Прочность титана: Титан. Свойства, применение, марки, химический состав. Сплавы титана

Содержание

Прочность титана, лёгкость алюминия: авиационный материал будущего исследуют в МАИ

О фундаментальных исследованиях российских учёных в области разработки и апробации интерметаллидных TiAl-сплавов рассказала доцент кафедры «Материаловедение и технология обработки материалов» Московского авиационного института, кандидат технических наук Елена Александровна Лукина.
 

— Начнём с терминологии. Что такое интерметаллиды и чем они интересны? 
Интерметаллиды — это устойчивые соединения двух или нескольких металлов, часто обладающие комплексом свойств, не присущим каждому из компонентов в отдельности. Как и чистые металлы, они могут служить основой для создания сплавов.

Интерметаллидные TiAl-сплавы (гамма-сплавы) представляют собой перспективный класс жаропрочных материалов, обладающих, с одной стороны, уникальным сочетанием удельной жёсткости и прочности, с другой — высоким сопротивлением окислению. Жаропрочность и жаростойкость, являющиеся следствием самой природы интерметаллидов системы титан—алюминий, определяют работоспособность гамма-сплавов в процессе эксплуатации при температурах 700–800 градусов Цельсия.

Материалы, обладающие сочетанием указанных характеристик, всегда востребованы в авиационном газотурбостроении. Так, по данным компании General Electric, применение гамма-сплавов в турбине низкого давления газотурбинного двигателя может давать преимущество в массе 100–180 кг перед традиционными никелевыми суперсплавами, которые имеют в два раза более высокую плотность.

Однако основными недостатками, ограничивающими практическое применение гамма-сплавов, являются их хрупкость и, как следствие, низкая пластичность в широком интервале температур. Этот недостаток не относится к принципиально неустранимым, поэтому в настоящее время над проблемой повышения пластичности и технологичности сплавов данного класса при сохранении высокой прочности работают многие исследователи по всему миру.

— Как давно в МАИ занимаются интерметаллидными сплавами? 
Нашу кафедру «Материаловедение и технология обработки материалов» с 1987 по 2019 годы возглавлял академик РАН Александр Анатольевич Ильин, создавший свою научную школу в области материаловедения титановых сплавов. Вот уже более 20 лет сначала им самим, а теперь его учениками, ставшими уже докторами наук, проводятся фундаментальные исследования интерметаллидных титановых сплавов как авиационного (альфа-2, орто-сплавы), так и медицинского назначения.

— Ваши исследования — это инициативный проект? 
Я работаю в составе научного коллектива, сформированного на базе Всероссийского научно-исследовательского института авиационных материалов (ФГУП «ВИАМ» ГНЦ РФ). Наш молодёжный коллектив, объединивший учёных МАИ и ВИАМ, был создан в 2018 году. Тогда мы сформулировали подходы к решению нескольких частных задач в рамках вышеупомянутой научной проблемы и приняли участие в одном из ежегодных конкурсов на получение грантов Российского научного фонда (РНФ) по Президентской программе исследовательских проектов, реализуемых ведущими учёными, в том числе молодыми. По итогам конкурса эксперты РНФ положительно оценили нашу заявку и она оказалась в заветном списке победителей.

— Что конкретно изучается коллективом? 
Объектом исследований в нашем научном проекте является новый отечественный шестикомпонентный жаропрочный TiAl-сплав с вариативным содержанием циркония, хрома и гадолиния. Плотность этого сплава не превышает 4,1 г/см3. При получении положительных результатов испытаний он может рассматриваться как альтернатива жаропрочным сплавам на никелевой основе с плотностью 7,8 г/см3 и более для повышения весовой эффективности при изготовлении роторных деталей горячего тракта перспективных газотурбинных двигателей.

Мы проводим фундаментальные исследования структуры и кристаллографической текстуры сплава при термическом и термомеханическом воздействии; эффективность различных режимов обработки оцениваем по изменению механических свойств. В частности, наши работы по исследованию влияния микродобавки редкоземельного элемента — гадолиния — на последовательность фазовых превращений и свойства нового TiAl-сплава продемонстрировали возможность одновременного повышения его прочности и пластичности. Оригинальные результаты работ опубликованы в 2020 году в зарубежном журнале первого квартиля Intermetallics, который выпускается издательством Elsevier. Это одно из наиболее авторитетных периодических изданий в области интерметаллидных материалов.

Статьи в него отбираются по итогам рецензирования ведущими учёными — экспертами в обсуждаемой области, что подтверждает высокую оценку полученных результатов.

— Вам доводилось работать с другими интерметаллидами? 
Да, другая область моих научных интересов связана с интерметаллидными сплавами на основе никелида титана — NiTi. Это особый класс интерметаллидных материалов с уникальным эффектом памяти формы и сверхупругостью, которые объединяют в себе высокую биологическую и механическую совместимость с костно-хрящевыми структурами организма человека.

Никелид титана можно назвать поистине интернациональным материалом, ведь исследованиями его медицинского применения занимаются во многих странах мира. Например, несколько лет назад я стажировалась в Кингстонском университете (Kingston University, Великобритания) и Университетском колледже Лондона (University College London — UCL). По результатам проведенных исследований я защитила диссертацию с присуждением международной степени PhD.

В кооперации с зарубежными коллегами было написано несколько статей, посвященных изучению закономерностей коррозионной стойкости и трибологического поведения никелида титана в спинальных имплантатах. Эти работы также были опубликованы в ведущих изданиях, входящих в первый квартиль (Materials Science & Engineering: C; Spine; The Spine Journal).

прочность сплавов титана при ударах уменьшается в 10 раз

Учёные физико-технического факультета проводят эксперименты по проверке прочности сплавов на основе титана, которые используются для строительства новой космической, авиационной техники, судостроения. Они рассчитали, что если в детали из этого сплава есть отверстие, вытачка или надрез, то её способность испытывать резкие нагрузки уменьшается более чем в 10 раз.

О результатах своей работы физики рассказали на международной конференции «Деформация и разрушение материалов и наноматериалов», где было представлено более 500 докладов от участников из 16 стран: США, стран Западной Европы, стран БРИКС и ближнего зарубежья. Перед материаловедами выступали представители фирм, которые занимаются строительством, разработкой новой техники для Арктики и новыми технологиями в энергетике, – Oxford Instruments, INSTRON, Reicherter, LIMMESS и других. Они отметили ключевые проблемы, на которых учёные должны сосредоточить свои усилия.

Учёные лаборатории свойств веществ в экстремальных состояниях ТГУ под руководством профессора Владимира Скрипняка проводят эксперименты на ключевых марках титановых сплавов, например, Ti-Nb. Эти сплавы обладают высокой коррозионной стойкостью, поэтому подходят для строительства космической и авиационной техники, а также для судостроения.

– Когда вы проектируете конструкцию, то в расчет закладываете определенные показатели, например, прочности. Эти числа берутся из справочников, но основная масса этих характеристик получена в условиях медленного нагружения. Если идет резкий удар – шасси перед посадкой самолета, удар льдин о корпус судов, различные вибрации, вы не можете использовать эти показатели, вы получите прогноз, который приведет к аварии, разрушению и катастрофе, – рассказал

Владимир Скрипняк. – Мы смотрим, насколько условия высокоскоростного нагружения влияют на характеристики, которые закладываются в прочностные расчеты при проектировании.

Учёные ТГУ сосредоточились на повреждении материалов, в которых присутствуют концентраторы напряжений – это различные отверстия, вытачки, надрезы. Эксперименты показали, что в таком случае при резких ударах предельные степени деформации уменьшаются более чем в 10 раз. То есть при наличии разного рода отверстий в деталях из титановых сплавов резко понижается способность испытывать нагрузки.

– Чтобы не допустить аварий, которые возникают при динамических нагрузках, при проектировании показатели прочности берут с запасом, их увеличивают в 5-6 раз. Но на самом деле нужно увеличивать в 10, – подчеркнул Владимир Скрипняк. – В месте, где есть концентратор, вы можете конструктивно увеличить толщину и уменьшить напряжение, и вам не надо увеличивать всю конструкции в целом, где этого концентратора нет. Это избыточный вес и это чрезвычайно невыгодно, особенно когда мы имеем дело с техникой, которая используется в авиации, космонавтике, судостроении.


Профессор подчеркнул, что исследования в области материалов, их свойств и характеристик важны для ключевых отраслей промышленности – космоса, химических производств, транспортных систем.

– Например, при освоении Арктики нужны новые материалы, которые обладают прочностью, коррозийной стойкостью и долговечностью при большом перепаде температур, – отметил Владимир Скрипняк. – Вопросы, связанные с применением новых материалов в жестких условиях, стоит сейчас как нельзя остро. И эти проблемы мы должны решать своими силами, так как аналогичных задач не стоит ни в Юго-Восточной Азии, ни в Австралии, ни в Европе. У них таких жестких условий нет.

Новые материалы также важны в сфере строительства, например, при возведении мостов. Так, строительство Крымского моста было связано с монтажом стальных конструкций, которые должны обеспечить прочность и сопротивляться ржавлению в достаточно агрессивной среде – морской воде. Свойства важны и при возведении зданий большой высотности – дома будут вынуждены существовать в условиях резких перепадов температур и при порывах ветра.

Выводы учёных ТГУ будут опубликованы в научных журналах с высоким импакт-фактором.

Исследования лаборатории свойств веществ в экстремальных состояниях поддержаны Научным фондом ТГУ им. Д.И. Менделеева.

Особенности титановых сплавов — Вариант

Одним из важных преимуществ титановых сплавов, поставляемых ООО «Вариант» перед алюминиевыми и магниевыми сплавами является жаропрочность, которая в условиях практического применения с избытком компенсирует разницу в плотности (магний 1,8, алюминий 2,7, титан 4,5). Превосходство титановых сплавов ВТ1-0, ВТ1-00, ВТ6 (Grade 5, Gr.5, Gr5), Grade 9 (Gr.9, GR9), ВТ9 и других марок над алюминиевыми и магниевыми  сплавами особенно резко проявляется при температурах выше 300°С. Так как при повышении температуры прочность алюминиевых и магниевых сплавов сильно уменьшается, а прочность титановых сплавов остается высокой.

Титановые сплавы по удельной прочности (прочности, отнесенной к плотности) превосходят большинство нержавеющих и теплостойких сталей при температурах до 400°С – 500°С. Если учесть к тому же, что в большинстве случаев в реальных конструкциях не удается полностью использовать прочность сталей из-за необходимости сохранения жесткости или определенной аэродинамической формы изделия (например, профиль лопатки компрессора), то окажется, что при замене стальных деталей титановыми можно получить значительную экономию в массе.

Еще сравнительно недавно основным критерием при разработке жаропрочных сплавов была величина кратковременной и длительной прочности при определенной температуре. В настоящее время можно сформулировать целый комплекс требований к жаропрочным титановым сплавам, по крайней мере для деталей авиационных двигателей.

В зависимости от условий работы обращается внимание на то или иное определяющее свойство, величина которого должна быть максимальной, однако сплав должен обеспечивать необходимый минимум и других свойств, как указано ниже.

1. Высокая кратковременная и длительная прочность во всем интервале рабочих температур. Минимальные требования: предел прочности при комнатной температуре 100· Па; кратковременная и 100-ч прочность при 400° С – 75· Па. Максимальные требования: предел прочности при комнатной температуре  120· Па, 100-ч прочность при 500° С – 65· Па.

2. Удовлетворительные пластические свойства при комнатной температуре: относительное удлинение 10%, поперечное сужение 30%, ударная вязкость 3· Па·м. Эти требования могут быть для некоторых деталей и ниже, например для лопаток направляющих аппаратов, корпусов подшипников и деталей, не подверженных динамическим нагрузкам.

3. Термическая стабильность. Сплав должен сохранять свои пластические свойства после длительного воздействия высоких температур и напряжений. Минимальные требования: сплав не должен охрупчиваться после 100-ч нагрева при любой температуре в интервале 20 – 500°С. Максимальные требования: сплав не должен охрупчиваться после воздействия температур и напряжений в условиях, заданных конструктором, в течение времени, соответствующего максимальному заданному ресурсу работы двигателя.

4. Высокое сопротивление усталости при комнатной и высоких температурах.Предел выносливости гладких образцов при комнатной температуре должен  составлять не менее 45% предела прочности, а при 400° С – не менее 50% предела прочности при соответствующих температурах. Эта характеристика особенно важна для деталей, подверженных вибрациям в процессе работы, как, например, лопатки компрессоров.

5. Высокое сопротивление ползучести.  Минимальные требования: при температуре 400° С и напряжении 50· Па остаточная деформация за 100 ч не должна превосходить 0,2%. Максимальным требованием можно считать тот же предел при температуре 500° С за 100 ч. Эта характеристика особенно важна для деталей, подверженных в процессе работы значительным растягивающим напряжениям, как, например, диски компрессоров.

Однако со значительным увеличение ресурса работы двигателей правильнее будет базироваться на продолжительности испытания не 100 ч, а значительно больше — примерно 2000 – 6000 ч.

Несмотря на высокую  стоимость титана, производства и обработки титановых деталей из титановых листов, титановых прутков, титановых труб, поставляемых Вариант, применение их оказывается выгодным благодаря главным образом повышению коррозионной стойкости деталей, их ресурса и экономии массы.

Стоимость титанового компрессора значительно выше, чем стального. Но в связи с уменьшением массы, стоимость одного тонно-километра в случае применения титана будет меньше, что позволяет очень быстро окупить стоимость титанового компрессора.

Титан

Титан особо ценится за низкую плотность в сочетании с высокой прочностью и отличной стойкостью к коррозии. Максимальный показатель прочности на разрыв чистого титана может достигнуть 740 Н/мм2, а показатель такого сплава как LT 33, содержащего алюминий, ванадий и олово, достигает 1200 Н/мм2. Температурный коэффициент расширения металла составляет около половины от температурного коэффициента расширения нержавеющей стали и меди, и одну третью часть от данного коэффициента алюминия. Его плотность составляет около 60% от плотности стали, одну вторую от плотности меди и в 1.7 раз больше, чем у алюминия. Его модуль упругости составляет половину от модуля упругости нержавеющей стали, что делает его стойким и прочным к ударам.Авиакосмическая промышленность остается самым крупным потребителем этого металла. Титановые сплавы, способные к функционированию при температурах от 0°С до 600°С, используются в авиадвигателях для дисков, лопастей, валов и корпусов. Высокопрочные сплавы широко используются в производстве различных деталей, входящих в конструкцию летательных аппаратов — от мелких крепежных деталей, которые весят несколько граммов, до тележек шасси и больших крыльевых балок, вес которых достигает 1 тонны. Титан может составлять 10 процентов ненагруженного веса некоторых серийных пассажирских самолетов. Сейчас титан в основном потребляется в виде диоксида титана — нетоксичного белого пигмента, который используют для производства красок, бумаги, пластмассы и косметики.

Начало

Хотя о существовании титановых минералов известно более 200 лет, серийное производство титана и пигмента диоксида титана для продажи началось не раньше 1940 года. В.Дж.Кроли запатентовал метод производства титана методом угле-хлорирования титанового диоксида в 1938году. Этот элемент был назван в честь Титанов из греческой мифологии немецким химиком МТ.Клапрот, который успешно отделил диоксид титана от рутила в конце восемнадцатого века.

Американское Геологическое управление подсчитало, что добыча ильменита в мире в 2004 году в целом составила 4.8 млн тонн, в то время как добыча рутила в мире в целом составила 400 000 тонн. Ильменит обеспечивает потребность в титановых минералах в мире на 90%. По подсчетам Американского Геологического управления мировые ресурсы анатаза, рутила и ильменита в общем составляют более двух миллиардов тонн.

Производство

Первый этап в производстве титана заключается в изготовлении губки путем хлорирования руды рутила. Хлор и кокс соединяют с рутилом для создания тетрахлорида титана, который затем в замкнутой системе соединяют с магнием для производства титановой губки и хлорида магния. Магний и хлорид магния извлекают для переработки путем использования вакуумного дистилляционного процесса или технологического процесса выщелачивания, создателем которого является Кроль. Основными производителями титановой губки являются США, Россия, Казахстан, Украина, Япония и Китай.

Метод вакуумно-дугового переплава или электронно-лучевая холодная подовая печь используются для плавки губки со скрапом и/или легирующими элементами, такими как ванадий, алюминий, молибден, олово и цирконий для производства переплавленных электродов. Данные электроды можно вновь переплавить методом вакуумно-дугового переплава для производства материала по наиболее строгим спецификациям в авиакосмической сфере и в сфере высоких технологий, или их можно отлить прямо в слябы.

Слитки ВДП имеют цилиндрическую форму и могут весить до 7.94 тонн. Их куют для изготовления слябов или биллетов или используют для прецизионного литья. Методом прокатки производят плиты, листы прутки, стержни и проволоку. Трубы производят из нарезанных из листов штрипсов.

Применение

В повседневной жизни титан обычно ассоциируется с ценными изделиями, такими как наручные часы, оправы для очков, спортивные товары и ювелирные изделия, но кроме этого он широко используется в авиации, а также в других областях, в которых титан, благодаря сочетанию своих физических свойств и био-совместимости, имеет преимущества перед другими металлами. В зависимости от непосредственного назначения, титан конкурирует с никелем, нержавеющей сталью и циркониевыми сплавами.

Многообещающие признаки роста показывает автомобильный сектор. В системах подвесок, например, замена стальных пружин на титановые дает преимущество в виде уменьшения веса на 60%. Также титан применяют в производстве коленчатых валов, соединительных тяг и выхлопных систем. Электростанции и заводы по опреснению морской воды также являются важными областями для роста применения титана. В то же время идет развитие производства титановых подложек для компьютерных жестких дисков.

Сияющий блеск хрусталя и прочность титана бокалов для белого вина Schott Zwiesel!

Для элегантного вина необходим элегантный бокал, именно от него зависит раскрытие потенциала роскошного напитка. Правильно выбранная форма бокала позволяет выразить особый характер вина.

Винные бокалы высокого качества характеризуются рядом свойств:

  • Чаша должна быть правильно сбалансирована с ножкой, чтобы можно было легко вращать наполненный вином бокал.
  • Необходимо обращать внимание на материал. Качественные бокалы для вина должны быть изготовлены из тонкого стекла и не иметь острой кромки.
Уникальной разработкой бренда Schott Zwiesel стало стекло тритан, которое характеризуется высокой ударопрочностью, экологичностью и кристальной прозрачностью, благодаря его уникальной высокой способности пропускать световые лучи.

4 основные типа бокалов для белого вина

1.Классический узкий бокал-флейта для игристого вина имеет утонченную вытянутую форму. Такая форма обеспечивает небольшое пространство для вина и таким образом позволяет уменьшить потерю углекислоты, сохраняя волшебные пузырьки. Это особенно важно для игристых вин, отличающихся небольшим содержанием углекислоты.

Schott ZwieselБокал-флейта для игристых вин


2. Правильный бокал для шампанского имеет тюльпанообразную форму и в отличие от фужера-флейты для раскрытия тонкости напитка обладает определенным пространством. Такие бокалы обычно наполняют не более чем на половину.

Schott ZwieselБокал-тюльпан для шампанского


3. Стандартный бокал для белого вина не должен быть слишком большим, так как вкус напитка может быть потерян. Важной особенностью всех бокалов для вина является то, что они слегка сужаются к горлышку, что позволяет усилить аромат напитка. Стандартный белый бокал пригодится вам, если вы любите белые вина с сильным ароматом, например мускат или новозеландский совиньон.

Schott ZwieselБокал имеет небольшое сужение к горлышку


4. Белые вина высокого качества не должны быть ограничены пространством. Поэтому, для Бургундских вин лучше всего подходит слегка увеличенный бокал для белого вина. Он также является идеальным выбором для розовых вин.

Schott ZwieselБокал с неограниченным пространством


Коллекция Diva олицетворяет симбиоз классического дизайна с передовыми инновациями и становится эффектным дополнением сервировки любого стола. Чаши плавной округлой формы закреплены на высоких тонких ножках, которые удобно ложатся в руку. Едва заметное утолщение ножки бокала в середине — дополнительный элемент, который подчеркивает изящество линий и форм.


Бокалы Diva от Schott Zwiesel созданы, чтобы помочь раскрыться сложным ароматам напитков, содержащихся внутри.

Титан


Доставка до транспортных компаний БЕСПЛАТНО: Деловые линии, Энергия.  

Титан

Титан почти в два раза легче и прочнее железа, по удельной прочности он превосходит и алюминий: не намного тяжелее его, а прочнее в шесть раз.

1200р — 1кг

А сплавы титана по этому показателю вышли на одно из первых мест среди металлических конструкционных материалов.

В наибольшей степени заинтересована в применении титана и его сплавов авиация. Это реактивные двигатели, роторы турбин, детали фюзеляжа, вплоть до таких простейших, как болты и гайки. Сопла газотурбинных авиадвигателей изготавливают из чистого титана, а клапаны, втулки, уплотнения – из его сплавов. Применение последних вместо алюминиевых позволяет снизить массу самолета на 20 %.

Титан важен и в автомобилестроении. Из титана и его сплавов изготавливают клапаны, подвески, соединительные тяги, шатуны. Титановые шатуны намного легче стальных, поэтому подвергаются меньшим инерционным нагрузкам, а это позволяет увеличить число оборотов и мощность двигателя. Перспективно применение титана вместо стали при изготовлении рам и других ответственных деталей грузовых автомобилей.

Использование титановых сплавов на железнодорожном транспорте также позволит увеличить полезную грузоподъемность, снизить расход горючего, повысить срок службы, надежность транспортных средств, что в конечном итоге приведет к существенной экономии.

Преимущества титана и его сплавов особенно ярко проявляются при изготовлении из них деталей, вращающихся с большой скоростью: роторов турбин, центрифуг, гироскопов и др. Возможна ситуация, когда запас прочности стали не позволит выдержать значительные нагрузки, возникающие под действием центробежных сил.

Простое увеличение толщины деталей ничего не дает – с увеличением толщины возрастает и масса детали, а, значит, и действие центробежных сил. Необходим материал с большей удельной прочностью, например, тот же титан. Так стальной ротор компрессора реактивного двигателя разрушается при 17 тыс. об/мин, в то время как такой же ротор, но из титана, выдерживает 25 тыс. об/мин.

Многие металлы и сплавы обладают способностью переходить в пассивное состояние по отношению к коррозионной среде, что связывают с образованием на их поверхности защитных пленок, чаще всего оксидных. Особой склонностью к возникновению пассивного состояния обладают титан, алюминий и хром.

Титан по своим химическим свойствам вполне соответствует данному имени. Он чрезвычайно прочен, термостоек, хорошо противостоит действию агрессивных жидкостей. На него не действует ни азотная кислота, ни «царская водка» (смесь азотной и соляной кислот).

Коррозионную стойкость титана в сильных кислотах, не обладающих окислительной активностью, можно улучшить легированием благородными металлами, например, палладием. Небольшая, до 1 %, добавка палладия делает титан стойким и к другим минеральным кислотам – серной и соляной.

Благородные металлы образуют на поверхности титана активные катодные участки, которые способствуют его самопассивации в растворах агрессивных веществ. При этом даже не надо сплавлять титан с палладием. Для пассивации титана достаточно подвергнуть его ионной бомбардировке ионами палладия, и он с минимальным расходом благородного металла станет пассивным уже через несколько минут.

Итак, титан вполне оправдывает свое имя – синоним стойкости и прочности. Этот металл ждет большое будущее.

Титановый лист производиться по ГОСТу 22178, в его состав входят сплавы ВТ-20, ВТ-6, ВТ-14,ВТ1-0, ВТ1-00, ОТ4-0, ОТ4-1, ОТ5-4, ВТ-4 (химический состав которых регулируется по Государственному стандарту 19807 или по отраслевому стандарту 1 90013) такой титановый лист применяется в основном для приминения с сфере народного хозяйства. Толщина листов регулируется номенклатурой:
— от 0,3 миллиметров до 10,5 миллиметров.
— при ширине от 600 миллиметров доступная толщина от 0,3-0,4 миллиметров до 400 миллиметров
— при ширине титанового листа 1200 миллиметров доступная толщина от 0,3÷0,6 миллиметров до 600 мм, а также от 0,8мм÷1,8мм до 1000 миллиметров.
Из такого же по составу сплава, химсостав которого регулирует отраслевой стандарт ОСТ 1 90013, изготавливается титановый лист для специализированных отраслей в промушленности. Данное производство регулирует отраслевой стандарт ОСТ 1 90218.

Титановый клинок: маркетинговый трюк или технологический прорыв?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *