Контроль сварных швов металлоконструкций: РД 34.15.132-96 Сварка и контроль качества сварных соединений металлоконструкций зданий при сооружении промышленных объектов

Содержание

Контроль качества сварных соединений: методы проверки

Завершающий этап сварочных работ – проверка структуры шва. Для контроля качества сварных соединений деталей, металлоконструкций разработаны различные методики визуальной и лучевой диагностики состояния шва. Соединения также проверяют ультразвуком, электромагнитными волнами.

Контроль качества сварных соединений

Массово выпускается оборудование, помогающее определить внутренние невидимые глазу дефекты. Важен контроль качества, герметичность трубопроводов высокого давления, монтируемых методом сварки. От этого зависит безопасность эксплуатации системы. Скрытые в толще сплава трещины, пористость, другие дефекты снижают ударную стойкость металла. Сварные соединения обследуются в области соединения и зоны термического влияния, где велика вероятность изменения зернистости. Контроль качества – необходимая операция технологического процесса сварки, утвержденная стандартом. Процедура соответствует установленному регламенту. Швы низкого качества переваривают, сварные детали с дефектами соединений отправляют на переплавку, это брак.

Методы контроля сварных швов

Для проведения контроля качества сварных швов комплектуется штат сотрудников. Люди проходят обучение, изучают разрушающие и неразрушающие виды исследований качества соединений. Учатся обращаться с приборами, созданными для контроля качества диффузного слоя сварного соединения. Разрушающие способы диагностики применяются редко, только при массовом производстве металлоизделий. Из партии произвольно выбирается несколько деталей, делаются разрезы по сварному соединению. На основании обследований нескольких изделий из партии принимают или отправляют в брак всю продукцию.

Для металлоконструкций применяют неразрушающие методики проверки качества, сохраняющие целостность соединений, проката, используемого для сварки. Существует масса методик, по которым определяют несплошности. О видах контроля сварных соединений, их особенностях полезно знать каждому сварщику.

Визуально-измерительный контроль

Для подобной проверки сварных конструкций не понадобятся специальные приборы или жидкости. Просто проводится тщательный осмотр диффузного слоя, околокромочной области. На сварном соединении не должно быть:

  • видимых несплошностей;
  • неоднородностей;
  • трещин;
  • раковин;
  • пор;
  • свищей;
  • сколов;
  • непроваров;
  • неравномерных складок.

Внутренние дефекты определяются с низкой вероятностью, предположения строятся по внешним факторам риска возникновения дефектов. Дополнительно с помощью измерительных приспособлений проводится проверка ширины и высоты шовного валика.

Визуально-измерительный контроль помогает выявить только внешние недостатки

Визуально-измерительный контроль помогает выявить только внешние недостатки

Внешний осмотр сварочных соединений всегда субъективен. Результат зависит от зоркости контролера, личного опыта. Для лучшей визуализации применяют лупы различной кратности, предусмотрены лампы или фонарики для освещения осматриваемой зоны. На основании визуального исследования делаются предварительные выводы.

Для измерения шовного валика контролеры пользуются штангенциркулем, металлическими линейками, сделанными по ГОСТу. Точность измерений большая.

Если выявлены внешние дефекты, параметры валика не соответствуют регламентированным, качество соединений признается низким. Соединение приходится переваривать.

Когда результаты проверки сварных швов сомнительные, проводится дальнейшая диагностика с помощью других методик.

Ультразвуковой метод

Ультразвуком выявляются инородные включения, внутренние раковины. У контроля сварных соединений имеются достоинства и недостатки. Но речь не об этом. Важно понять суть процесса. Прибор проверяет способность металла проводить ультразвук. Когда волны достигают края дефекта, они отражаются, меняют направление. До регистратора уже не доходят.

Ультразвуковой контроль один из самых популярных методов, дает хорошие результаты

Ультразвуковой контроль один из самых популярных методов, дает хорошие результаты

Разные типы несплошностей искажают поток ультразвуковых волн по-своему. У контролера имеются альбом иллюстраций, по которым методом сравнения определяется тип дефекта. Исследование доступное, часто применяемое. Дает хорошую результативность. Для оценки результатов не нужно делать поправки на физико-химические характеристики исследуемых сплавов.

Капиллярный контроль

Испытания соединения капиллярным методом основано на способности некоторых жидкостей проникать в самые мелкие микротрещины, незаметные глазу. Для контроля качества сварки требуются расходные материалы. Исследуемую область для лучшей визуализации покрывают краской или мелом. В жидкости добавляют хорошо видимые красящие пигменты. Выпускают индикаторные составы с люминесцентными свойствами. При попадании света на краску отраженный световой поток усиливается в несколько раз.

Капиллярный контроль способен выявить даже самые мелкие микротрещины

Капиллярный контроль способен выявить даже самые мелкие микротрещины

Жидкости называются пенетрантами (в переводе с английского «проникающая влага»). Имея незначительное поверхностное натяжение, пенетранты способны просачиваться в микропоры. На месте дефекта проявляется четкий контрастный рисунок. Этим методом проверяют качество сварки любых металлов. В качестве пенетрантов для самостоятельной проверки сплошности сварных конструкций применяют органические растворители и разбавители (керосин, бензол, скипидар и другие).

По рисунку получают объективную картину состояния шва. Чем больше краски на поверхности, тем хуже качество соединения. Метод чаще применяется для металлов, склонных к растрескиванию при термическом воздействии, сплавов с большой линейной усадкой при остывании.

Проверка сварочных швов на проницаемость

Когда от качества сварного шва зависит прочность сосудов высокого давления, гидросистем или трубопроводов, контроль особенно важен. У метода много названий:

  • пузырьковый метод контроля;
  • пневмоиспытание;
  • течеискание;
  • гидроиспытание и другие.

Технологии проведения испытаний условно делят на пневматические и гидравлические. Из названия понятно, что в первом случае речь идет о воздушной проверке сварных швов, во втором – водяной.

Контроль качества швов по проницаемости схож с капиллярной методикой, только жидкости или газовые смеси подаются под давлением. Пневматический контроль подразумевает применение сжатого газа или воздуха, который подается в исследуемую область. Снаружи шов покрывают мыльным раствором, образующим пленку. Для приготовления раствора соблюдается пропорция: 250 г мыла на литр воды. Если имеются несплошности, на поверхности появляются пузыри.

Проведение пневматического контроля при помощи сжатого воздуха и мыльного раствора

Проведение пневматического контроля при помощи сжатого воздуха и мыльного раствора

Разновидности пневматического контроля:

  1. Вакуумный метод. С одной стороны сварного соединения создается вакуум, с другой – наносится мыльный раствор. Причина появления – сквозные дефекты.
  2. Когда контроль качества проводится при отрицательных температурах, вместо воды используют спиртовой раствор с низкой температурой замерзания.
  3. Еще одна технология – метод погружения. Сварную деталь полностью погружают в мыльный раствор. Скопившийся в дефекте воздух выйдет наружу, образуя пузыри.
  4. Можно заменить газ аммиаком. Швы предварительно оборачивают бумагой. Там, где нарушена герметичность, на бумаге проступят красные пятна.

Гидравлический метод испытаний основан на способности воды или масла создавать давление. Деталь выдерживают в жидкости от 5 до 15 минут, чтобы заполнились все сквозные дефекты. После этого достают, зона около сварного соединения обстукивается молотком. По просачиванию жидкости определяют трещины.

Когда проверяют емкости, жидкости заливают вовнутрь. Трубопроводы тоже проверяют изнутри, фрагменты заполняют воздухом. Метод контроля герметичности простой, но действенный. При обнаружении дефектов швы переваривают. Затем контроль качества проводят еще раз.

Магнитная дефектоскопия

Магнитный метод основан на способности металлов намагничиваться под воздействием магнитного поля. Понятно, контроль сварных швов, основанный на эффекте электромагнетизма, не применяется для проверки соединений цветных металлов, алюминия, нержавеющих сплавов.

Метод магнитного контроля: 1- магнит; 2 - сварной шов; 3 - дефект; 4 - магнитная пленка

Метод магнитного контроля: 1- магнит; 2 — сварной шов; 3 — дефект; 4 — магнитная пленка

Технология магнитных исследований:

  • С помощью специального прибора контролер создает в области сварного соединения постоянное магнитное поле.
  • Формируются силовые электромагнитные линии, под воздействием которых мелкие частицы металла способны двигаться, занимать фиксированное положение.
  • В качестве индикатора для исследований используют металлический порошок или мелкую ферримагнитную стружку. Измельченный металл размещают в околошовной области.
  • Если металл однородный, рисунок получается без искажений. Когда имеются раковины, трещины, шлаковые включения, положение электромагнитных линий искажается.

Диагностика магнитопорошковым способом эффективна, поле способно исказить даже незначительные дефекты. В месте проекции на поверхности скапливается порошок. Главный недостаток методики – трещину не определить, если она параллельна силовым линиям.

Радиационный контроль

При проверке сварных соединений радиационными волнами важно соблюдать правила техники безопасности. Радиографический или гаммаграфический метод по сути – это рентген шва. Прибор по конструкции подобен рентген-аппарату, поэтому меры предосторожности следует соблюдать неукоснительно. Описание методики:

  • прибор продуцирует гамма-излучение;
  • рентгеновские лучи проникают через металл, там, где имеются несплошности, отклоняются от первоначальной траектории;
  • заканчивая свой путь, гамма-лучи создают изображение на специальной пленке;
  • результат оценивается по изменению плотности потока лучей.
Радиационный контроль: 1 - лампы; 2 - контейнеры; 3 - сварной шов; 4 - пленка

Радиационный контроль: 1 — лампы; 2 — контейнеры; 3 — сварной шов; 4 — пленка

Это самый передовой, дорогостоящий, небезопасный метод исследования качества сварного шва. Требуется специальное оборудование, длительное обучение контролера. Избыточное нахождение с излучателем рентгеновских волн негативно сказывается на состоянии здоровья контролера.

Современные аппараты с компьютерным блоком управления способны увеличивать получившуюся картинку, выводят ее на экран, расшифровывают в автоматическом режиме. Точность результатов повышается.

Оформление документации

На основании испытаний составляется акт дефектов сварных соединений. Проверяющие фиксируют каждый дефект, дают краткое описание. Результаты заносятся в журнал сварки, такой документ заполняется бригадой на каждом объекте. Спецжурнал является первичным документом, заполняется в соответствии со СНиП по каждому узлу конструкции.

После окончания работ журнал сдается заказчику, подшивается к другой техдокументации по объекту.

Помимо спецжурнала при сварочных работах оформляется схема стыков с полным описанием технологи. Прилагаются сертификаты на используемые расходные материалы (электроды, флюс или присадочную проволоку). Акты исследований сварных швов (контроля качества соединений с внешней стороны изделия) составляются для каждого сварщика индивидуально. Когда проводится приборная диагностика, результаты диагностики, заключения контролеров прилагаются.

Документация необходима для отчета, судебных разбирательств в случае аварии. Без акта обследования швов работы не актируются, объект не принимается. При работе с ответственными конструкциями предъявляются самые жесткие требования.

Когда обнаружены дефекты, даже если они возникли не по вине сварщика, а из-за некачественных расходных материалов, шов переваривается. Только после приемки соединения контролером производятся дальнейшие процедуры по принятию металлоконструкций объекта.

всё, что вы хотели знать

Проверка сварочных соединений — обязательный этап любых сварочных работ. Благодаря тщательному контролю можно выявить явные и скрытые дефекты, которые в дальнейшем повлияют на качество и долговечность всей металлической конструкции. Конечно, можно оценить качество сварного шваневооруженным взглядом, но это лишь один из методов.

методы контроля сварных швов

С помощью визуального контроля вы не сможете обнаружить внутренние трещины и поры. Поэтому важно знать дополнительные способы контроля качества. На крупных производствах эту работу выполняет контролер сварочных работ, но на меленьком заводе эта обязанность часто ложится на плечи сварщика. В этой статье мы расскажем, как проверить швы и какие есть виды контроля качества помимо визуального осмотра.

Содержание статьи

Способы контроля качества сварного шва

Существуют разнообразные виды и средства технического контроля, все они имеют свои достоинства и недостатки, особенности и нюансы. Но несмотря на различия все они призваны, чтобы устроить швам испытание на прочность и долговечность. Качество сварных соединений во многом зависит от сварщика и используемых комплектующих, так что итог контроля можно предсказать. Но мы все равно рекомендуем проводить контроль качества, чтобы быть уверенным, что изделия прослужат долго.

Качество сварных соединений можно узнать путем визуального осмотра (пожалуй, самый распространенный метод), ультразвукового, магнитного, капиллярного и радиационного (радиографического) контроля, также осуществляется контроль сварных швов на проницаемость. Есть и другие методы контроля сварных швов, но мы в этой статье перечислим самые распространенные и простые в применении. Рекомендуем выполнять пооперационный контроль качества, т.е. сначала осмотреть шов, затем провести капиллярный контроль и так далее. Впрочем, обо всем по порядку.

Визуальный контроль

Начнем с визуального контроля. Это наиболее простой и быстрый способ узнать качество сварных швов. Вам не понадобятся специальные приборы или жидкости, достаточно вашей внимательности. Тщательно осмотрите сварное соединение: не должно быть видимых дефектов вроде трещин и сколов, шов должен иметь одну ширину и высоту на всех участках.  Внешний контроль сварочных швов позволяет также проверить наличие или отсутствие непроваров, наплывов, неравномерных складок шва. Все это дефекты, обнаружив которые можно смело говорить о низком качестве соединения.

Для более эффективного контроля качества сварных швов мы рекомендуем использовать мощную лампу и лупу, также нелишним будет рулетка или линейка, штангенциркуль. С помощью таких простых приспособлений вы сможете замерить размеры дефектов и понять, что с ними делать в дальнейшем.

Конечно, с помощью такого метода вы не сможете выполнить полноценный контроль сварных соединений трубопроводов, сварных соединений газопроводов или иных ответственных конструкций, но визуальный осмотр станет первой операцией, вслед за которой можно применить остальные методы контроля.

Капиллярный контроль

Методы контроля качества сварных соединений включают также испытания сварного шва. Для этого используется капиллярный метод. Его суть крайне проста: для контроля используются специальные жидкости, которые способны проникать в мельчайшие поры и трещинки, называемые капиллярами.

С помощью капиллярного операционного контроля можно проверить качество любого металла, с любым составом и формой. Зачастую такой метод используется, когда нужно узнать наличие скрытых дефектов невидимых для глаз, но нет бюджета, поскольку капиллярный контроль очень прост в применении и не требует наличия дорогостоящего оборудования.

Капиллярная оценка качества сварных соединений выполняется с помощью жидкостей, называемых пенетрантами (от английского слова «penetrant», что значит «проникающая жидкость»). Такие жидкости обладают незначительным поверхностным натяжением, отчего легко проникают в мелкие капилляры и при этом остаются видимы для глаз. По сути, пенетранты заполняют полости и окрашивают дефекты, тем самым делая их видимыми.

Сейчас можно найти множество рецептов приготовления пенетранта, каждый из которых будет обладать своими свойствами и особенностями. Можно приготовить пенетрант на основе воды или любой другой органической жидкости (скипидара, бензола, также сюда относится довольно популярная проверка сварных швов керосином. Такие пенетранты очень эффективны и чувствительны к малейшим дефектам. Они уверенно занимают одну из лидирующих позиций среди методов по контролю качества.

Контроль на герметичность сварных швов

На жидкостях не заканчиваются испытания сварных швов. Их также нужно проверить на герметичность. Метод проверки на герметичность имеет множество названий: течеискание, пузырьковый метод контроля, пневмоиспытание, гидроиспытание и многие другие. Но вне зависимости от названия суть их остается неизменна: обнаружение сквозных дефектов, ухудшающих герметичные показатели сварного соединения.

Проверка сварочных швов на герметичность выполняется с помощью газов (кислорода или азота), различных жидкостей (например, воды). Метод во многом схож с капиллярным, но здесь газ или жидкость дополнительно подаются под большим давлением, под которым они как раз и распределяются в дефектные полости и выходят наружу. У этого метода есть своя классификация. Бывает пневматический и гидравлический контроль, также швы можно проверить вакуумно или с помощью обдува воздухом, это подкатегории пневматического контроля. Но обо всем поговорим подробнее.

Начнем с пневматического метода контроля качества швов. Он подразумевает использование газа или воздуха, который направляется на соединение под давлением. При этом шов смазывается мыльным раствором. Также есть разновидность пневматического контроля, называемая вакуумным контролем, когда с помощью специального оборудования создается искусственный вакуум, в него помещается деталь, а шов также предварительно смачивают мыльным раствором. В местах со сквозными трещинами будут образовываться пузыри, указывающие на местонахождение дефекта.

При приготовлении мыльного раствора используется один кусок мыла на литр воды. Если предстоит работа при низких температурах (на улице зимой), то более половины воды рекомендуется заменить на спирт. Также рекомендуем подключить манометр, с помощью которого вы сможете контролировать показатель давления и сможете заметить, как оно будет падать при обнаружении дефектов. Также нелишним будет использование предохранительного клапана, чтобы соблюсти технику безопасности.

Самая простейшая форма пневматического контроля — погружение детали в воду, без смазывания швов мыльным раствором и использования давления. Если у шва есть дефекты, то они дадут о себе знать, когда небольшие пузырьки воздуха начнут появляться из сварного соединения. Этот способ проверки качества можно назвать полевым, но он достаточно эффективный.

Также есть еще одна разновидность пневматического контроля, называемая контроль качества сварных швов и соединений с помощью аммиака. Аммиак подается вместо газа или воздуха, а швы предварительно покрывают специальной бумажной лентой. Аммиак проходит через шов и если имеются дефекты, то на ленте появляются красные пятна.

Второй тип контроля на герметичность — гидравлический. Здесь давление создают с помощью воды или масла. Это очень интересный метод, поскольку деталь выдерживается в жидкости от 5 до 15 минут (в зависимости от особенностей металла), при этом зона около шва обстукивается молотком, удары должны быть слабыми. Если есть дефекты, то при ударе жидкость начнет вытекать из предполагаемого места с трещиной или другим повреждением.

Магнитный контроль

Магнитный метод контроля заключается в использовании основ электромагнетизма. Контролер или сварщик с помощью специального прибора создает вокруг шва магнитное поле, которое испускает поток так называемых электромагнитных линий. Если они искажаются, значит есть дефекты. Искажения фиксируются магнитопорошковым способом.

При магнитопорошковом на поверхность шва предварительно наносят ферримагнитный порошок, который при искажении электромагнитной линии начинает скапливаться в месте дефекта. Из-за этого магнитный контроль доступен только при работе с ферримагнитными металлами. Алюминий, медь, сталь с большим содержанием хрома и никеля не могут быть подвержены проверке. В целом, это очень эффективный, но неудобный и дорогостоящий метод, так что его применяют только при контроле особо важных узлов.

Ультразвуковой контроль

Ультразвуковой способ очень интересен. Он основан на свойствах ультразвука. Ультразвуковые волны легко отражаются от краев трещины или скола, поскольку те обладают разными акустическими особенностями. Говоря простыми словами, мы подаем на шов ультразвук, и если на своем пути он сталкивается с дефектом, то искажается и отображается в другом направлении. При этом разные типы дефектов по-разному искажают ультразвуковую волну, так что их можно легко определить.

Контроль качества сварного шва с помощью ультразвуковых аппаратов применяется повсеместно, поскольку это довольно эффективный и при этом недорогой метод. По сравнению с другими методами (например, магнитным или радиационным) не нужно учитывать какие-то особенности металла или приобретать дорогостоящее оборудование. Но есть и недостатки: контроль сварного соединения ультразвуком должен проводить специалист, а не обычный сварщик.

Радиационный контроль

Радиационный контроль сварных соединений (также называемый «радиографический контроль» и «гаммаграфический контроль сварных соединений») представляет собой мини-версию обычного рентгена. Гамма-лучи проникают через металл и на специальной пленке фиксируются все возможные скрытые дефекты. Это самый передовой и дорогостоящий метод контроля качества, он требует современного оборудования и квалификации от контролера или сварщика. Также избыточная работа с таким прибором может оказывать негативное воздействие на здоровье человека.

Недавно появилась цифровая радиография, которая выполняется с помощью компьютера. Здесь вместо пленки используют специальные многоразовые пластины, которые совместимы с любыми источниками радиации. Но в отличие от классического радиационного контроля при цифровом методе изображения сохраняются сразу на компьютер, их можно масштабировать и кадрировать.  В будущем разработчики планируют довести этот процесс до автоматизма, чтобы не требовалось присутствие человека.

Вместо заключения

Контролер сварочных работ должен очень внимательно относиться к своей работе, поскольку от его внимательности зависит все. Выполняя контроль качества сварки и сварных соединений записывайте все особенности и дефекты, которые сможете обнаружить. Комбинируйте различные методы контроля сварки, чтобы получить полную картину. Не используйте разрушающие методы контроля сварных соединений, которые не подходят для тех или иных металлов.

Сварка и контроль качества сварных соединений металлоконструкций — дело непростое, но обучившись этому лишь однажды вы сможете довольно быстро выполнять контроль даже в полевых условиях. Также не забывайте, что есть техника безопасности и ее нужно соблюдать не только при сварке, но и при контроле швов.

[Всего: 2   Средний:  3/5]

виды и методы качества сварных швов

Заключительным этапом работ по сварке в обязательном порядке является контроль сварных соединений. Проверяется их качество, соответствие требованиям нормативов и наличие дефектов, как видимых, так и скрытых. Сварка и контроль являются неразделимыми понятиями.

Имеется много способов, как проверить качество сварного шва. Выбор осуществляется с учетом возможностей предприятия, на котором происходит сварка, и важности конструкции, для которой она производится. Для проведения контроля качества сварных соединений и швов можно привлекать сторонние лаборатории и организации, специализирующиеся именно на этом виде деятельности.

Контроль качества сварных соединений и швов использует разнообразные способы контроля. Имеются различные виды контроля сварных соединений, применяемых на практике.

Визуальный осмотр

Это самый простой и примитивный метод контроля, с которого необходимо начинать контроль качества сварных швов. Не все дефекты являются глубоко запрятанными. Значительная их часть находится снаружи. Визуальный осмотр позволит их увидеть и при необходимости сразу отбраковать, что приводит к экономии времени и сил. Понятно, что этот вид контроля является неразрушающим. При визуальном осмотре легко увидеть основные геометрические параметры сварного шва и дать им оценку.

Визуальный осмотр не является выборочным. Ему подлежат все выполненные сварные соединения. Для более точной оценки можно использовать лупу с большим увеличением. Больше никаких приспособлений не понадобится, кроме штангенциркуля и шаблонов для производства измерений найденных отклонений.

Хотя визуальный осмотр определяет в основном геометрические параметры сварного шва и внешние недостатки, частично внешний осмотр может сигнализировать и о наличии внутренних изъянов. Так, например, неравномерность поверхности валиков может быть следствием непроваров, находящихся внутри. Такие подсказки следует учитывать при более тщательных способах исследования.

Чтобы дефекты были лучше видны, перед началом осмотра с поверхности удаляют все загрязнения и остатки шлака. Швы можно обработать азотной кислотой, после чего быстро убрать ее остатки с помощью спирта.

Капиллярный способ

Методы контроля сварных соединений включают и такой популярный как капиллярный, называемый также контроль сварных соединений ПВК. Метод является контролем проникающими веществами. Для него разработан специальный нормативный документ — ГОСТ 18442, в котором изложены основные требования к применению капиллярного метода.

Одно из основных преимуществ капиллярного способа состоит в том, что он является неразрушающим методом контроля качества сварных соединений. При этом способе используется свойство, присущее жидкости, — проникать в капилляры, имеющие микроскопический размер. Для его применения необходимо наличие специальных жидкостей, которые называются индикаторами или иначе пенетрантами.

Именно такие жидкости обладают особым свойством проникать в мельчайшие трещинки. Поскольку они обладают ярким цветом, чаще всего красным, то его следы становятся заметными даже невооруженным глазом без особого напряжения. Если дефект имеет слишком маленький размер, то можно использовать лупу.

Капиллярный метод контроля сварных швов универсален. Он позволяет обнаруживать различные дефекты — трещины, поры, непровары, прожоги. К достоинствам способа относится его дешевизна — наличие дорогого оборудования не требуется, а пенетранты стоят относительно недорого. Метод позволяет определять точные параметры дефектов и их местоположение.

Капиллярный контроль можно использовать как для черных, так и цветных металлов. Это позволяет находить ему применение в различных областях.

Имеется следующие разновидности капиллярного контроля:

  • основной;
  • комбинированный.

Основной метод основан на том, что находит применение использование проникающих жидкостей, имеющих яркую окраску. Под комбинированном способом понимается применение сразу нескольких методов контроля качества сварки. Обязательное условие — в их число входит капиллярный метод. Кроме него могут применяться такие способы как: индукционный, магнитный, радиографический. А также другие методы контроля сварных швов.

Каждый из них имеет свои разновидности. При основном способе они подразделяются в зависимости от типа выбранного проникающего вещества и от варианта, с помощью которого происходит считывание информации.

Разновидности основного способа в зависимости от проникающего вещества:

  • специальные растворы;
  • фильтрующие суспензии.

Разновидности основного способа в зависимости от того, какой применяется способ считывания информации:

  • хроматический;
  • ахроматический;
  • люминесцентный;
  • люминесцентно-хроматический.

Хроматический способ называют цветным. А ахроматический — яркостным. Поэтому можно встретить название люминесцентно-цветной способ.

Подразделения комбинированного метода зависят от варианта, с помощью которого осуществляется воздействие на проверяемую поверхность. В их названии первое слово является «капиллярно», а продолжениями служат:

  • электростатический;
  • электроиндукционный;
  • магнитный;
  • радиационный метод поглощения;
  • радиационный метод излучения.

Кроме индикаторов при комбинированном способе находит применение и специальное оборудование. Пример такого сочетания — сначала осуществляют контроль капиллярным методом, а затем уточняют результаты с помощью радиографического, используя рентгеновский аппарат.

Технология дефектоскопии заключается в следующем:

  1. Очищение проверяемой поверхности.
  2. Осушение поверхности.
  3. Нанесение на исследуемую поверхность пенетранта.
  4. Промежуточная очистка.
  5. Нанесение проявителя.
  6. Осмотр результатов и вынесение заключения.

Очистка

Очищение можно сделать с помощью любого растворителя. Необходимо проследить, чтобы на поверхности не осталось грязи, пятен краски и масла. Для очищения поверхности также можно применить наждачную бумагу или металлическую щетку. Но для контроля точных и ответственных соединений, имеющих ровную поверхность, к этому лучше не прибегать.

Химическая очистка осуществляется различными химическими средствами, позволяющими удалять все виды загрязнений и пятен. Если химические вещества останутся на поверхности, то может произойти реакция с индикаторами. Для избежания этого они должны быть смыты с поверхности водой или подобными средствами.

Осушение

Осушение должно происходить естественным путем на воздухе. Применение салфеток или полотенец может привести к тому, что на поверхности останутся ворсинки, которые сделают дальнейший контроль менее достоверным.

Нанесение индикаторов

Нанесение на исследуемую поверхность индикаторов может производиться различными способами. При капиллярном методе жидкость наносят путем смачивания, струей из баллончика, погружением соединений в ванну с индикатором при условии их небольшого размера.

Вакуумный способ предполагает всасывание индикаторной жидкости внутрь, когда в полости дефекта образовалась пустота, давление воздуха в которой стало меньше атмосферного.

Компрессионный способ является противоположностью предыдущему. Жидкость проникает внутрь дефекта под действием давления выше атмосферного. Воздух при этом вытесняется.

Ультразвуковой метод состоит в заполнении полостей при помощи ультразвука. Деформационный способ состоит в воздействии на проникающую жидкость колебаний звуковой волны.

Промежуточная очистка

Промежуточную очистку следует осуществлять таким образом, чтобы не вызвать удаления индикатора из полости, образованной дефектом. Очистка посредством воды производится или обрызгиванием или протиркой влажным кусочкам ткани. При этом сильно нажимать на поверхность не следует, чтобы не повредить ее. Температура воды должна быть не более 50°С.

При очистке растворителями предварительно убирают излишек влаги салфеткой без ворса. Затем производят очищение смоченной в растворителе тканью.

Для очищения могут применяться эмульгаторы. Они бывают водочувствительными или на основе масел. Эмульгатор наносят на поверхность после ее очищения водой. Затем поверхность снова промывают водой. Можно использовать комбинированную очистку — сначала водой, а затем растворителем.

После промежуточной очистки должно быть обеспечено высушивание контролируемой поверхности. Его можно обеспечить простым вытиранием безворсовой сухой тканью. Излишняя влага может испариться при температуре окружающей среды или при повышенной температуре. Можно направить на проверяемую поверхность струю воздуха. Допускается комбинация этих способов.

Сушку необходимо производить с крайней осторожностью, чтобы ненароком не высушить индикатор в дефектной полости шва. Это обеспечивает ограничение по температуре в 50°С.

Нанесение проявителя

Затем наступает ответственный момент — нанесение проявителя. Его наносят ровным слоем небольшой толщины. Приступать к этому этапу надо сразу после промежуточной очистки, чтобы не появилась новая грязь.

Сухой проявитель можно использовать не во всех случаях, а только с флуоресцентными индикаторами. Наносить его с помощью напыления или электростатического распыления. Покрытие должно быть однородным и равномерным. Локальное нанесение недопустимо.

При использовании жидкого проявителя, изготовленного на основе водной суспензии, его или разбрызгивают специальным аппаратом по поверхности, или наливают в емкость и погружают в нее контролируемое соединение. Длительность погружения не должна быть слишком большой. Затем изделие необходимо высушить обдувом или в печи.

Если жидкий растворитель изготовлен на основе растворителя, то его равномерно распыляют по поверхности до образования тонкой пленки. Жидкий проявитель может представлять собой водный раствор. При погружении в него исследуемого изделия достигается равномерность нанесения. Допустимо распыление специальными аппаратами. После окончания процесса необходимо высушивание.

В зависимости от выбранного способа и размера соединения длительность проявления может составлять от 10 до 30 минут.

Выявление дефектов

Оценку качества сварных соединений следует начинать сразу после того, как высохнет проявитель. Осмотр можно проводить в очках с увеличительными стеклами или с помощью лупы. Если были использованы флуоресцентные индикаторы, испытание проводится в кабине после того, как глаза контролера привыкнут к темноте. Если были применены цветные индикаторы, то поверхности могут быть осмотрены как при дневном, так и при искусственном свете. Необходимо следить, чтобы на поверхность не попадали блики отраженного света.

Повторный контроль

Иногда возникает необходимость в уточнении результата. Тогда проводят повторный контроль соединения. Важным условием при этом является использование тех же средств и методов, что и в первый раз.

Контроль герметичности

Контроль качества сварки и сварных соединений включает в себя исследование на непроницаемость. Герметичность — это отсутствие пропускания как жидких, так и газообразных веществ. Контроль герметичности сварных соединений обнаруживает сквозные дефекты, через которые возможен выход газов или жидкостей наружу или проникновение их внутрь.

Проверка сварных швов на герметичность является неразрушающим видом контроля. Суть метода состоит в оценке количества протекающей через сквозной дефект жидкости или прохождения газа и сравнении этой величины с допуском, который указывается в технических условиях. Существуют сварные соединения, которые в обязательном порядке подлежат проверке на герметичность. В частности к ним относится контроль сварных швов трубопроводов, к которым предъявляются особые требования.

Все существующие методы контроля герметичности сводятся к созданию избыточного давления или, наоборот, разрежения воздуха для того, чтобы обнаружить место, через которое происходит протечка.
Перед началом проведения контроля поверхности следует ее подготовить: почистить их и обезжирить. Существуют разные методы испытаний на герметичность.

Гидравлический способ

Методы контроля качества сварных швов включают в себя проверку с помощью обычной воды. Контролируемое соединение заполняют водой и, применяя насос или гидравлический пресс, создают давление в полтора или два раза превышающее рабочее. При этом наблюдают за сварными швами. Утечка жидкости означает наличие сквозного дефекта.

Пневматический контроль

При проверке используется сжатый воздух, азот или инертный газ, который подают на испытываемую конструкцию. Если она имеет небольшие габариты, то можно поместить ее в воду и обнаружить дефект и его местоположение по выходящим наружу пузырькам.

Если проверке подлежат крупногабаритные соединения, то контроль можно осуществить с помощью пенного индикатора, который представляет собой раствор мыла в воде. При низкой температуре часть воды можно заменить спиртом или добавить глицерин.

В целях безопасности подключают предохранительный клапан и манометр. Наблюдая за показаниями манометра можно осуществлять контроль давления. При наличии сквозных дефектов давление будет уменьшаться. Если давление превысит допустимый уровень, то предохранительный клапан снизит его.

Испытание керосином

Используется свойство керосина, заключающееся в том, что он может подниматься по трубкам, имеющим небольшое поперечное сечение. При испытании роль такой трубки выполняет сквозная трещина или подобный дефект.

На одну из сторон соединения наносят раствор мела в воде и дают ему высохнуть. Затем противоположную сторону смачивают керосином. Время, за которое он может проявить себя, зависит от толщины соединения. При наличии сквозного дефекта на стороне, покрытой меловым растром, можно будет четко увидеть пятна керосина.

Испытание аммиаком

Предварительно подлежащие контролю швы покрывают бинтом, пропитанным фенолфталеином. Вместо бинта можно использовать бумажную ленту. Затем подается аммиак, находящийся под давлением. После прохождения аммиака на ленте или бинте остаются характерные следы.

Проверка течеискателем

Такой метод, называемый ПВТ-контролем сварных соединений, является высокочувствительным и используется для контроля ответственных конструкций. Применяются гелиевые и галоидные течеискатели.

Магнитная дефектоскопия

Методы контроля качества сварных соединений включают в себя такой неразрушающий вид как магнитная дефектоскопия. Этот метод применяется для контроля изделий, имеющих ферромагнитный состав. Он поможет обнаружить неглубокие, но скрытые трещинки, а также инородные включения.

Когда нарушается целостность конструкции внутри нее, то появляется своеобразная «зона рассеяния». При этом на краях образуются полюса. На внешней поверхности сварного изделия напротив внутренней зоны рассеяния происходит ее фиксация. Магнитные линии начинают огибать эту зону, и происходит ее четкое выделение. В этом месте происходит изменение плотности магнитного поля.

Магнитный контроль сварных швов основан на образовании магнитного поля, которое при проверке пронизывает сварное соединение. Для этого применяется особое оборудование. С помощью дефектоскопов имеется возможность обнаружения микроскопических трещин с размером их толщины до 0,001 мм. Суть метода состоит в том, что магнитный поток, путешествуя вдоль сварочного шва, при появлении на его пути дефекта обходит его. Это является следствием того, что магнитная проницаемость в этом месте гораздо меньше, чем магнитная проницаемость самого металла.

Для обнаружения продольных трещин применяется циркулярный вид намагничивания, для поперечных трещин — продольный. Также имеется комбинированный способ.

Контроль сварочных швов методом магнитной металлографии может осуществляться несколькими способами.

Магнитопорошковый

Проверка сварки производится с помощью магнитного порошка, который представляет собой совокупность мельчайших частичек намагниченного металла. В результате воздействия рассеяния магнитного поля эти частички меняют свое положение в пространстве.

Таким методом можно осуществлять контроль качества сварных соединений трубопроводов.

Как правило, ферромагнитный порошок представляет собой железо. Он может использоваться в следующих видах:

  • сухой;
  • водная эмульсия;
  • маслянистая суспензия.

Процесс проверки заключается в том, что частицы порошка, на которые оказывают действие электромагнитные поля, перемещаются равномерно по поверхности. Когда они встречают на своем пути дефект, частицы порошка начинают скапливаться, образуя в таких местах своеобразные валики. Их форма и размер позволяют судить о соответствующих параметрах найденного дефекта.

Технологические операции для выполнения магнитопорошкового метода:

  1. Подготовка поверхности. Очищение ее от грязи, шлака, окалин, следов брызг, наплывов.
  2. Нанесение на поверхность проверяемого соединения порошка, эмульсии или суспензии.
  3. Осмотр и выявление участков, в которых имеются дефекты.
  4. Размагничивание поверхности.

Наиболее достоверные результаты можно получить при использовании сухого порошка. Чтобы правильно оценить чувствительность порошка пользуются контрольными образцами. Допускается использование различных видов дефектоскопов: стационарных, мобильных, переносных, передвижных.

Магнитографический

Магнитная дефектоскопия относится к неразрушающим видам проверки сварочных швов. Суть метода заключается в том, что происходит выявление магнитных потоков, которые появились в намагниченных изделиях при наличии дефектов.

Для осуществления этого метода производится намагничивание исследуемой поверхности вместе с прижатым к ней с помощью эластичной ленты магнитоносителем. Одновременно осуществляется запись процесса на магнитную ленту. Информация о магнитном рельефе с ленты считывается специальными устройствами, являющимися составными частями дефектоскопов.

Наиболее часто этот метод находит применение для контроля сварных соединений трубопроводов. Главное преимущество этого метода по сравнению с магнитопорошковым способом — более высокая производительность.

Индукционный контроль

Отличие этого метода от предыдущих — наличие индукционных катушек, с помощью которых происходит образование электродвижущей силы. Для фиксации сигнала индукционную катушку необходимо соединить с аппаратом, осуществляющим регистрацию. В качестве него могут использоваться гальванометр или сигнальная лампа.

Контроль осуществляется при перемещении сварного соединения вдоль индукционной катушки. Передвижение может быть также осуществлено движением дефектометра вдоль соединения. Когда наступит момент пересечения индукционной катушки с местом, в котором находится дефект, то вследствие изменения в этом месте магнитного потока появляется электродвижущая сила. Индукционный ток поступает на регистрационный прибор.

Ультразвуковой контроль

Ультразвуковой контроль качества сварных соединений металлоконструкций относится к неразрушающим методам. Он подходит для проверки сварных швов различных металлов. Происходит поиск структур, у которых физические и химические свойства отличаются от заданных. Отклонением также считается превышение допустимых размеров.

Ультразвуковой метод основан на способности ультразвуковых волн с легкостью отражаться от краев трещин и сколов вследствие того, что их акустические особенности являются иными по сравнению с основной поверхностью. Когда на сварной шов подают ультразвук, то при столкновении с дефектом он претерпевает изменение и начинает отражаться в ином направлении. Искажение ультразвуковой волны происходит по-разному в зависимости от типа дефекта, что облегчает их идентификацию.

Проверка сварных швов ультразвуковым методом основана на проникновении диагностической волны вглубь металла и при столкновении с дефектами изменении направления своего движения. Это отклонение видит на экране прибора контролер сварочных работ.

Согласно показаниям диагностического прибора дается характеристика выявленному дефекту. По времени, в течение которого происходит распространение в металле ультразвуковой волны, можно судить о глубине расположения дефекта, а по амплитуде отраженного импульса — по размеру обнаруженного дефекта.

Проверка качества сварных швов ультразвуковым методом на основании ГОСТ-23829 осуществляется различными способами:

  • теневым;
  • зеркально-теневым;
  • эхо-импульсным;
  • эхо-зеркальным;
  • дельта-методом.

Теневой способ предполагает использование двух приборов, расположенных по разные стороны исследуемой металлоконструкции. Их устанавливают в плоскости, перпендикулярной сворному соединению. Назначение первого из них — излучение волн, а второго — их прием. Первый называется излучателем. Он генерирует акустические волны. Второй называется приемником. Его задача — регистрация акустических волн, прошедших через исследуемый объект.

Важным является взаимное расположение излучателя и приемника. Они должны находиться друг напротив друга. Если между излучателем и приемником находится «глухая зона», то ультразвуковые колебания могут исчезнуть или уменьшиться. Такой участок шва признается дефектным.

Зеркально-теневой способ представляет собой приблизительно такой же теневой с одним различием — излучатель и приемник располагают не на противоположных сторонах металлоконструкции, а на одной стороне. При таком расположении происходит регистрация не прямого потока волн, а отраженного от второй поверхности, являющейся как бы зеркалом. Дефект оценивается по тому, какое значение имеет коэффициент затухания колебания, являющегося отраженным.

При эхо-импульсном способе акустические волны направляются на сварное соединение и происходит регистрация волны, отраженной от находящегося в нем дефекта. В качестве источника и приемника используется один и тот же преобразователь.

Эхо-зеркальный метод исследования иначе называют «Тандем». Такое название объясняется тем, что при его использовании применяются сразу два аппарата. Оба преобразователя помещают на одной стороне соединения. Ультразвуковые колебания, сгенерированные излучателем, отражаются от дефектной области, и затем проходят регистрацию с помощью приемника. Такой метод находит широкое применение для обнаружения вертикально расположенных трещин.

Основой дельта-метода, относящегося к ультразвуковому контролю, является свойство дефектов осуществлять излучение внутрь сварного шва. Происходит контроль энергии, излученной от дефектных поверхностей. Для осуществления такого контроля необходимо оборудование и его настройка, а также длительная расшифровка результатов, поэтому особой популярностью этот способ не пользуется.

Пооперационный контроль качества сварных соединений ультразвуковым способом заключается в следующем:

  1. Очистка проверяемой поверхности. Убираются следы ржавчины, остатков краски, лака, различных пятен.
  2. Обработка проверяемых поверхностей машинным или трансформаторным маслом.
  3. Проверка работоспособности и настройка используемого оборудования под необходимые параметры. Стандартные настройки могут применяться, если толщина сварного шва не превышает 2-х сантиметров. Иначе необходимо использование специальных диаграмм.
  4. Проведение контроля качества сварных швов. При этом излучатель перемещают вдоль соединения зигзагообразно и разворачивая на небольшой угол вдоль своей оси. Искатель перемещают до тех пор, пока он не начнет улавливать сигналы.

Все обнаруженные отклонения фиксируются в специальном журнале. Контроль и проверка должны соответствовать требованиям действующих нормативных материалов. Ультразвуковой метод требует высокой квалификации работников, выполняющих согласно нему контроль сварных соединений.

Контроль сварочных соединений при помощи ультразвукового способа предполагает нахождение следующих дефектов:

  • наличие внутри шва пор;
  • расслоенные участки наплавок металла;
  • трещины;
  • неровности;
  • непровар;
  • несплавление;
  • свищи;
  • коррозию;
  • повреждения окислами;
  • провисание;
  • изменение химического состава;
  • механические повреждения;
  • изменение геометрических размеров.

Ультразвуковой диагностике можно подвергать различные виды соединений. Такой параметр как чувствительность ультразвукового метода можно определить самым маленьким размером дефекта, который он способен выявить. К преимуществам относится относительная безопасность проведения контрольных операций. Благодаря наличию мобильных дефектоскопов возможна проверка в полевых условиях.

Радиационный контроль

Контроль качества сварного шва может проводиться радиационным способом. Его целью является выявление дефектов, находящихся внутри соединения и в околошовной зоне. К таким дефектам относятся поры, непровары, посторонние включения, трещины.

Просветка сварных швов рентгеновскими и гамма-лучами позволяет им проникать внутрь через непрозрачные преграды. Радиационный контроль сварных соединений относится к неразрушающим видам. Он основан на использовании излучения, называемого ионизирующим. При проведении испытаний ионизирующее излучение проходит регистрацию и подвергается анализу после его взаимодействия с исследуемой поверхностью.

Проникнув внутрь, излучение начинает ослабевать и рассеиваться. Величина этих изменений зависит от толщины и плотности металла. Происходит воздействие на эмульсию фотопленки, что вызывает свечение отдельных элементов. Интенсивность будет больше на тех участках, которые имеют более низкую толщину или плотность. В частности, это касается таких дефектов, как несплошность или включения неметаллического характера.

Ионизирующее — это такое излучение, которое при взаимодействии с окружающей средой ведет к образованию электрических зарядов. Для контроля сварных швов металлоконструкций в качестве ионизирующего излучения используются фотоны или нейроны. Наиболее популярным является рентгеновское излучение. Это объясняется тем, что оно обеспечивает самую большую чувствительность контроля сварки.

Радиографический метод контроля сварного шва предполагает применение именно рентгеновских лучей. На место сварного соединения устанавливают специальный аппарат. Рентгеновские лучи проникают через металл. При отсутствии дефектов они наружу не выходят. При их наличии лучи выходят наружу. Особый прибор регистрирует путь прохождения лучей и производит снимок. На таком снимке можно увидеть размеры дефектов и их месторасположение.

Оборудование для контроля качества сварных соединений радиографическим методом — рентгеновский аппарат. Его главным элементом является излучатель, генерирующий лучи. Такой излучатель выглядит, как вакуумный сосуд, содержащий анод и катод.

Выбирать подходящий рентгеновский аппарат необходимо с учетом толщины металла, который предполагается подвергнуть контролю. Также ответственно следует подходить к выбору пленки, на которой будет зафиксирован результат исследования. Его также можно увидеть на экране монитора во время процесса контроля. Каждую новую партию пленки и препаратов для ее обработки перед употреблением необходимо проверять на соответствие предъявляемым к ним требованиям.

При проведении радиографического контроля помимо рентгеновского аппарата используется дефектометр — металлическая пластинка с канавками различной глубины.

Снимки, получаемые в результате радиографического контроля, при рентгеновском излучении называются рентгенограммой. При гамма-излучении — гаммаграммой, а контроль — гаммаграфическим контролем сварных соединений.

К достоинствам радиографического метода относятся:

  • хорошая чувствительность;
  • наглядность полученных результатов;
  • возможность контроля различных металлов;
  • возможность обнаружения мельчайших дефектов;
  • определение линейных размеров;
  • выяснение, на какой глубине залегает дефектная область.

С помощью компьютера можно осуществлять цифровую радиографию.

Разрушающий контроль

Все виды контроля сварных швов делятся на неразрушающие и разрушающие. Перед началом исследований необходимо определиться, какие методы включает разрушающий контроль сварных соединений, и допустимо ли это в конкретном случае.

К разрушающим методам контроля сварных соединений относятся:

  • механические испытания;
  • химические;
  • физические;
  • металлографические.

Разрушающий контроль сварных соединений целесообразно проводить на контрольных образцах в качестве предварительной оценки состояния сварного соединения.

Металлографические исследования заключаются в засверливании поверхности и протравливании ее раствором, содержащим аммоний и хлорид меди. Просверливание производят сквозь сварной шов. Затем углубляются в основной металл. Потом место проверки осматривают невооруженным глазом или с помощью лупы.

При химическом анализе устанавливают соответствие состава металла и сварного шва на нем нормативным требованиям. В ГОСТ 122-75 указаны методы для отбора проб. Для механических исследований специально изготавливают образцы или вырезают их из сварного соединения, и проводят на них испытания.

Особые требования

К конструкциям, где при дальнейшей эксплуатации надежность сварного соединения имеет большое значение, предъявляются повышенные требования. В частности объем контроля сварных соединений трубопроводов является повышенным по сравнению с менее ответственными конструкциями.
Значение также имеет правильное оформление документации по контролю качества сварки.

Интересное видео

Методы контроля сварных соединений металлоконструкций

Это последствия прорыва нефтепровода, а причина — чаще всего в некачественных соединениях.

В предыдущей статье мы рассказали о том, кем и где проводится контроль сварных швов и соединений. Теперь давайте рассмотрим подробнее, как именно должен проводиться этот контроль.

Как проводят контроль качества при изготовлении металлоконструкций, трубной продукции, емкостного и прочего оборудования?

Начинается контроль за сваркой с визуального осмотра и измерений. Для этого используются специальные инструментальные наборы ВИК.

Справочная информация: Наборы, применяемые cпециалистами SGS, соответствуют необходимым инструкциям и методике ПНАЭ. Входящие в комплект средства отвечают требованиям ГОСТ и ТУ. Комплектация:

  • штангенциркуль и стальная линейка;
  • угольник и шаблоны;
  • щупы;
  • измерительный инструмент;
  • лупы просмотровые;
  • лупа измерительная;
  • фонарик и маркеры;
  • паспорт и инструкция.

Контролю качества подлежит не только материал, но также сборка и сварка продукции. Обращается внимание на наружные дефекты: подрезы, микротрещины, чешуйки, непровары.

Если такие недостатки выявлены при осмотре и измерениях, то остальные виды контроля не проводятся вплоть до момента устранения обнаруженных дефектов.

Михаил Бондарь, операционный менеджер департамента услуг для промышленного сектора, SGS

При визуально-измерительном контроле используется, в том числе, шаблон сварщика. Это универсальный инструмент, который не только подтверждает геометрию сварного шва, но и позволяет проверить его на соответствие ГОСТам.

Однако внутренние недостатки обнаружить визуально невозможно. Они возникают, когда нарушен технологический процесс сварки и/или применены материалы низкого качества. Трещины, непровары, шлаковые включения, газовые поры — чрезвычайно опасны, потому что со временем швы с такими дефектами могут разойтись. 

При рентгенографическом и ультразвуковом контроле выявляют внутренние повреждения и определяют превышают ли эти несоответствия допустимые нормы. 

Когда образуется напряжение, от скрытого дефекта может пойти трещина и произойти разрыв трубопровода или сварного шва металлоконструкций. Подумайте, что произойдет, если разорвется газопровод или нефтепровод. Может пострадать не только экология, но и люди.

Василий Артюшенко, эксперт департамента услуг для промышленного сектора, SGS

Этими методами проверяется не только результат сварки (сварные соединения), но и процесс производства. 

Для надлежащего контроля производства могут применяться различные технологии. Если рентгеном мы можем выявлять дефекты, которые распределены на максимальной площади, то посредством ультразвукового контроля хорошо просматриваются боковые несоответствия.

Цветная или капиллярная дефектоскопия используется для выявления микротрещин на поверхностях. Для ее проведения сначала зачищаются околошовная зона и сам шов, затем на всю поверхность наносится специальным краситель и дается время выдержки. Затем смывается и наносится следующий раствор. При такой технологии микротрещины окрашиваются и становятся видны на белом фоне.

Суть магнитопорошковой дефектоскопии — в выявлении магнитного поля в зоне дефекта. Для этой цели применяются ферромагнетики. Если в сварном шве присутствует несоответсвие, то вокруг него формируются искажения. Такие изменения фиксируются при помощи дефектоскопа. При большом дефекте происходит большее рассеивание, а значит растет вероятность обнаружения.

О компании SGS

Группа SGS является мировым лидером на рынке контроля, экспертизы, испытаний и сертификации. Основанная в 1878 году, сегодня SGS признана эталоном качества и деловой этики. Более 94,000 сотрудников работает в сети SGS, насчитывающей свыше 2,600 офисов и лабораторий по всему миру со штаб-квартирой в Женеве, Швейцария. 

Контроль качества сварных швов и соединений

21.11.2016

Контроль сварных швов условно можно разделить на 2 этапа – до проведения сварочных работ (предупреждающий образование дефектов) и в процессе эксплуатации металлоконструкций (выявляющий уже имеющиеся дефекты).

Попробуем рассмотреть более детально каждый из этих этапов.

Контроль, предупреждающий образование дефектов сварки.

В нем учитываются и контролируются следующие параметры:

Подготовка сварки, контролируются:

  • Состояние и свойства рабочей поверхности
  • Сварочное оборудование и расходные материалы (электроды, флюсы, присадки и пр.)
  • Квалификация специалистов 
  • Качество и свойства свариваемых и сварочных материалов
  • Порядок наложения швов и дальнейшая зачистка швов

Все сварочные работы регламентируются НД. Сборку под сварку и разделку швов осуществляют по стандартам и техническим условиям.

После проведения всех работ и начала использования металлоконструкций появляется необходимость в выявлении дефектов, возникающих в процессе эксплуатации.

И тут мы переходим к тому, каким образом стоит контролировать и выявлять имеющиеся дефекты.

Способы контроля качества сварных швов и соединений

Внешний контроль

Самый простой, наименее затратный, но при этом позволяющий обнаружить только самые значительные дефекты способ – внешний. Внешний контроль швов включает в себя не только визуальный осмотр, но также обмер сварных швов, замеры кромок и прочие процедуры.

Внешний осмотр и обмеры швов — наиболее простые и широко распространенные способы контроля их качества. Они являются первыми контрольными операциями по приемке готового сварного узла или изделия. Этим видам контроля подвергают все швы независимо от того, как они будут испытаны в дальнейшем.

Внешним осмотром швов выявляют наружные дефекты: непровары, наплывы, подрезы, наружные трещины и поры, смещение свариваемых кромок деталей и т.п. Визуальный осмотр производят как невооруженным глазом, так и с применением лупы с увеличением до 10 раз.

Всякий контроль сварных соединений начинается с внешнего осмотра, с помощью которого можно выявить не только наружные дефекты, но и некоторые внутренние. Например, разная высота и ширина шва и неравномерность складок свидетельствуют о частых обрывах дуги, следствием которых являются непровары.

Перед осмотром швы тщательного очищаются от шлака, окалины и брызг металла. Более тщательная очистка в виде обработки шва (промывкой спиртом и травлением 10%-ным раствором азотной кислоты) придает шву матовую поверхность, на которой легче заметить мелкие трещины и поры.

Обмеры  швов позволяют судить о качестве сварного соединения: недостаточное сечение шва уменьшает его прочность, слишком большое — увеличивает внутренние напряжения и деформации. Размеры сечения готового шва проверяют по его параметрам в зависимости от типа соединения. У стыкового шва проверяют его ширину, высоту, размер выпуклости со стороны корня шва, в угловом — измеряют катет. Замеренные параметры должны соответствовать ТУ или ГОСТам. Размеры швов контролируют обычно измерительными инструментами или специальными шаблонами.

Внешний осмотр и обмеры сварных швов не дают возможности окончательно судить о качестве сварки. Они устанавливают только внешние дефекты шва и позволяют определить их сомнительные участки, которые могут быть проверены более достоверными способами.

После проведения визуального контроля швы могут контролироваться металлографическими исследованиями, химическим анализом, механическими испытаниями, просвечиванием рентгеновскими и гамма-лучами, магнитными методами и с помощью ультразвука.

Металлографические исследования (разрушающий контроль)

Заключаются в следующем: высверливается отверстие, проходящее через шов и основной металл. Поверхность отверстия протравливают 10%-ным водным раствором двойной соли хлорной меди и аммония в течение 1-3 мин. Осадок меди удаляют водой. Протравленную поверхность осматривают невооруженным глазом или с помощью лупы. При этом выявляют качество провара и наличие внутренних дефектов. Для ответственных сварных конструкций производят более полные металлографические исследования макро — и микрошлифов из специально сваренных контрольных пластин или из пластин, вырезанных из сварных соединений.

Химическим анализом определяют состав основного и наплавленного металлов и электродов, а также их соответствие установленным техническим условиям на изготовление сварного изделия. Методы отбора проб для химического и спектрального анализов описаны в ГОСТ 7122—81.

Механические испытания проводят либо на специально сваренных контрольных образцах, либо на образцах, вырезанных из сварного соединения. С их помощью определяют предел прочности на растяжение, ударную вязкость, твердость и угол загиба.

Радиографический контроль

После того как визуальный осмотр завершен, следует его просвечивание. Эта процедура требует использования рентгена или гамма-лучей.
При проверке рентгеном аппарат устанавливают с внутренней стороны металлоконструкции. С помощью рентгена можно увидеть места, где сварочное оборудование оказало недостаточное воздействие – на пленке они будут отмечены пятнами более темных оттенков, чем основной цвет соединений. С помощью рентгена можно увидеть места, где сварочное оборудование оказало недостаточное воздействие – на пленке они будут отмечены пятнами более темных оттенков, чем основной цвет соединений. С помощью подобного метода происходит выявление трещин в металлоконструкции, непроваров, шлаковых включений и других деформаций, незаметных при внешнем осмотре.

Рентгенографическим способом можно контролировать металлические соединения толщиной не более 6 см.

Контроль непроницаемости сварных швов и соединений

Сварные швы и соединения ряда изделий и сооружений должны отвечать требованиям непроницаемости (герметичности) для различных жидкостей и газов. Учитывая это, во многих сварных конструкциях (емкости, трубопроводы, химическая аппаратура и т.д.) сварные швы подвергают контролю на непроницаемость. Этот вид контроля производится после окончания монтажа или изготовления конструкции. Дефекты, выявленные внешним осмотром, устраняются до начала испытаний. Непроницаемость сварных швов контролируют следующими методами: капиллярным (керосином), химическим (аммиаком), пузырьковым (воздушным или гидравлическим давлением), вакуумированием или газоэлектрическими течеискателями.

Контроль керосином основан на физическом явлении капиллярности, которое заключается в способности керосина подниматься по капиллярным ходам — сквозным порам и трещинам. В процессе испытания сварные швы покрываются водным раствором мела с той стороны, которая более доступна для осмотра и выявления дефектов. После высушивания окрашенной поверхности с обратной стороны шов обильно смачивают керосином. Неплотности швов выявляют по наличию на меловом покрытии следов проникшего керосина. Появление отдельных пятен указывает на поры и свищи, полос — сквозных трещин и непроваров в шве. Благодаря высокой проникающей способности керосина обнаруживаются дефекты с поперечным размером 0,1 мм и менее.

Контроль аммиаком основан на изменении окраски некоторых индикаторов (раствор фенолфталеина, азотнокислой ртути) под воздействием щелочей. В качестве контролирующего реагента применяется газ аммиак. При испытании на одну сторону шва укладывают бумажную ленту, смоченную 5%-ным раствором индикатора, а с другой стороны шов обрабатывают смесью аммиака с воздухом. Аммиак, проникая через неплотности сварного шва, окрашивает индикатор в местах залегания дефектов.

Контроль воздушным давлением (сжатым воздухом или другими газами) подвергают сосуды и трубопроводы, работающие под давлением, а также резервуары, цистерны и т.п. Это испытание проводят с целью проверки общей герметичности сварного изделия. Малогабаритные изделия полностью погружают в ванну с водой, после чего в него подают сжатый воздух под давлением, на 10 — 20% превышающим рабочее. Крупногабаритные конструкции после подачи внутреннего давления по сварным швам покрывают пенным индикатором (обычно раствор мыла). О наличии неплотностей в швах судят по появлению пузырьков воздуха. При испытании сжатым воздухом (газами) следует соблюдать правила безопасности.

Контроль гидравлическим давлением применяют при проверке прочности и плотности различных сосудов, котлов, паро-, водо- и газопроводов и других сварных конструкций, работающих под избыточным давлением. Перед испытанием сварное изделие полностью герметизируют водонепроницаемыми заглушками. Швы с наружной поверхности тщательно просушивают обдувом воздухом. Затем изделие заполняют водой под избыточным давлением, в 1,5 — 2 раза превышающим рабочее, и выдерживают в течение заданного времени. Дефектные места определяют по проявлению течи, капель или увлажнению поверхности швов.

Магнитографический способ проверки качества необходим, чтобы обнаружить поле рассеивания, образующееся там, где есть дефекты. Способ заключается в намагничивании поверхности детали, после чего область полей появляется сверху магнитной ленты, которую прижимают на поверхность швов. Весь процесс проверки металлоконструкции фиксируется с помощью дефектоскопа, а после информация считывается и, таким образом, устанавливается, есть ли на швах дефекты. Подобный метод позволяет выявлять наличие трещин, пор, непроваров, шлаковых включений и других дефектов, возникающих в процессе сварки. Также с помощью магнитографического метода можно определить наличие на поверхности швов поперечных трещин, широких непроваров или округлых пор, однако с поиском дефектов подобного рода данный метод справляется несколько хуже. Использовать его можно только для металлических заготовок, толщина которых не превышает 1.2 см. Ультразвуковой способ проверки качества часто используется для оценки на соответствие ГОСТ стали и изделий из цветного металла.

Ультразвуковой способ заключается в направлении звукового колебаний на поверхность металла и последующего отражения, чтобы выявить возможные дефекты. Для получения ультразвуковой волны используют несколько пьезоэлектрических кварцевых пластин, которые фиксируются в щупе. После колебания ультразвуковой волны, которые отражаются от металла, улавливаются специальным устройством – искателем, который преобразует ультразвуковой луч в заряженный электричеством импульс, переходящий к усилителю, а затем воспроизводящийся с помощью индикатора. Для того чтобы ультразвуковой способ был эффективен, перед тем, как ультразвуковой луч направляют на металл, его поверхность предварительно покрывают автолом или компрессорным маслом.

Химический метод контроля на соответствие ГОСТ заключается в обработке поверхности швов фенолфталеиновым раствором, перед этим поверхность необходимо тщательно зачистить, удалив все шлаки и загрязнения. После нанесения раствора место обработки накрывается тканью, которая пропитывается азотнокислым серебром (раствор 5%). Этот метод позволяет выявить наличие локальных течей: на этих местах серебро приобретет серебристо-черный вид, а фенолфталеин – красный.

Для того чтобы определить, насколько плотность сварного шва соответствует ГОСТ, применяют метод пробы керосином. Благодаря ему можно найти самые маленькие дефекты, размер которых может быть около 0.1 мм. Для выявления дефектов качества швы покрываются каолином или мелом с одной стороны, и смачивается керосином с другой. При наличии проницания в шве, на поверхности каолина или мела появятся жирные пятна желтого цвета. Появляются они не сразу, поэтому проверка на ГОСТ этим методом проводится не менее 4 часов.

Капиллярный контроль

Основан на капиллярной активности жидкостей — их способности втягиваться, проникать в мельчайшие каналы (капилляры), имеющиеся на поверхности материалов, в том числе поры и трещины сварных швов. Чем выше смачиваемость жидкости и чем меньше радиус капилляра, тем больше глубина и скорость проникновения жидкости. С помощью капиллярного контроля можно контролировать материалы любого вида и формы — ферромагнитные и неферромагнитные, цветные и черные металлы и их сплавы, керамику, пластмассы, стекло. В основном, капиллярный метод применяют для обнаружения невидимых или слабовидимых невооруженным глазом поверхностных дефектов с открытой полостью. Однако с помощью некоторых материалов (керосина, например) можно с успехом обнаруживать и сквозные дефекты.


КОНТРОЛЬ КАЧЕСТВА СВАРНЫХ ШВОВ [труб и металлоконструкций]

[Контроль качества сварных швов] – необходимая процедура для определения качества металлоконструкции.

 

Если шов недостаточно плотный, с нарушенной герметичностью и другими деформациями – все это неминуемо скажется на сроке эксплуатации металлоконструкции.

Особенно быстро это произойдет в случае, если металлоконструкция будет находиться под постоянным давлением.

Проверка качества

Для контроля качества и проверки соответствия швов ГОСТ существуют специальные процедуры, виды которых (ультразвуковой, визуальных и т.д.) будут подробно освещены в статье.

Назначение процедуры и метод визуального осмотра

Перед проверкой металлоконструкции на соответствие требованиям ГОСТ, сначала обязательно требуется проверить, насколько качественно сделаны швы – на этом этапе выявляются все внешние и внутренние недостатки швов, а также исправляются, если это возможно.

Тщательному контролю подвергается каждое готовое изделие перед тем, как его допустят к эксплуатации.

Первый и самый простой уровень контроля качества: визуальный осмотр.

Визуальный осмотр металлоконстуркции позволяет выявить внешние и самые явные деформации швов, такие, как трещины, непровары и прочие недостатки.

Большинство подобных деформаций позволяет определить обычный визуальный осмотр металлоконструкции без использования дополнительного оборудования, однако, в некоторых случаях практикуется применение специальных устройств.

Виды контроля сварных швов делятся на разрушающие и неразрушающие.

Первый вид контроля подразумевает только визуальный осмотр, все остальные, более сложные техники проверки относятся ко второму типу.

Второй вид контроля может быть капиллярным, ультразвуковым, радиационным, магнитным и проверкой на проницаемость.

При любом неразрушающем способе проверки внешний вид металлоконструкции не деформируется, что делает его более удобным и востребованным, чем разрушающий способ.

Разрушающий – визуальный – способ контроля используется только в том случае, если сварная деталь сварена постоянным типом сварки без изменения условий.

Методы контроля сварных швов также бывают разные. При проведении контроля по ГОСТ поочередно проводятся разные виды процедур, выявляющих качество сварного шва.

Видео:

Процедуры делят на химические, механические, физические, а также визуальный и ультразвуковой осмотр.

Наиболее бюджетным является визуальный осмотр, поскольку он не требует никаких финансовых затрат.

Однако он используется не в целях экономии, а ввиду необходимости, поскольку позволяет выявить самые значительные нарушения швов.

Визуальный осмотр необходим для совершенно всех видов металлических соединений, независимо от того, какие методы контроля последуют за ним.

Часто визуальный осмотр по ГОСТ проводят без применения всяких вспомогательных устройств, однако в некоторых случаях для того, чтобы проверка была более точной, используют лупу, которая способна увеличить осматриваемое пространство швов в 10 раз.

В этом случае можно заметить даже самые мелкие непровары, подрезы, наплывы и другие дефекты.

Внешний контроль швов включает не только непосредственно визуальный осмотр, но также обмер сварных швов, замеры кромок и прочие процедуры.

Если изделия для металлоконструкций, которые подвергаются контролю, выпущены массовым тиражом, то в этом случае для их создания используют специальный шаблон, позволяющий соблюдать точные и одинаковые замеры всех параметров сварных швов.

Если визуальный просмотр прошел успешно, то за ним следует физический осмотр, на котором выявляется качество шовного соединения и другие характеристики.

Цель подобного контроля в том, чтобы убедиться, что по своим характеристикам сварные швы полностью соответствуют ГОСТ.

Проверка физическими и химическими методами производится с подключением специального оборудования, например, электромагнитного сердечника, а также других устройств.

Главная цель проведения любого типа контрольной проверки – выявить не только непосредственное состояние швов, но также проверить, насколько качественно сама металлическая деталь, и не было ли нарушений во время сварочных работ.

В зависимости от типа металла, характеристики швов будут несколько отличаться между собой, однако все они должны соответствовать ГОСТу-6996-66, в котором отмечены все надлежащие к выполнению виды контрольных работ.

Другие методы контроля

Контроль качества сварных соединений трубопроводов и других металлоконструкций производится разными методами, однако все они необходимы для установления того, насколько выпускаемая продукция соответствует ГОСТ.

После того как визуальный осмотр завершен, следует его просвечивание. Эта процедура требует использования рентгена или гамма-лучей.

Видео:

При проверке рентгеном аппарат устанавливают с внутренней стороны металлоконструкции.

С помощью рентгена можно увидеть места, где сварочное оборудование оказало недостаточное воздействие – на пленке они будут отмечены пятнами более темных оттенков, чем основной цвет соединений.

С помощью подобного метода происходит выявление трещин в металлоконструкции, непроваров, шлаковых включений и других деформаций, незаметных при внешнем осмотре.

С помощью просвечивания можно оценить металлические соединения толщиной не более 6 см, при обнаружении дефектов просвечивается в два раза больше стыков.

Магнитографический способ проверки качества необходим, чтобы обнаружить поле рассеивания, образующееся там, где есть дефекты.

Способ заключается в намагничивании поверхности детали, после чего область полей появляется сверху магнитной ленты, которую прижимают на поверхность швов.

Весь процесс проверки металлоконструкции фиксируется с помощью дефектоскопа, а после информация считывается и, таким образом, устанавливается, есть ли на швах дефекты.

Подобный метод позволяет выявлять наличие трещин, пор, непроваров, шлаковых включений и других дефектов, возникающих в процессе сварки.

Также с помощью магнитографического метода можно определить наличие на поверхности швов поперечных трещин, широких непроваров или округлых пор, однако с поиском дефектов подобного рода данный метод справляется несколько хуже.

Использовать его можно только для металлических заготовок, толщина которых не превышает 1.2 см.

Ультразвуковой способ проверки качества часто используется для оценки на соответствие ГОСТ стали и изделий из цветного металла.

Ультразвуковой способ заключается в направлении звукового колебаний на поверхность металла и последующего отражения, чтобы выявить возможные дефекты.

Видео:

Для получения ультразвуковой волны используют несколько пьезоэлектрических кварцевых пластин, которые фиксируются в щупе.

После колебания ультразвуковой волны, которые отражаются от металла, улавливаются специальным устройством – искателем, который преобразует ультразвуковой луч в заряженный электричеством импульс, переходящий к усилителю, а затем воспроизводящийся с помощью индикатора.

Для того чтобы ультразвуковой способ был эффективен, перед тем, как ультразвуковой луч направляют на металл, его поверхность предварительно покрывают автолом или компрессорным маслом.

Вскрытие швов – более радикальный метод проверки, когда вероятность дефектов достаточно высока, но при этом ни ультразвуковой, ни другие методы не могут ее выявить.

Швы вскрываются специальным устройством только в том участке, где высока вероятность наличия дефекта.

Вскрытие происходит путем просверливания углубления, диаметр которого должен несколько превышать размер шва, а затем поверхность подвергается шлифовке и обрабатывается разведенной азотной кислотой.

Этот метод заметно деформирует металлическую заготовку, и после него граница прохождения швов проступает очень явно, поэтому без надобности этот способ контроля не используют.

Химический метод контроля на соответствие ГОСТ заключается в обработке поверхности швов фенолфталеиновым раствором, перед этим поверхность необходимо тщательно зачистить, удалив все шлаки и загрязнения.

После нанесения раствора место обработки накрывается тканью, которая пропитывается азотнокислым серебром (раствор 5%).

Этот метод позволяет выявить наличие локальных течей: на этих местах серебро приобретет серебристо-черный вид, а фенолфталеин – красный.

Для того чтобы определить, насколько плотность сварного шва соответствует ГОСТ, применяют метод пробы керосином.

Контроль соединения

Благодаря ему можно найти самые маленькие дефекты, размер которых может быть около 0.1 мм.

Для выявления дефектов качества швы покрываются каолином или мелом с одной стороны, и смачивается керосином с другой.

При наличии проницания в шве, на поверхности каолина или мела появятся жирные пятна желтого цвета.

Появляются они не сразу, поэтому проверка на ГОСТ этим методом проводится не менее 4 часов.


Виды контроля качества сварных соединений

Среди обязательных этапов любых сварочных работ находится проверка качества швов. Благодаря такому подходу, специалист может выявить недоработки, которые негативно сказываются на прочности соединения. Своевременное устранение производственных дефектов позволяет продлить срок службы конструкции. Как проверить качество сварного шва? Конечно, это можно оценить визуально. Но это далеко не точный и не единственно доступный метод контроля.

Ни один специалист, даже самый опытный, визуально не сможет определить наличие пустот и трещин внутреннего характера. Здесь необходим совершенно иной подход. На больших предприятиях качество мониторится контроллером сварочных работ. А во всех остальных случаях ответственность ложится на плечи самого исполнителя. Далее мы рассмотрим разные существующие варианты проверки швов, помимо визуального контроля.

Методы контроля качества сварных швов

На практике применяются разные средства технического контроля, которые отличаются нюансами в работе; обладают разными достоинствами и недостатками. Тем не менее, весь их функционал ориентирован на то, чтобы определить прочность и долговечность сварочного шва. Качество соединения двух металлических заготовок можно предсказать. Ведь в большей части оно зависит от мастерства исполнителя и качества используемых расходников. Обладая этими данными, несложно предусмотреть итог контроля. Однако, лучше выполнить несложные процедуры контроля, чтобы объективно убедиться в надежности соединения.

Самым распространенным способом определения качества сварного шва остается визуальный. Наряду с ним используются магнитный, капиллярный и радиационный виды контроля. Конечно, существуют и другие варианты, но перечисленный выше являются максимально простыми и наиболее часто востребованными. Желательно практиковать пооперационный контроль качества. Сначала сварочный шов осматривается, после этого выполняется капиллярное исследование образца и т.д.

Визуальный контроль

Наиболее доступный способ определить качество сварных соединений. Для внешнего осмотра не нужны никакие дополнительные приборы или материалы. Достаточно иметь хорошее зрение и обладать внимательностью к деталям. Сварное соединение необходимо рассматривать как можно тщательнее. Говорить о хорошем качестве можно только тогда, если нет видимых дефектов, сколов, трещин; а шов характеризуется одинаковой шириной (высотой) по всей длине. Очень важно, чтобы не было грубых дефектов сварки: складок, наплывов, непроваренных участков.

Чтобы максимально эффективно контролировать качество сварного шва, стоит в перечень используемых инструментов включить хорошую лампу, лупу, штангенциркуль и рулетку. Эти инструменты понадобятся, чтобы найти дефект, определить его размеры и наметить пути устранения проблемы. Простейшие приспособления, конечно, не позволяют полноценно контролировать качество сварки, но станут первым шагом на пути к этому.

Капиллярный контроль

Проверенный временем способ дает возможность проверить сварной шов на прочность. Суть его сводится к тому, что для проверки применяются специальные жидкости с высокой текучестью. Они проникают в самые тонкие пустоты, которые принято называть капиллярами.

Данный метод дает возможность проверить качество сварного соединения с любого состава. Он отлично подходит в ситуациях, когда есть потребность в проверке скрытых дефектов сварного соединения при ограниченном бюджете на проверку. Здесь нет потребности в дорогостоящем оборудовании, а исполнить манипуляции сможет даже новичок.

Жидкости, которые применяются в капиллярной методе оценки, называются пенетрантами. Это походное слово от английского «penetrant», что переводится как «проникающая жидкость». Для них характерно малое поверхностное натяжение. Благодаря такому свойству, субстанция легко проникает в капилляры, которые могут образоваться во время сварки. Говоря проще, пенетранты проникают в пустоты, окрашивают их, делая видимыми для человеческого глаза.

На практике используются разные растворы, каждый из которых можно приготовить самостоятельно. Они отличаются не только химическим составом, но и свойствами. На практике чаще всего применяются пенетранты, изготовленные на основе воды либо другой органической жидкости – бензола, скипидара и т.д. Именно они наиболее чувствительны к самым незначительным дефектам.

Проверка сварных швов на герметичность

На капиллярно методе испытания сварочного шва не заканчиваются. Важно определить степень герметичности стыка. Метод, который применяется в данных целях, называется по-разному: пузырьковый, гидроиспытание, течеискание и много иных вариаций. Их объединяет общая суть – обнаружение дефектов герметичности.

Герметичность стыка проверяется при помощи газа или жидкости. Суть метода идентична капиллярному. Разница заключается только в том, что кислород, азот или вода подаются под высоким давлением. Субстанции распределяются по пустотам и в случае негерметичности стыка, выходят наружу. Классификация методологий зависит от вида применяемого материала. Он бывает гидравлическим или пневматическим. Последний делится на подвиды: вакуумный или нагнетательный.

Пневматический метод контроля базируется на использовании воздуха или газовоздушной смеси, которые подаются к тестируемой области под давлением. Предварительно место стыка обильно смазывается раствором из воды и мыла. Подвидом пневматического метода является контроль с использованием вакуума. Сварочный шов промазывается мыльным раствором. После этого конструкция или деталь помещается в безвоздушную среду, созданную специальным оборудованием. Если существуют сквозные дефекты, то будут образовываться мыльные пузыри.

Для приготовления мыльного раствора необходимо использовать один кусок мыла на литр воды. В случаях, когда предполагается использовать раствор при отрицательной температуре, необходимо половину воды заменить техническим спиртом. Не лишним будет подключение манометра к емкости, где создается вакуум или нагнетается давление. Изменения в показаниях прибора будут свидетельствовать о наличии дефектов сварочного шва.

Есть очень простой и надежный способ контроля качества шва, который заключается в погружении испытуемой детали в воду. Не требуется ни мыльный раствор, ни герметичные резервуары или нагнетательное оборудование. В случаях, когда присутствуют дефекты, то из детали, погруженной в воду, будут подыматься мелкие пузырьки воздуха. Данный метод называют полевом. Несмотря на свою простоту, он достаточно эффективный.

Еще одна разновидность пневматического контроля основывается на проверке соединений при помощи аммиака. Он подается на соединение вместо воды или газа. Предварительно стыки покрываются бумажной лентой. Аммиак проникает во все доступные полости и, если шов имеет пустоты, то на поверхности бумажной ленты образуются красные пятна.

При гидравлическом методе контроля давление создается при помощи масла или воды. В зависимости от вида металла деталь выдерживается в жидкости от 5 до 15 минут. В это время зона по периметру сварочного шва обстукивается молоточком. Даже при слабых ударах жидкость станет вытекать в случаях, когда шов имеет сквозные дефекты.

Читайте также: Виды сварочных швов

Магнитное поле

В основу метода легла технология использования электромагнетизма в промышленности. С помощью специального приспособления вокруг сварочного шва создается магнитное поле, имеющее свой рисунок электромагнитных линий. Если они ровные, то можно смело сказать, что работа выполнена качественно. В случаях наличия дефектов, линия будут иметь явное искажение.

Для визуализации магнитных линий достаточно на поверхность проверяемых деталей насыпать ферримагнитный порошок. В случае искажения магнитного поля он скапливается в том месте, где присутствует дефект. В силу объективных обстоятельств данный метод приемлем только при работе с ферримагнитными металлами. Качество сварки меди, алюминия, стали с большой долей никеля или хрома проверить не получится. Помимо этого, технология является достаточно затратной. Они востребована только в случаях, когда есть необходимость точной проверки соединения особо важных узлов.

Ультразвук

Для контроля над качеством сварного шва используются также уникальные свойства ультразвука. Звуковые волны по-разному отражаются от монолитной и деформированной поверхности. Сколы и трещины имеют свои акустические особенности, которые фиксируются специальной аппаратурой. Проще говоря, на сварочный шов подается ультразвук. Если он сталкивается с пустотой, сколом или иным дефектом, то отображается от металла под другим углом. Более того, разные виды дефектов отражают ультразвук неодинаково, что позволяет диагностировать их.

Благодаря тому, что ультразвуковой метод диагностики является сравнительно недорогим и стабильно эффективным, он используется повсеместно. Распространению способствует и простота использования. К примеру, не нужно учитывать физико-химические особенности металлических сплавов, как в случаях с магнитным или радиационным контролем. Да и приобретение дорогостоящей оснастки тоже не требуется. Недостатком является необходимость наличия специальных знаний и навыков. То есть для контроля привлекается специалист со стороны. Сварщик выполнить процедуру самостоятельно не сможет.

Радиография

Радиационный контроль является миниатюрной версией всем знакомого медицинского рентгена. Гамма-лучи прошивают металл и оставляют свой след на специальной пленке. Соответственно, отображаются и скрытые от глаз внутренние дефекты сварочного стыка. Данный метод является самым передовым и позволяет точно обрисовать картину внутреннего состояния соединения.

Наряду с этим, метод имеет и недостатки. Прежде всего, это необходимость приобретения дорогостоящего оборудования. Другой нюанс – требуется предварительная подготовка специалиста. Плюс ко всему, нельзя работать с оборудованием длительной время, поскольку это негативно сказывается на состоянии здоровья.

С недавних пор есть возможность приобрести цифровой радиограф, работающий с компьютерной программой. Вместо пленки в этом случае применяются многоразовые пластины, которые реагируют с любыми лучами. Ключевое отличие от классического рентген-аппарата заключается в том, что изображение сразу отображается на мониторе компьютера. Его можно масштабировать и редактировать. Перспективой технологии является полная автоматизация процесса.

Заключение

Специалист, выполняющий контролирующие функции, должен максимально ответственно относиться к своим обязанностям. От его внимательности зависит функциональность и срок службы конструкции. Нужно фиксировать все отклонения от нормы, которые поддаются диагностированию. Чтобы получить максимально детальную картинку, желательно комбинировать несколько методов контроля. Строго воспрещается прибегать к методам, которые могут нанести вред сварному соединению.

Особенности конструкций сварных швов и прилегающих зон, образующихся при сварке взрывом листовой стали

[1] Меткалф А.Г. Интерфейсы в металлических матричных композитах. 1, под редакцией A. G. Metcalfe Academic Press, NY (1974), стр.112.

[2] Н.Чавла, К.К. Чавла: Композиты с металлической матрицей (Спрингер, Нью-Йорк, 2006).

[3] С. Суреш, А. Мортенсен и А. Нидлман: Основы металл-матричных композитов (Баттерворт-Хайнеманн, США, 1993).

[4] А. А. Дерибас: Физика упрочнения и сварка взрывом, Наука (1972) с.221.

[5] Б.Crossland: Сварка металлов взрывом и ее применение (Clarendon press, Oxford 1982).

[6] И.А. Батаев, Д. Павлюкова, Т.В. Журавина, Е.Б. Макарова, Д.С.Терентьев: Обработка металлов. 46 (2010) с.6.

[7] Батаев И.А., Батаев А.А., Мали В.И., Есиков М.А., Материалы X Международной конференции Забабахинские чтения. Издано Российским федеральным ядерным центром — ВНИИ технической физики, Снежинск, 15-19 марта (2010).

.

Расширение и сжатие металлов

Расширение и сжатие металла является фактором, учитываемым при проектировании и производстве всех самолетов. Не менее важно учитывать и учитывать изменения размеров и напряжения металла, которые могут возникнуть во время любого процесса сварки.

Тепло вызывает расширение металлов; охлаждение заставляет их сокращаться. Следовательно, неравномерный нагрев вызывает неравномерное расширение, а неравномерное охлаждение вызывает неравномерное сжатие. В таких условиях в металле создаются напряжения.Эти силы необходимо ослабить, и если не будут приняты меры предосторожности, произойдет коробление или коробление металла. Аналогичным образом, при охлаждении, если ничего не предпринять для снятия напряжения, создаваемого силами сжатия, может возникнуть дальнейшее коробление; или если металл слишком тяжел, чтобы допустить такое изменение формы, напряжения остаются внутри самого металла.

Коэффициент линейного расширения металла — это количество в дюймах, на которое кусок металла толщиной в один дюйм расширяется при повышении его температуры на 1 ° F.Величина, на которую кусок металла расширяется при воздействии тепла, определяется путем умножения коэффициента линейного расширения на повышение температуры и умножения этого произведения на длину металла в дюймах.

Расширение и сжатие имеют тенденцию к короблению и деформации тонкого листового металла толщиной 1/8 дюйма или более. Это результат наличия большой площади поверхности, которая быстро распространяет тепло и рассеивает его вскоре после удаления источника тепла. Самый эффективный способ облегчить эту ситуацию — отвести тепло от металла вблизи сварного шва, не допуская его распространения по всей площади поверхности.Это можно сделать, поместив тяжелые металлические детали, известные как охлаждающие стержни, по обе стороны от сварного шва; для поглощения тепла и предотвращения его распространения. Медь чаще всего используется для изготовления охлаждающих баров из-за ее способности легко поглощать тепло. Сварочные приспособления иногда используют этот же принцип для отвода тепла от основного металла. Расширение также можно контролировать с помощью прихваточной сварки через определенные промежутки времени вдоль стыка.

Эффект от сварки шва длиной более 10 или 12 дюймов заключается в сближении шва в процессе сварки.Если края шва соприкасаются друг с другом по всей своей длине до начала сварки, дальние концы шва фактически перекрываются до того, как сварка будет завершена. Эту тенденцию можно преодолеть, установив свариваемые детали с правильным расположением шва на одном конце и увеличив пространство на противоположном конце. [Рисунок 5-39] Figure 5-39. Allowance for a straight butt weld when joining steel sheets. Рисунок 5-39. Учет прямого стыкового шва при соединении стальных листов.

Допустимое пространство зависит от типа материала, толщины материала, используемого процесса сварки, а также формы и размера свариваемых деталей.Инструктаж и / или опыт сварки определяют пространство, необходимое для создания соединения без напряжений.

Сварка начинается с правильно расположенного конца и продолжается к концу с увеличенным зазором. Когда шов сваривается, пространство закрывается и должно обеспечивать правильный зазор в точке сварки. Листовой металл толщиной менее 1⁄16 дюйма можно обрабатывать путем загибания кромок, сварки прихваточным швом через определенные промежутки времени, а затем сварки между прихватками.

Для листового материала размером более 1⁄8 дюйма меньше склонности к деформации и короблению при сварке, поскольку большая толщина ограничивает тепло узкой областью и рассеивает его, прежде чем он далеко уйдет на лист.

Предварительный нагрев металла перед сваркой — еще один метод контроля расширения и сжатия. Предварительный нагрев особенно важен при сварке трубчатых конструкций и отливок. Из-за сжатия трубчатые сварные швы могут создавать большие напряжения. При сварке двух элементов тройника одна труба имеет тенденцию вытягиваться из-за неравномерного сжатия. Если металл предварительно нагревают до начала операции сварки, сжатие все еще происходит в сварном шве, но сопутствующее сжатие в остальной части конструкции происходит почти с той же скоростью, и внутреннее напряжение уменьшается.

Летный механик рекомендует

.

металлоконструкций

Точки плавления и кипения

Металлы имеют тенденцию к высоким температурам плавления и кипения из-за прочности металлической связи. Прочность связи варьируется от металла к металлу и зависит от количества электронов, которые каждый атом делокализует в море электронов, и от упаковки.

Металлы группы 1, такие как натрий и калий, имеют относительно низкие температуры плавления и кипения, главным образом потому, что у каждого атома есть только один электрон, вносящий вклад в связь — но есть и другие проблемы:

  • Элементы группы 1 также неэффективно упакованы (с 8 координатами), поэтому они не образуют столько связей, сколько большинство металлов.

  • У них относительно большие атомы (это означает, что ядра находятся на некотором расстоянии от делокализованных электронов), что также ослабляет связь.

 

Электропроводность

Металлы проводят электричество. Делокализованные электроны могут свободно перемещаться по структуре в трех измерениях. Они могут пересекать границы зерен. Даже если узор может быть нарушен на границе, пока атомы соприкасаются друг с другом, металлическая связь все еще присутствует.

Жидкие металлы также проводят электричество, показывая, что, хотя атомы металла могут свободно перемещаться, делокализация остается в силе до тех пор, пока металл не закипит.

 

Теплопроводность

Металлы — хорошие проводники тепла. Тепловая энергия улавливается электронами в качестве дополнительной кинетической энергии (это заставляет их двигаться быстрее). Энергия передается по всему остальному металлу движущимися электронами.

 

Прочность и работоспособность

Ковкость и пластичность

Металлы описываются как ковкие (можно разбивать на листы) и пластичные (можно вытягивать на проволоку).Это происходит из-за способности атомов перемещаться друг по другу в новые позиции без разрыва металлической связи.

Если приложить небольшое напряжение к металлу, слои атомов начнут катиться друг по другу. Если напряжение снова будет снято, они вернутся в исходное положение. В этих условиях металл считается эластичным на единиц.

Если приложить большее напряжение, атомы перекатываются друг на друга в новое положение, и металл навсегда изменяется.

Твердость металлов

Этому перекатыванию слоев атомов друг на друга препятствуют границы зерен, потому что ряды атомов не выстраиваются должным образом. Отсюда следует, что чем больше имеется границ зерен (чем меньше отдельные кристаллические зерна), тем тверже становится металл.

В противоположность этому, поскольку границы зерен — это области, где атомы не находятся в таком хорошем контакте друг с другом, металлы имеют тенденцию к разрушению на границах зерен.Увеличение количества границ зерен не только делает металл тверже, но и делает его более хрупким.

Контроль размера кристаллических зерен

Если у вас чистый кусок металла, вы можете контролировать размер зерен с помощью термической обработки или обработки металла.

Нагрев металла имеет тенденцию приводить атомы в более правильное расположение — уменьшая количество границ зерен и тем самым делая металл более мягким.Если стучать по металлу в холодном состоянии, образуется много мелких зерен. Таким образом, холодная обработка делает металл более твердым. Чтобы восстановить его работоспособность, вам необходимо повторно нагреть его.

Вы также можете нарушить регулярное расположение атомов, вставив в структуру атомы немного другого размера. Сплавы , такие как латунь (смесь меди и цинка), тверже, чем исходные металлы, поскольку неоднородность структуры помогает предотвратить скольжение рядов атомов друг по другу.

.

Пассивный феррозольный контроль структурных превращений в конструкционных сталях при термоциклировании

E3S Web of Conferences 135 , 03022 (2019)

Пассивный феррозондающий контроль структурных превращений в конструкционных сталях при термоциклировании

Александр Щербаков 1 * , Дарья Монастырева 2 и Виталий Смирнов 3

1 Санкт-Петербургский государственный архитектурно-строительный университет, г.Санкт-Петербург, Россия
2 Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия
3 Московский авиационный институт, Волоколамское шоссе, 4, Москва, 125993, Россия

* Автор для переписки: [email protected]

Аннотация

Термоциклерная обработка (ТСО) металлов и сплавов относится к одному из наиболее эффективных способов получения структуры конструкционных сталей с заданной степенью дисперсности.Однако разработка режимов обработки термоциклеров в каждом случае носит индивидуальный характер и не может быть механически перенесена с одного материала на другой. Следовательно, необходимо учитывать структурные изменения металлов во время TCO на примерах сталей, принадлежащих к разным группам, чтобы из всего многообразия процессов растворения и выделения фаз, напряжений и деформаций только те, которые позволяют получить заданную подбирается оптимальная мелкозернистая структура. На основании полученных данных построена зависимость напряженности магнитного поля Hp от количества циклов при термоциклировании.Проведен сравнительный анализ полученных результатов и сделаны выводы о связи между магнитным параметром Hp и структурными изменениями в сталях в процессе TCO.

© Авторы, опубликовано EDP Sciences, 2019


Это статья в открытом доступе, распространяемая в соответствии с условиями лицензии Creative Commons Attribution License 4.0, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии правильного цитирования оригинальной работы.

.

Добавить комментарий

Ваш адрес email не будет опубликован.