Способ намотки тороидальных трансформаторов
Федотов Алексей Геннадьевич (UA3VFS)
г. Гусь-Хрустальный
Технология намотки и способ изоляции на самом деле очень прост и не предполагает ни в коем случае ни какой обмотки, ни лакотканью, ни чем-либо другим. Дело в том, что при любой обмотки лакотканью или другими изоляторами внутреннее окно ТОРА мгновенно заполняются, так как, на внешней стороне получается один слой, а на внутренней 5-10 слоев, да еще неровных. Я давно собирался написать статью о способе качественной намотки торов. Это довольно долго объяснять и лучше показать на фото. Причем после намотки обмотки не превращаются в колесо, а сам трансформатор не становиться, яйцеобразным и расход провода минимален. Ввиду всего этого и КПД трансформатора максимален. А что из этого получается, Вы можете посмотреть в моем усилителе.
Сразу оговорюсь, речь идет о мощных тороидальных трансформаторах.
Что нужно для намотки.
1) Необходимо сделать подставку для намотки тороида, делается это очень просто. Берем квадратный кусок ДСП или фанеры толщиной 10-15мм. Размерами 200Х200мм еще нам нужны два деревянных бруска длинной 200мм и с квадратом 20Х20мм. Эти два бруска нам нужно либо приклеить по центру нашей площадки, параллельно друг другу, на расстоянии между ними 100мм. А еще лучше привернуть к площадке эти бруски с помощью шурупов, но с потайными головками и головки утопить в фанеру иначе они будут царапать стол. Теперь если на эту подставку поставить тороид, он будет прочно и устойчиво стоять.
3) Теперь нам нужен материал для изоляции между слоями, это очень просто нужно найти
тонкий картон (упаковочный), я например, применяю коробки от динамиков для автомобилей. Главное что бы это был не толстый, но и не тонкий материал толщина картона, где-то 0,5мм. Если он будет с одной стороны глянцевый, то это тоже хорошо.
4) Еще нам потребуется нитки толстые 10-20 номер. Но на худой конец можно и 40 номер.
Сама намотка ведется от себя в правую сторону.
А теперь самое главное, это изготовление самих изоляционных прокладок между слоями.
Нам потребуется штангель-циркуль, с острыми концами.
Измеряем, внешний диаметр нашего тора, прибавляем 20мм. (для нахлеста) и делим пополам. Например, внешний диаметр тора 150мм.+ 20мм.= 170мм. 170мм./2 = 85мм.
Выставляем штангель на 85мм. и фиксируем винтом. Сам штангель мы будем использовать как циркуль для черчения кругов на картоне. Почему именно штангелем, а не обычным циркулем, которым и проще и удобнее? А все очень просто, когда мы будем острым и прочным концом штангеля чертить по картону, то на картоне останется продавленная борозда и именно она поможет нам. Эта борозда очень полезна для удобства сгибания внутренней рассеченной окружности наших прокладок. В общем, сами поймете, что штангелем лучше, чем удобным циркулем.
Далее замеряем внутренний диаметр тора ничего не прибавляем, не убавляем, а просто делим пополам. Например, диаметр 60мм./2 = 30мм.
Выставляем, именно штангель-циркуль, на 30мм. фиксируем винтом и чертим внутренний диаметр на картоне.
>Далее мы рисуем обычным циркулем еще один круг, который меньше внутреннего в два раза, то есть, раздвигаем циркуль на 15мм.
А теперь нам потребуется ровный кусок, фанеры или ДСП на который, мы положим нашу картонную заготовку для прорезания концом острого скальпеля или ножа, нанесенных карандашом наших частей. Прорезать нужно по кругу от внешнего края окружности к центральной точке, не далее иначе картон будет задираться. Прорезать нужно насквозь картона. Далее ножницами вырезаем внутренний круг нарисованный нами обычным циркулем. Полученные дольки отгибаем перпендикулярно заготовки.
Далее меряем высоту тора и вырезаем две полоски картона такой же ширины.
Одну полоску вставляем внутрь тора, так что бы нахлест был не более 10мм.
Вторую полоску накручиваем одним слоем на внешнюю сторону тора с таким же нахлестом.
Надеваем обе круглые заготовки на торцы тора, крепим ниткой в трех-четырех местах по кругу.
Самые опасные места для пробоя это углы окружностей ТОРА внешний и особенно внутренний. Поэтому если во время намотки мы увидим, что провод может соприкасаться с проводом внутреннего слоя, особенно по внутреннему углу окружности ТОРА. То необходимо подложить под провод полоски такого же картона шириной 10мм. и длинной по 20-30мм., там, где это необходимо. На внешней стороне, как правила этого делать не приходится, так как внешняя сторона заготовки наслаивается на край и хорошо предохраняет провод от замыкания.
Вся разметка и прорезка картонных заготовок делается с матовой стороны картона,
Перед тем как начать мотать тор, на пальцы рук нужно намотать два слоя изоленты на оба сгиба мизинца и на сгиб указательного пальца, иначе будут огромные водяные мозоли.
Многих интересует, как рассчитать ТОР.
Дело в том что количество витков будет зависеть от качества железа но приблизительный расчет делается просто, как и у обычного трансформатора только коэффициент берем 20-30.
Ну, например измеряем высоту, она = 10см.
10х5=50см.
25/50=0,5 витков на 1вольт.
220х0,5=110 витков сетевой обмотки.
Теперь начинаем мотать сетевую обмотку, намотав приблизительно 90 витков пробуем включить в сеть, меряя при этом ток холостого хода.
Совсем несложно подключить кончик провода прямо на челноке.
Постепенно доматывая провод, доводим ток холостого хода до 50-100ма. и на этом прекращаем мотать, полученное количество витков и будет реально. Теперь это реальное количество делим на 220 и получаем реальное значение количества витков на 1вольт.
И в соответствии с этой цифрой рассчитываем все выходные обмотки.
Имейте ввиду, что при включении трансформатора в сеть первичный мгновенный бросок тока очень большой. И для того, что бы не спалить тестер нужно делать так. Сетевой провод подключаем через замкнутый тумблер параллельно тумблеру включаем тестер, включаем вилку в розетку и только потом размыкаем тумблер, что бы посмотреть ток холостого хода.
Кстати именно из за мощного первичного броска тока трансформаторы мощностью более 1 КВт., обязательно нужно включать с помощью схемы мягкого включения. Тем более схема эта очень проста.
Иллюстрации
20 ноября 2005г.
ua3vfs (at) mail.ru
http://ua3vfs.narod.ru
Тороидальные трансформаторы: самостоятельная намотка, проведение расчетов
Намотка трансформатора своими руками — задача несложная, если к ней подготовиться заранее. Люди, которые изготавливают различную радиоаппаратуру или силовые инструменты, имеют потребность в трансформаторах для конкретных нужд. Поскольку далеко не всегда предоставляется возможность приобрести определенные изделия, то мастера зачастую наматывают тороидальные трансформаторы самостоятельно. Те, кто в первый раз пытаются провести обмотку, сталкиваются с трудностями: не могут определить правильность расчетов, подобрать соответствующие детали и технологию. Необходимо понимать, что разные типы наматываются по-разному.
Также кардинально отличаются тороидальные устройства. Расчет тороидального трансформатора и его намотка будут особыми. Так как радиолюбители и мастера создают детали под силовое оборудование, но не всегда обладают достаточными знаниями и опытом для их изготовления, то этот материал поможет данной категории людей разобраться с нюансами.
Подготовка к проведению намотки
- В первую очередь нужно провести правильный расчет тороидального трансформатора по сечению сердечника. Вычисляется нагрузка, для этого суммируют все подключенные устройства (двигатели, передатчики и т. п. ), питание которых будет обеспечиваться. К примеру, радиостанция имеет 3 канала, мощность которых по 15, 10 и 15 Ватт. Суммарно это 40 Ватт.
- Далее следует поправка на КПД схемы (в большинстве передатчиков около 70%). У трансформатора также имеется собственный КПД, составляющий 95%, но нужно сделать поправку на самоделку и выставить уровень КПД не более 90%. Значит, требуемая мощность возрастет до 63,5 Вт. Стандартный вес устройств с такой мощностью — до 1,5 кг.
- Следующий шаг — определяют входное и выходное напряжение. Если 220 В — входное, а 12 В — выходное со стандартной частотой 50 Гц, количество витков составит на одну обмотку 220*0,73=161 виток (округляют до целых чисел), а снизу получится 12*0,73=9 витков.
- Затем — определение диаметра провода. Для этого необходимо обладать информацией относительно плотности и протекания тока, на 1 кВт выставляют значение до 3 А/мм2.
Необходимые материалы
Материалы для намотки требуют тщательного выбора, важное значение имеет каждая из деталей. В частности, вам понадобятся:
- Каркас трансформаторный. Он используется для изоляции сердечника от обмоток, а также удерживает обмоточные катушки. Его изготавливают из прочных и тонких диэлектрических материалов, чтобы не занимать слишком много места в интервалах («окнах») сердечника. Можно воспользоваться картонками, микрофибрами, текстолитом. Толщина материала не должна быть более 2 мм. Каркас склеивают, пользуясь обычным клеем для столярных работ (нитроклеем). Его форма и размеры полностью зависят от сердечника, высота — немного больше, чем у пластины (высота обмотки).
- Сердечник. Эту роль, как правило, выполняют магнитопроводы. Лучшим решением станет применение пластин из разобранных трансформаторов, поскольку они произведены из подходящих сплавов и рассчитаны на некоторое количество витков. Магнитопроводы имеют разнообразную форму, но чаще всего встречаются изделия в виде буквы «Ш». Кроме того, их можно вырезать из различных заготовок, которые есть в наличии. Чтобы определить точные размеры, предварительно наматывают провода обмоток.
- Провода. Здесь нужно использовать два вида: для обмотки и для выводов. Оптимальное решение для трансформирующих устройств — медные провода, имеющие эмалевую изоляцию (тип ПЭЛ или ПЭ). Их хватит даже для силовых трансформаторов. Широкий выбор сечений позволяет подобрать самый подходящий вариант. Также часто применяют провода ПВ. Для вывода лучше всего брать провода с разноцветной изоляцией, чтобы не путаться при подключении.
- Изоляционные подкладки. Помогают увеличить изоляцию провода обмотки. Как правило, используют тонкую и плотную бумагу (отлично подойдет калька), которую следует уложить между рядов. Но бумага должна быть целой, разрывы и проколы, даже самые незначительные, — отсутствовать.
Как ускорить рабочий процесс
У многих радиолюбителей в арсенале имеются простые специальные агрегаты, с помощью которых делается обмотка. Во многих случаях речь идет о несложных конструкциях в виде небольшого столика либо подставки на стол, на которых установлено несколько брусков с вращающейся продольной осью. Длина самой оси должна превышать длину каркаса намотки в 2 раза. На одном из выходов из брусков крепится ручка, позволяющая вращать устройство.
На оси надеваются катушечные каркасы, которые стопорятся с двух сторон шпильками-ограничителями (они препятствуют перемещениям каркаса вдоль оси).
Намотка тороидального трансформатора: этапы работы
Для преобразования тока на сегодняшний день используют разнообразные устройства Тороидальный трансформатор – это наиболее распространенное устройство, которое применяется не только для сварочного аппарата. Намотка тороидального трансформатора считается популярной услугой.
Чтобы выполнить намотку тороидального трансформатора в домашних условиях, вам следует прочесть нашу инструкцию.
Конструкция трансформатора
Этот замечательный трансформатор был изготовлен еще Фарадеем. Тороидальный автотрансформатор – это специальный прибор, который предназначен для преобразования переменного тока. Использовать их можно в разнообразных линейных установках. Это электромагнитное устройство может быть однофазным и трехфазным.
На этом фото вы сможете увидеть, что конструкция состоит из следующих элементов:
- Металлический диск, который изготовлен из рулонной магнитной стали.
- Специальные резиновые прокладки.
- Выводы первичной обмотки.
- Вторичная обмотка.
- Изоляция, которая располагается между обмотками.
- Экранирующая обмотка.
- Дополнительный слой, который располагается между первичной и экранирующей обмоткой.
- Первичная обмотка.
- Изоляционное покрытие сердечника.
- Тороидальный сердечник.
- Предохранитель.
- Крепежные элементы.
- Слой покрывной изоляции.
Чтобы соединить обмотки производитель использует магнитопровод. Этот тип преобразователя квалифицируется по: назначению, охлаждению и типу магнитопровода. По назначению можно разделить на импульсный, силовой и частотный преобразователь. По охлаждению трансформаторы воздушными или масляными. Если вам будет интересно, тогда можете прочесть про тороидальный трансформатор.
Устройство этого типа может использоваться в стабилизаторах или системах охлаждения. Главным отличием конструкции будет считаться количество обмоток, которое содержит трансформатор. Кольцевая форма считается наиболее распространенной. В этом случае намотка тороидального преобразователя выполняется равномерно. Благодаря этому расположению катушек преобразователь охлаждается быстро и не будет нуждаться в использовании кулеров.
Достоинства тороидального трансформатора
Если вы планируете использовать тороидальный трансформатор, тогда помните, что он может иметь ряд преимуществ:
- Конструкция имеет небольшие габариты.
- Сигнал на торе считается достаточно сильным.
- Обмотки могут иметь небольшую длину. Но из-за этого при работе вы сможете услышать определенный фон.
- Простота в самостоятельной установке.
Преобразователь может использоваться, как сетевой трансформатор, зарядное устройство или блок для галогенных ламп. При необходимости вы можете прочесть про принцип действия трансформатора тока.
Если вы желаете получить детальную информацию о том, как выполнить намотку тороидального трансформатора своими руками, тогда необходимо посмотреть видео, которое расположено ниже:
Намотка тороидального трансформатора
Изготовление тороидального трансформатора может выполнить, даже молодой электрик. Намотка не представляет ничего сложного. Вот инструкция, которая поможет узнать, как правильно мотать тороидальный магнитопровод для полуавтомата:
- Для намотки трансформатора на ферритовом сердечнике, вам необходимо использовать специальный станок. Он позволяет значительно ускорить работу и при этом вы легко сможете уменьшить вероятность соскока железа. Его можно выполнить по типу зажима для накрутки провода.
- Латры, которые нужны для намотки должны иметь одинаковые размеры. При наматывании вам необходимо следить, чтобы между витками не было свободного места. Если силовой трансформатор будет иметь небольшие щели, тогда их можно заполнить железными листами от другого трансформатора.
- После намотки железа необходимо приварить специальные выводы. Чтобы приварить изделие будет достаточно 2 или 3 сварочных точки.
- Теперь вам необходимо промазать торцы магнитопровода с помощью эпоксидного клея. При необходимости кромки можно округлить.
- Поверх усилителя вам следует намотать изоляцию. Чтобы выполнить намотку можно использовать лист картона. Присоединить его можно с помощью малярного скотча. Повторить это действие необходимо по всей площади картона.
- Теперь вы можете намотать изоленту, которая выполнена из текстиля. Поверх слоя также можно использовать малярный скотч.
- К последнему этапу относится намотка провода выбранного сечения. Рассчитать количество витков вы сможете с помощью специальной программы. После накрутки изделие необходимо покрыть лаком NC.
- Изоляция для тороидального трансформатора должна быть выполнена из лакоткани или текстильной изоленты. Эта обмотка называется вторичной и ее также следует покрыть лаком. Это действие следует продолжать до появления необходимого уровня витков.
- Провод для вторичной обмотки обычно имеет большое сечение. Если сетевой трансформатор нужен для дуговой сварки, тогда в конце следует добавить необходимое количество витков.
Один виток способен переносить 0,84 Вольт. Схема намотки тороидального трансформатора выполняется следующим образом:
Так вы сможете легко самостоятельно сделать тороидальный трансформатор 220 на 24 вольта. Эту схему вы легко сможете подключить, как для дуговой, так и для полуавтоматической сварки. Все параметры необходимо рассчитывать исходя из сечения провода. Характеристики устройства также позволяют производить ступенчатую регулировку. Среди его достоинств можно встретить достаточно высокую производительность и доступность.
Обзор цен
Купить тороидальный трансформатор HBL-200 можно практически в любом городе. На фото ниже вы сможете увидеть стоимость преобразователя:
Надеемся, что наша информация будет полезной и вы сможете правильно выполнить намотку тороидального трансформатора. Как видите, намотка тороидального трансформатора не занимает много времени.
Читайте также: что такое сухие трансформаторы?
Тороидальный трансформатор: этапы изготовления
На сегодняшний день многие домашние электрики задумываются о том, как сделать тороидальный трансформатор. Этот спрос на него обеспечен тем, что он имеет сердечник, который значительно лучше по сравнению с другими. Он имеет меньший вес, который может отличаться в полтора раза. Также и КПД этого трансформатора будет значительно выше.
Вот основные причины, которые останавливают многих мастеров при его изготовлении:
- Достаточно сложно найти подходящий сердечник.
- Его изготовление занимает много времени.
Тороидальный трансформатор и его расчет
Для того чтобы значительно облегчить расчет тороидального трансформатора вам необходимо знать следующие данные:
- Выходное напряжение, которое будет подаваться на первичную обмотку U.
- Диаметр сердечника внешний D.
- Внутренний диаметр сердечника d.
- Магнитопровод
Площадь поперечного сечения S будет определять мощность трансформатора. Оптимальным значением на сегодняшний день считается 45-50 см. Рассчитать это значение достаточно просто и сделать это можно с помощью формулы:
Sc = H * (D – d)/2.
Наиболее важной характеристикой сердечника считается площадь его окна S. Этот параметр будет определять интенсивность отвода избытков тепла. Оптимальное значение этого параметра может составлять 80-100 см. Вычисляется он по формуле:
S0 = π * d2 / 4.
Благодаря этим значениям вы легко рассчитаете его мощность по формуле:
P = 1,9 * Sc * S0, где Sc и S0 необходимо брать в квадратных сантиметрах, а P получится в ваттах. Затем вам потребуется найти число витков на один вольт:
k = 50 / Sc.
Когда значение k вам станет известным, то можно будет рассчитать количество витков во вторичной обмотке:
w2 = U2 * k.
Производить расчеты лучше, если в качестве исходного значения использовать напряжение на вторичной обмотке:
W1 = (U1 * w2) / U2, где U1 – это напряжение, которое подводят к первичной обмотке, а U2 снимаемое со вторичной.
Сварочный ток проще всего регулировать с помощью изменения числа витков в первичной обмотке, так как здесь существует меньшое напряжение.
Изготовление тороидального сердечника
Тороидальные трансформаторы содержат в своей конструкции сложный сердечник. Лучшим материалом для его изготовления считается трансформаторная сталь. Для того чтобы изготовить сердечник тороидального трансформатора вам необходимо использовать стальную ленту. Ее необходимо свернуть в рулон, который будет иметь форму Тора. Если у вас уже есть такая форма, то никаких проблем возникнуть не должно.
Если значение внутреннего диаметра d будет недостаточным, то часть ленты необходимо отмотать. В результате этого у вас возрастут оба диаметра, и увеличится площадь всей поверхности. Правда при этом у вас может уменьшиться площадь поперечного сечения.
Хороший готовый сердечник вы также можете найти на лабораторном автотрансформаторе. Вам следует перемотать его обмотки. Измерительные трансформаторы имеют более простой сердечник.
Еще к одному способу изготовления тороидального сердечника относят использование пластин от неисправного промышленного трансформатора. Сначала из этих закрепок вам потребуется изготовить обруч. Его диаметр должен составлять 26 см. Внутрь этого обруча необходимо постепенно вставлять пластины. Следите за тем чтобы они не разматывались.
Если тороидальный трансформатор наберет необходимое сечение, тогда его магнитопровод готов. Для увеличения S0 вам необходимо сделать два тороида. Они должны иметь одинаковые размеры. Их края необходимо будет закруглить с помощью напильника. Из картона необходимо сделать два специальных кольца и две полоски для Тора. После их наложения все элементы следует обмотать изоляционной лентой. Теперь ваш магнитопровод готов.
Намотка тороидального трансформатора
Намотка тороидального трансформатора – это достаточно сложный процесс, который занимает много времени. Тороидальный трансформатор имеет одну из наиболее сложных намоток. Наиболее простым способом считается использование специального челнока. На него следует намотать провод нужной длины и затем его через отверстия. Он имеет сложную конструкцию, но это не влияет на принцип работы трансформатора тороидального. После пропуска через челнок у вас начнет формироваться соответствующая обмотка.
Челнок обычно изготавливается из дерева. Его толщина составляет 6 мм длина 40 см, а ширина 4 см. В его торцах вам следует сделать полукруглые вырезы. Для оценки его длины вам необходимо намотать провод на челнок, а значение умножить на количество витков. В этом случае запас должен составлять 20%.
Намотку необходимо делать с помощью кругового челнока. В качестве заготовки вам могут послужить согнутые пластмассовые трубы или обруч. Обруч необходимо распилить в одном месте и продеть его сквозь внутреннее окно сердечника. Провод в нескольких местах следует зафиксировать изолентой. Она не даст вашему проводу рассыпаться.
Надеемся, что благодаря этой статье вы самостоятельно сможете изготовить тороидальный трансформатор своими руками.
Читайте также: как сделать трансформатор Тесла своими руками?
Делаем машину для намотки тороидальных катушек на базе Arduino / Хабр
Перевод с сайта Electric DIY Lab
Всем привет, представляю вам изготовленную мною машину для намотки тороидальных катушек на базе Arduino. Машина автоматически наматывает проволоку и поворачивает тороид. В качестве интерфейса я использовал энкодер и ЖК-экран 16×2. Пользователь может вводить такие параметры, как диаметр катушки, количество оборотов и угол намотки.
В данной статье я расскажу, как построить эту машину и дам подробности её работы.
На видео всё подробно описано – можно посмотреть его или прочесть статью.
Комплектующие
Список комплектующих для самостоятельной сборки:
Подробности сборки
Намоточное кольцо
Кольцо я изготовил из фанеры 12 мм. Внешний диаметр – 145 мм, внутренний – 122 мм. Имеется углубление длиной 43 мм и глубиной 5 мм для катушки.
В кольце я сделал один разрез и замок для его открывания. Открыв замок, мы размещаем тороидальную катушку внутри кольца.
Также у кольца есть углубление по внешней стороне, 8 мм шириной и 4 мм глубиной, в котором размещается ремень шириной 6 мм.
Катушка
Катушка для медного провода, которую я выточил из нейлонового стержня. Все размеры показаны на картинке.
Материал выбран потому, что нейлон, во-первых, легче алюминия, во-вторых, его легко точить на станке. Кроме того, когда машина работает, он не колеблется так сильно.
Корпус машины
Корпус также сделан из фанеры 12 мм. На нём закреплены три направляющих ролика, расставленные примерно в 120° друг от друга.
Ролики сделаны из подшипников 626Z, гаек и болтов. На них будет вращаться наше деревянное намоточное кольцо.
Верхняя часть кольца откидывается, а после закрытия зажимается при помощи барашковой гайки. Откинув эту часть, мы устанавливаем кольцо внутрь машины. Вернув её на место, нужно прижать к ней ролик так, чтобы он вошёл в бороздку.
Ролики-держатели тороида
Это ролик, вращающий катушку, и одновременно удерживающий её. Я выточил их из нейлонового стержня на моём токарном мини-станке. Все размеры приведены на фото.
Ролики я снабдил поролоновой лентой, она хорошо держит катушку и та не проскальзывает. Важно использовать барашковые гайки для закрепления направляющих – обычные от вибрации откручиваются.
Сверху и снизу каждого ролика я поставил по фланцевому подшипнику.
Крепление шагового двигателя
Так я закрепил шаговый двигатель, NEMA17. Он вращает катушку, что позволяет автоматически наматывать проволоку по всей её окружности и не требует ручного вращения.
Двигатель постоянного тока
Этот мотор вращает намоточное кольцо. Я использовал Orange Jhonson 12v Dc Motor 300 RPM. Вам советую взять мотор на 600 RPM или 1000 RPM.
Ремень имеет 600 мм в длину и 6 мм в ширину. Держатель мотора, крепящийся к алюминиевому профилю, также сделан из фанеры.
Инфракрасный датчик
Your browser does not support HTML5 video.
Я использовал датчик от SeedStudio. Он отправляет сигнал на контакт обработки прерываний Arduino – таким образом Arduino может подсчитывать количество оборотов кольца.
Я закрепил датчик на алюминиевом профиле так, чтобы замок кольца заодно работал и отражающей поверхностью, на которую реагирует датчик.
Данный датчик выдаёт по 2 сигнала за один поворот кольца – когда дерево сменяется металлом, сигнал меняется с низкого напряжения на высокое, а потом наоборот. Обработчик прерываний регистрирует два изменения состояния. Поэтому для подсчёта реального количества поворотов мне пришлось делить количество срабатываний пополам.
Основание аппарата
Основание тоже сделано из фанеры 12 мм, имеет размеры 300х200 мм. Четыре резиновых ножки будут прочно и хорошо держать машину, и помогут избежать ненужной вибрации.
Для установки компонентов я закрепил на основании алюминиевый профиль. Обожаю его за гибкость в использовании. Все компоненты можно легко устанавливать на профиле и двигать вдоль него. Позволяет легко выравнивать компоненты относительно друг друга.
Корпус контроллера
Коробочка распечатана на 3D-принтере, внутрь установлены плата, ЖК-дисплей и энкодер. Корпус придаёт профессиональный вид всему проекту, а также обеспечивает удобную настройку аппарата. Корпус закреплён на основании при помощи металлической скобы.
Схема подключения
Код
Навигация в меню
ЖК-дисплей используется для вывода информации, а энкодер – для ввода.
Первый экран с приветствием.
На втором экране нужно ввести внешний диаметр катушки – аппарат поддерживает катушки разных диаметров.
На третьем экране нужно ввести количество витков.
На четвёртом экране нужно ввести угол покрытия катушки. 360° означает, что катушка будет покрыта проволокой целиком. 720° означает, что катушка будет обмотана проволокой дважды по окружности.
На 5-м экране можно проверить все входные данные пред тем, как запустить машину. Если всё верно, нажимаете на энкодер, и машина стартует.
6-й экран демонстрирует количество витков в реальном времени.
7-й экран появляется по окончанию работы.
См. также:
Намотка тороидального трансформатора для УМЗЧ — audiohobby.ru
Основным элементом блока питания является трансформатор. Иногда его можно приобрести в специализированных магазинах, на радиорынке либо через интернет. Но чаще всего трансформатор с необходимыми параметрами купить не удается. Для изготовления трансформатора самостоятельно вначале нужно определиться с типом железа. Наиболее распространены трансформаторы из Ш-образных пластин. Вместе с тем, трансформаторы на тороидальном железе (бублик из железной ленты) в сравнении с трансформаторами на броневых сердечниках из Ш-образных пластин имеют меньший вес и габариты. Также торы отличаются лучшими условиями охлаждения обмоток и повышенным КПД. При равномерном распределении обмоток по периметру тороидального сердечника практически отсутствует поле рассеяния и в большинстве случаев отпадает необходимость в экранировании трансформатора. Хотя при построении качественного усилителя экраном пренебрегать не стоит.
Кроме этого, даже на самом лучшем железе при индукции 15000 Гс в тороидальном трансформаторе ток намагничивания имеет форму импульсов с пикфактором 5…50. Это является источником мощных помех с довольно широким спектром. Более-менее синусоидальным ток х.х. становится при индукции менее 6000 Гс для стали 3410 и 8000…9000 Гс для 3425. Пониженная индукция заметно удорожает и утяжеляет трансформатор, что для серийной аппаратуры крайне нежелательно. Однако, для снижения помех в усилителе мощности звуковой частоты имеет смысл идти на снижение индукции в трансформаторе блока питания. В данном случае работает правило — «Чем меньше индукция, тем лучше».
Для расчета параметров тороидального трансформатора очень удобно пользоваться калькулятором. Он позволяет быстро посчитать параметры трансформатора, имея в наличии готовый тор. Для Hi-End УМЗЧ рекомендуется индукцию в сердечнике из российского (советского) железа не выбирать более 1,0 Тл. Для импортного железа (тор из старого ИБП) допустимо 1,2 Тл. В таком случае будет получена низкая магнитная наводка и минимальный акустический шум от трансформатора.
Перед намоткой тороидального трансформатора необходимо подготовить выбранный сердечник: вначале снять фаску полукруглым напильником со всех острых краев бублика, затем по торцу тора обвести карандашом и вырезать из плотной бумаги (открытки) щечки, приклеить щечки на боковинки тора, обклеить внешнюю и внутреннюю сторону сердечника обычной бумагой. Возможны другие варианты изоляции сердечника. Главное предотвратить возможное замыкание первичной обмотки на сердечник трансформатора в результате возможного продавливания изоляции и повреждения лака обмоточного провода на острых краях тора при намотке.
Для намотки тороидального трансформатора я использую челнок из дерева или текстолита на концах которого делаю вырезы в виде ласточкиного хвоста. Челнок легко изготовить из деревянной ученической линейки длиной 20 – 30 см. А чтобы она не треснула вдоль при намотке на нее моточного провода «ласточкин хвост» укрепляется бумажным скотчем (3 – 4 витка в поперек). При намотке вручную следует пользоваться проводами ПЭЛШО, ПЭШО. В крайнем случае можно применить широко распространенный моточный провод ПЭВ-2 или ПЭТВ-2. В качестве межобмоточной и внешней изоляции пригодны фторопластовая пленка ПЭТФ толщиной 0,01-0,02 мм, лакоткань ЛШСС толщиной 0,06-0,12 мм или батистовая лента, я же использовал фторопластовую пленку.
После намотки расчетного количества витков первичной обмотки желательно измерить ток холостого хода трансформатора. Для этого подключаем тестер последовательно с первичной обмоткой в режиме амперметра. Для избегания всяких ЧП последовательно с первичкой можно включить лампочку на 220 В и мощностью 40 Вт. Лампочка будет гореть если число витков мало. Если транс намотан правильно, то нить накала должна иметь розовый оттенок. Тороидальный трансформатор имеет большие пусковые токи, в момент запуска перегрузки могут достигать 160 раз. Поэтому запуск трансформатора необходимо делать не через тестер, а при помощи «перемычки», которая потом размыкается и ток начинает течь через тестер.
Для измерения тока холостого хода я использую следующую схему:
Последовательно с первичной обмоткой трансформатора включаю резистор номиналом 10 Ом, подаю напряжение сети и замеряю на нем падение напряжения. Соответственно ток холостого хода равен I=U/R. В моем случае 0,045 В / 10 Ом = 0,0045 А. или 4,5 мА.
Норма тока холостого хода для каждого трансформатора индивидуальна и обычно не превышает 50 мА при напряжении 220 В. Здесь основное правило — «Чем ниже ток х.х., тем лучше», тем форма тока холостого хода больше похожа на синус.
Для тороида в блоке питания УМЗЧ ток х.х.:
- 20-30 мА — «удовлетворительно»,
- 10-20 — «хорошо»,
- меньше 10 мА — «отлично».
Для вычисления количества витков первичной обмотки любым подручным проводом (в моем случае мгтф) наматываю вторичную обмотку, подав сетевое напряжение на первичную обмотку замеряю напряжение на вторичной обмотке.
У меня на 4 витках вторички тестер показывает 0,581 В. Соответственно количество витков первичной обмотки будет равно: U сети х N вторички / U вторички. На момент измерений в сети было 230 В. В цифрах получаем: 230 В х 4 витка / 0,581 В = 1583 витка.
Еще пару слов о намотке трансформатора. В целях максимального уменьшения помех, излучаемых тороидальным трансформатором, необходимо равномерно заполнять моточным проводом каждый слой обмоток. Если первую половину обмотки вы укладывали витки вправо, то вторую половину обмотки витки необходимо укладывать влево, не меняя при этом направление укладки самих витков вокруг сердечника. Если необходимо намотать две одинаковые обмотки (характерно для УМЗЧ) на шпулю сматвается двойной провод, а затем со шпули укладываются витки двух вторичек одновременно, как показано на фото.
В моем случае три слоя первички уложены в одну сторону, и еще три слоя в другую. Выводы первички сделаны как можно ближе друг к другу. Две вторички намотаны аналогично, два слоя укладывались в одну сторону и еще 2 слоя в другую. С соблюдением данных правил мною был изготовлен тороидальный трансформатор мощностью 120 Ват для усилителя Василича с N-канальным выходным каскадом Алексея Никитина, обеспечивший минимальные наводки на входные цепи УМЗЧ.
Буду рад если мой опыт изготовления тороидальных трансформатором будет полезен Вам.
С уважением!
Иван Васильевич.
Спецификация
| Нажмите, чтобы увеличить изображение | WH-900 — это тороидальная намоточная машина с цифровым управлением, идеально подходящая для производства тороидальных силовых трансформаторов, изолирующих трансформаторов, индукторов, дросселей и других тороидальных устройств с готовым внешним диаметром до 60 мм. Машина может быть оснащена тороидальными намоточными головками 4 или 6 дюймов, обе из которых доступны в версиях с ремнем и с боковыми ползунами. Машина имеет автоматический контроль длины проволоки, скорости движения, ускорения и деускорения и т. Д., А программы для намотки даже самых сложных тороидов можно сохранить в памяти для дальнейшего использования. Усовершенствованная система обнаружения оптоволоконных проводов включает функцию «обучения» для точного и надежного подсчета витков даже с цветными проводами.
|
5 преимуществ использования тороидального трансформатора
Тороидальные трансформаторы предпочитают в качестве долгосрочных решений по многим причинам из-за их высокой эффективности.Небольшой размер и легкий вес являются основными факторами, которые способствуют их высокому качеству. Они примерно вдвое меньше по размеру и весу, чем более традиционные тороиды, что делает их идеальными для компактных источников питания.
Основная причина их эффективности заключается в том, что обмотки равномерно распределены вокруг сердечника, что способствует отсутствию механического шума. Еще одна причина, по которой тороидальные трансформаторы предпочитают в широком спектре оборудования, заключается в том, что они используют часть энергии, потребляемой в E-1 и других обычных трансформаторах.
Вот еще пять причин, по которым тороидальные трансформаторы используются во многих промышленных приложениях:
Низкий уровень шума и поле рассеяния — Поле, создаваемое намагничиванием, также известное как поле рассеяния, меньше в тороидальном трансформаторе из-за однородности обмоток сердечника. Меньшие магнитные помехи в тороидах приводят к более высокой производительности.
Простота монтажа — Тороидальные трансформаторы можно легко смонтировать за короткое время с помощью всего лишь одного винта.Это удобство помогает ограничить техническое обслуживание и время простоя.
Низкая рабочая температура — Тороидальные трансформаторы работают при более низких температурах, чем трансформаторы с аналогичными характеристиками.
Облегченный сердечник — Сердечник тороидального трансформатора весит меньше, чем у обычных трансформаторов, так как состоит из меньшего количества сырья.
Более экономичный — Поскольку сердечники тороидальных трансформаторов изготавливаются из меньшего количества материалов, они весят меньше, чем обычные трансформаторы, и потребляют меньше энергии, что обеспечивает лучшую экономию затрат и более высокую окупаемость инвестиций.
Сообщение по теме: Тороидальные трансформаторы на заказ: должна ли стоимость быть помехой?
Заключение:
Эффективность тороидальных трансформаторов делает их полезными для широкого спектра машин, таких как аудиовизуальное оборудование, системы безопасности, телекоммуникационные системы, промышленное оборудование управления и оборудование для распределения энергии. Экономическая эффективность — важный ключ к широкому использованию тороидальных трансформаторов, а также тот факт, что они могут быть адаптированы под любой диаметр и высоту.
Allied Components International специализируется на разработке и производстве широкого спектра стандартных магнитных компонентов и модулей, таких как индукторы для микросхем, магнитные индукторы и трансформаторы на заказ. Мы стремимся предоставлять нашим клиентам продукцию высокого качества, обеспечивать своевременные поставки и предлагать конкурентоспособные цены.
Мы — растущее предприятие в магнитной промышленности с более чем 20-летним опытом.
Категории: Электронные компоненты
Различные типы трансформаторов и их применение
Трансформатор — это широко используемое устройство в области электротехники и электроники.Это электромагнитное устройство, которое следует основному принципу электромагнетизма, открытому Майклом Фарадеем. Мы подробно рассмотрели строительство и эксплуатацию трансформаторов в предыдущем руководстве. Здесь мы рассмотрим различных типов трансформаторов , используемых в различных типах приложений. Однако все типы трансформаторов работают по одним и тем же принципам, но имеют разную конструкцию.
Типы трансформаторов в зависимости от уровня напряжения
Трансформатор может иметь несколько типов конструкции.Трансформатор не имеет электрического соединения с одной стороны на другую; тем не менее, две электрически независимые катушки могут проводить электричество посредством электромагнитного потока. Трансформатор может иметь несколько катушек или обмоток как на первичной, так и на вторичной стороне. В некоторых случаях несколько первичных сторон, где две катушки соединены последовательно, часто называют центральным отводом . Это состояние отвода по центру также можно увидеть на вторичной стороне.
Трансформаторымогут быть сконструированы таким образом, что они могут преобразовывать уровень напряжения первичной стороны во вторичную.В зависимости от уровня напряжения трансформатор бывает трех категорий. Понижающий, повышающий и развязывающий трансформаторы . Для изолирующего трансформатора уровень напряжения одинаков для обеих сторон.
1. Понижающий трансформатор
Понижающий трансформаториспользуется как в электронике, так и в электротехнике. Понижающий трансформатор преобразует уровень первичного напряжения в более низкое напряжение на вторичном выходе.Это достигается соотношением первичной и вторичной обмоток. Для понижающих трансформаторов количество обмоток на первичной стороне больше, чем на вторичной. Следовательно, общее соотношение первичной и вторичной обмоток всегда остается больше 1.
В области электроники, многие приложения работают на 5 В, 6 В, 9 В, 12 В, 24 В или в некоторых случаях 48 В. Для преобразования напряжения однофазной розетки 230 В переменного тока в требуемый низкий уровень напряжения требуются понижающие трансформаторы.В КИП, а также во многих электрических типах оборудования понижающий трансформатор является основным требованием для силовой части.
В электрических системах понижающие трансформаторы используются в системе распределения электроэнергии, которая работает от очень высокого напряжения, чтобы обеспечить низкие потери и экономичное решение для передачи электроэнергии на большие расстояния. Для преобразования высокого напряжения в линию питания низкого напряжения используется понижающий трансформатор.
2.Повышающий трансформатор
Повышающий трансформатор прямо противоположен понижающему трансформатору. Повышающий трансформатор увеличивает низкое первичное напряжение до высокого вторичного напряжения . Опять же, это достигается за счет соотношения первичной и вторичной обмоток. Для повышающего трансформатора соотношение первичной обмотки и вторичной обмотки остается меньше 1 . Это означает, что количество витков во вторичной обмотке больше, чем в первичной.
В электронике повышающие трансформаторы часто используются в стабилизаторах, инверторах и т. Д., Где низкое напряжение преобразуется в гораздо более высокое напряжение.
Повышающий трансформатор также используется в распределении электроэнергии . Высокое напряжение требуется для приложений, связанных с распределением энергии. Повышающий трансформатор используется в сети для повышения уровня напряжения перед распределением.
3. Изолирующий трансформатор
Разделительный трансформатор не преобразует никакие уровни напряжения.Первичное напряжение и вторичное напряжение изолирующего трансформатора всегда остаются неизменными. Это связано с тем, что передаточное число первичной и вторичной обмоток всегда равно 1 . Это означает, что количество витков первичной и вторичной обмоток в изолирующем трансформаторе одинаково.
Изолирующий трансформатор используется для изоляции первичной и вторичной обмоток. Как обсуждалось ранее, трансформатор не имеет электрических соединений между первичной и вторичной обмотками, он также используется в качестве изолирующего барьера, где проводимость происходит только с магнитным потоком. Он используется в целях безопасности и для отмены передачи шума от первичного к вторичному или наоборот.
Типы трансформаторов в зависимости от материала сердечника
Трансформатор передает энергию, проводя электромагнитный поток через материал сердечника. Различные материалы сердечника создают разную плотность потока. В зависимости от материалов сердечника в области энергетики и электроники используются несколько типов трансформаторов.
1.Трансформатор с железным сердечником
В трансформаторес железным сердечником в качестве материала сердечника используется несколько пластин из мягкого железа. Благодаря отличным магнитным свойствам железа магнитная связь трансформатора с железным сердечником очень высока. Таким образом, КПД трансформатора с железным сердечником также высок.
Пластины с сердечником из мягкого железа могут быть разных форм и размеров. Катушки первичной и вторичной обмотки намотаны или намотаны на формирователь катушки. После этого катушечный формирователь устанавливается в пластинах сердечника из мягкого железа.В зависимости от размера и формы сердечника на рынке доступны различные типы сердечниковых пластин. Несколько распространенных форм — E, I, U, L и т. Д. Железные пластины тонкие, и несколько пластин сгруппированы вместе, чтобы сформировать собственно сердечник. Например, сердечники типа E изготавливаются из тонких пластин с видом на букву E.
Трансформаторы с железным сердечником широко используются и обычно имеют больший вес и форму.
2. Трансформатор с ферритовым сердечником
В трансформаторе с ферритовым сердечником используется ферритовый сердечник из-за высокой магнитной проницаемости.Этот тип трансформатора обеспечивает очень низкие потери в высокочастотном применении. Из-за этого трансформаторы с ферритовым сердечником используются в высокочастотных приложениях, таких как импульсные источники питания (SMPS), приложения, связанные с RF и т. Д.
Трансформаторыс ферритовым сердечником также могут иметь разные формы и размеры в зависимости от требований приложения. Он в основном используется в электронике, а не в электротехнике. Наиболее распространенной формой трансформатора с ферритовым сердечником является сердечник E.
3. Трансформатор с тороидальным сердечником
В трансформаторе с тороидальным сердечникомиспользуется материал сердечника тороидальной формы, такой как железный сердечник или ферритовый сердечник. Тороиды представляют собой материал сердечника в форме кольца или пончика и широко используются для обеспечения превосходных электрических характеристик. Благодаря форме кольца индуктивность рассеяния очень мала и обеспечивает очень высокую индуктивность и добротность. Обмотки относительно короткие, а вес намного меньше, чем у традиционных трансформаторов того же номинала.
4. Трансформатор с воздушным сердечником
ТрансформаторAir Core не использует физический магнитный сердечник в качестве материала сердечника. Потоковая связь трансформатора с воздушным сердечником полностью выполнена с использованием воздуха.
В трансформаторе с воздушным сердечником на первичную обмотку подается переменный ток, который создает вокруг нее электромагнитное поле. Когда вторичная катушка помещается внутри магнитного поля, согласно закону индукции Фарадея, вторичная катушка индуцируется магнитным полем, которое в дальнейшем используется для питания нагрузки.
Однако трансформатор с воздушным сердечником имеет низкую взаимную индуктивность по сравнению с физическим материалом сердечника, таким как железо или ферритовый сердечник.
Он используется в портативной электронике, а также в приложениях, связанных с радиочастотами. Из-за отсутствия физического материала сердечника он очень легкий с точки зрения веса. Правильно настроенный трансформатор с воздушным сердечником также используется в решениях для беспроводной зарядки, где первичные обмотки расположены внутри зарядного устройства, а вторичные обмотки расположены внутри целевого устройства.
Типы трансформаторов в зависимости от расположения обмоток
Трансформатор можно классифицировать по порядку намотки. Один из популярных типов — трансформаторы с автоматической обмоткой.
Трансформатор с автоматической обмоткой
До сих пор первичная и вторичная обмотки фиксированы, но в случае трансформатора с автоматической обмоткой первичная и вторичная обмотки могут быть соединены последовательно, а центральный ответвительный узел является подвижным. В зависимости от центрального положения отвода вторичное напряжение может изменяться.
«Авто» — это не сокращенная форма «Автомат»; скорее, чтобы уведомить себя или одиночную катушку. Эта катушка формирует передаточное число, которое состоит из двух частей: первичной и вторичной. Положение центрального ответвительного узла определяет соотношение первичной и вторичной обмоток, таким образом изменяя выходное напряжение.
Чаще всего используется V ARIAC , прибор для создания переменного переменного тока из постоянного входного переменного тока. Он также используется в приложениях, связанных с передачей и распределением электроэнергии, где требуется частая замена высоковольтных линий.
Типы трансформаторов в зависимости от использования
Также доступны несколько типов трансформаторов, которые работают в определенной области. Как в электронике, так и в электротехнике, несколько специальных трансформаторов используются в качестве понижающих или повышающих трансформаторов в зависимости от области применения. Таким образом, трансформаторы можно классифицировать следующим образом в зависимости от использования:
1. Power Domain
- Силовой трансформатор
- Измерительный трансформатор
- Распределительный трансформатор
2.Электроника Домен
- Импульсный трансформатор
- Трансформатор аудиовыхода
1. Трансформаторы, используемые в области питания
В области «Электрооборудование» область «Электроэнергетика» занимается производством, измерением и распределением электроэнергии. Тем не менее, это очень большая область, где трансформаторы являются важной частью для обеспечения безопасного преобразования энергии и успешной подачи энергии на подстанцию и конечных пользователей.
Трансформаторы, которые используются в области питания, могут быть как наружными, так и внутренними, но в основном наружными.
(а) Силовой трансформатор
Силовые трансформаторыбольше по размеру и используются для передачи энергии на подстанцию или коммунальное электроснабжение. Этот трансформатор действует как мост между генератором энергии и первичной распределительной сетью. В зависимости от номинальной мощности и технических характеристик силовые трансформаторы можно дополнительно разделить на три категории: трансформатор малой мощности , трансформаторы средней мощности и трансформаторы большой мощности .Номинальная мощность может быть от 30 кВА до 500-700 кВА или, в некоторых случаях, может быть равна или больше 7000 кВА для трансформатора малой номинальной мощности. Мощность трансформатора среднего номинала может достигать 50-100 МВА, тогда как трансформаторы большой мощности могут выдерживать более 100 МВА.
Из-за очень высокой выработки энергии конструкция силового трансформатора также имеет решающее значение. Конструкция включает прочную изоляционную периферию и хорошо сбалансированную систему охлаждения. Наиболее распространенные силовые трансформаторы заполнены маслом.
Основным принципом силового трансформатора является преобразование высокого тока низкого напряжения в низкий ток высокого напряжения . Это необходимо для минимизации потерь мощности в системе распределения электроэнергии.
Еще одним важным параметром силового трансформатора является наличие фазы. Обычно силовые трансформаторы работают в трехфазной системе , но в некоторых случаях также используются однофазные малые силовые трансформаторы.Трехфазные силовые трансформаторы являются наиболее дорогими и эффективными, чем однофазные силовые трансформаторы.
(б) Измерительный трансформатор
Измерительный трансформатор часто называют измерительным трансформатором. Это еще один широко используемый измерительный прибор в области мощности. Измерительный трансформатор используется для изоляции основного питания и преобразования тока и напряжения в меньшем соотношении к его вторичному выходу. Измеряя выходную мощность, можно измерить фазу, ток и напряжение реальной линии питания.
На изображении выше показана конструкция трансформатора тока.
(c) Распределительный трансформатор
Используется на последней фазе системы распределения электроэнергии. Распределительные трансформаторы представляют собой понижающий трансформатор, который преобразует высокое сетевое напряжение в требуемое конечным потребителем напряжение, 110 В или 230 В. Он также может быть однофазным или трехфазным.
Распределительные трансформаторы могут быть меньше по форме, а также больше, в зависимости от мощности преобразования или номинальных значений.
Распределительные трансформаторыможно разделить на другие категории в зависимости от типа используемой изоляции. Он может быть сухим или погружным в жидкость. Он изготовлен из многослойных стальных пластин, в основном C-образной формы в качестве основного материала.
Распределительный трансформатор также имеет другую классификацию в зависимости от того, где он используется. Трансформатор может быть установлен на опоре электросети, в таком случае он называется распределительным трансформатором, устанавливаемым на столб. Его можно разместить внутри подземной камеры, установить на бетонную площадку (распределительный трансформатор, устанавливаемый на площадку) или внутри закрытого стального ящика.
Обычно распределительные трансформаторы имеют номинальную мощность менее 200 кВА.
2. Трансформатор, используемый в области электроники
В электронике используются различные небольшие миниатюрные трансформаторы, которые могут быть смонтированы на печатной плате или могут быть закреплены внутри небольшого корпуса продукта.
(a) Импульсный трансформатор
Импульсные трансформаторы — одни из наиболее часто используемых трансформаторов на печатных платах, которые вырабатывают электрические импульсы постоянной амплитуды.Он используется в различных цифровых схемах, где генерация импульсов необходима в изолированной среде. Следовательно, импульсные трансформаторы изолируют первичную и вторичную обмотки и распределяют первичные импульсы во вторичную цепь, часто на цифровые логические вентили или драйверы.
Правильно сконструированные импульсные трансформаторы должны иметь надлежащую гальваническую развязку, а также небольшую утечку и паразитную емкость.
(b) Трансформатор аудиовыхода
Audio Transformer — еще один широко используемый трансформатор в области электроники.Он специально используется в приложениях, связанных со звуком, где требуется согласование импеданса. Звуковой трансформатор балансирует схему усилителя и нагрузки, обычно громкоговоритель. Звуковой трансформатор может иметь несколько первичных и вторичных обмоток, разделенных или с отводом по центру.
Итак, мы рассмотрели различные типы трансформаторов, кроме трансформаторов специального назначения, но они выходят за рамки данной статьи.
PPT — Альтернативные конструкции и измерения тороидального трансформатора Презентация в PowerPoint
Альтернативные конструкции и измерения тороидального трансформатора 2 сентября 2003 г. N.Университет Китамуры Висконсин-Мэдисон / SSEC
Общие сведения В текущем варианте трансформатора с импульсной связью ФЭУ используется коаксиальный кабель RG174 в качестве материала обмотки (ERD 3.3.1.3). Под вопросом номинальное напряжение кабеля RG174 (PDR-4), и ищется обоснование для использования RG174. В настоящем исследовании исследуются характеристики передачи импульсов более традиционной конструкции трансформатора, в которой используется пара соединительных проводов, а не одна жила коаксиального кабеля.Типичный тефлоновый соединительный провод имеет номинальное напряжение от 600 В от –60 до + 200 ° C, независимо от сечения провода. Судя по всему, никакие провода с тефлоновой изоляцией не имеют номинального напряжения выше 2000 В постоянного тока. Так называемые измерительные провода рассчитаны на достаточно высокое напряжение для наших целей, но рабочая температура не снижается очень низко. Так как прогиба не будет, это не будет проблемой. Провода без оплетки с изоляцией из силиконовой резины от Harbour Industries (например, Cat # BSR3239-2210) рассчитаны на напряжение от 10 до 50 кВ постоянного тока с максимальной температурой 150 ° C.02.09.2003 N. KITAMURA
Центральный проводник PTFE Диаметр диэлектрика Общий диаметр Минимальный рекомендуемый радиус изгиба Рабочая температура Импеданс Емкость Максимальное рабочее напряжение 0,0120 ”0,033” 0,71 ”0,4” -55 — + 200 ° C 50 ± 2 Вт 29,4 пФ / фут 1000 В (среднеквадратичное значение) Таблица 1 Физические и электрические характеристики кабеля M17 / 93-RG178 (Источник: http://www.harbourind.com/catalogs/M17.pdf)
Зачем использовать силикон Резина * Применение при экстремальных температурах, от -180ºF до 600ºF (от -118ºC до 316ºC) Инертный, без запаха, без вкуса, нержавеющая сталь — идеально подходит для медицинских и пищевых продуктов Высокая устойчивость к атмосферным воздействиям и окислению Отличные электрические качества — многие превосходные диэлектрические и изоляционные характеристики в специальные составы Превосходная стойкость ко многим химикатам Высокая стойкость к озону и коронному разряду Очень хорошая термостойкость — доступны специальные огнезащитные составы Превосходная водостойкость — низкое водопоглощение.* Источник: Silicone Rubber Right Products, Inc., веб-страница: http://www.siliconerubber.com/home.html
Заключение Импульсный отклик, очень похожий на отклик коаксиального трансформатора RG178, получается от трансформатора использование пары многожильных соединительных проводов в качестве материала намотки. Многожильный провод с изоляцией из силиконовой резины на напряжение 10-50 кВ (UL 3239) доступен в размерах, подходящих для обмотки трансформатора. Трансформатор связи с импульсной связью с удовлетворительными импульсными характеристиками и достаточным запасом рабочего напряжения может быть без труда сконструирован на основе результатов данного исследования.Предлагаемая спецификация: Тороидальный сердечник. Магниты Кат. # ZH-42206-TC Материал обмотки Harbor Industries 3239, 22 AWG 7/30, 10 кВ, 150 ° C Количество витков подлежит уточнению
Образцы Образец A: RG174, намотанный на тороидальный сердечник (18 витков) Текущие характеристики Образец B: сплошные провода калибра 24, скрученные в пару и намотанные на тороидальный сердечник (15 витков). Образец C: многожильные провода калибра 18, намотанные бок о бок на тороидальном сердечнике (10 витков). Использовались два ферритовых сердечника: они аналогичны по размерам. Сердечник №1 был обнаружен в лаборатории физики. Сердечник №2 был изготовлен компанией MagneticsTM, как указано в текущем проекте.(Кат. № ZH-42206-TC) 02.09.2003 N. KITAMURA
ОБРАЗЕЦ A ОБРАЗЕЦ B ОБРАЗЕЦ C 02.09.2003 N. KITAMURA
Мини-разветвитель цепи Ch4 (50 Вт) 50 Вт 100 Вт, канал 2 (50 Вт), тестируемое устройство, канал 3 (50 Вт) HP 8004A Настройка измерения генератора импульсов, канал 4 Трасса входного импульса «A» = (Канал 2 — Канал 3) Выходной импульс Выходной импульс был измерен в дифференциальном режиме 2 сентября 2003 г. N. KITAMURA
Образец A (RG174 на сердечнике № 2) 02.09.2003 N. KITAMURA
Образец B (витая пара 24 AWG на сердечнике № 1) 02.09.2003 N.KITAMURA
Образец B ‘(витая пара 24 AWG на сердечнике № 2) 02.09.2003 N. KITAMURA
Образец C (18 AWG на сердечнике № 1) 02.09.2003 N KITAMURA
Сравнение керна №1 и керна №2 Выходные данные образца A сравниваются с выходными данными образца B и образца B ‘. Результат пробы А превосходит результат пробы B и образца B ’. Импульсный отклик, похоже, не зависит от выбора между ядром №1 и ядром №2.Это согласуется с пониманием того, что высокочастотный отклик трансформатора в значительной степени определяется емкостной связью между первичной и вторичной обмотками, а не магнитной связью. Ядро № 2 Ядро № 1 02.09.2003 N. KITAMURA
Сравнение между образцом A и образцом C Выходные данные образца C практически идентичны выходным данным образца A. 02.09.2003 N. KITAMURA
Феррит ZH — 42206 — TC Высота [мм] Диаметр [мм] Цвет = серый Тип материала «H» Факты о тороидальном ферритовом сердечнике Характеристики материала * Начальная проницаемость mi = 15000 ± 30% Температура Кюри Tc> 250 ° C Макс.полезная частота <150 кГц Проницаемость уменьшается в два раза, а коэффициент потерь увеличивается в два раза при изменении температуры от RT до –25 ° C. * Источник: www.mag-inc.com Подробные данные см .: ferrite_h_material.pdf 05.09.2003 N. KITAMURA
Эксперимент с неизолированным коаксиальным кабелем Магнитная проницаемость тороидального ферритового сердечника имеет высокую частота отсечки (50%) около 150 кГц, что означает, что преобладающий механизм связи для импульсов ФЭУ является емкостным, а не магнитным.Это демонстрируется на следующем снимке с осциллографа, на котором показана характеристика передачи импульсов оголенного кабеля RG178 с подключениями, аналогичными образцу А. Видно, что оголенный кабель RG178 имеет хороший отклик по переменному току — время нарастания и спада. время сравнимо с образцом A. Однако RG178 без покрытия имеет очень плохую низкочастотную характеристику. 05.09.2003 N. KITAMURA
Кабель RG178 без кабеля 05.09.2003 N. KITAMURA 05.09.2003 N. KITAMURA 05.09.2003 N. KITAMURA
Производитель тороидального трансформатора | AGW Electronics
Мы являемся производителем тороидальных трансформаторов.Мы проектируем и производим тороидальные катушки, как тороидальные трансформаторы, так и тороидальные индукторы. Тороидальные трансформаторы могут изготавливаться в диапазоне от 1 ВА до 1 кВА в соответствии с требованиями заказчика по входу, выходу и размерам тороидальных трансформаторов. Мы можем помочь в разработке и производстве тороидальных индукторов, таких как подавляющие дроссели, синфазные дроссели, индукторы SMPS и т. Д. Эти типы тороидальных индукторов используют материал сердечника, полученный из феррита, железного порошка или аморфного железа.
Для производства тороидальных трансформаторов и тороидальных индукторов AGW имеет обширные конструкторские и производственные возможности. Эти возможности проектирования и производства удовлетворяют большинству требований, начиная от станков для намотки тороидальных катушек с ЧПУ и заканчивая вспомогательной намоткой. Есть также отделочные производственные операции, включая тороидальный монтаж, лакирование, инкапсуляцию и вакуумную пропитку.
Трансформаторы
Тороидальный трансформатор — это трансформатор, выполненный на сердечнике в форме пончика.Тороидальные трансформаторы имеют небольшой размер, меньшую индуктивность рассеяния и меньшие электромагнитные помехи (EMI). Мы проектируем и производим тороидальные трансформаторы по требованию заказчика. Конструкция тороидального трансформатора, как электрически, так и физически, может быть нацелена на удовлетворение потребностей приложения, такого как источник питания и преобразование мощности.
Где найти тороидальные трансформаторы?
- Источники питания
- Радиопередатчики
- Цепи, чувствительные к электромагнитным помехам (EMI)
- Любое приложение, требующее эффективной передачи или преобразования электроэнергии
Необходимая информация для указания тороидального трансформатора:
Для тороидального трансформатора обычно указывается номинальная мощность (выраженная в ВА), количество первичных и вторичных обмоток и их соответствующие уровни напряжения и тока.
- Рабочая частота должна быть указана для правильного расчета и определения размеров керна.
- Правильный выбор размера провода достигается путем определения уровней напряжения и тока, проходящего через обмотки тороидального трансформатора.
- Размер тороидального трансформатора частично определяется электрическими требованиями, но если есть особые требования к размеру, они должны быть указаны, и их можно проверить, чтобы увидеть, возможны ли они.
- Требуется метод подключения тороидального трансформатора с точки зрения проводов и метод, которым тороидальный трансформатор будет установлен в приложении.
- Требования к изоляции напряжения.
Катушки индуктивности
Тороидальная катушка индуктивности — это индуктор, который сконструирован на сердечнике в форме пончика. Тороидальные индукторы имеют небольшой размер, меньшую индуктивность рассеяния и более низкие электромагнитные помехи (EMI). Мы разрабатываем и производим специальные тороидальные катушки индуктивности для различных источников питания, преобразования энергии и подавления помех.
Где можно найти тороидальные индукторы?
- Импульсные источники питания.
- Фильтровать приложения.
- Цепи, чувствительные к электромагнитным помехам (EMI).
Общие типы тороидального индуктора
- Синфазный дроссель
- Дроссель дифференциального режима
- Фильтр тороидальный
- Дроссель для монтажа на SMD
- Катушка индуктивности с фиксированным значением
- Дроссель подавляющий
Необходимая информация для указания тороидального индуктора:
- Индуктивность без нагрузки, мкГн
- Индуктивность при полной нагрузке, мкГн
- Постоянный ток в амперах
- Переменный ток в амперах от пика до пика
- Рабочая частота необходима для расчета сердечника и размера провода
- Материал сердечника выбран для известной рабочей частоты или частот.
- Другие особенности конструкции тороидального индуктора — это ограниченное пространство и метод монтажа.
- Выводы для выводов также определяются конструкцией тороидального индуктора.
DeepL Translate
DeepL TranslateИспользуйте бесплатный DeepL Translator, чтобы переводить свои тексты с помощью лучших доступных машинных переводов, основанных на ведущей в мире технологии нейронных сетей DeepL.В настоящее время поддерживаются следующие языки: английский, немецкий, французский, испанский, португальский, итальянский, голландский, польский, русский, японский и китайский языки.
Перевести с на любой язык ×Тип для перевода.
Перетащите, чтобы перевести файлы Word (.docx) и PowerPoint (.pptx) с помощью нашего переводчика документов.
Популярное: с испанского на английский, с французского на английский и с японского на английский.
Другие языки: немецкий, португальский, итальянский, голландский, польский, русский и китайский.
Тип для перевода.
Популярное: с испанского на английский, с французского на английский и с японского на английский.
Другие языки: немецкий, португальский, итальянский, голландский, польский, русский и китайский.