вначале остановиться на обычном способе включения.

Обычная нереверсивная схема включения

Простейшим вариантом включения считается нереверсивная схема, обеспечивающая вращение вала электродвигателя только в одну сторону. В качестве примера можно взять обычный пускатель с управляющей катушкой на 220 В.

Подключение схемы начинается в трехфазном автомате, подходит к силовым клеммам пускового устройства, и далее соединяется с тепловым реле. Управляющая катушка с одной из сторон соединяется с нулевым проводником, а с противоположной – с фазой путем использования в этой цепи функциональных кнопок.

В состав кнопочного поста входят две кнопки: ПУСК – с контактами нормально-разомкнутого типа и СТОП – с нормально-замкнутыми контактами. Одновременно с кнопкой запуска выполняется подключение нормально-замкнутого контакта управляющего катушечного элемента. За счет теплового реле, включенного в промежуток фазной линии, обеспечивается защита двигателя от чрезмерных перегрузок. Его нормально-замкнутый контакт оказывается соединенным с элементами управления.

Когда трехфазный автомат оказывается включенным, начинается течение тока в сторону силовых контактов пусковой аппаратуры и к управляющей цепи. После этого схема приходит в работоспособное состояние. С целью запуска электродвигателя вполне достаточно воздействия на пусковую кнопку. Далее, в управляющие компоненты подается питание. Цепь оказывается замкнутой, после чего якорь начинает втягиваться и в то же время замыкать контакт прибора управления. К силовой контактной группе двигателя подается ток, и вал начинает вращение. После возврата в исходное состояние пусковой кнопки, питание к обмотке контактора будет поступать, проходя по вспомогательному контакту, благодаря чему работа двигателя продолжится без перерыва.

Прекратить работу нереверсивного агрегата возможно имеющейся кнопкой СТОП. Это вызовет разрыв цепи, и питающее напряжение перестает подходить к блоку управления. Начинается размыкание шунтирующего контакта и возврат якоря в исходное состояние с одномоментным размыканием основных контактов. По окончании этого процесса, наступает остановка электродвигателя. Когда кнопка СТОП окажется отпущенной, контакт управляющего элемента будет пребывать в разомкнутом положении до следующего запуска схемы.

Чтобы защитить электродвигатель во время нереверсивного пуска, применяется тепловое реле на основе биметаллических контактных пластин. Под влиянием возрастающего тока они начинают выгибаться. Поскольку эпластины соединяются с расцепителем, контакт в управляющей обмотке прерывает поступление питающего напряжения. Контакты прибора разъединяются и переходят в первоначальное состояние.

Реверсивная схема

Для того чтобы создать реверсивную схему включения электродвигателя, потребуется использование двух магнитных контакторов и трех кнопок управления. Оба пускателя устанавливаются в непосредственной близости для удобства соединений и подключений в том числе и с механической блокировкой.

Клеммы для подключения питания соединяются между собой на обоих устройствах. Контакты, подключаемые к электродвигателю, соединяются перекрестным способом. Провод питания электродвигателя может соединяться с любыми питающими клеммами одного из пускателей.

Следует помнить, что перекрестная схема подключения, категорически запрещает одновременное включение двух пускателей, поскольку это обязательно вызовет короткое замыкание. В связи с этим, проводники блокирующих цепей в каждом из приборов вначале соединяются с замкнутым контактом управления другого устройства, а потом – с разомкнутым контактом собственного. При включении второго контактора первый будет отключаться и наоборот.

Вторая клемма кнопки СТОП, находящейся в замкнутом положении, соединяется не с двумя, как обычно, а с тремя проводами. Два из них являются блокирующими, а через третий – подается питание на пусковые кнопки, соединенные параллельно между собой. Подобная схема позволяет отключить кнопкой остановки любой включенный пускатель и остановить вращение электродвигателя.

В домашнем хозяйстве приходится использовать различные приборы, которые помогают облегчить выполнение какой-то задачи. В некоторых случаях под потребности приходится собирать какой-то конкретный инструмент, который стоит довольно дорого или под него просто есть все необходимые компоненты. Часто для этого важно знать, как сделать схему подключения электродвигателя. Заставить его вращаться не так сложно, а изменить направление движения уже сложнее. В статье будет рассказано о том, как выполнить схему реверсивного подключения двигателя.

Принцип работы


Электрический двигатель представляет собой механизм, в котором вращение осуществляется под воздействием электромагнитных волн. В основу положено всего два компонента:

Вращается только первый элемента, а импульс на него подается со второго элемента. Чем выше мощность двигателя, тем больше его габариты. Из всего разнообразия различают:

В двигателях коллекторного типа питание на ротор подается через угольные щетки, которые касаются ламелей коллектора. Такие двигатели еще называют короткозамкнутыми. В асинхронных двигателях схема действия несколько отличается. В этом случае вращение происходит под воздействием двух сил:

Напряжение от источника питания подается на фиксированные обмотки статора. При этом в нем возникают электромагнитные волны. Если напряжение переменное, тогда магнитное поле нестабильно и имеет определенные колебания. Благодаря этим колебаниям и происходит смещение ротора. Между ротором и статором есть небольшой воздушный зазор, благодаря которому и возможно беспрепятственное смещение. Магнитные волны из обмоток статора воздействуют на обмотки ротора, создавая напряжение. Благодаря такому воздействию возникает электродвижущая сила или ЭДС. Она заставляет магнитные волны взаимодействовать в обратном направлении тем, что есть в статоре, поэтому двигатель и называется асинхронным.

Требуемые компоненты


Самостоятельное подключение двигателя для реверсивного вращения не вызовет особых сложностей, если руководствоваться приведенной схемой. Одним из важных компонентов, который облегчит такую задачу является магнитный пускатель или контактор. На самом деле магнитный пускатель и контактор не являются тождественными понятиями. Если говорить просто, то контактор входит в состав магнитного пускателя, но для упрощения в статье оба понятия используются как равнозначные. Магнитные пускатели как раз и применяются для запуска, реверсивного движения и остановки асинхронных двигателей.

Возможно, возникает вопрос о том, почему нельзя использовать обычный рубильник или силовой автомат. В принципе, это допустимо, но не всегда пусковые токи, которые необходимы двигателю для нормального начала функционирования являются безопасными для человека. При включении может возникнуть пробой, который выведет из строя как выключатель, так и навредит оператору. Чтобы свести риски к минимуму, потребуется пускатель. В нем контактная часть отделена от той, с которой взаимодействует оператор. В нем есть отдельный модуль с катушкой, которая создает электромагнитное поле. Для работы катушки может потребоваться напряжение в 12 или больше вольт. При подаче этого напряжения происходит взаимодействие с металлическим сердечником, который втягивается внутрь катушки. К сердечнику закреплена пластина, которая уходит к контактной группе. Они замыкаются и происходит запуск двигателя. Остановка происходит в обратном порядке.

Кроме контактора, потребуется трехкнопочная станция. Одна клавиша выполняет функцию остановки, а две других функции запуска с разницей в направлении вращения. В трехкнопочной станции должно быть два нормально разомкнутых контакта и один нормально замкнутый. Если говорить просто, то нормальным положением контактора называется его нерабочее положение. То есть при воздействии на контакт он либо замыкается, либо размыкается. Если в рабочем состоянии он замкнут, то обозначается как НО, а если разомкнут, то обозначается как НЗ. Контакт НЗ применяется для кнопки остановки.

Принципиальная схема


На иллюстрации выше можно видеть принципиальную схему реверсивного подключения двигателя. Она отличается от обычной только наличием дополнительного модуля. Если говорить точнее, то в схеме задействуется два модуля управления. Один из них заставляет вращаться двигатель вправо, а другой влево. Взаимодействие оператора с модулями происходит посредством кнопок SB2 и SB3. Латинскими буквами A, B, C на схеме обозначены подводящие линии трехфазной сети. Они подходят к общему выключателю, который обозначен QF1. Далее идут два контактора КМ и цифровым обозначением. От контакторов цепь уходит к обмоткам двигателя. Каждый из этих контакторов вынесен отдельно и находится справа, где дополнительно можно рассмотреть их составные компоненты.

Процесс включения


Процесс включения двигателя довольно просто описать, используя все ту же схему. Первым делом происходит задействование общего рубильника QF1. Как только он включается, происходит подача напряжения по трем фазам. Но это напряжение не подается непосредственно на сам двигатель, т. к. еще нет четких указаний, в каком направлении он должен вращаться. Далее проводники проходят через автомат SF1 он выполняет защитную функцию, обесточивая всю систему в случае короткого замыкания. Далее следует кнопка выключения, которая также способна быстро разомкнуть цепь питания. Только после этого напряжение следует к клавишам SB2 и SB3, после воздействия на который, питание проходит к двигателю.

Чтобы двигатель получил достаточное усилие для обратного вращения, необходимо переключить силовые фазы, для чего и предназначен пускатель КМ2. Если еще раз обратить внимание на схему, то можно заметить, что пускатель КМ1 имеет прямое подключение фаз к двигателю, а КМ2 обеспечивает некоторое смещение. Все происходит за чет первой фазы, она в этой схеме является ждущей. Как только она размыкается, прекращается подача напряжения на двигатель.

После полной остановки может быть задействована кнопка SB3. Она активирует второй пускатель. Последний меняет положение фаз, как показано на схеме. При этом дежурная фаза остается неизменной, питание от нее все так же подается на первый контакт двигателя. Изменения происходят во второй и третьей фазе. Благодаря этому обеспечивается реверсивное движение.

Этапы подключения


Подключение двигателя для реверсивного движения отличается в зависимости от того, какая сеть будет выступать питающей 220 или 380. Поэтому есть смысл рассмотреть их отдельно.

К трехфазной сети


Руководствуясь представленной схемой легко составить последовательность, в которой должно производиться подключение электродвигателя. Первым делом устанавливается основной силовой автомат. Его номинальное напряжение и сила тока должны быть рассчитаны на те, которые будет потреблять двигатель. Только в этом случае можно быть уверенным в бесперебойной работе. Перед монтажом автомата для двигателя потребуется обесточить сеть. Следующим устанавливается предохранительный выключатель. После него фазный кабель уходит на разрыв, на кнопку стоп, а уже от нее делается подключение к контакторам. На каждом элементе контактора и кнопочного поста обычно делаются соответствующие обозначения, которые упрощают процесс подключения. Видео о сборке тестовой схемы можно посмотреть ниже.

К однофазной сети


В домашних условиях часто приходится задействовать асинхронный двигатель, но не в каждом хозяйстве есть трехфазная сеть, поэтому важно знать, как подключить двигатель к однофазной сети. Для запуска от одной фазы требуется дополнительный импульс, чтобы его обеспечить подбирается конденсатор требуемой емкости. Если говорить проще, то конденсаторов должно быть два. Один из них является пусковым и подключается параллельно первому. Соединение обмоток двигателя выполняется по схеме «звезда». Если обмотки соединены другим способом и нет возможности его изменить, тогда не получиться выполнить требуемую схему.

Чтобы реверсивная схема функционировала потребуется переключение питания, которое поступает от конденсаторов между полюсами. Понадобится два выключателя и одна не фиксируемая кнопка. Одни из выключателей будет отвечать за подачу напряжения в цепь питания двигателя. Второй выключатель должен иметь три положения. В одном из них он будет выключенным, а в двух других изменять подачу питания от конденсаторов на обмотки. Не фиксируемая кнопка будет дополнительно подключать второй конденсатор на момент запуска двигателя.

Два вывода конденсатора подключаются между собой. К двум другим происходит подключение пусковой кнопки. Средний вывод трехпозиционного переключателя подключается к конденсаторам в том месте, где они объединены между собой. Два других вывода подключаются к клеммам двигателя, на которые приходит питание. Конденсаторы подключаются к выходу обмотки, которая применяется для запуска. Кнопка включения ставится в разрыв фазного провода.

Чтобы привести весь механизм в действие, необходимо подать питание на цепь двигателя основным выключателем. После этого задается направление вращения двигателя трехпозиционным выключателем. Далее нажимается кнопка пуска до момента выхода двигателя на рабочие обороты. Если возникает необходимость изменить направление вращения, тогда потребуется обесточить двигатель и дождаться его полной остановки, переключить трехпозиционный тумблер в противоположное крайнее положение и повторить процесс.

Резюме


Как видно реверсивное подключение требует определенных навыков, но может быть осуществлено без особых сложностей при соблюдении всех рекомендаций. Теперь не будет препятствий в использовании трехфазных агрегатов от однофазной сети, при этом следует понимать, что максимальная мощность будет ограничена, т. к. невозможен выход на полное потребление. На компонентах для подключения лучше не экономить, т. к. это скажется на сроке службы всей схемы. Во время сборки и запуска необходимо придерживаться всех правил безопасности работы с электрическим током.

Как работает система запуска

Стартер с предварительным включением

Шестерня приводится в движение соленоидом; есть начальный период, когда двигатель вращается медленно, чтобы обеспечить зацепление, поэтому вся операция более щадящая и вызывает меньший износ зубьев.

Сделать двигатель начать его надо крутить на какой-то скорости, чтоб хреново топливо и воздух в цилиндры , и сжимает его.

Мощный электрический стартер мотор делает поворот.Его вал несет небольшую шестерню ( механизм колеса), которая входит в зацепление с большим зубчатым венцом вокруг обода двигатель маховик .

В варианте с передним расположением двигателя стартер установлен низко рядом с задней частью двигателя.

Стартеру нужен тяжелый электрический Текущий , который он протягивает через толстые провода от аккумулятор . Нет обычного ручного управления выключатель может включить его: для работы с большим током нужен большой переключатель.

Выключатель должен включаться и выключаться очень быстро, чтобы избежать опасного, опасного искрения.Так что соленоид используется — устройство, в котором небольшой переключатель включает электромагнит завершить схема .

Стартер цепи

Все компоненты заземлены на металлический кузов автомобиля. Для передачи тока к каждому компоненту нужен только один провод.

Выключатель стартера обычно срабатывает зажигание ключ. Поверните ключ за пределы положения «зажигание включено», чтобы подать ток на соленоид.

выключатель зажигания имеет возвратная пружина , так что как только вы отпускаете ключ, он пружинит и выключает стартер.

Когда переключатель подает ток на соленоид, электромагнит притягивает железный стержень.

Движение штока замыкает два тяжелых контакта, замыкая цепь от аккумулятор к стартеру.

Шток также имеет возвратную пружину — когда ключ зажигания перестает подавать ток на соленоид, контакты размыкаются и пусковой двигатель останавливается.

Возвратные пружины необходимы, потому что стартер не должен вращаться больше, чем необходимо для запуска двигателя.Частично причина в том, что стартер потребляет много электроэнергии, которая быстро разряжает аккумулятор.

Кроме того, если двигатель запускается, а стартер остается включенным, двигатель будет вращать стартер так быстро, что он может быть серьезно поврежден.

Сам стартер имеет устройство, называемое шестерней Bendix, которое взаимодействует своей шестерней с зубчатым венцом на маховике только тогда, когда стартер вращает двигатель. Он отключается, как только двигатель набирает обороты, и это можно сделать двумя способами: инерция система и система с предварительным включением.

Инерционный стартер полагается на инерцию шестерни, то есть ее сопротивление вращению.

Система инерции

Стартер инерционного типа: это стартер «внутреннего» типа, в котором шестерня Bendix отбрасывает шестерню в сторону двигателя; есть и «внешние», в которых он движется в другую сторону.

Шестерня не прикреплена жестко к валу двигателя — она ​​навинчивается на него, как свободно вращающаяся гайка на болте с очень крупной резьбой.

Представьте, что вы внезапно закручиваете болт: инерция гайки не дает ей сразу повернуться, поэтому она смещается по резьбе болта.

При вращении инерционного стартера шестерня движется по резьбе вала двигателя и входит в зацепление с зубчатым венцом маховика.

Затем он достигает остановки в конце резьбы, начинает вращаться вместе с валом и, таким образом, вращает двигатель.

Инерция тяжелого поршневого узла предотвращает его немедленное вращение при вращении вала двигателя, поэтому он скользит по резьбе и входит в зацепление; при запуске двигателя шестерня вращается быстрее, чем вал, поэтому она выходит из зацепления.

При запуске двигателя шестерня вращается быстрее, чем вал собственного стартера. Вращающееся действие закручивает шестерню обратно по ее резьбе и выходит из зацепления.

Шестерня возвращается в исходное положение с такой силой, что на валу должна быть сильная пружина, чтобы смягчить ее удар.

Резкое включение и выключение инерционного стартера может вызвать сильный износ зубьев шестерни. Чтобы решить эту проблему, был введен стартер с предварительным включением, который имеет соленоид, установленный на двигателе.

Автомобильная стартерная система — это еще не все: соленоид не только включает двигатель, но и перемещает шестерню по валу, чтобы зацепить ее.

Вал прямой шлицы вместо резьбы Бендикс, чтобы шестерня всегда вращалась вместе с ней.

Шестерня входит в контакт с зубчатым венцом маховика с помощью скользящей вилки. Вилка приводится в движение соленоидом, который имеет два набора контактов, замыкающихся один за другим.

Первый контакт подает слабый ток на двигатель, поэтому он вращается медленно — ровно настолько, чтобы зубья шестерни зацепились.Затем замыкаются вторые контакты, запитывая двигатель большим током, который вращает двигатель.

Цепь стартера двигателя

— Currents Bluewater Cruising

Распространенное бедствие, в связи с которым мы часто получаем запросы на обслуживание, — это то, что двигатель не запускается или даже не запускается. Большинство из нас знакомо со звуком низкого заряда аккумулятора, когда стартер двигателя медленно переворачивает двигатель, но недостаточно быстро, чтобы запустить двигатель; некоторые люди, возможно, даже слышали «щелкающий» звук от батареи настолько низкого напряжения, что стартер даже не включается.Традиционные схемы стартера относительно просты, и базовое понимание схемы может позволить оператору найти неисправность в цепи.

«Стартер» состоит из электродвигателя, достаточно мощного, чтобы повернуть двигатель и запустить его. Из-за высокой силы тока, необходимой для работы двигателя, включение стартера осуществляется соленоидом (обычно прикрепленным к двигателю), который позволяет снизить силу тока для кратковременного переключения цепи для включения стартера.Кабель высокого тока подключается к одной стороне соленоида, а другой вывод соленоида с высоким током подключается к стартеру. На соленоиде будет один или два (два, если соленоид имеет изолированное заземление) меньших клемм, которые обеспечивают электрическое срабатывание соленоида.

Логика схемы стартера следует этому традиционному формату. Электропитание подается на сторону высокого тока соленоида стартера по кабелю, подключенному к переключателю пусковой аккумуляторной батареи двигателя.Выключатель батареи стартера также будет обеспечивать питание остальной части цепи стартера, которая может включать дополнительный переключатель включения / выключения (он же выключатель зажигания), но должен включать выключатель мгновенного действия для управления соленоидом стартера. Когда переключатель стартерной батареи двигателя находится в положении «включено», питание должно подаваться с одной стороны соленоида стартера и с одной стороны переключателя мгновенного действия стартера (возможно, от переключателя «зажигание»). Нажатие кнопки мгновенного стартера подает напряжение на клемму срабатывания соленоида стартера, замыкая контакт соленоида и активируя стартер.

Поиск и устранение неисправностей в системе стартера мотоцикла

— Cyclepedia

Получите доступ к технической поддержке и нашему руководству по устранению неполадок

Электростартерные системы теперь можно найти почти на всех силовых спортивных автомобилях. Все электрические пусковые системы имеют две отдельные цепи: одну для слабого тока и одну для сильноточного. Обе цепи подключены к батарее.

Когда стартер включен, для его вращения требуется большой ток.Сильноточная цепь передает этот ток на стартер от аккумуляторной батареи. Эту схему легко идентифицировать, так как в ней должен использоваться провод большего сечения, чтобы выдерживать большой ток. Провода калибра от 6 до 8, которые соединяют положительную клемму аккумуляторной батареи с реле стартера и реле стартера с двигателем стартера, образуют сильноточную цепь вместе с сильноточными контактами в реле стартера.

Сильноточная цепь управляется слаботочной цепью.В слаботочной цепи используются провода меньшего диаметра, обычно от 16 до 12 калибра. Центральными компонентами этой цепи являются аккумулятор, главный выключатель зажигания, выключатель запуска двигателя, предохранитель и обмотка катушки внутри реле стартера.

Когда включается переключатель запуска двигателя, замыкается цепь низкого тока, и внутри реле стартера создается электромагнитное поле. Это электромагнитное поле замыкает сильноточные контакты и замыкает сильноточную цепь. Сильный ток протекает через толстый провод, питающий стартер.Когда пусковой переключатель двигателя отпускается, цепь низкого тока размыкается, и в результате размыкаются контакты высокого тока и прекращается подача большого тока на стартер.

Большинство пусковых цепей предназначены для предотвращения вращения стартера в нежелательных условиях. Это может включать в себя выключатели тормоза, сцепления, боковой подножки или нейтрали, которые не позволят замкнуться слаботочной цепи, если не будут созданы оптимальные условия запуска. Если система запуска не работает должным образом, устраните неисправность всей цепи, а не только основных компонентов.

При проверке системы электрического запуска обязательно начинайте с полностью заряженной аккумуляторной батареи. Найдите реле стартера. Попытайтесь завести двигатель и послушайте реле стартера. Реле стартера должно щелкнуть. Если реле щелкает, замыкается слаботочная цепь пусковой системы.

Если реле стартера не щелкает, проверьте слаботочную цепь и компоненты на наличие проблемы. Таким же образом можно проверить почти все реле стартера.

Отсоедините сильноточный провод от положительной клеммы аккумуляторной батареи и отсоедините слаботочный разъем от реле стартера.Подайте напряжение 12 В непосредственно на входные клеммы слабого тока реле стартера. Проверьте целостность цепи между клеммами высокого тока. Когда скачок завершен, между сильноточными клеммами должно быть соединение. Когда перемычка разомкнута, не должно быть непрерывности между сильноточными клеммами. Замените реле стартера, если оно не прошло проверку.

Если реле стартера щелкает, но стартер не вращается, проблема в сильноточной цепи.Проверьте надежность соединения толстых проводов между аккумуляторной батареей и реле стартера, а также реле стартера и стартером. Проблема может заключаться в стартере, если проверить силовые провода и соединения.

Чтобы проверить стартер, подключите к нему 12 В и посмотрите, вращается ли он. Обязательно подготовьте автомобиль к включению стартера, так как в этом тесте не будут приняты меры по обеспечению безопасности цепи низкого тока. Если стартер не вращается, он либо неисправен, либо заблокирован, это проблема механического двигателя.

Добавление реле к системе стартера 240Z

Добавление реле к системе стартера 240Z

BioPatentSm Услуги интеллектуальной собственности

Добавление реле к системе стартера 240Z

Соленоид является частью стартера, который получает напряжение стартового сигнала от замка зажигания. Соленоид — это электромагнит, который втягивает в себя сердечник из стального стержня при подаче напряжения. Стержень подключен к электрическому выключателю, который включает стартер.Удочка также механически соединен с подпружиненным рычагом для вталкивания ведущей шестерни стартера в коронная шестерня маховика, тем самым соединяя стартер с двигателем. Когда ключ зажигания отпускается из положения «пуск», электричество не поступает на соленоид и пружина оттягивают ведущую шестерню от кольцевой шестерни (предотвращая ее от шлифование при запуске двигателя). Соленоид выполняет много работы и поэтому для правильной работы требуется большое напряжение и ток.

Общая проблема с зажиганиями 240Z заключается в том, что они не На соленоид стартера поступает напряжение, достаточное для того, чтобы потянуть за рычаг, поэтому стартер не включен, и ведущая шестерня не контактирует с зубчатым венцом маховика.Только слышен щелчок, соленоид прыгает, но не тянет рычаг все путь. Это связано с тем, что напряжение в цепи запуска зажигания слишком сильно падает на долгое путешествие от батареи через небольшой провод к блоку предохранителей, через два шина контакты предохранителя, через тонкие провода к замку зажигания, через грязные и изношенные контактов в замке зажигания и протяните тонкий провод к соленоиду стартера. Изготовление Хуже того, когда стартер пытается ворваться.Некоторые из 240Z, которыми я владел, сталкивались с проблемой нажатия только при повороте ключа зажигания. Часто требовалось много кликов, иногда оставляя меня гадая, запустится ли Z вообще, прежде чем, наконец, запустить двигатель.

В этой статье показан способ предоставления улучшенного напряжение и ток на соленоид стартера для надежного и сильного пуска. Ниже изображение, показывающее неэлегантную, но функциональную схему релейной цепи, которая значительно улучшенный начиная с моего 240Z 1973 года.Обратите внимание: провод 3 должен иметь плавкий предохранитель.

Релейная система улучшает пуск, обеспечивая полный напряжение напрямую от АКБ, а не через замкнутую цепь штатного зажигания описано выше. Я использовал стандартное реле, которое есть во многих современных автомобилях и доступны в магазинах автомобильных запчастей или Radio Shack (модель на 30 А в ящике выключателей; спросите продавца, если вы не можете его найти). Реле имеют 4 контакта: провод выключателя зажигания и заземление, которые управляют срабатыванием. реле, подключение питания от батареи и выходное подключение к соленоид.

Кому установите реле на стартер: проложите провод выключателя зажигания «1» (обычно подключается в верхней части соленоида) к разъему 86 реле; проложить провод «2» на массу от разъема 85 реле; проложите провод 12 калибра «3» прямо от положительный полюс аккумуляторной батареи (через предохранитель на 20 ампер) к разъему 87 реле; и, проложите провод 12 калибра «4» от разъема 30 реле до места зажигания. провод переключателя изначально подключен к верхней части соленоида.

1) Провод выключателя зажигания «1» подключается к гнезду разъема в верхней части соленоид стартера.Тебе просто нужно отсоедините его от соленоида и наденьте на контакт 86 разъема реле.

2) Для заземления реле я просто делаю провод 16 калибра «2» с внутренней резьбой. соединитель на одном конце и соединитель «кольцевой зажим» на другом конце. Нажимной разъем подключается к клемме 85 реле и кольцевой соединитель прикручены болтами или винтами к доступному заземлению, например, где перемычка заземления батареи соединяется с противопожарной перегородкой.

3) На срабатывание соленоида идет большой ток, поэтому я использовал провод 12 калибра «3» с кольцевой вывод на батарее, плавкий предохранитель на 20 ампер в линии и гнездовой нажимной разъем для Подключите к контактному разъему реле 87.

4) Наконец, проложен провод 12 калибра «4» с внутренними нажимными разъемами на каждом конце. между контактом реле 30/51 и контактом соленоида в месте зажигания. провод переключателя первоначально был подключен к розетке.

Установка Показан мой испытательный комплект, и на нем легче показать, куда идут провода. Проводка может лучше организовать, установив реле на стенку моторного отсека и запустив аккуратно проведите проводами вдоль стен, прежде чем перекинуть провод «4» через подключение соленоида к стартеру.Хороший альтернативный метод подключения к реле — использовать стандартный релейный разъем для подключите реле вместо того, чтобы выполнять соединения с помощью 4 отдельных нажимных разъемов.

Та же самая базовая настройка реле может использоваться с сигналом, поступающим из выключатель звукового сигнала или выключатель света для управления звуковыми сигналами и освещением. Этот пример веб-страницы только для образования, и автор не несет ответственности за попытки читателей установить собственные релейные системы.

Вы поняли эту статью, надо быть умным.Защитите свой творческие идеи и изобретения — пишите мне на [email protected].

Return to BioPatent Home: Return

| Очистка белков | | 240Z Страница продления | | Товарные знаки | | Ремонт кондиционеров |
| 240Z Модификации производительности | | Страница патентов и коммерческой тайны | | 240Z Восстановление двигателя |

Все о ручных пускателях двигателей

Пускатели двигателей — это устройства, которые запускают и останавливают электродвигатели с помощью ручных или автоматических переключателей и обеспечивают защиту цепей двигателя от перегрузки.Основные характеристики включают предполагаемое применение, тип пускателя, электрические характеристики, включая количество фаз, ток, напряжение и номинальную мощность, а также характеристики. Пускатели двигателей используются везде, где работают электродвигатели с определенной мощностью. Существует несколько типов пускателей, в том числе ручные, магнитные, плавные, многоскоростные и пускатели полного напряжения. В этой статье рассматриваются ручные пускатели двигателей и объясняется, как они работают, их применение и некоторые соображения по выбору пускателя двигателя.

Как работает ручной пускатель двигателя?

Ручные пускатели двигателей — это простейшие устройства для пуска двигателей, которые состоят из двухпозиционного переключателя и реле перегрузки. Как следует из названия, они управляются вручную. Кнопка, тумблер или поворотный переключатель, установленные непосредственно на стартере, нажимаются для запуска или остановки подключенного электрического оборудования. Механические соединения от кнопок или тумблера заставляют контакты размыкаться и замыкаться, запуская и останавливая двигатель.

В ручном пускателе двигателя конденсатор и катушки, присутствующие в двигателе, будут управлять направлением однофазного асинхронного двигателя.Если двигатель достигает определенной скорости, встроенная обмотка стартера начинает издавать щелчок. Ручные пускатели двигателя обеспечивают защиту двигателя от перегрузки. Они следят за тем, чтобы к двигателю поступал необходимый ток, и помогают контролировать температуру в двигателе.

Все пускатели двигателей имеют определенные функции управления мощностью. Они рассчитаны на ток (в амперах) или мощность (в лошадиных силах) и имеют дистанционное управление включением / выключением и защиту двигателя от перегрузки. У них есть функции включения и выключения, которые быстро включают или отключают ток.

Пускатель с самозащитой представляет собой разновидность ручного пускателя и часто используется в панелях управления с несколькими двигателями. Панели управления имеют низкоуровневую мгновенную максимальную токовую защиту, которая позволяет одному устройству защиты от короткого замыкания на входе защитить несколько пускателей. Это означает, что двигатели не нуждаются в индивидуальной защите от короткого замыкания. Эти ручные пускатели могут использоваться как с однофазными, так и с трехфазными двигателями.

Приложения и отрасли

Поскольку ручные пускатели двигателей обычно не предусматривают отключения мощности двигателя в случае прерывания подачи электроэнергии, они обычно используются для двигателей меньшего размера, где полезно возобновить работу после восстановления мощности.Сюда входят небольшие насосы, вентиляторы, пилы, воздуходувки, упаковочное, сортировочное и другое оборудование.

Пускатели с ручным пуском

с защитой от пониженного напряжения обеспечивают обесточивание цепи пускателя после сбоя питания и, следовательно, используются для конвейеров и т. Д., Где существует опасность автоматического перезапуска как для оборудования, так и для персонала. Ручные пускатели двигателей с защитой от пониженного напряжения используются на станках, деревообрабатывающем оборудовании и т. Д., Где требования безопасности требуют отключения двигателя после сбоя питания.

Они доступны как в конфигурациях NEMA и IEC, так и в стандартных размерах. Ручные стартеры меньше по размеру и имеют более низкую начальную стоимость, чем другие стартеры. Они используются в сетях полного напряжения для однофазных и трехфазных двигателей малого и среднего размера

Соображения

Ручные пускатели двигателей ограничены размером двигателя, который они могут запускать, начиная с дробных уровней л.с. и обычно увеличивая максимум до 10-15 л.с., в зависимости от напряжения.Они, как правило, используются с оборудованием, которое запускается нечасто или работает непрерывно с несколькими остановками. Кроме того, разработчикам необходимо рассмотреть магнитные пускатели или даже устройства плавного пуска. Особые случаи, такие как реверсирование или многоскоростное обслуживание, решаются с помощью стилей для конкретных приложений. Другие соображения, помимо размера двигателя и напряжения, включают в себя рассмотрение приложений и изучение таких опций, как взрывозащищенность, характеристики корпуса и защита предохранителем или автоматическим выключателем.

Сводка

В этой статье представлены сведения о ручных пускателях двигателей.Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

Прочие изделия для стартеров двигателей

Больше от Machinery, Tools & Supplies

Проблема с пускателем двигателя? Мы можем помочь вам в поиске и устранении неисправностей

Главная »О нас» Новости »Устранение основных неисправностей пускателя двигателя

Опубликовано: автором springercontrols

Проблемы с запуском двигателя могут быть вызваны множеством причин, но мы рассмотрим несколько простых методов определения проблемы со стартером двигателя и простых способов их устранения.

Если двигатель не запускается, необходимо проверить несколько вещей, чтобы определить причину. Если это новая установка, которая никогда не работала, важно проверить схему подключения и убедиться, что все провода подключены правильно. Если это более старая установка и она работала в прошлом, она все равно должна быть подключена правильно, если только недавно не были внесены некоторые изменения, которые могли привести к изменению проводки. Вот краткое руководство по поиску и устранению неисправностей магнитного пускателя двигателя

.
    1. Осмотрите кабели и клеммы на предмет признаков возгорания, коррозии, растрескивания изоляции кабеля или любых повреждений.Если есть какие-либо видимые признаки повреждения, ВЫКЛЮЧИТЕ ПИТАНИЕ и попросите опытного электрика проверить компоненты, проводку и установку. Если вы не видите никаких визуальных признаков проблемы, перейдите к шагу 2.

    1. Самым простым (и наиболее частым) случаем является срабатывание двигателя при перегрузке. Перегрузка предназначена для защиты двигателя, если ток превышает силу тока полной нагрузки. Это немного похоже на проверку / сброс автоматического выключателя в вашей домашней коробке выключателя.Чтобы сбросить перегрузку, просто нажмите красную кнопку на перегрузке, или, если у вас есть внешняя кнопка сброса, нажмите ее. Это также хорошее время, чтобы убедиться, что для сброса установлен режим «Ручной». Проверьте положение красной кнопки, чтобы убедиться, что она установлена ​​на «ручной».

    1. Если сброс перегрузки не работает, мы можем быстро проверить, не произошла ли перегрузка. Убедитесь, что питание отключено, заблокируйте / пометьте цепь, если это необходимо. и с помощью омметра проверьте целостность цепи между двумя нормально замкнутыми (NC) клеммами при перегрузке.Фактическое измерение сопротивления не имеет значения, мы просто проверяем, есть ли непрерывность. Если омметр показывает «ОТКРЫТО», значит, перегрузка серьезная и ее необходимо заменить.

    1. Если перегрузка показывает непрерывность между двумя клеммами NC, нам придется копнуть немного дальше. Сфотографируйте или запишите информацию с паспортной таблички двигателя. Важно знать напряжение, фазы и силу тока полной нагрузки (FLA) двигателя.Имея эту информацию под рукой, вы можете упростить процесс.

    1. Убедитесь, что для параметра перегрузки (желтая шкала) установлено значение тока полной нагрузки, указанное на паспортной табличке двигателя, в зависимости от мощности, подаваемой на двигатель.

    1. Как только вы определите необходимое входное напряжение, используйте цифровой мультиметр, чтобы проверить наличие всех трех фаз электрического потенциала. (или, если он однофазный, проверьте наличие однофазного напряжения).Лучше всего проверить это на кабеле, идущем в контактор на клеммах L1, L2 и L3, или, если есть разъединитель, проверьте подводящие провода к разъединителю. Измерьте расстояние между ножками L1, L2 и L3, чтобы убедиться, что у вас есть полное напряжение в соответствии с мощностью входной линии, подаваемой на двигатель.

    1. Если у вас отсутствует одна или несколько фаз и в цепи есть предохранители, отключите питание от сети и используйте мультиметр для проверки целостности предохранителей.

    1. Если один из них перегорел, замените его. Иногда держатели предохранителей могут подвергаться коррозии и мешать целостности цепи, поэтому осмотрите держатели предохранителей на предмет коррозии и, если она есть, очистите их с помощью очистителя электрических контактов и старой зубной щетки.

Если все вышеперечисленное выполнено, а двигатель по-прежнему не запускается, пора вызвать электрика.

в рубрике: Новости

Как устранить неполадки в системе электрического стартера квадроцикла

Если вы когда-либо с нетерпением ждали возможности управлять квадроциклом и обнаружили, что он не заводится, это вас разочаровывает.Однако эта ситуация не должна разрушать ваши планы. Вы можете выполнить диагностику системы, чтобы определить, есть ли проблема со стартером или другим компонентом. Команда Eubanks Auto Electric в Де Калб, штат Техас, предлагает лучшие услуги по ремонту электростартеров в регионе и объясняет, как работает система, чтобы помочь вам найти ответы.

Как работает система электрического стартера

Большинство спортивных транспортных средств, включая квадроциклы, снегоходы и гидроциклы, имеют систему электрического стартера.Он имеет две цепи — низкий ток и большой ток. Каждый из них подключен к аккумуляторной батарее, питающей ваш автомобиль. Сильноточная цепь питается от аккумулятора, чтобы включить стартер. Когда вы отпускаете выключатель стартера, включается слаботочная цепь и отключается сильноточная цепь. Целью цепи стартера является предотвращение работы двигателя, когда он вам не нужен, например, когда задействованы тормоз, нейтральная передача или сцепление.

Устранение неполадок стартера

Каждая батарея имеет положительную и отрицательную клеммы.Когда провода соединяют эти два провода, образуется цепь, вырабатывающая электрический ток. Если ваш автомобиль не заводится, сначала проверьте аккумулятор мультиметром. Если он показывает правильное напряжение, попробуйте отсоединить сильноточный провод от положительной клеммы аккумуляторной батареи, затем отсоедините слаботочный разъем от реле стартера. Как только это будет завершено, используйте слаботочную клемму и подключите 12 вольт электричества непосредственно к ней; это может заставить вашу стартовую систему снова заработать. Однако проблема также может быть такой же простой, как коррозия клеммы аккумулятора или старая свеча зажигания.

Если вы следуете этим советам, но стартер квадроцикла по-прежнему не работает, проконсультируйтесь со специалистами компании Eubanks Auto Electric в Де Калбе, штат Техас. Они ремонтируют различную технику, от промышленного оборудования, вилочных погрузчиков и тракторов до автомобилей, грузовиков и спортивных транспортных средств.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *