Как проверить резистор переменный мультиметром: особенности проверки, прозвонка на исправность термистора и позистора

Содержание

Как проверить внутреннее сопротивление мультиметром:

Характеристик электрического тока существует много. Одной из самых главных является электрическое сопротивление. Оно характеризует способность проводника тока препятствовать свободному и беспрепятственному прохождению последнего. Обозначается сопротивление буквой латинского алфавита R, а измеряется в Омах.

Важность этой величины трудно переоценить, поэтому любые современные многофункциональные приборы содержат в себе функцию измерения сопротивления. В этой статье подробным образом будет разобрано, что такое сопротивление провода изоляции, как определить сопротивление резистора мультиметром и чем меряют сопротивление вообще.

Закон Ома в таблице дает понять, как зависят три основных параметра электросети друг от друга

Что такое сопротивление провода изоляции

Сопротивление изоляции — это один из важнейших параметров любых кабелей и проводников. Основано это на том, что все провода в процессе их эксплуатации подвергаются сторонним воздействиям. Помимо внешнего влияния присутствуют также и внутренние: влияние жил одного провода друг на друга, взаимодействие по электромагнитным полям. Все это, так или иначе, приводит к появлению утечек.

Промышленный мегомметр для замера крупных значений сопротивления

Именно поэтому любые электрические и неэлектрические провода создаются с изоляцией, защищающей проводник от внешнего влияния. Среди популярных изоляционных материалов выделяют резину, поливинилхлорид, масло, дерево и бумагу. Используются эти материалы исходя из самого предназначения кабеля. Например, провода, прокладываемые под землей, изолированы сравнительно толстой лентой диэлектрика, а кабеля телекоммуникаций могут быть заключены в простую обертку из алюминиевой фольги.

Старый советский аналоговый стендовый омметр

Важно! Изоляция — это защита жил от воздействия потусторонних факторов, защита жилок друг от друга, от замыкания и от различных утечек. Сопротивление же изоляции это величина сопротивления между жилами провода или между одной из жил и изоляционным слоем.

Любой материал со временем эксплуатации стареет и разрушается, что ведет к ухудшению его характеристик и снижению сопротивления изоляции постоянному или переменному току. Характеристика сопротивляемости изоляции указывается на кабеле и нормируется в его ГОСТе. Определяют его в лабораторных условиях при при температуре в 20 градусов.

Произведение измерений сопротивляемости профессиональным мегаомметром

Низкочастотные кабели связи имеют минимальное сопротивление изоляции в 5 Гигаом на километр, а коаксиальные в свою очередь — 10 Гигаом на километр. Измерение и проверку сопротивляемости проводят на регулярной основе мегаомметром: на установках мобильной связи — один раз в 6 месяцев, на объектах повышенной опасности — один раз в 12 месяцев, на других объектах — один раз в три года.

Резистор для повышения сопротивляемости электрической сети

Чем можно измерять сопротивление

Прибор для измерения сопротивления называется Омметром, а для измерения больших величин — Мегаомметром. Как правило, радиолюбителями и простыми людьми такие приборы не используются, поскольку это не практично. Их применяют на фабриках и заводах, электростанциях, которые производят резисторы или в научно-исследовательских центрах.

На практике для дома и работы электриками используются мультиметры и тестеры, которые объединяют в себе вольтметры, амперметры, омметры и многие другие функции для определения характеристик электрической сети.

Замер сопротивления советского резистора

Мультиметром

Сопротивляемость любого проводника и изоляции можно измерить мультиметром. Чтобы сделать это, сперва необходимо выбрать проверяемый элемент: провод, резистор, предохранитель и так далее. Общим правилом будет извлечение исследуемого объекта из электрической цепи или проведение замеров до его подключения. Это основано на том, что при измерении параметров включенного элемента, данные могут быть неточными, так как на них влияют другие факторы.

Важно! Перед измерением мультиметром следует включить его и настроить на определение соответствующей величины, вставить щупы в разъемы, если они не вставлены.

При работе с приборами и сетями повышенного напряжения нужно соблюдать все меры безопасности

Тестером

На самом деле, понятия тестер и мультиметр тождественны. Когда на рынке СНГ появились первые цифровые мультиметры, их начали называть тестерами за способность тестировать работоспособность электрических элементов по типу диодов, транзисторов, резисторов. Также они способны прозвонить сеть или проводку. Понятие «мультиметр» более правильное для этого вида приборов.

Часто тестерами называют менее функциональные приборы, которые не могут проверять температуру и обладают более низкой ценой, чем мультиметры. На самом деле это одно и тоже. Любой мультитестер может измерять сопротивление и другие важные электрические характеристики.

Замер сопротивления в электросети позволяет предупредить многие аварийные ситуации

Что такое мультиметр

Мультиметр или мультитестер — это компактный, эргономичный и многофункциональный прибор для проведения замера основных параметров электрической сети в любых целях.

Все мультиметры позволяют с определенной точностью производить измерения силы тока, напряжения, сопротивления и даже температуры с помощью своих щупов.

Внешний вид типичного цифрового мультиметра из диэлектрического пластика

Мультиметры бывают двух видов:

  • Аналоговые, которые выводят результаты измерений с помощью механических инструментов отображения: стрелок, столбиков и цены делений, показывающей количественную характеристику измеряемой величины;
  • Цифровые. Наиболее часто используемые типы приборов, вывод информации у которых производится через встроенный дисплей, а все данные рассчитываются в цифровом виде.
Мегаомметр GM3123 для использования в промышленных сетях высокого напряжения

Зачем нужно измерять сопротивление провода

Любую электрическую сеть нужно обезопасить и обеспечить ей бесперебойную работу, которая может зависеть от множества параметров, среди которых есть и качество изоляции и сопротивления. Замер этой величины позволяет безопасно использовать электросеть и подключенные к ней приборы.

Периодический анализ сопротивляемости предотвращает возникновение аварийных ситуаций и поломок, которые могут привести к выходу аппаратуры из строя и человеческим жертвам.

Проверка высоковольтных кабелей

Как обозначается

Как уже стало понятно, померить сопротивление мультиметром не сложно и никаких проблем это принести не должно. Измеряется параметр в Омах в честь немецкого физика, который первый подтвердил связь между силой тока, напряжением и сопротивлением. На мультиметрах и тестерах эта величина имеет обозначение греческой буквы «омега» — Ω.

Искомая величина изображается на приборах греческой буквой «омега»

Как правильно измерять

Для правильно измерения параметров сопротивляемости провода или кабеля нужно:

  • Включить мультиметр и настроить его на соответствующие величины;
  • Подсоединить любым способом один щуп к одному контакту провода или элемента, а другой — другому свободному;
  • Если на дисплее загорелась единица, то максимальной мощности не хватает и нужно установить больший предел;
  • Сравнить полученные значения с номинальными маркировками.

Важно! В процессе замера следует придерживаться простых, но важных мер безопасности: не браться за оголенные части щупов руками и быть осторожным при замере параметров некоторых видов электроприборов.

Правильное и безопасное измерение необходимо для точности результатов

Таким образом, электросеть может определяться многими параметрами, одним из которых является сопротивление. Мультиметровый способ узнать сопротивляемость — один из самых распространенных и простых. Для этого не нужно никаких специальных знаний и умений. Достаточно наличия предмета анализа и аппарата, чтобы проверить и зафиксировать соответствующие данные.

Проверка радиодеталей мультиметром

Серия статей известного автора множества радиолюбительских публикаций  Дригалкина В. В.  для начинающих радиолюбителей

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “Радиолюбитель“

Проверка радиодеталей мультиметром

Проверка деталей аналоговым мультиметром.

Без измерительного прибора Вам не обойтись, т.к. придется проверять сопротивление резисторов, напряжения и тока в разных цепях конструкций. Измерительный прибор, в народе – омметр, авометр (ампер-вольт-омметр) , тестер или мультиметр (от английского multimeter – измерительный прибор, объединяющий в себе несколько функций) – должен иметь каждый. Сейчас большой популярностью пользуются цифровые приборы. Они многофункциональные и сравнительно не дорогие . Ранее в качестве измерительного прибора широко пользовались аналоговыми тестерами со стрелочным индикатором (см. Рис. 1).


Не все начинающие знают, что

омметром можно проверять почти все радиоэлементы : резисторы, конденсаторы, катушки индуктивности, трансформаторы, диоды, тиристоры, транзисторы, некоторые микросхемы. В авометре омметр образован внутренним источником тока (сухим элементом или батареей), стрелочным прибором и набором резисторов, которые переключаются при изменении пределов измерения. Сопротивления резисторов подобраны таким образом, чтобы при коротком замыкании клемм омметра стрелка прибора отклонилась вправо до последнего деления шкалы. Это деление соответствует нулевому значению измеряемого сопротивления. Когда же клеммы омметра разомкнуты, стрелка прибора стоит напротив левого крайнего деления шкалы, которое обозначено значком бесконечно большого сопротивления. Если к клеммам омметра подключено какое-то сопротивление, стрелка показывает промежуточное значение между нулем и бесконечностью, и отсчет производится по оцифровке шкалы. В связи с тем, что шкалы омметров выполняются в логарифмическом масштабе, края шкалы получаются сжатыми. Поэтому 
наибольшая точность измерения соответствует положению стрелки в средней, растянутой части шкалы
. Таким образом, если стрелка прибора оказывается у края шкалы, в сжатой ее части, для повышения точности отсчета следует переключить омметр на другой предел измерения.
Омметр производит измерение сопротивления, подключенного к его клеммам, путем измерения постоянного тока, протекающего в измерительной цепи. Поэтому к измеряемому сопротивлению прикладывается постоянное напряжение от встроенного в омметр источника. В связи с тем, что некоторые детали обладают разными сопротивлениями постоянному току в зависимости от полярности приложенного напряжения , для грамотного использования омметра необходимо знать, какая из клемм омметра соединена с плюсом источника тока, а какая – с минусом. В паспорте авометра эти сведения обычно не указаны, и их нужно определить самостоятельно . Это можно сделать либо по схеме авометра, либо экспериментально с помощью какого-либо дополнительного вольтметра или исправного диода любого типа. Щупы омметра подключают к вольтметру так, чтобы стрелка вольтметра отклонялась вправо от нуля. Тогда тот щуп, который подключен к плюсу вольтметра, будет также плюсовым, а второй – минусовым. При использовании в этих целях диода два раза измеряют его сопротивление; сначала произвольно подключая к диоду щупы, а второй раз – наоборот.
За основу берется то измерение, при котором показания омметра получаются меньшими. При этом щуп, подключенный к аноду диода, будет плюсовым, а щуп, подключенный к катоду диода, – минусовым.
При проверке исправности того или иного радиоэлемента возможны две различные ситуации: либо проверке подлежит изолированный, отдельный элемент, либо элемент, впаянный в какое-то устройство. Нужно учесть, что, за редкими исключениями, проверка элемента, впаянного в схему, не получится полноценной, при такой проверке возможны грубые ошибки. Они связаны с тем, что параллельно контролируемому элементу в схеме могут оказаться подключены другие элементы, и омметр будет измерять не сопротивление проверяемого элемента, а сопротивление параллельного соединения его с другими элементами. Оценить возможность достоверной оценки исправности контролируемого элемента схемы можно путем изучения этой схемы, проверяя, какие другие элементы к нему подключены и как они могут повлиять на результат измерения. Если такую оценку произвести затруднительно или невозможно, следует отпаять от остальной схемы хотя бы один из двух выводов контролируемого элемента и только после этого производить его проверку. При этом также не следует забывать и о том, что тело человека также обладает некоторым сопротивлением, зависящим от влажности кожной поверхности и от других факторов. Поэтому при пользовании омметром во избежание появления ошибки измерения нельзя касаться пальцами обоих выводов проверяемого элемента.

Проверка резисторов
Проверка постоянных резисторов производится омметром путем измерения их сопротивления и сравнения с номинальным значением, которое указано на самом резисторе и на принципиальной схеме аппарата. При измерении сопротивления резистора полярность подключения к нему омметра не имеет значения. Необходимо помнить, что действительное сопротивление резистора может отличаться по сравнению с номинальным на величину допуска. Поэтому, например, если проверяется резистор с номинальным сопротивлением 100 кОм и допуском ±10%, действительное сопротивление такого резистора может лежать в пределах от 90 до 110 кОм. Кроме того, сам омметр обладает определенной погрешностью измерения (обычно порядка 10%) . Таким образом, при отклонении фактически измеренного сопротивления на 20% от номинального значения резистор следует считать исправным.

1. Вообще то, где какой щуп указано на корпусе любого авометра.
2. Если он не оборван, то исправен и всегда может пригодится.

При проверке переменных резисторов измеряется сопротивление между крайними выводами, которое должно соответствовать номинальному значению с учетом допуска и погрешности измерения, а также необходимо измерять сопротивление между каждым из крайних выводов и средним выводом. Эти сопротивления при вращении оси из одного крайнего положения в другое должны плавно, без скачков изменяться от нуля до номинального значения. При проверке переменного резистора, впаянного в схему, два из его трех выводов необходимо выпаивать. Если переменный резистор имеет дополнительные отводы, допустимо, чтобы только один вывод оставался припаянным к остальной части схемы.

Проверка конденсаторов
В принципе конденсаторы могут иметь следующие дефекты: обрыв, пробой и повышенная утечка. Пробой конденсатора характеризуется наличием между его выводами короткого замыкания, то есть нулевого сопротивления. Поэтому пробитый конденсатор любого типа легко обнаруживается омметром путем проверки сопротивления между его выводами. Конденсатор не пропускает постоянного тока, его сопротивление постоянному току, которое измеряется омметром, должно быть бесконечно велико. Однако это оказывается справедливо лишь для идеального конденсатора. В действительности между обкладками конденсатора всегда имеется какой-то диэлектрик, обладающий конечным значением сопротивления, которое называется сопротивлением утечки. Его-то и измеряют омметром. В зависимости от используемого в конденсаторе диэлектрика устанавливаются критерии исправности по величине сопротивления утечки. Слюдяные, керамические, пленочные, бумажные, стеклянные и воздушные конденсаторы имеют очень большое сопротивление утечки, и при их проверке омметр должен показывать бесконечно большое сопротивление . Однако имеется большая группа конденсаторов, сопротивление утечки которых сравнительно невелико. К ней относятся все полярные конденсаторы, которые рассчитаны на определенную полярность приложенного к ним напряжения, и эта полярность указывается на их корпусах. При измерении сопротивления утечки этой группы конденсаторов необходимо соблюдать полярность подключения омметра (плюсовой вывод омметра должен присоединяться к плюсовому выводу конденсатора), в противном случае результат измерения будет неверным. К этой группе конденсаторов в первую очередь относятся все электролитические конденсаторы и оксидно-полупроводниковые. Сопротивление утечки исправных конденсаторов этой группы должно быть не менее 100 кОм, остальных не менее 1 МОм. При проверке конденсаторов большой емкости нужно учесть, что при подключении омметра к конденсатору, если он не был заряжен, начинается его зарядка, и стрелка омметра делает бросок в сторону нулевого значения шкалы. По мере зарядки стрелка движется в сторону увеличения сопротивлений. Чем больше емкость конденсатора, тем медленнее движется стрелка. Отсчет сопротивления утечки следует производить только после того, как она практически остановится. При проверке конденсаторов емкостью порядка 1000 мкФ на это может потребоваться несколько минут. Внутренний обрыв или частичная потеря емкости конденсатором не могут быть обнаружены омметром, для этого необходим прибор, позволяющий измерять емкость конденсатора. Однако обрыв конденсатора емкостью более 0,2 мкФ может быть обнаружен омметром по отсутствию начального скачка стрелки во время зарядки . Следует заметить, что повторная проверка конденсатора на обрыв по отсутствию начального скачка стрелки может производиться только после снятия заряда, для чего выводы конденсатора нужно замкнуть на короткое время.
Конденсаторы переменной емкости проверяются омметром на отсутствие замыканий. Для этого омметр подключается к каждой секции агрегата и медленно поворачивается ось из одного крайнего положения в другое. Омметр должен показывать бесконечно большое сопротивление в любом положении оси.

Проверка катушек индуктивности
При проверке катушек индуктивности омметром контролируется только отсутствие в них обрыва. Сопротивление однослойных катушек должно быть равно нулю, сопротивление многослойных катушек близко к нулю. Иногда в паспортных данных аппарата указывается сопротивление многослойных катушек постоянному току и на его величину можно ориентироваться при их проверке. При обрыве катушки омметр показывает бесконечно большое сопротивление. Если катушка имеет отвод, нужно проверить обе секции катушки, подключая омметр сначала к одному из крайних выводов катушки и к ее отводу, а затем – ко второму крайнему выводу и отводу.

Проверка низкочастотных дросселей и трансформаторов
Как правило, в паспортных данных аппаратуры или в инструкциях по ее ремонту указываются значения сопротивлений обмоток постоянному току, которые можно использовать при проверке трансформаторов и дросселей. Обрыв обмотки фиксируется по бесконечно большому сопротивлению между ее выводами. Если же сопротивление значительно меньше номинального, это может указывать на наличие короткозамкнутых витков. Однако чаще всего короткозамкнутые витки возникают в небольшом количестве, когда происходит замыкание между соседними витками, и сопротивление обмотки изменяется незначительно. Для проверки отсутствия короткозамкнутых витков можно поступить следующим образом. У трансформатора выбирается обмотка с наибольшим количеством витков, к одному из выводов которой подключается омметр с помощью зажима “крокодил”. Ко второму выводу этой обмотки прикасаются слегка влажным пальцем левой руки. Держа металлический наконечник второго щупа омметра правой рукой, подключают его ко второму выводу обмотки, не отрывая от него пальца левой руки. Стрелка омметра отклоняется от своего начального положения, показывая сопротивление обмотки. Когда стрелка остановится, отводят правую руку с щупом от второго вывода обмотки. В момент разрыва цепи при исправном трансформаторе чувствуется легкий удар электрическим током, возникающей при разрыве цепи. В связи с тем, что энергия разряда мизерна, никакой опасности такая проверка не представляет. Омметр при этом нужно использовать на самом меньшем пределе измерения, который соответствует наибольшему току измерения.

Проверка диодов
Полупроводниковые диоды характеризуются резко нелинейной вольтамперной характеристикой. Поэтому их прямой и обратный токи при одинаковом приложенном напряжений различны. На этом основана проверка диодов омметром. Прямое сопротивление измеряется при подключении плюсового вывода омметра к аноду, а минусового вывода – к катоду диода. У пробитого диода прямое и обратное сопротивления равны нулю. Если диод оборван, оба сопротивления бесконечно велики.
Указать заранее значения прямого и обратного сопротивлений или их соотношение нельзя, так как они зависят от приложенного напряжения, а это напряжение у разных авометров и на разных пределах измерения различно. Тем не менее, у исправного диода обратное сопротивление должно быть больше прямого. Отношение обратного сопротивления к прямому у диодов, рассчитанных на низкие обратные напряжения, велико (может быть более 100). У диодов, рассчитанных на большие обратные напряжения, это отношение оказывается незначительным, так как обратное напряжение, приложенное к диоду омметром, мало по сравнению с тем обратным напряжением, на которое диод рассчитан. Методика проверки стабилитронов и варикапов не отличается от изложенной. Как известно, если к диоду приложено напряжение, равное нулю, ток диода также будет равен нулю. Для получения прямого тока необходимо приложить к диоду какое-то пороговое небольшое напряжение . Любой омметр обеспечивает приложение такого напряжения. Однако если соединено последовательно и согласно (в одну сторону) несколько диодов, пороговое напряжение, необходимое для отпирания всех диодов, увеличивается и может оказаться больше, чем напряжение на клеммах омметра. По этой причине измерить прямые напряжения диодных столбов или селеновых столбиков при помощи омметра оказывается невозможно.

Проверка тиристоров.
Неуправляемые тиристоры (динисторы) могут быть проверены таким же образом, как диоды, если напряжение отпирания динистора меньше напряжения на клеммах омметра. Если же оно больше, динистор при подключении омметра не отпирается и омметр в обоих направлениях показывает очень большое сопротивление. Тем не менее, если динистор пробит, омметр это регистрирует нулевыми показаниями прямого и обратного сопротивлений. Для проверки управляемых тиристоров (тринисторов) плюсовой вывод омметра подключается к аноду тринистора, а минусовой вывод – к катоду. Омметр при этом должен показывать очень большое сопротивление, почти равное бесконечному. Затем замыкают выводы анода и управляющего электрода тринистора, что должно приводить к резкому уменьшению сопротивления, так как тринистор отпирается. Если после этого отключить управляющий электрод от анода, не разрывая цепи, соединяющей анод тринистора с омметром, для многих типов тринисторов омметр будет продолжать показывать низкое сопротивление открытого тринистора. Это происходит в тех случаях, когда анодный ток тринистора оказывается больше так называемого тока удержания. Тринистор остается открытым обязательно, если анодный ток больше гарантированного тока удержания. Это требование является достаточным, но не необходимым. Отдельные экземпляры тринисторов одного и того же типа могут иметь значения тока удержания значительно меньше гарантированного. В этом случае тринистор при отключении управляющего электрода от анода остается открытым. Но если при этом тринистор запирается и омметр показывает большое сопротивление, нельзя считать , что тринистор неисправен.

Проверка транзисторов.
Эквивалентная схема биполярного транзистора представляет собой два диода, включенных навстречу один другому. Для p-n-р транзисторов эти эквивалентные диоды соединены катодами, а для n-p-п транзисторов – анодами. Таким образом, проверка транзистора омметром сводится к проверке обоих р-n переходов транзистора: коллектор-база и эмиттер-база. Для проверки прямого сопротивления переходов p-n-р транзистора минусовой вывод омметра подключается к базе, а плюсовой вывод омметра – поочередно к коллектору и эмиттеру. Для проверки обратного сопротивления переходов к базе подключается плюсовой вывод омметра. При проверке n-p-п транзисторов подключение производится наоборот: прямое сопротивление измеряется при соединении с базой плюсового вывода омметра, а обратное сопротивление – при соединении с базой минусового вывода. При пробое перехода его прямое и обратное сопротивления оказываются равными нулю. При обрыве перехода его прямое сопротивление бесконечно велико. У исправных маломощных транзисторов обратные сопротивления переходов во много раз больше их прямых сопротивлений. У мощных транзисторов это отношение не столь велико, тем не менее, омметр позволяет их различить. Из эквивалентной схемы биполярного транзистора вытекает, что с помощью омметра можно определить тип проводимости транзистора и назначение его выводов (цоколевку). Сначала определяют тип проводимости и находят вывод базы транзистора. Для этого один вывод омметра подключают к одному выводу транзистора, а другим выводом омметра
касаются поочередно двух других выводов транзистора. Затем первый вывод омметра подключают к другому выводу транзистора, а другим выводом омметра касаются свободных выводов транзистора. Затем первый вывод омметра подключают к третьему выводу транзистора, а другим выводом касаются остальных. После этого меняют местами выводы омметра и повторяют указанные измерения. Нужно найти такое подключение омметра, при котором подключение второго вывода омметра к каждому из двух выводов транзистора, не подключенных к первому выводу омметра, соответствует небольшому сопротивлению (оба перехода открыты). Тогда вывод транзистора, к которому подключен первый вывод омметра, является выводом базы. Если первый вывод омметра является плюсовым, значит, транзистор относится к n-p-п проводимости, если – минусовым, значит, – p-n-р проводимости. Теперь нужно определить, какой из двух оставшихся выводов транзистора является выводом коллектора. Для этого омметр подключается к этим двум выводам, база соединяется с плюсовым выводом омметра при n-p-п транзисторе или с минусовым выводом омметра при p-n-р транзисторе и замечается сопротивление, которое измеряется омметром. Затем выводы омметра меняются местами (база остается подключенной к тому же выводу омметра, что и ранее) и вновь замечается сопротивление по омметру. В том случае, когда сопротивление оказывается меньше, база была соединена с коллектором транзистора.


Проверка деталей цифровым мультиметром.

Главным отличием цифрового прибора от аналогового является то, что результаты измерения отображаются на жидкокристаллическом дисплее. К тому же цифровые мультиметры обладают более высокой точностью и отличаются простотой использования, т.к. не приходится разбираться во всех тонкостях градирования измерительной шкалы, как со стрелочными измерительными приборами.
Цифровой тестер (см. Рис. 1), как и аналоговый, имеет два щупа – черный и красный, и от двух до четырех гнезд. Черный вывод является общим (масса). Гнездо для общего вывода помечается как СОМ или просто “-” (минус), а сам вывод на конце часто имеет так называемый пкрокодильчикп, для того, чтобы при измерении можно было зацепить его за массу электронной схемы. Красный вывод вставляется в гнездо, помеченное символами напряжения – “V” или “+” (плюс).
Если Ваш прибор содержит более двух гнезд, например, как на Рис. 1, красный щуп вставляется в гнездо “VQmA”. Эта надпись говорит о том, что Вы можете измерять напряжение, сопротивление и небольшой ток – в миллиамперах. Гнездо, расположение немного выше, с маркировкой 10ADC говорит о том, что Вы можете измерять большой постоянный ток, но не выше 10А.
Переключатель мультиметра позволяет выбрать один из нескольких пределов для измерений.
Чтобы измерить постоянное напряжение выбираем режим DCV1, если переменное ACV, подключаем щупы и смотрим результат. При этом на шкале переключателя вы должны выбрать большее напряжение, чем измеряемое. Например, Вам необходимо измерить напряжение в электрической розетки. В вашем приборе шкала ACV состоит из двух параметров: 200 и 750 (это вольты). Значит, нужно установить стрелочку переключателя на параметр 750 и можно смело измерять напряжение.

1 DC – постоянный ток (Direct Current), AC – переменный ток (Alternating Current).


Ток измеряется последовательным включением мультиметра в электрическую цепь. Для примера можно взять обычную лампочку от карманного фонаря и подключить ее последовательно с прибором к адаптеру 5В. Корда по цепи пойдет ток и лампочка загорится, прибор покажет значение тока.
Сопротивление на приборе обозначается значком, немного похожим на наушники. Для измерения сопротивления резистор должен быть выпаян из электрической цепи хотя бы одним концом, чтобы быть уверенным в том, что никакие другие компоненты схемы не повлияют на результат. Подключаем щупы к двум концам резистора и сравниваем показания омметра со значением, которое указано на самом резисторе . Стоит учитывать и величину допуска (возможных отклонений от нормы), т.е. если по маркировке резистор на 200кОм и допуском ± 15%, его действительное сопротивление может быть в пределах 170-230кОм.
Проверяя переменные резисторы, измеряем сначала сопротивление между крайними выводами (должно соответствовать номиналу резистора), а затем подключив щуп мультиметра к среднему выводу, поочередно с каждым из крайних. При вращении оси переменного резистора, сопротивление должно изменяться плавно, от нуля до его максимального значения, в этом случае удобней использовать аналоговый мультиметр наблюдая за движением стрелки, чем за быстро меняющимися цифрами на жидкокристаллическом экране.
Для проверки диодов типовые приборы содержат специальный режим. В более дешевых тестерах можно воспользоваться режимом прозвонки. Тут все просто: в одну сторону диод звониться, а в другую – нет. Проверить диод можно и в режиме сопротивления. Для этого устанавливаем переключатель на 1к0м. При подключении красного вывода мультиметра к аноду диода, а черного к катоду, Вы увидите его прямое сопротивление, при обратном подключении сопротивление будет настолько высоко, что на данном пределе измерения вы не увидите ничего. Если диод пробит, его сопротивление в любую сторону будет равно нулю, если оборван, то в любую сторону сопротивление будет бесконечно большим.
Обычный биполярный транзистор представляет собой два диода, включенных навстречу один другому. Зная, как проверяются диоды, несложно проверить и такой транзистор. Стоит не забывать, что транзисторы бывают разных типов: у р-п-р условные диоды соединены катодами, у п-р-п – анодами. Для измерения прямого сопротивления транзисторных p-n-р переходов, минус мультиметра подключается к базе, а плюс поочередно к коллектору и эмиттеру. При измерении обратного опротивления меняем полярность. Для проверки транзисторов п-р-п типа делаем все наоборот. Если еще короче, то переходы база-коллектор и база-эмиттер в одну сторону должны прозваниваться, в другую – нет.
Для измерения у транзистора коэффициента усиления по току используем режим hEF, если он есть на Вашем приборе. Разъем, в который вставляют контакты транзистора для измерения hEF, не очень качественный практически во всех моделях тестеров и довольно глубоко посажен. То есть ножки транзистора до них иногда не достают. Как выход – вставьте одножильные провода и выводами транзистора касайтесь именно их.
На цифровых мультиметрах пределов измерений обычно больше, к тому же часто добавлены дополнительные функции, например, частотомер, измеритель емкости конденсаторов и даже датчик температуры. Но такими возможностями обладают более дорогие модели тестеров. Кроме того, в дорогих моделях отсутствует необходимость переключать шкалу измерения. Просто устанавливаете переключать на измерение емкости, сопротивления и т.д., и прибор показывает результат.

Для того, чтобы мультиметр не вышел из строя при измерениях напряжения или тока, особенно если их значение неизвестно, переключатель желательно установить на максимально возможный предел измерений, и только если показание при этом слишком мало, для получения более точного результата, переключайте мультиметр на предел ниже текущего.



5 схем проверки электродвигателя мультиметром

Мне часто в последнее время друзья и соседи стали задавать вопрос: как проверить электродвигатель мультиметром? Вот я и решил написать небольшой обзор инструкцию для начинающих электриков.

Сразу замечу, что один мультиметр не позволяет выявить со 100% гарантией все возможные неисправности: мало его функций. Но порядка 90% дефектов им вполне можно найти.

Постарался сделать инструкцию универсальной для всех типов движков переменного тока. Эти же методики при вдумчивом подходе можно использовать в цепях постоянного напряжения.

Содержание статьи

Что следует знать о двигателе перед его проверкой: 2 важных момента

В рамках излагаемой темы достаточно представлять упрощенный принцип работы и особенности конструкции любого двигателя.

Принцип работы: какие электротехнические процессы необходимо хорошо представлять при ремонте

Любой движок состоит из стационарно закрепленного корпуса — статора и вращающегося в нем ротора, который еще называют якорь.

Его круговое движение создается за счет воздействия на него вращающегося магнитного поля статора, формируемого протеканием электрических токов по статорным обмоткам.

Когда обмотки исправны, то по ним текут номинальные расчетные токи, создающие магнитные потоки оптимальной величины.

Если сопротивление прводов или их изоляция нарушена, то создаются токи утечек, коротких замыканий и другие повреждения, влияющие на работу электродвигателя.

Между статором и ротором выполнен минимально возможный зазор. Его могут нарушить:

  • разбитые подшипники;
  • попавшие внутрь механические частицы;
  • неправильная сборка и другие причины.

Когда происходит задевание вращающихся частей о неподвижный корпус, то создается их разрушение и дополнительные механические нагрузки. Все это требует тщательного осмотра, анализа состояния внутренних частей до начала электрических проверок.

Довольно часто не квалифицированный разбор является дополнительной причиной поломок. Пользуйтесь специальным инструментом и съемниками, исключающими повреждения граней валов.

После разборки сразу во время осмотра проверяют люфты, свободный ход подшипников, их чистоту и смазку, правильность посадочных мест.

Кроме этого у коллекторного электродвигателя могут быть сильно изношены пластины или щетки.

Все это необходимо проверять до подачи рабочего напряжения.

Особенности конструкций, влияющие на технологию поиска дефектов

Обычно производитель электрические характеристики указывает на табличке, прикрепленной на корпусе. Этим сведениям стоит верить.

Однако часто во время ремонта или перемотки конструкция статора изменяется, а табличка остается прежняя. Этот вариант следует тоже учитывать.

Для бытовой сети 220 вольт могут использоваться двигатели:

  • коллекторные с щеточным механизмом;
  • асинхронные однофазные;
  • синхронные и асинхронные трехфазные.

В схемах 380 вольт работают трехфазные синхронные и асинхронные электродвигатели.

Все они отличаются по конструкции, но, в силу работы по общим законам электротехники, позволяют использовать одинаковые методики проверок, заключающиеся в замерах электрических характеристик косвенными и прямыми методами.

Как проверить обмотку электродвигателя на статоре: общие рекомендации

Трехфазный статор имеет три встроенные обмотки. Из него выходит шесть проводов. В отдельных конструкциях можно встретить 3 или 4 вывода, когда соединение треугольник или звезда собрано внутри корпуса. Но так делается редко.

Определить принадлежность выведенных концов обмоткам позволяет прозвонка их мультиметром в режиме омметра. Надо просто один щуп поставить на произвольный вывод, а другим — поочередно замерять активное сопротивление на всех остальных.

Пара проводов, на которой будет обнаружено сопротивление в Омах, будет относиться к одной обмотке. Их следует визуально отделить и пометить, например, цифрой 1. Аналогично поступают с другими проводами.

Здесь надо хорошо представлять, что по закону Ома ток в обмотке создается под действием приложенного напряжения, которому противодействует полное сопротивление, а не активное, замеряемое нами.

Учитываем, что обмотки наматываются из одного провода с одинаковым числом витков, создающих равное индуктивное сопротивление. Если провод в процессе работы будет закорочен или оборван, то его активная составляющая, как и полная величина, нарушится.

Межвитковое замыкание тоже сказывается на величине активной составляющей.

Поэтому замеры активного сопротивления обмоток и их сравнение позволяют достоверно судить об исправности статорных цепей, делать вывод, что их целостность не нарушена.

Однофазный асинхронный двигатель: особенности статорных обмоток

Такие модели создаются с двумя обмотками: рабочей и пусковой, как, например, у стиральной машины. Активное сопротивление у рабочей цепочки в подавляющем большинстве случаев всегда меньше.

Поэтому когда из статора выведено всего три конца, то это означает, что между всеми ими надо измерять сопротивление. Результаты трех замеров покажут:

  • меньшая величина — рабочую обмотку;
  • средняя — пусковую;
  • большая — последовательное соединение первых двух.

Как найти начало и конец каждой обмотки

Метод позволяет всего лишь выявить общее направление навивки каждого провода. Но для практической работы электродвигателя этого более чем достаточно.

Статор рассматривается как обычный трансформатор, что в принципе и есть на самом деле: в нем протекают те же процессы.

Для работы потребуется небольшой источник постоянного напряжения (обычная батарейка) и чувствительный вольтметр. Лучше стрелочный. Он более наглядно отображает информацию. На цифровом мультиметре сложно отслеживать смену знака быстро меняющегося импульса.

К одной обмотке подключают вольтметр, а на другую кратковременно подают напряжение от батарейки и сразу его снимают. Оценивают отклонение стрелки.

Если при подаче «плюса» в первую обмотку во второй трансформировался электромагнитный импульс, отклонивший стрелку вправо, а при его отключении наблюдается движение ее влево, то делается вывод, что провода имеют одинаковое направление, когда «+» прибора и источника совпадают.

В противном случае надо переключить вольтметр или батарейку — то есть поменять концы одной из обмоток. Следующая третья цепочка проверяется аналогично.

А далее я просто взял свой рабочий асинхронный движок с мультиметром и показываю на нем фотографиями методику его оценки.

Личный опыт: проверка статорных обмоток асинхронного электродвигателя

Для статьи я использовал свой новый карманный мультиметр Mestek MT102. Заодно продолжаю выявлять недостатки его конструкции, которые уже показал в статье раньше.

Электрические проверки выполнялись на трехфазном двигателе, подключенном в однофазную сеть через конденсаторы по схеме звезды.

Общая оценка состояния изоляции обмоток

Поскольку на клеммных выводах все обмотки уже собраны вместе, то замеры начал с проверки сопротивления их изоляции относительно корпуса. Один щуп стоит на клеммнике сборки нуля, а второй — на гнезде винта крепления крышки. Мой Mestek показал отсутствие утечек.

Другого результата я и не ожидал. Этот способ замера состояния изоляции очень неточный и большинство повреждений он выявить просто не сможет: питания батареек 3 вольта явно недостаточно.

Но все же лучше делать хоть так, чем полностью пренебрегать такой проверкой.

Для полноценного анализа диэлектрического слоя проводников необходимо использовать высокое напряжение, которое вырабатывают мегаомметры. Его величина обычно начинается от 500 вольт и выше. У домашнего мастера таких приборов нет.

Можно обойтись косвенным методом, используя бытовую сеть. Для этого на клеммы обмотки и корпуса подают напряжение 220 вольт через контрольную лампу накаливания мощностью порядка 75 ватт (токоограничивающее сопротивление, исключающее подачу потенциала фазы на замыкание) и последовательно включенный амперметр.

Ожидаемый ток утечки через нормальную изоляцию не превысит микроамперы или их доли, но рассчитывать надо на аварийный режим и начинать замеры на пределах ампер. Измерив ток и напряжение, вычисляют сопротивление изоляции.

Однако такая работа производится под действующим напряжением. Она опасна. Выполнять ее можно только тем работникам, кто имеет хорошие практические навыки электрика, имея минимум третью группу по технике безопасности.

Используя этот способ, учитывайте, что:

  • на корпус движка подается полноценная фаза: он должен располагаться на диэлектрическом основании, не иметь контактов с другими предметами;
  • даже временно собираемая схема требует надежной изоляции всех концов и проводов, прочного крепления всех зажимов;
  • колба лампы может разбиться: ее надо держать в защитном чехле.

Замер активного сопротивления обмоток

Здесь требуется разобрать схему подключения проводов и снять все перемычки. Перевожу мультиметр в режим омметра и определяю активное сопротивление каждой обмотки.

Прибор показал 80, 92 и 88 Ом. В принципе большой разницы нет, а отклонения на несколько Ом я объясняю тем, что крокодил не обеспечивает качественный электрический контакт. Создается разное переходное сопротивление.

Это один из недостатков этого мультиметра. Щуп плохо входит в паз крокодила, да к тому же тонкий металл зажима раздвигается. Мне сразу пришлось его поджимать пассатижами.

Замер сопротивления изоляции между обмотками

Показываю этот принцип потому, что его надо выполнять между каждыми обмотками. Однако вместо омметра нужен мегаомметр или проверяйте, в крайнем случае, бытовым напряжением по описанной мной выше методике.

Мультиметр же может ввести в заблуждение: покажет хорошую изоляцию там, где будут созданы скрытые дефекты.

Как проверить якорь электродвигателя: 4 типа разных конструкций

Роторные обмотки создают магнитное поле, на которое воздействует поле статора. Они тоже должны быть исправны. Иначе энергия вращающегося магнитного поля будет расходоваться впустую.

Обмотки якоря имеют разные конструкции у двигателей с фазным ротором, асинхронным и коллекторным. Это стоит учитывать.

Синхронные модели с фазным ротором

На якоре создаются выводы проводов в виде металлических колец, расположенных с одной стороны вала около подшипника качения.

Провода схемы уже собраны до этих колец, что наносит небольшие особенности на их проверку мультиметром. Отключать их не стоит, однако методика, описанная выше для статора, в принципе подходит и для этой конструкции.

Такой ротор тоже можно условно представить как работающий трансформатор. Требуется только сравнить индивидуальные сопротивления их цепочек и качество изоляции между ними, а также корпусом.

Якорь асинхронного электродвигателя

В большинстве случаев ситуация здесь намного проще, хотя могут быть и проблемы. Дело в том, что такой ротор выполнен формой «беличье колесо» и его сложно повредить: довольно надежная конструкция.

Короткозамкнутые обмотки выполнены из толстых стержней алюминия (редко меди) и прочно запрессованы в таких же втулках. Все это рассчитано на протекание токов коротких замыканий.

Однако на практике происходят различные повреждения даже в надежных устройствах, а их как-то требуется отыскивать и устранять.

Цифровой мультиметр для выявления неисправностей в обмотке «беличье колесо» не потребуется. Здесь нужно иное оборудование, подающее напряжение на короткое замыкание этого якоря и контролирующее магнитное поле вокруг него.

Однако внутренние поломки таких конструкций обычно сопровождаются трещинами на корпусе, а их можно заметить при внимательном внутреннем осмотре.

Кому интересна такая проверка электрическими методами, смотрите видеоролик владельца Viktor Yungblyudt. Он подробно показывает, как определить обрыв стержней подобного ротора, что позволяет в дальнейшем восстановить работоспособность всей конструкции.

Коллекторные электродвигатели: 3 метода анализа обмотки

Принципиальная электрическая схема коллекторного двигателя в упрощенной форме может быть представлена обмотками ротора и статора, подключенными через щеточный механизм.

Схема собранного электродвигателя с коллекторным механизмом и щетками показана на следующей картинке.

Обмотка ротора состоит из частей, последовательно подключенных между собой определенным числом витков на коллекторных пластинах. Они все одной конструкции и поэтому имеют равное активное сопротивление.

Это позволяет проверять их исправность мультиметром в режиме омметра тремя разными методиками.

Самый простой метод измерения

Принцип №1 определения сопротивления между коллекторными пластинами я показываю на фото ниже.

Здесь я допустил одно упрощение, которое в реальной проверке нельзя совершать: поленился извлекать щетки из щеткодежателя, а они создают дополнительные цепочки, способные исказить информацию. Всегда вынимайте их для точного измерения.

Щупы ставятся на соседние ламели. Такое измерение требует точности и усидчивости. На коллекторе необходимо нанести метку краской или фломастером. От нее придется двигаться по кругу, совершая последовательные замеры между всеми очередными пластинами.

Постоянно контролируйте показания прибора. Они все должны быть одинаковыми. Однако сопротивление таких участков маленькое и если омметр недостаточно точно на него реагирует, то можно его очувствить увеличением длины измеряемой цепочки.

Способ №2: диаметральный замер

При этом втором методе потребуется еще большая внимательность и сосредоточенность. Щупы омметра необходимо располагать не на соседние ближайшие пластины, а на диаметрально противоположные.

Другими словами, щупы мультиметра должны попадать на те пластины, которые при работе электродвигателя подключаются щетками. А для этого их потребуется как-то помечать, дабы не запутаться.

Однако даже в этом случае могут встретиться сложности, связанные с точностью замера. Тогда придется использовать третий способ.

Способ №3: косвенный метод сравнения величин маленьких сопротивлений

Для измерения нам потребуется собрать схему, в которую входит:

  • аккумулятор на 12 вольт;
  • мощное сопротивление порядка 20 Ом;
  • мультиметр с концами и соединительные провода.

Следует представлять, что точность измерения увеличивает стабильность созданного источника тока за счет:

  • высокой емкости аккумулятора, обеспечивающей одинаковый уровень напряжения во время работы;
  • повышенная мощность резистора, исключающая его нагрев и отклонение параметров при токах до одного ампера;
  • короткие и толстые соединительные провода.

Один соединительный провод подключают напрямую к клемме аккумулятора и ламели коллектора, а во второй врезают токоограничивающий резистор, исключающий большие токи. Параллельно контактным пластинам садится вольтметр.

Щупами последовательно перебираются очередные пары ламелей на коллекторе и снимаются отсчеты вольтметром.

Поскольку аккумулятором и резистором на короткое время каждого замера мы выдаем одинаковое напряжение, то показания вольтметра будут зависеть только от величины сопротивления цепочки, подключенной к его выводам.

Поэтому при равных показаниях можно делать вывод об отсутствии дефектов в электрической схеме.

При желании можно измерить миллиамперметром величину тока через ламели и по закону Ома, воспользовавшись онлайн калькулятором, посчитать величину активного сопротивления.

Проверка состояния обмоток ротора коллекторного двигателя сильно зависит от класса точности мультиметра в режиме омметра.

Мой цифровой Mestek MT102, несмотря на выявленные в нем недостатки, нормально справляется с этой задачей.

Двигатели постоянного тока

Конструкция их ротора напоминает устройство якоря коллекторного двигателя, а статорные обмотки создаются для работы со схемой включения при параллельном, последовательном или смешанном возбуждении.

Раскрытые выше методики проверок статора и якоря позволяют проверять двигатель постоянного тока, как асинхронный и коллекторный.

Заключительный этап: особенности проверок двигателей под нагрузкой

Нельзя делать заключение об исправности электродвигателя, полагаясь только на показания мультиметра. Необходимо проверить рабочие характеристики под нагрузкой привода, когда ему необходимо совершать номинальную работу, расходуя приложенную мощность.

Включение подачей напряжения на холостой ход и проверка начала вращения ротора, как делают некоторые начинающие электрики, является типичной ошибкой.

Например, владелец очень короткого видео ЧАО Дунайсудоремонт считает, что замерив ток в обмотках, он убедился в готовности отремонтированного движка к дальнейшей эксплуатации.

Однако такое заключение можно дать только после выполнения длительной работы и оценки не только величин токов, но и замера температур статора и ротора, анализа систем теплоотвода.

Не выявленные дефекты неправильной сборки или повреждения отдельных элементов могут повторно вызвать дополнительный ремонт с большими трудозатратами. Если же у вас еще остались вопросы по теме, как проверить электродвигатель мультиметром, то задавайте их в комментариях. Обязательно обсудим.

Проверка электрики мультиметром

Современные автомобили имеют большое количество электрооборудования, которое может выйти из строя а так нужна проверка.

Какой тестер?

Ассортимент имеющихся на рынке счетчиков варьируется от простых счетчиков времени пребывания и тахометров до многофункциональных счетчиков с десятью различными шкалами и даже цифровыми считывающими устройствами. Показанные выше измерители имеют следующие характеристики: Sparktune: задержка, вольт, ом. B Autoranger: задержка, вольт, ом, ампер, тахометр.C Testune: задержка, вольт, ом, ампер, тахометр. D Hawk: живу, тахометр. E Avometer 2003: вольт, ампер, ом. F CAB-100: тестер батарей.

Один из способов проверки электрического схемы использовать простую контрольную лампу подключен между проводами цепи и землей, но только этот метод указывает, есть ли электропитание в конкретной точке, где вы находитесь проверка.

Более точный способ проверки цепей — использовать тест метр который будет укажите уровень напряжения, достигающего компонента, а также проверьте сопротивление схемы или компонента.

Мультиметры

Счетчики, разработанные специально для автомобилей, можно купить в разделе аксессуаров. магазины. Наиболее полезными являются мультиметры, которые, как следует из названия предлагает, предоставляет ряд различных функций для проверки автомобиля электрика.

текущий используется на автомобилях постоянный ток (DC) и мультиметры могут проверить показания тока, напряжения и сопротивления. Они также могут включать другие настройки для измерения двигатель скорость и жить угол.

Всегда не забывайте обнулять глюкометр перед каждым тестом, особенно когда измерение низких сопротивлений.

Не используйте измерительный прибор с подвижной иглой для проверки электронных компонентов. или вы можете перегрузить и повредить их. Вместо этого используйте цифровой измеритель.

Использование мультиметра

Установите измеритель на вольты, чтобы проверить напряжение аккумулятора на клеммах. Измерьте сопротивление вдоль провода HT, установив измеритель на Ом и прощупывая каждый конец провода.

Вы можете использовать мультиметр для проверки напряжения, тока и сопротивления. Некоторые также позволяют проверить угол остановки и частоту вращения двигателя. Всегда не забывайте правильно подключать измерительный зонд.

Проверить напряжение батареи подключив счетчик к двум Терминал сообщения. Проверьте сопротивление в цепи HT, измерив оба конца провода.

Установите измеритель на амперы и подключите его через шунт для измерения выходного тока генератора.Измерьте напряжение, установив на измерителе напряжение и проверив цепь с заземленным другим щупом.

Запись генератор или токовый выход динамо с использованием измерителя, подключенного шунт провод. Испытательное напряжение на катушка или любой другой цепи, подключив одну сторону счетчика к цепи, а другую сторону — к земле.

Читая

Измерьте напряжение, установив на измерителе напряжение и проверив цепь с заземленным другим щупом.

При использовании мультиметра прежде всего убедитесь, что вы подключили счетчик идет в правильном направлении. Это зависит от полярность вашей машины. Если в вашем автомобиле используется система отрицательного заземления, вы должны подсоединить провод с маркировкой отрицательный или (-) к телу. Если в вашем автомобиле положительный Земля, свинец отмечен положительный или (+) подключен к кузову автомобиля. Проверьте в своем автомобильном справочнике полярность вашего автомобиля.

Убедитесь, что соответствующий провод имеет хороший контакт и что нет ржавчины или краски в зоне контакта, чтобы рассториться показания счетчика.Очистить соединение при необходимости влажной или сухой бумагой.

При работе в моторном отсеке лучше всего подсоединять провод к аккумулятор клемма заземления.

Проверка батареи

Перед проверкой других цепей рекомендуется проверить аккумулятор, чтобы убедиться, что он работает правильно.

Установите счетчик на соответствующий масштаб (0-20 вольт ), затем подключите счетчик провода через клеммы аккумулятора (не соединения проводов).Вы должны получить чтение от 11 вольт (низкое плата ) и чуть более 12 вольт (полный заряда), в зависимости от уровня заряда аккумулятора.

Если показание меньше 10 вольт, подозревают неисправность в одной из батарей. клетки . Переместите заземляющий провод к точке на кузове автомобиля и снимите напряжение. снова читаю. Он должен быть таким же, как при первом чтении. Более низкое чтение означает плохой контакт между заземляющим проводом и кузовом автомобиля или клемма аккумулятора.

Повторите процесс, на этот раз подключив один измерительный провод к земле. клемму, а другой — к подключению токоведущего провода на стартер соленоид .А низкое значение здесь указывает на плохое соединение между клеммами под напряжением. и стартер мотор соленоид.

Если на выводах аккумулятора обнаружены низкие показания, исправьте их перед проверка других цепей на автомобиле. Очистите все подозрительные грязные или незакрепленные подключения и снова проверьте напряжение. Когда все тесты дают одно и то же чтение как это по батарее, вы можете затем использовать чтение как ссылку для показаний других цепей.

Инструментальные испытания

Проверка тахометра

Для проверки тахометра подключите мультиметр между клеммой под напряжением на задней панели прибора и точкой заземления.Если есть питание, достигающее прибора, его напряжение будет записано на измерителе. Вы можете использовать ту же технику для любого калибра или инструмента.

На многие приборы подается питание, которое проходит через напряжение стабилизатор. Если несколько инструментов показывают ошибочные показания, это может быть связано с к неисправности стабилизатора. Чтобы проверить стабилизатор напряжения, подключите измеритель к выходной клемме стабилизатора и переключатель на зажигание .

В современных автомобилях на многие приборы подается питание через стабилизатор напряжения.Если это неисправно, все показания прибора станут ошибочными. Перед тестированием отдельных приборов убедитесь, что стабилизатор исправен, подключив измеритель между его выходной клеммой и землей.

Измеритель должен показывать около 10 вольт, хотя он может слегка пульсировать. из-за регулятора. Любое значение ниже или выше означает, что стабилизатор нуждается в замена.

Проверка отправителя

Проверка датчика бака

Отсоедините провод от клеммы передатчика, затем подключите измерительный прибор между свободной клеммой и точкой заземления.Вы должны получить ряд показаний в зависимости от положения поплавка передающего устройства. Если показания не отображаются, передающий блок необходимо снять для замены или ремонта.

Датчик бензобака использует переменную резистор , что вы можете проверить для непрерывности с помощью шкалы сопротивления на мультиметре.

Отсоедините провод от передающего устройства и подключите счетчик между его клемму и подходящую точку заземления. Если цепь блока отправителя завершена, на счетчике должны быть определенные показания.Для полной проверки сделайте индивидуальные показания при полном, наполовину полном и пустом баке.

Три показания должны падать последовательно с более или менее равными промежутками. между ними. Если два показания очень близки друг к другу, вероятно, что некоторые из дорожек резистора закорочены, что дает ложные показания на калибр.

Тесты зажигания

При проверке цепи низкого напряжения помните о контакте точки прерывания должны быть замкнуты, чтобы замкнуть цепь.

Если в катушке используется балластный резистор напряжение на входной клемме будет быть ниже (обычно от 6 до 8 вольт) из-за действия резистора. Чтобы проверьте пусковое напряжение катушки, подключите провод между точками катушки клемма и земля. Кратковременно включите стартер, чтобы обход балластный резистор. Значение должно быть около 12 вольт. Удалите провод.

Если значение не поднялось до этого уровня, значит неисправность низкого напряжения. цепи или клеммных соединений соленоида.

Вы можете проверить точки, измерив любые падение напряжения через них. Подключить измеритель между точками клемм на катушке и землей.

При замкнутых контактах поверните измеритель, чтобы снять показания по шкале низкого напряжения. В В идеале показания должны находиться в диапазоне от нуля до 0,5 В. Любое более 0,5 вольт указывает на неисправность точек.

Поверните измеритель на высоковольтную шкалу и откройте точки. Напряжение должно быть таким же, как на входе катушки.

Нулевое показание может быть из-за неисправности распределитель и ты можешь проверьте это, отсоединив распределительный провод. Если показание все еще равно нулю Катушка неисправна, но если она поднимается, значит неисправность распределитель.

Провода высокого напряжения

Вы можете использовать настройку сопротивления измерителя, чтобы проверить наличие проблем с провода высокого напряжения. Если в машине есть прерывистый осечка, вы можете проследите его до одного из выводов.

Узнайте, какой тип провода используется. Углерод провода имеют сопротивление в 10 000–25 000 ом спектр. Провода с медным сердечником имеют очень низкое сопротивление, но могут быть оснащены резистивными заглушками для подавления радиосигналов, и они имеют сопротивление около 10 000 Ом.

Отсоедините каждый провод от свеча зажигания а также крышка распределителя и держи измерительные щупы к центральной жиле на каждом конце. Убедитесь, что счетчик показывает правильно.

Для проверки отведения HT изоляция поднесите один зонд к центральной части свинец, а другой — изоляционный пластик.Если свинец в хорошем состоянии на шкале счетчика не должно быть движения.

Проверка системы зарядки

Дайте двигателю поработать, пока он не достигнет нормальной рабочей температуры, а затем выключи это. Установите мультиметр на правильную шкалу напряжения (от 0 до 20 вольт) и подключите его к клеммам аккумулятора. Запустите двигатель и обратите внимание на показания напряжения, затем медленно увеличивайте частоту вращения двигателя примерно до 2000 об / мин, одновременно проверяя показания напряжения на счетчике.Если система работает правильно, напряжение должно увеличиваться с обороты двигателя, а затем стабилизируются, чтобы при дальнейшем увеличении оборотов двигателя значение напряжения останется прежним. Обычно верхнее значение напряжения находится в диапазоне от 13,5 до 14,5 вольт, хотя оно варьируется от машины к машине. Если показание напряжения не удается для увеличения неисправна цепь зарядки.

Индикатор батареи

Есть специальный тип мультиметра для проверки работоспособности аккумулятор при большой нагрузке, например при запуске.Он состоит из двух больших штыри соединены вместе с мощным резистором и вольтметр между ними. Прикоснитесь штырями к клеммам аккумулятора на несколько секунд, пока снимается показание напряжения. Если аккумулятор в хорошем состоянии, напряжение не должно падать ниже 9 вольт. Вы можете использовать мультиметр, чтобы выполнить ту же проверку. Отключить зажигание системы, отсоединив один из выводов катушки LT. Подключите измеритель поперек клеммы аккумуляторной батареи и попросите помощника поработать стартером несколько раз секунд, наблюдая за показаниями напряжения.Опять не должно упасть ниже 9 вольт.

Текущие показания

Сложнее измерить выходной ток динамо-машины или генератора переменного тока. с мультиметром, потому что текущие уровни, производимые генератор тоже отлично подходит для работы с большинством счетчиков.

Символы мультиметра

— что они означают?

Вас смущают все символы на мультиметре? Вам интересно, что может означать эта маленькая линия с волнистой линией? Возможно, вы все еще учитесь использовать свой мультиметр или, может быть, какое-то время у вас был свой, но вы просто не уверены, что на самом деле означают пара символов, потому что вам никогда не приходилось использовать эту настройку.Это руководство для вас. Мы собираемся подробно объяснить, что означают настройки и символы на общем счетчике.

Последнее, что вам нужно при устранении важной проблемы с цифровым мультиметром, — это неправильно понимать значение показаний. Это может быть особенно опасно, если вы пытаетесь провести проверку целостности цепи и случайно настроили прибор на измерение напряжения.

В нашем руководстве мы используем Fluke 117, мы выбрали Fluke, потому что это отличный универсальный мультиметр, и в нем есть символы и настройки, которые вы найдете на 95% мультиметров на рынке.Обратите внимание на желтые символы вокруг циферблата, эти показания можно получить только после нажатия кнопки SHIFT. Кнопка SHIFT работает так же, как на стандартной клавиатуре, вы просто нажимаете ее, и счетчик выполняет дополнительную функцию, в зависимости от того, где вы установили циферблат.

Номер 1: Кнопка удержания . Эта кнопка будет «удерживать» все, что показывает счетчик после того, как вы ее нажали. Это отличная функция, если вам нужно запомнить точное значение того, что вы измеряете, или если вы не видите мультиметр во время тестирования с помощью измерительного провода или щупов

Номер 2: Напряжение переменного тока .Это будет ваша самая распространенная настройка для проверки напряжения дома или на работе. В зависимости от того, где вы живете, вы обычно будете измерять напряжение от 100 до 240 вольт переменного тока.

СДВИГ: Герц . Используется для измерения частоты вашей цепи или оборудования. Различное оборудование и схемы предназначены для работы как на фиксированной, так и на переменной частоте, поэтому важно знать это перед тем, как приступить к тесту.

Число 3: Напряжение постоянного тока . Настройка напряжения постоянного тока позволит вам тестировать небольшие электронные схемы, световые индикаторы и батареи.В 99% случаев, когда вы сталкиваетесь с напряжением постоянного тока, оно будет ниже 30 вольт постоянного тока.

Число 4: Непрерывность . Измеритель издаст звуковой сигнал при обнаружении непрерывности между двумя точками. Это быстрый и эффективный способ поиска коротких замыканий или обрывов. Просто поместите один датчик в одну точку, а другой датчик в другую точку, и ваш глюкометр подаст вам визуальный и звуковой сигнал.

Номер 5: Постоянный ток .То же, что и для переменного тока (номер 13), но с постоянным.

Номер 6: Текущий домкрат . Используется только для измерения силы тока с помощью красного измерительного провода или специальных клещей. Если вы используете специальные токоизмерительные клещи, скорее всего, у вас не будет этого разъема на вашем устройстве.

Номер 7: Домкрат обыкновенный . Используется для всех тестов и может использоваться только с черным измерительным проводом.

Число 8: Кнопка диапазона .Используется для переключения между различными диапазонами вашего глюкометра. Большинство измерителей имеют автоматический выбор диапазона, но у некоторых есть возможность выбрать конкретный диапазон. Например, вы можете захотеть узнать, какое значение у вас выражено в мегаомах.

Число 9: Кнопка яркости . Переключает подсветку дисплея с тусклой на яркую.

Число 10: Милливольты переменного тока . Если вы тестируете небольшую схему при настройке напряжения переменного тока и показания низкие, рекомендуется переключиться на настройку «Милливольты переменного тока», чтобы получить более точные показания.

SHIFT: Милливольты постоянного тока . То же, что и выше, но с постоянным напряжением.

Число 11: Ом . Эта настройка используется для измерения сопротивления, которое измеряется в омах. Сама по себе функция называется омметром. Отличный способ проверить точность вашего мультиметра — это получить резистор, сопротивление которого вам известно, и использовать настройку в омах для проверки сопротивления. Если он читает правильно, вы можете быть уверены, что ваш цифровой мультиметр точен. Установка сопротивления также является быстрым и легким способом проверки состояния предохранителей — если счетчик показывает OL, вы можете быть уверены, что предохранитель перегорел.ПРИМЕЧАНИЕ ПО БЕЗОПАСНОСТИ: проверяйте предохранители с установленным сопротивлением только тогда, когда они ВЫКЛЮЧЕНЫ из цепи.

Номер 12: Тест диодов . Настройка проверки диодов — самый надежный способ проверить, хороши ли ваши диоды или нет. Другой способ проверить, работает ли диод должным образом, предполагает использование настройки сопротивления, однако он не так точен, как использование специального теста диода.

SHIFT: Емкость . Чрезвычайно важно отметить, что в некоторых конденсаторах сохраняется электрический заряд даже после отключения питания.Перед измерением емкости убедитесь, что вы безопасно разряжаете конденсаторы.

Число 13: Переменный ток . Испытания переменным током, обычно выполняемые с добавлением зажимных приспособлений, являются обязательными для таких испытаний, как, например, нагрузка на прибор.

Номер 14: Рэд Джек . Используется для всех испытаний, кроме тока, включая: напряжение, сопротивление, частоту, диод, рабочий цикл, температуру, импеданс и емкость.

Мы надеемся, что это руководство было для вас полезным. Наличие даже базовых знаний в области электрики и собственных тестеров очень поможет вам и может сэкономить тысячи долларов на расходах на электрика. Сказав это, напряжение и ток могут быть чрезвычайно опасными — даже при небольших измерениях, обязательно вызовите электрика, если у вас есть какие-либо сомнения, и никогда не выполняйте никаких работ, требующих наличия лицензии.

Переменный резистор

: общие сведения, схемы применения & Общие неисправности

Каталог

I Введение

Резистор является токоограничивающим элементом.После того, как резистор подключен к цепи, сопротивление резистора фиксируется. Обычно он имеет два контакта, которые могут ограничивать ток, протекающий через подключенную к нему ветвь. Резисторы, сопротивление которых нельзя изменить, называются постоянными резисторами, а резисторы с переменным сопротивлением — потенциометрами или переменными резисторами.

Настройка переменного резистора, реостата или постоянного резистора

II Определение, символ и маркировка переменного резистора

2.1 Определение

2.1.1 Что такое переменное сопротивление?

Переменное сопротивление — это своего рода сопротивление, которое может играть роль сопротивления в электронных схемах. Отличие от обычного сопротивления в том, что его сопротивление можно непрерывно изменять в определенном диапазоне. В некоторых случаях, когда требуется изменить значение сопротивления, но оно не меняется часто, можно использовать переменный резистор.

2.1.2 Что такое переменный резистор?

Переменный резистор — это электронный компонент с регулируемым сопротивлением.Он состоит из резистора и вращающейся или скользящей системы. Обычно он используется в цепи, которая должна часто регулировать сопротивление, и играет роль регулировки напряжения, регулировки тока или управления сигналом. Его основные параметры в основном такие же, как и у постоянного резистора.

2.2 Обозначение

Обозначение переменного резистора — R, единица измерения — Ом.

2.3 Метод маркировки переменного резистора

(1) Переменный резистор использует прямой стандартный метод для указания номинального значения сопротивления, то есть номинальное значение сопротивления наносится непосредственно на переменный резистор.В случае применения с большим током на переменном резисторе также указывается параметр номинальной мощности. Кроме того, величина сопротивления малых переменных резисторов выражается тремя цифрами, что соответствует сопротивлению резисторов.

(2) Для переменных резисторов, используемых в схемах слабого сигнала, мы обычно заботимся только о их номинальном сопротивлении и не требуем питания.

III Как работает переменный резистор

Когда напряжение прикладывается между двумя фиксированными электрическими ударами корпуса резистора, положение контакта на корпусе резистора изменяется путем вращения или скольжения системы, и положение формируется между подвижным и неподвижным контактами.Конечно напряжение родственное.

Другими словами, корпус переменного резистора имеет два фиксированных конца. Путем ручной регулировки вращающегося вала или скользящей ручки для изменения положения подвижного контакта на корпусе резистора изменяется соотношение между подвижным контактом и любым неподвижным концом. Значение сопротивления изменяет величину напряжения и тока.

IV Особенности формы переменного резистора

(1) Объем переменного резистора больше, чем у общего резистора, и в то же время переменный резистор в цепи меньше, и его можно легко нашел в печатной плате.

(2) В переменном резисторе три контакта, и они отличаются друг от друга. Один — подвижный штифт, а два других — фиксированные. Как правило, два фиксированных штифта могут использоваться взаимозаменяемо, но фиксированный и подвижный штифт не могут использоваться взаимозаменяемо.

(3) На переменном резисторе есть порт регулировки. Используйте отвертку с плоским лезвием, чтобы войти в это регулировочное отверстие. Поверните отвертку, чтобы изменить положение подвижной пластины и отрегулировать значение сопротивления.

(4) Номинальное значение сопротивления можно увидеть на переменном резисторе. Это номинальное значение сопротивления относится к значению сопротивления между двумя фиксированными выводами микросхемы, а также фиксированным выводом микросхемы и подвижным выводом микросхемы. Максимальное значение сопротивления между.

(5) Вертикальный переменный резистор в основном используется в схемах слабого сигнала. Три его контакта расположены вертикально вниз и вертикально установлены на печатной плате. Порт регулировки сопротивления расположен в горизонтальном направлении.

(6) Горизонтальные переменные резисторы также используются в схемах слабого сигнала.Его три контакта расположены под углом 90 ° к плоскости сопротивления и установлены вертикально на печатной плате, при этом порт регулировки сопротивления направлен вверх.

(7) Переменное сопротивление маленького пластикового корпуса меньше и имеет круглую структуру. Его три контакта опущены, а порт регулировки сопротивления вверх.

(8) Переменные резисторы (структура с проволочной обмоткой) для приложений большой мощности. Объем большой, и подвижное лезвие может скользить влево и вправо, чтобы регулировать сопротивление.

В Структура и функция переменного резистора

5.1 Базовая структура

Переменный резистор в основном состоит из подвижной детали, корпуса из углеродной пленки и трех контактов. Три контакта представляют собой два фиксированных контакта (также называемых фиксированные детали) и один подвижный штифт. Движущуюся часть переменного резистора можно вращать влево и вправо. При использовании отвертки с плоским лезвием, чтобы добраться до регулировочного отверстия и повернуть, контакты на подвижной детали могут скользить по резистивной детали.

В зависимости от применения, резистивный материал переменного резистора включает металлическую проволоку, металлический лист, углеродную пленку или проводящую жидкость. Для токов общей величины часто используются переменные резисторы металлического типа. Когда сила тока небольшая, лучше использовать угольную пленку. Когда ток большой, наиболее подходит электролитический тип.

5.2 Схема D Схема T wo V ariable R esistors

Рисунок 3.Принципиальная схема двух переменных резисторов

5.3 Роль переменного резистора

(1) Переменный резистор — это регулируемый электронный компонент, который состоит из корпуса резистора и скользящей системы. Переменное сопротивление резистора — это резистор, который можно отрегулировать в зависимости от тока или изменения цепи. В случае сопротивления цепи, свет можно приглушить, и можно управлять двигателем для запуска его скорости.

(2) Переменный резистор в основном регулирует ток в последовательной цепи, изменяя собственное сопротивление, тем самым защищая некоторые электрические компоненты от требований по току.Переменный резистор обычно используется в схемах, которые не требуют частой регулировки, в основном для фиксации того же значения для резистора.

VI Типы переменных резисторов

6.1 Блок сопротивлений

Переменные резисторы делятся на три типа: блок сопротивлений, скользящий реостат и потенциометр. Коробка сопротивления — это устройство с переменным сопротивлением, которое использует преобразователь для изменения значения сопротивления. Это устройство преобразования обычно имеет структуру типа десятичного диска (типа ручки), а также может иметь тип штекера и структуру типа конечной кнопки, если требуется.Цепь ящика сопротивлений можно разделить на последовательные линии и последовательно-параллельные линии.

По сравнению со скользящим реостатом, коробка сопротивления может непрерывно изменять сопротивление в подключенной цепи, в то время как скользящий реостат не может отображать значение сопротивления подключенной цепи.

Рисунок 4. Блок сопротивления

6.2 Скользящий R heostat

Скользящий варистор — одно из наиболее часто используемых устройств в электричестве.Его принцип работы заключается в изменении сопротивления путем изменения длины линии сопротивления в цепи, тем самым постепенно изменяя ток в цепи. Проволока сопротивления скользящего реостата обычно представляет собой никель-хромовый сплав с высокой температурой плавления и большим сопротивлением, а металлический стержень обычно представляет собой металл с низким сопротивлением. В результате, когда площадь поперечного сечения резистора постоянна, чем длиннее резистивный провод, тем больше сопротивление; чем короче провод сопротивления, тем меньше сопротивление.

Рисунок 5. Скользящий реостат

6.3 Потенциометр

Потенциометр — это резистивный элемент с тремя выводами, сопротивление которых можно регулировать в соответствии с определенным законом изменения. Потенциометр обычно состоит из резистора и подвижной щетки. Когда щетка движется вдоль корпуса резистора, на выходном конце получается значение сопротивления или напряжение, имеющее определенную взаимосвязь с величиной смещения.

Потенциометр может использоваться как трехконтактный или двухконтактный элемент.Последний можно рассматривать как переменный резистор. Поскольку его роль в схеме заключается в получении выходного напряжения, которое имеет определенную взаимосвязь с входным напряжением (внешним напряжением), он называется потенциометром.

Рисунок 6. Потенциометр

6.4 Специальная классификация переменных резисторов

Переменный резистор можно разделить на переменный резистор пленочного типа и переменный резистор с проволочной обмоткой в ​​зависимости от материала.

6.4.1 Пленочный переменный резистор

Мембранные переменные резисторы обычно состоят из корпуса резистора (синтетическая углеродная пленка), подвижного контакта (подвижного металлического язычка или угольного контакта), регулировочной части и трех штырей (или контактных площадок для пайки). Два фиксированных контакта подключены к обоим концам корпуса резистора, а другой контакт (центральный вывод) подключен к подвижной контактной детали. Вы можете изменить сопротивление между центральным отводом и двумя неподвижными штифтами, повернув регулировочную часть с помощью небольшой отвертки с плоским лезвием и изменив положение контакта подвижного контакта с резистором.

Мембранные переменные резисторы доступны в герметичной, полугерметичной и негерметичной конфигурациях.

(1) Полностью герметичные пленочные переменные резисторы также называются твердотельными переменными резисторами. Резистор изготавливается из технического углерода, кварцевого порошка, органического связующего и других материалов, а затем прессуется в пластик или эпоксидную смолу. Матрица материала полимеризуется при нагревании. В подвижных контактах используются угольные контакты, а регулирующие детали изготовлены из пластика. Корпус резистора и подвижный контакт герметизированы металлическим кожухом (над металлическим кожухом есть регулировочное отверстие).Его преимущество в том, что он обладает хорошими пыленепроницаемыми характеристиками и редко имеет плохой контакт.

(2) Процесс изготовления корпуса резистора полуизолированного пленочного переменного резистора и корпуса резистора полностью герметичного переменного резистора в основном одинаков. Подвижный контактный элемент имеет металлический язычок, а внешняя пластиковая крышка герметична. Когда пластиковая крышка поворачивается, подвижная контактная деталь также вращается вместе с ней. Этот переменный резистор легко настроить, но его пыленепроницаемость не так хороша, как у полностью герметичного переменного резистора пленочного типа.

(3) Незапечатанные пленочные переменные резисторы также называют резисторами с перестраиваемой микросхемой. Корпус резистора изготовлен из углеродной сажи, графита, кварцевого порошка, органического связующего и т. Д., Образуя суспензию, которая покрывается стекловолоконной плитой или клеем. Изготовлен из деревянных досок. В подвижной контактной детали используется металлический язычок, язычок имеет регулировочное отверстие, и отдельного регулирующего компонента не предусмотрено. Его недостатки — плохая пыленепроницаемость, контакты подвержены окислению и выходят из строя из-за плохого контакта с синтетической углеродной пленкой.

6.4.2 Wire W ound V ariable R esistor

(1) Мощный варистор с проволочной обмоткой также называется варистором со скользящей проволокой, который делится на осевые керамический трубчатый переменный резистор с проволочной обмоткой и фарфоровый дисковый переменный резистор с проволочной обмоткой. Он принимает негерметичную структуру.

(2) Маломощные переменные резисторы с проволочной обмоткой включают круглые вертикальные переменные резисторы с проволочной обмоткой, круглые горизонтальные переменные резисторы с проволочной обмоткой и квадратные переменные резисторы с проволочной обмоткой, все из которых полностью герметичны.Структура пакета.

Кроме того, переменный резистор можно разделить на вертикальный переменный резистор и горизонтальный переменный резистор в зависимости от конструкции.

Рисунок7. Переменный резистор с проволочной обмоткой

VII Типовая прикладная схема с переменного резистора

7.1 Схема переменного резистора в цепи смещения транзистора

На рисунке ниже показана схема смещения напряжения с делением переменного резистора.В схеме транзистор VT1 представляет собой высокочастотный усилитель, а RP1, R1 и R2 составляют схему смещения деления напряжения. Выходное напряжение схемы деления напряжения определяется сопротивлением трех резисторов RP1, Rl и R2. R1 и R2 — постоянные резисторы. Регулируется переменный резистор RP1, а затем регулируется статический рабочий ток VT1. Величина тока определяет, может ли VT1 ​​работать в наилучшем состоянии.

Рисунок 8. Цепь смещения делителя напряжения переменного сопротивления

7.2 Стерео B alance C ontrol V ariable R esistor C ircuit

Регулировка коэффициента усиления на левом и правом каналах аудио усилитель. RP1 в схеме — это переменный резистор, включенный последовательно с R1.

Рисунок 9. Схема регулировки баланса усиления левого и правого каналов в звуковом усилителе

В звуковой схеме для двухканального усилителя необходимо строго требовать, чтобы усилители левого и правого каналов имели равное усиление (сбалансированное), но дискретность схемы компоненты делают это невозможным.Чтобы гарантировать, что коэффициенты усиления усилителей левого и правого каналов равны, необходимо предусмотреть схему регулировки баланса усиления левого и правого каналов, которая называется схемой стереобаланса.

В схеме правого канала определяется сопротивление R2, так что коэффициент усиления усилителя правого канала является фиксированным. Взяв за эталон усиление усилителя правого канала, изменив сопротивление RP1 так, чтобы коэффициент усиления усилителя левого канала был равен коэффициенту усиления усилителя правого канала, можно получить такое же усиление усилителей левого и правого каналов.

VIII Причины и решения переменного резистора Неисправности

8.1 Причины неисправностей переменного резистора

(1) Длительное время использования, вызывающее окисление.

(2) Неисправность цепи привела к тому, что переменный резистор перегрузился по току и сгорела углеродная пленка. В это время также виден обгоревший след переменного резистора.

8.2 Характеристики из Переменный R esistor Неисправности

(1) Повреждение углеродной пленки переменного резистора

Изношена или сгорела углеродная пленка переменного резистора.В это время контакт между подвижной деталью и углеродной пленкой плохой или не может контактировать.

(2) Плохой контакт между подвижной деталью переменного резистора и углеродной пленкой приводит к увеличению контактного сопротивления между движущейся частью и углеродной пленкой.

(3) Сломан вывод переменного резистора.

8.3 Метод s Для ремонта Переменная R esistor

(1) Когда дорожка контакта движущегося лезвия на углеродной пленке изнашивается, контакт на движущемся лезвии может быть загнут внутрь, чтобы изменить исходную дорожку контакта движущегося лезвия.

(2) Контакты подвижного ножа загрязнены. Вы можете очистить контакты чистым спиртом.

(3) Обрыв между одним статором и углеродной пленкой. В настоящее время, если он используется в качестве переменного резистора (не используется в качестве потенциометра), вместо него можно использовать этот неотключенный статор. Значение сопротивления.

(4) Штифт сломан из-за скручивания. Свинец можно приварить жесткой проволокой в ​​качестве булавки.

Рисунок 10. Проверить переменный резистор

8.4 Тестирование переменного резистора мультиметром

8.4.1 Метод

Метод обнаружения переменного резистора в основном такой же, как и для резистора. Сопротивление между капсюлями измеряется омическим блоком. Измерение может быть выполнено непосредственно на печатной плате, или переменный резистор может быть отключен от схемы. .

(1) Измерьте номинальное сопротивление переменного резистора. Мультиметр расположен в нужном диапазоне омического блока.Две измерительные планки соединены с двумя фиксированными штырьками переменного резистора. В это время измеренное значение сопротивления должно быть равно номинальному значению сопротивления переменного электрического аксессуара, в противном случае объясняется переменное сопротивление. Устройство повреждено.

(2) Измерьте сопротивление между подвижным резистором и статором переменного резистора. Мультиметр находится в нужном диапазоне омического блока. Один стержень измерителя подсоединяется к неподвижной детали, а другой — к подвижной детали.В этом состоянии измерения, когда подвижный элемент переменного резистора вращается, игла отклоняется, и значение сопротивления увеличивается от нуля до номинального значения или уменьшается с номинального значения до нуля.

8.4.2 Меры предосторожности

Из-за особенностей переменного резистора во время процесса обнаружения следует учитывать следующие проблемы:

(1) Если сопротивление между подвижной и неподвижной частями равно 0 Ом, при на этот раз вы должны увидеть, повернулась ли подвижная деталь к концу неподвижной детали.Чтобы исключить влияние внешних цепей).

(2) Если значение сопротивления между подвижной деталью и какой-либо определенной деталью больше, чем номинальное значение сопротивления, это означает, что переменный резистор имеет разрыв цепи.

(3) При измерении, если измеренное сопротивление между подвижной деталью и определенной деталью меньше номинального значения сопротивления, это не означает, что оно повреждено, но вы должны смотреть на положение движущейся детали, который отличается от обычных резисторов.

(4) При снятии измерения вы можете использовать соответствующий диапазон омического упора мультиметра. — Один стержень соединен с штифтом контактной площадки, а другой стержень — с ножкой. Затем с помощью плоской отвертки медленно поверните площадку по или против часовой стрелки. В это время стрелки должны постоянно изменяться от 0 Ом до номинального сопротивления.

Тот же метод используется для измерения изменения значения следа между другой неподвижной пленкой и движущейся пленкой.Метод измерения и результат теста должны быть одинаковыми. Таким образом, переменный резистор исправен, иначе переменный резистор выходит из строя.

Рисунок 11. Цифровой мультиметр

IX Активные переменные резисторы с широким диапазоном импеданса нагрузки

Силовые резисторы, переменные резисторы и другие электронные нагрузки часто используются для проверки источников питания и регуляторов напряжения, как показано на следующем рисунке:

Рисунок 12.Активные переменные резисторы с постоянным сопротивлением нескольких порядков величины

Хотя функция аналогична механическому потенциометру, она основана на активном устройстве, которое может обеспечивать широкий диапазон сопротивления нагрузки, высокое разрешение регулировки сопротивления и меньшее нагревание, чем механический потенциометр. Анализируя схему, показанную на рисунке выше, выражения напряжения на неинвертирующем и инвертирующем концах операционного усилителя следующие:

Рисунок 13.Формула

Эти два напряжения равны, поэтому

Рисунок 14. Формула

Всю цепь можно рассматривать как сопротивление неинвертирующего вывода IN + и инвертирующего вывода IN-. Неинвертирующие и инвертирующие эквивалентные сопротивления постоянны и не зависят от испытательного напряжения (VIN). RSENSE включает в себя несколько последовательных резисторов, которые обеспечивают выбор импеданса на несколько порядков величины. Например, если требуется 10 Ом, клемма будет IN + и «B» рядом с IN-1 (точки A, C и D не подключены).Для нагрузок большой мощности обратите внимание на номинальную мощность резистора считывания и nFET.

Источником питания операционного усилителя может быть батарея или любой другой источник постоянного тока. Его максимальный рабочий ток составляет всего 20 мкА. Он питается от батареи 9 В. В нормальных условиях активную нагрузку можно использовать в течение 1-2 лет.

10,1 Вопрос

Регулятор громкости в CD-ресивере, радио и усилителе также использует

A.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *