Однофазные асинхронные двигатели: Однофазные электродвигатели 220В | 0,12 — 2,2 кВт | Купить с доставкой

Содержание

Устройство однофазного асинхронного двигателя ~ Электропривод

Наибольшее применение однофазные асинхронные электродвигатели нашли в быту и малом бизнесе. Их применение необходимо в тех областях, где нет трехфазной электрической сети. Многие компании выпускаются однофазные электродвигатели мощностью до 2 кВт и выше. Применение однофазных двигателей большей мощности ограничено мощностью бытовой сети и проблемами запуска однофазного двигателя.

Приемлемое, на сегодняшний день, решение таких проблем возможно при использовании однофазного частотного преобразователя. Но применение преобразователя частоты будет оправдано в том случае, когда необходимо регулировать частоту вращения электродвигателя. Кроме того, однофазные частотные преобразователи обычно выпускаются до мощности 2,2кВт, что в свою очередь тоже является ограничением. В таком случае приходится использовать однофазный асинхронный двигатель. Внешний вид однофазных асинхронных двигателей различных фирм производителей показан на рисунках.

Устройство однофазного асинхронного двигателя показано на рисунке

Как видно из рисунка, основное отличие однофазного двигателя от трехфазного, является наличие в нем центробежного переключателя. Центробежный переключатель подключает пусковую обмотку двигателя перед пуском и отключает после окончания пуск, при достижении двигателя номинальных оборотов. Центробежный переключатель состоит из специальной стальной пружины и калиброванных грузиков, которыми настраивается момент отключения пусковой обмотки. Вся конструкция собрана в надежном корпусе. Быстрая работа переключателя уменьшает искрение и износ контактов и продлевает надежную работу устройства.

Центробежный переключатель

Другой элемент, которого нет в трехфазном асинхронном двигателе, но который есть в однофазном это рабочий и пусковой конденсатор.

Пусковой конденсатор

Конденсатор может быть установлен и вне двигателя, например, вместе с пускозащитной аппаратурой.

Корпус

Корпус электродвигателей изготовлен из высококачественного из алюминиевого сплава или чугуна марки. В корпусе сделаны боковые отверстия для циркуляции воздуха. Возможна работа однофазного двигатель и в горизонтальном и в вертикальном положении.

Статор двигателя

Статор однофазного двигателя изготавливается из ламината качественной электротехнической стали с термохимической обработкой, что снижает магнитные потери и рабочую температуру двигателя. Сердечник статора, набирается из штампованных листов электротехнической стали. В пазы сердечника укладывается статорная обмотка. Изоляция пазов статора, изоляция обмоточного провода, пропиточный состав и другие изоляционные детали статора образуют систему изоляции.

Обмотки

Статорная обмотка наматывается круглым эмалированным проводом и пропитана в нагревостойком электроизоляционном лаке. Обмоточный провод как стандарт покрыт лаком класса Н. После укладки вся обмотка повторно пропитывается специальным полиэстерным составом.

Такая технология обеспечивает высокую электрическую и механическую надежность обмоток и долгий срок службы. Обмотка статора мотается как две обмотки главная(рабочая) (U1 и U2) и вспомогательная (пусковая) (Z1 и Z2). Главная обмотка подключается непосредственно к сети, вспомогательная обмотка также подключается к сети, но через рабочий конденсатор.

Ротор

Сердечник ротора однофазного двигателя изготовлен из ламината качественной стали с термической и химической обработкой. Его напрессовывают на вал. Обмотка ротора имеет название «Беличья клетка» или «Беличье колесо»- короткозамкнутая отливается из чистого алюминия . что обеспечивает низкий момент инерции и повышение К П Д.

Вал

Вал однофазного двигателя изготавливают из углеродистой стали. Такая сталь имеет высокую механическую прочность, и предотвращает прогиб вала под нагрузкой, что уменьшает его износ. По отдельному заказу вал однофазного двигателя можно изготовить из нержавеющей стали.

Подшипниковые щиты

Подшипниковые щиты отливаются из алюминиевого сплава или чугуна с армирующей стальной втулкой под посадку подшипника. Их площадь поверхности увеличина для лучшего охлаждения подшипников. Обычно в переднем подшипниковом щите устанавливается невинтовая пружина, предназначенная для осевого поджатия подшипника.

Подшипниковые узлы

Обычно в однофазных двигателях применяются шариковые подшипники, но в двигателях большими высотами оси вращения по отдельному заказу можно применять роликовые подшипники, которые допускают в 2 раза большие радиальные нагрузки. В однофазных двигателях с высотой оси вращения до 180 мм в подшипники закладывается смазка на весь гарантийный срок службы (не менее 20 тыс. часов). В подшипниковые узлы однофазных двигателей с осями вращения более 200 мм необходимо регулярно производить полную или частичную смену отработанной смазки. График смены смазки можно найти в инструкции по эксплуатации двигателя.

Типы и размеры применяемых в двигателях подшипников указаны в каталогах. В них же можно найти величины предельно допустимых радиальных и осевых нагрузок рабочего конца вала

.

Подшипники

Импортные однофазные двигатели снабжаются подшипниками высокого качества, от лучших всемирных брендов. Это обеспечивает длительный срок службы в тяжёлых условиях работы. В качестве смазки используется высококачественная смазка Super-premium Polyrex ЕМ. Эта смазка обеспечивает надежную работу подшипников и низкий уровень шума. В двигателях отечественных производителей используются более дешевые подшипники 76-180205Ш2У (6205 2RS P63.QE6) с постоянно заложенной смазкой на весь срок службы.

Вентилятор

Вентилятор однофазного двигателя изготавливают из пластмассы. Его устанавливают на вал ротора а сверху защищая кожухом. Вентиляторы служат для обеспечения эффективного охлаждения двигателя. Новые компьютерные программы моделирования асинхронных двигателей позволяют разрабатывать вентилятор и его крышку для работы с минимальным уровнем шума. Обдув осуществляется внешним вентилятором, закрытым направляющим кожухом. Двигатели производятся с симметричной радиальной, либо с комбинированной системой вентиляции. В двигателях с симметричной радиальной вентиляцией в станине предусмотрены отверстия для выхода воздуха. Изнутри станины отлиты выступы с каналами для протока воздуха в аксиальном направлении. Вентилятор, отлитый вместе с короткозамыкающими кольцами ротора прогоняется воздух через двигатель. Для циркуляции воздуха внутри двигателя используются диффузоры, смонтированные в двух подшипниковых щитах.

Обдув однофазного двигателя с комбинированной вентиляцией производится центробежным вентилятором, установленным на валу двигателя со стороны, противоположной приводу. Вентилятор обдувает ребристую поверхность станины и вентиляционными лопатками ротора всасывающими воздух через нижнюю часть отверстий в подшипниковых щитах. Воздух омывает лобовые части обмотки и выбрасывается через верхнюю часть отверстий в щитах.

Клемная коробка

Клемная коробка однофазного двигателя изготовливают из алюминиевого сплава или чугуна. В коробке предусмотрено одно или два резьбовых отверстия для сальников, через которые проходят присоединительные кабеля. Конструкция клемной коробки позволяет монтировать коробку с шагом 90°. При заказе двигателя необходимо уточнять верхнее или боковое расположение клемной коробки.

Лапы

В зависимости от способа крепления двигатели подразделяются на фланцевые и со способом крепления на лапах. Существуют универсальные двигатели с лапами и фланцем. Существуют конструкции со съемными лапами позволяющие изменять способ монтажа.

Уплотнения

Для защиты однофазного двигателя от агрессивных условий окружающей среды в электродвигателях применяются V-образные манжеты и манжеты с пружиной. Система уплотнения состоит из трех компонентов (лабиринтное уплотнение с V-образной манжетой и О-образная манжета). Такая конструкция гарантируют защиту подшипников против агрессивных жидких и твердых веществ.

Однофазные асинхронные двигатели | Эксплуатация электрических машин и аппаратуры | Архивы

Страница 12 из 74

Преимущество однофазных двигателей перед трехфазными — их способность работать от однофазной сети.
Станина, сердечник статора и короткозамкнутый ротор в однофазных двигателях такие же, как и в трехфазных. Однофазная обмотка статора занимает 2/3 пазов сердечника. Переменный ток в однофазной обмотке создает пульсирующее, а не вращающее, магнитное поле. Такое поле не способно создать пусковой момент двигателя. Если ротор двигателя развернуть, то возникает момент, действующий в направлении вращения ротора. Однофазный двигатель с одной обмоткой на статоре не имеет преимущественного направления вращения: вращение ротора будет в направлении первоначального толчка.

Однофазные двигатели (рис. 41), кроме рабочей обмотки, имеют пусковую обмотку (фазу), которая занимает 1/3 пазов. Пусковую обмотку изготовляют из провода меньшего сечения, чем рабочую. Для получения фазы сдвига токов в обмотках последовательно с пусковой обмоткой включают активное сопротивление. Часто это сопротивление сосредоточено внутри пусковой обмотки.


Рис. 42. Схема однофазного конденсаторного двигателя: С — конденсатор.

Рис. 43. Схема конденсаторного двигателя с рабочей (Ср) и пусковой (Сп) емкостями.
Рис. 41. Схема однофазного асинхронного двигателя с пусковой обмоткой:
К — ключ; R — активное сопротивление.

При замкнутом ключе К и подаче напряжения к двигателю в системе двух обмоток образуется эллиптическое вращающееся магнитное поле; оно обусловливает пусковой момент. Когда скорость ротора достигнет 70—80% номинальной, пусковая обмотка отключается автоматически или вручную.
В однофазных двигателях с пусковой обмоткой небольшой пусковой момент, малая перегрузочная способность, низкие к. п. д. и Cos ср. Изготовляют такие двигатели мощностью ст нескольких десятков до нескольких сот ватт. Их применяют в стиральных машинах, холодильниках, вентиляторах и т. п.
Для увеличения пускового момента однофазного двигателя последовательно с пусковой обмоткой вместо активного сопротивления включают конденсатор. Благодаря емкости пусковые токи в фазах получаются сдвинутыми относительно друг друга на угол до 90°, что и обусловливает больший пусковой момент. После разбега двигателя пусковая обмотка с конденсатором отключается.

Однофазные конденсаторные двигатели на статоре имеют две обмотки (фазы), занимающие равное число пазов, и в одну из которых включен конденсатор (рис. 42). Постоянно включенный конденсатор обусловливает эллиптическое вращающееся магнитное поле, а в рабочем режиме при определенной нагрузке получается круговое поле, то есть такое же, как в трехфазном двигателе.
Конденсаторный двигатель обладает хорошими рабочими характеристиками. К. п. д. достигает 75%. cos φ = 0,9 и выше Пусковые характеристики этих двигателей неудовлетворительны. Пои пуске двигателя магнитное поле сильно отличается от кругового. Поэтому пусковой момент не превышает 30% номинального.

С целью увеличения пускового момента в однофазном конденсаторном двигателе параллельно рабочей емкости включают пусковую емкость, она после разбега двигателя отключается (рис. 43). Такой двигатель называют конденсаторным с пусковой емкостью.
Во всех однофазных двигателях — с пусковой обмоткой, с конденсаторным пуском и конденсаторных двигателях — для измене- нения направления вращения ротора нужно изменить направление тока в одной из обмоток, то есть переключить пусковую или рабочую фазу.
В однофазных асинхронных двигателях с двумя обмотками на статоре пусковой момент пропорционален произведению пусковых токов обмоток и синусу угла смещения этих токов. При заданных токах в обмотках пусковой момент будет наибольшим при фазе смещения токов на 90°, что можно достичь только включением емкости в одну (обычно пусковую) обмотку.
В однофазных конденсаторных двигателях для одной какой- либо нагрузки можно добиться строго кругового вращающегося магнитного поля. Для другой нагрузки изменением величины рабочей емкости можно уменьшить обратно вращающееся магнитное поле, но получить вновь строго круговое поле нельзя, оно будет эллиптическим.
Промышленность выпускает однофазные двигатели: АОЛБО с пусковой обмоткой и активным сопротивлением в качестве фазосдвигающего  элемента; АОЛГО с пусковой обмоткой и конденсатором в качестве фазосдвигающего пускового элемента; АОЛДО — конденсаторный однофазный двигатель, в котором для увеличения пускового момента на время пуска параллельно работающей емкости включается пусковой конденсатор.
Кроме однофазных двигателей с двумя обмотками на статоре, есть однообмоточные двигатели. В них статор явно полюсной системы (как в машинах постоянного тока). Для создания вращающегося поля при пуске используют короткозамкнутые витки, охватывающие часть сердечников полюсов. В этих двигателях нельзя изменить направление вращения ротора.

Однофазные асинхронные двигатели, конструкция и принцип работы

16.10.2018

Однофазный асинхронный двигатель— это электродвигатель, работающий в сети однофазного переменного тока. Такое устройство способно работать без применения преобразователя, а в основном режиме работы (после запуска) использует лишь одну обмотку статора. Фактически такой тип двигателя является двухфазным, но поскольку рабочей считается одна обмотка то электродвигатель называют однофазным.

Принцип действия и устройство однофазного двигателя.

На рисунках изображены поперечный разрез статора однофазного асинхронного двигателя (а) и направления вращающих моментов, действующих на его ротор (б). Обмотка на статоре (а) размещена в пазах, которые занимают пространство около двух третей от его общей окружности, соответствующей паре полюсов.

В результате распределение магнитодвижущей силы и индукции в воздушном зазоре близко к синусоидальному принципу. Благодаря переменному току, проходящему по обмотке, МДС производит скачки во времени с частотой сети. Таким образом, в представленном типе электродвигателя, обмотка статора создает неподвижный поток, который меняется во временных рамках, вместо кругового вращающегося, как в трехфазных двигателях при симметричном питании.

Прямые и обратные поля

Для анализа свойств однофазного представим замену неподвижного пульсирующего потока на сумму идентичных круговых полей, которые будут вращаться в противоположных направлениях и иметь одинаковые частоты их вращения. Свойства можно сравнить через анализ совместного действия каждого из вращающихся полей. Иными словами, однофазный двигатель можно представить в виде двух одинаковых двигателей, роторы которых жестко связаны между собой (б), при встречном направлении вращения магнитных полей и создаваемых ими моментов.

Поле, направление вращения которого совпадает с направлением вращения ротора, принято называть прямым, а поле обратного направления — инверсным (обратным). Электромагнитные моменты, образуемые прямым и обратным полями, направлены в противоположные стороны, а суммарный момент однофазного двигателя будет равен их разности при условии одной и той же частоты вращения ротора.

Сравнение однофазного и трехфазного типов

Однофазный двигатель имеет меньший КПД в отличие от устройства трехфазного типа. При анализе зависимостей моментов прямых и обратных полей можно вывести несколько отличий:

  1. Однофазный двигатель не имеет пускового момента и вращается в ту сторону, в которую направлена внешняя сила.
  2. Частота вращения при холостом ходу у однофазного двигателя уступает трёхфазному из-за тормозящего момента, который образуется обратным полем. 
  3. По рабочим характеристикам однофазный двигатель также уступает трехфазному аналогу, так как имеет повышенное скольжение на номинальных нагрузках и меньшую перегрузочную способность. Это также объясняется наличием обратного поля.

Помимо этого стоит учесть, что мощность однофазного двигателя составит приблизительно 2/3 от аналогичного показателя трехфазного того же габарита. Из-за того что в первом случае рабочая обмотка занимает всего две трети пазов статора.

Область применения асинхронного двигателя

Моторы небольшой мощности от 15 до 600Вт применяют в устройствах автоматики, а также в бытовых приборах. В повседневной жизни они используются при работе насосов и другого подобного оборудования, которое не требует постоянной регулировки частоты вращения.

В электроприборах зачастую и автоматических системах применяют однофазные микродвигатели, так как эти приборы получают питание из однофазной сети переменного тока.

Подписывайтесь на наши обновления:

       


Асинхронные однофазные электродвигатели — по размеру высоты вала.

Асинхронные однофазные двигатели широко применяются в приводах промышленных и бытовых электроприборов и станков. Функция однофазного электродвигателя – переработка электричества, поступающего по однофазной сети переменного тока в механическую энергию. Конструктивное отличие однофазного электродвигателя – однофазная обмотка на неподвижной части (статоре) и, как следствие, отсутствие начального вращающего момента, обусловленное тем, что при однофазном токе не образуется вращающееся магнитное поле.

Создание пускового момента достигается при помощи дополнительной пусковой обмотки, которая располагается перпендикулярно основной. При включении однофазного электродвигателя вначале вводится в действие пусковая обмотка, а после достижения заданной частоты вращения работа электродвигателя происходит за счет функционирования основной обмотки.


Каталог однофазных электродвигателей по типразмеру.

Пусковая обмотка однофазного электродвигателя так же, как и основная, получает ток от однофазной сети с частотой переменного тока 50 Гц и напряжением 220 В. При этом сдвиг фаз достигается за счет включения значительного активного сопротивления. В зависимости от целей эксплуатации и специфики оборудования асинхронные однофазные двигатели укомплектовываются дополнительными приспособлениями, позволяющими им более полно и эффективно выполнять свои функции.

Это могут быть устройства частотного регулирования скоростей, механический тормоз или какие-либо другие специальные элементы. В некоторых случаях технологические условия требуют установки однофазного двигателя без корпуса, в других ситуациях напротив становится необходима усиленная защита.


Универсальный однофазный электродвигатель Вesel SEMBg 56-2A/S без корпуса

Благодаря широкому выбору однофазных электродвигателей известных марок вы сможете купить устройство, максимально соответствующее индивидуальным требованиям и условиям эксплуатации. Наши консультанты помогут вам сделать оптимальный выбор, предоставив исчерпывающую информацию по каждому однофазному двигателю, представленному в каталоге.

Однофазный асинхронный двигатель MYT, цена в Рефит

Асинхронный двигатель – это электродвигатель переменного тока, работа которого возникает при вращении магнитного поля, создаваемого током обмоток статора, при этом данная частота вращения не совпадает (асинхронна) с частотой вращения магнитного поля ротора двигателя (от чего и название). Это наиболее распространенная электрическая машина, преобразующая электрическую энергию в механическую.

 

Преимущества:
  • простая и прочная конструкция
  • относительно низкая цена
  • малые затраты при эксплуатации
  • высокая производительность

Недостатки:

  • небольшой пусковой крутящий момент
  • скорость вращения в основном постоянна и сложна в регулировании
  • значительный пусковой ток

Данные недостатки устраняются при управлении работой асинхронного двигателя с помощью частотного преобразователя.

 

Однофазные асинхронные двигатели серии MYT в алюминиевом корпусе новейшего дизайна изготовлены из материалов отборного качества и соответствуют стандарту IEC. Применяются в тех случаях, когда потребность в пусковом крутящем моменте низка и когда необходим длительный режим работы.    

Особенности:
  • соответствие европейскому стандарту высокой эффективности IE1
  • полностью закрытий корпус с воздушным охлаждением
  • высокая производительность, надежность и безопасность
  • удобность в эксплуатации
  • низкий уровень шума и вибраций
  • простая конструкция и малый вес
  • класс защиты IP55
  • класс изоляции F

 

Габаритные размеры:
крепление на ножках B3: крепление фланцевое B5: крепление фланцевое B14:

 

Скачать:

ТипКоличество фазНом. мощность,
кВт
Напряжение питания, ВКоличество
полюсов
Номинальная скорость,
об/мин
Пусковой конденсаторСпособ крепленияМасса,
кг
MYT56A 1 0.06 220 4 1310 4µF/450V фланцевое (B5/B14)
или на ножках (B3)
3. 3
MYT56B 0.09 1310 6µF/450V 3.6
MYT63A 0.12 1310 8µF/450V 4.5
MYT63B 0.18 1320 12µF/450V 5.1
MYT71A 0.25 1320 16µF/450V 6. 2
MYT71B 0.37 1325 20µF/450V 7.3
MYT80A 0.55 1340 25µF/450V 10.1
MYT80B 0.75 1340 35µF/450V 11.4
MYT90S 1.1 1355 40µF/450V 14. 4
MYT90L 1.5 1360 50µF/450V 17.5
MYT100L 2.2 1390 70µF/450V 24.5
MYT100LB 3 1390 90µF/450V 32

Цены и наличие на складе уточняйте у менеджеров

Похожие товары

Добавить комментарий

Устройство управления однофазным асинхронным двигателем

Однофазные асинхронные двигатели питаются от обычной сети переменного напряжения 220 В.

Наиболее распространённая конструкция таких двигателей содержит две (или более) обмотки — рабочую и фазосдвигающую. Рабочая питается напрямую, а дополнительная через конденсатор, который сдвигает фазу на 90 градусов, что создаёт вращающееся магнитное поле. Поэтому такие двигатели ещё называют двухфазные или конденсаторные.

Регулировать скорость вращения таких двигателей необходимо, например, для:

  • изменения расхода воздуха в системе вентиляции
  • регулирования производительности насосов
  • изменения скорости движущихся деталей, например в станках, конвеерах

В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума установки, установить необходимую производительность.

Способы регулирования

Рассматривать механические способы изменения скорости вращения, например редукторы, муфты, шестерёнчатые трансмиссии мы не будем. Также не затронем способ изменения количества полюсов обмоток.

Рассмотрим способы с изменением электрических параметров:

  • изменение напряжения питания двигателя
  • изменение частоты питающего напряжения

Регулирование напряжением

  • Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя — разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:
  • S=(n1-n2)/n2
  • n1 — скорость вращения магнитного поля
  • n2 — скорость вращения ротора
  • При этом обязательно выделяется энергия скольжения — из-за чего сильнее нагреваются обмотки двигателя.
  • Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз — то есть, снижением питающего напряжения.
  • При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.
  • Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.
  • На практике для этого применяют различные схемы регуляторов.

Автотрансформаторное регулирование напряжения

Автотрансформатор — это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.

  1.  На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.
  2. Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.
  3.  Преимущества данной схемы:
      • неискажённая форма выходного напряжения (чистая синусоида)
      • хорошая перегрузочная способность трансформатора

 Недостатки:

      • большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
      • все недостатки присущие регулировке напряжением

 

Тиристорный регулятор оборотов двигателя

В данной схеме используются ключи — два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.

Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно «отрезается» кусок вначале или, реже в конце волны напряжения.

  • Таким образом изменяется среднеквадратичное значение напряжения.
  • Данная схема довольно широко используется для регулирования активной нагрузки — ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).
  • Ещё один способ регулирования — пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно — шумы и рывки при работе.
  • Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:
  • устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
  • добавляют на выходе конденсатор для корректировки формы волны напряжения
  • ограничивают минимальную мощность регулирования напряжения — для гарантированного старта двигателя
  • используют тиристоры с током в несколько раз превышающим ток электромотора

Достоинства тиристорных регуляторов:

      • низкая стоимость
      • малая масса и размеры 

  Недостатки:

      • можно использовать для двигателей небольшой мощности
      • при работе возможен шум, треск, рывки двигателя 
      • при использовании симисторов на двигатель попадает постоянное напряжение
      • все недостатки регулирования напряжением

  

Стоит отметить, что в большинстве современных кондиционеров среднего и высшего уровня скорость вентилятора регулируется именно таким способом.

Транзисторный регулятор напряжения

Как называет его сам производитель — электронный автотрансформатор или ШИМ-регулятор.

Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы — полевые или биполярные с изолированным затвором (IGBT).

Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.

  1. Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.
  2. Выходной каскад такой же как и у частотного преобразователя, только для одной фазы — диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.
  3.  Плюсы электронного автотрансформатора:
        • Небольшие габариты и масса прибора
        • Невысокая стоимость
        • Чистая, неискажённая форма выходного тока
        • Отсутствует гул на низких оборотах
        • Управление сигналом 0-10 Вольт

 Слабые стороны:

        • Расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора)
        • Все недостатки регулировки напряжением

Частотное регулирование

Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина — не было дешёвых силовых высоковольтных транзисторов и модулей.

Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие — массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.

  • На данный момент частотное преобразование — основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.
  • Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.
  • Однофазные двигатели могут управляться:
  • специализированными однофазными ПЧ
  • трёхфазными ПЧ с исключением конденсатора

Преобразователи для однофазных двигателей

  1. В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей — INVERTEK DRIVES.
  2. Это модель Optidrive E2
  3. Для стабильного запуска и работы двигателя используются специальные алгоритмы.
  4. При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:
  5. Xc=1/2πfC
  6. f — частота тока
  7. С — ёмкость конденсатора
  8.  В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:
  9. Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя — в некоторых моделях это сделать довольно сложно.
  10. Преимущества специализированного частотного преобразователя:
        • интеллектуальное управление двигателем
        • стабильно устойчивая работа двигателя
        • огромные возможности современных ПЧ:
          • возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
          • многочисленные защиты (двигателя и самого прибора)
          • входы для датчиков (цифровые и аналоговые)
          • различные выходы
          • коммуникационный интерфейс (для управления, мониторинга)
          • предустановленные скорости
          • ПИД-регулятор

 Минусы использования однофазного ПЧ:

        • ограниченное управление частотой
        • высокая стоимость

Использование ЧП для трёхфазных двигателей

  • Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:
  • Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:
  • Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого — магнитное поле будет не круговое , а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.
  • В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.
  • При работе без конденсатора это приведёт к:
  • более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
  • разному току в обмотках

Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна

 Преимущества:

          • более низкая стоимость по сравнению со специализированными ПЧ
          • огромный выбор по мощности и производителям
          • более широкий диапазон регулирования частоты
          • все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)

Недостатки метода:

          • необходимость предварительного подбора ПЧ и двигателя для совместной работы
          • пульсирующий и пониженный момент
          • повышенный нагрев
          • отсутствие гарантии при выходе из строя, т.к. трёхфазные ПЧ не предназначены для работы с однофазными двигателями

Однофазный асинхронный электродвигатель

Дмитрий Левкин

Основными компонентами любого электродвигателя являются ротор и статор. Ротор — вращающаяся часть электродвигателя, статор — неподвижная часть электродвигателя, с помощью которого создается магнитное поле для вращения ротора.

Основные части однофазного двигателя: ротор и статор

Статор имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.

Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.

Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой «беличьей клеткой». Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.

Однофазный двигатель с вспомогательной обмоткой имеет 2 обмотки расположенные перпендикулярно относительно друг друга

Принцип работы однофазного асинхронного двигателя

Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.

Проанализируем случай с двумя обмотками имеющими по оному витку

Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Фmах до -Фmах.

Пульсирующее магнитное поле

Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.

Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:

  • где nпр – частота вращения магнитного поля в прямом направлении, об/мин,
  • nобр – частота вращения магнитного поля в обратном направлении, об/мин,
  • f1 – частота тока статора, Гц,
  • p – количество пар полюсов,
  • n1 – скорость вращения магнитного потока, об/мин

Разложение пульсирующего магнитного потока на два вращающихся

Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение.

Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока.

В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как скольжение его ротора относительно прямого и обратного магнитного потока будет неодинаковым.

Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Фобр — в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:

  • где sпр – скольжение ротора относительно прямого магнитного потока,
  • n2 – частота вращения ротора, об/мин,
  • s – скольжение асинхронного двигателя

Прямой и обратный вращающиеся магнитные потоки вместо пульсирующего магнитного потока

Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр

  • где sобр – скольжение ротора относительно обратного магнитного потока

Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС, которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:

  • где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц

  • где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц

Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.

Пример: для однофазного асинхронного двигателя, работающего от сети с частотой f1 = 50 Гц при n1 = 1500 и n2 = 1440 об/мин,

скольжение ротора относительно прямого магнитного потока sпр = 0,04;частота тока наводимого прямым магнитным потоком f2пр = 2 Гц;скольжение ротора относительно обратного магнитного потока sобр = 1,96;частота тока наводимого обратным магнитным потоком f2обр = 98 Гц

  • Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент
  • ,
  • где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
  • сM — постоянный коэффициент, определяемый конструкцией двигателя

Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент Мобр, направленный против вращения ротора, то есть встречно моменту Мпр:

,

  • где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м

Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,

,

Справка: В следствие того, что во вращающемся роторе прямым и обратным магнитным полем будет наводиться ток разной частоты, моменты сил действующие на ротор в разных направлениях будут не равны. Поэтому ротор будет продолжать вращаться в пульсирующем магнитном поле в том направлении в котором он имел начальное вращение.

При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = sпр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно.

Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления.

Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его.

,

  • где r2 — активное сопротивление стержней ротора, Ом,
  • x2обр — реактивное сопротивление стержней ротора, Ом.

Если учесть, что коэффициент мощности невелик, то станет, ясно, почему Мобр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.

Действие пульсирующего поля на неподвижный ротор

При неподвижном роторе (n2 = 0) скольжение sпр = sобр = 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение .

Пуск однофазного двигателя. Как создать начальное вращение?

Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов.

Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга.

Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].

После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.

Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.

Подключение однофазного двигателя

С пусковым сопротивлением

Двигатель с расщепленной фазой — однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].

Однофазный асинхронный двигатель с пусковым сопротивлением — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.

Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.

Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.

Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.

С конденсаторным пуском

Двигатель с конденсаторным пуском — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.

Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.

Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются — конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.

Однофазный электродвигатель с экранированными полюсами

Двигатель с экранированными полюсами — двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.

Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения.

Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток.

Ротор однофазного двигателя с экранированными полюсами — короткозамкнутый в виде «беличьей» клетки.

При включении однофазной обмотки статора в сеть в магнитопроводе двигателя создается пульсирующий магнитный поток. Одна часть которого проходит по неэкранированной Ф’, а другая Ф» — по экранированной части полюса.

Поток Ф» наводит в короткозамкнутом витке ЭДС Ek, в результате чего возникает ток Ik отстающий от Ek по фазе из-за индуктивности витка. Ток Ik создает магнитный поток Фk, направленный встречно Ф», создавая результирующий поток в экранированной части полюса Фэ=Ф»+Фk.

Таким образом, в двигателе потоки экранированной и неэкранированной частей полюса сдвинуты во времени на некоторый угол.

Пространственный и временной углы сдвига между потоками Фэ и Ф’ создают условия для возникновения в двигателе вращающегося эллиптического магнитного поля, так как Фэ ≠ Ф’.

Пусковые и рабочие свойства рассматриваемого двигателя невысоки. КПД намного ниже, чем у конденсаторных двигателей такой же мощности, что связано со значительными электрическими потерями в короткозамкнутом витке.

Однофазный электродвигатель с асимметричным магнитопроводом статора

Danfoss Drives

Регулировка скорости изменением величины напряжения снижает момент и также увеличивает потери мощности. Регулировка частоты вращения путем изменения числа полюсов осуществляется ступенчато, кроме того, этот способ пригоден только для специальных многоскоростных двигателей с несколькими обмотками неподвижной части.

Асинхронный двигатель – самый распространенный электропривод технологического оборудования. Главная особенность таких электрических машин – постоянная скорость вращения вала. Ее регулировку осуществляют:

  • Механическим способом. Для этого вал подключают к редукторам, муфтам и другим устройствам.
  • Путем изменения числа пар полюсов, величины или частоты питающего напряжения обмоток статора.

Механическое регулирование усложняет кинематическую схему электропривода, ведет к потерям мощности и нерациональному расходу электроэнергии.

Наиболее перспективный метод регулирования уголовной скорости ротора – преобразование частоты питающего напряжения. Этот способ обеспечивает сохранение механических характеристик во всем диапазоне и обладает рядом других преимуществ.

Устройство и принцип работы частотного регулятора

Принцип частотного регулирования основан на зависимости угловой скорости вращения ротора от частоты напряжения на обмотках статора. С появлением IGBT-транзисторов и GTO-тиристоров наибольшее распространение получила схема преобразования частоты на базе широтно-импульсного модулятора.

Такие преобразователи частоты состоят:

  • Из силового выпрямителя с С или LC фильтром для сглаживания пульсаций.
  • Из инвертора на IGBT-транзисторах для преобразования постоянного напряжения в переменное, заданной частоты и амплитуды.
  • Из блока управления для генерации отпирающих силовые транзисторы импульсов.

Переменное напряжение выпрямляется и преобразуется в постоянное, затем снова инвертируется в переменное. Частота на силовом выходе ПЧ определяется длительностью отпирающих силовые транзисторы импульсов, поступающих со схемы управления.

Такой способ регулирования позволяет изменять частоту и амплитуду напряжения в силовой цепи электродвигателя, а значит управлять скоростью вращения ротора и моментом на валу электрической машины.

Структура частотного регулятора

Большинство частотных преобразователей для электродвигателей до 690 В выполнены по схеме двухуровневых инверторов напряжения. Они позволяют моделировать напряжение питания необходимой формы, амплитуды частоты.

Такие устройства состоят из неуправляемого выпрямителя, 2-х транзисторных ключей на каждую фазу и конденсатора. Выходное напряжение содержит высшие гармоники, которые сглаживаются индуктивной нагрузкой.

Специальные фильтры применяют относительно редко.

К недостаткам такой схемы является ограничение величины выходного напряжения, которое определяется максимальным напряжением полупроводниковых устройств.

Для высоковольтных приводов используются многоуровневые схемы регулирования. Они состоят из нескольких однофазных инверторов, соединенных последовательно.

Такая схема позволяет избежать резонансов, обеспечивает высокое быстродействие, снижает скорость нарастания напряжения. Такие ПЧ имеют модульную конструкцию. При выходе из строя одной из ячеек, ее легко заменить.

К недостаткам этой схемы относятся необходимость отдельного источника питания для каждого модуля, функции которого выполняет трансформатор специального назначения.

Преобразователи частоты с плавающими конденсаторами позволяют обойтись без входного трансформатора и увеличивать число ячеек в зависимости от требуемой мощности. Такое решение обеспечивает снижение высших гармоник, уменьшает скорость нарастания напряжения.

Для регулировки скорости электродвигателей с повторно-кратковременным режимом работы частыми реверсами применяют инверторы тока. Эти устройства представляют собой управляемый выпрямитель и инвертор на тиристорах.

Для уменьшения помех в цепи нагрузки в схему включается расщепленный индуктивный фильтр. Выходное напряжение таких устройств имеет форму аппроксимированной синусоиды. Для сглаживания его формы обязательно включение перед электродвигателем конденсаторов.

Главное достоинство таких ПЧ – возможность рекуперации электроэнергии обратно в электросеть.

Прямые преобразователи частоты не содержат конденсаторов. Главное их преимущество – небольшие габариты и значительная мощность нагрузки. Такие устройства используются в составе мощных электроприводов работающих на низких скоростях.

ПЧ этого типа выполнены на базе тиристорных преобразователей. На входе прямых ПЧ установлен фазосдвигающий трансформатор, устраняющий низшие гармоники и выполняющий функцию источника питания для каждого преобразователя.

Прямые ПЧ требуют сложной схемы управления.

Состав частотных преобразователей

Кроме выпрямителя, ШИМ-модулятора и инвертора, в состав частотного преобразователя входят:

Устройство для ввода данных и обмена информаций с ПК, другими частотными преобразователями.

  • Встроенная энергонезависимая память. В этом устройстве фиксируются аварийные отключения, изменения настроек, а также другие данные.
  • Управляющий контроллер, обеспечивающий реализацию алгоритмов управления, обработку данных с датчиков, защитное отключение при ненормальных режимах работы.
  • ЭМ-фильтр. Это устройство обеспечивает снижение реактивной высокочастотной составляющей, снижающей качество электроэнергии и отрицательно влияющей на работу электродвигателя.
  • Вентилятор и радиатор для принудительного охлаждения и отвода тепла силовых транзисторов.
  • Тормозной прерыватель и другие элементы.

Кроме аппаратной части, преобразователи частоты содержат программное обеспечение. Контроллеры с открытой логикой позволяют вносить изменения в стандартное ПО, поставляемое производителем, и самостоятельно программировать ПЧ.

Однофазные преобразователи частоты

Однофазные асинхронные электродвигатели широко применяются в качестве приводов насосных агрегатов, вентиляторов, маломощных станков. Для регулирования частоты вращения этих электрических машин применяются 2 основных способа:

  • Изменение величины напряжения питания.
  • Изменение частоты питающего напряжения.

Для регулирования питающего напряжения применяются трансформаторные, автотрансформаторные, тиристорные, симисторные и транзисторные преобразователи. Изменение частоты вращения путем регулирования напряжения имеет ряд серьезных недостатков:

  • Увеличение скольжения и сильный нагрев обмоток статора.
  • Узкий диапазон регулирования.

Кроме того, постоянная составляющая питающего напряжения на выходе тиристорных и симисторных устройств вызовает увеличение шума при работе, рывки и другие нежелательные явления.

Частотное регулирование лишено этих недостатков. Однофазные ПЧ применяются в холодильном оборудовании, системах вентиляции, бытовых насосах.

https://www.youtube.com/watch?v=eYKlVo72rrM

Такие электроприводы обеспечивают:

  • Стабильную работу однофазного двигателя при любой частоте вращения.
  • Снижение потребления электроэнергии.
  • Возможность автоматической регулировки частоты вращения с обратной связью по изменению одного или нескольких технологических параметров.
  • Удаленное управление и контроль характеристик.
  • Защиту от ненормальных режимов работы и коротких замыканий.
  • Интеллектуальное управление электродвигателем в соответствии с заданным алгоритмом.
  • Возможность пуска без фазосдвигающего элемента.
  • Поддержание необходимого момента на валу во всем диапазоне изменения скорости.

Кроме базовых составляющих, в состав однофазного преобразователя частоты входят ПИД-регулятор, ПЛК-контроллер, устройство для обмена данными с удаленным оборудованием, пульт дистанционного управления. При введении дополнительных настроек допустимо применение трехфазного ПЧ для однофазных двигателей переменного тока.

Таким образом, управление однофазными и трехфазными асинхронными электродвигателями путем изменения частоты значительно превосходит метод регулирования величины напряжения, механические способы.

ESQ-A200-2S0015

Частотный преобразователь ESQ-A200-2S0015 1.5кВт 7.5А 200-260В (для однофазного двигателя)

Подробно можно ознакомиться тут: — Инструкция преобразователя частоты ESQ-A200

Преобразователь частоты ESQ-A200 — это преобразователь частоты общего назначения с векторным управлением, предназначенный для управления асинхронными однофазными электродвигателями с конденсаторным пуском.

ESQ-A200 это малогабаритный однофазный частотный преобразователь для управления однофазным асинхронным короткозамкнутым двигателем с конденсатором, предназначен для управления и преобразования частоты в маломощных однофазных асинхронных двигателях с конденсаторным пуском в таких приборах как кондиционеры воздуха, холодильные компрессоры, моечные машины, электровентиляторы, обдувочные аппараты, насосы, механический инструмент и прочее электрооборудование, где используются однофазные асинхронные двигатели.Применяется на однофазных электродвигателях имеющих возможность снятия конденсатора.

  • Преимущества:- новейшие технологии векторного управления- улучшенный вращательный момент однофазного двигателя и бесперебойное переключение скорости- автоматическая энергосберегающая функция, возможность поддерживать постоянное напряжение на выходе при колебаниях напряжения в источнике питания- съемный пульт управления- встроенный RS485 (опционально)- встроенный ПЛК- встроенный ПИД-регулятор
  • — автоматическая регулировка выходного напряжения

ESQ-A200 это инвертор для управления однофазного электрического двигателя, поэтому его проводка отличается от проводки инверторов для блоков управления стандартных трёхфазовых электрических двигателей.Управление осуществляется по трем проводам.

  1. Более подробно ознакомиться с характеристиками, подключением и функционалом можно перейдя по ссылке:
  2. — Инструкция по эксплуатации преобразователя частоты ESQ-A200
  3. Схема электрических подключений преобразоватея частоты ESQ-A200

Структура подключения однофазного ассинхронного двигателя без применения преобразователя

Структура подключения однофазного ассинхронного двигателя с короткозамкнутым ротором к преобразователю частоты

Схема подключения однофазного электродвигателя к преобразователю частоты ESQ-A200

Терминалы инвертора- L1, L2: Вход, подключите к источнику 220В однофазного переменного тока.

— A, B, W: Выход, A,B терминал переменного тока, W обычный вывод (см. рис.2).

  • Подключение к внутренней схеме двигателя без преобразователя:Ёмкостный однофазный асинхронный двигатель схема внутренних соединений показана на рис.1подключение: L11 основная обмотка двигателя L22 обмотка стартёра, C1 ёмкость стартёра двигателя (конденсатор)
  • CA, CB ёмкостные выводы, CC обычный вывод для двух контуров.

Подключение двигателя к преобразователю:1. Удалить ёмкость стартёра C1, показанную на рис.12. Подключить инвертор к двигателю (рис.2):- прямая проводка: подсоединить A к CA, B к CB, W к CC, чтобы включить привод в прямом направлении.

— обратная проводка: подсоединить B к CA, A к CB, W к CC, чтобы включить привод в обратном направлении.

Напряжение сети питания, В:1х220
Напряжение питания двигателя, B:однофазное
Мощность, кВт:1,5
Номинальный ток, А:7,5
Перегрузочная способность,%:150% в течении минуты
Пусковой момент:150% от 1 Гц
Характеристика управления:векторное (без датчика) или U/F
Протокол связи:Modbus
Тормозной прерыватель:встроен
Тромозной резистор:опционален

Устройство для управления однофазным асинхронным электродвигателем

Предложение относится к электротехнике и может быть использовано в электроприводах, содержащих однофазные асинхронные электродвигатели.

Известен цифровой модулятор для преобразователя частоты асинхронного электродвигателя (патент RU 2216850, МПК Н03К 7/08, Н02М 7/539, Н02Р 7/42, 20.11.

2003), содержащий генератор прямоугольных импульсов, счетчики, триггеры, логические элементы ИЛИ, И, И-НЕ, дешифраторы, формирователь импульсов, сумматоры, регистры, двоично-шестеричный счетчик, схемы ограничения и сброса, входную и выходную шины и шину знака.

Модулятор формирует на фазах асинхронного электродвигателя трехфазную квазисинусоидальную систему напряжений переменной частоты и амплитуды.

Недостаток устройства заключается в большом числе логических элементов, входящих в его состав, что снижает надежность, усложняет настройку и увеличивает стоимость, вес и габариты устройства в целом.

Известно устройство и способ управления бесщеточным двигателем, основанные на широтно-импульсной модуляции (патент US 2013/0033208, МПК Н02Р 6/16, 7.02.2013).

Устройство содержит бесщеточный двигатель, подключенный к блоку задания управляющего сигнала, включающего в себя центральный процессор, цифроаналоговый преобразователь, формирователь регулируемого синусоидального напряжения, генератор несущего пилообразного напряжения, блок формирования ШИМ управляющего сигнала, блок определения полярности и мостовой однофазный инвертор на транзисторах с драйверами во входных цепях.

Недостатком устройства также является большое количество аналоговых, цифро-аналоговых и цифровых элементов, усложняющих и удорожающих его конструкцию, снижающих надежность и увеличивающих вес и габариты.

Наиболее близким к предлагаемому устройству является мостовой инвертор (патент RU 2223590, Н02М 3/337, 7/219, G05F 1/56, 10.02.

2004), содержащий источник питания АС-DC, однофазный транзисторный мост, шунтированный обратным диодным мостом, к выходу которых подключена первичная обмотка трансформатора, и систему управления в виде широтно-импульсного модулятора, состоящего из двухтактного генератора, генератора пилообразного напряжения, двух разделительных диодов, двух компараторов, логического инвертора и задатчика управляющего напряжения.

Недостаток инвертора заключается в том, что он работает на фиксированной частоте и его нельзя использовать в качестве преобразователя частоты для управления работой электродвигателя. Кроме того, содержащиеся в нем генераторы и компараторы усложняют его конструкцию.

Предлагаемое устройство позволяет простым и надежным способом сформировать ШИМ сигнал управления однофазным инвертором, обеспечивающим плавное регулирование скорости вращения двигателя при поддержании момента близким к постоянной величине (U/f=const).

На фиг.1 представлена функциональная схема устройства для управления однофазным асинхронным электродвигателем, на фиг.2 — временные диаграммы на выходах мультиплексоров MS1, MS2 и старшего разряда счетчика CT(8) при различных величинах управляющего напряжения.

Устройство содержит однофазный выпрямительный мост на диодах 1, 2, 3, 4, диагональ переменного тока которого подключена к питающей сети 5, а диагональ постоянного тока — к конденсатору 6 и к диагонали однофазного транзисторного моста на транзисторах IGBT 7, 8, 9, 10, шунтированного обратным диодным мостом на диодах 11, 12, 13, 14, выход которых соединен с обмотками асинхронного однофазного двигателя 15 (двигатель содержит две параллельно соединенные обмотки, с одной из которых последовательно включен фазосдвигающий конденсатор), драйверы 16, 17, 18, 19, связанные с затворами транзисторов 7, 8, 9, 10, логический инвертор 20 и задатчик 21 управляющего напряжения. Задатчик 21 может быть выполнен в виде потенциометра 22, запитанного от источника 23 постоянного напряжения. Устройство снабжено преобразователем 24 напряжения в частоту, четырехразрядным двоичным счетчиком 25, четырьмя ждущими мультивибраторами 26, 27, 28, 29 и двумя мультиплексорами 30, 31. Выход задатчика 21 подключен к входу преобразователя 24, с выходом которого связаны входы мультивибраторов 26, 27, 28, 29 и счетный вход счетчика 25. Первые три разряда счетчика 25 подсоединены к адресным входам «1, 2, 4» мультиплексоров 30, 31, четвертый разряд — через логический инвертор 20 и непосредственно к входам стробирования S мультиплексоров 30, 31. К первым и восьмым информационным входам («00, 07») мультиплексоров 30, 31 подключен выход мультивибратора 26, ко вторым и седьмым входам («01, 06») — выход мультивибратора 27, к третьим и шестым входам («02, 05») — выход мультивибратора 28, к четвертым и пятым входам («03, 04») — выход мультивибратора 29, а выходы мультиплексоров 30, 31 связаны с попарно соединенными между собой входами драйверов 16, 19 и 17, 18 транзисторов 7, 10 и 8, 9, расположенных в диагональных плечах транзисторного моста. Каждый из мультивибраторов 26, 27, 28, 29 снабжен своими RC-цепями, определяющими длительности формируемых мультивибраторами импульсов — Т1, Т2, Т3, Т4.

Устройство для управления однофазным асинхронным электродвигателем работает следующим образом.

При подаче на устройство питающей сети 5 выпрямительный мост на диодах 1, 2, 3, 4 и конденсатор 6 преобразуют переменное входное напряжение в постоянное, запитывающее мосты на транзисторах 7, 8, 9, 10 и диодах 11, 12, 13, 14.

В исходном состоянии движок потенциометра 22 находится в нижнем положении, и управляющее напряжение на выходе задатчика 21 равно нулю. При этом на выходе преобразователя 24 отсутствуют импульсы, на выходах мультивибраторов 26, 27, 28, 29 и мультиплексоров 30, 31 сохраняются низкие потенциалы, транзисторы 7, 8, 9, 10 закрыты и двигатель 15 неподвижен.

При выводе движка потенциометра 22 из нижнего положения вверх на выходе задатчика 21 появляется управляющее напряжение, вызывающее формирование на выходе преобразователя 24 импульсной последовательности, частота которой пропорциональна величине данного напряжения.

С приходом первого импульса счетчик 25 устанавливается в нулевое состояние, и на его выходах устанавливается кодовая комбинация 0000. Под действием «0» со старшего разряда счетчика 25, поступающего через инвертор 20 и непосредственно на входы стробирования S мультиплексоров 30 и 31, разрешается работа первого из них и запрещается работа второго.

Кроме того, под действием логических нулей, поступающих с младших разрядов счетчика 25 на адресные входы мультиплексора 30, он переводится в состояние, при котором с его выходом соединяется первый информационный вход («00»). Одновременно с приходом первого импульса от преобразователя 24 запускаются мультивибраторы 26, 27, 28, 29.

Длительности T1, T2, Т3 и Т4 формируемых ими импульсов увеличиваются при переходе от мультивибратора с меньшим номером к большему и устанавливаются исходя из максимального приближения к классическому ШИМ сигналу во всем заданном диапазоне изменения частоты вращения электродвигателя.

В результате с приходом первого импульса от преобразователя 24 на выход мультиплексора 30 проходит самый короткий (T1) импульс от мультивибратора 26, под действием которого драйверы 16, 19 открывают транзисторы 7, 10, и через обмотки электродвигателя 15 протекает импульс тока.

С поступлением от преобразователя 24 второго импульса на выходах счетчика 25 устанавливается кодовая комбинация 0001, под влиянием которой на выход мультиплексора 30 проходит импульс, формируемый мультивибратором 27. При этом транзисторы 7, 10 открываются на время T2.

Аналогичным образом с приходом третьего импульса транзисторы 7, 10 открываются на время Т3, четвертого и пятого импульсов — на время Т4, шестого импульса — на время Т3, седьмого — на время T2 и восьмого — на время Т1.

В результате через обмотки электродвигателя 15 протекают импульсы тока одной полярности с длительностями, близкими к ШИМ сигналу для первой полуволны синусоиды.

С приходом от преобразователя 24 девятого импульса на выходах счетчика 25 устанавливается кодовая комбинация 1000, под действием которой запрещается работа мультиплексора 30 и разрешается работа мультиплексора 31.

При этом формируемый мультивибратором 26 импульс проходит на выход мультиплексора 31, открывая с помощью драйверов 17, 18 транзисторы 8, 9 и вызывая протекание через обмотки электродвигателя 15 импульса тока длительностью Т1 другой полярности.

Аналогичным образом создаются и последующие импульсы тока данной полярности, формирующие вторую полуволну синусоиды.

При увеличении управляющего напряжения задатчика тока 21 увеличивается частота импульсов на выходе преобразователя 24 и частота огибающей напряжения на выходе транзисторного моста, питающего обмотки электродвигателя 15. В результате увеличивается скорость его вращения.

Вместе с тем уменьшаются паузы между отдельными импульсами, иначе говоря, скважность импульсов, что вызывает увеличение напряжения, прикладываемого к обмоткам электродвигателя 15.

Благодаря этому обеспечивается поддержание отношения напряжения к частоте достаточно близким к постоянной величине.

С учетом того, что для формирования полного периода питающего электродвигатель 15 напряжения требуется шестнадцать импульсов преобразователя 24, его частота (частота коммутации) должна в шестнадцать раз превосходить частоту подаваемого на электродвигатель 15 напряжения.

Так, при требуемом диапазоне регулирования частоты питающего напряжения от 0 до 50 Гц частота преобразователя 24 должна меняться от 0 до 800 Гц. При этом длительности импульсов, формируемых мультивибраторами 26, 27, 28, 29, могут составлять следующие величины: Т1=0,25 мс; Т2=0,6 мс; Т3=0,85 мс; Т4=1,2 мс.

Более точные значения определяются по результатам спектрального анализа полученной ШИМ последовательности.

Для повышения качества питающего электродвигатель 15 напряжения может быть вдвое увеличена частота преобразователя 24 при одновременном увеличении разрядности счетчика 25 и мультиплексоров 30, 31 и удвоении числа мультивибраторов 26, 27, 28, 29.

Устройство реализуется на достаточно простых и широко распространенных микросхемах средней степени интеграции. Преобразователь 24 напряжения в частоту может быть выполнен на микросхеме КР1108ПП1, счетчик 25 — на микросхеме К155ИЕ5, мультиплексоры 30,31 — на микросхемах К155КП7, мультивибраторы 26, 27, 28, 29 — на микросхемах К155АГ3 и инвертор 20 — на микросхеме К155ЛН1.

Рассмотренный принцип формирования управляющего ШИМ сигнала может быть также распространен на преобразователь частоты для трехфазного электродвигателя.

Таким образом, предлагаемое устройство реализует достаточно простой и надежный способ управления однофазным асинхронным электродвигателем, характеризуется малыми весом, габаритами и стоимостью, легко настраивается и обладает универсальностью построения.

Устройство для управления однофазным асинхронным электродвигателем, содержащее однофазный выпрямительный мост, диагональ переменного тока которого подключена к питающей сети, а диагональ постоянного тока — к конденсатору и к диагонали однофазного транзисторного моста, шунтированного обратным диодным мостом, выход которых соединен с обмотками однофазного асинхронного двигателя, драйверы, связанные с затворами транзисторов моста, логический инвертор и задатчик управляющего напряжения, отличающееся тем, что оно снабжено преобразователем напряжения в частоту, четырехразрядным двоичным счетчиком, четырьмя ждущими мультивибраторами и двумя мультиплексорами, причем выход задатчика управляющего напряжения подключен к входу преобразователя напряжения в частоту, с выходом которого связаны входы ждущих мультивибраторов и счетный вход четырехразрядного двоичного счетчика, первые три разряда которого подсоединены к адресным входам мультиплексоров, четвертый разряд — через логический инвертор и непосредственно к входам стробирования соответственно первого и второго мультиплексора, к первым и последним информационным входам которых подключен выход первого ждущего мультивибратора, ко вторым и седьмым входам — выход второго ждущего мультивибратора, к третьим и шестым входам — выход третьего ждущего мультивибратора, к четвертым и пятым входам — выход четвертого ждущего мультивибратора, а выходы мультиплексоров связаны с попарно соединенными между собой входами драйверов транзисторов, расположенных в диагональных плечах транзисторного моста.

Однофазные электродвигатели, взрывозащищенные электродвигатели — АИР, AIR, АИВР

Категория: асинхронные электродвигатели

Заводы производители электродвигателей: Могилевский завод Электродвигатель, Полесьеэлектромаш, Владимирский электромоторный завод, Ярославский электромашиностроительный завод, Силовые машины

Серии двигателей: АИРЕ

 

Применение

Однофазный электродвигатель – это асинхронный двигатель, который предназначен для подключения к однофазной сети переменного тока. Применяется в основном в вентиляторах с малой мощностью. При выборе электродвигателя необходимо проконсультироваться с заводом производителем.

Технические характеристики лифтовых двигателей

Тип

Мощность, кВт

Частота вращения об./мин.

АИРЕ71С2

1,1

3 000

АИРЕ80А2

1,1

3 000

АИРЕ80А4

0,75

1 500

АИРЕ80В2

1,5

3 000

AИРЕ80В4

1,1

1 500

АИРЕ80С2

2

3 000

АИРЕ80С4

1,5

1 500

АИРЕ80D2

2,2

3 000

Однофазные промышленные двигатели

— как они работают?

Где бы мы были без электродвигателя?

Эти машины дали нам все, от освещения до охлаждения и даже сверхбыстрых электромобилей, все за счет преобразования электроэнергии в механическое движение. Существует много типов электродвигателей, но электродвигатели переменного тока остаются обычным явлением в промышленности благодаря своей элегантности и проверенной работе. Эти двигатели используют переменный ток и физику электромагнетизма для генерации вращательной мощности и бывают разных типов в зависимости от области применения.В этой статье будут рассмотрены однофазные промышленные двигатели, опора современного мира, обеспечивающая энергией многие полезные инструменты. Этот двигатель, его принципы работы и его характеристики будут обсуждены, чтобы помочь разработчикам понять преимущества однофазных двигателей, а также когда их использовать.

Что такое однофазные двигатели?

Однофазные двигатели — это двигатель переменного тока, в котором используются электромагнитные принципы для создания полезной энергии вращения. Они работают примерно так же, как и двигатели с короткозамкнутым ротором, с фазным ротором и другие многофазные двигатели, за исключением того, что они несколько упрощены (дополнительную информацию об этих двигателях можно найти в наших статьях о короткозамкнутых роторах, роторах и асинхронных двигателях).«Однофазный» относится только к входной мощности, поэтому существует много типов двигателей, которые используют однофазные входы. Обычно они используются в асинхронных двигателях, но также могут быть синхронными. Однофазные двигатели содержат как статоры, так и роторы, как и большинство электродвигателей, но они используют только одну обмотку в своем статоре, которая пропускает только один переменный ток, а их роторы, как правило, более простые, чем у других конструкций. Для них также требуется стартер, поскольку использование только одной фазы входной мощности обеспечивает нулевой пусковой момент в состоянии покоя.

Как работают однофазные двигатели?

В однофазных двигателях используются как статоры, так и роторы, как и в других двигателях переменного тока, хотя они работают по-другому. В трехфазных двигателях 120-градусное разделение фаз между тремя токами переменного тока, проходящими через обмотки статора, создает вращающееся магнитное поле; однако магнитное поле, создаваемое только одной фазой, «пульсирует» между двумя полюсами двигателя, поскольку существует только один переменный ток, создающий два возможных состояния магнитного поля (переменный ток имеет два синусоидальных пика, где магнитные поля будут равными, но противоположными по ориентации, или «вверх-вниз»).Это приближается к вращающемуся полю, но не полностью. Эти двигатели должны получить начальный толчок или почувствовать силу, «не совпадающую по фазе» с фазой статора, чтобы произошло начальное движение ротора. Стационарный ротор не будет ощущать никаких эффектов от этого пульсирующего магнитного поля «вверх-вниз», если он еще не движется, поскольку магнитные силы вверх-вниз идеально нейтрализуют друг друга. Пускатели двигателей решают эту проблему, добавляя противофазное воздействие (вспомогательные обмотки, конденсаторы и т. Д.), Которое затем создает моделируемое вращающееся магнитное поле для запуска двигателя.Более подробную информацию об этих стартерах можно найти в нашей статье о пускателях двигателей.

Типы однофазных двигателей

Однофазный двигатель относится только к типу используемого входного источника питания, а не к конкретной схеме статор-ротор-пускатель. Многие спецификации для других двигателей переменного тока применяются при выборе однофазного двигателя, и их можно найти в наших статьях об асинхронных двигателях и двигателях переменного тока. В этой статье будут указаны различные типы однофазных двигателей, чтобы общие принципы можно было применить к этим конкретным конструкциям.

Двухфазные двигатели

В двигателях

с разделенной фазой имеется вспомогательная обмотка вне обмотки статора, чтобы обеспечить начальную разность фаз, необходимую для вращения. В обмотке стартера используется провод меньшего диаметра и меньше витков, чем в обмотке статора, что придает ей большее сопротивление. Оно будет не в фазе с основным магнитным полем, потому что повышенное сопротивление изменяет фазу питания. Эта обмотка с расщепленной фазой даст начальный толчок для начала вращения, а основная обмотка будет поддерживать двигатель в работе.Затем пусковую обмотку необходимо отключить (обычно с помощью центробежного переключателя на выходном валу), как только двигатель достигнет процента полной скорости (около 75% от номинальной скорости). Увеличение сопротивления пусковой обмотки также увеличивает риск перегорания катушки, поэтому эти переключатели необходимы для правильной и надежной работы двигателей с расщепленной фазой.

Конденсаторные пусковые и конденсаторные пуско-конденсаторные двигатели

В этих типах однофазных двигателей конденсаторы вместе со вспомогательной обмоткой обеспечивают разность фаз, необходимую для запуска вращения в этих двигателях.Они похожи на двигатели с расщепленной фазой, но для сдвига фазы стартера используют емкость вместо сопротивления. В двигателях с конденсаторным пуском центробежный выключатель отключает пусковой конденсатор, когда двигатель набирает определенную скорость (около 75-80% от полной скорости). Конденсаторные двигатели с пусковым конденсатором используют два конденсатора (пусковой конденсатор и рабочий конденсатор), где ток, протекающий через пусковой конденсатор, опережает приложенное напряжение и вызывает фазовый сдвиг. Пусковой конденсатор затем ускоряет запуск двигателя, а рабочий конденсатор переключается на работу, когда двигатель набирает номинальную скорость.

Двигатели с постоянным разделением конденсаторов

В двигателях с постоянным разделением конденсаторов используется постоянный конденсатор, включенный последовательно с пусковой обмоткой, без центробежного переключателя. Конденсатор постоянно используется при работающем двигателе, а это означает, что он не может обеспечить усиление, которое дает пусковой конденсатор, используемый в предыдущих двух конструкциях. Однако эти двигатели выигрывают от того, что им не нужен пусковой механизм (переключатель, кнопка и т. Д.), Поскольку рабочий конденсатор, включенный последовательно со вспомогательной обмоткой, пассивно изменяет фазу однофазного входа.Двигатели с постоянным разделением конденсаторов также реверсивны и, как правило, более надежны, чем другие однофазные двигатели.

Двигатели с экранированными полюсами

В этом типе однофазного двигателя не используются обмотки или пускатели для запуска двигателя. Вместо этого в этом двигателе используется схема, показанная на Рисунке 1 ниже:

Рис. 1: Схема двигателя с экранированными полюсами. Обратите внимание на то, что заштрихованные катушки являются продолжением основной обмотки статора.

Этот двигатель более прост, чем другие однофазные двигатели, поскольку не требует дополнительных цепей пускателя или переключателей.Корпус двигателя с C-образным сердечником изготовлен из магнитопроводящего материала (обычно железа), который передает пульсирующее магнитное поле от основной обмотки статора к ротору. Полюса этого двигателя разделены на две неравные половины, где два «затененных» полюса создаются путем расширения основной обмотки статора до меньших обмоток на одной из этих половин (показано выше). Когда однофазный переменный ток входит в С-образный сердечник, он «затеняет» намотанные половины, заставляя магнитное поле отставать от затененной части (затеняющая катушка создает противоположное магнитное поле, замедляя магнитный поток).Это вызывает неравномерное распределение индуктивных сил по ротору и заставляет его вращаться.

Заявки и критерии отбора

Для некоторых приложений требуются определенные однофазные двигатели. В таблице 1 приведены качественные рабочие характеристики каждого типа двигателя.

Таблица 1: Качественная сводка рабочих характеристик каждого типа однофазного двигателя.

Пусковой момент

КПД

Надежность

Стоимость

Двухфазный двигатель

Низкая

Низкая

Низкая

Низкая

Конденсатор-пуск

Средний

Средний

Высокая

Средний

Конденсатор постоянного разделения

Низкая

Высокая

Высокая

Средний

Конденсатор пуско-конденсаторный

Высокая

Высокая

Высокая

Высокая

Шестигранник

Низкая

Низкая

Низкая

Низкая

Двигатели

с расщепленной фазой имеют относительно простую конструкцию, что снижает их стоимость и производительность.Однако они имеют низкий пусковой момент и склонны к перегреву из-за резистивного характера их пускового механизма. Применения с низким крутящим моментом, такие как ручные шлифовальные машины, небольшие вентиляторы и другие устройства с малой мощностью, лучше всего подходят для двигателей с расщепленной фазой. Не используйте этот двигатель, если требуется высокий крутящий момент или высокая частота цикла; при таком использовании электродвигатели с расщепленной фазой почти наверняка сгорят.

Двигатели с конденсаторным пуском имеют улучшенный пусковой момент по сравнению с двигателями с расщепленной фазой и могут выдерживать высокие рабочие циклы.В результате они получили более широкое применение и являются основой для промышленных двигателей общего назначения. К ним относятся, среди прочего, конвейеры с ременным приводом, большие нагнетатели и редукторы. Их главный недостаток — стоимость, так как они дороже двигателей с расщепленной фазой.

Электродвигатели с постоянным разделением конденсаторов, обладая низким пусковым крутящим моментом, могут хорошо работать при высокой частоте циклов и обладают отличной эффективностью и надежностью. Они двусторонние благодаря отсутствию пускового механизма и могут регулироваться по скорости.Их единственный серьезный недостаток заключается в том, что они не могут справиться с высокими крутящими моментами, но в остальном являются надежными, высокоэффективными машинами, отлично подходящими для гаражных ворот, открывателей ворот или любого другого приложения с низким крутящим моментом, которое требует мгновенного реверсирования.

Конденсаторные двигатели с пусковым конденсатором сочетают в себе преимущества как конденсаторных двигателей с постоянным разделением, так и конденсаторных пусковых двигателей при удвоенной стоимости. Они могут приводить в действие приложения, которые слишком сложны для других однофазных двигателей, такие как воздушные компрессоры, насосы высокого давления, вакуумные насосы, приложения мощностью 1-10 л.с. и т. Д.используя их высокий пусковой крутящий момент. Они эффективны при полном токе нагрузки и надежны благодаря своей упрощенной конструкции. Если мощность, надежность и эффективность являются приоритетами, а стоимость не вызывает беспокойства, рассмотрите этот тип однофазного двигателя.

Двигатели с экранированными полюсами часто считаются «одноразовыми» электродвигателями, поскольку они просты в производстве и дешевле заменять, чем ремонтировать. Их крутящий момент, эффективность и надежность далеки от того, чего могут достичь другие однофазные двигатели, но они недороги и хорошо работают в приложениях с низкой мощностью.К ним относятся бытовые применения, такие как вентиляторы для ванных комнат, фены, электрические часы, игрушки и т. Д. Если для проекта требуется лишь небольшая мощность, а цена имеет первостепенное значение, двигатель с экранированными полюсами будет работать нормально.

Сводка

В этой статье представлено понимание того, что такое однофазные промышленные двигатели и как они работают. Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

Источники:
  1. https://geosci.uchicago.edu
  2. http://hyperphysics.phy-astr.gsu.edu/hbase/mintage/indmot.html
  3. http://www.egr.unlv.edu/~eebag/Induction%20Motors.pdf
  4. https://people.ucalgary.ca
  5. https://faculty.up.edu/lulay/me401/fetchpdf.cgi.pdf
  6. https://www.electrical4u.com/types-of- однофазный асинхронный двигатель /

Прочие изделия из двигателей

Больше от Machinery, Tools & Supplies

Основы однофазного двигателя

В электротехнике однофазная электроэнергия — это распределение электроэнергии переменного тока с использованием системы, в которой все напряжения источника питания изменяются в унисон.Вот некоторые основы однофазного двигателя.

Однофазное распределение используется, когда нагрузки в основном связаны с освещением и обогревом, с небольшим количеством больших электродвигателей в домах, коммерческих и промышленных помещениях. Однофазная система более экономична.

Однофазные асинхронные двигатели можно легко собрать с меньшими затратами, и они надежны с точки зрения ремонта и технического обслуживания. Эти преимущества делают однофазную систему полезной для таких предметов, как вентиляторы, пылесосы, стиральные машины, воздуходувки, центробежные насосы и даже небольшие игрушки.

Одна фаза создает колеблющееся магнитное поле, которое движется вперед и назад, а не вращающееся магнитное поле. В результате настоящий однофазный двигатель имеет нулевой пусковой момент. После того, как ротор начинает вращаться, он продолжает вращаться из-за колеблющегося магнитного поля в статоре.

Для сборки однофазного асинхронного двигателя требуются обычно две основные части: ротор и статор. Ротор — это вращающаяся часть двигателя, и он связан с механической нагрузкой через вал.Однофазные асинхронные двигатели имеют концентрические катушки. Статор — это неподвижная часть двигателя, и на статор подается однофазный переменный ток.

Однофазный источник переменного тока поступает на обмотку статора двигателя, и переменный ток начинает течь через статор. Этот переменный ток создает переменный поток, известный как основной поток. Основной поток соединяется с проводниками ротора, которые затем разрезаются.

В роторе начинает течь ток, и этот ток называется током ротора.Поток ротора создается из этого тока. Два потока, основной поток и поток ротора, создают крутящий момент, необходимый для вращения двигателя.

Однофазные асинхронные двигатели имеют медную или алюминиевую короткозамкнутую клетку, встроенную в цилиндр из стального ламината, типичного для многофазных асинхронных двигателей.

Есть несколько типов однофазных двигателей:

Двигатель с экранированными полюсами. Это очень простые двигатели, в которых не используется конденсатор. Их низкий КПД делает их пригодными для применений с низким энергопотреблением.

Двигатель с расщепленной фазой. В этом двигателе также не используется конденсатор. Они недороги и обладают низким пусковым моментом и высоким пусковым током.

Двигатель с постоянным разделенным конденсатором (PSC). Этот двигатель часто называют однозначным конденсаторным двигателем. Он может использовать центробежный переключатель для отключения фазы пуска, когда двигатели набирают обороты. Поскольку в нем используется конденсатор, этот тип двигателя обеспечивает более высокий пусковой момент и более высокий КПД, чем двигатели без конденсатора.

Конденсаторный двигатель с двумя номиналами. Этот тип имеет те же преимущества, что и двигатель PSC. Конденсаторные двигатели с двумя номиналами могут использовать центробежный переключатель для отключения фазы пуска, когда двигатель набирает скорость. Он имеет более высокий пусковой момент и более высокий КПД, чем двигатели без конденсатора.

Большинство сбоев происходит из-за их использования в неподходящем приложении. Обратите особое внимание на требования к применению, прежде чем выбирать двигатель для замены вышедшего из строя или для новой конструкции.

Днем или ночью служба IER Services дежурит, чтобы ваши системы работали на полной скорости. У нас есть службы экстренной помощи, доступные 24 часа в сутки, 7 дней в неделю. Позвоните в IER Services сегодня по телефону 614-298-1600.

Однофазные асинхронные двигатели Типы, конструкция, принципы работы

Однофазный асинхронный двигатель — один из самых известных представителей огромного семейства двигателей переменного тока. Этот тип двигателя предназначен для преобразования электрической энергии в механическую для выполнения некоторых физических задач.Для правильного выполнения своей работы этому асинхронному двигателю требуется только одна фаза питания. Они часто используются в приложениях с низким энергопотреблением, например, в быту и легкой промышленности. Легкая и простая конструкция, дешевая стоимость обслуживания, высокая надежность и низкая стоимость ремонта — вот некоторые из его значительных преимуществ.

Linquip собрал всю информацию, необходимую для знакомства с этим типом двигателя. В следующих разделах мы подробно остановимся на конструкции, принципе работы и типах однофазных асинхронных двигателей.Оставайтесь с нами.

Конструкция однофазного асинхронного двигателя

Двумя основными компонентами однофазного асинхронного двигателя являются статор и ротор. Как вы, возможно, знаете и понимаете по названию, статор — это неподвижная часть этого двигателя. С другой стороны, ротор — это вращающийся компонент двигателя. однофазное переменное питание достигает обмотки статора. Ротор с помощью вала подключается к механической нагрузке. Ротор имеет многослойный железный сердечник со множеством перекошенных пазов.Эти пазы ротора бывают закрытого или полузакрытого типа. Обмотки ротора симметричны.

Между ротором и статором имеется воздушный зазор. Чаще всего этот двигатель используется в холодильниках, часах, дрелях, насосах, стиральных машинах и т. Д. Обмотка статора в асинхронных двигателях разделена на две части: основную обмотку и вспомогательную обмотку. положение этих двух типов обмоток таково, что вспомогательная обмотка перпендикулярна основной обмотке.В асинхронных двигателях основная обмотка — это обмотка с большим количеством витков, а другая называется вспомогательной обмоткой.

Принцип работы однофазного асинхронного двигателя

В предыдущем разделе вы получили некоторую информацию о конструкции и конструкции однофазных асинхронных двигателей. Теперь, когда вы знаете некоторые части этого типа асинхронного двигателя, давайте посмотрим, какой принцип работы управляет работой этой конструкции.

Как упоминалось ранее, на обмотку статора подается однофазный переменный ток.После того, как обмотка статора получает питание, создается магнитное поле, которое действует синусоидальным образом. Через некоторое время полярность магнитного поля меняется на противоположную, и переменный поток не может обеспечить необходимую силу вращения для двигателя. Как вы знаете, для работы любого электродвигателя нам нужны два потока.

Взаимодействие этих двух потоков создает требуемый крутящий момент. При подаче однофазного переменного тока на обмотку статора переменный ток начинает проходить через статор.Этот переменный ток создает переменный поток, который называется основным потоком. основной поток также связан с проводниками ротора.

Согласно закону электромагнитной индукции Фарадея, ЭДС индуцируется в роторе. Поскольку цепь ротора замыкается, ток начинает течь в роторе. Этот ток, называемый током ротора, создает свой поток, называемый потоком ротора. Поскольку этот поток создается по принципу индукции, двигатель, работающий по этому принципу, получил свое название асинхронный двигатель.

Типы однофазных асинхронных двигателей

В предыдущем разделе вы прочитали об условиях и принципах работы однофазного асинхронного двигателя в зависимости от них. Пришло время узнать больше о различных типах однофазных асинхронных двигателей. Основываясь на различных методах запуска однофазного IM, существует четыре основных различных типа, которые мы собираемся предоставить полезную информацию о каждом из них в следующих разделах.

Асинхронный двигатель с разделенной фазой

Этот тип однофазного электродвигателя IM также известен как двигатель с резистивным пуском.В этом типе основная обмотка и вспомогательная обмотка смещены на 90 градусов. Вспомогательная обмотка и центробежный выключатель включены последовательно. Работа этого переключателя заключается в отключении вспомогательной обмотки от главной цепи, когда скорость двигателя достигает 75-80 процентов от синхронной скорости.

Некоторые характеристики асинхронного двигателя с расщепленной фазой включают номинальную мощность от 60 до 250 Вт, постоянную скорость и высокий пусковой ток. Из-за невысокой стоимости обслуживания и ремонта двигателя он очень популярен на рынке.В некоторых бытовых применениях этот двигатель эффективно используется. Помните, что из-за низкого пускового момента он не может развивать мощность более 1 кВт.

Конденсаторный пусковой двигатель

В этом однофазном ИД вспомогательная обмотка имеет больше витков. электролитический конденсатор включен последовательно со вспомогательной обмоткой. Как и в предыдущем типе, также подключен центробежный переключатель, и две обмотки расположены под углом 90 градусов. Некоторые характеристики конденсаторного пускового двигателя заключаются в том, что стоимость обслуживания и ремонта высока, а номинальная мощность составляет от 120 до 7 кВт.Двигатели с конденсаторным пуском обычно используются в приложениях, где требуется высокий пусковой момент.

Конденсаторный пусковой двигатель и конденсаторный двигатель

Принцип работы и конструкция конденсаторного пускового устройства и конденсаторного пускового двигателя и конденсаторного пускового двигателя почти одинаковы. Двумя основными компонентами этого двигателя являются ротор с сепаратором и обмотки статора. Обмотки статора расположены под углом 90 градусов. В этом типе асинхронного двигателя используются два конденсатора, включенных параллельно. Здесь вы также можете найти центробежный выключатель.Запуск больших нагрузок, простота эксплуатации и конструкции, а также высокий КПД — вот некоторые из характеристик конденсаторного запуска и конденсаторного запуска двигателя. Этот двигатель выгоден как для домашнего, так и для промышленного применения.

Электродвигатель с экранированными полюсами

Двигатель с экранированными полюсами состоит из ротора с сепаратором и статора. Сам статор состоит из выступающих полюсов с возбуждающей катушкой. Каждый полюс обернут затеняющей катушкой. Вот почему полюса называются экранированными полюсами, а двигатель — электродвигателем с экранированными полюсами.Простая конструкция и конструкция, отсутствие центробежного переключателя и номинальная мощность 30 Вт — вот некоторые характеристики этого типа асинхронного двигателя. Из-за его низкой мощности этот двигатель обычно используется в приложениях с низким энергопотреблением.

Заключение

В этой статье мы постарались предоставить некоторую полезную информацию об однофазных асинхронных двигателях. Прежде всего, мы поговорили об общей конструкции и конструкции этого типа электродвигателя переменного тока. Затем мы перешли к принципу работы и, наконец, дошли до различных типов однофазных ИД.Мы будем очень рады, если у вас есть какие-либо мнения или опыт использования этого типа асинхронных двигателей, и вы захотите поделиться им с нами в комментариях. Более того, если у вас есть какие-либо вопросы, зарегистрируйтесь на нашем веб-сайте и позвольте нашим специалистам Linquip помочь вам. Надеюсь, вам понравилась эта статья.

Типы и удивительные применения асинхронного двигателя

Индукционные машины — это наиболее часто используемый тип двигателей в жилых, коммерческих и промышленных помещениях.В асинхронном двигателе электрический ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции от вращающегося магнитного поля обмотки статора.

Princy A. J | 4 июня 2020 г.

Асинхронный двигатель — это обычно используемый электродвигатель переменного тока. В асинхронном двигателе электрический ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции от вращающегося магнитного поля обмотки статора.Ротор асинхронного двигателя может быть ротором с короткозамкнутым ротором или ротором с намоткой.

Асинхронные двигатели, используемые в различных приложениях, также называются асинхронными двигателями. Это связано с тем, что асинхронный двигатель всегда работает с меньшей скоростью, чем синхронная скорость. Скорость вращающегося магнитного поля в статоре называется синхронной скоростью.

Индукционные машины являются наиболее часто используемым типом двигателей в жилых, коммерческих и промышленных помещениях. Эти трехфазные двигатели переменного тока обладают следующими характеристиками:

  • Простая и грубая конструкция
  • Доступное и низкое обслуживание
  • Высокая надежность и профессионализм
  • Нет необходимости в дополнительном пусковом двигателе и необходимости в синхронизации

Два типа асинхронных двигателей

Однофазный асинхронный двигатель

Однофазный асинхронный двигатель не запускается самостоятельно.Основная обмотка пропускает спорадический ток, когда двигатель подключен к однофазному источнику питания. Вполне логично, что самый дешевый, самый дешевый механизм сортировки должен использоваться наиболее регулярно. В зависимости от способа запуска эти машины классифицируются по-разному. Это двигатели с экранированными полюсами, с расщепленной фазой и конденсаторные двигатели. Кроме того, конденсаторные двигатели запускаются с конденсатора, работают с конденсатором и имеют двигатели с постоянным конденсатором.

В этих однофазных двигателях пусковая обмотка может иметь последовательный конденсатор и центробежный выключатель.Когда подается напряжение питания, ток в основной обмотке удерживает напряжение питания из-за полного сопротивления основной обмотки. И ток в пусковой обмотке опережает / отстает, напряжение питания зависит от импеданса пускового механизма. Угол между двумя обмотками равен разности фаз, достаточной для создания вращающегося магнитного поля для создания пускового момента. В момент, когда двигатель достигает от 70% до 80% синхронной скорости, центробежный переключатель на валу двигателя размыкается и отключает пусковую обмотку.

Применение однофазных асинхронных двигателей

Однофазные асинхронные двигатели используются в системах с малой мощностью. Эти двигатели широко используются в быту и промышленности. Некоторые из приложений упомянуты ниже:

  • Насосы
  • Компрессоры
  • Вентиляторы малые
  • Миксеры
  • Игрушки
  • Высокоскоростные пылесосы
  • Электробритвы
  • Станки сверлильные

Трехфазный асинхронный двигатель:

Трехфазные асинхронные двигатели с самозапуском не имеют пусковой обмотки, центробежного переключателя, конденсатора или другого пускового устройства.Трехфазные асинхронные двигатели переменного тока находят различное применение в коммерческих и промышленных приложениях. Два типа трехфазных асинхронных двигателей — это двигатели с короткозамкнутым ротором и с фазным ротором. Особенности, которые делают двигатели с короткозамкнутым ротором широко применяемыми, заключаются в основном в их простой конструкции и прочной конструкции. С внешними резисторами двигатели с контактным кольцом могут иметь высокий пусковой момент.

Трехфазные асинхронные двигатели широко используются в бытовых и промышленных приборах, поскольку они имеют прочную конструкцию, не требуют технического обслуживания, сравнительно дешевле и требуют питания только на статоре.

Применение трехфазного асинхронного двигателя

  • Подъемники
  • Краны
  • Подъемники
  • Вытяжные вентиляторы большой мощности
  • Станки токарные приводные
  • Дробилки
  • Маслоэкстракционные заводы
  • Текстиль и др.

Типы однофазных асинхронных двигателей

Однофазный асинхронный двигатель запускается несколькими способами.Механические методы — не очень практичные методы, поэтому двигатель временно запускается путем преобразования его в двухфазный двигатель.

Однофазные асинхронные двигатели классифицируются по вспомогательным средствам, используемым для запуска двигателя. Они классифицируются следующим образом:

  1. Двухфазный двигатель
  2. Конденсаторно-пусковой двигатель
  3. Двигатель с конденсаторным пуском, конденсаторный двигатель
  4. Двигатель с постоянным разделенным конденсатором (PSC)
  5. Электродвигатель с расщепленными полюсами

1.Двухфазный асинхронный двигатель:

Асинхронный двигатель с расщепленной фазой также известен как двигатель с резистивным пуском . Он состоит из одноклеточного ротора, а его статор имеет две обмотки? основная обмотка и пусковая (также называемая вспомогательной) обмотка. Обе обмотки смещены в пространстве на 90 °, как обмотки в двухфазном асинхронном двигателе. Основная обмотка асинхронного двигателя имеет очень низкое сопротивление и высокое индуктивное сопротивление.

Рисунок: Асинхронный двигатель с разделением фаз (a) Принципиальная схема (b) Диаграмма

Характеристики двигателя:

Пусковой момент асинхронного двигателя с резистивным пуском составляет около 1.5-кратный крутящий момент при полной нагрузке. Максимальный крутящий момент или крутящий момент отрыва примерно в 2,5 раза превышает крутящий момент при полной нагрузке примерно при 75% синхронной скорости. Двигатель с расщепленной фазой имеет высокий пусковой ток, который обычно в 7-8 раз превышает значение полной нагрузки.

Заявки:

Двухфазные двигатели наиболее подходят для легко запускаемых нагрузок, где частота запуска ограничена, и они очень дешевы.

  1. Эти моторы используются в стиральных машинах.
  2. Они используются в вентиляторах кондиционирования воздуха.
  3. Используется в миксерах, шлифовальных машинах, полировальных машинах, воздуходувках, центробежных насосах,
  4. Они используются в небольших дрелях, токарных станках, оргтехнике и т. Д.
  5. Иногда они также используются для приводов, требующих более 1 кВт.

Конденсаторные двигатели:

Конденсаторные двигатели — это двигатели, у которых есть конденсатор в цепи вспомогательной обмотки для создания большей разности фаз между током в основной и вспомогательной обмотках.Есть три типа конденсаторных двигателей.


2. Конденсаторно-пусковой двигатель:

Двигатель с конденсаторным пуском развивает гораздо более высокий пусковой момент, т. Е. От 3,0 до 4,5 раз больше крутящего момента при полной нагрузке. Для получения высокого пускового момента значение пускового конденсатора должно быть большим, а сопротивление пусковой обмотки должно быть низким. . Из-за высокого номинального значения VAr необходимого конденсатора используются электролитические конденсаторы порядка 250 Ф. Конденсатор Cs рассчитан на кратковременный ток.

Эти двигатели более дорогие, чем двигатели с расщепленной фазой, из-за дополнительной стоимости конденсатора.

Рисунок: Конденсаторный пусковой двигатель (а), принципиальная схема (б) Диаграмма

Заявки:

  1. Эти двигатели используются для тяжелых нагрузок, когда требуется частый запуск.
  2. Эти двигатели используются для насосов и компрессоров, поэтому они используются в качестве компрессора в холодильнике и кондиционере.
  3. Они также используются для конвейеров и некоторых станков.

3. Двухзначный конденсаторный двигатель

Этот двигатель имеет ротор с сепаратором, а его статор имеет две обмотки, а именно основную обмотку и вспомогательную обмотку. Две обмотки смещены в пространстве на 90 °. В двигателе используются два конденсатора Cs и CR. На начальном этапе два конденсатора подключаются параллельно.

Рисунок: Конденсаторный двигатель с двумя значениями

Заявки:

  1. Конденсаторные двигатели с двумя номиналами используются для нагрузок с большей инерцией, требующих частого запуска.
  2. Применяются в насосном оборудовании.
  3. Применяются в холодильных установках, воздушных компрессорах и т. Д.

4. Двигатель с постоянным разделением конденсаторов (PSC):

Эти двигатели имеют ротор с обмоткой, и его ротор состоит из двух обмоток, а именно основной обмотки и вспомогательной обмотки. Однофазный асинхронный двигатель имеет только один конденсатор С, который включен последовательно с пусковой обмоткой. Конденсатор С постоянно включен последовательно с пусковой обмоткой.Конденсатор C постоянно включен в цепь в условиях запуска и работы.

Преимущества

Однозначный конденсаторный двигатель имеет следующие преимущества:

  1. В двигателях этого типа центробежный переключатель не требуется.
  2. Этот двигатель имеет более высокий КПД.
  3. Он имеет более высокий коэффициент мощности из-за постоянно подключенного конденсатора.
  4. Обладает более высоким крутящим моментом отрыва.

Ограничения конденсаторного двигателя с постоянным разделением:

  1. Электролитические конденсаторы нельзя использовать для непрерывной работы.Следовательно, следует использовать конденсаторы с масляным наполнением, разнесенные по бумаге. Бумажные конденсаторы того же номинала больше по размеру и дороже.
  2. Однозначный конденсатор имеет низкий пусковой крутящий момент, обычно меньший, чем крутящий момент при полной нагрузке.

Заявки:

  1. Эти двигатели используются для вентиляторов и нагнетателей в обогревателях.
  2. Применяется в кондиционерах.
  3. Применяется для привода компрессоров холодильников.
  4. Он также используется для работы с оргтехникой.

5. Двигатель с экранированными полюсами:

Двигатель с расщепленными полюсами — это простой тип однофазного асинхронного двигателя с самозапуском. Он состоит из статора и ротора клеточного типа. Статор состоит из выступающих полюсов. У каждого полюса есть прорези сбоку, а на меньшей части установлено медное кольцо. Эта часть называется заштрихованным полюсом. Кольцо обычно представляет собой одновитковую катушку, известную как затеняющая катушка.

Рис.: Двигатель с расщепленными полюсами и двумя полюсами статора.

Заявки:

  1. Двигатели с расщепленными полюсами используются для привода устройств, которым требуется низкий пусковой момент.
  2. Эти двигатели очень подходят для небольших устройств, таких как реле, вентиляторы всех типов и т. Д., Из-за их низкой начальной стоимости и легкости запуска.
  3. Чаще всего эти двигатели применяются в настольных вентиляторах, вытяжных вентиляторах, фенах, вентиляторах для холодильного оборудования и оборудования для кондиционирования воздуха, электронном оборудовании, охлаждающих вентиляторах и т. Д.

Типы двигателей переменного тока

Типы двигателей переменного тока ВИДЫ ДВИГАТЕЛЕЙ ПЕРЕМЕННОГО ТОКА

В авиационных системах используются два основных типа двигателей переменного тока: индукционные. двигатели и синхронные двигатели. Любой тип может быть однофазным, двухфазным, или трехфазный.

Трехфазные асинхронные двигатели используются там, где требуется большая мощность. обязательный. Они управляют такими устройствами, как стартеры, закрылки, шасси, и гидравлические насосы.

Однофазные асинхронные двигатели используются для управления такими устройствами, как наземные замки, заслонки промежуточного охладителя и запорные масляные клапаны, в которых требование низкое.

Трехфазные синхронные двигатели работают с постоянной синхронной скоростью и обычно используются для управления флюсовыми компасами и синхронизатором гребного винта. системы.

Однофазные синхронные двигатели являются обычными источниками энергии для работы электрические часы и другое мелкое прецизионное оборудование.Они требуют некоторых вспомогательный метод приведения их к синхронным скоростям; то есть начать их. Обычно пусковая обмотка состоит из вспомогательной обмотки статора.

Трехфазный асинхронный двигатель

Трехфазный асинхронный двигатель переменного тока также называется двигателем с короткозамкнутым ротором. И однофазные, и трехфазные двигатели работают по принципу вращающееся магнитное поле. Подковообразный магнит, удерживаемый над стрелкой компаса это простая иллюстрация принципа вращающегося поля.Игла займет положение параллельно магнитному потоку, проходящему между два полюса магнита. Если повернуть магнит, стрелка компаса будет следить. Вращающееся магнитное поле может создаваться двух- или трехфазным ток, протекающий через две или более группы катушек, намотанных внутрь, выступающих внутрь столбы железного каркаса. Катушки на каждой группе полюсов намотаны поочередно. в противоположных направлениях для получения противоположной полярности, и каждая группа подключен к отдельной фазе напряжения.Принцип работы зависит от на вращающемся или вращающемся магнитном поле для создания крутящего момента. Ключ к пониманию асинхронного двигателя — это полное понимание вращающееся магнитное поле.

Вращающееся магнитное поле

Структура поля, показанная в А из рисунок 9-83 имеет полюса, обмотки которых запитаны тремя переменными напряжениями: a, b и c. Эти напряжения имеют одинаковую величину, но различаются по фазе, как показано на B на рисунке 9-83.

В момент времени, показанного как 0 в B фигура 9-83, результирующее магнитное поле, создаваемое приложением три напряжения имеют наибольшую интенсивность в направлении, простирающемся от от полюса 1 к полюсу 4. При этом условии полюс 1 можно рассматривать как северный полюс и полюс 4 как южный полюс.

В момент времени, обозначенный цифрой 1, результирующее магнитное поле будет имеют наибольшую интенсивность в направлении от полюса 2 к полюсу 5; в этом случае полюс 2 можно рассматривать как северный полюс, а полюс 5 — как южный полюс.Таким образом, между моментом 0 и моментом 1 магнитное поле повернулся по часовой стрелке.

В момент 2 результирующее магнитное поле имеет наибольшую напряженность. в направлении от полюса 3 к полюсу 6, и результирующее магнитное поле продолжал вращаться по часовой стрелке.

В момент 3 полюса 4 и 1 можно рассматривать как северный и южный полюсы, соответственно, и поле повернулось еще дальше.

В более поздние моменты времени результирующее магнитное поле поворачивается к другому позиции при движении по часовой стрелке, один оборот поля, происходящего за один цикл.Если возбуждающие напряжения имеют частоту 60 гц, магнитное поле делает 60 оборотов в секунду, или 3600 об / мин. Эта скорость известна как синхронная скорость вращающегося поля.

Конструкция асинхронного двигателя

Стационарная часть асинхронного двигателя называется статором, и вращающийся элемент называется ротором. Вместо заметных полюсов в статор, как показано в A на рисунке 9-83, распределен используются обмотки; эти обмотки размещены в пазах по периферии статора.

Обычно невозможно определить количество полюсов в индукции. двигатель при визуальном осмотре, но информацию можно получить на паспортная табличка мотора. На паспортной табличке обычно указано количество полюсов. и скорость, с которой двигатель предназначен для работы. Это оцененное или несинхронное, скорость немного меньше синхронной скорости. Чтобы определить количество количества полюсов на фазу двигателя, разделите частоту в 120 раз на Номинальная скорость; записано в виде уравнения:

где: P — количество полюсов на фазу, f — частота в гц, N — номинальная скорость в об / мин, 120 — постоянная.

Результат будет почти равен количеству полюсов на фазу. Например, рассмотрите 60-тактный трехфазный двигатель с номинальной скоростью. 1750 об. / мин. В таком случае:

Следовательно, у двигателя четыре полюса на фазу. Если количество полюсов для каждой фазы указано на паспортной табличке, можно определить синхронную скорость путем деления частоты в 120 раз на количество полюсов на фазу. В в примере, использованном выше, синхронная скорость равна 7200 разделенным на 4, или на 1800 об / мин.

Ротор асинхронного двигателя состоит из железного сердечника. с продольными прорезями по окружности, в которых тяжелая медь или алюминиевые стержни врезаны. Эти стержни приварены к тяжелому кольцу из высокая проводимость на обоих концах.

Составную конструкцию иногда называют беличья клетка, а двигатели, содержащие такой ротор, называются беличьими асинхронные двигатели с клеткой. (См. Рисунок 9-84.)

Асинхронный двигатель скольжения

Когда ротор асинхронного двигателя подвергается вращающемуся магнитному поле, создаваемое обмотками статора,

в продольных стержнях индуцируется напряжение.Наведенное напряжение вызывает ток течет через стержни. Этот ток, в свою очередь, производит собственное магнитное поле, которое сочетается с вращающимся полем, так что ротор принимает положение, в котором индуцированное напряжение минимизировано. В виде в результате ротор вращается почти с синхронной скоростью поле статора, разность скоростей достаточна, чтобы вызвать надлежащее количество тока в роторе для преодоления механических и электрические потери в роторе.Если бы ротор вращался с той же скоростью как вращающееся поле, проводники ротора не будут разрезаны никаким магнитным силовые линии, без ЭДС будет индуцироваться в них, ток не может течь, и не было бы крутящего момента. Тогда ротор замедлится. За это причина, всегда должна быть разница в скорости между ротором и вращающееся поле. Эта разница в скорости называется скольжением и выражается в процентах от синхронной скорости. Например, если ротор вращается при 1750 об / мин и синхронной скорости 1800 об / мин, разница в скорость 50 об / мин.Проскальзывание тогда равно 50/1800 или 2,78 процента.

Однофазный асинхронный двигатель

Предыдущее обсуждение относилось только к многофазным двигателям. Один фазный двигатель имеет только одну обмотку статора. Эта обмотка генерирует поле который просто пульсирует, а не вращается. Когда ротор неподвижен, расширяющееся и сжимающееся поле статора индуцирует токи в роторе. Эти токи создают поле ротора, противоположное полярности поля ротора. статор.Противостояние поля оказывает поворачивающее усилие на верхнюю и нижние части ротора пытаются повернуть его на 180 ° от своего положения. Поскольку эти силы действуют через центр ротора, вращение сила одинакова в каждом направлении. В результате ротор не вращается. Если ротор начал вращаться, он продолжит вращаться в направлении в котором он запускается, так как вращающая сила в этом направлении поддерживается по импульсу ротора.

Асинхронный двигатель

с экранированными полюсами

Первая попытка разработать самозапускающуюся однофазную Двигатель представлял собой асинхронный двигатель с экранированными полюсами (рисунок 9-85).У этого двигателя есть выступающие полюса, часть каждого полюса окружена тяжелое медное кольцо. Наличие кольца вызывает магнитное поле через кольцевидную часть лицевой стороны полюса, чтобы заметно отставать от этого через другую часть полюсной грани. Чистый эффект — производство небольшой составляющей вращения поля, достаточной, чтобы вызвать ротор вращаться. По мере ускорения ротора крутящий момент увеличивается до тех пор, пока номинальная скорость получается. Такие двигатели обладают низким пусковым моментом и находят их наибольшее применение в небольших двигателях вентиляторов, где начальный крутящий момент требуется низкий.

На рисунке 9-86 показана схема полюса и ротора. Полюса двигателя с экранированными полюсами напоминают двигатель постоянного тока.

Катушка с низким сопротивлением, короткозамкнутая или медная полоса помещается поперек один наконечник каждого маленького полюса, от которого двигатель получает название затененного столб. Ротор этого двигателя — беличья клетка.

По мере увеличения тока в обмотке статора увеличивается магнитный поток.Часть этого потока разрезает затеняющую катушку с низким сопротивлением. Это побуждает ток в затеняющей катушке, и по закону Ленца ток устанавливает поток, который противостоит потоку, вызывающему ток. Следовательно, большая часть потока проходит через незатененную часть полюсов, как показано на рисунке 9-86.

Когда ток в обмотке и основной поток достигает максимума, скорость изменения равна нулю; таким образом, нет ЭДС. индуцируется в затеняющей катушке.Чуть позже ток затеняющей катушки, вызывающий наведенную э.д.с. отставать, достигает нуля, и нет встречного потока. Поэтому основные поток поля проходит через заштрихованную часть полюса поля.

Основной поток поля, который теперь уменьшается, индуцирует ток в затеняющая катушка. По закону Ленца этот ток создает поток, противодействующий уменьшение потока основного поля в заштрихованной части полюса. Эффект состоит в том, чтобы сконцентрировать силовые линии в заштрихованной части полюсное лицо.

Фактически, затеняющая катушка задерживает во временной фазе часть поток, проходящий через заштрихованную часть полюса. Это отставание во времени флюса в затемненном наконечнике заставляет флюс производить эффект движение по лицевой стороне шеста слева направо в направлении заштрихованного кончика. Это ведет себя как очень слабое вращающееся магнитное поле, и крутящий момент, достаточный для запуска небольшого двигателя.

Пусковой момент двигателя с экранированными полюсами очень слабый, и коэффициент мощности низкий.Следовательно, он построен в размерах, подходящих для управляя такими устройствами, как маленькие вентиляторы.

Двигатель с расщепленной фазой

Существуют различные типы самозапускающихся двигателей, известных как расщепленная фаза. моторы. У таких двигателей пусковая обмотка смещена на 90 электрических градусов. от основной или беговой обмотки. У некоторых типов пусковая обмотка имеет довольно высокое сопротивление, из-за которого ток в этой обмотке не совпадают по фазе с током в бегущей обмотке.Это условие производит, по сути, вращающееся поле и ротор вращаются. Центробежный переключатель автоматически отключает пусковую обмотку после того, как ротор достигнет примерно 25 процентов от его номинальной скорости.

Конденсаторный пусковой двигатель

С развитием электролитических конденсаторов большой емкости появилась разновидность двигателя с расщепленной фазой, известного как двигатель с конденсаторным пуском, сделал. Почти все двигатели с дробной мощностью, используемые сегодня в холодильниках, масляные горелки и другие подобные устройства относятся к этому типу.(Видеть фигура 9-87.) В этом приспособлении пусковая обмотка и ходовая обмотка имеют одинаковый размер и значение сопротивления. Фазовый сдвиг между токами двух обмоток получается с помощью конденсаторов, соединенных последовательно со стартовой обмоткой.

Двигатели с конденсаторным пуском имеют пусковой крутящий момент, сопоставимый с их крутящим моментом. при номинальной скорости и может использоваться в приложениях, где начальная нагрузка тяжелый. Опять же, требуется центробежный выключатель для отключения пускового обмотки, когда скорость ротора составляет примерно 25 процентов от номинальной скорости.

Хотя некоторые однофазные асинхронные двигатели имеют мощность до 2 л.с. (лошадиные силы), основная область применения — 1 л.с. или меньше при напряжении номинальное значение 115 вольт для меньших размеров и от 110 до 220 вольт для одной четверти л.с. и выше. Для еще большей мощности многофазные двигатели обычно б / у, так как они обладают отличными характеристиками пускового момента.

Направление вращения асинхронных двигателей

Направление вращения трехфазного асинхронного двигателя можно изменить просто поменяв местами два вывода к двигателю.Тот же эффект может быть полученным в двухфазном двигателе путем обратного подключения к одной фазе. В однофазном двигателе обратное подключение к пусковой обмотке изменит направление вращения.

Большинство однофазных двигателей общего назначения имеют для быстрого реверсирования подключений к пусковой обмотке. Ничего не может для двигателя с экранированными полюсами, чтобы изменить направление вращения, потому что направление определяется физическим расположением медной штриховки звенеть.

Если после пуска разорвется одно соединение с трехфазным двигателем, двигатель будет продолжать работать, но будет обеспечивать только одну треть номинальной мощность. Кроме того, двухфазный двигатель будет работать на половину своей номинальной мощности, если одна фаза отключена. Ни один из двигателей не запустится при этих ненормальных условия.

Синхронный двигатель

Синхронный двигатель — один из основных типов двигателей переменного тока. Нравиться асинхронный двигатель, синхронный двигатель использует вращающийся магнитный поле.Однако, в отличие от асинхронного двигателя, развиваемый крутящий момент не зависят от индукции токов в роторе. Вкратце принцип работы синхронного двигателя выглядит следующим образом: Многофазный источник переменного тока приложено к обмоткам статора, и вращающееся магнитное поле производится. На обмотку ротора подается постоянный ток, а другой создается магнитное поле. Синхронный двигатель спроектирован и сконструирован таким образом что эти два поля реагируют друг на друга таким образом, что ротор тащится и вращается с той же скоростью, что и вращающийся магнитный поле, создаваемое обмотками статора.

Понимание работы синхронного двигателя можно получить, рассматривая простой двигатель на рис. 9-88. Предполагать что полюса A и B вращаются по часовой стрелке с помощью некоторых механических средств чтобы создать вращающееся магнитное поле, они индуцируют полюса противоположных полярность ротора из мягкого железа, и силы притяжения существуют между соответствующие северный и южный полюса.

Следовательно, когда полюса A и B вращаются, ротор увлекается на такая же скорость.Однако, если к валу ротора приложена нагрузка, ротор ось на мгновение отстанет от оси вращающегося поля, но после этого будет продолжать вращаться с полем с той же скоростью, пока нагрузка остается постоянной. Если нагрузка слишком велика, ротор выйдет из строя. синхронизма с вращающимся полем и, как следствие, больше не будет вращаться с полем с одинаковой скоростью. В этом случае говорят, что двигатель перегружен.

Такой простой двигатель, как показанный на рисунке 9-88, никогда не используется.В идея использования каких-либо механических средств вращения полюсов непрактична потому что для выполнения этой работы потребуется другой двигатель. Также такие расположение не требуется, потому что вращающееся магнитное поле может быть производятся электрически с использованием фазированного переменного напряжения. В этом отношении синхронный двигатель аналогичен асинхронному двигателю.

Синхронный двигатель состоит из обмотки возбуждения статора, аналогичной у асинхронного двигателя.Обмотка статора создает вращающийся магнитный поле. Ротор может быть постоянным магнитом, как в небольших однофазных синхронных двигатели, используемые для часов и другого небольшого прецизионного оборудования, или это может быть электромагнит, питаемый от источника постоянного тока и питаемый через скольжение кольца в обмотки возбуждения ротора, как в генераторе переменного тока. Фактически, генератор может работать как генератор переменного тока или как синхронный двигатель.

Поскольку синхронный двигатель имеет небольшой пусковой момент, некоторые средства должны быть обеспечено, чтобы довести его до синхронной скорости.Самый распространенный метод состоит в том, чтобы запустить двигатель без нагрузки, дать ему достичь полной скорости, а затем возбудить магнитное поле. Магнитное поле ротора блокируется с магнитное поле статора и двигателя работает синхронно скорость.

Величина наведенных полюсов в роторе, показанная на фигура 9-89 настолько мал, что достаточный крутящий момент не может быть развит для большинства практические нагрузки. Чтобы избежать такого ограничения работы двигателя, обмотка размещен на роторе и запитан постоянным током.Реостат, включенный последовательно с источником постоянного тока предоставляет оператору машины средства варьируя силу полюсов ротора, таким образом ставя двигатель под контроль для различных нагрузок.

Синхронный двигатель не самозапускающийся. Ротор тяжелый и, с полной остановки, невозможно привести ротор в магнитное замок с вращающимся магнитным полем. По этой причине все синхронные у моторов есть какое-то пусковое устройство.Один из типов простых стартеров — это другой двигатель, переменного или постоянного тока, который доводит ротор примерно до 90 процентов его синхронной скорости. Затем пусковой двигатель отключается, и ротор блокируется синхронно с вращающимся полем. Другой способ запуска — вторая обмотка на роторе типа «беличья клетка». Эта индукция обмотка приводит ротор почти к синхронной скорости, и когда постоянный ток соединенный с обмотками ротора, ротор движется синхронно с полем.Последний метод используется чаще.

Двигатель серии

переменного тока

Двигатель переменного тока является однофазным, но не асинхронный или синхронный двигатель. Он похож на двигатель постоянного тока в этом у него есть щетки и коммутатор. Двигатель серии переменного тока будет работать либо на цепи переменного или постоянного тока. Напомним, что направление вращения двигатель постоянного тока не зависит от полярности приложенного напряжения, при условии, что соединения поля и якоря останутся неизменными.Следовательно, если двигатель постоянного тока подключен к источнику переменного тока, крутящий момент будет развиваться который имеет тенденцию вращать якорь в одном направлении. Однако серия постоянного тока двигатель неудовлетворительно работает от сети переменного тока в следующих случаях: причины:

1. Переменный поток создает большие вихревые токи и гистерезисные потери. в неизолированных частях магнитной цепи и вызывает чрезмерное нагрев и снижение эффективности.

2. Самоиндукция обмоток возбуждения и якоря вызывает низкий фактор силы.

3. Поток переменного поля создает большие токи в катушках, которые закорачиваются щетками; это действие вызывает чрезмерное искрение на коммутаторе.

Чтобы спроектировать серийный двигатель для удовлетворительной работы на переменном токе, следующие внесены изменения:

1. Потери на вихревые токи уменьшаются за счет ламинирования полюсов поля, каркас и арматура.

2.Потери на гистерезис минимизированы за счет использования трансформаторного типа с высокой проницаемостью, листы кремнистой стали.

3. Реактивное сопротивление обмоток возбуждения поддерживается на достаточно низком уровне за счет с использованием неглубоких полюсных наконечников, нескольких витков провода, низкой частоты (обычно 25 циклов для больших двигателей), низкой плотности потока и низкого сопротивления (короткое воздушный зазор).

4. Реактивное сопротивление якоря уменьшается за счет использования компенсирующего обмотка заделана в полюсные наконечники. Если компенсирующая обмотка подключена последовательно с якорем, как показано на рисунке 9-90, якорь является токопроводящим. компенсируется.


Если компенсационная обмотка спроектирована, как показано на рисунке 9-91, якорь имеет индуктивную компенсацию. Если двигатель предназначен для работы в цепях постоянного и переменного тока компенсирующая обмотка включена последовательно. с арматурой.

Ось компенсационной обмотки смещена от ось основного поля на угол 90 °. Это расположение похоже к компенсирующей обмотке, используемой в некоторых двигателях и генераторах постоянного тока для преодоления реакция арматуры.

Компенсирующая обмотка устанавливает противодействующий магнитодвиг. силы, нейтрализующей действие магнитодвижущей силы якоря, предотвращающей искажение потока основного поля и уменьшение реактивного сопротивления якоря. Якорь с индуктивной компенсацией действует как первичная обмотка трансформатора, вторичная обмотка которого является закороченной компенсирующей обмоткой.

Замкнутый вторичная обмотка получает индуцированное напряжение под действием переменного поток якоря, и результирующий ток, протекающий через витки компенсационная обмотка устанавливает противодействующую магнитодвижущую силу, нейтрализуя реактивное сопротивление якоря.

5. Искры на коммутаторе уменьшаются за счет использования предохранительных проводов. P1, P2, P3 и т. Д., Как показано на рисунке 9-92, где кольцевой якорь показан для простоты. Когда катушки в A и B закорочены щетками, индуцированный ток ограничен относительно высоким сопротивлением ведет.

Искры на щетках также уменьшаются за счет использования катушек якоря. имея только однооборотные и многополюсные поля. Получается высокий крутящий момент за счет наличия большого количества проводников якоря и большого диаметра якоря.Таким образом, коммутатор имеет большое количество очень тонких коммутаторных стержней и напряжение якоря ограничено примерно 250 вольт.

Двигатели переменного тока с дробной мощностью называются универсальными двигателями. У них нет компенсационных обмоток или предохранительных проводов. Они используются широко использовать вентиляторы и переносные инструменты, такие как дрели, шлифовальные машины, и пилы.


Как вращается однофазный асинхронный двигатель? — 浙 江聚强 机电 有限公司

В большинстве случаев однофазный асинхронный двигатель имеет не только одну фазу или один набор обмоток, но и источник питания однофазный, что широко используется в повседневной жизни и в приводах малой мощности в различных отраслях промышленности.

По сравнению с трехфазным асинхронным двигателем, он должен работать при однофазном питании. Статор имеет структуру обмотки, подходящую для однофазного питания, а ротор представляет собой ротор с короткозамкнутым ротором с простой конструкцией и надежностью.

Однообмоточный асинхронный двигатель.

Когда однофазный синусоидальный ток проходит через обмотку статора, одна обмотка на статоре создает импульсный магнитный потенциал, и разложение приведет к вращающемуся магнитному потенциалу с одинаковой амплитудой прямой и обратной последовательности.

Двигатель представляет собой статический ротор с коротким замыканием (состояние блокировки), который имеет тот же эффект реакции, что и магнитный потенциал прямой и обратной последовательности, и создает такое же магнитное поле (магнитную плотность) после синтеза статора, поэтому положительный и крутящий момент обратной последовательности, создаваемый двигателем на скорости n ≥ 0, также равен, то есть пусковой крутящий момент Tst = Tf-Tb = 0 двигателя Tf = Tb означает, что однообмоточный однофазный асинхронный двигатель не имеет пускового момента.

После запуска ротора, когда ротор вращается с определенной скоростью или вращается вручную, реакция ротора на магнитный потенциал прямой последовательности прямого вращения сильно отличается от реакции на обратный магнитный потенциал. Скорость скольжения между ротором и магнитным потенциалом прямой последовательности мала, ротор близок к разомкнутой цепи, а ток прямой последовательности ротора невелик. Вращающееся магнитное поле прямой последовательности, синтезируемое реакцией ротора, по-прежнему велико, магнитная плотность и обратный потенциал велики, а значение крутящего момента Tf прямой последовательности также больше.Однако ротор замкнут накоротко на магнитный потенциал обратной последовательности, демонстрируя сильный эффект демпфирования размагничивания. В это время значение импеданса обратной последовательности мало, а составляющая тока обратной последовательности ротора больше. Из-за размагничивания ротора амплитуда синтезированного магнитного поля обратного порядка будет очень маленькой, магнитная плотность, обратная ЭДС и так далее также будут небольшими, поэтому крутящий момент Tb обратного порядка будет меньше. Разница между положительным и обратным крутящим моментом — это фактический крутящий момент, создаваемый двигателем, то есть крутящий момент рулевого управления T = Tb-Tf> 0 является положительным после запуска.

Уникальные особенности однообмоточного асинхронного двигателя Приведенный выше анализ показывает, что однообмоточный асинхронный двигатель не имеет крутящего момента. Но если ротор может вращаться, двигатель может создавать крутящий момент в направлении вращения, заставляя его вращаться непрерывно. Однофазный асинхронный двигатель с двумя обмотками Для того, чтобы однофазный двигатель мог вращаться автоматически, однофазный асинхронный двигатель обычно представляет собой двигатель с двумя обмотками.

Однофазный асинхронный двигатель с пуском по сопротивлению или по емкости Эти два типа двигателей вместе называются асинхронными двигателями с разделением фаз.В дополнение к основной обмотке, определяющей производительность операции, есть запасные вспомогательные вторичные обмотки (сокращенно вторичные обмотки). Когда пусковой двигатель замкнут, основная и вторичная обмотки заряжаются одновременно, что создает пусковой момент, и двигатель запускается. После завершения процесса пуска двигатель работает только от основной обмотки, когда вторичная цепь отключена релейным выключателем (отключение пусковой обмотки или вторичной обмотки).Вторичная обмотка такого двигателя обычно расположена под углом 90 электрических углов относительно основной обмотки в пространстве, а также имеет неортогональный разряд под любым углом θ. Пусковая обмотка должна быть подключена последовательно с соответствующей емкостью, чтобы ток основной обмотки отличался по фазе примерно на 90 градусов.

Для создания вращающегося магнитного поля, помимо различного пространственного положения двухфазной обмотки, существует также разность фаз в текущей временной фазе.Это требует, чтобы пропорциональное соотношение между сопротивлением и реактивным сопротивлением цепи вспомогательной фазной обмотки отличалось от пропорционального отношения параметров основной фазы. За счет увеличения сопротивления вспомогательной обмотки для реализации сдвига фаз между основной и вторичной фазами асинхронный двигатель называется однофазным сопротивлением для запуска асинхронного двигателя, а конденсатор запускает асинхронный двигатель, запуская асинхронный двигатель от источника питания. емкость на ответвлении вспомогательной обмотки последовательно, так что фазы тока двух обмоток различаются.

В однофазном двигателе другой метод создания вращающегося магнитного поля называется методом полюса крышки, также известный как однофазный двигатель полюса крышки. Статор такого двигателя сделан из явнополюсного типа, имеет два типа полюсов и четыре полюса. Каждый полюс имеет небольшую прорезь на всей поверхности полюса размером 1/3/1/4. Магнитный полюс разделен на две части, и на небольшой части установлено медное кольцо короткого замыкания, как если бы оно было покрыто этой частью. полюса, поэтому он называется электродвигателем с крышкой-полюсом.Однофазная обмотка расположена на всем полюсе, а катушки каждого полюса соединены последовательно. Полярность, создаваемая однофазной обмоткой, должна быть установлена ​​по очереди в соответствии с N, S, N и S. Когда обмотка статора наэлектризована, основной поток создается в магнитном полюсе. Согласно закону Ленца, основной поток, проходящий через медное кольцо короткого замыкания, создает в медном кольце индуцированный ток с фазовой задержкой 90 градусов, и поток, создаваемый этим током, также отстает от основного потока в фазе, и его функция аналогична пусковой обмотке емкостного двигателя.В результате создается вращающееся магнитное поле, заставляющее двигатель вращаться.

Однофазный конденсатор, работающий от асинхронного двигателя Однофазный конденсатор, работающий от асинхронного двигателя, называемый емкостным двигателем. Когда этот тип двигателя работает, вспомогательные обмотки также подключаются к электросети одновременно, и двигатель может работать в круговом вращающемся магнитном поле с установленной нагрузкой за счет надлежащей конструкции. Двухфазная нагрузка средняя, ​​КПД высокий, шум низкий, рабочие характеристики хорошие.Поэтому конденсаторный двигатель является наиболее распространенным, да и способов его подключения тоже много. Существуют последовательные или параллельные провода L-типа с электрическим углом 90 ° на оси двухфазной обмотки, неортогональное соединение с произвольным электрическим углом тета на оси двухфазной обмотки и отводное или T-образное соединение. соединение с электрическим углом 90 ° на оси двухфазной обмотки. Иногда из-за необходимости большого пускового момента можно начать с другого конденсатора и автоматически отключать конденсатор после запуска.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *