Двигатели трехфазные: Электродвигатели трехфазные асинхронные 380 В

Содержание

Трехфазный или однофазный двигатель что лучше

Электродвигатель является незаменимым элементом для работы как небольшого бытового прибора, так и промышленного оборудования. Установленные в оборудовании двигатели адаптированы к однофазной или трехфазной сети — в зависимости от напряжения в розетках. Насколько они разные?

Основное различие между указанными типами двигателей касается адаптации к конкретным системам. Однофазные двигатели подключаются к однофазной установке с напряжением 220 В, в то время как стандартное напряжение в трехфазной сети составляет 380 В. Более того, в случае однофазного двигателя мы имеем дело с одной обмоткой (вернее с двумя — основной, т.е. рабочей и пусковая), в то время как в трехфазном двигателе их целых три. Проще говоря, напряжения, характерные для одной и трех фаз, можно описать как 1×220 В и 3×380 В соответственно.

Разница в мощности двигателей: мощность однофазных двигателей обычно составляет от 0,1 кВт до 3 кВт, хотя на практике однофазные приводы мощностью более 2 кВт встречаются редко. Что касается трехфазных двигателей, то самые слабые из них имеют мощность около 3 кВт. Специфика работы обсуждаемых двигателей тесно связана с системами, которым они соответствуют. Для однофазной системы характерна стабильность, чего нельзя сказать о трехфазной системе. С другой стороны, трехфазная система, несомненно, эффективнее.

Распространенная проблема с трехфазным двигателем — обрыв фазы. Результат такой поломки может серьезно повредить двигатель. Эта проблема не возникает с однофазными установками, поскольку двигатель просто отключается при обрыве фазы. Из-за наличия только одной фазы ее потеря приводит к отсутствию напряжения. Однако следует учитывать, что современные трехфазные двигатели оборудованы очень эффективной защитой от обрыва фазы.

При сравнении однофазного  и трехфазного электродвигателей следует также упомянуть отсутствие пускового момента мотора. Поэтому такие двигатели оснащаются специальными пусковыми устройствами.

Итак.

Преимущества однофазных электродвигателей

  • простая конструкция
  • быстрота изготовления
  • относительно низкая цена
  • надежность
  • отсутствие затрат на ремонт при эксплуатации
  • небольшой вес, компактность
  • работа от сети 220 В без преобразователей

Недостатки однофазных электродвигателей

  • низкий коэффициент мощности (1-2 кВт).
  • высокие пусковые токи
  • низкий КПД, по сравнению с трехфазными
  • сложность регулировки скорости
  • ограничение скорости двигателя в зависимости от частот питающей сети.

Однофазные двигатели используются во всех видах бытовой техники и электроники, которые мы используем в своих домах. В домашних условиях мы обычно имеем дело с однофазной системой. С другой стороны, трехфазные двигатели необходимы там, где мощность важнее стабильности напряжения, поэтому они используются в основном в промышленности и мастерских.

 

Двигатели трехфазные асинхронные напряжением свыше 1000 В для механизмов собственных нужд тепловых электростанций. Общие технические условия – РТС-тендер

  • Обозначение: ГОСТ Р 51757-2001

  • Статус: действующий

  • Название русское: Двигатели трехфазные асинхронные напряжением свыше 1000 В для механизмов собственных нужд тепловых электростанций. Общие технические условия

  • Название английское: 3-phase induction motors of voltage over 1000 V for auxiliaries of thermal power stations. General specifications

  • Дата актуализации текста: 06.04.2015

  • Дата актуализации описания: 01.01.2021

  • Дата издания: 09.07.2001

  • Дата введения в действие: 01.01.2002

  • Область и условия применения: Настоящий стандарт распространяется на двигатели трехфазные асинхронные с короткозамкнутым ротором мощностью 200 кВт и более, напряжением 1000 В и выше, частотой 50 и 60 Гц, односкоростные и двухскоростные, предназначенные для механизмов собственных нужд тепловых электростанций, изготовляемые для нужд электроэнергетики Российской Федерации и для поставки на экспорт.

    Стандарт может быть использован при разработке двигателей мощностью 200 кВт и более, напряжением 660 В. Настоящий стандарт не распространяется на двигатели, предназначенные для применения в особых условиях, например, взрывозащищенные и погружные

  • Опубликован: официальное изданиеМ.: ИПК Издательство стандартов, 2001 год

  • Утверждён в: Госстандарт России

Закупки с Двигатели трехфазные асинхронные напряжением свыше 1000 В для механизмов собственных нужд тепловых электростанций. Общие технические условия


ГОСТ Р 51757-2001

Группа Е61

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОКСТУ 3330

ОКП 33 3672

ОКС 29.160.30

Дата введения 2002-01-01

Предисловие

1 РАЗРАБОТАН Акционерным обществом «Научно-исследовательский институт электроэнергетики»

ВНЕСЕН Техническим комитетом по стандартизации «Электрические машины» (ТК 333)

2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 7 июня 2001 г. N 222-ст

3 Стандарт соответствует требованиям ГОСТ 183, ГОСТ 9630 и международного стандарта МЭК 60034-1 (1996) «Вращающиеся электрические машины. Номинальные данные и характеристики»

4 ВВЕДЕН ВПЕРВЫЕ

Настоящий стандарт распространяется на двигатели трехфазные асинхронные (далее — двигатели) с короткозамкнутым ротором мощностью 200 кВт и более, напряжением 1000 В и выше, частотой 50 и 60 Гц, односкоростные и двухскоростные, предназначенные для механизмов собственных нужд тепловых электростанций, изготовляемые для нужд электроэнергетики Российской Федерации (РФ) и поставки на экспорт.

Стандарт может быть использован при разработке двигателей мощностью 200 кВт и более напряжением 660 В.

Настоящий стандарт не распространяется на двигатели, предназначенные для применения в особых условиях, например, взрывозащищенные и погружные.

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 2. 601-95 Единая система конструкторской документации. Эксплуатационные документы

ГОСТ 2.602-95 Единая система конструкторской документации. Ремонтные документы

ГОСТ 12.1.003-83 Система стандартов безопасности труда. Шум. Общие требования безопасности

ГОСТ 12.2.007.0-75 Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности

ГОСТ 12.2.007.1-75 Система стандартов безопасности труда. Машины электрические вращающиеся. Требования безопасности

ГОСТ 183-74 Машины электрические вращающиеся. Общие технические условия

ГОСТ 7217-87 Машины электрические вращающиеся. Двигатели асинхронные. Методы испытаний

ГОСТ 8865-93 Системы электрической изоляции. Оценка нагревостойкости и классификация

ГОСТ 9630-80 Двигатели трехфазные асинхронные напряжением свыше 1000 В. Общие технические условия

ГОСТ 11828-86 Машины электрические вращающиеся. Общие методы испытаний

ГОСТ 14254-96 (МЭК 529-89) Изделия электротехнические. Степени защиты, обеспечиваемые оболочками (Код IP)

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ 15543.1-89 Изделия электротехнические. Общие требования в части стойкости к климатическим внешним воздействующим факторам

ГОСТ 16372-93 (МЭК 34-9-90) Машины электрические вращающиеся. Допустимые уровни шума

ГОСТ 17494-87 (МЭК 34-5-81) Машины электрические вращающиеся. Классификация степеней защиты, обеспечиваемых оболочками вращающихся электрических машин

ГОСТ 17516.1-90 Изделия электротехнические. Общие требования в части стойкости к механическим внешним воздействующим факторам

ГОСТ 20459-87 (МЭК 34-6-69) Машины электрические вращающиеся. Методы охлаждения. Обозначения

ГОСТ 20815-93 (МЭК 34-14-82) Машины электрические вращающиеся. Механическая вибрация некоторых видов машин с высотой оси вращения 56 мм и более. Измерение, оценка и допустимые значения

ГОСТ 23216-78 Изделия электротехнические. Хранение, транспортирование, временная противокоррозийная защита, упаковка. Общие требования и методы испытаний

ГОСТ 26772-85 Машины электрические вращающиеся. Обозначение выводов и направление вращения

3.1 Климатическое исполнение двигателей — по ГОСТ 15150 и ГОСТ 15543.1.

3.2 По категории размещения (ГОСТ 15150, ГОСТ 15543.1), степени защиты (ГОСТ 14254) и способу охлаждения (ГОСТ 20459) двигатели должны соответствовать исполнениям, приведенным в таблице 1.

Таблица 1

Климатическое исполнение

Категория размещения

Степень защиты

Способ охлаждения

У, УХЛ, Т

1 и 3

IP44, IP55 (по требованию заказчика)

ICA01A61, ICA01A51 (с воздухо-воздушными охладителями), ICA01A41 (с ребристой станиной)

О

1

У

3

IP44, IP55 (по требованию заказчика)

ICW37A71, ICW37A81 (с водовоздушными охладителями)

УХЛ

4

          

По согласованию* допускается изготовление двигателей других исполнений и категорий.

________________

* Здесь и далее под согласованием подразумевается соглашение между изготовителем и основным потребителем или заказчиком.

3.2.1 Двигатели исполнения УХЛ4 должны быть пригодны для работы при температуре окружающей среды от 1 до 45 °С без искусственного регулирования климатических условий.

3.2.2 Степень защиты выводных устройств двигателей всех исполнений — не ниже IP55.

3.3 Двигатели должны быть пригодны для работы в следующих условиях:

— тип атмосферы — II по ГОСТ 15150;

— запыленность окружающего воздуха — не более 10 мг/м;

— температура охлаждающей воды — от 1 до 33 °С (по требованию заказчика допускается устанавливать верхнее значение температур до 37 °С).

3.4 Условия применения двигателей при воздействии на них абразивной пыли, химических, масляных паров должны быть согласованы.

3.5 Двигатели и их выводные устройства, предназначенные для установки в помещениях с повышенной запыленностью окружающей среды, требующих периодической гидроуборки, должны иметь степень защиты не ниже IP55.

3.6 Двигатели должны соответствовать группе условий эксплуатации в части воздействия механических факторов внешней среды М6 по ГОСТ 17516.1 с ограничением максимальной амплитуды ускорения до 4,9 м/с (0,5 ). В технически обоснованных случаях при специальном применении двигателей допускается их соответствие группе M1.

Двигатели должны выдерживать сейсмическое воздействие до 7 баллов включительно по шкале MSK-64 (т.е. амплитуду ускорения до 0,5 включительно). Другие требования по сейсмическим воздействиям устанавливают по согласованию.

4.1 Технические характеристики

Что такое трехфазный двигатель и как он работает?

Трехфазные двигатели (также обозначенные как трехфазные двигатели) широко используются в промышленности и стали рабочей лошадкой многих механических и электромеханических систем из-за их относительной простоты, проверенной надежности и длительного срока службы. Трехфазные двигатели являются одним из примеров типа асинхронного двигателя, также известного как асинхронный двигатель, который работает с использованием принципов электромагнитной индукции. Хотя существуют также однофазные асинхронные двигатели, эти типы асинхронных двигателей реже используются в промышленности, но широко используются в быту, например, в пылесосах, компрессорах холодильников и кондиционерах, благодаря использованию однофазных асинхронных двигателей. фазное питание переменного тока в домах и офисах. В этой статье мы обсудим, что такое трехфазный двигатель и опишем, как он работает. Чтобы получить доступ к другим ресурсам о двигателях, обратитесь к одному из наших других руководств по двигателям, посвященным двигателям переменного тока, двигателям постоянного тока, асинхронным двигателям, или к более общей статье о типах двигателей. Полный список связанных статей по двигателям находится в разделе связанных статей.

Что такое трехфазное питание?

Чтобы разобраться в трехфазных двигателях, полезно сначала разобраться с трехфазным питанием.

При производстве электроэнергии переменный ток (AC), создаваемый генератором, характеризуется тем, что его амплитуда и направление меняются со временем. Если графически показать амплитуду по оси y и время по оси x, зависимость между напряжением или током и временем будет напоминать синусоиду, как показано ниже:

Рисунок 1 – Однофазный переменный ток

Изображение предоставлено: Фуад А. Саад/Shutterstock.com

Электроэнергия, подаваемая в дома, является однофазной, а это означает, что имеется один проводник с током, а также соединение с нейтралью и соединение с землей. В трехфазном питании, которое используется в промышленных и коммерческих условиях для запуска более крупного оборудования, требующего большей мощности, есть три проводника электрического тока, каждый из которых работает с разностью фаз 120 o 2π/3. радианы друг от друга. Если посмотреть графически, каждая фаза будет отображаться как отдельная синусоида, которая затем объединяется, как показано на изображении ниже:

Рисунок 2 – Трехфазная электроэнергия со сдвигом фаз 120
o между каждой фазой

Изображение предоставлено: teerawat chitprung/Shutterstock. com

Трехфазные двигатели питаются от электрического напряжения и тока, которые генерируются как трехфазная входная мощность и затем используются для производства механической энергии в виде вращающегося вала двигателя.

Что такое трехфазный двигатель?

Трехфазные двигатели представляют собой тип двигателя переменного тока, который является конкретным примером многофазного двигателя. Эти двигатели могут быть либо асинхронными двигателями (также называемыми асинхронными двигателями), либо синхронными двигателями. Двигатели состоят из трех основных компонентов – статора, ротора и корпуса.

Статор состоит из ряда пластин из легированной стали, вокруг которых намотана проволока, образующая индукционные катушки, по одной катушке на каждую фазу источника электроэнергии. Обмотки статора питаются от трехфазного источника питания.

Ротор также содержит индукционные катушки и металлические стержни, соединенные в цепь. Ротор окружает вал двигателя и является компонентом двигателя, который вращается для создания выходной механической энергии двигателя.

Корпус двигателя удерживает ротор вместе с валом двигателя на наборе подшипников для уменьшения трения вращающегося вала. Корпус имеет торцевые крышки, удерживающие опоры подшипников, и вентилятор, прикрепленный к валу двигателя, который вращается при вращении вала двигателя. Вращающийся вентилятор всасывает окружающий воздух снаружи корпуса и нагнетает его через статор и ротор для охлаждения компонентов двигателя и рассеивания тепла, выделяемого в различных катушках из-за сопротивления катушки. Корпус также обычно имеет приподнятые механические ребра снаружи, которые служат для дальнейшего отвода тепла к наружному воздуху. Торцевая крышка также обеспечивает место для размещения электрических соединений для трехфазного питания двигателя.

Как работает трехфазный двигатель?

Трехфазные двигатели работают по принципу электромагнитной индукции, который был открыт английским физиком Майклом Фарадеем еще в 1830 году. Фарадей заметил, что когда проводник, такой как катушка или петля провода, помещается в изменяющееся магнитное поле, возникает индуцированная электродвижущая сила или ЭДС, которая генерируется в проводнике. Он также заметил, что ток, протекающий в проводнике, таком как провод, будет генерировать магнитное поле и что магнитное поле будет меняться по мере того, как ток в проводе изменяется либо по величине, либо по направлению. Это выражается в математической форме, связывая ротор электрического поля со скоростью изменения во времени магнитного потока:

Эти принципы составляют основу для понимания того, как работает трехфазный двигатель.

Рисунок 3 ниже иллюстрирует закон индукции Фарадея. Обратите внимание, что наличие ЭДС зависит от движения магнита, что приводит к существованию изменяющегося магнитного поля.

Рисунок 3 – Принцип электромагнитной индукции

Изображение предоставлено: Фуад А. Саад/Shutterstock.com

Для асинхронных двигателей, когда статор питается от трехфазного источника электроэнергии, каждая катушка создает магнитное поле, полюса которого (северный или южный) меняют положение, когда переменный ток совершает колебания в течение полного цикла. Поскольку каждая из трех фаз переменного тока сдвинута по фазе на 120 или , магнитная полярность трех катушек не одинакова в один и тот же момент времени. Это условие приводит к тому, что статор создает то, что известно как RMF или вращающееся магнитное поле. Поскольку ротор находится в центре катушек статора, изменяющееся магнитное поле статора индуцирует ток в катушках ротора, что, в свою очередь, приводит к созданию ротором противоположного магнитного поля. Поле ротора стремится выровнять свою полярность с полем статора, в результате чего к валу двигателя прикладывается чистый крутящий момент, и он начинает вращаться, стремясь привести свое поле в соответствие. Обратите внимание, что в трехфазном асинхронном двигателе нет прямого электрического соединения с ротором; магнитная индукция вызывает вращение двигателя.

У трехфазных асинхронных двигателей ротор стремится сохранить соосность с RMF статора, но никогда этого не достигает, поэтому асинхронные двигатели также называют асинхронными двигателями. Явление, из-за которого скорость ротора отстает от скорости RMF, известно как скольжение и выражается как:

, где N r — скорость ротора, а N s — синхронная скорость вращающегося поля (RMF) статора.

Синхронные двигатели работают аналогично асинхронным двигателям, за исключением того, что в случае синхронного двигателя поля статора и ротора синхронизированы, так что RMF статора заставит ротор вращаться с точно такой же скоростью вращения (в синхронизация – поэтому скольжение равно 0). Для получения дополнительной информации о том, как это достигается, обратитесь к этим статьям о реактивных двигателях и бесщеточных двигателях постоянного тока. Обратите внимание, что синхронные двигатели, в отличие от асинхронных двигателей, не должны питаться от сети переменного тока.

Контроллеры двигателей для трехфазных двигателей

Скорость, создаваемая трехфазным двигателем переменного тока, зависит от частоты сети переменного тока, поскольку она является источником RMF в обмотках статора. Таким образом, некоторые контроллеры двигателей переменного тока работают, используя входной ток переменного тока для генерации модулированного или регулируемого входного сигнала частоты для двигателя, тем самым контролируя скорость двигателя. Другой подход, который можно использовать для управления скоростью двигателя, заключается в изменении скольжения (описано ранее). Если скольжение увеличивается, скорость двигателя (то есть скорость ротора) уменьшается.

Чтобы узнать больше о подходах к управлению двигателем, ознакомьтесь с нашей статьей о контроллерах двигателей переменного тока.

Резюме

В этой статье представлено краткое обсуждение того, что такое трехфазные двигатели и как они работают. Чтобы узнать больше о двигателях, ознакомьтесь с нашими соответствующими статьями, перечисленными ниже. Для получения информации о других продуктах обратитесь к нашим дополнительным руководствам или посетите платформу поиска поставщиков Thomas, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

Источники:
  1. https://kebblog.com/how-a-3-phase-ac-induction-motor-works/
  2. https://www.engineering.com/ElectronicsDesign/ElectronicsDesignArticles/ArticleID/15848/Three-Phase-Electric-Power-Explained.aspx
  3. http://www.oddparts.com/oddparts/acsi/defines/poles.htm
  4. http://www.gohz.com/how-to-determine-the-pole-number-of-an-induction-motor
  5. https://www.elprocus.com/induction-motor-types-advantages/
  6. https://www.intechopen.com/books/electric-machines-for-smart-grids-applications-design-simulation-and-control/single-phase-motors-for-household-applications
  7. https://www.worldwideelectric.net/resource/construction-ac-motors/
  8. https://www.gainesvilleindustrial.com/blog/single-three-phase-motors-guide/

Другие товары для двигателей

  • Типы катушек индуктивности и сердечников
  • Типы контроллеров двигателей и приводов
  • Типы двигателей постоянного тока
  • Двигатели переменного тока
  • и двигатели постоянного тока — в чем разница?
  • Все об асинхронных двигателях — что это такое и как они работают
  • Типы двигателей переменного тока
  • Все о синхронных двигателях — что это такое и как они работают
  • Понимание двигателей
  • Однофазные промышленные двигатели
  • — как они работают?
  • Что такое двигатель с короткозамкнутым ротором и как он работает?
  • Что такое двигатель с фазным ротором и как он работает?
  • Все о реактивных двигателях — что это такое и как они работают
  • Все о бесщеточных двигателях постоянного тока — что это такое и как они работают
  • Все о двигателях с постоянными магнитами — что это такое и как они работают
  • Все о двигателях постоянного тока с обмоткой серии — что это такое и как они работают
  • Все о шунтирующих двигателях постоянного тока — что это такое и как они работают
  • Все о шаговых двигателях — что это такое и как они работают
  • Шаговые двигатели
  • и серводвигатели — в чем разница?
  • Все о контроллерах двигателей переменного тока — что это такое и как они работают
  • Синхронные двигатели
  • и асинхронные двигатели — в чем разница?

Больше из Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Трехфазный асинхронный двигатель: типы, работа и применение

Двигатель используется для преобразования электрической формы энергии в механическую. По типу питания двигатели подразделяются на двигатели переменного тока и двигатели постоянного тока. В сегодняшнем посте мы обсудим различных типов трехфазных асинхронных двигателей с работой и приложениями.

Асинхронный двигатель , особенно трехфазные асинхронные двигатели , широко используются в двигателях переменного тока для производства механической энергии в промышленности. Почти 80% двигателей составляют трехфазные асинхронные двигатели среди всех двигателей, используемых в промышленности. Таким образом, асинхронный двигатель является наиболее важным двигателем среди всех других типов двигателей.

Что такое трехфазный асинхронный двигатель?

Трехфазный асинхронный двигатель — это тип асинхронного двигателя переменного тока, который работает от трехфазного питания по сравнению с однофазным асинхронным двигателем, где для его работы требуется однофазное питание. Трехфазный ток питания создает электромагнитное поле в обмотке статора, что приводит к возникновению крутящего момента в обмотке ротора трехфазного асинхронного двигателя, имеющего магнитное поле.

  • По теме: Однофазный асинхронный двигатель — конструкция, работа, типы и применение

Содержание

Конструкция трехфазного асинхронного двигателя

Конструкция асинхронного двигателя очень проста и надежна. Он состоит в основном из двух частей;

  • Статор
  • Ротор
Статор

Как следует из названия, статор является неподвижной частью двигателя. Статор асинхронного двигателя состоит из трех основных частей;

  • Рама статора
  • Сердечник статора
  • Обмотка статора
Рама статора

Рама статора — это внешняя часть двигателя. Функция рамы статора заключается в обеспечении поддержки сердечника статора и обмотки статора.

Придает механическую прочность внутренним частям двигателя. Рама имеет ребра на внешней поверхности для отвода тепла и охлаждения двигателя.

Рама отливается для небольших машин и изготавливается для больших машин. В зависимости от области применения рама изготавливается из литой под давлением или сборной стали, алюминия/алюминиевых сплавов или нержавеющей стали.

  • По теме: Машина постоянного тока – конструкция, работа, типы и применение
Сердечник статора

Сердечник статора предназначен для переноса переменного магнитного потока, который создает гистерезис и потери на вихревые токи. Для минимизации этих потерь сердечник прокатывается штамповками из высококачественной стали толщиной от 0,3 до 0,6 мм.

Эти штамповки изолированы друг от друга лаком. Все штамповки штампуют вместе по форме сердечника статора и закрепляют его с корпусом статора.

Внутренний слой сердечника статора имеет несколько пазов.

Обмотка статора

Обмотка статора размещается в пазах статора, имеющихся внутри сердечника статора. В качестве обмотки статора размещена трехфазная обмотка. И трехфазное питание подается на обмотку статора.

Количество полюсов двигателя зависит от внутреннего соединения обмотки статора и определяет скорость двигателя. Если количество полюсов больше, скорость будет меньше, а если количество полюсов меньше, скорость будет выше. Полюса всегда парные. Поэтому общее количество полюсов всегда четное число. Соотношение между синхронной скоростью и числом полюсов показано в приведенном ниже уравнении 9.0003

N S = 120 f / P

Где;

  • f = Частота питания
  • P = Общее количество полюсов
  • N с = синхронная скорость

В качестве конца обмотки, подключенного к клеммной коробке. Следовательно, в клеммной коробке имеется шесть клемм (по две на каждую фазу).

В зависимости от применения и типа пуска двигателей, обмотка статора соединяется звездой или треугольником и осуществляется соединением клемм в клеммной коробке.

  • По теме: Серводвигатель — типы, конструкция, работа, управление и применение
Ротор

Как следует из названия, ротор представляет собой вращающуюся часть двигателя. По типу ротора асинхронный двигатель классифицируется как;

  • Асинхронный двигатель с короткозамкнутым ротором
  • Асинхронный двигатель с фазовой обмоткой (ротор с обмоткой) / асинхронный двигатель с контактными кольцами

Конструкция статора одинакова для обоих типов асинхронных двигателей. Мы обсудим типы роторов, используемых в трехфазных асинхронных двигателях, в следующем разделе, посвященном типам трехфазных асинхронных двигателей.

Типы трехфазных асинхронных двигателей

Трехфазные двигатели классифицируются в основном на две категории в зависимости от обмотки ротора (обмотка обмотки якоря), т.е. с короткозамкнутым ротором и контактным кольцом (двигатель с фазным ротором).

  • Асинхронный двигатель с короткозамкнутым ротором
  • Асинхронный двигатель с контактным кольцом или фазным ротором

По теме: Бесщеточный двигатель постоянного тока (BLDC) — конструкция, принцип работы и области применения

Асинхронный двигатель с беличьей клеткой

Форма этого ротора напоминает форму клетки белки. Поэтому этот двигатель известен как асинхронный двигатель с короткозамкнутым ротором.

Конструкция этого типа ротора очень проста и прочна. Таким образом, почти 80% асинхронных двигателей представляют собой асинхронные двигатели с короткозамкнутым ротором.

Ротор состоит из цилиндрического многослойного сердечника и имеет прорези на внешней периферии. Прорези не параллельны, а скошены под некоторым углом. Это помогает предотвратить магнитную блокировку между зубьями статора и ротора. Это приводит к плавной работе и уменьшает гудящий шум. Увеличивается длина проводника ротора, за счет этого увеличивается сопротивление ротора.

Ротор с короткозамкнутым ротором состоит из стержней ротора вместо обмотки ротора. Стержни ротора изготовлены из алюминия, латуни или меди.

Стержни ротора постоянно закорочены концевыми кольцами. Таким образом, он делает полный замкнутый путь в цепи ротора. Стержни ротора приварены или закреплены с торцевыми кольцами для обеспечения механической поддержки.

Стержни ротора закорочены. Поэтому нельзя добавлять внешнее сопротивление в цепь ротора.

В этом типе ротора контактные кольца и щетки не используются. Следовательно, конструкция этого типа двигателя проще и надежнее.

  • Запись по теме: Шаговый двигатель — типы, конструкция, работа и применение
Асинхронный двигатель с фазным ротором или фазным ротором

Асинхронные двигатели с фазным ротором также известны как двигатель с фазным ротором . Ротор состоит из многослойного цилиндрического сердечника с прорезями на внешней периферии. Обмотка ротора размещена внутри пазов.

В этом типе ротора обмотка ротора намотана таким образом, что число полюсов обмотки ротора равно числу полюсов обмотки статора. Обмотка ротора может быть соединена звездой или треугольником.

Концевые выводы обмоток ротора соединены с контактными кольцами. Таким образом, этот двигатель известен как асинхронный двигатель с контактными кольцами.

Внешнее сопротивление легко соединяется с цепью ротора через токосъемное кольцо и щетки. И это очень полезно для управления скоростью двигателя и улучшения пускового момента трехфазного асинхронного двигателя.

Электрическая схема трехфазного асинхронного двигателя с контактными кольцами и внешним сопротивлением показана на рисунке ниже.

Внешнее сопротивление используется только для запуска. Если он останется подключенным во время работы, это увеличит потери в меди ротора.

Высокое сопротивление ротора благоприятно для пусковых условий. Таким образом, внешнее сопротивление связано с цепью ротора в начальном состоянии.

Когда скорость двигателя близка к фактической, токосъемные кольца замыкаются металлическим кольцом. При таком расположении щетки и внешнее сопротивление удаляются из цепи ротора.

Уменьшает потери меди в роторе, а также трение в щетках. Конструкция ротора немного сложнее по сравнению с двигателем с короткозамкнутым ротором из-за наличия щеток и контактных колец.

Техническое обслуживание этого двигателя больше. Таким образом, этот двигатель используется только тогда, когда требуется регулирование скорости и высокий пусковой момент. В остальном асинхронный двигатель с короткозамкнутым ротором более предпочтителен, чем асинхронный двигатель с контактными кольцами.

  • Запись по теме: Расчет сечения кабеля для двигателей LT и HT

Принцип работы трехфазного асинхронного двигателя

Обмотки статора перекрывают друг друга под углом 120˚ (электрически). Когда на обмотку статора подается трехфазное питание, в цепи статора индуцируется вращающееся магнитное поле (ВМП).

Скорость вращающегося магнитного поля называется синхронной скоростью (N S ).

Согласно закону Фарадея ЭДС, индуцируемая в проводнике из-за скорости изменения потока (dΦ/dt). Цепь ротора отсекает магнитное поле статора и ЭДС, индуцируемую в стержне или обмотке ротора.

Цепь ротора замкнута. Значит, за счет этой ЭДС по цепи ротора будет протекать ток.

Теперь мы знаем, что проводник с током индуцирует магнитное поле. Итак, ток ротора индуцирует второе магнитное поле.

Относительное движение между потоком статора и потоком ротора, ротор начинает вращаться, чтобы уменьшить причину относительного движения. Ротор пытается поймать поток статора и начинает вращаться.

Направление вращения определяется законом Ленца. И находится в направлении вращающегося магнитного поля, индуцируемого статором.

Здесь ток ротора создается за счет индуктивности. Поэтому этот двигатель известен как асинхронный двигатель.

Скорость ротора меньше скорости синхронной скорости. Ротор пытается поймать вращающееся магнитное поле статора. Но никогда не ловит. Следовательно, скорость ротора немного меньше скорости синхронной скорости.

Синхронная скорость зависит от количества полюсов и частоты сети. Разница между фактической скоростью вращения ротора и синхронной скоростью называется скольжением.

  • Запись по теме: КПД двигателя и как его повысить?

Почему в асинхронном двигателе скольжение никогда не равно нулю?

Когда фактическая скорость ротора равна синхронной скорости, скольжение равно нулю. Для асинхронного двигателя это условие никогда не наступит.

Потому что, когда скольжение равно нулю, обе скорости равны и нет относительного движения. Следовательно, в цепи ротора не возникает ЭДС, и ток ротора равен нулю. Следовательно, двигатель не может работать.

Асинхронный двигатель широко используется в промышленности. Потому что преимуществ у него больше, чем недостатков.

Преимущества и недостатки асинхронных двигателей

Преимущества

Преимущества асинхронных двигателей перечислены ниже:

  • Конструкция двигателя очень проста и надежна.
  • Работа асинхронного двигателя очень проста.
  • Может работать в любых условиях окружающей среды.
  • Эффективность двигателя очень высока.
  • Обслуживание асинхронного двигателя меньше по сравнению с другими двигателями.
  • Это двигатель с одним возбуждением. Следовательно, ему нужен только один источник источника. Он не требует внешнего источника постоянного тока для возбуждения, как синхронный двигатель.
  • Асинхронный двигатель является двигателем с автоматическим запуском. Таким образом, для нормальной работы не требуется никаких дополнительных вспомогательных устройств для пуска.
  • Стоимость этого мотора намного меньше по сравнению с другими моторами.
  • Срок службы этого двигателя очень высок.
  • Реакция якоря меньше.

Связанная публикация: Прямой онлайн-пускатель — схема подключения пускателя DOL для двигателей

Недостатки

Недостатки двигателя перечислены ниже;

  • При легкой нагрузке коэффициент мощности очень низкий. И потребляет больше тока. Таким образом, потери в меди больше, что снижает эффективность в условиях легкой нагрузки.
  • Пусковой момент данного двигателя (асинхронного двигателя с короткозамкнутым ротором) не менее.
  • Асинхронный двигатель с постоянной скоростью. Для приложений, где требуется переменная скорость, этот двигатель не используется.
  • Управление скоростью этого двигателя затруднено.
  • Асинхронный двигатель имеет высокий пусковой ток. Это вызывает снижение напряжения во время запуска.
  • По теме: Что такое стартер двигателя? Типы пускателей двигателей и методы пуска двигателей

Применение трехфазных асинхронных двигателей

Асинхронный двигатель в основном используется в промышленности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *