Регулятор напряжения на тиристоре ку202н: Регулятор напряжения на тиристоре ку202н — Ваша техника

Содержание

Схемы на тиристоре ку202н. Регулятор мощности для паяльника своими руками — схемы и варианты монтажа. Принцип работы тиристора

Тиристорные регуляторы напряжения представляют собой устройства, предназначенные для регулирования частоты вращения и момента электродвигателей. Регулирование частоты вращения и момента производится за счет изменения напряжения, подводимого к статору двигателя, и осуществляется изменением угла открытия тиристоров. Такой способ управления электродвигателем получил название фазового управления. Этот способ является разновидностью параметрического (амплитудного) управления.

Могут выполняться как с замкнутой, так и с разомкнутой системой регулирования. Регуляторы с разомкнутой системой не обеспечивают удовлетворительного качества процесса регулирования частоты вращения. Основное их назначение- регулирование момента для получения нужного режима работы привода в динамических процессах.


В силовую часть однофазного тиристорного регулятора напряжения включены два управляемых тиристора, которые обеспечивают протекание электрического тока на на1рузке в двух направлениях при синусоидальном напряжении на входе.

Тиристорные регуляторы с замкнутой системой регулирования используются, как правило, с отрицательной обратной связью по скорости, что позволяет иметь достаточно жесткие механические характеристики привода в зоне малых частот вращения.

Наиболее эффективно использование тиристорных регуляторов для регулирования частоты вращения и момента .

Силовые цепи тиристорных регуляторов

На рис. 1, а-д показаны возможные схемы включения выпрямительных элементов регулятора в одной фазе. Наиболее распространенной из них является схема на рис1,а. Она может быть использована при любой схеме соединения обмоток статора. Допустимый ток через нагрузку (действующее значение) в этой схеме в режиме непрерывного тока равен:

где I т — допустимое среднее значение тока через тиристор.

Максимальное прямое и обратное напряжения тиристора

где k зап — коэффициент запаса, выбираемый с учетом возможных коммутационных перенапряжений в схеме; — действующее значение линейного напряжения сети.

Рис. 1. Схемы силовых цепей тиристорных регуляторов напряжения.

В схеме на рис. 1,б имеется только один тиристор, включенный в диагональ моста из неуправляемых диодов. Соотношение между токами нагрузки и тиристора для этой схемы имеет вид:

Неуправляемые диоды выбираются на ток вдвое меньший, чем для тиристора. Максимальное прямое напряжение на тиристоре

Обратное напряжение на тиристоре близко к нулю.

Схема на рис. 1,б имеет некоторые отличия от схемы на рис. 1,а по построению системы управления. В схеме на рис. 1, а управляющие импульсы на каждый из тиристоров должны следовать с частотой питающей сети. В схеме на рис. 1,б частота импульсов управления вдвое больше.

Схема на рис. 1, в, состоящая из двух тиристоров и двух диодов, по возможности управления, загрузке, по току и максимальному прямому напряжению тиристоров аналогична схеме на рис. 1, а.

Обратное напряжение в этой схеме из-за шунтирующего действия диода близко к нулю.

Схема на рис. 1, г по току и максимальному прямому и обратному напряжению тиристоров аналогична схеме на рис. 1, а. Схема на рис. 1, г отличается от рассмотренных требованиями к системе управления по обеспечению необходимого диапазона изменения угла регулирования тиристоров. Если угол отсчитывать от нуля фазного напряжения, то для схем на рис. 1, а-в справедливо соотношение

где φ — фазовый угол нагрузки.

Для схемы на рис. 1, г аналогичное соотношение приобретает вид:

Необходимость увеличения диапазона изменения угла усложняет . Схема на рис. 1, г может быть применена при включении обмоток статора в звезду без нулевого провода и в треугольник с включением выпрямительных элементов в линейные провода. Область применения указанной схемы ограничена нереверсивными, а также реверсивными электроприводами с контактным реверсом.

Схема на рис. 4-1, д по своим свойствам аналогична схеме на рис. 1, а. Ток симистора здесь равен току нагрузки, а частота импульсов управления равна двойной частоте питающего напряжения.

Недостаток схемы на симисторах — значительно меньше, чем у обычных тиристоров, допустимые значения du/dt и di/dt .

Для тиристорных регуляторов наиболее рациональна схема на рис. 1, а с двумя встречно-параллельно включенными тиристорами.

Силовые схемы регуляторов выполняются с встречно-параллельно включенными тиристорами во всех трех фазах (симметричная трехфазная схема), в двух и одной фазах двигателя, как показано на рис. 1, е, ж и з соответственно.

В регуляторах, применяемых в крановых электроприводах, наибольшее распространение получила симметричная схема включения, показанная на рис. 1, е, которая характеризуется наименьшими потерями от высших гармонических токов. Более высокие значения потерь в схемах с четырьмя и двумя тиристорами определяются несимметрией напряжения в фазах двигателя.

Основные технические данные тиристорных регуляторов серии РСТ

Тиристорные регуляторы серии РСТ представляют собой устройства для изменения (по заданному закону) напряжения, подводимого к статору асинхронного двигателя с фазным ротором. Тиристорные регуляторы серии РСТ выполняются по симметричной трехфазной схеме включения (рис. 1, е). Применение регуляторов указанной серии в крановых электроприводах позволяет осуществлять регулирование частоты вращения в диапазоне 10:1 и регулирование момента двигателя в динамических режимах при пуске и торможении.

Тиристорные регуляторы серии РСТ выполняются на длительные токи 100, 160 и 320 А (максимальные токи соответственно 200, 320 и 640 А) и напряжение 220 и 380 В переменного тока. Регулятор представляет собой собранные на общей раме три силовых блока (по числу фаз встречно-параллельно включенных тиристоров), блок датчиков тока и блок автоматики. В силовых блоках используются таблеточные тиристоры с охладителями из тянутого алюминиевого профиля. Охлаждение воздушное — естественное. Блок автоматики — единый для всех исполнений регуляторов.

Тиристорные регуляторы выполнены со степенью защиты IP00 и предназначены для установки на стандартные рамы магнитных контроллеров типа ТТЗ, которые по конструкции аналогичны контроллерам серий ТА и ТСА. Габаритные размеры и масса регуляторов серии РСТ указаны в табл. 1.

Таблица 1 Габаритные размеры и масса регуляторов напряжения серии РСТ


В магнитных контроллерах ТТЗ установлены контакторы направления для реверсирования двигателя, контакторы роторной цепи и другие релейно-контактные элементы электропривода, осуществляющие связь командоконтроллера с тиристорным регулятором. Структура построения системы управления регулятора видна из функциональной схемы электропривода, показанной на рис. 2.

Трехфазный симметричный тиристорный блок Т управляется системой фазового управления СФУ. С помощью командоконтроллера КК в регуляторе производится изменение задания скорости БЗС, Через блок БЗС в функции времени осуществляется управление контактором ускорения КУ2 в цепи ротора. Разность сигналов задания и тахогенератора ТГ усиливается усилителями У1 и УЗ. К выходу усилителя УЗ подключено логическое релейное устройство, имеющее два устойчивых состояния: одно соответствует включению контактора направления вперед KB, второе — включению контактора направления назад КН.

Одновременно с изменением состояния логического устройства реверсируется сигнал в цепи управления РУ. Сигнал с согласующего усилителя У2 суммируется с сигналом задержанной обратной связи по току статора двигателя, который поступает с блока токоограничения ТО и подается на вход СФУ.

На блок логики БЛ воздействует также сигнал с блока датчиков тока ДТ и блока наличия тока НТ, запрещающий переключение контакторов направления под током. Блоком БЛ осуществляется также нелинейная коррекция системы стабилизации частоты вращения для обеспечения устойчивости работы привода. Регуляторы могут быть использованы в электроприводах механизмов подъема и передвижения.

Регуляторы серии РСТ выполнены с системой ограничения тока. Уровень токоограничения для защиты тиристоров от перегрузок и для ограничения момента двигателя в динамических режимах плавно изменяется от 0,65 до 1,5 номинального тока регулятора, уровень токоограничения для максимально-токовой защиты- от 0,9 до. 2,0 номинального тока регулятора. Широкий диапазон изменения уставок защиты обеспечивает работу регулятора одного типоразмера с двигателями, отличающимися по мощности примерно в 2 раза.

Рис. 2. Функциональная схема электропривода с тиристорным регулятором типа РСТ: КК — командоконтроллер; ТГ — тахогенератор; КН, KB — контакторы направления; БЗС — блок задания скорости; БЛ — блок логики; У1, У2. УЗ — усилители; СФУ- система фазового управления; ДТ — датчик тока; ИТ — блок наличия тока; ТО — блок токоограничения; МТ — блок защиты; КУ1, КУ2 — контакторы ускорения; КЛ — линейный контактор: Р — рубильник.

Рис. 3. Тиристорный регулятор напряжения РСТ

Чувствительность системы наличия тока составляет 5-10 А действующего значения тока в фазе. В регуляторе предусмотрены также защиты: нулевая, от коммутационных перенапряжений, от исчезновения тока хотя бы в одной из фаз (блоки ИТ и МТ), от помех радиоприему. Быстродействующими плавкими предохранителями типа ПНБ 5М осуществляется защита от токов короткого замыкания.

Содержание:

В современных радиолюбительских схемах широкое распространение получили различные виды деталей, в том числе и тиристорный регулятор мощности. Чаще всего эта деталь используется в паяльниках на 25-40 ватт, которые в обычных условиях легко перегреваются и становятся непригодными к работе. Эта проблема легко решается с помощью регулятора мощности, позволяющего выставлять точную температуру.

Применение тиристорных регуляторов

Как правило, тиристорные регуляторы мощности применяются для улучшения рабочих свойств обычных паяльников. Современные конструкции, оснащенные множеством функций, отличаются высокой стоимостью, а их использование будет неэффективным при небольших объемах . Поэтому, более целесообразным будет оборудование обычного паяльника тиристорным регулятором.

Регулятор мощности на тиристоре широко применяется в системах светильников. На практике они представляют собой обычные настенные выключатели с вращающейся ручкой-регулятором. Однако такие приспособления способны нормально работать лишь с обычными лампами накаливания. Они совершенно не воспринимаются современными компактными люминесцентными лампами, из-за расположенного внутри них выпрямительного моста с электролитическим конденсатором. Тиристор просто не будет работать во взаимодействии с этой схемой.

Такие же непредсказуемые результаты получаются и при попытках отрегулировать яркость светодиодных ламп. Поэтому для регулируемого источника освещения наиболее оптимальным вариантом будет использование обычных ламп накаливания.

Существуют и другие области применения тиристорных регуляторов мощности. Среди них следует отметить возможность регулировки ручного электроинструмента. Регулирующие устройства устанавливаются внутри корпусов и позволяют изменять количество оборотов дрели, шуруповерта, перфоратора и прочего инструмента.

Принцип работы тиристора

Действие регуляторов мощности тесно связано с принципом работы тиристора. На радиосхемах он обозначается значком, напоминающим обычный диод. Каждому тиристору свойственна односторонняя проводимость и, соответственно, способность к выпрямлению переменного тока. Участие в этом процессе становится возможным при условии подачи к управляющему электроду положительного напряжения. Сам управляющий электрод располагается со стороны катода. В связи с этим, тиристор ранее носил название управляемого диода. До подачи управляющего импульса, тиристор будет закрытым в любом направлении.

Для того чтобы визуально определить исправность тиристора, его включают в общую цепь со светодиодом через источник постоянного напряжения в 9 вольт. Дополнительно вместе со светодиодом подключается ограничительный резистор. Специальная кнопка замыкает цепь и напряжение с делителя подается к управляющему электроду тиристора. В результате, тиристор открывается и светодиод начинает излучать свет.

При отпускании кнопки, когда она перестает удерживаться в нажатом положении, свечение должно продолжаться. В случае повторного или неоднократного нажатия кнопки ничего не изменится — светодиод все так же будет светить с одинаковой яркостью. Это свидетельствует об открытом состоянии тиристора и его технической исправности. Он будет находиться в открытом положении до того момента, пока подобное состояние не прервется под влиянием внешних воздействий.

В некоторых случаях могут быть исключения. То есть при нажатии кнопки светодиод загорается, а при отпускании кнопки — он гаснет. Такая ситуация становится возможной из-за тока, проходящего через светодиод, значение которого меньше по сравнению с током удержания тиристора. Чтобы схема работала нормально, светодиод рекомендуется заменить лампой накаливания, что приведет к увеличению тока. Другим вариантом будет подбор тиристора, у которого ток удержания будет меньше. Параметр тока удержания у различных тиристоров может быть с большим разбросом, в таких случаях приходится подбирать элемент для каждой конкретной схемы.

Схема простейшего регулятора мощности

Тиристор участвует в выпрямлении переменного напряжения так же, как и обыкновенный диод. Это приводит к однополупериодному выпрямлению в незначительных пределах с участием одного тиристора. Для достижения желаемого результата, с помощью регуляторов мощности осуществляется управление двумя полупериодами напряжения сети. Это становится возможным благодаря встречно-параллельному включению тиристоров. Кроме того, тиристоры могут включаться в цепь диагонали выпрямительного моста.

Простейшую схему тиристорного регулятора мощности лучше всего рассматривать на примере регулировки мощности паяльника. Нет смысла начинать регулировку прямо с нулевой отметки. В связи с этим регулировать можно только один полупериод положительного сетевого напряжения. Прохождение отрицательного полупериода осуществляется через диод, без каких-либо изменений, непосредственно к паяльнику, обеспечивая его половинную мощность.

Прохождение положительного полупериода происходит через тиристор, за счет чего и выполняется регулировка. В цепи управления тиристором присутствуют простейшие элементы в виде резисторов и конденсатора. Зарядка конденсатора происходит от верхнего провода схемы, через резисторы и конденсатор, нагрузку и нижний провод схемы.

Управляющий электрод тиристора соединяется с плюсовым выводом конденсатора. Когда на конденсаторе напряжение возрастает до значения, позволяющего включать тиристор, происходит его открытие. В результате, в нагрузку пропускается какая-то часть положительного полупериода напряжения. Одновременно наступает разрядка конденсатора и подготовка к следующему циклу.

Для регулировки скорости заряда конденсатора используется переменный резистор. Чем быстрее произойдет зарядка конденсатора до значения напряжения, при котором открывается тиристор, тем раньше наступит открытие тиристора. Следовательно, в нагрузку поступит большее количество положительного полупериода напряжения. Данная схема, в которой используется тиристорный регулятор мощности, служит основой для других схем, применяющихся в различных областях.

Тиристорный регулятор мощности своими руками

Тиристорные регуляторы мощности являются одной из самых распространенных радиолюбительских конструкций, и в этом нет ничего удивительного. Ведь всем, кто когда-нибудь пользовался обычным 25 — 40 ваттным паяльником, способность его к перегреванию даже очень известна. Паяльник начинает дымить и шипеть, потом, достаточно скоро, облуженное жало выгорает, становится черным. Паять таким паяльником уже совсем невозможно.

И вот тут на помощь и приходит регулятор мощности, с помощью которого можно достаточно точно выставить температуру для пайки. Ориентироваться следует на то, чтобы при касании паяльником куска канифоли она дымила ну, так, средне, без шипения и брызг, не очень энергично. Ориентироваться следует на то, чтобы пайка получалась контурной, блестящей.

Чтобы не усложнять рассказ, не будем рассматривать тиристор в виде его четырехслойной p-n-p-n структуры, рисовать вольтамперную характеристику, а просто на словах опишем, как же он, тиристор, работает. Для начала в цепи постоянного тока, хотя в этих цепях тиристоры почти не применяются. Ведь выключить тиристор, работающий на постоянном токе достаточно сложно. Все равно, что коня на скаку остановить.

И все же большие токи и высокие напряжения тиристоров привлекают разработчиков различной, как правило, достаточно мощной аппаратуры постоянного тока. Для выключения тиристоров приходится идти на различные усложнения схем, ухищрения, но в целом результаты получаются положительными.

Обозначение тиристора на принципиальных схемах показано на рисунке 1.

Рисунок 1. Тиристор

Нетрудно заметить, что по своему обозначению на схемах, тиристор очень похож на . Если разобраться, то он, тиристор, тоже обладает односторонней проводимостью, а следовательно, может выпрямлять переменный ток. Вот только делать это он будет лишь в том случае, когда на управляющий электрод подано относительно катода положительное напряжение, как показано на рисунке 2. По старой терминологии тиристор иногда называли управляемым диодом. Покуда не подан управляющий импульс, тиристор закрыт в любом направлении.

Рисунок 2.

Как включить светодиод

Здесь все очень просто. К источнику постоянного напряжения 9В (можно использовать батарейку «Крона») через тиристор Vsx подключен светодиод HL1 с ограничительным резистором R3. С помощью кнопки SB1 напряжение с делителя R1, R2 может быть подано на управляющий электрод тиристора, и тогда тиристор откроется, светодиод начинает светиться.

Если теперь отпустить кнопку, перестать ее удерживать в нажатом состоянии, то светодиод должен продолжать светиться. Такое кратковременное нажатие на кнопку можно назвать импульсным. Повторное и даже многократное нажатие этой кнопки ничего не изменит: светодиод не погаснет, но и не станет светить ярче или тусклее.

Нажали — отпустили, а тиристор остался в открытом состоянии. Причем, это состояние является устойчивым: тиристор будет открыт до тех пор, пока из этого состояния его не выведут внешние воздействия. Такое поведение схемы говорит об исправном состоянии тиристора, его пригодности для работы в разрабатываемом или ремонтируемом устройстве.

Маленькое замечание

Но из этого правила часто случаются исключения: кнопку нажали, светодиод зажегся, а когда кнопку отпустили, то погас, как, ни в чем не бывало. И в чем же тут подвох, что сделали не так? Может кнопку нажимали недостаточно долго или не очень фанатично? Нет, все было сделано достаточно добросовестно. Просто ток через светодиод оказался меньше, чем ток удержания тиристора.

Чтобы описанный опыт прошел удачно, надо просто заменить светодиод лампой накаливания, тогда ток станет больше, либо подобрать тиристор с меньшим током удержания. Этот параметр у тиристоров имеет значительный разброс, иногда даже приходится тиристор для конкретной схемы подбирать. Причем одной марки, с одной буквой и из одной коробки. Несколько лучше с этим током у импортных тиристоров, которым в последнее время отдается предпочтение: и купить проще, и параметры лучше.

Как закрыть тиристор

Никакие сигналы, поданные на управляющий электрод, закрыть тиристор и погасить светодиод не смогут: управляющий электрод может только включить тиристор. Существуют, конечно, запираемые тиристоры, но их назначение несколько иное, чем банальные регуляторы мощности или простые выключатели. Обычный тиристор можно выключить лишь только прервав ток через участок анод — катод.

Сделать это можно, как минимум, тремя способами. Во-первых, тупо отключить всю схему от батарейки. Вспоминаем рисунок 2. Естественно, что светодиод погаснет. Но при повторном подключении он сам по себе не включится, поскольку тиристор остался в закрытом состоянии. Это состояние также является устойчивым. И вывести его из этого состояния, Зажечь свет, поможет только нажатие кнопки SB1.

Второй способ прервать ток через тиристор это просто взять и замкнуть выводы катода и анода проволочной перемычкой. При этом весь ток нагрузки, в нашем случае это всего — лишь светодиод, потечет через перемычку, а ток через тиристор будет равен нулю. После того, как перемычка будет убрана, тиристор закроется, и светодиод погаснет. При опытах с подобными схемами в качестве перемычки чаще всего используется пинцет.

Предположим, что вместо светодиода в этой схеме будет достаточно мощная нагревательная спираль с большой тепловой инерцией. Тогда получается практически готовый регулятор мощности. Если коммутировать тиристор таким образом, что на 5 секунд спираль включена и столько же времени выключена, то в спирали выделяется 50-ти процентная мощность. Если же за время этого десятисекундного цикла включение производится лишь на 1 секунду, то совершенно очевидно, что спираль выделит только 10% тепла от своей мощности.

Примерно с такими временными циклами, измеряемыми в секундах, работает регулировка мощности в микроволновой печи. Просто с помощью реле включается и выключается ВЧ излучение. Тиристорные регуляторы работают на частоте питающей сети, где время измеряется уже миллисекундами.

Третий способ выключения тиристора

Состоит в том, чтобы до нуля уменьшить напряжение питания нагрузки, а то и вовсе изменить полярность питающего напряжения на противоположную. Именно такая ситуация получается при питании тиристорных схем переменным синусоидальным током.

При переходе синусоиды через нуль, она меняет знак на противоположный, поэтому ток через тиристор становится меньше тока удержания, а затем и вовсе равным нулю. Таким образом, проблема выключения тиристора решается как бы сама собой.

Тиристорные регуляторы мощности. Фазовое регулирование

Итак, дело осталось за малым. Чтобы получилось фазовое регулирование, надо просто в определенное время подать управляющий импульс. Другими словами импульс должен иметь определенную фазу: чем ближе он будет расположен к концу полупериода переменного напряжения, тем меньшая амплитуда напряжения окажется на нагрузке. Фазовый способ регулирования показан на рисунке 3.

Рисунок 3. Фазовое регулирование

В верхнем фрагменте картинки управляющий импульс подается почти в самом начале полупериода синусоиды, фаза управляющего сигнала близка к нулю. На рисунке это время t1, поэтому тиристор открывается почти в начале полупериода, а в нагрузке выделяется мощность близкая к максимальной (если бы в цепи не было тиристоров, мощность была бы максимальной).

Сами управляющие сигналы на этом рисунке не показаны. В идеальном варианте они представляют собой короткие положительные относительно катода импульсы, поданные в определенной фазе на управляющий электрод. В простейших схемах это может быть линейно нарастающее напряжение, получаемое при заряде конденсатора. Об этом будет рассказано несколько ниже.

На среднем графике управляющий импульс подается в средине полупериода, что соответствует фазовому углу Π/2 или моменту времени t2, поэтому в нагрузке выделяется лишь половина максимальной мощности.

На нижнем графике открывающие импульсы подаются очень близко к окончанию полупериода, тиристор открывается почти перед тем, как ему предстоит закрыться, по графику это время обозначено как t3, соответственно мощность в нагрузке выделяется незначительная.

Схемы включения тиристоров

После краткого рассмотрения принципа работы тиристоров, наверное, можно привести несколько схем регуляторов мощности . Нового здесь ничего не изобретено, все можно найти в сети Интернет или в старых радиотехнических журналах. Просто в статье приводится краткий обзор и описание работы схем тиристорных регуляторов . При описании работы схем будет обращаться внимание на то, каким образом используются тиристоры, какие существуют схемы включения тиристоров.

Как было сказано в самом начале статьи, тиристор выпрямляет переменное напряжение как обычный диод. Получается однополупериодное выпрямление. Когда-то именно так, через диод, включались лампы накаливания на лестничных клетках: света совсем чуть, в глазах рябит, но зато лампы перегорают очень редко. То же самое получится, если светорегулятор выполнить на одном тиристоре, только появляется еще возможность регулирования уже и так незначительной яркости.

Поэтому регуляторы мощности управляют обоими полупериодами сетевого напряжения. Для этого применяется встречно — параллельное включение тиристоров, или включение тиристора в диагональ выпрямительного моста.

Для наглядности этого утверждения далее будут рассмотрены несколько схем тиристорных регуляторов мощности. Иногда их называют регуляторами напряжения, и какое название вернее, решить трудно, ведь вместе с регулированием напряжения регулируется и мощность.

Простейший тиристорный регулятор

Он предназначен для регулирования мощности паяльника. Его схема показана на рисунке 4.

Рисунок 4. Схема простейшего тиристорного регулятора мощности

Регулировать мощность паяльника, начиная от нуля, нет никакого смысла. Поэтому можно ограничиться регулированием только одного полупериода сетевого напряжения, в данном случае положительного. Отрицательный полупериод проходит без изменений через диод VD1 сразу на паяльник, что обеспечивает его половинную мощность.

Положительный полупериод проходит через тиристор VS1, позволяющий осуществлять регулирование. Цепь управления тиристором предельно проста. Это резисторы R1, R2 и конденсатор C1. Конденсатор заряжается по цепи: верхний провод схемы, R1, R2 и конденсатор C1, нагрузка, нижний провод схемы.

К плюсовому выводу конденсатора подключен управляющий электрод тиристора. Когда напряжение на конденсаторе возрастает до напряжения включения тиристора, последний открывается, пропуская в нагрузку положительный полупериод напряжения, вернее его часть. Конденсатор C1 при этом, естественно, разряжается, тем самым подготавливаясь к следующему циклу.

Скорость заряда конденсатора регулируется с помощью переменного резистора R1. Чем быстрее конденсатор зарядится до напряжения открывания тиристора, тем раньше тиристор откроется, тем большая часть положительного полупериода напряжения поступит в нагрузку.

Схема простая, надежная, для паяльника вполне подходит, хотя регулирует лишь один полупериод сетевого напряжения. Очень похожая схема показана на рисунке 5.

Рисунок 5. Тиристорный регулятор мощности

Она несколько сложней предыдущей, но позволяет осуществлять регулировку более плавно и точно, благодаря тому, что схема формирования управляющих импульсов собрана на двухбазовом транзисторе КТ117. Этот транзистор предназначен для создания генераторов импульсов. Больше, кажется, ни на что другое не способен. Подобная схема используется во многих регуляторах мощности, а также в импульсных блоках питания в качестве формирователя запускающего импульса.

Как только напряжение на конденсаторе C1 достигает порога срабатывания транзистора, последний открывается и на выводе Б1 появляется положительный импульс, открывающий тиристор VS1. Резистором R1 можно регулировать скорость заряда конденсатора.

Чем быстрее зарядится конденсатор, тем раньше появится открывающий импульс, тем большее напряжение поступит в нагрузку. Вторая полуволна сетевого напряжения проходит в нагрузку через диод VD3 без изменений. Для питания схемы формирователя управляющих импульсов используется выпрямитель VD2, R5, стабилитрон VD1.

Тут можно спросить, а когда же откроется транзистор, каков же порог срабатывания? Открывание транзистора происходит в тот момент, когда напряжение на его эмиттере Э превысит напряжение на базе Б1. Базы Б1 и Б2 не равноценны, если их поменять местами, то генератор не заработает.

На рисунке 6 показана схема, позволяющая регулировать оба полупериода напряжения.

Рисунок 6.

Подборка схем и описание работы регулятора мощности на симисторах и не только. Схемы симисторных регуляторов мощности хорошо подходят для продление срока эксплуатации ламп накаливания и для регулировки их яркости свечения. Или для запитки нестандартной аппаратуры например на 110 вольт.

На рисунке представлена схема симисторного регулятора мощности, которую можно менять за счет изменения общего количества сетевых полупериодов, пропускаемых симистором за определенный интервал времени. На элементах микросхемы DD1.1.DD1.3 сделан , период колебания которого около 15-25 сетевых полупериодов.

Скважность импульсов регулируется резистором R3. Транзистор VT1 совместно с диодами VD5-VD8 предназначен для привязки момента включения симистора во время перехода сетевого напряжения через нуль. В основном этот транзистор открыт, соответственно, на вход DD1.4 поступает «1» и транзистор VT2 с симистором VS1 закрыты. В момент перехода через нуль транзистор VT1 закрывается и почти сразу открывается. При этом, если на выходе DD1.3 была 1, то состояние элементов DD1.1.DD1.6 не изменится, а если на выходе DD1.3 был «ноль», то элементы DD1.4.DD1.6 сгенерируют короткий импульс, который усилится транзистором VT2 и откроет симистор.

До тех пор пока на выходе генератора будет логический ноль, процесс будет идти цикличиски после каждого перехода сетевого напряжения через точку нуля.

Основа схемы зарубежный симистор mac97a8, который позваляет коммутировать большие мощности подключенные нагрузки, а для ее регулировки использовал старый советский переменный резистор, а в качестве индикации использовал обычный светодиод.

В симисторном регуляторе мощности применен принцип фазового управления. Работа схемы регулятора мощности основана на изменении момента включения симистора относительно перехода сетевого напряжения через ноль. В первоначальный момент положительного полупериода симистор находится в закрытом состояние. С возрастанием сетевого напряжения, конденсатор С1 заряжается через делитель.

Возрастающее напряжения на конденсаторе сдвигается по фазе от сетевого на величину, зависящую от суммарного сопротивления обоих резисторов и емкости конденсатора. Заряд конденсатора происходит до тех пор, пока напряжение на нем не дойдет до уровня «пробоя» динистора, приблизительно 32 В.

В момент открытия динистора, откроется и симистор, через подключенную к выходу нагрузку потечет ток, зависящий от суммарного сопротивлением открытого симистора и нагрузки. Симистор будет открыт до конца полупериода. Резистором VR1 задаем напряжение открывания динистора и симистора, тем самым регулируя мощность. В момент действия отрицательного полупериода алгоритм работы схемы аналогичен.

Вариант схемы с небольшими доработками на 3,5 кВт

Схема регулятора несложная, мощность нагрузки на выходе устройства составляет 3,5 кВт. С помощью этой радиолюбительской самоделки вы можите регулировать освещение, нагревательные тэны и многое другое. Единственный существенный недостаток данной схемы, это то что подсоединить к ней индукционную нагрузку нельзя ни в коем случае, т.к симистор сгорит!


Используемые в конструкции радиокомпоненты: Симистор Т1 — BTB16-600BW или аналогичный (КУ 208 ил ВТА, ВТ). Динистор Т — типа DB3 или DB4. Конденсатор 0,1мкФ керамический.

Сопротивление R2 510Ом ограничивает максимальные вольты на конденсаторе 0,1 мкФ, если поставить движок регулятора в положение 0 Ом, то сопротивление цепи составит порядка 510 Ом. Заряжается емкость, через резисторы R2 510Ом и переменное сопротивление R1 420кОм, после того, как U на конденсаторе достигнет уровня открывания динистора DB3, последний сформирует импульс, отпирающий симистор, после чего, при дальнейшем проходе синусоиды, симистор запирается. Частота открывания-закрывания Т1 зависит от уровня U на конденсаторе 0.1мкФ, которое,зависит от сопротивления переменного резистора. Т.е, прерывая ток (с большой частотой) схема, тем самым регулирует мощность на выходе.

При каждой положительной полуволне входного переменного напряжения емкость С1 заряжается через цепочку резисторов R3, R4, когда напряжение на конденсаторе С1 станет равным напряжению открытия динистора VD7 произойдет его пробой и разрядка емкости через диодный мост VD1-VD4 , а также сопротивление R1 и управляющий электрод VS1 . Для открытия симистора используется электрическая цепочка из диодов VD5, VD6 конденсатора С2 и сопротивления R5.

Требуется подобрать номинал резистора R2 так, чтобы при обоих полуволнах сетевого напряжения, симистор регулятора надежно срабатывал, а также требуется подобрать номиналы сопротивлений R3 и R4 так, чтобы при вращении ручки переменного сопротивления R4 напряжение на нагрузке плавно изменялось от минимальных до максимальных значений. Вместо симистора ТС 2-80 можно использовать ТС2-50 или ТС2-25, хотя будет небольшой проигрыш по допустимой мощности в нагрузке.

В качестве симистора был использован КУ208Г, ТС106-10-4, ТС 112-10-4 и их аналоги. В тот момент времени когда симистор закрыт, осуществляется заряд конденсатора С1 через подключенную нагрузку и резисторы R1 и R2. Скорость заряда изменяется резистором R2, резистор R1 предназначен для ограничения максимальной величины тока заряда

При достижении на обкладках конденсатора порогового значения напряжения происходит открытие ключа, конденсатор С1 быстро разряжается на управляющий электрод и перключает симистор из закрытого состояния в открытое, в открытом состоянии симистор шунтирует цепь R1, R2, С1. В момент перехода сетевого напряжения через ноль происходит закрытие симистора, затем снова заряд конденсатора C1, но уже отрицательным напряжением.

Конденсатор С1 от 0,1…1,0 мкФ. Резистор R2 1,0…0,1 МОм. Симистор включается положительным импульсом тока на управляющий электрод при положительном напряжении на выводе условном аноде и отрицательным импульсом тока на управляющий электрод при отрицательном напряжении условного катода. Таким образом, ключевой элемент для регулятоpa должен быть двунаправленным. Можно в качестве ключа использовать двунаправленный динистор.

Диоды Д5-Д6 используются для защиты тиристора от возможного пробоя обратным напряжением. Транзистор работает в режиме лавинного пробоя. Его напряжение пробоя около 18-25 вольт. Если вы не найдете П416Б, то можно попытаться найти ему замену .

Импульсный трансформатор наматывается на ферритовом кольце диаметром 15 мм, марки Н2000.Тиристор можно заменить на КУ201

Схема этого регулятора мощности похожа на вышеописанные схемы, только введена помехоподавляющая цепь С2, R3, а ыыключатель SW дает возможность разрывать цепь зарядки управляющего конденсатора, что приводит к моментальному запиранию симистора и отключению нагрузки.

С1, С2 — 0,1 МКФ, R1-4k7, R2-2 мОм, R3-220 Ом, VR1-500 кОм, DB3 — динистор, BTA26-600B — симистор, 1N4148/16 В — диод, светодиод любой.

Регулятор используется для регулировки мощности нагрузки в цепях до 2000 Вт, ламп накаливания, нагревательных приборов, паяльника, асинхронных двигателей, зарядного устройство для авто, и если заменить симистор на более мощный можно применить в цепи регупировки тока в сварочных трансформаторах.

Принцип работы этой схемы регулятора мощности заключается в том, что на нагрузку поступает полупериод сетевого напряжения через выбранное число пропущенных полупериодов.


Диодный мост выпрямляет переменное напряжение. Резистор R1 и стабилитрон VD2, вместе с конденсатором фильтра образуют источник питания 10 В для питания микросхемы К561ИЕ8 и транзистора КТ315. Выпрямленные положительные полупериоды напряжения проходя через конденсатор С1 стабилизируются стабилитроном VD3 на уровне 10 В. Таким образом, на счетный вход С счетчика К561ИЕ8 следуют импульсы с частотой 100 Гц. Если переключатель SA1 подсоединен к выходу 2, то на базе транзистора будет постоянно присутствовать уровень логической единицы. Т.к импульс обнуления микросхемы очень короткий и счетчик успевает перезапуститься от того же импульса.

На выводе 3 установится уровень логической единицы. Тиристор будет открыт. На нагрузке будет выделяться вся мощность. Во всех последующих положениях SA1 на выводе 3 счетчика будет проходить один импульс через 2-9 импульсов.

Микросхема К561ИЕ8 это десятичный счетчик с позиционным дешифратором на выходе, поэтому уровень логической единицы будет периодически на всех выходах. Однако, если переключатель установлен на 5 выходе (выв.1), то счет будет происходить только до 5. При прохождении импульсом выхода 5 микросхема обнулится. Начнется счет с ноля, а на выводе 3 появится уровень логической единицы на время одного полупериода. На это время открывается транзистор и тиристор, один полупериод проходит в нагрузку. Для того чтобы было понятней привожу векторные диаграммы работы схемы.

Если требуется уменьшить мощность нагрузки, можно добавить еще одну микросхему счетчика, соединив вывод 12 предыдущей микросхемы с выводом 14 последующей. Установив еще один переключатель, можно будет регулировать мощность до 99 пропущенных импульсов. Т.е. можно получить примерно сотую часть общей мощности.

Микросхема КР1182ПМ1 имеет в своем внутреннем составе два тиристора и узел управления ими. Максимальное входное напряжение микросхемы КР1182ПМ1 около 270 Вольт, а максимум в нагрузке может достигать 150 Ватт без использования внешнего симистора и до 2000 Вт с использованием, а также с учетом того, что симистор будет установлен на радиаторе.


Для снижения уровня внешних помех используется конденсатор С1 и дроссель L1, а емкость С4 требуется для плавного включения нагрузки. Регулировка осуществляется с помощью сопротивления R3.

Подборка довольно простых схем регуляторов для паяльника упростит жизнь радиолюбителю

Комбинированность заключается в совмещении удобства применения цифрового регулятора и гибкости регулировки простого.


Рассмотренная схема регулятора мощности работает по принципу изменения числа периодов входного переменного напряжения, идущих на нагрузку. Это значит, что устройство нельзя использовать для настройки яркости ламп накаливания из-за заметного для глаза мигания. Схема дает возможность регулировать мощность в пределах восьми предустановленных значений.

Существует огромной количество классических тиристорных и симисторных схем регуляторов, но этот регулятор выполнен на современной элементной базе и кроме того являлся фазовым, т.е. пропускает не всю полуволну сетевого напряжения, а только некоторую её часть, тем самым и осуществляется ограничение мощности, т.к открытие симистора происходит только при нужном фазовом угле.

В быту очень часто появляется необходимость в регулировке мощности различных электрических приборов: газовых плит, чайника, паяльника, кипятильника, различных ТЭНов и т. п. В автомобиле может понадобиться регулировка оборотов двигателя. Для этого можно использовать простую конструкцию — регулятор напряжения на тиристоре. Своими руками к тому же его сделать несложно.

Некоторые нюансы выбора

Сделать тиристорный регулятор напряжения своими руками несложно. Это может быть первой поделкой начинающего радиолюбителя, которая сможет обеспечить регулировку температуры жала паяльника. К тому же паяльники с возможностью регулировки температуры заводского производства стоят дороже простых моделей без такой возможности. Поэтому можно ознакомиться с основами пайки и радиоконструирования, а также сэкономить немалую сумму. С помощью небольшого количества комплектующих можно собрать простой тиристор с навесным монтажом.

Навесной тип монтажа осуществляется без необходимости использования специальной печатной платы. С хорошими умениями в этой области можно таким способом собрать простые схемы достаточно быстро.

Можно сэкономить время и установить на паяльник готовый тиристор. Но если есть желание разобраться в схеме полностью, то тиристорный регулятор мощности придётся сделать своими руками.

Важно! Такое устройство, как тиристор, является регулятором общей мощности. Кроме этого, применяется для регулировки числа оборотов различного оборудования.

Но в первую очередь требуется понять общий принцип работы устройства, разобраться с его схемой. Это даст возможность правильно рассчитать необходимую мощность для оптимальной работы оборудования, на котором оно будет выполнять свои прямые обязанности.

Конструктивные особенности

Тиристор — это полупроводниковый элемент, которым можно управлять. Он может очень быстро при необходимости провести ток в одном направлении. В отличие от классических диодов с помощью тиристора выполняется регулировка момента подачи напряжения.

Он имеет сразу три элемента для вывода тока:

  • катод;
  • анод;
  • управляемый электрод.

Работать такой элемент будет только при соблюдении определённых условий. Во-первых, он должен размещаться в схеме под общим напряжением. Во-вторых, на управляющую часть электрода должен быть подан необходимый кратковременный импульс. Это позволит регулировать мощность прибора в нужном направлении. Можно будет выключать устройство, включать его и изменять режимы работы. В отличие от транзистора тиристор не требует удержания управляющего сигнала.

Применять тиристор в целях обеспечения постоянного тока является нецелесообразным, поскольку тиристор легко закрыть, если перекрыть поступление в него тока по цепи. А для переменного тока в таких устройствах, как тиристорный регулятор, применение тиристора обязательно, поскольку схема выполнена таким методом, чтобы полностью обеспечивать необходимое закрывание полупроводникового элемента. Любая полуволна способна полностью закрыть отдел тиристора в случае такой потребности.

Схему начинающим довольно сложно понять, но воспользовавшись инструкциями от специалистов, они значительно упростят себе процесс создания.

Области и цели использования

Для начала нужно понять, в каких целях используется такое устройство как тиристорный регулятор мощности. Применяются регуляторы мощности практически во всех строительных и столярных электрических инструментах. Кроме этого, в кухонной технике без них тоже никак. Они позволяют, к примеру, регулировать режимы скорости кухонного комбайна или блендера, скорость нагнетания воздуха феном, а также функционируют для обеспечения выполнения других не менее важных задач. Полупроводниковый элемент позволяет более эффективно регулировать мощность нагревательных приборов, то есть их основной части.

Если использовать тиристоры в схеме с высокоиндуктивной нагрузкой, то они могут просто не закрыться в нужный момент, что приведёт к выходу из строя оборудования. Многие пользователи видели или даже самостоятельно пользовались такими устройствами, как болгарки, шлифовальные машины или дрели. Можно заметить, что главным образом регулировка мощности осуществляется при помощи нажатия кнопки. Эта кнопка и находится в общем блоке с тиристорным регулятором мощности, который изменяет обороты двигателя.

Важно! Тиристорный регулятор не может менять обороты автоматически в асинхронных двигателях. А вот в коллекторном двигателе, оборудованном специальным щелочным узлом, работать регулировка будет корректно и полноценно.

Принцип действия

Особенность работы заключается в том, что в любом приборе напряжение будет регулироваться мощностью и перебоями в электросети согласно синусоидальным законам.

Любой тиристор общей мощности может пропускать ток только в одном направлении. Если тиристор не отключить, то он будет продолжать работать и отключится только после совершения определённых действий.

При самостоятельном изготовлении необходимо спроектировать конструкцию таким образом, чтобы внутри было достаточно свободного места для установки регулирующего рычага или кнопки. В том случае когда устройство устанавливается по классической схеме, целесообразно подключение через особый выключатель, который будет изменять цвет при разном уровне мощности.

Кроме этого, такое дополнение позволяет частично предотвратить возникновение ситуаций с поражением человека током. Не нужно будет искать подходящий корпус, а также прибор будет иметь привлекательный внешний вид.

Существует множество способов закрывания тиристоров. Но в первую очередь необходимо помнить, что подача любых сигналов на электрод не сможет закрыть его и погасить действие. Электрод способен только запустить устройство. Существуют и аналоги — запираемые тиристоры. Но их прямое предназначение немного шире, чем у обычных выключателей. Классическую схему тиристорного регулятора напряжения можно выключить только прерыванием подачи тока на уровне анод-катод.

Закрыть регулятор мощности на тиристоре ку202н можно минимум 3 способами. Можно просто отключить всю схему от батарейки. Таким образом диод выключится. Но если повторно включить устройство, то оно не включится, поскольку тиристор остаётся в закрытом состоянии. Он будет находиться в таком положении, пока не будет нажата соответствующая кнопка.

Вторым способом закрытия тиристора является прерывание подачи тока. Это можно сделать, просто замкнув соединение катода анода с помощью обычной проволоки. Проверить можно на схеме с простым светодиодом вместо прибора. Если перемычку из проволоки подсоединить, как указано выше, то всё напряжение пойдёт через проволоку, а уровень тока, которой пойдёт в тиристор, будет нулевым. После того как забрать проволоку обратно, тиристор закроется и прибор выключится. В этом случае прибор — это светодиод, и он погаснет. Если экспериментировать с подобными схемами, то в качестве перемычки можно использовать пинцет.

Если вместо светодиода установить нагревательную спираль большой мощности, то можно получить законченный тиристорный регулятор.

Третий способ заключается в том, чтобы уменьшить напряжение питания до минимального, после чего изменить полярность на противоположную. Такая ситуация приведёт к выключению устройства.

Простой регулятор напряжения

Для производства простейшей системы, работающей на 12 вольтах, понадобятся такие ключевые элементы, как выпрямитель, генератор и аккумулятор. Генератор является одним из главных компонентов. Для изготовления понадобятся вышеупомянутые радиодетали, а также схема простейшего регулятора мощности. Стоит отметить, что в ней нет стабилизаторов.

Для изготовления необходимо подготовить такие элементы:

  • 2 резистора;
  • 1 транзистор;
  • 2 конденсатора;
  • 4 диода.

Специально для транзистора лучше устанавливать систему охлаждения. Это позволит избежать перегрузок системы. Устройство лучше устанавливать с хорошим запасом мощности, чтобы заряжать в последующем аккумуляторы с небольшой ёмкостью.

Полезные статьи, радиосхемы, конструкции, разработки, рабочие и готовые к повторению

 

Простой регулятор мощности на однопереходном транзисторе и тиристоре (симисторе)

Отступление от темы или полезные самоделки в домашнюю радиолабораторию

Легок в повторении. Работает сразу. Как говорилось лепили из того, что было. Потребовались два регулятора мощности для двух паяльников. Схему взял из интернета. Так чтобы не покупать лишних деталей, как говорится дешево и сердито. Благо были 2 тиристора КУ202Н, 8 диодов КД202Р, два однопереходных транзистора КТ117а, 6 стабилитронов КС170 (3шт соединены последовательно для получения напряжения 21-22 в), были докуплены только цифровые индикаторы напряжения (китай), и клеммы. Все остальное взято из старых деталей от мониторов и телевизоров. Резисторы МЛТ из старых запасов, ну не люблю я импортные и все…Тиристор КУ202н можно заменить на симистор КУ208Г — тогда выкидываем диодный мост.

В результате подбора кондесатора — поигрался емкостью от 0,1 до 0,4 мкф, от него зависит диапазон регулирования выходного напряжения. Остановился на 3 шт параллельно соединенных по 0,1 мкф, общая емкость 0,3 мкф. Переменный резистор 10 кОм.

При конденсаторе 0,3 мкф, пределы регулировки выходного напряжения при мощности паяльника:

25 вт — составила — 74-220 вольт

100 вт -составила — 62-220 вольт

При такой нагрузке, в при напряжении на нагрузке 180 вольт, в течении 10 часов все элементы схемы оставались холодные. При большой нагрузке, тиристор и диоды ставим на радиаторы, так для самоуспокоения, может придется подключать более мощную нагрузку, например утюг — 1000 вт, или кипятильник.

Остальное на рисунке ниже. Можно конечно применить тиристор современный, и диоды тоже, типа диодных мостов и сборок, но куда девать старые надежные детали, пусть поработают. В качестве вольтметра применил цифровой вольтметр переменного тока из Китая (показан на фото, куплено на алиэкспресс)

 

Схема регулятора мощности до 2кВт.

Предохранитель 5а, резисторы: млт-1 вт -11кОм — 2шт, млт 0,25 — 1 ком — 3шт, млт 0,25 — 510 ом -1 шт, млт 0,25 — 100 ом -1шт, переменный резистор 10 кОм, стабилитроны любые, можно 1 на общее напряжение стабилизации 20-24 в.

Параллельно выходным гнездам и гнездам нагрузи подключены конденсаторы 0,1х400 в (для уменьшения импульсных помех) и соответственно параллельно им резисторов 1мом х 0,25 вт для разряда этик конденсаторов (на схеме не показаны)

Полезные ссылки

Читать про стабилизаторы серии к142, к1114, к1145, к1168, 286

На предыдущую страницу  На главную страницу  На следующую страницу

 

Простой регулятор мощности для паяльника – схема


Собери простой регулятор мощности для паяльника за час

Эта статья о том, как собрать самый простой регулятор мощности для паяльника или другой подобной нагрузки. https://oldoctober.com/

Схему такого регулятор можно разместить в сетевой вилке или в корпусе от сгоревшего или ненужного малогабаритного блока питания. На сборку устройства уйдёт от силы час-два.


Самые интересные ролики на Youtube


Близкие темы.

Стабильный регулятор мощности своими руками

Как сделать цифровой осциллограф из компьютера своими руками?

Как за час сделать импульсный блок питания из сгоревшей лампочки?


Вступление.

Я много лет тому назад изготовил подобный регулятор, когда приходилось подрабатывать ремонтом р/а на дому у заказчика. Регулятор оказался настолько удобным, что со временем я изготовил ещё один экземпляр, так как первый образец постоянно обосновался в качестве регулятора оборотов вытяжного вентилятора. https://oldoctober.com/

Кстати, вентилятор этот из серии Know How, так как снабжён воздушным запорным клапаном моей собственной конструкции. Описание конструкции >>> Материал может пригодиться жителям, проживающим на последних этажах многоэтажек и обладающих хорошим обонянием.

Мощность подключаемой нагрузки зависит от применяемого тиристора и условий его охлаждения. Если используется крупный тиристор или симистор типа КУ208Г, то можно смело подключать нагрузку в 200… 300 Ватт. При использовании мелкого тиристора, типа B169D мощность будет ограничена 100 Ваттами.


Как это работает?

Вот так работает тиристор в цепи переменного тока. Когда сила тока, текущего через управляющий электрод, достигает определённого порогового значения, тиристор отпирается и запирается лишь тогда, когда исчезает напряжение на его аноде.

Примерно так же работает и симистор (симметричный тиристор), только, при смене полярности на аноде, меняется и полярность управляющего напряжения.

На картинке видно, что куда поступает и откуда выходит.

Ремарка.

В бюджетных схемах управления симисторами КУ208Г, когда есть только один источник питания, лучше управлять «минусом» относительно катода.


Чтобы проверить работоспособность симистора, можно собрать вот такую простую схемку. При замыкании контактов кнопки, лампа должна погаснуть. Если она не погасла, то либо симистор пробит, либо его пороговое напряжение пробоя ниже пикового значения напряжения сети. Если лампа не горит при отжатой кнопке, то симистор оборван. Номинал сопротивления R1 выбирается так, чтобы не превысить максимально-допустимое значение тока управляющего электрода.


При проверке тиристров в схему нужно добавить диод, чтобы предотвратить подачу обратного напряжения.

Схемные решения.

Простой регулятор мощности можно собрать на симисторе или тиристоре. Я расскажу и о тех и о других схемных решениях.


Регулятор мощности на симисторе КУ208Г.

VS1 – КУ208Г

HL1 – МН3… МН13 и т.д.

R1 – 220k

R2 – 1k

R3 – 300E

C1 – 0,1mk

На этой схеме изображён, на мой взгляд, самый простой и удачный вариант регулятора, управляющим элементом которого служит симистор КУ208Г. Этот регулятор управляет мощностью от ноля до максимума.


Назначение элементов.

HL1 – линеаризует управление и является индикатором.

С1 – генерирует пилообразный импульс и защищает схему управления от помех.

R1 – регулятор мощности.

R2 – ограничивает ток через анод — катод VS1 и R1.

R3 – ограничивает ток через HL1 и управляющий электрод VS1.


Регулятор мощности на мощном тиристоре КУ202Н.

VS1 – КУ202Н

VD1 — 1N5408

R1 – 220k

R3 – 1k

R4 – 30k

C1 – 0,1mkF

Похожую схему можно собрать на тиристоре КУ202Н. Её отличие от схемы на симисторе в том, что диапазон регулировки мощности регулятора составляет 50… 100%.

На эпюре видно, что ограничение происходит только по одной полуволне, тогда как другая беспрепятственно проходит через диод VD1 в нагрузку.

Регулятор мощности на маломощном тиристоре.

VS1 – BT169D

VD1 – 1N4007

R1 – 220k

R3 – 1k

R4 – 30k

R5* – 470E

C1 – 0,1mkF

Данная схема, собранная на самом дешёвом маломощном тиристоре B169D, отличается от схемы приведённой выше, только наличием резистора R5, который вместе с резистором R4 являются делителем напряжения и снижают амплитуду сигнала управления. Необходимость этого вызвана высокой чувствительностью маломощных тиристоров. Регулятор регулирует мощность в диапазоне 50… 100%.


Регулятор мощности на тиристоре с диапазоном регулировки 0… 100%.

VS1 – BT169D

VD1… VD4 – 1N4007

R1 – 220k

R3 – 1k

R4 – 30k

R5* — 470E

C1 – 0,1mkF

Чтобы регулятор на тиристоре мог управлять мощностью от ноля до 100%, нужно добавить в схему диодный мост.

Теперь схема работает аналогично симисторному регулятору.

Конструкция и детали.

Регулятор собран в корпусе блока питания некогда популярного калькулятора «Электроника Б3-36».

Симистор и потенциометр размещены на стальном уголке, изготовленном из стали толщиной 0,5мм. Уголок прикручен к корпусу двумя винтами М2,5 с использованием изолирующих шайб.

Резисторы R2, R3 и неоновая лампа HL1 одеты в изолирующую трубку (кембрик) и закреплены методом навесного монтажа на других электроэлементах конструкции.

Для повышения надёжности крепления штырей вилки, пришлось напаять на них по несколько витков толстой медной проволоки.


Так выглядят регуляторы мощности, которые я использую много лет.

А это 4-х секундный ролик, который позволяет убедиться в том, что всё это работает. Нагрузкой служит лампа накаливания мощностью 100 Ватт.

Дополнительный материал.

Цоколёвка (распиновка) крупных отечественных симисторов и тиристоров. Благодаря могучему металлическому корпусу эти приборы могут без дополнительного радиатора рассеивать мощность 1… 2 Ватта без существенного изменения параметров.


Цоколёвка мелких популярных тиристоров, которые могут управлять напряжением сети при среднем токе 0,5 Ампера.

Тип прибора Катод Управ. Анод
BT169D(E, G) 1 2 3
CR02AM-8 3 1 2
MCR100-6(8) 1 2 3

28 Апрель, 2011 (23:10) в Источники питания, Сделай сам

Устал писать эту статью, отвлёкся, чтобы побродить по сети. Вот, что удалось откопать на просторах Интернета. Если ничего ценного не нашли, то учтите: мопэд не мой, я только дал объяву. (с)

Тиристорный регулятор напряжения сети. — Радиомастер инфо

Эти регуляторы напряжения сети широко известны и успешно применяются для регулировки яркости свечения ламп, температуры нагревателей, кипятильников, жала паяльника, регулировки тока заряда аккумулятора и так далее. В этой статье рассмотрены самые простые схемы таких регуляторов, показаны испытания в работе.

В основном наиболее распространены три схемы:

  1. Тиристорный регулятор на двух тиристорах, четырех диодах и двух конденсаторах.

  1. Тиристорный регулятор на двух тиристорах, двух динисторах и двух конденсаторах.

  1. Симисторный регулятор. Эта схема имеет минимальное количество деталей, так как симистор, это в принципе два тиристора в одном корпусе и он один работает на две полуволны, отрицательную и положительную, в то время как тиристор только на одну полуволну, и мы вынуждены были включать их встречно-параллельно, как и видно из предыдущих схем. Динистор DB3, также двунаправленный, в отличие от КН102.

 

Все схемы рабочие, выбрать можно ту, детали которой для вас доступнее. В свое время, очень давно, я выбрал схему 1, она по описанию регулирует напряжение от 40 В до 220В. Когда собрал, попробовал расширить пределы регулировки. Удалось добиться регулировки от 2 В до 215 В при напряжении сети 220 В. Изменены всего несколько номиналов резисторов и емкость одного конденсатора. Для удобства добавлен выключатель, предохранитель и вольтметр. Получилась вот такая схема, своего рода маленький ЛАТР (лабораторный автотрансформатор).

Недостатком является то, что при включении напряжение скачет до максимума, а затем устанавливается в соответствии с выставленным переменным резистором значением. Но это не слишком мешает если вы регулируете нагреватель, паяльник или лампу. Большим достоинством является плавная регулировка напряжения на нагрузке от 2-3 вольт до максимального значения, которое, как уже говорилось, всего на несколько вольт ниже напряжения сети. Если планируете регулировать напряжение на нагрузке с большими токами (5-7) А, тиристоры нужно установить на радиаторы. Их максимальный ток 10 А, но на пределе использовать не желательно.

Конструктивно тиристорный регулятор выполнен в алюминиевом корпусе, без печатной платы, навесным монтажом, на куске гетинакса.

Расположение основных деталей:

Минимальное напряжение на нагрузке несколько вольт, около 0 В.

Максимальное напряжение на нагрузке, на несколько вольт ниже напряжения сети.

Достоинство этой схемы – простота и надежность. Собрана в свое время из подручных деталей. Отработала без отказов много лет. В основном подключал нагрузки до 300 Вт, хотя иногда и больше.

Материал статьи продублирован на видео:

Тиристорный регулятор напряжения принцип работы

В статье рассказывается о том, как работает тиристорный регулятор мощности, схема которого будет представлена ниже

В повседневной жизни очень часто возникает необходимость регулирования мощности бытовых приборов, например электроплиты, паяльника, кипятильников и ТЭНов, на транспорте – оборотов двигателя и т.д. На помощь приходит простейшая радиолюбительская конструкция – регулятор мощности на тиристоре. Собрать такое устройство не составит труда, оно может стать тем самым первым самодельным прибором, который будет выполнять функцию регулировки температуры жала паяльника начинающего радиолюбителя. Стоит отметить, что готовые паяльные станции с контролем температуры и прочими приятными функциями стоят на порядок дороже простого паяльника. Минимальный набор деталей позволяет собрать простой тиристорный регулятор мощности навесным монтажом.

К сведению, навесной монтаж — это способ сборки радиоэлектронных компонентов без применения печатной платы, а при хорошем навыке он позволяет быстро собрать электронные устройства средней сложности.

Вы также можете заказать электронный конструктор тиристорного регулятора, а для тех, кто хочет разобраться во всём самостоятельно, ниже будет представлена схема и объяснён принцип работы.

Область применения тиристорных регуляторов

Между прочим, это однофазный тиристорный регулятор мощности. Такой прибор может быть использован для управления мощностью или количеством оборотов. Однако для начала следует разобраться в принципе работы тиристора, ведь это позволит нам понять, на какую нагрузку лучше использовать такой регулятор.

Как работает тиристор?

Тиристор – это управляемый полупроводниковый прибор, способный проводить ток в одном направлении. Слово «управляемый» употреблено неспроста, поскольку с его помощью, в отличие от диода, который тоже проводит ток только к одному полюсу, можно выбирать момент, когда тиристор начнет проводить ток. Тиристор имеет три вывода:

Для того чтобы ток начал течь через тиристор, необходимо выполнить следующие условия: деталь должна стоять в цепи, находящейся под напряжением, на управляющий электрод должен быть подан кратковременный импульс. В отличие от транзистора, управление тиристором не требует удержания управляющего сигнала. На этом нюансы не заканчиваются: тиристор можно закрыть, лишь прервав ток в цепи, или сформировав обратное напряжение анод – катод. Это значит, что использование тиристора в цепях постоянного тока весьма специфично и часто неблагоразумно, а вот цепях переменного, например в таком приборе как тиристорный регулятор мощности, схема построена таким образом, что обеспечено условие для закрытия. Каждая из полуволн будет закрывать соответствующий тиристор.

Вам, скорее всего, не всё понятно? Не стоит отчаиваться – ниже будет подробно описан процесс работы готового устройства.

Область применения тиристорных регуляторов

В каких цепях эффективно использовать тиристорный регулятор мощности? Схема позволяет отлично регулировать мощность нагревательных приборов, то есть воздействовать на активную нагрузку. При работе с высокоиндуктивной нагрузкой тиристоры могут просто не закрыться, что может привести к выходу регулятора из строя.

Можно ли регулировать обороты двигателя?

Я думаю, многие из читателей видели или пользовались дрелями, углошлифовальными машинами, которые в народе именуют «болгарками», и прочим электроинструментом. Вы могли заметить, что количество оборотов зависит от глубины нажатия на кнопку-курок прибора. Вот в этот элемент как раз и встроен такой тиристорный регулятор мощности (схема которого приведена ниже), с помощью которого осуществляется изменение количества оборотов.

Обратите внимание! Тиристорный регулятор не может изменять обороты асинхронных двигателей. Таким образом, напряжение регулируется на коллекторных двигателях, оборудованных щёточным узлом.

Схема тиристорного регулятора мощности на одном и двух тиристорах

Типовая схема для того, чтобы собрать тиристорный регулятор мощности своими руками изображена на рисунке ниже.

Выходное напряжение у данной схемы от 15 до 215 вольт, в случае применения указанных тиристоров, установленных на теплоотводах, мощность составляет порядка 1 кВт. Кстати выключатель с регулятором яркости света сделан по подобной схеме.

Если у вас нет необходимости полной регулировки напряжения и достаточно получать на выходе от 110 до 220 вольт, воспользуйтесь этой схемой, которая показывает однополупериодный регулятор мощности на тиристоре.

Как это работает?

Описанная ниже информация справедлива для большинства схем. Буквенные обозначения будут браться в соответствии первой схемы тиристорного регулятора

Тиристорный регулятор мощности, принцип работы которого основан на фазовом управлении величиной напряжения, изменяет и мощность. Данный принцип заключается в том, что в нормальных условиях на нагрузку действует переменное напряжение бытовой сети, изменяющееся по синусоидальному закону. Выше, при описании принципа работы тиристора, было сказано, что каждый тиристор работает в одном направлении, то есть управляет своей полуволной от синусоиды. Что это значит?

Если с помощью тиристора периодически подключать нагрузку в строго определенный момент, величина действующего напряжения будет ниже, поскольку часть напряжения (действующая величина, которая «попадёт» на нагрузку) будет меньше, чем сетевое. Данное явление проиллюстрировано на графике.

Заштрихованная область – это и есть область напряжения, которое оказалось под нагрузкой. Буквой «а» на горизонтальной оси обозначен момент открытия тиристора. Когда положительная полуволна закончится и начнется период с отрицательной полуволной, один из тиристоров закрывается, и в тот же момент открывается второй тиристор.

Разберемся, как работает конкретно наш тиристорный регулятор мощности

Оговорим заранее, что вместо слов «положительная» и «отрицательная» будут использованы «первая» и «вторая» (полуволна).

Итак, когда на нашу схему начинает действовать первая полуволна, начинают заряжаться ёмкости C1 и C2. Скорость их заряда ограничена потенциометром R5. данный элемент является переменным, и с его помощью задаётся выходное напряжение. Когда на конденсаторе C1 появляется необходимое для открытия динистора VS3 напряжение, динистор открывается, через него поступает ток, с помощью которого будет открыт тиристор VS1. Момент пробоя динистора и есть точка «а» на графике, представленном в предыдущем разделе статьи. Когда значение напряжения переходит через ноль и схема оказывается под второй полуволной, тиристор VS1 закрывается, и процесс повторяется заново, только для второго динистора, тиристора и конденсатора. Резисторы R3 и R3 служат для ограничения тока управления, а R1 и R2 – для термостабилизации схемы.

Принцип работы второй схемы аналогичен, но в ней идёт управление только одной из полуволн переменного напряжения. Теперь, зная принцип работы и схему, вы можете собрать или починить тиристорный регулятор мощности своими руками.

Применение регулятора в быту и техника безопасности

Нельзя не сказать о том, что данная схема не обеспечивает гальванической развязки от сети, поэтому существует опасность поражения электрическим током. Это значит, что не стоит касаться руками элементов регулятора. Необходимо использовать изолированный корпус. Следует проектировать конструкцию вашего прибора так, чтобы по возможности вы могли спрятать её в регулируемом устройстве, найти свободное место в корпусе. Если регулируемый прибор располагается стационарно, то вообще имеет смысл подключить его через выключатель с регулятором яркости света. Такое решение частично обезопасит от поражения током, избавит от необходимости поиска подходящего корпуса, имеет привлекательный внешний вид и изготовлено промышленным методом.

В электротехнике довольно часто приходиться встречаться с задачами регулирования переменного напряжения, тока или мощности. Например, для регулирования частоты вращения вала коллекторного двигателя необходимо регулировать напряжение на его зажимах, для управления температурой внутри сушильной камеры нужно регулировать мощность, выделяемую в нагревательных элементах, для достижения плавного безударного пуска асинхронного двигателя – ограничивать его пусковой ток. Распространенным решением является устройство, называемое тиристорный регулятор.

Устройство и принцип действия однофазного тиристорного регулятора напряжения

Тиристорные регуляторы бывают однофазные и трехфазные соответственно для однофазных и трехфазных сетей и нагрузок. В этой статье мы рассмотрим простейший однофазный тиристорный регулятор, трехфазные – в других статьях. Итак, на рисунке 1 ниже представлен однофазный тиристорный регулятор напряжения:

Рис.1 Простой однофазный тиристорный регулятор с активной нагрузкой

Сам тиристорный регулятор обведен голубыми линиями и включает в себя тиристоры VS1-VS2 и систему импульсно-фазового управления ( далее – СИФУ). Тиристоры VS1-VS2 – полупроводниковые приборы, имеющие свойство быть закрытыми для протекания тока в нормальном состоянии и быть открытыми для протекания тока одной полярности при подаче напряжения управления на его управляющий электрод. Поэтому для работы в сетях переменного тока необходимо два тиристора, включенных разнонаправлено – один для протекания положительной полуволны тока, второй – отрицательной полуволны. Такое включение тиристоров называется встречно-параллельным.

Однофазный тиристорный регулятор с активной нагрузкой

Работает тиристорный регулятор так. В начальный момент времени подается напряжение L-N ( фаза и ноль в нашем примере), при этом импульсы управляющего напряжения на тиристоры не подаются, тиристоры закрыты, ток в нагрузке Rн отсутствует. После получения команды на запуск СИФУ начинает формировать импульсы управления по определенному алгоритму ( см.рис. 2).

Рис.2 Диаграмма напряжения и тока в активной нагрузке

Сначала система управления синхронизируется с сетью, то есть определяет момент времени, в который напряжение сети L-N равно нулю. Эта точка называется моментом перехода через ноль ( в иностранной литературе – Zero Cross). Далее отсчитывается определенное время T1 от момента перехода через ноль и подается импульс управления на тиристор VS1. При этом тиристор VS1 открывается и через нагрузку протекает ток по пути L-VS1-Rн-N. При достижении следующего перехода через ноль тиристор автоматически закрывается, так как не может проводить ток в обратном направлении. Далее начинается отрицательный полупериод сетевого напряжения. СИФУ снова отсчитывает время Т1 относительно уже нового момента перехода напряжения через ноль и формирует второй импульс управления уже тиристором VS2, который открывается, и через нагрузку протекает ток по пути N-Rн-VS2-L. Такой способ регулирования напряжения называется фазо-импульсный.

Время Т1 называется временем задержки отпирания тиристоров, время Т2 – время проводимости тиристоров. Изменяя время задержки отпирания T1 можно регулировать величину выходного напряжения от нуля ( импульсы не подаются, тиристоры закрыты) до полного сетевого, если импульсы подаются сразу в момент перехода через ноль. Время задержки отпирания T1 варьируется в пределах 0..10 мс (10 мс – это длительность одного полупериода напряжения стандартной сети 50 Гц). Также иногда говорят о временах T1 и Т2, но оперируют при этом не временем, а электрическими градусами. Один полупериод составляет 180 эл.градусов.

Что представляет выходное напряжение тиристорного регулятора? Как видно из рисунка 2, оно напоминает « обрезки» синусоиды. Причем чем больше время Т1, тем меньше этот „обрезок“ напоминает синусоиду. Из этого следует важный практический вывод – при фазо-импульсном регулировании выходного напряжение несинусоидально. Это обуславливает ограничение области применения — тиристорный регулятор не может быть применен для нагрузок, не допускающих питание несинусоидальным напряжением и током. Так же на рисунке 2 красным цветом показана диаграмма тока в нагрузке. Поскольку нагрузка чисто активная, то форма тока повторяет форму напряжения в соответствии с законом Ома I=U/R.

Случай активной нагрузки является наиболее распространенным. Одно из самых частых применений тиристорного регулятора – регулирование напряжения в ТЭНах. Регулируя напряжение, изменяется ток и выделяемая в нагрузке мощность. Поэтому иногда такой регулятор также называют тиристорным регулятором мощности. Это верно, но все-таки более верное название – тиристорный регулятор напряжения, так как именно напряжение регулируется в первую очередь, а ток и мощность – это величины уже производные.

Регулирование напряжения и тока в активно-индуктивной нагрузке

Мы рассмотрели простейший случай активной нагрузки. Зададимся вопросом, что изменится, если нагрузка будет иметь помимо активной еще и индуктивную составляющую? Например, активное сопротивление подключено через понижающий трансформатор ( рис.3). Это кстати очень распространенный случай.

Рис.3 Тиристорный регулятор работает на RL-нагрузку

Посмотрим внимательно на рисунок 2 из случая чисто активной нагрузки. На нем видно, что сразу после включения тиристора ток в нагрузке почти мгновенно нарастает от нуля до своего предельного значения, обусловленного текущим значением напряжения и сопротивления нагрузки. Из курса электротехники известно, что индуктивность препятствует такому скачкообразному нарастанию тока, поэтому диаграмма напряжения и тока будет иметь несколько отличный характер:

Рис.4 Диаграмма напряжения и тока для RL-нагрузки

После включения тиристора ток в нагрузке нарастает постепенно, благодаря чему кривая тока сглаживается. Чем больше индуктивность, тем более сглаженная кривая тока. Что это дает практически?

— Наличие достаточной индуктивности позволяет приблизить форму тока к синусоидальной, то есть индуктивность выполняет роль синус фильтра. В данном случае это наличие индуктивности обусловлено свойствами трансформатора, но часто индуктивность вводят преднамеренно в виде дросселя.

— Наличие индуктивности уменьшает величину помех, распространяемых тиристорным регулятором по проводам и в радиоэфир. Резкое, почти мгновенное ( в течение нескольких микросекунд) нарастание тока вызывает помехи которые могут препятствовать нормальной работе другого оборудования. А если питающая сеть « слабая», то бывает и совсем курьез – тиристорный регулятор может „глушить“ сам себя своими же помехами.

— У тиристоров есть важный параметр – величина критической скорости нарастания тока di/dt. Например, для тиристорного модуля SKKT162 эта величина составляет 200 А/мкс. Превышение этой величины опасно, так как может привести к выходу тиристору из строя. Так вот наличие индуктивности дает возможность тиристору остаться в области безопасной работы, гарантированно не превысив предельную величину di/dt. Если же это условие не выполняется, то может наблюдаться интересное явление – выход тиристоров из строя, притом что ток тиристоров не превышает их номинального значения. Например, тот же SKKT162 может выходить из строя при токе в 100 А, хотя он может нормально работать до 200 А. Причиной будет превышение именно скорости нарастания тока di/dt.

Кстати, надо оговориться, что индуктивность в сети есть всегда, даже если нагрузка носит чисто активный характер. Ее наличие обусловлено, во-первых, индуктивностью обмоток питающей трансформаторной подстанции, во вторых, собственной индуктивностью проводов и кабелей и, в третьих, индуктивностью петли, образованной питающими и нагрузочными проводами и кабелями. И чаще всего этой индуктивности хватает, чтобы обеспечить условие непревышения di/dt критического значения, поэтому производители обычно не ставят в тиристорные регуляторы дроссели, предлагая их как опцию тем, кого беспокоит « чистота» сети и электромагнитная совместимость устройств к ней подключенных.

Также обратим внимание диаграмму напряжения на рисунке 4. На ней также видно, что после перехода через ноль на нагрузке появляется небольшой выброс напряжения обратной полярности. Причина его возникновения – затягивание спадания тока в нагрузке индуктивностью, благодаря чему тиристор продолжает быть открытым даже при отрицательной полуволне напряжения. Запирание тиристора происходит при спадания тока до нуля с некоторым запаздыванием относительно момента перехода через ноль.

Случай индуктивной нагрузки

Что будет если индуктивная составляющая много больше составляющей активной? Тогда можно говорить о случае чисто индуктивной нагрузки. Например, такой случай можно получить, отключив нагрузку с выхода трансформатора из предыдущего примера:

Рисунок 5 Тиристор регулятор с индуктивной нагрузкой

Трансформатор, работающий в режиме холостого хода – почти идеальная индуктивная нагрузка. В этом случае из-за большой индуктивности момент запирания тиристоров смещается ближе к середине полупериода, а форма кривой тока максимально сглаживается до почти синусоидальной формы:

Рисунок 6 Диаграммы тока и напряжение для случая индуктивной нагрузки

При этом напряжение на нагрузке почти равно полному сетевому, хотя время задержки отпирания составляет всего половину полупериода (90 эл.градусов) То есть при большой индуктивности можно говорить о смещении регулировочной характеристики. При активной нагрузке максимальное выходное напряжение будет при угле задержки отпирания 0 эл.градусов, то есть в момент перехода через ноль. При индуктивной нагрузке максимум напряжения можно получить при угле задержки отпирания 90 эл.градусов, то есть при отпирании тиристора в момент максимума сетевого напряжения. Соответственно, случаю активно-индуктивной нагрузки максимум выходного напряжения соответствует углу задержки отпирания в промежуточном диапазоне 0..90 эл.градусов.

Тиристор это один из мощнейших полупроводниковых приборов, именно поэтому он часто используется в мощных преобразователях энергии. Но он обладает своей спецификой управления: его можно открыть импульсом тока, а вот закроется он только когда ток опуститься почти до нуля (если быть точнее, то ниже тока удержания). Из этого тиристор в основном применяются для коммутирования переменного тока.

Фазовое регулирование напряжения

Существует несколько способов регулирования переменного напряжения тиристорами: можно пропускать или запрещать на выход регулятора целые полупериоды (или периоды) переменного напряжения. А можно включать не в начале полупериода сетевого напряжения, а с некоторой задержкой — ‘a’. В течении этого времени напряжение на выходе регулятора будет равно нулю, а мощность не будет передаваться на выход. Вторую часть полупериода тиристор будет проводить ток и на выходе регулятора появиться входное напряжение.

Время задержки ещё часто называют углом открывания тиристора, так вот при нулевом угле практически всё напряжение со входа будет попадать на выход, только падение на открытом тиристоре будет теряться. При увеличении угла тиристорный регулятор напряжения будет снижать выходное напряжение.

Регулировочная характеристика тиристорного преобразователя при работе на активную нагрузку приведена на следующем рисунке. При угле равном 90 электрических градусов на выходе будет половина входного напряжения, а при угле 180 эл. градусов на выходе будет ноль.

На основе принципов фазового регулирования напряжения можно построить схемы регулирования, стабилизации, а также плавного пуска. Для плавного пуска напряжение нужно повышать постепенно от нуля до максимального значения. Таким образом угол открывания тиристора должен изменяться от максимального значения до нуля.

Схема тиристорного регулятора напряжения

Таблица номиналов элементов

  • C1 – 0,33мкФ напряжение не ниже 16В;
  • R1, R2 – 10 кОм 2Вт;
  • R3 – 100 Ом;
  • R4 – переменный резистор 33 кОм;
  • R5 – 3,3 кОм;
  • R6 – 4,3 кОм;
  • R7 – 4,7 кОм;
  • VD1 .. VD4 – Д246А;
  • VD5 – Д814Д;
  • VS1 – КУ202Н;
  • VT1 – КТ361B;
  • VT2 – КТ315B.

Схема построена на отечественной элементной базе, собрать её можно из тех деталей, которые провалялись у радиолюбителей 20-30 лет. Если тиристор VS1 и диоды VD1-VD4 установить на соответствующие охладители, то тиристорный регулятор напряжения будет способен отдавать в нагрузку 10А, то есть при напряжении 220 В получаем возможность регулировать напряжение на нагрузке в 2,2 кВт.

В устройстве всего два силовых компонента диодный мост и тиристор. Они рассчитаны на напряжение 400В и ток 10А. Диодный мост превращает переменное напряжение в однополярное пульсирующее, а фазовое регулирование полупериодов осуществляет тиристор.

Параметрический стабилизатор из резисторов R1, R2 и стабилитрона VD5 ограничивает напряжение, которое подается на систему управления на уровне 15 В. Последовательное включение резисторов нужно для увеличения пробивного напряжения и увеличения рассеиваемой мощности.

В самом начале полупериода переменного напряжения С1 разряжен и в точке соединения R6 и R7 тоже нулевое напряжение. Постепенно напряжения в этих двух точках начинают расти и чем меньше сопротивление резистора R4, тем быстрее напряжение на эмиттере VT1 перегонит напряжение на его базе и откроет транзистор.
Транзисторы VT1, VT2 составляют маломощный тиристор. При появлении напряжения на база-эмиттерном переходе VT1 больше порогового, транзистор открывается и открывает VT2. А VT2 отпирает тиристор.

Представленная схема достаточно проста, её можно перевести на современною элементную базу. Также можно при минимальных переделках снизить мощность или напряжение работы.

25 thoughts on “ Тиристорный регулятор напряжения простая схема, принцип работы ”

Раз уж мы заговорили о электрических углах, то хочется уточнить: при задержке «а» до 1/2 полупериода (до 90 эл. градусов) напряжение на выходе регулятора будет равным практически максимальному, а уменьшаться начнет только при «а» > 1/2 (>90). На графике — красным по серому начертано! Половина полупериода — не половина напряжения.
У данной схемы один плюс — простота, но фаза на управляющих элементах может привести к непростым последствиям. Да и помехи наводящиеся в электросети тиристорной отсечкой немалые. Особенно при большой нагрузке, что ограничивает область применения данного устройства.
Я вижу только одно: регулировать нагревательные элементы и освещение в складских и подсобных помещениях.

На первом рисунке ошибка, 10 мс должно соответствовать — полупериоду, а 20 мс соответствует периоду сетевого напряжения.
Добавил, график регулировочной характеристики при работе на активную нагрузку.
Вы видимо пишите про регулировочную характеристику когда нагрузкой является выпрямитель с емкостным фильтром? Тогда да, конденсаторы будут заряжаться на максимуме напряжения и диапазон регулирования будет от 90 до 180 градусов.

подобные схемы собирал…все работают безупречно, только больше нравится на кт 117

Залежи советских радиодеталей есть далеко не у каждого. Почему бы не указать «буржуйские» аналоги старых отечественных полупроводниковых приборов (например, 10RIA40M для КУ202Н)?

Тиристор КУ202Н сейчас продают меньше чем за доллар (не знаю, производят ли или старые запасы распродают). А 10RIA40M дорогой, на алиэкспрессе его продают примерно за 15$ плюс доставка от 8$. 10RIA40M имеет смысл использовать только когда нужно отремонтировать устройство с КУ202Н, а КУ202Н не найти.
Для промышленного применения более удобны тиристоры в корпусах TO-220, TO-247.
Два года назад делал преобразователь на 8кВт, так тиристоры покупал по 2,5$ (в корпусе TO-247).

Это и имелось в виду, если ось напряжения (почему-то помечена Р) провести, как на 2-м графике, то станет яснее с градусами, периодами и полупериодами приведенными в описании. Осталось убрать знак переменного напряжения на выходе (оно уже выпрямлено мостом) и моя дотошность будет удовлетворена полностью.
КУ202Н продают сейчас на радиорынках действительно за копейки, причем в исполнении 2У202Н. Кто в теме, поймет, что это военное производство. Наверное распродаются складские НЗ, которым все сроки вышли.

На рынке, если брать с рук могут среди новых подложить и выпаянную деталь.
Быстро проверить тиристор, например КУ202Н можно простым стрелочным тестером, включенным на измерение сопротивлений по шкале в единицы ом.
Анод тиристора соединяем на плюс, катод на минус тестера, в исправном КУ202Н утечки быть не должно.
После замыкания управляющего электрода тиристора на анод стрелка омметра должна отклониться, и остаться в таком положении после размыкания.
В редких случаях такой метод не срабатывает, и тогда для проверки понадобится низковольтный блок питания, желательно регулируемый, лампочка от фонарика, и сопротивление.
Вначале устанавливаем напряжение блока питания и проверяем светится ли лампочка, затем последовательно с лампочкой, соблюдая полярность соединяем наш тиристор.
Лампочка должна загореться лишь после кратковременного замыкания анода тиристора с управляющим электродом через резистор.
При этом резистор нужно подбирать, исходя из номинального открывающего тока тиристора и напряжения питания.
Это самые простейшие методы, но возможно существуют и специальные приборы для проверки тиристоров и симисторов.

кратковременно проверку выдерживают без сопротивления

На выходе напряжение не выпрямлено мостом.Оно выпрямлено только для схемы управления.

На выходе переменка,мост выпрямляет только для схемы управления.

Я бы назвал не регулирование напряжения, а регулирование мощности. Это стандартная схема регулятора освещения, которую раньше собирали почти все. И про радиатор к тиристору загнули. В теории конечно можно, но в практике думаю тяжело обеспечить тепло обмен между радиатором и тиристором для обеспечения 10А.

А какие сложности с теплообменом у КУ202? Вкрутил торцевым болтом в радиатор и все! Если радиатор новый, точнее, резьба не разболтана, даже КТП мазать не надо. Площадь стандартного радиатора (иногда и в комплекте шли), как раз и расчитана на нагрузку 10 А. Никакой теории, сплошная практика. Единственно, что радиаторы должны были находится на открытом воздухе (по инструкции), а при таком подключении сети — чревато. Поэтому закрываем, но ставим кулер. Да, мостовые друг к другу не прислоняем.

Вполне согласен с регулированием отдаваемоей мощности в нагрузку. Тиристор, конечно, не нужно ставить в предельные режимы. А так, моя любимая схема. даже использовал успешно для регулировки в первичной обмотке трансформатора.

Подскажите, что за конденсатор С1 -330нФ?

Наверное правильнее будет написать C1 — 0,33мкФ, можно устанавлиявать керамический или пленочный на напряжение не меньше 16В.

Всем самого доброго! Сначала собирал без транзисторов схемы… Одно плохо — регулировочное сопротивление грелось и выгорал слой графитовой дорожки. Потом собрал эту схему на кт. Первая неудачно — вероятно из-за большого усиления самих транзисторов. Собрал на МП с усилением около 50. Заработала без проблем! Однако есть вопросы…

Я тоже собирал без транзисторов,но ничего не грелось.Это было два резистора и конденсатор,В последствии убрал и конденсатор.Фактически остался переменник между анодом и управляющим,ну и естественно мостик.Использовал для регулировки мощности паяльника,причем как на 220 вольт,так и на первичку трансформатора для паяльника на 12 вольт и все работало и не грелось.Сейчас до сих пор в кладовке лежит в исправном состоянии.У Вас возможно была утечка в конденсаторе между катодом и управляющим для схемы без транзисторов.

Собрал на МП с усилением около 50. Работает! Но стало больше вопросов…

Номиналы R4 и R5 явно перепутаны. Никто не собирал схему в железе?

Можно поконкретнее о диодном мосте. Как направлены диоды?

плюс на право ,минус на лево ))

График неправильный. При 90 градусах *мощность* будет половина. А напряжение будет в корень из двух меньше исходного. Типа от 220 останется 155, а не 110.

А заменить транзисторы на динистор DB3 (стоит 4 рубля) можно? Дайте схему пожалуйста

…а если его — регулировать обороты вентилятора?, (но там индуктивная нагрузка,…. это вопрос).

Схема зарядного устройства на тиристоре ку202н

СТОЛ ЗАКАЗОВ:

БОНУСЫ:

ПОДЕЛИТЬСЯ ЭТОЙ СТРАНИЦЕЙ

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение: Михаил Булах

Программирование: Данил Мончукин

Маркетинг: Татьяна Анастасьева

Перевод: Наталья Кузнецова

При использовании материалов сайта обязательна ссылка на http://www.diagram.com.ua


сделано в Украине

Энциклопедия радиоэлектроники и электротехники

Простое тиристорное зарядное устройство

Устройство с электронным управлением зарядным током, выполнено на основе тиристорного фазоимпульсного регулятора мощности. Оно не содержит дефицитных деталей, при заведомо исправных элементах не требует налаживания.

Зарядное устройство позволяет заряжать автомобильные аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы. Зарядный ток по форме близок к импульсному, который, как считается, способствует продлению срока службы батареи. Устройство работоспособно при температуре окружающей среды от — 35 °С до + 35°С.

Схема устройства показана на рис. 2.60.

Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный moctVDI + VD4.

Узел управления тиристором выполнен на аналоге однопереходного транзистора VT1, VT2 Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот.

Диод VD5 защищает управляющую цепь тиристора VS1 от обратного напряжения, возникающего при включении тиристора.

Зарядное устройство в дальнейшем можно дополнить различными автоматическими узлами (отключение по окончании зарядки, поддержание нормального напряжения батареи при длительном ее хранении, сигнализации о правильной полярности подключения батареи, защита от замыканий выхода и т. д.).

К недостаткам устройства можно отнести колебания зарядного тока при нестабильном напряжении электроосветительной сети.

Как и все подобные тиристорные фазоимпульсные регуляторы, устройство создает помехи радиоприему. Для борьбы с ними следует предусмотреть сетевой LC-фильтр, аналогичный применяемому в импульсных сетевых блоках питания.

Конденсатор С2 — К73-11, емкостью от0,47 до 1 мкФ, или. К73-16, К73-17, К42У-2, МБГП.

Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307 Вместо КД105Б подойдут диоды КД105В, КД105Г или. Д226 с любым буквенным индексом.

Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1.

Амперметр РА1 — любой постоянного тока со шкалой на 10 А. Его можно изготовить самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру.

Предохранитель F1 — плавкий, но удобно использовать и сетевой автомат на 10 А или автомобильный биметаллический на такой же ток.

Диоды VD1 + VP4 могут быть любыми на прямой ток 10 А и обратное напряжение не менее 50 В (серии Д242, Д243, Д245, КД203, КД210, КД213).

Диоды выпрямителя и тиристор устанавливают на теплоотводы, каждый полезной площадью около 100 см2. Для улучшения теплового контакта приборов с теплоотводами желательно использовать теплопроводные пасты.

Вместо тиристора. КУ202В подойдут КУ202Г — КУ202Е; проверено на практике, что устройство нормально работает и с более мощными тиристорами Т-160, Т-250.

Следует заметить, что в качестве теплоотвода тиристора допустимо использовать непосредственно металлическую стенку кожуха. Тогда, правда, на корпусе будет минусовой вывод устройства, что в общем-то нежелательно из-за опасности случайных замыканий выходного плюсового провода на корпус. Если крепить тиристор через слюдяную прокладку, опасности замыкания не будет, но ухудшится отдача тепла от него.

В устройстве может быть использован готовый сетевой понижающий трансформатор необходимой мощности с напряжением вторичной обмотки от 18 до 22 В.

Если у трансформатора напряжение на вторичной обмотке более 18 В, резистор R5 следует заменить другим, большего сопротивления (например, при 24. 26 В сопротивление резистора следует увеличить до 200 Ом).

В случае, когда вторичная обмотка трансформатора имеет отвод от середины, или есть две одинаковые обмотки и напряжение каждой находится в указанных пределах, то выпрямитель лучше выполнить по стандартной двуполупериодной схеме на двух диодах.

При напряжении вторичной обмотки 28. 36 В можно вообще отказаться от выпрямителя — его роль будет одновременно играть тиристор VS1 (выпрямление — однополупериодное). Для такого варианта блока питания необходимо между резистором R5 и плюсовым проводом включить разделительный диод КД105Б или Д226 с любым буквенным индексом (катодом к резистору R5). Выбор тиристора в такой схеме будет ограничен — подойдут только те, которые допускают работу под обратным напряжением (например, КУ202Е).

Для описанного устройства подойдет унифицированный трансформатор ТН-61. Три его вторичных обмотки нужно соединить согласно последовательно, при этом они способны отдать ток до 8 А.

Все детали устройства, кроме трансформатора Т1, диодов VD1 — VD4 выпрямителя, переменного резистора R1, предохранителя FU1 и тиристора VS1, смонтированы на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм.

Автор: Шелестов И.П.

Смотрите другие статьи раздела Зарядные устройства, аккумуляторы, гальванические элементы .

Читайте и пишите полезные комментарии к этой статье.

Рекомендуем скачать в нашей Бесплатной технической библиотеке:

Оставьте свой комментарий к этой статье:

Комментарии к статье:

Алексей
Схема Радио 11 2001 простая попробую собрать.

Юра
В этой схеме есть ошибка.

Дима
В чем ошибка?

Юра
Неправильно установлен транзистор VT2. Просьба обратить на это внимание.

Владимир
p-n-p n-p-n из-за этого?

Юра
Сигнал подаётся от трансформатора. Если смотреть по транзистору VT2, согласно стрелке на эмиттере, указанной на схеме, транзистор сигнал пропускать не будет. Он будет заперт. Вам станет всё ясно, если вы обратите внимание на VD5.

Александр
Транзистор стоит правильный 315 только на схеме стрелку эмиттера надо нарисовать наоборот. И заряжать АКБ такими схемами необходимо в 2 раза дольше чем схемами на транзисторах. Потому что заряд происходит только во второй половине каждого полупериода, соответственно количество электричества за каждый полупериод аккумулятор получает как минимум в половину меньше чем от транзисторных зарядников.

Анатолий
Собрал все по схеме, на выходе диодного моста 17 вольт, дымит резистор R1. Подскажите что делать, резистор сп-1 на 30 килоом.

Гость
Ошибка — транзистор кт 315 показан в схеме как пряиой проводимости

Nikolay
Если сделать кз или переплюсовку что случится со схемой?

Эдуард, [email protected]
Собрал такую схему.Работает,правда без нагрузки на минимуме выдаёт 7вольт.Переменное R- 100 Ом.Может из-за него? Кто подскажет?

Андрей
Не регулируется. Либо ток есть — либо нет.

Николай
Собрал, на выходе диодного моста 15В. На выходе уже со схемы 11В и не регулируется, R1 20k. В чем проблема?

Владимир Михайлович, [email protected]
Зарядное сразу открывется, ку202 не поддается регулировке.

Владимир
Спасибо. Грамотно и толково изложено.

Николай
Схема простая, собрал, работает. Спасибо.

Гена
Собрал, проверил 10 раз — нули.

Сергей
R1 и R2 поменять местами,R3 исключить. Средний вывод R1 (движок) отключить и подключить на эмиттер VT1, туда же подключить С2-лучше неполярный 0,5. 1,0 мкф. Таким образом получаем плавную регулировку от 0 вольт, контролируя ток и напряжение можно заряжать разные аккумуляторы, не только 12-вольтовые

Гость
Схема рабочая!

Юрий
схема полностью рабочая. иногда надо подобрать R6. и R5. а также регулирующий..От 10 К.до 22к. R5 12k. R6 9k. Транзисторы заменить на пару кт 816 и кт 817..будет работать как сказка. Ничего не греется. Удачи всем..

Фальшивый СаратовецЪ
Люди! Схема абсолютно не рабочая! Не будет ток регулироваться,он будет сразу максимальный!Тиристор СтоИт в цепи ПОСТОЯННОГО тока,у тиристора есть самоудержание открытого состояния после открывания! Тиристор можно закрыть разомкнув цепь,или сменой полярности подключения. Здесь же он откроется на всю моментально и не закроется,независимо от того,что будет у него на управляющем электроде! (PS Я схему не собирал, просто знаю, как работает тиристор.)

Зарядное устройство на тиристорах для аккумулятора обладает рядом преимуществ. Такая схема позволяет безопасно зарядить любую автомобильную батарею на 12 В, без риска закипания.

Дополнительно приборы данного типа подходят для восстановления свинцово-кислотных батарей. Достигается это за счет контроля параметров зарядки, а значит возможности имитировать восстановительные режимы.

Импульсное зарядное устройство на КУ202Н

Распространенная, простая, но очень эффективная схема тиристорного фазоимпульсного регулятора мощности уже давно используется для заряда свинцовых аккумуляторов.

Узнай время зарядки своего аккумулятора

Зарядка на КУ202Н позволяет:

Схема тиристорного зарядного устройства на КУ202Н

  • добиться зарядного тока до 10А;
  • выдавать импульсный ток, благоприятно влияющий на продолжительность жизни АКБ;
  • собрать устройство своими руками из недорогих деталей, доступных в любом магазине радиоэлектроники;
  • повторить принципиальную схему даже новичку, поверхностно знакомому с теорией.

Условно, представленную схему можно разделить на:

  • Понижающее устройство – трансформатор с двумя обмотками, превращающий 220В из сети в 18-22В, необходимых для работы прибора.
  • Выпрямительный блок, преобразующий импульсное напряжение в постоянно собирается из 4-х диодов или реализуется с помощью диодного моста.
  • Фильтры – электролитические конденсаторы, отсекающие переменные составляющие выходного тока.
  • Стабилизация осуществляется за счет стабилитронов.
  • Регулятор тока производится компонентом, строящимся на транзисторах, тиристорах и переменном сопротивлении.
  • Контроль выходных параметров реализуется с помощью амперметра и вольтметра.

Принцип работы

Схема зарядного устройства с тиристором

Цепь из транзисторов VT1 и VT2 контролирует электрод тиристора. Ток проходит через VD2, защищающий от возвратных импульсов. Оптимальный ток зарядки контролируется компонентом R5. В нашем случае, он должен быть равен 10% от емкости аккумулятора. Чтобы контролировать регулятор тока, данный параметр перед клеммами подключения необходимо установить амперметр.

Питание данной схемы осуществляется трансформатором с выходным напряжением от 18 до 22 В. Обязательно необходимо расположить диодный мост, а также управляющий тиристор на радиаторах, для отвода избытка тепла. Оптимальный размер радиатора должен превышать 100см2. При использовании диодов Д242-Д245, КД203- в обязательном порядке изолируйте их от корпуса устройства.

Данная схема зарядного устройства на тиристорах обязательно должна комплектоваться предохранителем для выходного напряжения. Его параметры подбираются согласно собственных нужд. Если вы не собираетесь использовать токи более 7 А, то предохранителя на 7.3 А будет вполне достаточно.

Особенности сборки и эксплуатации

Схема проверки теристора

Собранное по представленной схеме зарядное устройство в дальнейшем можно дополнять автоматическими защитными системами (от переполюсовки, короткого замыкания и др). Особенно полезным, в нашем случае будет установка системы отключения подачи тока при заряде батареи, что убережет ее от перезаряда и перегрева.

Другие защитные системы желательно комплектовать светодиодными индикаторами, сигнализирующими о коротких замыканиях и других проблемах.

Внимательно следите за выходным током, так как он может изменяться из-за колебаний в сети.

Как и аналогичные тиристорные фазоимпульсные регуляторы, собранное по представленной схеме зарядное устройство создает помехи радиоприему, поэтому желательно предусмотреть LC-фильтр для сети.

Тиристор КУ202Н можно заменить аналогичными КУ202В, КУ 202Г или КУ202Е. Также можно использовать и более производительные Т-160 или Т-250.

Тиристорное зарядное устройство своими руками

Для собственноручной сборки представленной схемы понадобится минимум времени и сил, вместе с невысокими затратами на компоненты. Большую часть составляющих можно легко заменить на аналоги. Часть деталей можно позаимствовать у вышедшего из строя электрооборудования. Перед использованием, компоненты следует проверить, благодаря этому собранное даже из б/у деталей зарядное устройство, будет работать сразу после сборки.

В отличие от представленных на рынке моделей, работоспособность собранного своими руками зарядного сохраняется в большем диапазоне. Вы можете зарядить автомобильный аккумулятор от -350С до 350С. Это и возможность регулировать выходной ток, давая батарее большой ампераж, позволяет за короткое время компенсировать батарее заряд, достаточный для поворота стартером мотора.

Тиристорные зарядные устройства имеют место в гаражах автолюбителей, благодаря их возможностям безопасно заряжать автомобильный аккумулятор. Принципиальная схема данного прибора позволяет собрать его самостоятельно, используя товары с радио рынка. Если знаний недостаточно, можно воспользоваться услугами радиолюбителей, которые за плату в разы меньшую, чем стоимость магазинного зарядного устройства, смогут собрать вам аппарат по предоставленной им схеме.

Рано или поздно, но зарядное устройство для аккумуляторов начинает требоваться каждому автолюбителю. С приходом морозов я тоже о ней задумался. Аккумуляторы старенькие стали, заряд держать плохо начали, а одалживать зарядку у знакомых надоело. Покатался по городу, посмотрел что предлагается из неавтоматического с возможностью регулировки зарядного тока до 10А. Посмотрел, пообалдевал от цен и решил как обычно сам сколдовать данное устройство.

Для реализации выбрал схему тиристорного зарядного устройства. Просто, надежно, проверенно кучей народа. Уверен что устройства собранные по этой схеме уже бывали в этом сообществе.

Схемы тиристорных регуляторов мощности паяльника, подробно

Чтобы пайка была красивой и качественной, необходимо правильно выбрать мощность паяльника, обеспечить температуру жала. Все это зависит от марки припоя. На ваш выбор предоставляю несколько схем тиристорных регуляторов регулирования температуры паяльника, которые можно изготовить в домашних условиях. Они просты легко заменят промышленные аналоги, к тому же цена и сложность будет отличаться.

Электрические принципиальные схемы регуляторов температуры паяльника

Осторожно! Прикосновение к элементам тиристорной схемы может привести к получению травмы опасной для жизни!

Чтоб регулировать температуру жала паяльника используются паяльные станции, которые в автоматическом и ручном режимах поддерживает заданную температуру. Доступность паяльной станции ограничивается размером кошелька. Я решил эту проблему, изготовив ручной регулятор температура, имеющий плавную регулировку. Схема легко дорабатывается до автоматического поддержания заданного режима температуры. Но я сделал вывод, что ручной регулировки достаточно, так как температура помещения и ток сети стабильны.

Классическая тиристорная схема регулятора

Классическая схема регулятора была плоха тем, что имела излучающие помехи, издаваемые в эфир и сеть. Радиолюбителям эти помехи мешают при работе. Если доработать схему, включив в нее фильтр, размеры конструкции значительно увеличатся. Но это схема может использоваться и в других случаях, например, если необходимо отрегулировать яркость ламп накаливания или нагревательных приборов, мощность которых 20-60 Вт. Поэтому я представляю эту схему.

Чтобы понять, как это работает, рассмотрим принцип работы тиристора. Тиристор представляет собой полупроводниковый прибор закрытого или открытого типа. Чтоб открыть его, на управляющий электрод подается напряжение равное 2-5 В. Оно зависит от выбранного тиристора, относительно катода (буква k на схеме). Тиристор открылся, между катодом и анодом образовалось напряжение равное нулю. Через электрод его невозможно закрыть. Он будет открыт до того времени, пока значение напряжения катода (k) и анода (a) не будет близко к нулю. Вот такой принцип. Схема работает следующим образом: через нагрузку (обмотка паяльника или лампа накаливания) подается напряжение на диодный мост выпрямителя, выполненный диодами VD1-VD4. Он служит для преобразования переменного тока в постоянный, который меняется по синусоидальному закону (1 диаграмма). В крайнем левом положении сопротивление среднего вывода резистора равно 0. При увеличении напряжения происходит зарядка конденсатора С1. Когда напряжение С1 будет равно 2-5 В, на VS1 пойдет ток через R2. При этом произойдет открытие тиристора, закорачивание диодного моста, максимальный ток пройдет через нагрузку (диаграмма сверху). Если повернуть ручку резистора R1, произойдет увеличение сопротивления, конденсатор С1 будет заряжаться дольше. Следовательно, открытие резистора произойдет не сразу. Чем мощнее R1, тем больше времени уйдет на заряд С1. Вращая ручку вправо или влево, можно регулировать температуру нагрева жала паяльника.

На фото выше предоставлена схема регулятора, собранная на тиристоре КУ202Н. Чтоб управлять этим тиристором (в паспорте указан ток 100мА, реально – 20 мА), необходимо уменьшить номиналы резисторов R1, R2, R3 исключаем, емкость конденсатора увеличиваем. Емкость С1 необходимо повысить до 20 мкФ.

Простейшая тиристорная схема регулятора

Вот еще один вариант схемы, только упрощенный, деталей минимум. 4 диода заменены одним VD1. Отличие данной схемы заключается в том, что регулировка происходит при положительном периоде сети. Отрицательный период, проходя через диод VD1, остается без изменений, мощность можно регулировать от 50% до 100%. Если исключить VD1 из схемы, мощность можно будет регулировать в диапазоне от 0% до 50%.

Если применить динистор КН102А в разрыв от R1 и R2, придется заменить С1 на конденсатор емкостью 0,1 мкФ. Для этой схемы подойдут такие номиналы тиристоров: КУ201Л (К), КУ202К (Н,М,Л), КУ103В, напряжением для них более 300 В. Диоды любые, обратное напряжение которых не меньше, чем 300 В.

Выше упомянутые схемы успешно подойдут для регулировки ламп накаливания в светильниках. Регулировать светодиодные и энергосберегающие лампы не удастся, так как они имеют электронные схемы управления. Это приведет к миганию или работе лампы на полную мощность, что в конечном итоге выведет ее из строя.

Если вы хотите применить регуляторы для работы в сети 24,36 В, придется уменьшить номиналы резисторов и заменить тиристор на соответствующий. Если мощность паяльника 40 Вт, напряжение сети 36 В, он будет потреблять 1,1 А.

Тиристорная схема регулятора не излучающая помехи

Эта схема отличается от предыдущей полным отсутствием изучаемых радиопомех, так как процессы протекают в тот момент, когда напряжение сети равно 0. Приступая к созданию регулятора, я исходил из следующих соображений: комплектующие должны иметь низкую цену, высокую надежность, малые габариты, сама схема должна быть проста, легко повторяемая, КПД должен быть близким к 100%, помехи должны отсутствовать. Схема должна иметь возможность модернизации.

Принцип работы схемы следующий. VD1-VD4 выпрямляют напряжение сети. Получающееся постоянное напряжение изменяется по амплитуде равной половине синусоиды частотой 100 Гц (1 диаграмма). Ток, проходя через R1 на VD6 — стабилитрон, 9В (2 диаграмма), имеет другую форму. Через VD5 импульсы заряжают С1, создавая 9 В напряжения для микросхем DD1, DD2. Для защиты применяется R2. Он служит для ограничения напряжения, поступаемого на VD5, VD6 до 22 В и формирует тактовый импульс для работы схемы. R1 передает сигнал на 5, 6 вывод элемента 2 либо не логическую цифровую микросхему DD1.1, которая в свою очередь инвертирует сигнал и преобразует его в короткий прямоугольный импульс (3 диаграмма). Импульс исходит с 4-го вывода DD1 и приходит на вывод D №8 триггера DD2.1, который работает в RS режиме. Принцип работы DD2.1 такой же и, как и DD1.1 (4 диаграмма). Рассмотрев диаграммы №2 и 4, можно сделать выводы, что отличия практически нет. Получается, что с R1 можно подать сигнал на вывод №5 DD2.1. Но это не так, R1 имеет множество помех. Придется устанавливать фильтр, что не целесообразно. Без двойного формирования схемы стабильной работы не будет.

Схема управления регулятора собрана на базе триггера DD2.2, работает она по следующему принципу. C вывода №13 триггера DD2.1 поступают импульсы на 3 вывод DD2.2, перезапись уровня которых происходит на выводе №1 DD2.2, которые на данном этапе находятся на D входе микросхемы (5 вывод). Противоположный уровень сигнала находится на 2 выводе. Предлагаю рассмотреть принцип работы DD2.2. Предположим, что на 2 выводе, логическая единица. С2 заряжается до необходимого напряжения через R4, R5. Когда появится первый импульс с положительным перепадом на 2 выводе образуется 0, через VD7 произойдет разрядка С2. Последующий перепад на 3 выводе установит на 2 выводе логическую единицу, С2 начнет накапливать емкость через R4, R5. Время зарядки зависит от R5. Чем оно больше, тем дольше будет происходить зарядка С2. Пока конденсатор С2 не накопит 1\2 емкости, на 5 выводе будет 0. Перепад импульсов на 3 входе не будет влиять на изменение логического уровня на 2 выводе. При достижении полного заряда конденсатора, произойдет повторение процесса. Количество импульсов, заданных резистором R5, будет поступать на DD2.2. Перепад импульсов будет происходить только в те моменты, когда напряжение сети будет переходить через 0. Вот почему отсутствуют помехи на данном регуляторе. С 1 вывода DD2.2 на DD1.2 подаются импульсы. DD1.2 исключает влияние VS1 (тиристор) на DD2.2. R6 установлен для ограничения тока управления VS1. На паяльник подается напряжение за счет открытия тиристора. Это происходит из-за того, что на тиристор поступает положительный потенциал с управляющего электрода VS1. Этот регулятор позволяет производить регулировку мощности в диапазоне 50-99%. Хоть резистор R5 – переменный, за счет включенного DD2.2 регулировка паяльника осуществляется ступенчатым образом. Когда R5 = 0, происходит подача 50% мощности (5 диаграмма), если повернуть на определенный угол, будет 66% (6 диаграмма), затем 75% (7 диаграмма). Чем ближе к рассчитанной мощности паяльника, тем плавне работа регулятора. Допустим, имеется паяльник на 40 Вт, его мощность можно регулировать в районе 20-40 Вт.

Конструкция и детали регулятора температуры

Детали регулятора располагаются на стеклотекстолитовой печатной плате. Плата помещена в пластиковый корпус от бывшего адаптера, имеющего электрическую вилку. Ручка из пластика надета на ось резистора R5. На корпусе регулятора имеются отметки с цифрами, позволяющие понимать, какой температурный режим выбран.

Шнур паяльника припаян к плате. Подключение паяльника к регулятору можно сделать разъемным, чтобы иметь возможность подключить другие объекты. Схема потребляет ток не превышающий 2мА. Это даже меньше, чем потребление светодиода в подсветке выключателя. Специальные меры по обеспечению режим работы устройства не требуются.

При напряжении 300 В и токе 0,5 А применяются микросхемы DD1, DD2 и серии 176 либо 561; диоды любые VD1-VD4. VD5, VD7 — импульсные, любые; VD6 — маломощный стабилитрон с напряжением 9 В. Конденсаторы любые, резисторе тоже. Мощность R1 должна быть 0,5 Вт. Дополнительной настройки регулятора не потребуется. Если детали исправны и при подключении не возникало ошибок, он заработает сразу.

Схема была разработана давно, когда лазерных принтеров и компьютеров не было. По этой причине печатная плата изготавливалась по дедовскому методу, использовалась диаграммная бумага, шаг сетки которой 2,5 мм. Далее чертеж приклеивался «Моментом» на бумагу по плотнее, а сама бумага на фольгированный стеклотекстолит. Зачем сверлились отверстия, дорожки проводников и контактных площадок вычерчивались вручную.

У меня сохранился чертеж регулятора. На фото показан. Изначально применялся диодный мост номиналом КЦ407 (VD1-VD4). Их разрывало пару раз, пришлось заменить 4 диодами типа КД209.

Как снизить уровень помех от тиристорных регуляторов мощности

Чтоб уменьшить помехи, излучаемые тиристорным регулятором, применяют ферритовые фильтры. Они представляют собой ферритовое кольцо, имеющее обмотку. Эти фильтры встречаются в импульсных блоках питания телевизоров, компьютеров и других изделий. Любой тиристорный регулятор можно оснастить фильтром, который будет эффективно подавлять помехи. Для этого необходимо пропустить через ферритовое кольцо сетевой провод.

Ферритовый фильтр следует устанавливать вблизи источников, издающих помехи, непосредственно в месте установки тиристора. Фильтр может быть расположен как снаружи корпуса, так и внутри. Чем больше количество витков, тем качественней фильтр будет подавлять помехи, но и достаточно продеть провод, идущий к розетке, через кольцо.

Кольцо можно изъять из интерфейсных проводов компьютерной периферии, принтеров, мониторов, сканеров. Если посмотреть на провод, который соединяет монитор или принтер с системным блоком, можно заметить цилиндрическое утолщение на нем. Именно в этом месте расположен ферритовый фильтр, служащий для защиты от высокочастотных помех.

Берем нож, разрезаем изоляцию и извлекаем ферритовое кольцо. Наверняка у ваших друзей или у вас завалялся старый интерфейсный кабель од кинескопного монитора или струйного принтера.

По материалам сайта: ydoma.info

Мощный тиристорный регулятор своими руками. Регулятор мощности тиристорный, напряжения и схемы своими руками. Строительство и учения

Введение.

Подобный регулятор я делал много лет назад, когда приходилось ремонтировать ж / д дома с заказчиком. Регулятор был настолько удобен, что со временем сделал еще один экземпляр, так как первый образец постоянно устанавливался в качестве регулятора качения вытяжного вентилятора.https: // Сайт /

Кстати, этот вентилятор из серии Know Hower укомплектован запорным клапаном моей собственной конструкции. Материал может быть полезен жильцам, живущим на последних этажах многоэтажек и обладающим хорошим обонянием.

Мощность плагина зависит от используемого тиристора и условий его охлаждения. Если используется большой тиристор или симистор типа КУ208г, то можно смело подключать нагрузку в 200 … 300 Вт. При использовании небольшого тиристора мощность типа B169D будет ограничена до 100 Вт.

Как это работает?

Так работает тиристор в цепи переменного тока. Когда ток, протекающий через управляющий электрод, достигает определенного порогового значения, тиристор отключается и блокируется только тогда, когда напряжение на его аноде исчезает.

Примерно симистор (симметричный тиристор) тоже работает, только при смене полярности на аноде меняется полярность управляющего напряжения.

На картинке видно, что и откуда.

В бюджетных схемах управления Simistors KU208G при одном источнике питания лучше контролировать «минус» относительно катода.


Для проверки работоспособности симистора можно собрать эту несложную схему. При соприкосновении с контактами кнопки лампа должна погаснуть. Если она не погасла, то либо пробой симистора, либо его пороговое напряжение пробоя ниже пикового напряжения сети. Если лампа не горит при нажатой кнопке, значит симистор оторван.Значения сопротивления R1 выбраны так, чтобы не превышать максимально допустимое значение электрода контроля тока.


При проверке тиристоров на схеме необходимо добавить диод для предотвращения возврата напряжения.


Схемотехнические решения.

Простой регулятор мощности можно собрать на симисторе или тиристоре. Я расскажу о тех и других схемных решениях.

Регулятор мощности на SIMISTOR KU208G.

ВС1 — КУ208Г.

HL1 — MN3… МН13 и др.

В этой схеме, на мой взгляд, наиболее простой и удачный вариант регулятора, элементом управления которого служит Simistor KU208g. Этот контроллер регулирует мощность от нуля до максимума.

Назначение предметов.

HL1 — Линеаризует управление и является индикатором.

C1 — генерирует импульс пиления и защищает цепь управления от помех.

R1 — регулятор мощности.

R2 — ограничивает ток через анод — катод VS1 и R1.

R3 — ограничивает ток через HL1 и управляющий электрод VS1.

Регулятор мощности на мощном тиристоре CU202N.

ВС1 — КУ202Н

Аналогичную схему можно собрать на тиристоре КУ202Н. Его отличие от схемы на Симисторе в том, что диапазон регулировки мощности регулятора составляет 50 … 100%.

Показывает, что ограничение происходит только одной полуволной, а другая беспрепятственно проходит через диод VD1 в нагрузке.


Регулятор мощности на тиристоре малой мощности.

Данная схема, собранная на самом дешевом маломощном тиристоре B169D, отличается от схемы, приведенной выше, только наличием резистора R5, который вместе с резистором R4 являются делителем напряжения и уменьшают амплитуду управляющего сигнала. Необходимость в этом вызвана высокой чувствительностью тиристоров малой мощности. Регулятор регулирует мощность в диапазоне 50 … 100%.

Регулятор мощности на тиристоре с диапазоном регулировки 0 … 100%.

VD1… VD4 — 1N4007

Чтобы регулятор на тиристоре мог регулировать мощность от нуля до 100%, необходимо добавить в схему диодный мост.

Сейчас схема работает аналогично симисторному регулятору.


Конструкция и детали.

Регулятор собран в корпусе блока питания некогда популярного вычислителя «Электроника Б3-36».

Симистор и потенциометр размещаются на стальном уголке из стали толщиной 0,5 мм. Уголок прикручивается к корпусу двумя М2.5 винтов с изоляционными шайбами.

Резисторы R2, R3 и лампа Neon HL1 одеты в изолирующую трубку (Кембрик) и закреплены путем навесного монтажа на другие электрические элементы конструкции.

Чтобы повысить надежность крепления штырей вилки, пришлось их атаковать несколькими витками толстой медной проволоки.


Так выглядят регуляторы мощности, которые я использую много лет.


Установите Flash Player, чтобы увидеть этот плеер.

А это 4-х секундный ролик, который позволяет убедиться, что он работает. Нагрузка — лампа накаливания мощностью 100 Вт.


Дополнительный материал.

Отливка (распиновка) крупных отечественных симисторов и тиристоров. Благодаря мощному металлическому корпусу эти устройства могут рассеивать мощность в 1 … 2 Вт без дополнительного радиатора без существенного изменения параметров.


Отливка небольших популярных тиристоров, которые могут управлять напряжением сети со средним током 0.5 ампер.

Тип устройства Катод Контроль. Анод
BT169D (E, G) 1 2 3
CR02AM-8. 3 1 2
MCR100-6 (8) 1 2 3
Содержимое:

В современных радиолюбительских схемах получили распространение различные типы деталей, в том числе тиристорный регулятор мощности.Чаще всего этот элемент используется в паяльниках на 25-40 Вт, которые в нормальных условиях легко перегреваются и становятся непригодными для эксплуатации. Эта проблема легко решается с помощью регулятора мощности, позволяющего установить точную температуру.

Применение тиристорных регуляторов

Как правило, тиристорные регуляторы мощности используются для улучшения рабочих свойств обычного паяльника. Современные конструкции, оснащенные множеством функций, отличаются высокой стоимостью, а при небольших объемах их использование будет малоэффективным.Поэтому уместнее будет оснащение обычного паяльника тиристорным регулятором.

Регулятор мощности на тиристоре широко применяется в ламповых системах. На практике это обычные настенные выключатели с вращающейся ручкой-регулятором. Однако такие устройства способны нормально работать только с обычными лампами накаливания. Они не полностью воспринимаются современными компактными люминесцентными лампами из-за расположенного внутри выпрямительного моста с электролитическим конденсатором.При такой схеме тиристор просто не будет работать.

Такие же непредсказуемые результаты получаются и при попытке отрегулировать яркость светодиодных ламп. Поэтому для регулируемого источника освещения наиболее оптимальным вариантом будет использование обычных ламп накаливания.

Есть и другие области применения тиристорных регуляторов мощности. Среди них следует отметить возможность регулировки ручного электроинструмента. Регулирующие устройства устанавливаются внутри корпусов и позволяют изменять количество оборотов дрели, шуруповерта, перфоратора и других инструментов.

Принцип работы тиристора

Действие регуляторов мощности тесно связано с принципом действия тиристора. На радиошаме это обозначается значком, напоминающим обычный диод. Каждый тиристор характеризуется односторонней проводимостью и, соответственно, способностью выпрямлять переменный ток. Участие в этом процессе становится возможным при наличии положительного напряжения на управляющем электроде. Сам управляющий электрод расположен сбоку от катода.В связи с этим тиристор ранее носил название управляемого диода. Перед подачей управляющего импульса тиристор будет закрыт в любом направлении.

Для визуального определения исправности тиристора его включают в общую цепочку со светодиодом через источник постоянного напряжения 9 вольт. Дополнительно к светодиоду подключается ограничительный резистор. Специальная кнопка замыкает цепь и напряжение с делителя поступает на управляющий электрод тиристора.В результате тиристор открывается, и светодиод начинает излучать свет.

Когда кнопка отпускается, когда она перестает удерживать положение, свечение должно продолжаться. В случае повторного или многократного нажатия кнопки ничего не меняется — светодиод по-прежнему будет светить с той же яркостью. Это указывает на открытое состояние тиристора и его техническое состояние. Он будет находиться в открытом положении до тех пор, пока момент не будет прерван внешними воздействиями.

В некоторых случаях могут быть исключения.То есть при нажатии на кнопку светодиод загорается, а при отпускании кнопки — гаснет. Такая ситуация становится возможной из-за протекания тока через светодиод, величина которого меньше по сравнению с током удержания тиристора. Чтобы схема работала нормально, светодиод рекомендуется заменить лампой накаливания, что приведет к увеличению тока. Другим вариантом будет подбор тиристора, у которого будет меньший ток удержания. Параметр тока удержания в разных тиристорах может быть с большим разбросом, в таких случаях приходится подбирать элемент для каждой конкретной схемы.

Схема простейшего регулятора мощности

Тиристор участвует в выпрямлении переменного напряжения так же, как и обычный диод. Это приводит к одноальпийной выпрямке в малых пределах с участием одного тиристора. Для достижения желаемого результата с помощью регуляторов мощности он управляется двумя участками сетевого напряжения. Это становится возможным благодаря встречно-параллельному включению тиристоров. Кроме того, тиристоры могут быть включены в диагональную цепь выпрямительного моста.

Простейшую схему тиристорного регулятора мощности лучше всего рассмотреть на примере регулировки мощности паяльника. Нет смысла начинать регулировку прямо с нулевой отметки. В связи с этим можно регулировать только один полупериод положительного сетевого напряжения. Прохождение отрицательного полупериода осуществляется через диод без каких-либо изменений непосредственно к язве, обеспечивая ее половинную мощность.

Прохождение положительного полупериода происходит через тиристор, за счет чего и осуществляется регулировка.В схеме управления тиристором присутствуют простейшие элементы в виде резисторов и конденсатора. Зарядка конденсатора происходит от верхнего провода схемы, через резисторы и конденсатор, нагрузку и нижний провод схемы.

Управляющий электрод тиристора подключен к плюсовому выходу конденсатора. При повышении напряжения на конденсаторе до значения, позволяющего включить тиристор, открыв его. В результате некоторая часть положительного полусредства напряжения передается в нагрузку.При этом разрядка конденсатора и подготовка к следующему циклу.

Переменный резистор используется для регулировки скорости заряда конденсатора. Чем быстрее конденсатор заряжается до значения напряжения, при котором тиристор открывается, тем раньше происходит открытие тиристора. Следовательно, будет высвобожден более положительный сегмент напряжения. Эта схема, в которой используется тиристорный регулятор мощности, служит основой для других схем, используемых в различных областях.

Тиристорный регулятор мощности своими руками

В статье описан принцип работы тиристорного регулятора мощности, схема которого будет представлена ​​ниже

В повседневной жизни очень часто возникает необходимость регулирования мощности бытовой техники, например, электроплит, паяльника, держателей для варки и т. Д. фасоль, на транспорте — обороты двигателя и др.На помощь приходит простейшая радиолюбительская конструкция — регулятор мощности на тиристоре. Собрать такой прибор не составит труда, это может быть самый первый самодельный прибор, который будет выполнять функцию регулировки температуры паяльной комнаты начинающего радиолюбителя. Стоит отметить, что готовые паяльные станции с контролем температуры и другими приятными функциями на порядок больше, чем простой паяльник. Минимальный набор деталей позволяет собрать простой тиристорный регулятор мощности навесной монтаж.

Отметим, навесная установка — это метод сборки радиоэлектронных компонентов без использования печатной платы, и при хорошем мастерстве позволяет быстро собрать электронные устройства средней сложности.

Также можно заказать тиристорный регулятор, а для тех, кто хочет во всем разобраться самостоятельно, ниже будет представлена ​​схема и объяснен принцип работы.

Кстати, это тиристорный однофазный регулятор мощности.Такое устройство можно использовать для контроля мощности или количества оборотов. Однако для начала следует понять, ведь это позволит понять, с какой нагрузкой лучше использовать такой регулятор.

Как работает тиристор?

Тиристор — это управляемое полупроводниковое устройство, способное проводить ток в одном направлении. Слово «управляемый» употреблено не случайно, ведь с его помощью, в отличие от диода, который тоже проводит ток только на один полюс, можно выбрать момент, когда тиристор начнет проводить ток.Тиристор имеет три выхода:

  • анод.
  • Катод.
  • Управляющий электрод.

Для прохождения тока через тиристор необходимо выполнение следующих условий: деталь должна находиться в цепи под напряжением, на управляющий электрод подать кратковременный импульс. В отличие от транзистора, тиристорное управление не требует удержания управляющего сигнала. На этом нюансы не заканчиваются: тиристор можно замкнуть, только прервав ток в цепи, либо образуя обратное напряжение анод — катод.Это означает, что использование тиристора в цепях постоянного тока очень специфично и часто неразумно, но в чередующихся цепях, например, в таком устройстве, как тиристорный регулятор мощности, схема построена таким образом, что предусмотрено условие включения . Каждый полуавтомат закрывает соответствующий тиристор.

Вам скорее всего не все понятно? Не стоит отчаиваться — ниже будет описан процесс работы готового устройства.

Области применения тиристорных регуляторов

В каких цепях эффективно использовать тиристорный регулятор мощности? Схема позволяет идеально регулировать мощность отопительных приборов, то есть влиять на активную нагрузку.При работе с высокоиндуктивной нагрузкой тиристоры могут просто не замыкаться, что может привести к выходу регулятора из строя.

Возможно ли?

Я думаю, что многие из читателей видели или использовали дрели, угловые стаканы, которые называются «шлифовальные машины», и другие электроинструменты. Вы могли заметить, что количество оборотов зависит от глубины нажатия на кнопку инструмента. Этот элемент как раз и встроен в такой тиристорный регулятор мощности (схема которого приведена ниже), с помощью которого изменяется количество оборотов.

Примечание! Тиристорный регулятор не может изменять частоту вращения асинхронных двигателей. Таким образом, напряжение регулируется на коллекторных двигателях, оборудованных щеточным узлом.

Схема из одного и двух тиристоров

Типовая схема Для того, чтобы собрать тиристорный регулятор мощности своими руками, показан на рисунке ниже.

Выходное напряжение в этой схеме от 15 до 215 вольт, в случае использования этих тиристоров, установленных на радиаторах, мощность порядка 1 кВт.Кстати, переключатель яркости света выполнен по аналогичной схеме.

Если у вас нет необходимости в полной регулировке напряжения и достаточно получить на выходе от 110 до 220 вольт, воспользуйтесь такой схемой, которая показывает одно-переменный регулятор мощности на тиристоре.

Как это работает?

Информация, описанная ниже, действительна для большинства схем. Буквенные обозначения примем в соответствии с первой схемой тиристорного регулятора

Тиристорный регулятор мощности, принцип действия которого основан на фазовом регулировании величины напряжения, изменения и мощности.Этот принцип заключается в том, что в нормальных условиях на нагрузку присутствует переменное напряжение бытовой сети, изменяющееся по синусоидальному закону. Выше при описании принципа работы тиристора было сказано, что каждый тиристор работает в одном направлении, то есть управляет своей полуволной с синусоид. Что это значит?

Если использовать тиристор для периодического подключения нагрузки в строго определенный момент, то достоверность активного напряжения будет ниже, так как часть напряжения (текущее значение, которое «упадет» на нагрузку) будет меньше, чем сеть.Это явление проиллюстрировано на графике.

Заштрихованная область — зона напряжения, которая оказалась под нагрузкой. Буква «А» на горизонтальной оси обозначает момент открытия тиристора. Когда положительный конец полуволны и начинается период отрицательной полуволны, один из тиристоров закрывается, и одновременно открывается второй тиристор.

Разберемся, как конкретно работает наш тиристорный регулятор мощности

Схема первая

Обсудим заранее, что вместо слов «положительный» и «отрицательный» будут использоваться «первое» и «первое». второй »(полуволна).

Итак, когда на нашей схеме начинает действовать первая полуволна, запускаются контейнеры С1 и С2. Скорость их заряда ограничена потенциометром R5. Этот элемент является переменным, и он настроен на выходное напряжение. При появлении конденсатора С1 требуется напряжение, чтобы открыть Distoror VS3, Distoror открывается, через него поступает ток, с помощью которого откроется тиристор vs1. Момент поломки Distor — это точка «А» на графике, представленном в предыдущем разделе статьи.Когда значение напряжения проходит через ноль и диаграмма находится под второй полуволной, тиристор VS1 замыкается, и процесс повторяется заново, только для второго динистора, тиристора и конденсатора. Резисторы R3 и R3 служат для управления, а R1 и R2 — для термостабильности цепи.

Принцип работы второй схемы аналогичен, но в ней контролируется только одно переменное напряжение. Теперь, зная принцип работы и схему, вы можете собрать или отремонтировать тиристорный регулятор мощности своими руками.

Применение регулятора в быту и безопасности

Нельзя не сказать, что данная схема не обеспечивает гальванического перехода от сети, поэтому существует опасность поражения электрическим током. Это значит, что нельзя прикасаться к элементам регулятора. Необходимо использовать изолированный корпус. Необходимо спроектировать конструкцию своего устройства так, чтобы по возможности можно было спрятать его в регулируемом устройстве, найти свободное место в корпусе. Если регулируемое устройство находится в стационаре, обычно имеет смысл подключить его через выключатель с регулятором яркости света.Такое решение частично обезопасит от поражения током, избавит от необходимости искать подходящий корпус, имеет привлекательный внешний вид и изготовлено промышленным способом.

23.07.2017 @ 23:39

Мой тиристорный регулятор напряжения (три) отличается простотой изготовления и настройки, линейностью регулирования и высокой выходной мощностью — 200 Вт без радиаторов и 1000 Вт с радиаторами площадью охлаждения 50 см 2.

При включении ТРП положительная полуволна питающего напряжения 220 вольт проходит по электрической цепи VD2RZR4 и конденсатор С2 заряжается.Как только стойка превысит напряжение включения тиристора VS2, последний откроется и пропустит часть положительной полуволны в нагрузку. Цепочка VD4R5 защищает VS2 от текущего управления.

Изменяя общее сопротивление R4, можно получить регулируемое (от 40 до 220 В) выходное напряжение, для прямого измерения которого предназначен переключатель PV1. Контрольная лампа HL1 служит для контроля сетевого напряжения, а также исправности предохранителей FU1 и FU2.

Оба конденсатора в трех дешевых и распространенных типах МБМ.Для R1, R2 и R5 может применяться МЛТ-0,25. На месте R3 хорошо сработает МЛТ-0,5 (МЛТ-1). SP1 подходит как переменное сопротивление. Вольтметр типа C4201 или аналогичный, рассчитанный на 250 В переменного тока. Указанные на принципиальной электрической схеме диоды можно заменить на менее мощные, например, КД102Б или КД105Б. Тиристоры — с обратным напряжением не менее 300 В, скажем, ку202н или ку202л. А если предполагается использовать ТРН с нагрузкой не более 350 Вт, то можно применить CU201L.

Принципиальная электрическая схема и топология тиристорного регулятора напряжения

Неоновая лампа HL1 типа ТН-0.2. Предохранители подбираются по стоимости устройства с максимальным потреблением тока. Если нагрузкой является электродвигатель (например, аналогичный тому, что используется в ручной дрели), то I — предварительный шаг. = 0,5. 0,6 начинаю.

Установите контакт лучше на временной монтажной плате. Вместо резисторов R2 и R5 по 390 килом, сначала падают резисторы на 1 килом. Затем, уменьшая сопротивление R4 и R3, добиться минимального падения напряжения на VS1, VS2.

Резисторы R2, R5 ограничивают ток управления тиристором.Подбираются они на максимальную мощность в нагрузке. Даже при установлении не допускается увеличение тока управления тиристором более 100 мА.

После завершения настройки все элементы концепции электрической схемы переносятся на печатную плату размером 100х50х2,5 мм из одностороннего фольгированного стеклотекстолита.

Бабенко С., Московская обл.

  1. Принцип работы тиристора
  2. Видео: Тиристорный регулятор мощности своими руками

В современных радиолюбительских схемах получили распространение различные типы деталей, в том числе тиристорный регулятор мощности.Чаще всего этот элемент используется в паяльниках на 25-40 Вт, которые в нормальных условиях легко перегреваются и становятся непригодными для эксплуатации. Эта проблема легко решается с помощью регулятора мощности, позволяющего установить точную температуру.

Применение тиристорных регуляторов

Как правило, тиристорные регуляторы мощности используются для улучшения рабочих свойств обычного паяльника. Современные конструкции, оснащенные множеством функций, отличаются высокой стоимостью, а их использование будет малоэффективным с небольшими счетами.Поэтому уместнее будет оснащение обычного паяльника тиристорным регулятором.

Регулятор мощности на тиристоре широко применяется в яркости яркости светильника. На практике это обычные настенные выключатели с вращающейся ручкой-регулятором. Однако такие устройства способны нормально работать только с обычными лампами накаливания. Они не полностью воспринимаются современными компактными люминесцентными лампами из-за расположенного внутри выпрямительного моста с электролитическим конденсатором.При такой схеме тиристор просто не будет работать.

Такие же непредсказуемые результаты получаются и при попытке отрегулировать яркость светодиодных ламп. Поэтому для регулируемого источника освещения наиболее оптимальным вариантом будет использование обычных ламп накаливания.

Существуют и другие области применения тиристорных регуляторов мощности. Среди них следует отметить возможность регулировки ручного электроинструмента. Регулирующие устройства устанавливаются внутри корпусов и позволяют изменять количество оборотов дрели, шуруповерта, перфоратора и других инструментов.

Принцип работы тиристора

Действие регуляторов мощности тесно связано с принципом работы тиристора. На радиошаме это обозначается значком, напоминающим обычный диод. Каждый тиристор характеризуется односторонней проводимостью и, соответственно, способностью выпрямлять переменный ток. Участие в этом процессе становится возможным при наличии положительного напряжения на управляющем электроде. Сам управляющий электрод расположен сбоку от катода.В связи с этим тиристор ранее носил название управляемого диода. Перед подачей управляющего импульса тиристор будет закрыт в любом направлении.

Для визуального определения исправности тиристора его включают в общую цепочку со светодиодом через источник постоянного напряжения 9 вольт. Дополнительно к светодиоду подключается ограничительный резистор. Специальная кнопка замыкает цепь и напряжение с делителя поступает на управляющий электрод тиристора.В результате тиристор открывается, и светодиод начинает излучать свет.

Когда кнопка отпускается, когда она перестает удерживать положение, свечение должно продолжаться. В случае повторного или многократного нажатия кнопки ничего не меняется — светодиод по-прежнему будет светить с той же яркостью. Это указывает на открытое состояние тиристора и его техническое состояние. Он будет находиться в открытом положении до тех пор, пока момент не будет прерван внешними воздействиями.

В некоторых случаях могут быть исключения.То есть при нажатии на кнопку светодиод загорается, а при отпускании кнопки — гаснет. Такая ситуация становится возможной из-за протекания тока через светодиод, величина которого меньше по сравнению с током удержания тиристора. Чтобы схема работала нормально, светодиод рекомендуется заменить лампой накаливания, что приведет к увеличению тока. Другим вариантом будет подбор тиристора, у которого будет меньший ток удержания. Параметр тока удержания в разных тиристорах может быть с большим разбросом, в таких случаях приходится подбирать элемент для каждой конкретной схемы.

Схема простейшего регулятора мощности

Тиристор участвует в выпрямлении переменного напряжения так же, как и обычный диод. Это приводит к одноальпийной выпрямке в малых пределах с участием одного тиристора. Для достижения желаемого результата с помощью регуляторов мощности он управляется двумя участками сетевого напряжения. Это становится возможным благодаря встречно-параллельному включению тиристоров. Кроме того, тиристоры могут быть включены в диагональную цепь выпрямительного моста.

Простейшую схему тиристорного регулятора мощности лучше всего рассмотреть на примере регулировки мощности паяльника. Нет смысла начинать регулировку прямо с нулевой отметки. В связи с этим можно регулировать только один полупериод положительного сетевого напряжения. Прохождение отрицательного полупериода осуществляется через диод без каких-либо изменений непосредственно к язве, обеспечивая ее половинную мощность.

Прохождение положительного полупериода происходит через тиристор, за счет чего и осуществляется регулировка.В схеме управления тиристором присутствуют простейшие элементы в виде резисторов и конденсатора. Зарядка конденсатора происходит от верхнего провода схемы, через резисторы и конденсатор, нагрузку и нижний провод схемы.

Управляющий электрод тиристора подключен к плюсовому выходу конденсатора. При повышении напряжения на конденсаторе до значения, позволяющего включить тиристор, открыв его. В результате некоторая часть положительного полусредства напряжения передается в нагрузку.При этом разрядка конденсатора и подготовка к следующему циклу.

Переменный резистор используется для регулировки скорости заряда конденсатора. Чем быстрее конденсатор заряжается до значения напряжения, при котором тиристор открывается, тем раньше происходит открытие тиристора. Следовательно, будет высвобожден более положительный сегмент напряжения. Эта схема, в которой используется тиристорный регулятор мощности, служит основой для других схем, используемых в различных областях.

Тиристорный регулятор мощности своими руками

В статье описан принцип работы тиристорного регулятора мощности, схема которого будет представлена ​​ниже

В повседневной жизни очень часто возникает необходимость регулирования мощности бытовой техники, например как электроплиты, паяльники, подставки для варки и фасоли, на транспорте — обороты двигателя и т. д.На помощь приходит простейшая радиолюбительская конструкция — регулятор мощности на тиристоре. Собрать такой прибор не составит труда, это может быть самый первый самодельный прибор, который будет выполнять функцию регулировки температуры паяльной комнаты начинающего радиолюбителя. Стоит отметить, что готовые паяльные станции с контролем температуры и другими приятными функциями на порядок больше, чем простой паяльник. Минимальный набор деталей позволяет собрать простой тиристорный регулятор мощности навесной монтаж.

Отметим, навесная установка — это метод сборки радиоэлектронных компонентов без использования печатной платы, и при хорошем мастерстве позволяет быстро собрать электронные устройства средней сложности.

Вы также можете заказать электронный конструктор тиристорного регулятора, а для тех, кто хочет во всем разобраться самостоятельно, ниже будет представлена ​​схема и объяснен принцип работы.

Кстати, это тиристорный однофазный регулятор мощности.Такое устройство можно использовать для контроля мощности или количества оборотов. Однако для начала следует разобраться в принципе работы тиристора, ведь это позволит понять, с какой нагрузкой лучше использовать такой регулятор.

Как работает тиристор?

Тиристор — это управляемое полупроводниковое устройство, способное проводить ток в одном направлении. Слово «управляемый9» использовано не случайно, ведь с его помощью, в отличие от диода, который тоже проводит ток только на один полюс, можно выбрать момент, когда тиристор начнет проводить ток.Тиристор имеет три выхода:

Для того, чтобы через тиристор протекал ток, необходимо выполнение следующих условий: деталь должна находиться в цепи под напряжением, на нее должен подаваться кратковременный импульс. управляющий электрод. В отличие от транзистора, тиристорное управление не требует удержания управляющего сигнала. На этом нюансы не заканчиваются: тиристор можно замкнуть, только прервав ток в цепи, либо образуя обратное напряжение анод — катод.Это означает, что использование тиристора в цепях постоянного тока очень специфично и часто неразумно, но в чередующихся цепях, например, в таком устройстве, как тиристорный регулятор мощности, схема построена таким образом, что предусмотрено условие включения . Каждый полуавтомат закрывает соответствующий тиристор.

Вам скорее всего не все понятно? Не стоит отчаиваться — ниже будет описан процесс работы готового устройства.

Области применения тиристорных регуляторов

В каких цепях эффективно использовать тиристорный регулятор мощности? Схема позволяет идеально регулировать мощность отопительных приборов, то есть влиять на активную нагрузку.При работе с высокоиндуктивной нагрузкой тиристоры могут просто не замыкаться, что может привести к выходу регулятора из строя.

Можно ли регулировать обороты двигателя?

Я думаю, что многие читатели видели или использовали дрели, станки для остекления углов, которые называются «шлифовальные машины», и другие электроинструменты. Вы могли заметить, что количество оборотов зависит от глубины нажатия на кнопку инструмента. Этот элемент как раз и встроен в такой тиристорный регулятор мощности (схема которого приведена ниже), с помощью которого изменяется количество оборотов.

Примечание! Тиристорный регулятор не может изменять частоту вращения асинхронных двигателей. Таким образом, напряжение регулируется на коллекторных двигателях, оборудованных щеточным узлом.

Схема тиристорного регулятора мощности на одном и двух тиристорах

Типовая схема Для того, чтобы собрать тиристорный регулятор мощности своими руками, показан на рисунке ниже.

Выходное напряжение в этой схеме от 15 до 215 вольт, в случае использования этих тиристоров, установленных на радиаторах, мощность порядка 1 кВт.Кстати, переключатель яркости света выполнен по аналогичной схеме.

Если у вас нет необходимости в полной регулировке напряжения и достаточно получить на выходе от 110 до 220 вольт, воспользуйтесь такой схемой, которая показывает одно-переменный регулятор мощности на тиристоре.

Как это работает?

Информация, описанная ниже, действительна для большинства схем. Буквенные обозначения примем в соответствии с первой схемой тиристорного регулятора

Тиристорный регулятор мощности, принцип действия которого основан на фазовом регулировании величины напряжения, изменения и мощности.Этот принцип заключается в том, что в нормальных условиях на нагрузку присутствует переменное напряжение бытовой сети, изменяющееся по синусоидальному закону. Выше при описании принципа работы тиристора было сказано, что каждый тиристор работает в одном направлении, то есть управляет своей полуволной с синусоид. Что это значит?

Если использовать тиристор для периодического подключения нагрузки в строго определенной точке, достоверность активного напряжения будет ниже, так как часть напряжения (активное значение, которое «займет 9» на нагрузке) будет меньше, чем сеть.Это явление проиллюстрировано на графике.

Заштрихованная область — зона напряжения, которая оказалась под нагрузкой. Буква «а9» на горизонтальной оси указывает момент открытия тиристора. Когда начинается положительный конец полуволны и начинается период отрицательной полуволны, один из тиристоров закрывается, и одновременно открывается второй тиристор.

Разберемся, как конкретно работает наш тиристорный регулятор мощности

Обсудим заранее, что вместо слов «положительный» и «отрицательный» будет использоваться «первый 9RAQUO; и «второй9» (полуволна).

Итак, когда на нашей схеме начинает действовать первая полуволна, запускаются контейнеры С1 и С2. Скорость их заряда ограничена потенциометром R5. Этот элемент является переменным, и он настроен на выходное напряжение. При появлении конденсатора С1 требуется напряжение, чтобы открыть Distoror VS3, Distoror открывается, через него поступает ток, с помощью которого откроется тиристор vs1. Момент выхода из строя Distoror и есть точка «а9» на графике, представленном в предыдущем разделе статьи.Когда значение напряжения проходит через ноль и диаграмма находится под второй полуволной, тиристор VS1 замыкается, и процесс повторяется заново, только для второго динистора, тиристора и конденсатора. Резисторы R3 и R3 используются для ограничения управляющего тока, а R1 и R2 — для термостабилизации цепи.

Принцип работы второй схемы аналогичен, но в ней контролируется только одно переменное напряжение. Теперь, зная принцип работы и схему, вы можете собрать или отремонтировать тиристорный регулятор мощности своими руками.

Применение регулятора в быту и безопасности

Нельзя не сказать, что данная схема не обеспечивает гальванического перехода от сети, поэтому существует опасность поражения электрическим током. Это значит, что нельзя прикасаться к элементам регулятора. Необходимо использовать изолированный корпус. Необходимо спроектировать конструкцию своего устройства так, чтобы по возможности можно было спрятать его в регулируемом устройстве, найти свободное место в корпусе. Если регулируемое устройство находится в стационаре, обычно имеет смысл подключить его через выключатель с регулятором яркости света.Такое решение частично обезопасит от поражения током, избавит от необходимости искать подходящий корпус, имеет привлекательный внешний вид и изготовлено промышленным способом.

20 фотографий кошек, сделанных в нужный момент кошки — удивительные существа, и это, пожалуй, знает каждый. И они невероятно фотографичны и всегда знают, как быть в нужное время в соответствии с правилами.

Эти 10 мелочей, которые мужчина всегда замечает в женщине, думают, что ваш мужчина не имеет смысла в женской психологии? Это неправда.От взгляда любящего тебя партнера не применимо ни одной мелочи. И вот 10 вещей.

Вдруг: мужья чаще хотят своих жен. Вот эти 17 вещей. Если вы хотите, чтобы ваши отношения были более счастливыми, вам следует почаще делать вещи из этого простого списка.

Никогда не делайте этого в церкви! Если вы не уверены, правильно ли вы ведете себя в церкви или нет, то, вероятно, это делается еще не так, как должно быть. Вот список ужасных.

Альтернатива всем стереотипам: девушка с редким генетическим заболеванием покоряет мир моды эту девушку зовут Мелани Гидос, и она стремительно ворвалась в мир моды, опустошая, вдохновляя и разрушая глупые стереотипы.

Есть 10 очаровательных звездных детей, которые сегодня выглядят совсем иначе, время летит, и однажды маленькие знаменитости становятся взрослыми личностями, о которых больше не знают. Милоидные мальчики и девочки превращаются в р.

Тиристорный регулятор напряжения

Этот регулятор напряжения был собран мной для использования в разных направлениях: регулирование частоты вращения двигателя, изменение температуры нагрева паяльника и т. Д.Возможно, название статьи покажется не совсем правильным, да и такая схема иногда встречается как регулятор мощности. Но здесь необходимо понимать, что по сути происходит подстройка фазы. То есть время, за которое полуволна сети переходит в нагрузку. И с одной стороны, регулируется напряжение (через эталон импульсов), а с другой — мощность, выделяемая на нагрузку.

Следует отметить, что наиболее эффективно данное устройство справится с резистивной нагрузкой — лампами, нагревателями и т. Д.Также могут быть подключены потребители индуктивного тока, но при слишком малой его величине надежность регулировки снизится.

Схема самодельного тиристорного регулятора не содержит дефицитных деталей. При использовании выпрямительных диодов, указанных на схеме, устройство выдерживает нагрузку до 5а (примерно 1 кВт) с учетом наличия радиаторов.

Для увеличения мощности подключаемого устройства нужно использовать другие диоды или диодные сборки, рассчитанные на необходимый вам ток.

Также необходима замена тиристора, т.к. CU202 рассчитан на срок до 10а. Из более мощных рекомендуются отечественные тиристоры серий Т122, Т132, Т142 и другие аналогичные.

Деталей в тиристорном регуляторе не так много в принципе, скажем так, навесного монтажа, но на печатной плате конструкция будет выглядеть красивее и удобнее. Рисунок платы в формате Lay качаем здесь. Stabilirton D814g меняется на любой, с напряжением 12-15В.

В качестве примера я использовал первые подходящие размеры. Для подключения нагрузки вытащил штекерный разъем. Регулятор работает надежно и действительно меняет напряжение от 0 до 220 В. Автор дизайна: Sssahekkk.

Тиристор — одно из самых мощных полупроводниковых устройств, поэтому его часто используют в мощных преобразователях энергии. Но он обладает своим собственным специфическим контролем: его можно открыть импульсом тока, но он закрывается только тогда, когда ток упадет почти до нуля (если быть точнее, то ниже тока удержания).Этот тиристор в основном используется для переключения переменного тока.

Регулировка фазного напряжения

Существует несколько методов регулирования переменного напряжения с помощью тиристоров: вы можете пропустить или запретить все полупериоды (или периоды) переменного напряжения на выходе регулятора. И нельзя включать в начале напряжения сети половину цели, а с некоторой задержкой — «а». За это время напряжение на выходе регулятора будет нулевым, и мощность на выход не будет передаваться.Вторая часть полупериода тиристора будет проводить ток, и на выходе регулятора появится входное напряжение.

Время задержки часто называют углом открытия тиристора, поэтому при нулевом угле почти все входное напряжение будет приходиться на выход, только падение на открытом тиристоре будет потеряно. С увеличением угла тиристорный регулятор напряжения будет снижать выходное напряжение.

Регулировочная характеристика тиристорного преобразователя при работе с активной нагрузкой показана на следующем рисунке.При угле, равном 90 электрическим градусам, выходное напряжение будет вдвое меньше входного напряжения, а при угле 180 эл. Градус на выходе будет нулевым.

На основе принципов регулирования фазного напряжения можно построить схемы управления, стабилизации, а также плавного пуска. Для плавного пуска напряжение необходимо постепенно повышать от нуля до максимального значения. Таким образом, угол открытия тиристора должен изменяться от максимального значения до нуля.

Схема тиристорного регулятора напряжения

Таблица обозначений элементов

  • С1 — 0.33МКФ Напряжение не ниже 16В;
  • R1, R2 — 10 ком 2Вт;
  • R3 — 100 Ом;
  • R4 — резистор переменный 3,3 ком;
  • R5 — 33 ком;
  • R6 — 4,3 ком;
  • R7 — 4,7 ком;
  • VD1. VD4 — d246a;
  • VD5 — D814D;
  • ВС1 — КУ202Н;
  • ВТ1 — КТ361Б;
  • VT2 — КТ315Б.

Схема построена на отечественной элементной базе, возможно собрать ее из тех деталей, которые вышли из строя у радиолюбителей 20-30 лет.Если тиристор vs1 и диоды VD1-VD4 выставить на соответствующие охладители, то тиристорный регулятор напряжения можно будет отдать на нагрузку 10а, то есть при напряжении 220 В мы получим возможность регулировать напряжение при 2,2 кВт.

В устройстве всего две силовые составляющие диодный мост и тиристор. Они рассчитаны на напряжение 400В и ток 10а. Диодный мост преобразует переменное напряжение в униполярное пульсирующее, а фазовое регулирование полупроводников осуществляется тиристором.

Параметрический стабилизатор из резисторов R1, R2 и Stabilion VD5 ограничивает напряжение, которое подается в систему управления, на уровне 15 В. Последовательное включение резисторов необходимо для увеличения напряжения штампа и увеличения рассеиваемой мощности.

В самом начале полувыведения переменного напряжения С1 он тоже разряжается в точке соединения R6 и R7 тоже нулевое напряжение. Постепенно напряжения в этих двух точках начинают расти и чем меньше сопротивление резистора R4, тем быстрее напряжение на эмиттере VT1 различит напряжение на его базе и откроет транзистор.
Транзисторы VT1, VT2 составляют тиристор малой мощности. Когда напряжение на переходе база-эмиттер VT1 оказывается больше порогового значения, транзистор открывается и открывает VT2. А VT2 разблокирует тиристор.

Представленная схема достаточно проста, ее можно перевести в современную элементную базу. Также можно с минимальными переделками снизить мощность или напряжение.

Навигация по записям

Тиристорный регулятор напряжения представляет собой простую схему, принцип действия. 15 комментариев

Раз уж мы заговорили об электрических углах, хочу уточнить: при «задержке» до 1/2 полупериода (до 90 см.Градусов), напряжение на выходе регулятора будет равно практически максимальному, и оно начнет уменьшаться только при «А»> 1/2 (> 90). На графике — красное в серое начертано! Полупериод — это не половина напряжения.
У данной схемы есть один плюс — простота, но фаза в элементах управления может привести к тяжелым последствиям. Да и в хоз с отсечкой тиристоров налита помеха. Особенно при большой нагрузке, которая ограничивает сферу применения этого устройства.
Вижу только одно: регулирую ТЭНы и освещение в складских и подсобных помещениях.

На первом рисунке ошибка, должна соответствовать 10 мс — полупериоду, а 20 мс — периоду сетевого напряжения.
Добавлен график регулировочной характеристики при работе на активную нагрузку.
Вы видимо пишете про регулировочную характеристику при нагрузке выпрямителем с емкостным фильтром? Тогда да, конденсаторы будут заряжаться по максимуму напряжения и диапазон регулирования будет от 90 до 180 градусов.

Залежи советских радиодеталей есть далеко не все.Почему бы не указать «буржуйские» аналоги старых отечественных полупроводниковых приборов (например 10RIA40m для ку202н)?

Тиристор КУ202Н сейчас продается меньше доллара (не знаю, выпускаются ли старые или старые запасы). А 10Ria40m дорого, на Алиэкспресс продается примерно 15 долларов плюс доставка от 8 долларов. 10RIA40M имеет смысл использовать только тогда, когда нужно отремонтировать устройство с KU202N, а KU202N не встречается.
Для промышленного использования тиристоры удобнее в корпусах ТО-220, ТО-247.
Два года назад сделали преобразователь на 8кВт, поэтому тиристоры купили за 2,5 доллара (в корпусе ТО-247).

Подразумевалось, что если ось напряжения (почему-то помечена P) удерживать, как на 2-м графике, это станет яснее с градусами, периодами и полуразмерами, представленными в описании. Осталось убрать знак переменного напряжения на выходе (он уже выпрямлен мостом) и моя дотошность будет удовлетворена полностью.
КУ202Н продается на радиороликах действительно за копейки, а в версии 2202.Кто в теме, тот поймет, что это военная продукция. Наверное продам склад НЗ, у которого все сроки вышли.

На рынке, если брать с рук, среди обновок положил и выпавший предмет.
Быстро проверить тиристор, например, CU202N, можно простым переключателем-тестером, включенным для измерения сопротивления по шкале в единицах ОМ.
Тиристор анод подключаем на плюс, катод на минус тестер, в хорошем ку202н утечки быть не должно.
После замыкания управляющего электрода тиристора на аноде стрелка омметра должна быть очерчена и оставаться в этом положении после размыкания.
В редких случаях такой способ не работает, и тогда потребуется низковольтный блок питания для проверки, желательно регулируемой, лампочки от фонарика, сопротивления.
Сначала устанавливаем напряжение питания и проверяем горит ли лампочка, затем последовательно лампочкой, соблюдая полярность подключаем наш тиристор.
Лампа должна загореться только после кратковременного замыкания анода тиристора управляющим электродом через резистор.
В этом случае резистор необходимо выбирать на основе номинального тока открытия тиристора и напряжения питания.
Это самые простые методы, но, возможно, есть еще специальные устройства для проверки тиристоров и симисторов.

На выходе напряжение мостом не выпрямляется. Выпрямляется только для схемы управления.

На выходе изменения мост выпрямляет только цепь управления.

Я бы назвал не регулированием напряжения, а регулированием мощности. Это стандартная схема регулятора освещения, на которой собрано практически все. А про радиатор к загнутому тиристору.Теоретически, конечно, можно, но на практике мне кажется, что теплообмен между радиатором и тиристором обеспечить 10а сложно.

А какие сложности с теплообменом в ку202? Вкручиваем торцевой болт в радиатор и все! Если радиатор новый, точнее резьба не проседает, даже ОСА мазать не нужно. Площадь штатного радиатора (иногда входит в комплект), как раз рассчитана на нагрузку 10 А. Нет теории, сплошная практика.Единственное, что радиаторы должны быть на улице (по инструкции), а при таком подключении к сети — чревато. Поэтому закрываем, а кулер ставим. Да мосты друг к другу не опираются.

Подскажите, а что за конденсатор С1 -330НФ?

Наверное правильно напишет С1 — 0,33МКФ, можно керамику или пленку выставить на напряжение не менее 16В.

Всего наилучшего! Сначала собирали без транзисторов схемы … Один минус — нагревалось регулировочное сопротивление и оплавлялся слой графитового тракта.Потом собрал эту схему на КТ. Первый неудачный — видимо из-за большого усиления самих транзисторов. Азия для МП с усилением около 50. Заработал без проблем! Однако есть вопросы …

Я тоже без транзисторов собирал, но ничего не промывал. Было два резистора и конденсатор, позже конденсатор убрали. Смена анода между анодом и менеджером, ну и мост естественно, и мост естественно. Использовал для регулировки мощности паяльника и как 220 вольт, так и первичного трансформатора для паяльника на 12 вольт, и все работало и не нагнетал.Сейчас он по-прежнему находится на складе в хорошем состоянии. Возможно, у вас была утечка в конденсаторе между катодом и контроллером для схемы без транзисторов.

Собрана на МП с усилением около 50. Работает! Но вопросов было больше …

Тиристорные регуляторы напряжения — устройства, предназначенные для регулирования частоты вращения и момента электродвигателей. Регулировка частоты вращения и крутящего момента производится за счет изменения напряжения на статоре двигателя, и осуществляется путем изменения угла открытия тиристоров.Этот способ управления электродвигателем получил название фазового управления. Этот метод представляет собой разновидность параметрического (амплитудного) управления.

Может выполняться как с закрытой, так и с открытой системой регулирования. Регуляторы с открытой системой не обеспечивают удовлетворительного качества процесса регулирования скорости вращения. Их назначение — регулировать момент для получения желаемого режима движения в динамических процессах.


В силовой части однофазного тиристорного регулятора напряжения включены два управляемых тиристора, которые обеспечивают протекание электрического тока по контуру в двух направлениях при синусоидальном напряжении на входе.

Тиристорные регуляторы с замкнутой системой регулирования Применяются, как правило, с отрицательной обратной связью по скорости, что позволяет иметь достаточно жесткие механические характеристики привода в зоне малых скоростей.

Наиболее эффективное использование тиристорных регуляторов для регулирования скорости и момента.

Силовые цепи тиристорных регуляторов

На рис. 1, А-Г показаны возможные схемы включения выпрямительных элементов регулятора в одну фазу. Самая распространенная из них — схема на рис.Может использоваться с любой схемой обмотки статора. Допустимый ток через нагрузку (активное значение) в этой цепи в режиме постоянного тока составляет:

где I Т — допустимое среднее значение тока через тиристор.

Максимальное прямое и обратное напряжение тиристора

где k зап — коэффициент резерва, выбранный с учетом возможных коммутационных перенапряжений в схеме; — Действующее значение линейного напряжения сети.

Рис. 1. Схемы силовых цепей тиристорных регуляторов напряжения.

На схеме на рис. 1, Б из неуправляемых диодов в диагональ моста включен только один тиристор. Соотношение между токами нагрузки и тиристоров для этой схемы имеет вид:

Неуправляемые диоды выбирают вдвое меньше, чем для тиристора. Максимальное постоянное напряжение на тиристоре

Обратное напряжение на тиристоре близко к нулю.

Схема на рис. 1, Б имеет некоторые отличия от схемы на рис. 1, но по конструкции системы управления. На схеме рис. 1, а управляющие импульсы для каждого из тиристоров должны следовать с частотой питающей сети. На схеме рис. 1, Б частота управляющих импульсов в два раза больше.

Схема на рис. 1, в, состоящий из двух тиристоров и двух диодов, при возможности управления нагрузкой, по току и максимальному постоянному напряжению тиристоров, аналогичен схеме на рис.1, а.

Обратное напряжение в этой схеме из-за шунтирующего действия диода близко к нулю.

Схема на рис. 1, поворот и максимальное прямое и обратное напряжение тиристоров аналогичны схеме на рис. 1, а. Схема на рис. 1, M отличается от обсуждаемой системы управления требуемым диапазоном изменения угла управления тиристорами. Если угол отсчитывается от нулевого фазного напряжения, то для схем на рис. 1 соотношение A-in Fair

где φ — угол фазовой нагрузки.

Для схемы на рис. 1, г аналогичное соотношение приобретает вид:

Усложняет необходимость увеличения диапазона изменения углов. Схема на рис. 1, r может применяться при включении обмотки статора в звезду без нулевого провода и в треугольник с включением выпрямительных элементов в линейные провода. Область применения указанной схемы ограничивается непостоянными, а также реверсивными электроприводами с контактным реверсом.

Схема на рис. 4-1, Г по своим свойствам аналогична схеме на рис.1, а. Ток Симистора здесь равен току нагрузки, а частота управляющих импульсов равна удвоенной частоте напряжения питания. Отсутствие схемы на симисторах существенно меньше, чем у обычных тиристоров, допустимые значения DU / DT и DI / DT.

Для тиристорных регуляторов наиболее рациональна схема на рис. 1, причем с двумя встречно-параллельными с тиристорами.

Силовые схемы регуляторов выполняются встречно-параллельно тиристорам во всех трех фазах (симметричная трехфазная схема), в двух и одной фазах двигателя, как показано на рис.1, e, w и s соответственно.

В регуляторах, используемых в электроприводах кранов, наибольшее распространение получила симметричная схема включения, показанная на рисунке. 1, E, который характеризуется наименьшими потерями токов высших гармоник. Более высокие значения потерь в цепях с четырьмя и двумя тиристорами определяются несимметричностью напряжения в фазах двигателя.

Основные технические данные тиристорных регуляторов серии РСТ

Тиристорные регуляторы серии РСТ — устройства для изменения (по заданному закону) напряжения, подводимого к статору асинхронного двигателя с фазным ротором.Тиристорные регуляторы серии РСТ выполнены по симметричной трехфазной схеме включения (рис. 1, Д). Применение регуляторов указанной серии в приводах кранов позволяет регулировать скорость вращения в диапазоне 10: 1 и регулировать момент двигателя в динамических режимах при пуске и торможении.

Тиристорные регуляторы серии

РСТ выполняются на длительные токи 100, 160 и 320 А (максимальные токи соответственно 200, 320 и 640 А) и напряжения 220 и 380 В переменного тока.Регулятор представляет собой три силовых блока, собранных на общей раме (по количеству фаз встречно-параллельных включительно тиристоров), блок датчика тока и блок автоматики. В блоках питания используются тиристоры-таблетки с охладителями из вытянутого алюминиевого профиля. Воздушное охлаждение — естественное. Блок автоматики один на все регуляторы.

Тиристорные регуляторы

выполнены со степенью защиты IP00 и предназначены для установки на штатные рамки Магнитных контроллеров типа ТТЗ, которые по конструкции аналогичны контроллерам серий ТА и ТСА.Габаритные размеры и масса регуляторов серии РСТ указаны в таблице. один.

Таблица 1 Габаритные размеры и масса регуляторов напряжения серии РСТ


В магнитных контроллерах в ТТЗ устанавливаются направленные контакторы для реверса двигателя, цепные контакторы ротора и другие релейно-контактные элементы электропривода, связывающие теледетроллер с тиристорным регулятором. Структура построения системы управления регулятора видна из функциональной схемы электропривода, представленной на рис.2.

Трехфазный симметричный тиристорный блок Т управляется системой регулирования фазы SFU. Используя protroller команды CC в ручке, изменение цели скорости BZS изменяется, через блок BZS в функции времени, контактор ускорения KU2 управляется в цепи ротора. Разница сигналов задачи и тахогенератора ТГ усиливается усилителями У1 и УЗ. К выходу усилителя подключено логическое релейное устройство, имеющее два устойчивых состояния, имеющее два устойчивых состояния: одно соответствует включению контактора направления Кб вперед, второе — включению контактора направления Кб. КН.

Одновременно с изменением состояния логического устройства сигнал в схеме управления RU меняется на обратный. Сигнал от произвольного усилителя U2 суммируется с задержанным сигналом обратной связи по току статора двигателя, который поступает от блока ограничения тока, а затем подается на вход SFU.

Логический блок BL также влияет на сигнал от блока датчика тока DT и блока тока NT, который запрещает переключение направленных контакторов.Блок БС также является нелинейной коррекцией системы стабилизации частоты вращения для обеспечения стабильности работы привода. Регуляторы могут использоваться в механизмах подъема и передвижения.

Регуляторы серии

РСТ изготавливаются с системой ограничения тока. Уровень защиты тиристоров от перегрузок и ограничения момента двигателя в динамических режимах плавно изменяется от 0,65 до 1,5 номинального тока регулятора, уровень ограничения тока для максимальной токовой защиты — от 0.9 к. 2.0 номинальный ток регулятора. Широкий диапазон изменения настроек защиты обеспечивает работу регулятора одного типоразмера с двигателями, которые различаются по мощности примерно в 2 раза.

Рис. 2. Функциональная схема электропривода с тиристорным регулятором типа РСТ: КК — командный протроллер; ТГ — таогенератор; КН, КБ — контакторы направления; БЗС — блок задания скорости; Bl — блочная логика; U1, U2. Уз — усилители; Система контроля фазы; ДТ — датчик тока; IT — заблокировать наличие тока; Затем — блок текущей программы; МТ — блок защиты; Ку1, ку2 — контакторы ускорения; CL — линейный контактор: P — прерыватель.

Рис. 3. Тиристорный регулятор напряжения РСТ

Чувствительность текущего наличия тока составляет 5-10 А от текущего значения тока в фазе. Регулятор также обеспечивает защиту: нулевую, от коммутационных перенапряжений, от пропадания тока хотя бы в одной из фаз (блоки IT и MT), от помех радио. Быстродействующие предохранители предохранителей TNB 5M защищены от токов короткого замыкания.

Простые схемы на микросхеме к155ла3.Используя микросхему К155ЛА3. Схема «цветомузыка» на тиристорах КУ202Н, с активными фильтрами частоты и усилителем тока

.

Сирена предназначена для подачи мощного и сильного звукового сигнала для привлечения внимания людей и применяется в системах пожарной сигнализации и автоматизации, а также в сочетании с устройствами сигнализации на различных охраняемых объектах.

Генераторы на схеме отмечены желтой рамкой. Первый G1 задает частоту смены тона, а второй G2 — это сам тон, который плавно меняется на транзисторе VT1, включенном последовательно с сопротивлением R2.Для выбора необходимого звука можно использовать подстроечные резисторы того же номинала вместо сопротивлений R1, R2.

При включении напряжения питания эхолот начинает генерировать тональный акустический сигнал, высота тона меняется с высокого на низкий и обратно. Сигнал звучит непрерывно, меняется только тон звука, который переключается с частотой 3-4 Гц.

В схеме сирены используются два мультивибратора на элементах D1.1 и D1.2 микросхемы К561ЛН2, регулирующей тон, и мультивибратор на D1.3 и D1.4 элементы той же микросхемы, формирующей тональные сигналы. Частота импульсов, генерируемая первым мультивибратором на элементах D1.3 и D1.4, зависит от элементов C2, R2 и C3, R4. Можно изменить частоту следования импульсов и, следовательно, тон звукового сигнала, как с помощью сопротивлений, так и с помощью мощности.

Предположим, что в начальный момент на выходе мультивибратора на элементах D1.1 и D1.2 присутствует уровень логической единицы. Поскольку на катоды диодов VD1 и VD2 подается плюс, диоды будут заперты.Сопротивления R4 и R5, в работе схемы не участвуют и частота на выходе мультивибратора минимальная, звучит сигнал низкого тона.

Как только на выходе этих элементов будет установлен логический ноль, диоды VD1 и VD2 откроются и соединят сопротивления R4 и R5. В результате частота на выходе мультивибратора увеличится.

Используемые в схеме транзисторы КТ815 можно заменить на КТ817, а КТ814 — на КТ816. Диоды — КД521, КД522, КД503, КД102.

Следующее устройство можно использовать в качестве будильника или звукового сигнала для горного велосипеда. Она представляет собой двухтональную сирену и состоит из тактового генератора на элементах DD1.1-DD1.3, двух тональных генераторов (первый на элементах DD2.1, DD2.2 и второй на элементах DD2.3, DD2.4), согласующий каскад с усилителем мощности на элементе DD1.4 и транзисторе VT1.

Схема состоит из двух генераторов. Первый используется для генерации тона, второй — для изменения и модуляции.

Для максимального уровня громкости необходимо, чтобы пьезоэлектрический элемент получал частоту, эквивалентную его резонансной частоте, через мостовую схему.

Основа конструкции — мощный мультивибратор 4047, работающий в нестабильном режиме. Все это управляется мощным полевым МОП-транзистором VT1, который управляется таймером NE555, генерируя соответствующие прямоугольные импульсы низкой частоты, что приводит к срабатыванию пожарной сирены. Переключение режимов работы непрерывное или прерывистое устанавливается тумблером.

Контакты 10 и 11 микросборки 4047 обеспечивают противофазные сигналы, сигналы от которых управляют мостом на четырех полевых МОП-транзисторах. Для получения максимальной громкости, то есть для установки резонансной частоты пьезоэлемента, в конструкцию добавлено подстроечное сопротивление R6.

Схема представляет собой комбинацию музыкального синтезатора на микросхеме УМС-8-08 с мощным выходным каскадом электронной сирены. Для запуска схемы используется реле, обмотка которого гальванически изолирована от остальной схемы.


Микросхема UMS имеет стандартную схему подключения. Три кнопочных переключателя S1-S3 позволяют настроить микросхему на воспроизведение одной из мелодий. Когда вы нажимаете первую кнопку, начинает играть мелодия, а нажав третью вы можете циклически пролистывать мелодии и выбирать нужную.


Подборка нескольких схем сирены на микроконтроллерах PIC

Схема представляет собой простую многотональную сирену на микросборке UM3561

.

В схеме используется динамик на 8 Ом и мощностью 0.5 Вт. Два переключателя выбирают и воспроизводят разные сигналы будильника. Каждая позиция генерирует свой звуковой эффект.

У каждого радиолюбителя где-то «валяется» микросхема к155ла3. Но часто они не могут найти им серьезного применения, так как во многих книгах и журналах есть только схемы мигалок, игрушек и т. Д. С этой деталью. В данной статье будут рассмотрены схемы на микросхеме к155ла3.
Сначала рассмотрим характеристики радиодетали.
1. Самое главное — это питание.Он запитан на 7 (-) и 14 (+) ножки и составляет 4,5 — 5 В. На микросхему не должно подаваться напряжение более 5,5В (она начинает перегреваться и перегорать).
2. Далее необходимо определиться с назначением детали. Состоит из 4-х элементов, 2-х и нет (два входа). То есть, если на один вход поставить 1, а на другой 0, то на выходе будет 1.
3. Рассмотрим распиновку микросхемы:

Для упрощения схемы на ней изображены отдельные элементы детали. :

4.Учтите расположение ножек относительно ключа:

Микросхему нужно паять очень аккуратно, не нагревая (можно сжечь).

Вот схемы, использующие микросхему k155la3: 1. Стабилизатор напряжения (можно использовать как зарядное устройство для телефона от автомобильного прикуривателя).
Вот схема:


Вход может быть до 23В. Вместо транзистора Р213 можно поставить КТ814, но тогда придется устанавливать радиатор, так как при большой нагрузке он может перегреться.
Печатная плата:

Другой вариант регулятора напряжения (мощный):


2. Индикатор заряда аккумулятора автомобиля.
Вот схема:

3. Тестер любых транзисторов.
Вот схема:

Вместо диодов D9 можно поставить d18, d10.
Кнопки SA1 и SA2 имеют переключатели для проверки транзисторов прямого и обратного направления.

4. Два варианта отпугивателя грызунов.
Вот первая диаграмма:


C1 — 2200 мкФ, C2 — 4.7 мкФ, C3 — 47 — 100 мкФ, R1-R2 — 430 Ом, R3 — 1 кОм, V1 — КТ315, V2 — КТ361. Также можно поставить транзисторы серии МП. Динамический напор — 8 … 10 Ом. Электропитание 5В.

Второй вариант:

C1 — 2200 мкФ, C2 — 4,7 мкФ, C3 — 47 — 200 мкФ, R1-R2 — 430 Ом, R3 — 1 кОм, R4 — 4,7 кОм, R5 — 220 Ом, V1 — КТ361 (МП 26, МП 42, кт 203 и др.), V2 — GT404 (КТ815, КТ817), V3 — GT402 (КТ814, КТ816, P213). Динамическая голова 8 … 10 Ом.
Блок питания 5В.

Конструктивно любая цветомузыкальная (светомузыкальная) инсталляция состоит из трех элементов.Блок управления, блок усиления мощности и выходное оптическое устройство.

В качестве выходного оптического устройства можно использовать гирлянды, можно оформить в виде экрана (классический вариант) или использовать электрические лампы направленного действия — прожекторы, фары.
То есть подходят любые средства, позволяющие создать определенный набор красочных световых эффектов.

Блок усиления мощности представляет собой транзисторный усилитель (усилители) с тиристорными регуляторами на выходе. Напряжение и мощность источников света выходного оптического устройства зависят от параметров используемых в нем элементов.

Блок управления регулирует интенсивность света и чередование цветов. В сложных специальных инсталляциях, предназначенных для украшения сцены во время различных видов шоу — цирковых, театральных и эстрадных представлений, это устройство управляется вручную.
Соответственно, требуется участие хотя бы одного, а максимум — группа операторов освещения.

Если блок управления напрямую управляется музыкой, работает по любой заданной программе, то установка цветомузыки считается автоматической.
Именно такую ​​«цветомузыку» начинающие дизайнеры-радиолюбители обычно собирают своими руками на протяжении последних 50 лет.

Самая простая (и самая популярная) схема «цветомузыки» на тиристорах КУ202Н.


Это наиболее простая и, пожалуй, самая популярная схема цветомузыкального пульта на тиристорах.
Тридцать лет назад я впервые увидел вблизи полноценно работающую «светомузыку». Его собрал мой одноклассник с помощью моего старшего брата.Это была именно такая схема. Несомненное преимущество — простота, с достаточно четким разделением режимов работы всех трех каналов. Лампы не мигают при этом, красный канал низких частот стабильно мигает в ритме с барабанами, средний — зеленый отвечает в диапазоне человеческого голоса, высокочастотный синий отвечает на все остальное еле уловимо — звон и писк.

Один недостаток — необходимая мощность предусилителя 1-2 Вт. Моему другу пришлось включить свою «Электронику» практически «на полную», чтобы добиться достаточно стабильной работы устройства… В качестве входного трансформатора использовался понижающий трансформатор от радиоточки. Вместо этого можно использовать любой малогабаритный сетевой преобразователь нисходящего потока. Например, от 220 до 12 вольт. Только нужно подключить наоборот — низковольтной обмоткой на вход усилителя. Любые резисторы, мощностью 0,5 Вт. Конденсаторы тоже любые, вместо тиристоров КУ202Н можно взять КУ202М.

Схема «цветомузыка» на тиристорах КУ202Н, с активными фильтрами частоты и усилителем тока.

Схема рассчитана на работу от линейного аудиовыхода (яркость ламп не зависит от уровня громкости).
Давайте подробнее рассмотрим, как это работает.
Звуковой сигнал подается с линейного выхода на первичную обмотку изолирующего трансформатора. С вторичной обмотки трансформатора сигнал поступает на активные фильтры через резисторы R1, R2, R3, регулирующие его уровень.
Отдельная регулировка необходима для качественной работы устройства путем выравнивания уровня яркости каждого из трех каналов.

С помощью фильтров сигналы разделяются по частоте — на три канала. Самая низкая частотная составляющая сигнала проходит через первый канал — фильтр отсекает все частоты выше 800 Гц. Фильтр настраивается подстроечным резистором R9. На схеме указаны номиналы конденсаторов С2 и С4 — 1 мкФ, но как показала практика, их емкость следует увеличить, как минимум, до 5 мкФ.

Фильтр второго канала настроен на среднюю частоту — примерно от 500 до 2000 Гц.Фильтр регулируется с помощью подстроечного резистора R15. На схеме указаны номиналы конденсаторов С5 и С7 — 0,015 мкФ, но их емкость следует увеличить, до 0,33 — 0,47 мкФ.

Все, что выше 1500 (до 5000) Гц, проходит через третий, высокочастотный канал. Фильтр настраивается подстроечным резистором R22. На схеме указаны номиналы конденсаторов С8 и С10 — 1000пФ, но их емкость следует увеличить до 0,01 мкФ.

Далее сигналы каждого канала отдельно детектируются (используются германиевые транзисторы серии d9), усиливаются и поступают на оконечный каскад.
Завершающий каскад выполнен на мощных транзисторах или тиристорах. В данном случае это тиристоры КУ202Н.

Далее идет оптическое устройство, конструкция и внешний вид которого зависит от фантазии конструктора, а начинка (лампы, светодиоды) — от рабочего напряжения и максимальной мощности выходного каскада.
В нашем случае это лампы накаливания 220В, 60Вт (при установке тиристоров на радиаторы — до 10 шт. На канал).

Схема заказа сборки.

По поводу реквизитов приставки. Транзисторы
КТ315 можно заменить другими кремниевыми n-p-n транзисторами со статическим усилением не менее 50. Постоянные резисторы — МЛТ-0,5, переменные и подстроечные — СП-1, СПО-0,5. Конденсаторы — любого типа.
Трансформатор T1 с соотношением 1: 1, поэтому можно использовать любой трансформатор с подходящим числом витков. В случае самостоятельного изготовления можно использовать магнитопровод Ш10х10, а обмотки намотать проводом ПЭВ-1 0,1-0,15, по 150-300 витков.

Диодный мост для питания тиристоров (220В) выбирается исходя из ожидаемой мощности нагрузки, не менее 2А.Если количество ламп на канал увеличивается, соответственно увеличивается потребление тока.
Для питания транзисторов (12В) можно использовать любой стабилизированный блок питания, рассчитанный на рабочий ток не менее 250 мА (а лучше, больше).

Сначала каждый цветомузыкальный канал собирается отдельно на макетной плате.
Причем сборка начинается с выходного каскада. Собрав выходной каскад, проверяют его работоспособность, подав на его вход сигнал достаточного уровня.
Если этот каскад работает нормально, собран активный фильтр. Затем они снова проверяют работоспособность произошедшего.
В итоге после тестирования у нас действительно рабочий канал.

Аналогично необходимо собрать и перестроить все три канала. Такая кропотливость гарантирует безоговорочную работоспособность устройства после «окончательной» сборки на плате, если работа была проведена без ошибок и с использованием «проверенных» деталей.

Возможный вариант печатной разводки (для печатной платы с односторонней фольгой).Если вы используете конденсатор большего размера в канале с самой низкой частотой, расстояния между отверстиями и проводниками придется изменить. Использование печатной платы с двусторонней фольгой может быть более технологичным вариантом — это поможет избавиться от накладных проводов-перемычек.

Использование любых материалов на данной странице разрешено при наличии ссылки на сайт

Схема ниже была собрана в юности, в классе радиотехнического кружка. И безрезультатно.Возможно, микросхема К155ЛА3 все же не подходит для такого металлоискателя, возможно, частота 465 кГц не самая подходящая для таких устройств, а возможно, пришлось экранировать поисковую катушку как в других схемах раздела «Металлоискатели»

В целом получившаяся «пишущая машина» реагировала не только на металлы, но и на руку и другие неметаллические предметы. К тому же микросхемы 155-й серии не слишком экономичны для портативных устройств.

Радио 1985 г. — 2 л.61. Металлоискатель простой
.

Металлоискатель простой

Металлоискатель, схема которого приведена на рисунке, собирается всего за несколько минут. Он состоит из двух практически идентичных LC-генераторов, выполненных на элементах DD1.1-DD1.4, детектора по схеме удвоения выпрямленного напряжения на диодах VD1. VD2 и высокоомные (2 кОм) наушники BF1, изменение звукового тона которых свидетельствует о наличии металлического предмета под антенной катушкой.

Генератор, собранный на элементах DD1.1 и DD1.2, сам возбуждается на резонансной частоте последовательного колебательного контура L1C1, настроенного на 465 кГц (с использованием фильтрующих элементов ПЧ супергетеродинного приемника). Частота второго генератора (DD1.3, DD1.4) определяется индуктивностью антенной катушки 12 (30 витков провода ПЭЛ 0,4 на оправке диаметром 200 мм) и емкостью переменного конденсатора С2. . позволяя перед поиском настроить металлоискатель на обнаружение объектов определенной массы. Биения, возникающие в результате смешения колебаний обоих генераторов, регистрируются диодами VD1, VD2.фильтруются конденсатором С5 и поступают на наушники BF1.

Все устройство собрано на небольшой печатной плате, что делает его очень компактным и простым в обращении при питании от разряженного аккумулятора для фонарика

Janeczek A Prosty wykrywacz melali. — Радиоэлектромк, 1984, № 9, стр. 5.

От редакции. При повторе металлоискателя можно использовать микросхему К155ЛА3, любые германиевые высокочастотные диоды н КПЭ от радиоприемника Альпинист.

Эта же схема более подробно рассмотрена в коллекции М.В. Адаменко. «Металлоискатели» М.2006 (Скачать). Дополнительная статья из этой книги

3.1 Металлоискатель простой на микросхеме К155ЛА3

Начинающим радиолюбителям можно порекомендовать повторить конструкцию простого металлоискателя, за основу которого легла схема, неоднократно публиковавшаяся в конце 70-х годов прошлого века в различных отечественных и зарубежных специализированных изданиях. Этот металлоискатель, выполненный всего на одной микросхеме К155ЛА3, можно собрать за несколько минут.

Принципиальная схема

Предлагаемая конструкция является одним из множества вариантов металлоискателей типа BFO (Beat Frequency Oscillator), то есть представляет собой устройство, основанное на принципе анализа биений двух близких по частоте сигналов (рис. 3.1). При этом в данной конструкции изменение частоты биений оценивается на слух.

В основу прибора положены измерительный и опорный генераторы, детектор ВЧ колебаний, схема индикации и стабилизатор напряжения питания.

В рассматриваемой конструкции используются два простых LC-генератора, выполненных на микросхеме IC1. Схематические решения этих генераторов практически идентичны. При этом первый генератор, являющийся эталонным, собран на элементах IC1.1 и IC1.2, а второй, измерительный или перестраиваемый генератор, выполнен на элементах IC1.3 и IC1.4.

Схема опорного генератора образована конденсатором C1 емкостью 200 пФ и катушкой L1. В цепи измерительного генератора конденсатор переменной емкости С2 максимальной емкостью ок.300 пФ, плюс поисковая катушка L2. В этом случае оба генератора настроены на рабочую частоту примерно 465 кГц.


Рисунок: 3.1.
Принципиальная схема металлоискателя на микросхеме К155ЛА3

Выходы генераторов подключены через разделительные конденсаторы С3 и С4 к детектору ВЧ колебаний, выполненному на диодах D1 и D2 по схеме удвоения выпрямленного напряжения. В детектор загружены наушники BF1, на которых извлекается низкочастотный сигнал.В этом случае конденсатор С5 шунтирует нагрузку на более высоких частотах.

Когда поисковая катушка L2 колебательного контура перестраиваемого генератора приближается к металлическому объекту, ее индуктивность изменяется, что вызывает изменение рабочей частоты этого генератора. В этом случае, если объект из черного металла (ферромагнетик) находится рядом с катушкой L2, его индуктивность увеличивается, что приводит к снижению частоты перестраиваемого генератора. Цветной металл снижает индуктивность катушки L2 и увеличивает рабочую частоту генератора.

ВЧ-сигнал, генерируемый смешением сигналов измерительного и опорного генераторов после прохождения через конденсаторы C3 и C4, подается на детектор. В этом случае амплитуда радиочастотного сигнала изменяется с частотой биений.

Низкочастотная огибающая радиочастотного сигнала извлекается детектором на диодах D1 и D2. Конденсатор С5 фильтрует высокочастотную составляющую сигнала. Затем битовый сигнал отправляется на наушники BF1.

IC1 получает питание 9 В от B1 через стабилизатор напряжения, состоящий из стабилитрона D3, балластного резистора R3 и транзистора регулятора T1.

Детали и конструкция

Для изготовления рассматриваемого металлоискателя можно использовать любую макетную плату. Поэтому на используемые детали не распространяются какие-либо ограничения, связанные с габаритными размерами … Установка может быть как смонтированной, так и распечатанной.

При повторе металлоискателя можно использовать микросхему К155ЛА3, состоящую из четырех логических элементов 2И-НЕ, питающихся от общего источника постоянного тока … В качестве конденсатора С2 можно использовать настроечный конденсатор от портативного радиоприемника. (например, от радиоприемника «Альпинист»).Диоды D1 и D2 можно заменить любыми высокочастотными германиевыми диодами.

Катушка L1 опорного генератора должна иметь индуктивность около 500 мкГн. В качестве такой катушки рекомендуется использовать, например, катушку фильтра ПЧ супергетеродинного приемника.

Измерительная катушка L2 содержит 30 витков провода ПЭЛ диаметром 0,4 мм и выполнена в виде тора диаметром 200 мм. Эту катушку проще сделать на жестком каркасе, но можно и без нее. В этом случае любой круглый предмет подходящего размера, например банка, можно использовать в качестве временной рамки.Витки катушки наматываются навалом, после чего они вынимаются из корпуса и экранируются электростатическим экраном, который представляет собой открытую полосу алюминиевой фольги, намотанную на пучок витков. Зазор между началом и концом намотки ленты (зазор между концами экрана) должен быть не менее 15 мм.

При изготовлении катушки L2 нужно позаботиться о том, чтобы концы экранирующей ленты не закрывались, так как в этом случае образуется короткозамкнутый виток. Для увеличения механической прочности змеевик можно пропитать эпоксидным клеем.

В качестве источника аудиосигналов используйте наушники с высоким сопротивлением и максимально возможным сопротивлением (около 2000 Ом). Например, подойдет всем известный телефон ТА-4 или ТОН-2.

В качестве источника питания B1 можно использовать, например, батарею Krona или две последовательно соединенные батареи 3336L.

В стабилизаторе напряжения емкость электролитического конденсатора С6 может быть от 20 до 50 мкФ, а конденсатора С7 — от 3300 до 68000 пФ. Напряжение на выходе стабилизатора, равное 5 В, задается подстроечным резистором R4.Это напряжение будет оставаться постоянным, даже если батареи значительно разряжены.

Следует отметить, что микросхема К155ЛАЗ рассчитана на питание от источника постоянного тока напряжением 5 В. Поэтому при желании можно исключить из схемы блок стабилизатора напряжения и можно использовать одну батарею 3336Л или аналогичную. использоваться в качестве источника питания, что дает возможность собрать компактную конструкцию. Однако разряд этой батареи очень быстро повлияет на работу металлоискателя.Поэтому необходим блок питания, обеспечивающий стабильное напряжение 5 В.

Следует признать, что в качестве источника питания автор использовал четыре импортные большие круглые батареи, включенные последовательно. При этом напряжение 5 В формировалось интегральным стабилизатором типа 7805.

Плата с расположенными на ней элементами и блок питания помещаются в любой подходящий пластиковый или деревянный корпус. Переменный конденсатор С2, переключатель S1, а также разъемы для подключения поисковой катушки L2 и наушников BF1 (эти разъемы и переключатель S1 на принципиальной схеме не указаны).

Заведение

Как и в случае регулировки других металлоискателей, это устройство следует настраивать в среде, где металлические предметы находятся на расстоянии не менее одного метра от поисковой катушки L2.

Сначала с помощью частотомера или осциллографа нужно установить рабочие частоты опорного и измерительного генераторов. Частоту опорного генератора устанавливают равной примерно 465 кГц регулировкой сердечника катушки L1 и, при необходимости, подбором емкости конденсатора С1.Перед настройкой необходимо будет отключить соответствующий вывод конденсатора С3 от диодов детектора и конденсатора С4. Далее необходимо отключить соответствующий выход конденсатора С4 от детекторных диодов и от конденсатора С3 и настроить конденсатор С2 так, чтобы частота измерительного генератора отличалась от частоты опорного генератора примерно на 1 кГц. После восстановления всех подключений металлоискатель готов к работе.

Порядок работы

Проведение изыскательских работ с использованием рассматриваемого металлоискателя не имеет особенностей. При практическом использовании устройство следует за переменным конденсатором C2 для поддержания необходимой частоты сигнала биений, которая изменяется при разряде аккумулятора, изменении температуры окружающей среды или изменении магнитных свойств почвы.

Если частота сигнала в гарнитуре меняется во время работы, это указывает на присутствие металлического предмета в зоне действия поисковой катушки L2.При приближении к одним металлам частота сигнала биений будет увеличиваться, а при приближении к другим — уменьшаться. Изменив тон биения, имея некоторый опыт, вы легко сможете определить, из какого металла, магнитного или немагнитного, сделан обнаруженный объект.

Микросхема К155ЛА3 есть у каждого настоящего радиолюбителя. Но обычно они считаются сильно устаревшими и не могут найти им серьезного применения, так как на многих радиолюбительских сайтах и ​​в журналах обычно описываются только схемы мигалок и игрушек.В рамках данной статьи мы постараемся расширить кругозор радиолюбителя в рамках использования схем на микросхеме К155ЛА3.

Эта схема может использоваться для зарядки мобильного телефона от прикуривателя бортовой сети.

На вход радиолюбительской конструкции можно подавать до 23 вольт. Вместо устаревшего транзистора П213 можно использовать более современный аналог КТ814.

Вместо диодов D9 можно использовать d18, d10.Тумблеры SA1 и SA2 используются для проверки транзисторов прямого и обратного направления.

Для исключения перегрева фар можно установить реле времени, которое отключит стоп-сигналы, если они горят более 40-60 секунд, время можно изменить подбором конденсатора и резистора. Когда вы отпускаете и снова нажимаете педаль, фары снова включаются, что никоим образом не влияет на безопасность движения

Для повышения КПД преобразователя напряжения и предотвращения сильного перегрева в схемах инвертора применены полевые транзисторы выходного каскада низкого сопротивления


Сирена используется для подачи мощного и сильного звукового сигнала, чтобы привлечь внимание людей и эффективно защитить ваш велосипед, оставленный и пристегнутый на короткое время.

Если вы владелец дачи, виноградника или дома в деревне, то вы знаете, какой ущерб могут нанести мыши, крысы и другие грызуны и насколько дорогостоящая, неэффективная, а иногда и опасная борьба с грызунами. стандартные способы

Практически все радиолюбительские самодельные изделия и конструкции содержат стабилизированный источник питания. А если ваша схема работает от питающего напряжения 5 вольт, то лучшим вариантом будет использование трехконтактного интегрального стабилизатора 78L05

.

Кроме микросхемы здесь есть яркий светодиод и несколько элементов обвязки.После сборки устройство сразу начинает работать. Никакой регулировки, кроме настройки продолжительности вспышки, не требуется.

Напомним, что конденсатор С1 номиналом 470 мкФ впаян в схему строго соблюдая полярность.


Используя значение сопротивления резистора R1, можно изменить длительность мигания светодиода.

Тиристорные регуляторы напряжения. Тиристорный регулятор постоянного тока

Регуляторы, которые могут изменять напряжение в устройстве, используются в самых разных областях.Простой пример — контроль свечения лампы. Кроме того, регуляторы этого типа используются в паяльниках. Там они играют роль термостата. Часто регуляторы напряжения называют димерами. Это связано с тем, что принцип работы этих устройств основан на фазовом переходе.

Из чего состоит регулятор?

Основным элементом регулятора считается тиристор. Стабилитрон в системе, как правило, один установлен.В свою очередь количество резисторов зависит от типа модели. Кроме того, в цепи должен быть предусмотрен резистор, который подключается к конденсатору через предохранитель. На выходе системы специальные резисторы переменного типа.

Принцип работы прибора

Регулятор срабатывает при возникновении искр в системе. На этом этапе тиристор активируется. Его основная задача — подавить сигнал. В этот момент он меняет угол.В зависимости от настроек устройства потом постепенно нарастает. Угол увеличен с помощью транзисторов. Для преобразования энергии в цепь установлен конденсатор. При перегрузках простой регулятор напряжения на тиристоре управляется предохранителем. Кроме того, в моделях можно использовать диоды.

Выполняемые функции

Основной функцией регулятора напряжения является изменение частоты пробоя. Кроме того, устройства могут влиять на индекс деионизации.Во многом это связано с разными режимами работы. В моделях предусмотрено автоматическое отключение. Восстановление напряжения происходит довольно быстро. Также обратите внимание на функцию первичного тока. Это контроль предельного значения напряжения. Функция вторичного тока означает установку угла открытия тиристора. В случае аварии регуляторы напряжения способны заблокировать помехи. Также может быть проведена диагностика источников питания.

Ручной режим работы

Для ручного изменения настроек устройства Контроллер обычно имеет сенсорные панели.По умолчанию все индикаторы сброшены. Значения контролируются с помощью центрального блока управления. Алгоритмы выполнения задач зависят от конструктивных элементов устройства

Особенности работы в автоматическом режиме

В автоматическом режиме нет необходимости регулировать предельное напряжение. Ток электрофильтра также будет регулироваться независимо. Время деионизации в этом случае зависит от выбранного алгоритма. От этого также будет зависеть шаг снижения напряжения. Для увеличения тока вводятся индивидуальные настройки.

Самодельные регуляторы

Самодельный регулятор напряжения на тиристоре 12В можно сделать. Коэффициент полезного действия будет не более 70%. Тиристоры проще всего использовать с маркировкой «КУ202». Комплекты стабилитронов разной мощности. Многое в этой ситуации зависит от того, какие резисторы применяются. Самыми простыми считаются типы «МЛТ». В свою очередь транзисторы должны брать не менее серии «КТ3».

Если рассматривать резисторы серии «МЛТ-2», то сопротивление составляет 2 кОм.Таким образом, конденсатор в сети должен быть исправным. Выбирая модель «К73», следует знать, что она рассчитана на напряжение 250 В. При этом максимальное отклонение в сети не может превышать 10%. Предохранители в регуляторах обычно устанавливаются на 10 А.

Регуляторы с динисторами

Регулятор напряжения 220В на тиристорном типе отличается от обычных устройств тем, что имеет два выхода. Как правило, аналоговых каналов в системе три. Благодаря этому измерение амплитуды колебаний происходит довольно быстро.Выходное напряжение многих моделей достигает чуть более 230 В. Имеется система фильтрации в регуляторах. Для синхронизации в моделях только один канал.

Минимальное напряжение в нем поддерживается на уровне 210 В. Для дискретного управления устройством предусмотрено два канала. Параметр выходного тока достаточно высокий из-за хорошего качества передачи сигнала. Минимальный угол открытия тиристора — 160 градусов. Максимум одновременно можно выставить 200 градусов. Потребляемая мощность регуляторов этого типа достигает не более 20 кВт.По габаритам можно сказать, что устройства не слишком громоздкие и весят в среднем около 2 кг.

Чем отличаются триодные тиристоры?

Триодный стабилизатор напряжения на тиристоре (схема показана ниже) отличается тем, что не пропускает обратный сигнал. В результате управлять импульсами тока довольно сложно. Регуляторы этого типа обычно используются для сопряжения с низкочастотными устройствами. Работают, как правило, в автоматическом режиме. В этой конфигурации есть три аналоговых канала.Параметр входного напряжения колеблется в районе 24 В.

Максимальное отклонение в цепи может составлять 15%. В устройстве есть два канала синхронизации. Таким образом, можно регулировать предельную частоту. Для дискретного управления есть два выходных канала. Минимальный угол наклона тиристора в системе составляет 150 градусов. Максимально есть возможность выставить его в среднем на 180 градусов. Энергопотребление многих моделей составляет 220 В. По габаритам эти устройства довольно разные.

Свойства регуляторов с блокируемыми тиристорами

Эти регуляторы напряжения на тиристорах называются блокируемыми, так как они могут отключаться импульсом тока. В это время меняется и обратный ток. К недостаткам этого типа можно отнести небольшой КПД. Большинство моделей этого типа изготавливаются однофазными, но существуют и двухфазные модификации.

Ограничители напряжения поддерживаются уровнем 110 В. Максимальное отклонение в цепи может составлять всего 10%.Регуляторы номинальной частоты напряжения на тиристорах способны поддерживать около 50 Гц. Устройство выдерживает токовую нагрузку в 1 А. Автоматическое управление предусмотрено во многих моделях производителем. В результате можно изменить дискретное значение тока. Таким образом, можно напрямую влиять на переменный цикл, от которого зависит мощность электродвигателя.

Системы отображения в устройствах самые разные. Чаще всего на рынке можно встретить четырехзначные дисплеи.С их помощью можно вполне комфортно наблюдать за всеми показателями регулятора напряжения. Также существуют ступенчатые индикаторные системы. Их особенность — быстрая обработка данных. Для более точной индикации в тиристорных регуляторах напряжения установлены пунктирные индикаторные системы. Они также быстро обрабатывают информацию. Наконец, последний тип индикаторных систем можно назвать светодиодными устройствами.

Комбинированно-переключаемые регуляторы

Комбинированный переключаемый регулятор напряжения на тиристоре (схема показана ниже) очень похож на запираемые устройства.Для выключения требуется немного больше времени. Большинство моделей на сегодняшний день изготавливаются однофазными. Параметр подаваемого напряжения составляет в среднем около 120 В. Предельная частота таких регуляторов колеблется в районе 30 Гц. Для них предусмотрено автоматическое управление.

Кроме того, следует отметить, что используется обратная связь. В результате качество выходного сигнала значительно повышается. Резистивные регуляторы напряжения нагрузки на тиристорах плохо стоят, и это нужно учитывать. Средняя потребляемая мощность 8 Вт.Индикационные системы, как правило, сенсорные. Однако существуют конфигурации в виде полос для отображения данных. Кроме того, в регуляторах есть вентиляторы для охлаждения резисторов. С их помощью можно добиться значительного повышения эффективности. Также могут быть установлены выпрямители с тиристорным регулятором напряжения этого типа на двигателе.

Модели с симисторами

Тиристоры в таких моделях расположены параллельно друг другу. Пропускная способность по току в этом случае значительно увеличивается.Напряжение в цепи может распространяться во всех направлениях. Поляризованные импульсы регулятором хорошо воспринимаются за счет большого количества аналоговых каналов. Входное напряжение обычно составляет 50 Вт.

Каналы для синхронизации в вашем устройстве 3. Благодаря им поддерживается высокое напряжение в цепи. Показатель допустимого тока — 3 А. Сопротивление транзисторов поддерживается на уровне 4 МПа. Напряжение питания системы во многих моделях составляет 240 В. Таким образом, предельная частота может быть на уровне 45 Гц.Угол наклона тиристора в регуляторе зависит исключительно от величины напряжения входного сигнала.

Обзор лавинных регуляторов

Лавинный регулятор постоянного давления на тиристор назван так из-за того, что характеристики устройства со временем увеличиваются, а показатели — больше. Отличительной особенностью этих устройств смело можно считать хорошую устойчивость к различным колебаниям. Благодаря этому модели этого типа абсолютно не боятся перенапряжения.Сферы применения лавинных регуляторов достаточно обширны. Чаще всего их используют для нормальной работы высокочастотного оборудования для перекачки жидкостей.

Среднее количество аналоговых каналов — 3. Входное напряжение в цепи поддерживается на уровне 230 В. Для синхронизации в схеме доступен только 1 канал. Предельная частота довольно стабильна. Если рассматривать регулятор напряжения на тиристоре «Ку202н», то допустимый параметр тока варьируется в районе 2 А.Сопротивление в цепи поддерживается в среднем около 3 МПа. Напряжение питания моделей 230 В. Потребляемая мощность зависит от производителя.

p>

Тиристорный ключ Цепь переменного тока. Тиристорные коммутаторы переменного тока

1.1 Определение, типы тиристоров

1.2 Принцип работы

1.3 Параметры тиристоров

Глава 2. Использование тиристоров в регуляторах мощности

2.1 Общие сведения о различных регуляторах

2.2 Процесс регулирования напряжения тиристора

2.3 Управляемый выпрямитель на тиристоре

Глава 3. Практическая разработка тиристорных регуляторов мощности

3.1 Регулятор напряжения на тиристоре КУ201К

3.2 Мощный управляемый тиристорный выпрямитель

Заключение

99

В статье рассматривается несколько вариантов устройств, в которых тиристорные элементы используются как регуляторы напряжения и как выпрямители.Приведены теоретические и практические описания принципа действия тиристоров и устройств, схемы этих устройств.

Управляемый выпрямитель на тиристорах — элементах с большим коэффициентом усиления мощности, позволяет получить большие токи в нагрузке при незначительной мощности, затрачиваемой в цепи управления тиристором.

В данной статье рассматриваются два варианта таких выпрямителей, обеспечивающих максимальный ток в нагрузке до 6 А с пределом регулирования напряжения от 0 до 15 В и от 0.От 5 до 15 В и устройство регулировки напряжения на активной и индуктивной нагрузке с питанием от сети переменного тока напряжением 127 и 220 В с диапазоном регулировки от 0 до номинального напряжения сети.

Глава 1. Понятие тиристора. Типы тиристоров. Принцип работы

1.1 Определение, типы тиристоров

Тиристор — это полупроводниковый прибор, основанный на четырехслойной структуре, способный переключаться из закрытого состояния в открытое и наоборот.Тиристоры предназначены для ключевого управления электрическими сигналами в режиме открытия-закрытия (управляемый диод).

Самым простым тиристором является динистор — неуправляемый переключающий диод, представляющий собой четырехслойную структуру типа p-n-p-n (рисунок 1.1.2). Здесь, как и в других типах тиристоров, крайние n-p-n переходы называются эмиттерными, а средний p-n-переход — коллекторным. Внутренние области конструкции, лежащие между переходами, называются основаниями. Электрод, обеспечивающий электрическое соединение с внешней n-областью, называется катодом, а с внешней p-областью — анодом.

В отличие от несимметричных тиристоров (динисторов, тринисторов) в симметричных тиристорах обратная ветвь ВАХ является прямой. Это достигается встречно-параллельным включением двух идентичных четырехслойных структур или использованием пятислойных структур с четырьмя p-n-переходами (симисторы).

Рис. 1.1.1. Обозначения на схемах: а) симистор б) динистор в) тринистор.


Рис. 1.1.2 Строение диацистера.


Фиг.1.1.3. Строение тринистора.

1.2 Принцип работы

При включении динистора по схеме, показанной на рис. 1.2.1, коллекторный p-n переход закрыт, а эмиттерные переходы открыты. Сопротивление открытых переходов невелико, поэтому почти все напряжение источника питания прикладывается к коллекторному переходу, имеющему высокое сопротивление. В этом случае через тиристор протекает небольшой ток (участок 1 на рисунке 1.2.3).

Фиг.1.2.1. Схема включения в цепь неуправляемого тиристора (динистора).

Рис. 1.2.2. Схема включения в цепь управляемого тиристора (тринистора).

Рис. 1.2.3. Вольт-амперная характеристика динистора.

Рис.1.2.4. Вольт-амперная характеристика тиристора.

Если напряжение источника питания увеличивается, ток тиристора немного увеличивается, пока это напряжение не приблизится к некоторому критическому значению, равному напряжению переключения Uin.При напряжении Uv в динисторе создаются условия для лавинообразного распространения носителей заряда в области коллекторного перехода. Возникает обратимый электрический пробой коллекторного перехода (участок 2 на рисунке 1.2.3). В n-области коллекторного перехода образуется избыточная концентрация электронов, а в p-области — избыточная концентрация дырок. С увеличением этих концентраций уменьшаются потенциальные барьеры всех переходов динистора.Инжекция носителей через эмиттерные переходы увеличивается. Процесс имеет лавинообразный характер и сопровождается переключением коллектора в разомкнутое состояние. Рост тока происходит одновременно с уменьшением сопротивления всех участков устройства. Следовательно, увеличение тока через устройство сопровождается уменьшением напряжения между анодом и катодом. На ВАХ этот участок обозначен цифрой 3. Здесь устройство имеет отрицательное дифференциальное сопротивление.Напряжение на резисторе увеличивается, и диодистор переключается.

После перехода коллектора в открытое состояние вольт-амперная характеристика имеет вид, соответствующий прямой ветви диода (участок 4). После включения напряжение на динисторе снижается до 1 В. Если продолжать увеличивать напряжение блока питания или уменьшать сопротивление резистора R, то будет увеличение выходного тока, как в обычной схеме. с диодом на прямое подключение.

При понижении напряжения питания сопротивление коллекторного перехода восстанавливается. Время восстановления сопротивления этого перехода может составлять десятки микросекунд.

Напряжение Uc, при котором начинается лавинное нарастание тока, может быть уменьшено путем введения неглавных носителей заряда в любой из слоев, прилегающих к коллекторному переходу. Дополнительные носители заряда вводятся в тиристор вспомогательным электродом, питаемым от независимого источника управляющего напряжения (Uпр).Тиристор со вспомогательным управляющим электродом называется триодом, или тринистором. На практике под термином «тиристор» подразумевается элемент. Схема включения такого тиристора представлена ​​на рис. 1.2.2. Возможность снижения напряжения U с увеличением управляющего тока показывает семейство ВАХ (рисунок 1.2.4).

Если на тиристор будет подано напряжение питания, противоположное полярности (рисунок 1.2.4), эмиттерные переходы будут закрыты. В этом случае ВАХ тиристора напоминает обратную ветвь характеристики обычного диода.При очень высоких обратных напряжениях наблюдается необратимый пробой тиристора.

В схемах и технической документации часто используются различные термины и знаки, но не все начинающие электрики знают их значение. Предлагаем обсудить, какие бывают силовые тиристоры для сварки, принцип их работы, характеристики и маркировку этих устройств.

Многие видели тиристоры в гирлянде «Бегущий огонь», это простейший пример описываемого устройства и принцип его работы.Кремниевый выпрямитель или тиристор очень похож на транзистор. Это многослойный полупроводниковый прибор, основным материалом которого является кремний, чаще всего в пластиковом корпусе. В связи с тем, что принцип его действия очень похож на выпрямительный диод (выпрямители переменного тока или динисторы), на схемах обозначение часто совпадает — он считается аналогом выпрямителя.

Фото — Схема гирлянды бегущего костра

Есть :

  • Тиристоры с блокировкой ABB (GTO),
  • стандартный SEMIKRON,
  • мощная лавинная типа ТЛ-171,
  • оптопары (например, ТО 142-12.5-600 или модуль МТО 80),
  • симметричный ТС-106-10,
  • низкочастотный МТТ,
  • симистор BTA 16-600B или BT для стиральных машин,
  • частота уточняется,
  • иностранный ТПС 08,
  • TYN 208.

Но в то же время для транзисторов типа IGBT или IGCT для высоковольтных аппаратов (печей, станков, других средств автоматизации производства).

Фото — Тиристор

Но, в отличие от диода, который представляет собой двухслойный (PN) трехслойный транзистор (PNP, NPN), тиристор состоит из четырех слоев (PNPN), и это полупроводниковое устройство содержит три p-n перехода.В этом случае диодные выпрямители становятся менее эффективными. Это хорошо демонстрирует схема управления тиристорами, а также любой справочник электриков (например, в библиотеке можно бесплатно прочитать книгу автора Замятина).

Тиристор представляет собой однонаправленный преобразователь переменного тока, то есть он проводит ток только в одном направлении, но, в отличие от диода, устройство может работать как переключатель разомкнутой цепи или как выпрямительный диод постоянного тока. Другими словами, полупроводниковые тиристоры могут работать только в режиме переключения и не могут использоваться в качестве усилительных устройств.Ключ на тиристоре не может переключиться в закрытое положение.

Кремниевый управляемый выпрямитель является одним из нескольких силовых полупроводниковых устройств вместе с симисторами, диодами переменного тока и однопереходными транзисторами, которые могут очень быстро переключаться из одного режима в другой. Такой тиристор называется быстродействующим. Конечно, здесь немаловажную роль играет инструментальный класс.

Применение тиристора

Назначение тиристоров может быть самым разным, например, большой популярностью пользуется самодельный сварочный инвертор на тиристорах, зарядное устройство для автомобиля (тиристор в блоке питания) и даже генератор.В связи с тем, что само устройство может выдерживать как низкочастотные, так и высокочастотные нагрузки, его также можно использовать в качестве трансформатора для сварочных аппаратов (такие детали используются на их мосту). Для управления работой детали в этом случае необходим регулятор напряжения на тиристоре.


Фото — Применение тиристора вместо LATR

Не забываем о тиристорном зажигании для мотоциклов.

Описание конструкции и принципа действия

Тиристор состоит из трех частей: «Анода», «Катода» и «Входа», состоящих из трех p-n переходов, которые можно переключать из положений «ВКЛ» и «ВЫКЛ» на очень высокой скорости.Но в то же время его также можно переключать из положения «ВКЛ» с разной продолжительностью времени, то есть в течение нескольких полупериодов, для подачи определенного количества энергии на нагрузку. Работу тиристора можно лучше объяснить, если предположить, что он будет состоять из двух транзисторов, соединенных друг с другом как пара дополнительных регенеративных ключей.

На простейших микросхемах показаны два транзистора, которые объединены таким образом, что коллекторный ток после команды «Пуск» подается на NPN каналов транзистора TR 2 непосредственно в PNP-транзистор TR 1.В это время ток от TR 1 поступает в каналы в базах TR 2. Эти два взаимосвязанных транзистора расположены так, что база эмиттера принимает ток от коллектора-эмиттера другого транзистора. Это требует параллельного размещения.

Фото — Тиристор КУ221ИМ

Несмотря на все меры безопасности, тиристор может непроизвольно перемещаться из одного положения в другое. Это связано с резким скачком тока, перепадом температур и другими различными факторами.Поэтому перед тем, как купить тиристор КУ202Н, Т122 25, Т 160, Т 10 10, нужно не только протестировать его тестером (звонок), но и ознакомиться с параметрами работы.

Типовой тиристорный вольт-ампер

Чтобы начать обсуждение этой сложной темы, рассмотрим схему ВАХ тиристора:

Фото — характеристика тиристора ВАХ

  1. Сегмент между 0 и (Vob, IL) полностью соответствует прямой блокировке устройства;
  2. В секции Vvo реализовано положение «ВКЛ» тиристора;
  3. Сегмент между зонами (Vbo, IL) и (VH, IN) — это переходное положение во включенном состоянии тиристора.Именно в этой области возникает так называемый динисторный эффект;
  4. В свою очередь, точки (Vh, In) показывают на графике прямое открытие устройства;
  5. Точки 0 и Vbr — секция с тиристорной блокировкой;
  6. После этого следует отрезок Vbr — он указывает на режим обратной пробоя.

Естественно, современные высокочастотные радиокомпоненты в схеме могут незначительно влиять на вольт-амперные характеристики (охладители, резисторы, реле).Также симметричные фототиристоры, SMD-диоды, оптиристоры, триоды, оптопары, оптоэлектронные и другие модули могут иметь другие ВАХ.


Фото — В переменного тока тиристора

Кроме того, обращаем ваше внимание на то, что в этом случае защита устройств осуществляется на вводе нагрузки.

Тест тиристоров

Перед покупкой прибора нужно знать, как проверить тиристор мультиметром. Подключайте измерительный прибор только к так называемому тестеру.Схема, по которой можно собрать это устройство, представлена ​​ниже:

Фото — тестер тиристоров

Согласно описанию, на анод должно подаваться положительное напряжение, а на катод — отрицательное. Очень важно использовать значение, соответствующее разрешающей способности тиристора. На рисунке показаны резисторы с номинальным напряжением от 9 до 12 вольт, а это значит, что напряжение тестера немного выше, чем у тиристора. После того, как вы собрали прибор, можно приступать к проверке выпрямителя.Необходимо нажать кнопку, подающую импульсные сигналы на включение.

Проверить тиристор очень просто, на управляющем электроде кнопка кратковременно прикладывается к отверстию (положительному по отношению к катоду). После этого, если на тиристорах загорелись ходовые огни, то устройство считается нерабочим, но мощные устройства не всегда срабатывают сразу после прихода нагрузки.


Фото — схема тестера тиристоров

Помимо тестирования прибора, также рекомендуется использовать специальные контроллеры или блок управления тиристорами и симисторами OWEN BUST или других производителей, он работает примерно так же, как тиристорный регулятор мощности.Основное отличие — более широкий диапазон напряжений.

Видео: принцип работы тиристора

Технические характеристики

Рассмотрим технические характеристики тиристора серии КУ 202э. В этой серии представлены бытовые маломощные устройства, основное применение которых ограничивается бытовой техникой: используется для работы электропечей, нагревателей и т. Д.

На рисунке ниже показана распиновка и основные компоненты тиристора.

Фото 202

  1. Установить обратное напряжение в разомкнутом состоянии (макс.) 100 В
  2. Напряжение в закрытом положении 100 В
  3. Импульс в открытом положении — 30 А
  4. Повторяющийся импульс в открытом положении 10 А
  5. Среднее напряжение
  6. Неразжимающее напряжение> = 0.2 В
  7. Установить ток в открытом положении
  8. Обратный ток
  9. Ток затвора постоянного типа
  10. Установленное напряжение постоянного тока
  11. Время включения
  12. Время выключения

Устройство включается в течение микросекунд. Если вам необходимо заменить описываемый прибор, то проконсультируйтесь с продавцом-консультантом электротехнического магазина — он сможет подобрать аналог по схеме.

Фото — тиристор ку202н

Цена тиристора зависит от его марки и характеристик.Рекомендуем покупать бытовую технику — они более прочные и имеют доступную цену. На естественных рынках можно купить качественный мощный преобразователь до сотен рублей.


Принцип работы тиристора

Абсолютно любой тиристор может находиться в двух устойчивых состояниях — закрыт или открыт

В закрытом состоянии он находится в состоянии низкой проводимости, а в открытом почти не течет ток, наоборот полупроводник будет в состоянии высокой проводимости, ток проходит через него практически без сопротивления

Можно сказать, что тиристор — это ключ с электрическим управлением.Но на самом деле управляющий сигнал может открыть только полупроводник. Чтобы заблокировать его обратно, необходимо выполнить условия, направленные на снижение прямого тока практически до нуля.

Конструктивно тиристор представляет собой последовательность из четырех слоев p и n типа , которые образуют структуру p-n-p-n и соединены последовательно.

Одна из крайних точек, к которой подключен положительный полюс питания, называется анод , p-тип
Другой, к которому подключен отрицательный полюс напряжения, называется катодом , -n типа
Управляющий электрод соединяется с внутренними слоями.

Чтобы понять принцип работы тиристора, рассмотрим несколько случаев, во-первых: на управляющий электрод не подается напряжение, тиристор подключен по динисторной схеме — на анод подается положительное напряжение, а на катод подается отрицательное напряжение, см. рисунок.

В данном случае коллекторный p-n переход тиристора находится в закрытом состоянии, а эмиттер открыт. Открытые переходы имеют очень низкое сопротивление, поэтому почти все напряжение от источника питания прикладывается к коллекторному переходу, из-за высокого сопротивления которого ток, протекающий через полупроводниковый прибор, имеет очень низкое значение.

На кривой ВАХ это состояние актуально для участка, отмеченного цифрой 1 .

При повышении уровня напряжения ток тиристора практически не увеличивается до определенного времени. Но, достигнув условно критического уровня — , коммутируя напряжение U на , в динисторе есть факторы, при которых на коллекторном переходе начинается резкое увеличение свободных носителей заряда, которое практически сразу несет лавину .В результате происходит обратимый электрический пробой (точка 2 на показанном рисунке). В p — в области коллекторного перехода появляется избыточная зона накопленных положительных зарядов, в n -область, наоборот, происходит скопление электронов. Увеличение концентрации свободных носителей заряда приводит к падению потенциального барьера на всех трех переходах, и начинается инжекция носителей заряда через эмиттерные переходы. Лавиноподобный характер еще сильнее и приводит к переключению коллекторного перехода в разомкнутое состояние.В то же время ток во всех областях полупроводника увеличивается, что приводит к падению напряжения между катодом и анодом, что показано на графике над сегментом, отмеченным цифрой три. В этот момент динистор имеет отрицательное дифференциальное сопротивление. На сопротивлении Rn Напряжение увеличивается и полупроводник переключается.

После размыкания коллекторного перехода ВАХ динистора становится такой же, как на прямой ветви — сегменте №4.После переключения полупроводникового прибора напряжение падает до одного вольта. В дальнейшем повышение уровня напряжения или уменьшение сопротивления приведет к увеличению выходного тока один на один, а также срабатыванию диода при его прямом включении. Если уровень питающего напряжения понижается, то почти сразу восстанавливается высокое сопротивление коллекторного перехода, замыкается динистор , резко падает ток .

Коммутирующее напряжение U на можно регулировать, добавляя к любому из промежуточных слоев, близких к коллекторному переходу, непервичные носители заряда для него.

Для этого используется специальный управляющий электрод , питаемый от дополнительного источника, от которого следует управляющее напряжение — U упр . Как хорошо видно из графика — с увеличением U напряжение включения уменьшается.

Основные характеристики тиристоров

U на коммутируемое напряжение — при нем тиристор переходит в разомкнутое состояние
U o6p.max — импульсное повторное обратное напряжение с ним происходит электрический пробой p-n перехода.Для многих тиристоров выражение U o6p.max. = U на
I max — максимально допустимый ток
I Wed — средний ток за период U np — прямое падение напряжения с разомкнутым тиристором
I o6p.max — обратный максимальный пусковой ток приложение U o6p.max , из-за движения неосновных носителей заряда
I hold удерживающий ток — значение анодного тока, при котором тиристор заблокирован
P max — максимальная рассеиваемая мощность
t off — время отключения, необходимое для блокировки тиристора

Запираемые тиристоры — имеет классическую четырехслойную структуру p-n-p-n , но в то же время имеет ряд конструктивных особенностей, придающих такой функциональности, как полная управляемость.За счет этого воздействия управляющего электрода заблокированные тиристоры могут переходить не только в открытое состояние из закрытого, но и из открытого в закрытое. Для этого на управляющий электрод подается напряжение, противоположное тому, которое ранее было открыто тиристором. Для блокировки тиристора на управляющем электроде следует мощный, но короткий импульс отрицательного тока. При использовании запираемых тиристоров следует помнить, что их предельные значения на 30% ниже, чем у обычных.В схемотехнике запираемые тиристоры активно используются в качестве электронных ключей в преобразовательной и импульсной технике.

В отличие от своих четырехслойных родственников — тиристоров, они имеют пятислойную структуру.

Благодаря такой полупроводниковой структуре они могут пропускать ток в обоих направлениях — как от катода к аноду, так и от анода к катоду, а напряжение обеих полярностей прикладывается к управляющему электроду. Благодаря этому свойству вольт-амперная характеристика симистора симметрична по обеим координатным осям.Узнать о работе симистора можно из видео урока, перейдя по ссылке ниже.


Принцип работы симистора

Если стандартный тиристор имеет анод и катод, то электроды симистора не могут быть описаны таким образом, потому что каждый электродный электрод является одновременно анодом и катодом. Следовательно, симистор способен передавать ток в обоих направлениях. Вот почему он отлично работает в цепях переменного тока.

Очень простой схемой, объясняющей принцип работы симистора, является стабилизатор симисторного регулятора мощности.

После подачи напряжения на один из выходов симистора подается переменное напряжение. На электрод, который является регулятором от диодного моста, подается отрицательное управляющее напряжение. При превышении порога переключения симистор размыкается, и ток течет на подключенную нагрузку. В момент изменения полярности напряжения на входе симистора он блокируется.Затем алгоритм повторяется.

Чем выше уровень управляющего напряжения, тем быстрее срабатывает симистор и увеличивается длительность импульса на нагрузке. При снижении уровня управляющего напряжения длительность импульсов на нагрузке также уменьшается. На выходе симисторного регулятора напряжение будет иметь пилообразную форму с регулируемой шириной импульса. Таким образом, регулируя управляющее напряжение, мы можем изменять яркость лампы накаливания или температуру жала паяльника, подключенного в качестве нагрузки.

Таким образом, симистор управляется как отрицательным, так и положительным напряжением. Выделим его недостатки и достоинства.

Плюсы: невысокая стоимость, длительный срок службы, отсутствие контактов и, как следствие, отсутствие искрения и дребезга.
Минусы: достаточно чувствителен к перегреву и обычно устанавливается на радиатор. На высоких частотах не работает, так как не успевает переключиться из открытого состояния в закрытое. Реагирует на внешний шум, вызывая ложное срабатывание.

Отдельно стоит отметить особенности монтажа симисторов в современной электронной аппаратуре.

При малых нагрузках или при протекании в нем коротких импульсных токов установка симисторов может производиться без радиатора. Во всех остальных случаях — его наличие строго необходимо.
К радиатору тиристор можно закрепить фиксирующим зажимом или винтом.
Для уменьшения вероятности ложного срабатывания из-за шума длина проводов должна быть минимальной. Для подключения рекомендуется использовать экранированный кабель или витую пару.

или специализированные полупроводники оптотиристоров, конструктивной особенностью которых является наличие фотоэлемента, являющегося управляющим электродом.

Современной и многообещающей разновидностью симисторов является оптосимистор. Вместо управляющего электрода в корпусе стоит светодиод, а управление осуществляется изменением напряжения питания на светодиоде. Когда световой поток нижней мощности достигает, фотоэлемент переключает тиристор в разомкнутое положение. Самая основная функция опторезистора — это полная гальваническая развязка между цепью управления и цепью питания. Это создает просто отличный уровень и надежность конструкции.

Клавиши включения . Одним из основных факторов, влияющих на актуальность таких схем, является малая мощность, которую тиристор может рассеивать в схемах переключения. В заблокированном состоянии мощность практически не потребляется, потому что ток близок к нулевым значениям. А в открытом состоянии рассеиваемая мощность низкая из-за низких значений напряжения

Пороговые устройства — они реализуют основное свойство тиристоров — открываются, когда напряжение достигает желаемого уровня.Используется в силовых фазорегуляторах и генераторах релаксации

.

Для прерывания и включения-выключения используются запорные тиристоры . Правда, в этом случае схемы нуждаются в некоторой доработке.

Экспериментальные устройства — они используют свойство тиристора иметь отрицательное сопротивление, находясь в переходном режиме

Принцип действия и свойства динисторов, схем на динисторах

Динистор — разновидность полупроводниковых диодов, относящихся к классу тиристоров.Динистор состоит из четырех областей разной проводимости и имеет три p-n перехода. В электронике он нашел довольно ограниченное применение, ходя его можно найти в конструкции энергосберегающих ламп под цоколь Е14 и Е27, где он используется в схемах запуска. Кроме того, он содержится в балластах люминесцентных ламп.

Тиристор — электронный ключ с частично управляемым питанием. Это устройство с помощью управляющего сигнала может находиться только в проводящем состоянии, то есть включаться.Чтобы выключить его, необходимо принять специальные меры, чтобы прямой ток упал до нуля. Принцип работы тиристора заключается в односторонней проводимости, в закрытом состоянии он выдерживает не только постоянное, но и обратное напряжение.

Свойства тиристоров

По своему качеству тиристоры относятся к полупроводниковым приборам. В их полупроводниковой пластине есть смежные слои с разными типами проводимости. Таким образом, каждый тиристор представляет собой прибор, имеющий четырехслойную структуру pn-pn.

Крайний полюс p-структуры соединяет положительный полюс источника напряжения. Поэтому эта область называется анодом. Противоположная область n-типа, где подключен отрицательный полюс, называется катодом. Вывод из внутренней области осуществляется с помощью p-управляющего электрода.

Классическая модель тиристора состоит из двух, имеющих разную степень проводимости. В соответствии с этой схемой соединены база и коллектор обоих транзисторов.В результате этого соединения каждая база транзистора питается током коллектора другого транзистора. Таким образом получается цепочка с положительной обратной связью.


Если в управляющем электроде нет тока, транзисторы находятся в закрытом положении. Ток через нагрузку не протекает, тиристор остается замкнутым. Когда сила тока превышает определенный уровень, в игру вступает положительная обратная связь. Процесс становится лавинообразным, после чего открываются оба транзистора.В конце концов, после открытия тиристора устанавливается его стабильное состояние, даже если ток отключен.

Тиристорный режим на постоянном токе

Рассматривая электронный тиристор, принцип действия которого основан на одностороннем движении тока, следует отметить, что он работает на постоянном токе.

Обычный тиристор включается подачей импульса тока в цепь управления. Эта подача осуществляется со стороны положительной полярности, противоположной катоду.

Во время пуска продолжительность переходного процесса определяется характером нагрузки, амплитудой и скоростью нарастания импульса тока управления. Кроме того, этот процесс зависит от температуры внутренней структуры тиристора, тока нагрузки и приложенного напряжения. В цепи, где установлен тиристор, не должно быть недопустимой скорости роста напряжения, которая может привести к его самопроизвольному включению.

KU202L KU202M Кремниевый диффузионный тиристор Советский Русский НОВЫЙ KU202N 14x KU202K Тиристоры и тиристоры sunbay Business & Industrial

KU202L KU202M Кремниевый диффузионный тиристор Советский русский Новый KU202N 14x KU202K Тиристоры и промышленные солнечные батареи
  1. На главную
  2. Бизнес и промышленность >> Электрооборудование и материалы >> Электронные компоненты и полупроводники >> Полупроводники и активные элементы >> Тиристоры и тиристоры
  3. KU202L KU202M Кремниевый диффузионный тиристор Советский Русский Новый KU202N 14x KU202K

КУ202Л КУ202М Кремниевый диффузионный тиристор Советский Русский НОВЫЙ КУ202Н 14x КУ202К, КУ202М Кремниевый диффузионный тиристор Советский Русский Новый КУ202Н 14х КУ202К КУ202Л, Количество: КУ202К (7шт), КУ202Н (2 шт.) тиристоры были произведены в Советском Союзе, Материал диода: кремний, Модель: КУ202К, КУ202Н, КУ202Л, КУ202М, Первоклассный дизайн и качество Стоимость меньше на всем пути Подлинность гарантирована 100% оригинал + БЕСПЛАТНАЯ доставка предоставим вам товары высокого качества .Диффузионный Тиристор Советский Русский НОВИНКА КУ202Н 14х КУ202К КУ202Л КУ202М Кремний.

КУ202Л КУ202М Кремниевый диффузионный тиристор Советский Русский NEW KU202N 14x KU202K

14x KU202K, KU202N, KU202L Кремниевый диффузионный тиристор KU202M Советский Русский NEW. Модель: КУ202К, КУ202Н, КУ202Л, КУ202М. Количество: КУ202К (7шт), КУ202Н (2шт), КУ202Л (4шт), КУ202М (1шт) за лот. Все тиристоры были произведены в Советском Союзе. Материал диода: кремний.. Состояние: Новое прочее (см. Подробности): Новый, неиспользованный предмет без каких-либо следов износа. Товар может отсутствовать в оригинальной упаковке или быть в оригинальной, но не запечатанной. Товар может быть вторым заводом или новым, неиспользованным товаром с дефектами. См. Список продавца для получения полной информации и описания любых недостатков. См. Все определения условий , Примечания продавца: «НЕТ (новые старые запасы) / НИКОГДА не использовались» ,。






KU202L KU202M Кремниевый диффузионный тиристор Советский Русский Новый KU202N 14x KU202K

4×8 «10×20см Подушка ПЛАСТИНА ПЛЕНКИ для машины Mini Air Easi НАБОР ИЗ 4 шт., 10 шт. Для экскаватора Doosan Daewoo F900 Bobcat E80 Ключ для тяжелого оборудования K1009605B, 1 шт. Новое сенсорное стекло AMT 2527 10.4 «AMT-2507. 1шт B-SEL1616h26 Токарный станок для нарезания резьбы Токарно-расточной инструмент для 16ER 3/8» 16ERAG60. Дисплей с 3 кольцевыми пальцами, бархатная черная подставка для ювелирных изделий, регулятор напряжения AVR KDE6500E KDE6500T KDE3500X Дизельный генератор Keima # 6545 ZX, 5 шт. M2x4 мм, резьба 3 мм x 3 мм Плечо из нержавеющей стали с прорезью, AMD AM27C256 27C256 32K x 8-Bit UV EPROM CDIP28 x 10PC C14500 СПЛАВ 145 ТЕЛЛУРИЙНАЯ МЕДЬ КРУГЛЫЙ ПРУТ 5/16 «ДИАМ. X 6» .3125. 5M Rouleau Adhésif Brillant Signe Изготовление Vinyle Arrière Plastique 610 мм, 50 40 75 63 Выходной фланец Тип 30 90 и 110 для червячной коробки передач, 80 пар проводных берушей Силиконовые водонепроницаемые беруши для сна, храпа Swi, 5PCS Wh248 B50K Ом 6-контактный резистор 15 мм, линейный конус, поворотный Потенциометр.


Санбэй

Ищете ИТ-партнера с большим опытом работы в ИТ-аутсорсинге? Цепная интеграция, архитектура, разработка программного обеспечения, исследовательские вычисления и обслуживание (унаследованных) систем? Мы будем рады помочь вам в дальнейшем.

Специалисты

Sunbay Netherlands — профессиональный и амбициозный поставщик ИТ-продуктов и услуг. Мы обслуживаем национальных и международных клиентов, например, в сфере телекоммуникаций, логистики, банковских и финансовых услуг, рекламы, общественного транспорта, научного сообщества, здравоохранения и правительства.

Области и проекты

Sunbay предоставляет консультации, (индивидуальную) разработку программного обеспечения, интеграцию цепочки, исследовательские вычисления и техническое обслуживание.Мы обладаем более чем 17-летним опытом технического внедрения, как национального, так и международного, в следующих отраслях:

телекоммуникации
банковские и финансовые услуги
общественный транспорт
логистика
государственный сектор
реклама
профессиональные услуги
производство
экономика совместного использования
институциональные инвесторы
интернет-экономика
научные исследования
здравоохранение
биоинформатика

Истории успеха клиентов

Ниже приведены примеры работы, выполненной для текущих клиентов Sunbay и материнской компанией Sunbay, BizApps.В целях защиты конфиденциальности клиентов корпоративная политика Sunbay заключается в том, чтобы скрыть названия компаний и другие идентифицирующие данные из рекламных материалов.

Нидерланды, прием бесконтактных банковских карт в общественном транспорте (EMV)

Описание

Sunbay работает над инновационным проектом вместе с RET и Translink. Это пилотный проект, в котором пассажиры могут регистрироваться на входе и выходе из метро Роттердама с помощью своей бесконтактной банковской карты. Мы интегрировали системы Sunbay с системами поставщика микросхем OV для этого пилотного проекта.Кроме того, мы также построили следующее:

Сайт и мобильное приложение для пассажиров. Они дают пассажирам представление о поездках, оплаченных с помощью банковской карты. Если пассажир регистрируется, на его мобильное устройство будет отправлено уведомление о том, что он был зарегистрирован. Забыли оформить заказ? Пассажир может легко исправить это через приложение, и ему возместят разницу. Если у пассажира недостаточно средств на банковском счете, карта будет временно заблокирована.Он не может путешествовать дальше. Через приложение пассажир может пополнить счет и продолжить поездку.
Приложение для дирижеров. Они могут проверить с помощью мобильного устройства NFC, зарегистрирован ли пассажир.
Тестовые карты всех голландских банков, которые предоставляют банковские карты с бесконтактной оплатой, были успешно приняты в этом пилотном проекте.

Технологии

Спецификация EMV-co
PHP Artisan
Bootstrap
AJAX
AMQP
PhoneGAP

Япония, Intellicoder: шлюз мобильного веб-доступа

Описание

Через «iMode WAP Gateway» клиенты всех крупных японских операторов мобильной связи могут пользоваться мобильными сетями друг друга.В этом проекте участвуют все крупные игроки японского мобильного рынка, такие как: iMode, DoCoMo, KDDI, J-Sky и WAP. De gateway обеспечивает хорошую скорость, безопасность, надежность, масштабируемость, совместим с J2EE и отвечает всем требованиям пользователей. Продукт используется на J2EE-совместимых серверах, таких как Weblogic, JBOSS, поддержка кроссплатформенных баз данных для MS SQL и Oracle. ОС: Windows 2000, Linux, Solaris.

Технологии

J2EE (EJB)
WAP
WML
HDML
cHTML
MML
XSL
WebLogic 6.0
Jboss2.2
Oracle8i
MS SQLServer 2000

США, поставщик логистических услуг UPS-DSI: компонент интеграции как часть более крупного приложения B2C

Описание

В этом проекте мы интегрировали онлайн-транспорт и системы отслеживания DSI с онлайн-инструментами UPS: отслеживание UPS, тарифы и выбор услуг UPS, время доставки UPS в пути и проверка адреса UPS. Эта интеграция дает пользователю важные функции и возможности для отслеживания заказов и транспортировки.Например, с помощью номера отслеживания DSI или путем выбора одного из множества вариантов транспортировки в зависимости от типа услуги, времени отправки и стоимости. Пользователь также может изменить адрес доставки напрямую, если он окажется неверным.

Япония, Панель управления колл-центра: онлайн-портал для анализа работы колл-центра

Описание

Наша информационная панель центра обработки вызовов — это онлайн-решение для сбора, мониторинга и анализа работы центра обработки вызовов.С помощью этого инструмента можно одним взглядом контролировать работу колл-центра. На основе этих характеристик можно определить оптимизацию.

Технологии

MS Windows 2003 (IIS)
ASP.NET
MS SQLServer 2005

Нидерланды, Продукт Генератор EOD в общественном транспорте

Описание

Sunbay — первая компания в Нидерландах, разработавшая продукт, основанный на старой и новейшей версиях открытой архитектуры общественного транспорта.Это SDOA версии 2 и 3. Продукт называется EOD generator. С помощью генератора EOD операторы общественного транспорта или другие компании, работающие с чип-картой OV или с ней, могут создавать, импортировать или адаптировать файлы операционных данных оборудования (EOD). С помощью генератора EOD сторона, предлагающая файлы EOD, может легко обновлять указанные файлы через онлайн-портал. Благодаря этому процесс обновления файлов EOD стал более управляемым, и изменения можно было внедрять быстрее. Необходимые обновления из-за изменений в SDOA будут выполняться автоматически.

Технологии

SDOA 2.x и 3.x Спецификация
ASP.NET MVC
Архитектура SOA
База данных MS SQL

Техническое обслуживание: сопровождение единого пакета государственных услуг

Описание

Sunbay поддерживает единый портал государственных услуг для нашего партнера Hydrogenic.

Портал распространяет цифровые директивы правительства в соответствующие муниципалитеты.

Обслуживание устаревших систем

Описание

Sunbay специализируется на обслуживании старых систем, которые сложно обслуживать и / или которые требуют замены.В общем, есть две возможности:

система продолжает работать до тех пор, пока не будет доступна замена.
система будет обновлена, чтобы она соответствовала самым последним системным требованиям.
Sunbay специализируется на поддержке и разработке подходящего сценария обслуживания для вашей ситуации.

КУ202Л КУ202М Кремниевый диффузионный тиристор Советский Русский НОВЫЙ КУ202Н 14x КУ202К

Новинка: яркие цвета и четкие линии, высококачественный хлопок, полиэстер / длинный рукав / два прорезных передних кармана.вы можете положиться на высокое качество и эффективность продукта и бренда, не догадываясь, будет ли продукт работать последовательно с вашим автомобилем. Наши фотоковрики бывают разных размеров и цветов и могут быть изготовлены на заказ в соответствии с вашими потребностями. Уровень чувствительности к влаге (MSL): 1 (неограниченный), карбидная концевая фреза YG-1 95115 со струйным приводом. Большой размер США = большой размер Китая: Длина: 28. LeafLover Man’s Whitechapel Хлопковый пуловер с капюшоном Свитер на шнурке Мягкие толстовки с длинным рукавом: Одежда, Сталь часто используется в приложениях, где прочность является основным критерием, KU202L KU202M Кремниевый диффузионный тиристор Советский русский НОВЫЙ KU202N 14x KU202K .Lincoln Logs Commemorative Edition олово: игрушки и игры. Технология производства и контроль качества гарантируют, что датчик положения коленчатого вала двигателя Schnecke соответствует характеристикам оригинального оборудования, которое они заменяют, или превосходят их. ************************************************* *********************************. Хлопковая вуаль хороша для носовых платков, украшает ваш сад или где-нибудь за пределами вашего дома. Минимальный срок изготовления и доставки — 3 недели, — Ruby & Juniper — бутик Vintage Jewelry.Женские вьетнамки размера 9 Если вам нужен определенный размер или цвет: • Выберите тип фона в раскрывающемся меню. КУ202Л КУ202М Кремниевый диффузионный тиристор Советский Русский NEW KU202N 14x KU202K . и современная атмосфера, которая делает его модным. Наша дверная штора цвета фуксии разработана так, чтобы гармонировать с вашим декором в стиле единорога. 53 — — — Длина светового центра (LCL) (дюймы):, • Доступны во многих модных цветах. LUX многоразового использования и стирки с супер адгезией разработан и разработан небольшой командой, расположенной в самом центре Нью-Йорка и произведенной в Китае.подходит для любого настольного футбольного стола со стандартными стержнями для настольного футбола 5/8 «. Легко чистить и легко хранить. Лучший способ добавить творчества в вашу практику. Легкая чистка без запаха, KU202L KU202M Кремниевый диффузионный тиристор Советский Русский НОВЫЙ KU202N 14x KU202K ultra. мягкий пушистый друг, собранный из чистого хлопка.

Один из ведущих мировых независимых поставщиков программного обеспечения в области решений для автоматизации и виртуализации поставщиков услуг

Описание

Наш клиент столкнулся с серьезными потерями производительности в отношении внутреннего взаимодействия и обмена документами; их внутренний ИТ-отдел был перегружен, поэтому мы предложили несколько решений.
Мы руководили обслуживанием программного обеспечения и модернизировали интранет-сайты компании. За первый месяц работы количество негативных инцидентов, связанных с интранетом, сократилось почти на 30%. Были введены процедуры контроля версий, приемлемого тестирования пользователей и управления инцидентами, что позволило сократить время разрешения инцидентов с более чем двух недель до 2-3 рабочих дней.

Мировой лидер в области антивирусного программного обеспечения и защиты конечных точек

Beschrijving

Мы увеличивали производительность внутренней команды инженеров компании всякий раз, когда их рабочие процессы превышались.В отрасли, где новые угрозы безопасности возникают круглосуточно, каждый день в году, мы помогли компании сохранить безупречную репутацию благодаря инновациям и совершенству.

• Наборы подключаемых модулей с белой этикеткой для защиты интернет-сервисов (IM, P2P, FTP)
• Разработан портал службы поддержки для обработки запросов на обслуживание на основе MS SharePoint
• Создана интегрированная среда разработки для вирусных аналитиков, предоставляющая все исходные коды информация для разработки антивирусов
• Инженерный поисковый робот для многопоточного сканирования веб-сайтов, поиска и загрузки двоичных файлов для дальнейшего анализа на вирусы
• Белые метки антивируса и защиты от спама для почтовых серверов
• Утилита обновления для антивирусного программного обеспечения клиента корпоративная среда

Разработчик комплексного программного обеспечения клиент-сервер для оптимизации трафика данных и обеспечения безопасности

Beschrijving

На современном рабочем месте сотрудники без проблем работают в офисе, дома, в дороге и в воздухе.Мы создали системы, которые помогают обеспечить постоянное общение и продуктивность на самых разных платформах.
Для нашего клиента мы производим VPN-решение для безопасной и стабильной связи между удаленными сотрудниками и офисом независимо от их местоположения и доступных каналов связи.

Функции и возможности:
• Кросс-платформенное решение (Windows, * nix, Symbian, MAC)
• Автоматическое переключение между различными проводными и беспроводными каналами связи в соответствии с пользовательскими настройками
• «Умное» сжатие и кэширование данных для уменьшения количества данные и стоимость передачи
• Аутентификация пользователя и шифрование данных для обеспечения безопасной передачи

Технические решения
• Роуминг для бесшовного переключения между различными типами сетей.Автоматически поддерживает подключение к оптимальной сети, чтобы избежать завершения текущих сеансов.
• Сжатие трафика.
• Безопасная связь.
• Клиент для всех основных платформ — Windows, Mac OS X, Linux, Android, iOS.
• Конфигурация клиентских настроек на стороне сервера.
• Обширная отчетность по оптимизации трафика для нужд управления емкостью и уровнем обслуживания.
• Безклиентское решение для сжатия и оптимизации трафика в соответствии с возможностями конкретных устройств.

Масштаб:
• Возможность обслуживания до 10 000 клиентов на серверный узел.
• Степень сжатия трафика 40-70%.

Трудовые отношения:
• 10 лет непрерывного развития и поддержки производственных систем по всему миру.
• Выделенная основная команда из 10 разработчиков программного обеспечения, расширяемая по мере необходимости.

Одна из ведущих мировых компаний в области прямого маркетинга, базируется в США.

Beschrijving

Мы помогли нашему клиенту значительно повысить продажи и продуктивность продаж, а также в течение многих лет поддерживать двузначный рост без пропорционального роста затрат, разработав систему электронной коммерции для лучшего управления продажами, запасами, коммуникациями и анализом., / п>

Функции и возможности:
• Приложение электронной коммерции для автоматизации полного цикла продаж, в том числе:
o Размещение заказов
o Настройка и мониторинг счетов
o Система обработки платежей
o Управление складом
o Работа с клиентами и консультантами компания
o Формирование отчетов
• Техническая поддержка и обслуживание устаревших корпоративных систем в более чем 30 странах
• Дизайн и техническая поддержка корпоративного веб-сайта

Ведущий поставщик корпоративного программного обеспечения и информационных решений в США для государственных подрядчиков и компаний с профессиональными услугами

Описание

Когда нашим клиентам нужно добавить новые продукты, а у них нет персонала для этого, мы выполняем проекты вовремя и в рамках бюджета.

Портал эффективности управления проектами
Мы разработали приложение для измерения эффективности проекта, чтобы помочь нашим клиентам оценить риски и их влияние на реализацию проекта, а также определить «узкие» критически важные задания и параметры затрат. Это приложение было основано на MS SharePoint и SAP Enterprise Portal

.

Assessment +
Мы разработали веб-приложение для оценки эффективности управления проектами и мониторинга состояния и эффективности различных программ, управляемых компанией.

Японская консалтинговая компания

Описание

Чтобы оставаться конкурентоспособными, нашему клиенту требовались новые способы оценки производительности, обмена документами и повышения эффективности взаимодействия.

Мы доставили:

• Call Center Dashboard — веб-приложение для оценки работы центров обработки вызовов, сбора данных, обработки данных и расчета аналитических показателей
• Intellicoder — WAP-портал для обеспечения общего контента для основных мобильных операторов в Японии
• Клиент CRM для iPad — Клиент приложение для CRM на сервере компании с возможностью просмотра и редактирования

Одно из ведущих финансовых учреждений России

Описание

Нашему клиенту нужно было автоматизировать бизнес-процессы в своей устаревшей системе, не прерывая рабочий процесс во время перехода.

Функции и возможности:
• Автоматизация рабочего процесса и настройка моделей событий на основе MS SharePoint Portal Server

.

Русский Коммерческий Банк

Описание

Нашему клиенту требовалось множество новых приложений, которые помогли бы оптимизировать их рабочий процесс.

Особенности и функции:
• Приложение Client Proximity — мобильное приложение на базе Android для менеджеров банка, позволяющее отслеживать клиентов, находящихся поблизости от банка.
• Протоколы встреч с клиентами — веб-портал на базе MS SharePoint для управления заметками, соглашениями и заданиями на встречах с VIP-клиентами.
• Координация медиапланов — мы разработали отдельный корпоративный портал на основе MS SharePoint, который может интегрироваться со средой LOTUS

.

Ведущая компания по онлайн-торговле акциями в России

Описание

Чтобы повысить производительность труда сотрудников и повысить безопасность документов, мы создали настольные приложения для сотрудников и модернизировали системы хранения данных.

Возможности и возможности:
• Автоматизация, настройка, поддержка и развитие бизнес-процессов. Интеграция с CRM-системой, интернет-порталом, ORM-системами

Розничный банк, Гана

Описание

Мы разработали веб-приложение для интернет-банкинга для розничных клиентов банка.

Ведущий оптовый поставщик услуг перестрахования, страхования и других страховых форм передачи рисков, Швейцария

Описание

Получение и преобразование (ETL) финансовых и страховых данных из устаревших систем в файлы данных XML с визуальным веб-доступом для пользователей и API для внешних систем.

Технические решения:
• Разработка собственной схемы XML для устаревших структур данных.
• Анализ и реинжиниринг структур данных.
• Преобразование нормализованных структур данных в иерархическое представление.
• Разработка веб-сервисов для передачи данных во внешние системы.

Масштаб:
• Более 10 миллионов записей для анализа и преобразования.
• 45 внешних приложений, получающих данные через веб-службы.

Трудозатраты:
• 3500 часов анализа и разработки.

Третья по величине банковская группа в Швейцарии и лидер розничного банковского бизнеса

Описание

Мы создали систему управления депозитами для одного из крупнейших банков Швейцарии. Эта программа позволяет клиентам переводить пенсионные накопительные вклады в ценные бумаги.

Функции и возможности:
• Совместимость с внешними системами для предоставления и управления финансовыми транзакциями
• Создает различные квартальные и годовые отчеты для клиентов и руководства
• Работает с большим объемом данных (около 4 миллионов записей)

Технические решения:
• Реализовать сбор поручений конечных клиентов банка на инвестирование пенсионных накоплений в ценные бумаги.
• Объединение запросов клиентов в группу коллективных заявок с последующей отправкой таких коллективных заявок на покупку или продажу во внешний инвестиционный банк.
• Отражать результаты покупки или продажи ценных бумаг в статусе депозита и истории
• Сообщать соответствующие финансовые операции во внутреннюю систему банковского учета.
• Получите юридически требуемую и управленческую отчетность с различной еженедельной, ежемесячной, квартальной и годовой статистикой. Все отчеты составляются на английском, немецком, французском и итальянском языках.

Масштаб:
• Около 100 внутренних активных пользователей пенсионного отдела.
• Обработка 1 500–2 000 индивидуальных заказов еженедельно.
• Около 300 000 активных вкладов и постоянно растут.
• Более 4 миллионов записей различных данных, таких как личные данные, история депозитов, заказы.
• 42 комплексных отчета.

Рабочая сила:
• Около 15 000 человеко-часов на начальную разработку.
• 10 лет технической поддержки производственной системы.
• Непрерывное развитие и улучшение системы, 5 000 — 6 000 человеко-часов в год.

Один из ведущих европейских поставщиков комплексных услуг по страхованию жизни, пенсионному обеспечению и финансовым решениям

Описание

Мы создали систему управления счетами, чтобы помочь нашему клиенту оставаться конкурентоспособным, эффективно работать и предоставлять услуги мирового класса.

Возможности и функции:
• Мониторинг существующих финансовых потоков по договорам страхования и страхования
• Информировать руководство о состоянии страховых счетов и статусе владельцев страховых счетов в любое время
• Выполнять различные отчеты на английском, немецком, Итальянский, французский
• Управляйте перепиской с клиентами или их уполномоченными представителями по телефону, факсу, электронной почте
• Управляйте активами и обязательствами по всем страховым и финансовым счетам, а также всеми денежными потоками, относящимися к фондам пенсионного страхования.

Технические решения:
• Осуществление мониторинга текущих финансовых потоков по договорам страхования и страхования.
• Управление всеми активами и обязательствами, а также денежные переводы владельцев счетов, связанных с BVG Umbrella Fund.
• Внутренний учет пенсионных счетов, а также интеграция с бухгалтерией центрального банка на основе SAP.
• Интерфейсы для связи с правительством Швейцарии, банками, владельцами счетов.
• Создавать различные отчеты на английском, немецком, итальянском и французском языках.
• Инструменты для связи с клиентами или их уполномоченными представителями по телефону, факсу и электронной почте.
• Управление активами и пассивами всех страховых и финансовых счетов, а также всех денежных потоков, относящихся к фондам пенсионного страхования.
• Хранилище данных. Архивирование всех существующих данных, относящихся к владельцам счетов, с использованием дополнительных интерфейсов для архивной системы для хранения, восстановления и поиска всех данных с использованием альтернативного хранилища носителей.
• Автоматизированный платежный ввод входящих платежей, полученных через систему Postfinance.

Масштаб:
• Около 1 миллиона открытых счетов.
• Управление активами стоимостью более 4 миллиардов швейцарских франков.
• 50 внутренних пользователей.
• 62 финансовых отчета.

Рабочая сила:
• Около 15 000 человеко-часов на начальную разработку.
• 8 лет технической поддержки производственной системы.
• Специальная группа из 4 инженеров для обслуживания, поддержки и дальнейшего развития системы.

Швейцария, Финансовая группа, состоящая из подразделений, предоставляющих услуги альтернативного инвестирования, корпоративного финансирования и управления капиталом

Описание

Мы разработали индивидуальную систему электронной коммерции, чтобы помочь нашим клиентам лучше обслуживать своих клиентов.

Особенности и функции:
• Предложения о покупке (бид) и / или продаже (аск) ценных бумаг, размещенные на сервере OpenOTC.
• Каждое предложение имеет ряд параметров приоритета (включая, но не всегда, цену).
• Система сравнивает доступные на данный момент предложения по всем скорректированным критериям.
• Если зарегистрированное предложение ответа соответствует требованиям, обеим сторонам предлагается подписать соглашение о купле-продаже соответствующего пакета ценных бумаг.

Япония, одно из крупнейших рекламных агентств

Описание

Иметь отличную идею — это одно; Эффективная презентация хорошей идеи — это все, особенно в мире рекламы. Мы создали множество мультимедийных продуктов, чтобы помочь нашим клиентам эффективно представлять предложения, кампании и другие маркетинговые материалы своим клиентам и связанной с ними аудитории.

Особенности и возможности:
• Creator / Viewer — настольное приложение для просмотра презентации мультимедийных материалов;
• Lappla — Приложение для просмотра маркетинговых материалов, представленных во внутреннем формате компании.

Аналитический центр исследования рекламных рынков в России и мире

Описание

В рекламном бизнесе платформы для закупки средств массовой информации сочетают в себе мультимедиа, возможности поиска, базы данных и презентационные документы. Мы помогли нашему клиенту разработать собственные инструменты, дающие им конкурентное преимущество.

Возможности и функциональные возможности:
• Система медиабаинга — автоматизированная система рекламы — создание функциональных блоков, позволяющих просматривать видео, измерять площадь и время
• Создание и поддержка веб-сайта заказчика — новый веб-сайт работает как библиотека публикации с каталогом и функциями поиска

Россия, Агентство крупного конференц-центра в Москве

Описание

Мы создали диск с мультимедийной презентацией, в который вошли видеоролики, панорамные изображения и комментарии на нескольких языках.

Россия, Компания экспресс-доставки

Описание

Руководили разработкой, интеграцией и поддержкой ERP-системы на платформе 1С-Предприятие.

Объем поставки:

• Рефакторинг и настройка производительности
• Отчеты
• Межсистемный обмен данными

Платежный процессор

Описание

Мы построили систему моментальных платежей.

Особенности и возможности:
• Система предназначена для приема мгновенных платежей через киоски, POS-терминалы, портативные устройства j2me, ПК-клиент. Решение предназначено для поддержки большого объема транзакций и не зависит от конкретного набора услуг POS-оборудования.
• Многоплатформенное решение для Windows и * nix.
• Расчет и оценка платежных счетов, сборов и комиссий для различных агентов.
• Составление всей необходимой информации для бухгалтерской отчетности.
• Добавление и удаление получателей без прерывания работы системы.
• Легкая масштабируемость.
• Повышенная отказоустойчивость.

Поставщик программного обеспечения для фармацевтической промышленности

Описание

Мы разработали веб-интерфейс с богатым пользовательским интерфейсом для распределенных репозиториев документов на основе EMC Documentum и IBM FileNet.
Функции и возможности:
• Простой веб-интерфейс для конечных пользователей.
• Отслеживает различные серверные части для хранения контента с помощью универсальных адаптеров.
• Возможность синхронизированной работы в нескольких системах управления документами
• Дружественный интерфейс
Технические решения:
• Разработка единого внутреннего API для основных систем управления документами
• Пользовательский интерфейс на основе Internet Explorer для конечных пользователей, которым не требуются специальные знания DMS от конечного пользователя.
• Промежуточный бизнес-поток обработки документов, прозрачно отображенный в конкретном хранилище документов.
Масштаб:
• Обслуживания аптечных компаний с числом активных в системе до 2 000 сотрудников.
• Выступает в качестве внешнего интерфейса для систем управления документами, в которых хранится более 2 миллионов документов.

Трудовые ресурсы:
• 3 800 часов анализа и разработки программного обеспечения.

Семейный стартап, стремящийся наладить связь между европейскими врачами и больницами

Описание

Социальная сеть врачей, соединяющая практикующих врачей с больницами, обмен данными о пациентах и ​​опытом между практикующими врачами.
Технические решения:
• Личный кабинет, личные сообщения.
• Глобальный справочник практикующих врачей и клиник.
• Поддержка специальных форматов медицинской диагностики для обмена данными о пациентах, такими как рентген, компьютерная томография и т. Д.
• Образовательная сеть.

Масштаб:
• Возможность обслуживания более 10 000 зарегистрированных практикующих врачей и клиник.
• Стресс-тест при 5000 запросов в час.

Трудовые ресурсы:
• 5 100 часов анализа, проектирования, разработки и интеграции программного обеспечения.

Россия, Производитель женской одежды

Описание

Руководили разработкой, интеграцией и поддержкой ERP-системы на платформе 1С-Предприятие.

Задачи:
• Проектирование архитектуры
• Миграция данных
• Автоматизация создания заводской документации для бухгалтерии.

Германия, поставщик продуктов, решений и услуг для измерения и автоматизации промышленных процессов

Описание

Мы модернизировали систему выбора промышленных устройств управления, выпускаемых заказчиком.Продукт был доставлен клиентам наших клиентов как онлайн-сервис и на компакт-дисках.

Технические решения:
• Автономное решение, предоставляемое как онлайн-сервис, так и на компакт-диске ключевым клиентам.
• Мастер, помогающий выбрать наиболее подходящую измерительную технологию или продукт для отрасли заказчика.
• Сравните принципы измерения, инструменты и компоненты и точно рассчитайте размер точки измерения, используя сложные физические формулы.
• Выполнение расчетов расходомера, энергии, разделительной диафрагмы, защитной гильзы и гаммы.
• Помощник для настройки прибора в соответствии с условиями заказчика, чтобы можно было разместить заказ.
• Проверяйте и сохраняйте сведения о продукте, конфигурацию, сертификаты и документацию.
• Управляйте инженерными проектами с самого начала и сохраняйте соответствующие параметры и документы для повторного использования.

Масштаб:
• База данных из 580 средств измерений, выпускаемых компанией.
• Несколько сотен параметров, сохраняемых и контролируемых для каждого прибора.
• Около 100 сложных физических формул для расчета зависимостей параметров.

Рабочая сила:
• Около 12 000 человеко-часов на начальную разработку.
• 5 лет технической поддержки производственной системы.
• Специальная команда из 5 инженеров для поддержки и развития системы.

Россия, Стартап каршеринга в Москве

Описание

Совместное использование поездок нарушило индустрию такси и лимузинов во всем мире. Многие компании выходят на рынок, но немногие выжившие быстро завоевывают долю рынка с помощью простых в использовании потребительских технологий. Мы помогали нашему клиенту с самого начала, предлагая системные концепции для поддержки их бизнес-модели.После получения финансирования мы разработали архитектурный дизайн сайта, пользовательский интерфейс, хранилище данных, мобильные и веб-клиентские приложения, CRM, бухгалтерский учет и онлайн-платежи.

Россия, Национальный орган исполнительной власти, оказывающий государственные услуги, связанные с правами на недвижимое имущество

Описание

Наш клиент нанял нас для создания новой системы профессиональной сертификации геодезистов с использованием существующей базы данных.

Проектов:
• Система аттестации сюрвейеров — автоматизированная система управления оценкой профессиональных компетенций и аттестацией геодезистов.
• Система учета инженеров по инвентаризации — поддержка и разработка автоматизированного реестра инженеров по инвентаризации.

Технические решения
• Автоматизация всего процесса профессиональной аттестации сюрвейеров — регистрация, присутствие на тестах, видеонаблюдение за тестированием, соответствие результатов тестирования всем юридическим протоколам и отправка на дальнейшее согласование и регистрацию.
• Ведение реестра сюрвейеров. Хранить историю профессиональной деятельности, изменения личных данных, статуса и так далее.Отвечая на запросы граждан, поступающие через интернет-портал.
• Устранена необходимость в бумажных документах за счет использования цифровых подписей, выдаваемых сертифицированными государственными органами во всей системе.

Масштаб:
• 37 000 и постоянно растущее количество геодезистов.
• Более 2 миллионов записей, охватывающих записи геодезистов о занятости, профессиональной деятельности и личных данных.
• Более 100 пользователей отдела внутренней регистрации активно работают с системой.
• 5 000 — 10 000 запросов интернет-пользователей в день к общедоступному порталу с расширенными функциями поиска и отчетности.

Рабочая сила:
• Около 5 000 человеко-часов на начальный фазовый анализ и разработку
• 6 лет технической поддержки производственной системы.
• Более 15 000 часов анализа и разработки нового функционала.

Россия, один из крупнейших частных институциональных инвесторов

Описание

Нашему клиенту требовалась обновленная и расширяемая система управления активами для удовлетворения потребностей широкого круга заинтересованных сторон, каждая из которых имеет разный уровень технических навыков.
Разработана система для оптимизации работы экспертов, руководителей подразделений, высшего руководства и акционеров корпорации, которым необходимо вести учет существующих активов корпорации, получать аналитические отчеты о состоянии активов, отслеживать решения, касающиеся органов корпоративного управления или вести учет первичных документов, связанных с указанными выше вопросами. Этот продукт был основан на программном обеспечении EMC Documentum.

Технические решения:
• Адаптируйте документы, связанные с корпоративной собственностью, к централизованному хранилищу EMC Documentum.
• Отражать сложную структуру управления в правах доступа на основе содержимого документов.
• Полностью настраиваемый внешний вид интерфейса EMC Documentum в соответствии с корпоративным стилем заказчика.
• Расширенная отчетность, включающая Visio-диаграммы иерархической структуры собственности одной из крупнейших финансовых корпораций России.

Масштаб:
• Более 60 000 компаний принадлежат финансовым учреждениям.
• Более 2 миллионов объектов недвижимости по всей России иерархически связаны друг с другом и с предприятиями.
• Более 200 внутренних корпоративных пользователей одновременно.
• Более 4 миллионов документов, отсканированных, проиндексированных и обработанных в соответствии с корпоративными стандартами.

Россия и бывший Советский Союз, система электронного документооборота для одного из ведущих операторов связи

Описание

Нашему клиенту потребовалась система электронного документооборота для хранения, управления и обмена корпоративными финансовыми и бухгалтерскими документами.

Особенности и возможности:
• Автоматизация и унификация документов между более чем 90 региональными филиалами и головным офисом.
• Обработка текстовых и графических документов.
• Унификация, обработка, хранение и поиск метаданных метаданных.
• Этот продукт основан на программном обеспечении EMC Documentum.

Технические решения:
• Получение и хранение в центральном хранилище бухгалтерских электронных, а также отсканированных бумажных документов из региональных бухгалтерских отделов.
• Предоставить доступ к документам уполномоченным сотрудникам компании.
• Настраиваемые атрибуты и рабочий процесс для всех видов бухгалтерских документов.
• Расширенный контроль доступа для сотрудников.

Масштаб:
• Более 80 бухгалтерии
• Ежедневно подается до 100 000 документов.
• Около 200 внутренних пользователей

Трудовые ресурсы:
• 4200 часов анализа, настройки платформы, разработки и интеграции программного обеспечения.

Россия и бывший Советский Союз, интранет-портал одного из ведущих операторов связи

Описание

Интранет-портал на основе IBM WebSphere для сотрудников всех уровней.Развитая корпоративная библиотека и услуги по управлению вакансиями / приложениями.

Технические решения:
• Разработаны автономные портлеты в соответствии со спецификациями портлетов JSR 168.
• Интеграция портлетов в инфраструктуру корпоративного портала.
• Публичный интерфейс для корпоративной доски объявлений, система отслеживания соискателей.

Масштаб:
• В библиотеке зарегистрировано и обслуживается около 500 000 книг и журналов.
• От 1000 до 2000 кандидатов ежемесячно подают заявки через систему отслеживания заявителей.
• Более 20 000 сотрудников имеют доступ к порталу.

Трудозатраты:
• 4 900 часов анализа, настройки платформы, разработки и интеграции.

Россия и Украина, еще один ведущий оператор связи

Описание

Разработана система управления и анализа плана телефонной нумерации для абонентов фиксированной связи и VoIP.

Особенности и функции:
• Собирает фактическую маршрутизацию, конфликты и информацию о состоянии от телефонного коммутационного оборудования.
• Позволяет инженерам анализировать состояние коммутаторов, конфигурации маршрутизации, коллизии и так далее.
• Формирует технические отчеты по результатам анализа.

Масштаб:
• 25 телефонных коммутаторов разного размера
• 150 планов нумерации
• 500 000 городских телефонных номеров
• 50 инженеров, активно работающих с системой

Трудозатраты:
• 4500 часов первоначального анализа и разработки
• Более 10 000 часов дальнейшей технической поддержки и развития

Россия и Украина, ведущий поставщик средств связи для отслеживания отказов оборудования оператора связи и управления связанными с этим инцидентами

Описание

Мы создали инструмент для отслеживания отказов оборудования оператора связи и управления соответствующими инцидентами на протяжении всего их жизненного цикла, от открытия до разрешения.
Технические решения:
• Выявление сбоев оборудования по протоколам SNMP и другим протоколам мониторинга оборудования как от компонентов, так и при вводе вручную.
• Отслеживание иерархических зависимостей аппаратных компонентов и автоматическое определение ветвей сети как временно недоступных из-за инцидента на корневом уровне.
• Полная автоматизация процесса управления инцидентами с участием технического и административного персонала перевозчика до полного разрешения инцидента.
• Различные статистические отчеты по зарегистрированным неисправностям, а также по ходу их устранения.
• Обслуживает как стационарные телефоны, так и каналы VoIP.
Масштаб:
• Около 500 000 конечных пользователей получают уведомления о технических сбоях.
• 300-500 инцидентов в неделю регистрируются и решаются.
• 45 статистических отчетов.
• 100 внутренних пользователей оператора связи.

Трудозатраты:
• 3200 часов первоначального анализа и разработки.
• Специальная команда из 2 инженеров для поддержки и развития системы в течение 3 лет.

Планирование запуска на рынок системы управления каталогом товаров и услуг для крупных операторов связи

Описание

Система управления каталогом товаров и услуг, предназначенная для поддержки бизнеса поставщиков услуг.

Технические решения:
• Управление рабочим процессом для контроля жизненного цикла продуктов и услуг.
• Богатый пользовательский интерфейс для управления каталогами товаров и услуг.
• Интерфейсы с внешними системами для передачи информации о статусе услуг и обновлений, связанных с управлением изменениями.

Труд:
• 2500 часов собеседований с экспертами в предметной области, последующего анализа и разработки спецификации системы.
• 25 000 часов разработки продукта в 5 итерационных фазах.

Нидерланды, компания по распространению мобильного мультимедийного контента, доставляющая контент потребителям через SMS и Интернет, с представительствами в 8 основных странах

Описание

Мобильная система хранения, управления и распространения контента.Контент управляется персоналом клиента и доставляется потребителям через SMS и интернет-порталы.

Технические решения:
• Интеграция с SMS-шлюзами.
• Сложные структуры данных для группировки и категоризации контента для управления и выборочной доставки.
• Динамическое преобразование контента в качество и формат, соответствующие устройству потребителя.
• Обработка изображений, звуков и мобильных игр в качестве содержимого.
• Финансовая и аналитическая отчетность по истории и тенденциям покупок контента.

Масштаб:
• Более 10 миллионов элементов контента.
• 5-20 запросов контента в секунду.
• 120 внутренних пользователей, управляющих контентом и работающих в системе.
• Доступность 24/7 для обслуживания потребителей по всему миру.

Трудозатраты:
• Около 20 000 часов начальной разработки за 4 итерации.
• Команда из 4 преданных инженеров для поддержки системы.
• Более 40 000 часов дальнейшего развития системы за 4 года.

Поставщик инструментов для распространения и монетизации аудиовизуального медиа-контента через собственные потребительские порталы и с помощью программного обеспечения, используемого государственными медиа-компаниями

Описание

Платформа, основанная на EMC Documentum, хранит и структурирует медиа-контент и его атрибуты.Контент со встроенной рекламой извлекается различными интерфейсными приложениями.

Технические решения:
• EMC Documentum используется для хранения аудио и видео контента и управления им.
• Контент модифицируется рекламными объявлениями на лету в соответствии с настройками системы.
• API для внешних клиентских систем, таких как веб-сайты или мобильные приложения.
• Широкое использование кластеризации и распределенных вычислений.

Масштаб:
• Способен обрабатывать до 500 запросов в секунду.
• 10 общедоступных интернет-сервисов — радио, HD-видео галерея, телеканалы — с использованием платформы в качестве серверной части.
• Обработка более 2 миллионов элементов контента.

Трудозатраты:
• 5000 часов на первоначальную настройку EMC Documentum и разработку пользовательского API для настройки и извлечения контента.
• 2 года технической поддержки после запуска платформы.
• 2000 часов на улучшение и внедрение системы.

РЖД

Описание

Мы разработали систему для сбора диагностических данных, выгружаемых из поездов и другого подвижного состава через соединение Wi-Fi, когда они останавливаются на железнодорожной станции.Загруженные данные проверяются и сохраняются для дальнейшей интерпретации специалистом и определения причин неисправностей на железной дороге.

Технические решения:
• Безопасный интерфейс для приема диагностических данных от каждого вагона остановившегося поезда.
• Проверка данных XML.
• Проверка целостности данных и инициирование реакции на тревожные диагностические данные.

Масштаб:
• Принимает 2 000–3 000 загрузок в час.
• 500 внутренних пользователей, анализирующих тревожные диагностические данные.

Трудовые ресурсы:
• 4 000 часов анализа, проектирования, разработки и интеграции программного обеспечения.

Биоинформатическое обеспечение научных исследований

Описание

Научные исследования движутся в сторону подхода, основанного на данных, при котором количество данных, готовых для анализа, резко возрастает. Sunbay обеспечивает поддержку научных исследований на любых этапах от оценки метода биоинформатики до оптимизации текущих рабочих процессов.Вот краткий список наиболее распространенных услуг, запрашиваемых отдельными учеными и исследовательскими лабораториями:

• Сборка и аннотация генома с использованием данных из общедоступных баз данных.
• Разработка и реализация конвейеров биоинформатики.
• Качественный вызов вариантов в отдельных генах.

• Дифференциальная экспрессия генов конкретных транскриптов и проверка ассоциаций.

Research Computing

Описание

Sunbay предлагает экспертные знания в области вычислительной техники, включая, помимо прочего:

• Моделирование различных научных моделей.
• Эффективная обработка данных секвенирования следующего поколения.
• Высокопроизводительный скрининг в высокопроизводительных вычислениях или облачной среде.

О НАС

Sunbay является частью BizApps, основанной в 1998 году четырьмя разработчиками. Мы выросли в международную организацию с офисами в Нидерландах (Sunbay), Москве и на Украине, и у нас есть более 80 ИТ-специалистов. За последние 20 лет мы успешно реализовали сотни проектов для наших клиентов в России, Европе, Северной Америке и Японии.

Мы гарантируем, что предоставим нашим клиентам в более короткие сроки и за меньшие деньги ИТ-решения более высокого уровня.

Чтобы гарантировать это, мы оптимально используем наших многочисленных экспертов, используя наши ресурсы и производственные процессы, включая строгий контроль качества.

Лучшим доказательством этой гарантии является наше долгое и успешное сотрудничество с такими известными компаниями, как Mary Kay и известная российская компания по производству антивирусного программного обеспечения. Мы — единственная аутсорсинговая компания, с которой эта компания по производству антивирусного программного обеспечения работает при разработке своего программного продукта In-Box.Мы рассматриваем эти эксклюзивные отношения как доказательство наших высоких стандартов качества и производительности.

Контакт

Если у вас есть вопросы о наших услугах, продуктах или тарифах, звоните или пишите нам.

КУ202Л КУ202М Кремниевый диффузионный тиристор Советский Русский Новый КУ202Н 14x КУ202К


Количество: КУ202К (7шт), КУ202Н (2шт), КУ202Л (4шт), КУ202М (1шт) в партии, Все тиристоры были произведены в Советском Союзе, Материал диода: кремний, Модель: КУ202К, КУ202Н, КУ202Л, КУ202М , Первоклассный дизайн и качество Стоимость меньше, подлинность гарантирована 100% оригинал + БЕСПЛАТНАЯ доставка предоставит вам товары высокого качества.
KU202L KU202M Кремниевый диффузионный тиристор Советский Русский Новый KU202N 14x KU202K Отзывы на регулятор напряжения переменного тока

scr — интернет-магазины и отзывы на регулятор напряжения переменного тока scr на AliExpress

Отличные новости !!! Вы обратились по адресу: регулятор напряжения переменного тока scr. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально есть тысячи отличных продуктов во всех товарных категориях.Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы найдете новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот лучший стабилизатор напряжения переменного тока scr вскоре станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели регулятор напряжения переменного тока scr на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в стабилизаторе напряжения переменного тока scr и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов.Мы поможем вам решить, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими свой опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

И, если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести ac Voltage Regulator scr по самой выгодной цене.

Мы всегда в курсе последних технологий, новейших тенденций и самых обсуждаемых лейблов. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Принцип работы, схемы тестирования и включения.Способы проверить симистор, как прозвонить симистор мультиметром

Для этого сойдет обычный омметр или авометр, работающий в режиме омметра. Для проверки тринистора к нему следует подключить омметр с положительным щупом к аноду, а отрицательным к катоду. Сначала установите предел измерения x1 и закройте аноды и контрольный электрод пинцетом. Стрелка на индикаторе при этом отклоняется примерно до середины шкалы.

Затем нужно удалить пинцет: если тринистор открывается и остается открытым при небольшом анодном токе (т.е. он чувствителен), положение стрелки не изменится.

Аналогичные действия проделать на пределе измерения x10. Если сопротивление в этом случае составляет 140..300 Ом, то тринистор работает с малым анодным током. Если после выключения пинцета стрелка возвращается к нулевому значению шкалы, то это тристор с большим током удержания анода.

Проверка симистора полностью аналогична: нужно подключить омметр к обычному катоду и аноду и перемыть выводы управляющего электрода и анода.

Как проверить рабочее состояние тиристора и симистора?

Как проверить тиристор ку202н, такой вопрос часто возникает у людей, которые занимаются ремонтом или производством электронных устройств. Подробный ответ на этот и другие подобные вопросы мы постараемся дать в этой статье.Существует большое количество разновидностей тиристоров, но большинство из них можно проверить одними и теми же методами. Проверить работу тиристоров и симисторов можно мультиметром, аккумуляторной лампочкой или специальным щупом. Все эти способы мы рассмотрим в этой статье. Начнем с самого простого.


На рисунке и фотографиях выше показана схема проверки тиристоров и симисторов (например, q202n, q221a, q201) с помощью мультиметра или любого тестера. Плюсовой провод устройства (красный) подключен к аноду (A), а отрицательный (черный) — к катоду (K).Затем перемычкой от провода или любого токоведущего предмета (например, отвертки) ненадолго замкните анод и управляющий электрод (УЭ), прибор должен показать, что тиристор разомкнулся. Если устройство не отвечает, то попробуйте поменять провода местами (полярность у некоторых тестеров меняется) и повторите эксперимент. Если реакции нет, значит, тиристор не подходит. Этот метод применим к большинству типов тиристоров и симисторов, и теперь вы знаете, как проверить симистор с помощью тестера.

Следующий метод описывает, как проверить тиристор и симистор с помощью батареи и подходящей лампочки.


Как проверить тиристор с помощью лампочки? На картинке все достаточно подробно показано. Проверка тиристоров и симисторов производится так же, как тестером или мультиметром. Для проверки соединяем аккумулятор и лампочку проводами, как на рисунке, и касаемся плюсового провода контрольного электрода. Только надо сказать, что для проверки симисторов полярность подключения источника тока не важна.

Ну еще один универсальный метод проверки работы симисторов и тиристоров с помощью специально изготовленного собственного тестера.

Давно нашел в интернете схему проверки тиристоров и симисторов, не все успел, но решил проделать эту работу и представить вам результат.

R1, 2, 4, 5 — 330 Ом. 0,125 — 0,25 Вт. R3 — 68 Ом. 0,25 — 0,5 Вт. Диоды какие-то мелкие. Никаких красных светодиодов. Никаких маленьких пуговиц. В качестве источника питания решил использовать старую зарядку от телефона.

На плате зарядного устройства было много свободного места и его надо было использовать.

Забрал подробности.

Печатная плата требует небольшого обновления.

Вставить детали в соответствии со схемой и опломбировать.

Собираем всю схему по временной схеме для проверки работоспособности.

Заезд в работу. Внимание! Детали зарядного устройства находятся под напряжением.Опасно для жизни.

Убедившись, что схема работает, приступаем к окончательной сборке. Просверливаем отверстия под кнопки и светодиоды в корпусе.

Паяные детали для постоянного размещения.

Закрываем корпус и пробуем подключиться к сети.

Нажмите кнопку и убедитесь, что схема работает.

Для проверки тиристоров и симисторов в остальных случаях изготовим переходники для их подключения к нашему щупу.

Припаиваем провода к «крокодилам», изолируем термоизоляцией контакты и можно пользоваться.

Проверяем работу симистора ку208г. 487

Тиристор — это особый вид полупроводникового прибора, созданный на основе монокристаллического полупроводника и имеющий не менее трех pn-переходов. Может находиться в двух разных стабильных состояниях: закрытый тиристор имеет низкую степень проводимости, а в открытом состоянии проводимость становится высокой.

По своей сути это силовой электронный ключ без полного управления.

Инструменты и материалы для поверки

Для выполнения проверки прибора могут потребоваться следующие инструменты и материалы, в зависимости от выбранного метода испытаний:

  • блок питания или аккумулятор, который будет действовать как источник постоянного напряжения;
  • лампа накаливания;
  • провода;
  • омметр;
  • тестер;
  • паяльная машина;
  • паяльная машина;

Кроме того, для проверки правильности работы тиристора может потребоваться датчик, который можно изготовить вручную.

Потребуется наличие следующих материалов и элементов:

    ,
  • оплата;
  • Резисторы
  • в количестве 8 штук;
  • конденсаторы, количество 10 шт .;
  • , количество 3 штуки;
  • положительный и отрицательный стабилизатор;
  • лампа накаливания;
  • Предохранитель
  • ;
  • Тумблер
  • , кол-во 2 шт .;

Существует ряд возможных схем изготовления щупа, вы можете выбрать любую, но следует придерживаться следующих рекомендаций:

  1. Соединение всех элементов производится специальными проводами с зажимами.
  2. Необходимо постоянно контролировать напряжение между разными контактами. Для проведения теста переключатели могут быть подключены к разным контактным группам.
  3. После сбора схемы необходимо подключить тиристор, если он в исправном состоянии, лампа накаливания не включится.
  4. Если лампочка не загорается даже после нажатия кнопки пуска, необходимо увеличить контрольное значение с помощью установленного переключателя электрического тока.При разрыве соответствующей цепи свет гаснет.

Способы проверки

Существует несколько различных способов проверки тиристоров, самый простой — это проверка лампой накаливания и источником постоянного напряжения.

Вы можете реализовать этот процесс следующим образом:

  1. Провода нужно припаять к клеммам тиристора таким образом, чтобы плюс от блока питания поступал на анод, а минус — на лампочку, а уже через нее на катод.
  2. На управляющий электрод прибора потребуется подать напряжение, которое будет превышать аналогичный показатель для анода на 0,2В, за счет этого действия тиристор перейдет в разомкнутое состояние.
  3. Если прибор в хорошем состоянии и находится в рабочем состоянии, лампочка должна загореться.
  4. Чтобы окончательно обеспечить правильную работу , необходимо заблокировать доступ к источнику напряжения, открывшему тиристор, к управляющему электроду, после выполнения этих действий лампа не должна погаснуть.
  5. Чтобы вернуть прибор в закрытое состояние , необходимо полностью отключить питание или подать отрицательное напряжение на электрод.

Ниже приведен пример проверки, которую можно выполнить. в цепи переменного тока:

  1. Необходимо заменить напряжение , подаваемое от блока питания или другого постоянного источника, на напряжение переменного тока с индикатором 12В, для этого можно использовать специальный трансформатор.
  2. После этой процедуры , в исходном положении лампочка будет в выключенном состоянии.
  3. Проверка выполняется нажатием кнопки пуска. при котором свет должен включиться, а при нажатии снова гаснет.
  4. При проверке лампочка должна гореть только половину своей мощности, это связано с тем, что на тиристор попадает только положительная волна переменного напряжения, подаваемого с трансформатора.
  5. Если в схеме присутствует , один из основных типов тиристоров, лампочка загорится в полную силу, потому что она одинаково восприимчива к обеим полуволнам переменного напряжения.


Другой способ — проверить с помощью тестера, реализуется он так:

  1. Для реализации предлагаемого тестирования достаточно энергии, которая должна быть получена от питания мини-тестера на 1.5В, что в рабочем режиме x1 кОм.
  2. Вам нужно подключить зонд к аноду , а затем сделать короткое прикосновение к контрольному электроду.
  3. После выполнения вышеуказанных действий проследите за реакцией стрелки, которая должна была отклониться от исходных показателей.
  4. Если после удаления щупа стрелка возвращается в исходное положение, это указывает на то, что проверяемый тиристор не может самостоятельно удерживаться в открытом состоянии.
  5. Иногда процесс проверки завершается ошибкой. с самого начала В такой ситуации рекомендуется поменять щупы местами, так как для некоторых устройств переход в режим x1 кОм может вызвать смену полярности.


проверка мультиметра

Мультиметр Это многофункциональное устройство, которое включает, среди прочего, омметр, и его также можно использовать для проведения соответствующей проверки:

  1. Изначально , мультиметр должен быть установлен в кольцевой режим.
  2. Датчики устанавливаются так, что плюс подключен к аноду, а минус соответствует катоду.
  3. Дисплей мультиметра должен показывать высокое напряжение, потому что тиристор в настоящее время находится в закрытом положении.
  4. На датчиках есть напряжения, поэтому на управляющий электрод можно подать плюс, для этого необходимо произвести кратковременный контакт с соответствующим проводом от электрода к аноду.
  5. После действия Дисплей мультиметра должен начать показывать. низкое напряжение, потому что тиристор переходит в открытое состояние.
  6. Замыкающее устройство повториться Если убрать провод с электрода, то этот процесс происходит из-за недостаточного количества электрического тока, который находится в щупах мультиметра. Исключение составляют определенные типы тиристоров, например, которые задействованы в некоторых импульсных источниках питания ряда старых телевизоров, для них текущего содержимого будет достаточно для поддержания открытого состояния.

Использование омметра для проверки происходит по аналогичной схеме, так как современные модели имеют не механизм переключения, а дисплей, как в мультиметрах. Такая методика позволяет проверить исправное состояние полупроводниковых переходов без предварительной пайки тиристора с платы.

Устройство и принцип действия

Устройство тиристора следующее:

  1. 4 полупроводниковых элемента имеют последовательное соединение друг с другом, они различаются по типу проводимости.
  2. Конструкция имеет анод — контакт с внешним полупроводниковым слоем и катодом, такой же контакт, но с внешним n-слоем.
  3. Всего управляющих электродов не более 2-х. , которые соединены с внутренними слоями полупроводника.
  4. Если в приборе полностью отсутствуют управляющие электроды , то это прибор особого типа — динистор. По наличию 1 электрода устройство относится к классу триристоров.Управление может осуществляться через анод или катод, этот нюанс зависит от того, к какому слою был подключен управляющий электрод, но сегодня наиболее распространен второй вариант.
  5. Эти устройства можно разделить на типы , в зависимости от того, пропускают ли они электрический ток от анода к катоду или одновременно в обоих направлениях. Второй вариант устройства называется симметричными тиристорами, обычно состоящими из 5 полупроводниковых слоев, по сути это симисторы.
  6. При наличии в конструкции управляющего электрода тиристоры можно разделить на запираемые и неблокируемые варианты. Отличие второго типа заключается в том, что такое устройство никак нельзя перевести в закрытое состояние.


Принцип работы тиристора, включенного в цепь постоянного тока, следующий:

  1. Включение устройства происходит за счет поступления в цепь импульсов электрического тока.Питание происходит с положительной полярностью по отношению к катоду.
  2. Продолжительность переходного процесса На следующие факторы влияет ряд различных факторов: тип нагрузки; температура полупроводникового слоя; индикатор стресса; текущие параметры нагрузки; скорость нарастания управляющего тока и его амплитуда.
  3. Несмотря на значительную крутизну управляющего сигнала , скорость нарастания напряжения не должна достигать неприемлемых характеристик, так как это может вызвать внезапное отключение устройства.
  4. Устройство принудительного отключения может быть реализовано по-разному, наиболее распространенным вариантом является подключение к цепи переключающего конденсатора обратной полярности. Такое подключение может происходить из-за наличия второго (вспомогательного) тиристора, который провоцирует возникновение разряда в основном устройстве. В этом случае разрядный ток, проходящий через переключающий конденсатор, столкнется с постоянным током основного устройства, что снизит его значение до нуля и вызовет отключение.


принцип действия

Принцип работы тиристора, подключенного к цепи переменного тока, немного отличается:

  1. В этой позиции устройство может включать или отключать цепи с разными типами нагрузки, а также изменять значения электрического тока через нагрузку. Это связано со способностью тиристорного устройства изменять время подачи управляющего сигнала.
  2. При подключении тиристора в такие схемы , применяется только встречно-параллельное включение, так как он может проводить ток только в одном направлении.
  3. Индикаторы электрического тока изменяются из-за изменений в момент передачи сигналов открытия на тиристоры. Этот параметр регулируется с помощью специальной системы управления, связанной с изменением фазы или ширины импульса.
  4. При использовании фазового регулирования кривая электрического тока будет иметь несинусоидальную форму, это также вызовет искажение формы и напряжения в электросети, от которой питаются внешние потребители. Если они очень чувствительны к высокочастотным помехам, это может вызвать сбои в работе.

Основные параметры тиристора

Для понимания принципов работы данного устройства и последующей работы с ним необходимо знать его основные параметры, к которым относятся:

  1. Коммутируемое напряжение — это минимальный показатель анодного напряжения, при достижении которого тиристорный прибор переходит в работу.
  2. Прямое напряжение — показатель, определяющий падение напряжения при максимальном значении анодного электрического тока.
  3. Обратное напряжение — это показатель максимально допустимого значения напряжения, которое может быть приложено к устройству, когда оно находится в закрытом состоянии.
  4. Максимально допустимый постоянный ток , под которым понимается его максимально возможное значение в то время, когда тиристор находится в открытом состоянии.
  5. Обратный ток , возникающий при максимальном обратном напряжении.
  6. Время задержки перед включением или выключением устройства.
  7. Значение , определяющее максимальную скорость электрического тока для управления электродами.
  8. Максимально возможная мощность рассеиваемой мощности .


В заключение можно дать несколько рекомендаций, которые могут быть полезны при проведении проверок тиристорных устройств:

  1. В определенных ситуациях Желательно проводить не только проверку работоспособности, но и подбор тестируемых инструментов по их параметрам. Для этого используется специальное оборудование, но сам процесс усложняется тем, что блок питания обязательно должен иметь выходное напряжение с показателем не менее 1000В.
  2. Часто для проверка проводится с помощью мультиметров или тестеров, так как такое тестирование проще всего организовать, но нужно знать, что не все модели этих устройств способны открывать тиристор.
  3. Сопротивление пробитого тиристора чаще всего имеет показатели близкие к нулю. По этой причине кратковременное соединение анода исправного устройства с управляющим электродом показывает параметры сопротивления, характерные для короткого замыкания, а аналогичная процедура с неисправным тиристором не вызывает подобной реакции.

Сначала потрудитесь узнать, как работает тиристор. Получите представление о разновидностях: симистор, динистор. Требуется правильно оценить результат теста. Ниже мы расскажем, как проверить тиристор мультиметром, мы даже дадим вам небольшую схему, которая поможет вам массово осуществить задуманное.

Типы тиристоров

Тиристор отличается от биполярного транзистора с большим количеством pn-переходов:

  1. Типичный тиристор с pn-переходами содержит три.Структуры с дырочной электронной проводимостью чередуются на манер зебры. Можно найти концепцию тиристора npnp. Контрольный электрод есть или отсутствует. В последнем случае получаем динистор. Он работает по напряжению, приложенному между катодом и анодом: при определенном пороговом значении открывается, начинается спад, обрывается ход электронов. Что касается тиристоров с электродами, то управление осуществляется по одному из двух средних pn переходов — со стороны коллектора или эмиттера.Принципиальное отличие продукции от транзистора в режиме неизменяемости после исчезновения управляющего импульса. Тиристор остается открытым до тех пор, пока ток не упадет ниже фиксированного уровня. Обычно называется удерживающим током. Позволяет строить экономичные схемы. Объясняет популярность тиристоров.
  2. Симисторы имеют разное количество pn переходов, становящихся как минимум на один. Способен пропускать ток в обоих направлениях.

Начало проверки тиристора мультиметром

Сначала поработайте расположение электродов, чтобы определить:

  • катод;
  • анод;
  • электрод управляющий (основание).

Для открытия тиристорного ключа на катоде прибора поставлен минус (черный щуп мультиметра), плюс к аноду прикреплен якорь (красный щуп мультиметра). Тестер установлен в режим омметра. Низкое сопротивление открытого тиристора. Прекратите устанавливать предел 2000 Ом. Пришло время напомнить: тиристор можно управлять (открывать) положительными или отрицательными импульсами. В первом случае тонкой штыревой перемычкой замыкаем анод на основание, во втором — катод.Кое-где тиристор должен открыться, в результате сопротивление будет меньше бесконечности.

Процесс тестирования сводится к пониманию того, как тиристор управляется напряжением. Отрицательный или положительный. Попробуйте и так, и так (если нет маркировки). Одна попытка сработает ровно, если тиристор исправен.

Далее процесс отличается от проверки транзистора. Когда управляющий сигнал исчезнет, ​​тиристор останется открытым, если ток превысит порог удержания.Ключ может закрываться. Если ток не достигает порога удержания.

  1. Регистрируемые технические характеристики тока удержания тиристор. Потрудитесь загрузить полную документацию из Интернета, будьте в курсе вещей.
  2. Многое определяет мультиметр. Какое напряжение подается на щупы (обычно 5 вольт), какую мощность выдает. Проверить можно, подключив большой конденсатор. Нужно правильно подключить щупы к выходам прибора в режиме измерения сопротивления, дождаться, пока цифры на дисплее вырастут от нуля до бесконечности.Процесс зарядки конденсатора завершен. Теперь перейдем в режим измерения постоянного напряжения, чтобы увидеть разность потенциалов на ножках конденсатора (мультиметр выдает в режиме измерения сопротивления). По вольт-амперной характеристике тиристора легко определить, достаточно ли значений для создания тока удержания.

Динисторы проще назвать. Попробуйте открыть ключ. Это зависит от того, хватит ли мощности мультиметра для преодоления преграды.Для гарантированной проверки тиристора лучше собрать отдельную схему. Как показано на картинке. Схема образована следующими элементами:

Почему выбирают питание +5 вольт. Напряжение легко найти на телефонном переходнике (зарядном устройстве). Присмотритесь: есть надпись типа 5V– / 420 mA. Выведите значения напряжения, тока (сразу посмотрите, хватит ли тиристора на удержание). Каждый знаток знает: +5 Вольт для подключения к шине USB. Теперь практически любой гаджет, компьютер снабжен портом (в другом формате).Избегайте проблем с питанием. На всякий случай рассмотрим момент поподробнее.

Проверка тиристоров на разъеме мультиметра на транзисторы

Многие задаются вопросом, можно ли прозвонить тиристор мультиметром через штатное гнездо транзисторов лицевой панели, обозначенное pnp / npn. Ответ положительный. Вам просто нужно подать правильное напряжение. Коэффициент усиления, отображаемый на дисплее, скорее всего, будет неправильным. Поэтому ориентируйтесь на цифры, избегайте. Посмотрим, как что-то делается.Если тиристор открывается с положительным потенциалом, необходимо подключить его к выводу B (основание) полу-npn. Анод наклеен на штифт С (коллектор), катод — на Е (эмиттер). Мощный тиристор мультиметром проверить вряд ли получится, для микроэлектроники техника подойдет.

Где взять тестер питания

Положение электродов мультиметра

Телефонный адаптер дает ток 100 — 500 мА. Часто этого бывает недостаточно (при необходимости проверки тиристора КУ202Н мультиметром ток разблокировки составляет 100 мА).Где взять еще? Посмотрим на шину USB: третья версия будет выдавать 5 А. Чрезвычайно большой ток для микроэлектроники, ставит под сомнение силовые характеристики интерфейса. Распиновку смотрим в сети. Вот изображение, показывающее расположение типичных портов USB. Показаны два типа интерфейсов:

  1. Первый USB тип A характерен для компьютеров. Самый распространенный. Найдите на переходниках (зарядных устройствах) портативных плееров, iPad. Может использоваться как тиристор цепи тестирования источника питания.
  2. Второй тип В более терминальный. Подключены периферийные устройства, такие как принтеры, другая оргтехника. Найти как источник питания сложно, игнорируя факт недоступности, авторы проверили макет.

Если перерезать USB-кабель — наверняка многие бросятся убивать старую технику, оторвут хвосты мышам — внутри + 5-вольтовый шнур питания традиционно красный, оранжевый. Информация поможет правильно прозвонить цепь, получить необходимое напряжение.Присутствует на выключенном системном блоке (подключен к розетке). Вот почему свет мыши продолжает гореть. На время теста компу будет достаточно для перехода в режим гибернации. Кстати, напрямую не доступен в Windows 10 (залезть по настройкам вы найдете в управлении питанием).


Отображение порта USB

Заручившись помощью схемы, проверьте тиристор, не испаряясь. Рабочая точка устанавливается относительно земли порта, поэтому внешние устройства будут играть небольшую роль.Традиционно заземление персонального компьютера привязано к корпусу, куда идет провод входного фильтра гармоник. Цепь +5 вольт, заземление отвязано от шины. Достаточно отключить тестируемую схему от источника питания. Для проверки тиристора нужно будет припаять антенны на каждом выходе. Для подачи питания контрольный сигнал.

Многие ползают по стулу, не понимая одного: тут мы рассказываем, как прозвонить тиристор мультиметром, а тут светодиод плюс все навороты? На место светодиода можно — еще лучше — включить щупы тестера, зарегистрировать ток.Можно использовать небольшое напряжение питания, но в то же время это всегда безопаснее. Что касается персонального компьютера, то он дает широкие возможности для тестирования любых элементов, в том числе тиристоров. Блок питания обеспечивает набор напряжений:

  1. +5 В идет на кулеры, многие другие системы. Собственно стандартное напряжение питания. Провода напряжения красные.
  2. Для питания многих потребителей используется напряжение +12 Вольт. Желтый провод (не путать с оранжевым).
  3. — осталось 12 вольт для совместимости с RS.Старый добрый COM-порт, через который программируются адаптеры сегодня в промышленных системах. Некоторые источники бесперебойного питания. Провод обычно синий.
  4. Оранжевый провод обычно имеет напряжение +3,3 В.

Видите, разброс большой, главное актуальный. Электропитание компьютеров варьируется в районе 1 кВт. Открой любой тиристор! Пора заканчивать. Надеюсь, читатели теперь знают, как тиристор совмещается с мультиметром. Иногда приходится повозиться. Вышеупомянутый тиристор КУ202Н имеет структуру pnpn, без блокировки.После исчезновения управляющего напряжения ключ не замыкается. Для выключения светодиода необходимо отключить питание. Разблокировка положительным напряжением. Подходит по выкройке. Единственный ток удержания составляет 300 мА. Случай, когда не всякое зарядное устройство для телефона подходит для эксперимента.

Среди домашних мастеров и умельцев периодически возникает необходимость определения исправности тиристора или симистора, которые широко используются в бытовых приборах для изменения частоты вращения ротора электродвигателей, в регуляторах мощности, осветительной арматуре и других устройствах.

Как устроен диод и тиристор

Прежде чем описывать способы проверки, напомним о тиристорном устройстве, которое недаром называют управляемым диодом. Это означает, что оба полупроводниковых элемента имеют практически одно и то же устройство и работают совершенно одинаково, за исключением того, что у тиристора есть ограничение — управление через дополнительный электрод путем пропускания через него электрического тока.

Тиристор и диод пропускают ток в одном направлении, что во многих конструкциях советских диодов обозначается направлением угла треугольника на мнемоническом символе, расположенном непосредственно на корпусе.В современных диодах в керамическом корпусе для маркировки катода обычно наносят кольцевую полоску рядом с катодом.

Проверьте работоспособность и тиристор, пропустив через них ток нагрузки. Для этой цели разрешается использовать лампы накаливания от старых карманных фонариков, нить которых светится от силы тока около 100 мА и менее. При прохождении тока через полупроводник лампа будет гореть, а при его отсутствии — нет.

Подробнее о работе диодов и тиристоров читайте здесь:

Как проверить исправность диода

Обычно для оценки исправности диода используют омметр или другие приборы, которые имеют функцию измерения активного сопротивления.Подавая напряжение на электроды диода в прямом и обратном направлении, они определяют значение сопротивления. При открытом pn переходе омметр покажет значение, равное нулю, а при закрытом — бесконечность.

Если омметр отсутствует, то исправность диода можно проверить при помощи батарейки и лампочки.


Перед тем, как проверять диод таким способом, необходимо учесть его мощность. В противном случае ток нагрузки может разрушить внутреннюю структуру кристалла.Для оценки маломощных полупроводников рекомендуется вместо лампочки использовать светодиод и снизить ток нагрузки до 10-15 мА.

Как проверить исправность тиристора

Оценить работоспособность тиристора можно несколькими методами. Рассмотрим три самых распространенных и доступных в домашних условиях.

Аккумулятор и световой метод


При использовании этого метода следует также оценить токовую нагрузку 100 мА, создаваемую лампочкой на внутренних цепях полупроводника, и применить ее на короткое время, особенно для цепей управляющих электродов.

На рисунке не показана проверка отсутствия короткого замыкания между электродами. Такой неисправности практически не возникает, но для полной уверенности в ее отсутствии следует попробовать пропустить ток через каждую пару всех трех электродов тиристора в прямом и обратном направлении. Это займет всего несколько секунд.

При сборке схемы по первому варианту полупроводниковый переход устройства не пропускает ток, и свет не горит.В этом его главное отличие в работе от обычного диода.

Для открытия тиристора достаточно приложить к управляющему электроду положительный потенциал источника. Этот вариант показан на второй диаграмме. Неповрежденное устройство разомкнет внутреннюю цепь и через нее потечет ток. Это укажет на свечение лампочек накаливания.

На третьей диаграмме показано отключение питания от управляющего электрода и прохождение тока через анод и катод.Это связано с удерживанием избыточного тока внутреннего перехода.

Эффект удержания используется в схемах управления мощностью, когда короткий импульс тока от фазосдвигающего устройства подается на управляющий электрод для размыкания тиристора, регулирующего переменный ток.

Зажигание лампочки в первом случае или отсутствие ее свечения во втором говорят о выходе из строя тиристора. Но потеря свечения при снятии напряжения с контакта управляющего электрода может быть вызвана тем, что величина тока, протекающего через цепь анод-катод, меньше предельного значения удержания.

Разрыв цепи через анод или катод вызывает закрытие тиристора.

Методика испытаний на самодельном приборе

Для снижения риска повреждения внутренних цепей полупроводниковых переходов при проверке тиристоров малой мощности можно подбирать значения токов в каждой цепи. Для этого достаточно собрать простую электрическую схему.

На рисунке показано устройство, рассчитанное на работу от 9-12 вольт. При использовании других напряжений питания следует произвести пересчет значений сопротивления R1-R3.

Рис. 3. Схема устройства для проверки тиристоров

Через светодиод HL1 достаточно тока около 10 мА. При частом использовании устройства для подключения электродов тиристора ВС желательно делать контактные розетки. Кнопка SA позволяет быстро переключать цепь управляющего электрода.

Свечение светодиода перед нажатием кнопки SA или отсутствие его свечения — явный признак повреждения тиристора.

Метод с помощью тестера, мультиметра или омметра

Наличие омметра упрощает процесс проверки тиристора и напоминает предыдущую схему.В нем источником тока является аккумулятор устройства, а вместо свечения светодиода используется отклонение стрелки аналоговых моделей или цифровые показания на табло цифровых устройств. При указании большого сопротивления тиристор закрыт, а при малых значениях открыт.


Здесь те же три этапа тестирования оцениваются с выключенной кнопкой SA, кратковременным нажатием и затем снова отключенной. В третьем случае тиристор, вероятно, изменит свое поведение из-за небольшой величины испытательного тока: его недостаточно для удержания.

Низкое сопротивление в первом случае и высокое во втором говорят о нарушениях полупроводникового перехода.

Метод омметра позволяет проверить исправность полупроводниковых переходов без пайки тиристора от большинства печатных плат.

Конструкцию симистора можно представить как состоящую из двух тиристоров, включенных противоположно друг другу. Его анод и катод не имеют строгой полярности, как у тиристора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *