Схема простого сварочного инвертора — электросхема инверторного сварочного аппарата
Схема простого сварочного инвертора разделяется на силовую, то есть как раз ту, которая выдает ток на дугу, и управляющую части. Инвертор по сути своей – это блок питания, достаточно мощный, позволяющий поддерживать работу дуги. По рабочим схемам напоминает импульсный блок питания, у них весьма схожая работа по преобразованию энергии.
По какому принципу работает электросхема инверторного сварочного аппарата?
Схема работает по тому же принципу, что и, например, блок питания в персональном компьютере. В процессе работы происходит преобразование тока и напряжения, причем несколько раз и в разных параметрах.
В работе прослеживаются несколько четких этапов:
- Напряжение в розетке составляет 220V, поэтому сначала происходит выпрямление переменного напряжения.
- Вступает в работу преобразователь, постоянное напряжение переводится в переменные высокие частоты.
- Напряжение высокой частоты постепенно понижается до нужных значений.
- В свою очередь, на этом этапе, уже пониженное напряжение нуждается в выпрямлении.
Весь процесс кажется немного нелогичным, но у этого есть свои причины.
Ранее в сварочных инверторах использовались трансформаторы, очень мощные, работающие за счет обмотки трансформатора и имеющие, из-за этого, размеры и вес, делающие сварочные аппараты громоздкими и неудобными в применении.
Инверторные же аппараты удалось существенно уменьшить и облегчить с помощью увеличения частоты работы до 70-80 кГц и удешевить, поскольку меди на обмотку и других материалов уходит в разы меньше.
Схема инвертора
Электросхема сварочного инвертора состоит из транзисторов, мощных, берущих на себя большую часть работы. Частота тока в сети составляет всего 50 Гц, транзисторы же переключаются с высокой частотой, поэтому необходимо обеспечить их подачей постоянного напряжения. Вот тут и вступает в работу выпрямитель, как раз занимающийся тем, чтобы поступающий ток имел постоянные параметры.
Важным элементом схемы является фильтр электромагнитной совместимости, ставится он перед выпрямителем и защищает сеть от высокочастотных помех, появляющихся из-за работы инвертора.
Сам инвертор состоит из двух транзисторов на радиаторах для контроля тепла. Для понижения же напряжения схема простого сварочного инвертора успешно работает с трансформатором высокой частоты. Далее транзисторы коммутируют постоянное напряжение через обмотку трансформатора, величины достигают примерно 340V.
Если совсем по-простому, то роль трансформатора в том, что первичная обмотка выдает большое напряжение и маленький ток, а с вторичной обмотки уходит меньшее напряжение, но максимальный ток, показатели могут быть около 120 ампер.
Выходной выпрямитель – это диоды с высокими показателями быстродействия, сдвоенные, с общим катодом. Электросхема инверторного сварочного аппарата нуждается в именно быстродействующих диодах, суть их работы в том, что они очень шустро открываются и закрываются, нужно это для того, чтобы защитить сами диоды и весь прибор от перегревания и выхода из строя.
Когда инвертор включается, начинают заряжаться конденсаторы, поскольку в этот момент зарядный ток очень велик, настолько, что может вывести из строя диодные мосты, то применяется схема ограничения заряда, еще она называется «мягкий пуск». Работа его основывается на резисторе, имеющем высокое сопротивление, как раз он и принимает на себя основной удар и отвечает за ограничение тока в схеме.
Самостоятельный подход к ремонту и эксплуатации
Самые важные элементы схемы уже описаны, остается лишь добавить, что сварочный инвертор — прибор не очень сложный, при желании и заинтересованности его можно собрать своими руками. По запросу: схемы сварочных инверторов скачать, можно найти огромное количество готовых схем и видеороликов о самостоятельной сборке сварочных инверторов и их ремонте на нашем сайте.
Если вы понимаете сам принцип работы аппарата, то, достав нужные запчасти, можно очень экономно подойти к вопросу, покупать ли инвертор, чинить его самим или отнести в мастерскую.
Поделитесь со своими друзьями в соцсетях ссылкой на этот материал (нажмите на иконки):
Описание схемы сварочного инвертора для самостоятельного изготовления аппарата
- Особенности работы инвертора
- Сборка инвертора
- Схема инверторной сварки
- Поэтапное описание сборки
- Проверка работоспособности
- Как пользоваться аппаратом
Особенности работы инвертора
Сварочный инверторный аппарат — это блок питания, который применяется сейчас в компьютерах. Электрическая энергия преобразовывается в инверторе следующим образом:
- Напряжение переменное преобразуется в постоянное.
- Ток постоянной синусоиды преобразовывается в переменный с высокой частотой.
- Снижается значения напряжения.
- Ток выпрямляется с сохранением требуемой частоты.
Данная схема сварочного инвертора позволяет снизить его массу и уменьшить габариты. Известно, что старые сварочные аппараты работают по принципу снижения величины напряжения и увеличения силы тока на вторичной обмотке трансформатора. Благодаря большой силе тока есть возможность сваривать металлы дуговым способом. Для увеличения силы тока и снижения напряжения на вторичной обмотке уменьшают число витков и при этом увеличивают сечение проводника. В итоге сварочный аппарат трансформаторного типа весит немало и имеет значительные размеры.
Для решения данной проблемы предложили схему сварочного инвертора. Принцип основывается на повышении частоты тока до 60 или всех 80 кГц. За счет этого снижается вес и уменьшаются габариты устройства. Для реализации задуманного потребовалось увеличение частоты в тысячи раз, что стало возможным благодаря полевым транзисторам. Между собой транзисторы обеспечивают сообщение с частотой примерно 60−80 кГц. На схему их питания идет постоянный ток, что обеспечивается выпрямителем, в качестве которого используют диодный мост. Выравнивание значения напряжения обеспечивается конденсаторами.
Переменный ток передается на понижающий трансформатор после прохождения через транзисторы. В качестве трансформатора при этом используется катушка, уменьшенная в сотни раз. Катушка используется, потому что частота тока, подающегося на трансформатор, уже увеличена в тысячу раз полевыми транзисторами. В итоге получаются аналогичные данные, как при работе трансформаторной сварки, но с большой разницей в габаритах и массе.
Сборка инвертора
Для самостоятельной сборки инверторной сварки требуется знать, что схема рассчитана первым делом на потребляющее напряжение в 220 В и тока 32 А. После преобразования энергии ток на выходе увеличится почти в восемь раз и будет достигать 250 А. Такого значения достаточно для создания прочного шва электродом на расстоянии до сантиметра. Для изготовления инверторного блока питания потребуются:
- Трансформатор с ферритным сердечником.
- Первичная обмотка трансформатора с сотней витков провода Ø0,3 мм.
- Три вторичных обмотки: внутренняя с 15 витками и проводом Ø1 мм; средняя с 15 витками и проводом Ø0,2 мм; наружная с 20 оборотами и проводом Ø0,35 мм.
Также для сборки трансформатора нужны такие элементы:
- стеклоткань;
- медные провода;
- хлопчатобумажный материал;
- электротехническая сталь;
- текстолит.
Схема инверторной сварки
Плата, где расположен блок питания, от силовой части монтируется отдельно. Разделителем между блоком питания и силовой частью выступает металлический лист, который электрически подсоединен к корпусу агрегата. Управление затворками осуществляется с помощью проводников, которые припаиваются поблизости транзисторов. Проводники между собой соединяются парно, а размер их сечения особой роли не играет. Однако важно, чтобы длина проводников не превышала 15 см.
Если навыков работы с электроникой нет, лучше обратиться к мастеру. В противном случае разобраться в схеме сварочного аппарата будет трудно.
Поэтапное описание сборки
Выполняется следующее:
Сборка блока питания. В качестве основы трансформатора рекомендуется брать феррит 7×7 или 8×8. Устройство первичной обмотки осуществляется намоткой проволоки по ширине сердечника. Это улучшает работу устройства при перепадах напряжения. Используются медные провода (проволока) ПЭВ-2, а при отсутствии шины провода соединяют в пучок. Первичная обмотка изолируется стеклотканью. После слоя стеклоткани сверху наматываются витки экранирующих проводов.
Корпус. Этим важным элементом может служить старый системный блок компьютера, в котором есть достаточно необходимых отверстий для вентиляции. Использоваться может старая 10-литровая канистра, в которой можно проделать отверстия и разместить кулеры. Для повышения прочности конструкции из корпуса размещают металлические уголки, закрепляющиеся болтовыми соединениями.
Силовая часть. Роль силового блока играет понижающий трансформатор. Его сердечники могут быть двух видов: Ш 20×208 2000 нм. Между обоими элементами должен быть зазор, что обеспечивается с помощью газетной бумаги. При устройстве вторичной обмотки витки наматываются в несколько слоев. На вторичную обмотку укладывается три слоя проводов, и между ними помещается прокладка из фторопласта. Между обмотками располагают усиленный слой изоляции, позволяющий избежать пробоя напряжения на вторичную обмотку. Конденсатор должен быть напряжением не менее 1000 В.
Для обеспечения циркуляции воздуха между обмотками оставляется воздушный зазор. На ферритовом сердечнике собирают трансформатор тока, включающийся в цепь к плюсовой линии. Сердечник обматывается термобумагой, в качестве которой лучше использовать кассовую ленту. Выпрямительные диоды крепят к алюминиевой пластине радиатора. Выходы диодов соединяют неизолированными проводами, сечение которых равно 4 мм.
Инверторный блок. Основным предназначением инверторной системы является преобразование постоянного тока в переменный с большой частотой. Для ее увеличения используются полевые транзисторы, работающие на закрытие и открытие с высокой частотой. Использовать рекомендуется не один мощный транзистор, а реализовать схему на основании двух менее мощных. Нужно это для стабилизации частоты тока. В схеме должны присутствовать конденсаторы, соединяющиеся последовательно.
Система охлаждения. На стенке корпуса устанавливаются вентиляторы охлаждения, для чего могут быть использованы компьютерные кулеры. Они необходимы для охлаждения рабочих элементов. Чем больше их используется, тем лучше. Обязательно устанавливается два вентилятора для обдувки вторичного трансформатора. Один кулер обдувает радиатор, благодаря чему предотвращается перегрев рабочих элементов — выпрямительных диодов.
Стоит воспользоваться вспомогательным элементом — термодатчиком, который рекомендуется устанавливать на нагревающемся элементе. Датчик срабатывает при достижении критической температуры нагрева какого-либо элемента. После его срабатывания питание устройства отключается.
В процессе работы инверторная сварка быстро нагревается, поэтому обязательно должно быть два мощных кулера. Эти кулеры или вентиляторы помещаются на корпус устройства, чтобы работали на вытяжку воздуха. Свежий воздух поступает в систему через отверстия в корпусе. В системном блоке данные отверстия уже имеются, а при использовании любого другого материала не забудьте об обеспечении притока свежего воздуха.
Пайка платы. Ключевой фактор, ведь схема основана на плате. Транзисторы и диоды на ней важно смонтировать встречно друг к другу. Монтируется плата между радиаторами охлаждения, при помощи чего и соединяется цепь электроприборов. Рассчитывается питающая цепь на 300 В напряжения. Дополнительное расположение конденсаторов 0,15 мкФ позволяет сбрасывать избыток мощности обратно в цепь. На выходе трансформатора помещаются конденсаторы и снабберы, при помощи которых гасится перенапряжение на выходе вторичной обмотки.
Настройка, отладка работы. После сборки инверторной сварки требуется еще ряд процедур, в частности, настройка функционирования. Для этого к ШИМ (широтно-импульсному модулятору) надо подключить 15 В напряжения и запитать кулер. Дополнительно в цепь включают реле через резистор R11. Реле в цепь включается во избежание скачков напряжения в сети 220 В. Важно проконтролировать включение реле, а затем подать питание на ШИМ. В итоге должна получиться картина, когда прямоугольные участки на диаграмме ШИМ должны исчезнуть.
О правильности соединения можно судить, если при настройке реле выдает 150 мА. Если сигнал слабый, значит, платы соединены неправильно. Возможно, пробита одна из обмоток. Для устранения помех укорачиваются все питающие электропроводы.
Проверка работоспособности
После сборочных и отладочных работ проверяется работоспособность сварочного аппарата. Для этого устройство надо запитать от электросети 220 В, далее задать высокие показатели силы тока и сверить показатели по осциллографу. В нижней петле напряжение должно быть в пределах 500 В и не более 550 В. Если все правильно и электроника подобрана строго, показатель напряжения не превысит величины 350 В.
Потом сварка проверяется в действии. С этой целью используются необходимые электроды, и шов раскраивается до полного выгорания электрода. Затем важно проконтролировать температуру трансформатора. Если он попросту закипает, значит, в схеме есть недочеты и работу лучше не продолжать.
После раскраивания двух-трех швов радиаторы нагреются до большой температуры, и важно дать им остыть. Для этого хватит двух-трехминутной паузы, в итоге температура выровняется до оптимальной.
Как пользоваться аппаратом
После включения самодельного аппарата в цепь контроллер автоматически задает определенную силу тока. Если напряжение провода меньше 100 В, значит, устройство неисправно. Придется аппарат разобрать и повторно проверить правильность сборки. При помощи такого вида сварочных аппаратов осуществляется спайка и черных, и цветных металлов. Для сборки сварочного аппарата потребуется владение основами электротехники и, конечно, свободное время для его изготовления.
Инверторная сварка незаменима в гараже. Если не обзавелись еще этим инструментом, сделайте его самостоятельно и пользуйтесь в свое удовольствие!
КОНСТРУКЦИЯ И КОНСТРУКЦИЯ АППАРАТА ДЛЯ ОДНОФАЗНОЙ ДУГОВОЙ СВАРКИ ТИПА 3 КВА, 50 ГЦ Выпуск 5, май 2015 г. 931
ISSN 2229-5518
Проектирование и конструкция инверторного типа
3 кВА, 50 Гц, однофазная дуговая сварка
Машина
Инж. Овбиагеле У; инж. Obaitan B
Abstract: Сварка служит множеству целей в разных областях. Производство машин и оборудования, сварка трубопроводов и коллекторов, сварка конструкций, морская сварка и декоративная сварка — вот примеры сварки, которые имеют место в бизнесе и промышленности. Сварочное оборудование стало одним из наиболее важных инструментов, которыми может владеть производитель, поэтому необходимо спроектировать и построить машину для дуговой сварки. В этой статье авторы спроектировали и сконструировали аппарат для однофазной дуговой сварки мощностью 3 кВА, 50 Гц с использованием местных материалов.
Для решения проблемы веса и габаритов обычного аппарата для дуговой сварки также была разработана инверторная схема. Инвертор обеспечивает гораздо более высокую частоту, чем 50 Гц или 60 Гц для трансформатора, используемого при сварке. Аппарат электродуговой сварки местного производства, способный выдерживать 150 А, при испытании на изоляцию, коротком замыкании и обрыве цепи для определения рабочих характеристик был очень удовлетворительным.Ключевые слова: дуговая сварка, изготовление оборудования, инвертор, трансформатор.
—————————— ——————————
Сварка — это метод соединения металлов, при котором тепло и/или давление воздействуют на область контакта между двумя компонентами ; присадочный металл может быть добавлен в соединение в зависимости от процесса сварки [1].
Существует множество видов сварки, включая дуговую сварку, контактную сварку, газовую сварку и другие. Особое внимание будет уделено дуговой сварке, поскольку это наиболее распространенный вид сварки, а также основная цель этой конструкции. При дуговой сварке электрическая дуга возникает между основным металлом и электродом. Тепло дуги расплавляет основной металл и сварочный материал с получением металла шва для соединения элементов конструкции [2].
Оборудование, которое выполняет сварочные операции под наблюдением и контролем оператора сварки, известно как сварочный аппарат. Чтобы решить проблему веса и габаритов обычного аппарата для дуговой сварки, необходимо разработать инвертор. Инвертор обеспечивает гораздо более высокую частоту, чем питание 50 Гц или 60 Гц для трансформатора, используемого при сварке. Таким образом, трансформатор гораздо меньшей массы используется для обеспечения гораздо большей выходной мощности. Выбор рабочей частоты выше человеческого слуха снижает шум сварки, производимый обычным аппаратом для дуговой сварки [1]. Выбор частоты 20 кГц для дуговой сварочной машины инверторного типа был определен, чтобы удовлетворить вышеуказанные ожидания. Управление питанием трансформатора на высокой частоте регулирует выходной сварочный ток. Преобразователь частоты обеспечивает это питание. Переключатель мощности IGBT (биполярный транзистор с изолированным затвором) или MOSFET используется в конструкции инвертора из-за его высокого переключения.
Цепь управления, используемая для управления выходным сварочным током, предназначена для управления выключателем питания на высокой частоте. Силовой ключ на биполярном транзисторе с изолированным затвором более эффективен и менее подвержен отказам, чем силовой ключ на МОП-транзисторах.
Вес и размер трансформатора обычного аппарата дуговой сварки так же велики, как и шум при сварке.
IJSER © 2015 http://www.ijser.org
Международный журнал научных и инженерных исследований, том 6, выпуск 5, май 2015 г. 932
ISSN 2229-5518
Целью и задачей данной работы является разработка и изготовление аппарата для дуговой сварки, работающего на
48В постоянного тока с переменной частотой. Это снижает вес, размер и уровень шума трансформатора, используемого для сварки.
Иметь более эффективный аппарат для дуговой сварки, обеспечивающий аккуратную сварку.
Важность этого проекта заключается в том, что он направлен на создание экономичного, прочного, портативного и мобильного аппарата для дуговой сварки.
Сварочный источник питания трансформаторного типа преобразует электроэнергию высокого напряжения и слабого тока из электросети в сильноточный и низковольтный (обычно от 17 до 45 вольт и от 55 до 590 ампер). Выпрямитель используется для преобразования переменного тока в постоянный для получения на выходе постоянного тока. Перемещение магнитного шунта в сердечник трансформатора и из него помогает изменять выходной ток. Последовательный реактор на вторичной обмотке управляет выходным напряжением от набора отводов на вторичной обмотке трансформатора. Этот тип источника питания является наименее дорогим, но громоздким. Именно низкочастотные трансформаторы должны иметь максимально высокую намагничивающую проводимость, чтобы избежать расточительных шунтирующих токов. Трансформатор также может иметь значительную проводимость утечки для защиты от короткого замыкания в случае прилипания сварочного стержня к рабочей силе. Индуктивность рассеяния может изменяться, поэтому оператор может установить выходной ток [3].
С появлением мощных полупроводников, таких как полевой транзистор с изолированным затвором (IGFET), также известный как MOSFET (полевой транзистор на основе оксида металла и полупроводника), стало возможным создание импульсного источника питания, способного выдерживает высокие нагрузки дуговой сварки. Эти конструкции известны как инверторные сварочные аппараты. Сеть переменного тока сначала выпрямляется до постоянного тока; затем переключатель мощности постоянного тока (инвертировать) в понижающий трансформатор на высокой частоте для получения желаемого сварочного напряжения или тока. Частота переключения обычно составляет от 20 кГц до 100 кГц. Высокая частота переключения значительно уменьшает объем понижающего трансформатора. Масса магнитных компонентов (трансформатора и проводников) быстро уменьшается по мере увеличения рабочей (переключаемой) частоты. Циркуляционный преобразователь также может обеспечивать такие функции, как регулирование мощности и защита от перегрузок. Этот тип сварочных аппаратов (на основе инвертора) более эффективен и обеспечивает лучший контроль переменных функциональных параметров, чем обычные сварочные аппараты. Микроконтроллер управляет IGBT или IGFT в машине на основе инвертора, поэтому электрические характеристики мощности сварки можно изменять с помощью программного обеспечения [4].
Наш подход к этому проекту реализуется посредством проектирования и строительства входной подсистемы, блока управления и выходной подсистемы. Сварка металла происходит при соединении блока управления и выходной подсистемы через свариваемый токопроводящий объектив. Сварка – это процесс соединения двух или более одинаковых или разнородных материалов с применением или без применения тепла и/или давления с использованием или без использования присадочного материала.
IJSER © 2015 http://www.ijser.org
Международный журнал научных и инженерных исследований, том 6, выпуск 5, май 2015 г. 933
ISSN 2229-5518
При проектировании мы начали с общей системы и начали ее разделение на системы. Удобным инструментом, используемым на этом этапе, является блок-схема, показанная на рис. 1. Блок-схема изображает иерархию того, как подсхемы инвертора
будут взаимодействовать и взаимодействовать друг с другом. Аппаратный прототип был реализован или реализован на экспериментальной макетной плате. Это было достигнуто за счет реализации инверторного входа
в подсистему вывода. Они были тщательно выполнены в соответствии с блок-схемой проекта и окончательной принципиальной схемой.
Блок-схема системы инверторного сварочного аппарата показана на рис.1.
Буфер генератора
Усилитель мощности
Трансформатор
O/P
Источник питания
Обратная связь
Система представляет собой гибкий источник питания, выполненный в виде источника тока, соответствующий блок-схеме, показанной на рис. 1, который состоит из следующих этапов.
для чередования источника постоянного тока. Выходной сигнал каскада генератора усиливается с помощью транзистора (9013).
IJSER © 2015 http://www.ijser.org
Международный журнал научных и инженерных исследований, том 6, выпуск 5, май 2015 г. полевой транзистор с Vгс большим пороговым напряжением. Частота, на которой работает схема, определяется каскадом генератора.
Сварочные трансформаторы рассчитаны на характер сварочных работ. Для сварочного аппарата инверторного типа трансформатор имеет небольшие размеры и меньший вес по сравнению с обычным сварочным аппаратом. В аппарате дуговой сварки для сварки используется электрический разряд. Этот разряд известен как дуга.
Напряжение, необходимое для поддержания дуги, определяется формулой
В = C + DL [5]…………………………….. …………………………………………. …………………………………………. … (1) Где; C = от 15 до 20 вольт
D = от 2 до 3 вольт
L = длина дуги в мм и ее значение составляет от 2 до 4 мм Дуга поддерживается при напряжении примерно от 24 до 30 вольт. Спецификация конструкции
Выходное напряжение = 25 В переменного тока
Выходной ток = 80 А Входное напряжение = 48 В постоянного тока
Номинальная мощность трансформатора = 3 кВА K = 0,45
F = 50 Гц
BM = 1,2 Тл 106 А/м2
Коэффициент площади Kw = 0,3
Вольт на виток
Vt = K кВА [6] …………………….. …………………………………………. ………….. (2)
Для прямоугольной волны,
Расчет площади сердечника, Ai
Vt = 0,45 3 = 0,78
Vt = 4,44fBm Ai [6] ………………….. …………………………………………. …………………………………………. …….. (3)
A1 =
0,78
4,44 x 50 x 1,2
= 0,0029,28 м2 или 29,28 см2
IJSER © 2015 http://www.ijser.org
International Journal научных и инженерных исследований, том 6, выпуск 5, май 2015 г. 935
ISSN 2229-5518
Общая площадь железа Ag =
Ai
0,9
3 . ………………………. …………………………………………. …………………………… (4)
29,28 = 32,53 см2
0,9
Предположим, 0,9 в качестве коэффициента суммирования.
Ширина центрального плеча = 2 x ширина бокового плеча
= 2 x a…………………………… …………………………………………. …………………………………………. …………….. (5) Глубина ядра, b = 2,5 х ширина центрального отростка = 2,5 х 2а = 5а
Ag = b x 2a = 5a x 2a = 10a2……………………………….. …………………………………………. …………………….. (6)
Следовательно, 10 a2 = 32,53
Так как a = 1,80
a = 32,53 = 1,80 см
10
b = 5 x 1,80 = 9 см
Глубина сердцевины, b = высота ярма для типа оболочки, Hy
Глубина ярма Dy = ширина бокового плеча = 1,80 см
Aw =
кВА
2,22 x f x В х А х К х j х 10−3
[7] . ……………………………….. ………………………………………. (7)
Aw =
3
2,22 x 50 x 1,2 x 2,928 x 10-3 x 0,3 x 3,2 x 106 x 10-3
Aw = 8,01 x 10-3 м2 или 80,1 см2
Aw = высота окна (Hw) x ширина окна (Ww)
HW = 3
WW
HW = 3 Ww
Aw =
3Ww
= w 2
[6] …………………….. …………………………………………. …………………………………………. ( 8)
IJSER © 2015 http://www.ijser.org
Международный журнал научных и инженерных исследований, том 6, выпуск 5, май 2015 г.
3
Отсюда Hw = 3 x 5,2 = 15,6 см
Общая высота H = Hw + 2 ………………………….. …………………………………………. ……………………………….. (9)
= 15,6 + (2 x 1,80) = 19,2 см
Общая ширина W = (2 x Ww ) + (4 x a) …………………. …………………………………………. ……….. …………… (10)
= (2 x 5,2) + (4 x 1,80) = 17,6 см
Обмотка
V1
Витки первичной обмотки Т1 =
Вт
……………………………………… …………………………………………. ……………. (11)
48 = 62
0,78
Общее количество витков на первичной обмотке 124 (с центральным отводом)
Ток первичной обмотки
I1 =
Мощность ……………………………….. …………………………………………. …… (12)
В1
= 3000
48
= 62,5 А
Принимая ток 3,2 А/мм2 для первичной обмотки, площадь проводника
а1 =
62,5
3,2
= 21 К 9002 мм рассчитать диаметр проводника,
a1 =πr =
πd2
4
……………………………. …………………………………………. …………………………………………. (13)
Где a1 = площадь первичного проводника, d = проводник
d = (4 x 40)
3,142
=4,996 мм
Витки вторичной обмотки T2 =
V2 . ………….. …………………………………………. ……………………………….. (14)
Вт
IJSER © 2015 http ://www.ijser.org
Международный журнал научных и инженерных исследований, том 6, выпуск 5, май 2015 г. 937
ISSN 2229-5518
T2 =
25
0,78
= 32
При расчете числа витков вторичной обмотки выбирается допуск 5%, чтобы компенсировать падение напряжения в обмотке.
Поэтому
T = 32 + 5
+ 32 = 34
2 100
Ток вторичной обмотки
I2 =
Мощность. …………………………………………. ………………………… (15)
В2
= 3000
25
= 120 А
Принимая ток 3,2 А/мм2 для вторичной обмотки, площадь проводника
а = 120
= 40 мм2 а 2 =πr =
πd2
4
………………………………… ………………………… (16)
Где a2 = площадь вторичного провода, d = проводник
d = (4 x 120)
3,142
= 12,4 мм
RT (R8 + R9) и C1, подключенные к контактам 6 и 7 микросхемы SG3524 соответственно, определяют частоту колебаний. Используя приведенное ниже уравнение, мы определяем значение неизвестного параметра.
f = 1,18
C1CT
[8] ………………………………… …………………………………………. ………………………………………. (17)
Предположим, что C1 = 0,1 x 10-6 Ф и требуемая частота f = 50 Гц
Следовательно,
f = 1,18
0,1 x 10-6 x 50
= 236 кОм
IC SG3524 используется в секции колебаний этого инвертора. Эта микросхема используется для генерации частоты 50 Гц, необходимой для подачи переменного тока инвертором. Чтобы запустить этот процесс, питание от батареи подается на вывод 15 SG3524 через NPN-транзистор (TIP41). D3 у основания Q3, как показано на рис.2. Используется для регулирования напряжения питания микросхемы SG3524. Вывод 8 соединен с минусовой клеммой аккумулятора. Выводы 6 и 7 микросхемы являются выводами секции колебаний. Частота, создаваемая микросхемой, зависит от емкости конденсатора и резистора, подключенных к этим контактам. Конденсатор (0,1 мкФ) подключен к выводу 7. Этот конденсатор определяет выходную частоту 50 Гц микросхемы. Контакт 6 — это штифт временного сопротивления. Сопротивление на этом выводе составляет
IJSER © 2015 http://www.ijser.org
Международный журнал научных и инженерных исследований, том 6, выпуск 5, май 2015 г. 938
ISSN 2229-5518
постоянная частоты генератора. Предустановленный переменный резистор (20К) подключается к земле с вывода 6 микросхемы. Эта предустановка используется для того, чтобы значение выходной частоты можно было отрегулировать до постоянных 50 Гц. Фиксированная
сопротивление 220К подключено последовательно с переменным резистором, как показано на рис.3. по соотношению:
F = 1,30
C1CT
[9]. …………………………………………. …………………………………………. …………………………… (18)
Где F — частота в кГц, RT — полное сопротивление на выводе 6, а CT — общая емкость на выводе 7. Следовательно, для получения частоты 50 Гц
Учитывая CT = 0,1 мкФ
F = 1,30·
50 x (0,1 X 10−6 )
= 260 кОм
Следовательно, RT необходимо изменять на 100K, чтобы получить частоту 50 Гц. В нашей конструкции мы использовали постоянный резистор на 200К и переменный резистор на 100К.
Сигналы, генерируемые в секции генератора ИС, поступают на секцию триггера ИС. Эта секция преобразует входящие сигналы в сигналы с изменяющейся полярностью. В этом сигнале изменение полярности означает, что когда первый сигнал положительный, второй будет равен нулю, а когда первый сигнал станет равным нулю, второй будет положительным. Следовательно, для достижения частоты 50 Гц этот процесс чаще всего повторяется каждые 50 раз в секунду, т. е. внутри триггерной секции микросхемы генерируется пульсирующий сигнал с частотой 50 Гц.
Этот переменный сигнал частотой 50 Гц имеет выход на контактах 11 и 14 микросхемы.
Этот пульсирующий сигнал может также называться управляющим сигналом MOS. Этот управляющий сигнал МОП-транзистора на контактах 11 и
14 находится в диапазоне 4,6–5,4 В.
Напряжение на этих контактах должно быть одинаковым, поскольку любое изменение напряжения на этих контактах может повредить
MOSFET на выходе.
Поскольку опорное напряжение для усилителя ошибки (вывод 2) установлено равным 2,5 В с помощью делителя напряжения. Следовательно, напряжение, подаваемое на контакт 1, составляет 2,5 В.
Использование делителя напряжения:
Предположим, что R4 = 4700 Ом,
Vpin 1 = Vref x
R 4
R 4 + R 3
………………… …………………………………………. …………………………………………. ..(19)
Vpin 1 = 2,5 v
2,5 = 5 x
4700
4700 + R 3
R3 = 4700 или 4,7 K
IJSER © 2015 http://www.ijser.org
3 9 Научные и инженерные исследования, том 6, выпуск 5, май 2015 г. 939
ISSN 2229-5518
Vpin 2 = Vout x
R s
R s + R 5
. …………………… …………………………………………. ………………………………………. (20)
RS = R6 + R7, обратите внимание, что Vout — положительное значение, которое в нашем проекте равно 14,5 В. Требуемое напряжение на контакте 2 равно 2,5 В
Предположим, что R5 = 100 K;
Rs =
Vpin2 x Rs
………………………………… …………………………………………. ………………………………………(21)
Vout
+ VPIN2
R S =
2,5 x 100 000
14,5 — 2,5
= 20,833Kω
Принимая предварительное r6 в 20 тысяч. 13 – 0,7 = 12,3 В
После проектирования и изготовления были проведены испытания на обрыв и короткое замыкание. Также была проведена физическая обработка машины.
Щипцы электрододержателя плотно захватывают электрод в различных рабочих положениях; следовательно, на ключе не было замечено эффекта дуги. Производство дуги с электродом разного калибра было очень удовлетворительным для металлургических заводов.
Он обладает хорошими характеристиками и высокой эксплуатационной эффективностью, и испытания показали, что конструкция отвечает ожидаемым требованиям по сравнению с обычным аппаратом для дуговой сварки.
В данной работе успешно представлены конструкция и конструкция инверторного типа 3кВА, 50 Гц, однофазной дуговой сварочной машины.
Успешное завершение этой работы предоставит возможности трудоустройства и повысит уровень жизни большинства людей в странах третьего мира, таких как Нигерия. Это также уменьшит зависимость стран третьего мира от импортных товаров.
V1 = первичное напряжение V2 = вторичное напряжение Vt = число оборотов на вольт
ISSN 2229-5518
I1 = первичный ток
I2 = вторичный ток
F = частота (Гц)
U1
D4 D6
+ 48V
D7 D5
PC 123
4.7 KΩ R1
U2 D3
13V
TIP41
Q3
100 KΩ
R6
20 KΩ
1KΩ
R5
4. 7 KΩ
R7
R3
4.7 KΩ
1
2
3 R4 4
5
16
15
14
13 R2
12
330Ω
10 KΩ
D1
R10
T1
9012
Q2
6
R9100K 200 KΩ
R8 7
C1 8
0.1µF
11
10 10 KΩ
9 R14
10 KΩ
R11
D2
9012
Q2
T2
0.1µF
C2 R13
R12
47 KΩ
C3
10 кОм
1 мкФ, 50 В
IJSER © 2015 http://www.ijser.org
Международный журнал научных и инженерных исследований, том 6, выпуск 5, май 2015 г. 941
ISSN 2229-5518
R17
Q4 1KΩ
T2 T1
R24
1KΩ
Q11
Q5
Q6
Q7
Q8
Q9
Q10
R18
1KΩ
R19
1KΩ
R20
1KΩ
R21
1 кОм
R22 48 В
1 кОм
R23
R25
1 кОм
R26
1 кОм
R27
1 кОм
1KΩ
R29
1KΩ
R30
Q12
Q13
Q14
Q15
Q16
Q17
1KΩ D8
D9 1KΩ
a
N1
A2 A1
Primary
Electrode/Holde
N2
U2 U1
Среднее
Работа
IJSER © 2015 http://www. ijser.org
Международный журнал научных и инженерных исследований, том 6, выпуск 5, май 2015 г. 942
ISSN 2229-5518
[1] А. Александр, Р. Бонарт и Э. Виткрафт, Р., Основы сварки, резки, пайки, пайки и наплавки металлов , Лондон: John Deere Publishing, стр. 234-256, 2000.
[2] A. Althouse, K. Bowditch, & Turnquist, Modern Welding . Лондон: Goodheart-Wilcox Company, Inc., стр. 456-461, 2004 г.
[3] М.Г. Скажем, Производительность и конструкция машины переменного тока , Лондон: Pitman, стр. 176-19.8,
1978
[4] Б. А. Эзекойе, «Характеристика и производительность твердотельного инвертора и его применение в фотогальванике
», Тихоокеанский журнал науки и техники, том 8, нет. 1, стр. 68-72, май 2007 г.
[5] Э. Линколин, Справочник по процедурам дуговой сварки, (14-е издание), Нью-Джерси: Prentice Hall Inc., стр.
1-6, 1994.
[6] К. М. Мурти Вишну, Компьютерное проектирование электрических машин , Султан Базар: принтеры Adithya Art, стр. 95-134, 2008.
[7] Б.Л. Терая и А.К. Theraja, Electrical Technology (24-е издание), New Delhi: S.Chand and Company
Ltd, стр. 1122-1146, 2005.
[8] R..L. Бойлестад и Л. Нашельский, Устройства силовой электроники и теория цепей, (6-е издание), New
Delhi: Prentice Hall, pp.415-468.1996.
[9] М. Рашид, Силовая электроника, схемы, устройства и приложения (4-е издание), Нью-Дели: Prentice
Hall, стр. 378-388, 2013 г.
Авторы: инж. Овбиагеле У, инж. Obaitan B Департамент электротехники/электроники Политехнический институт Auchi, Auchi
Эл.
Лучшие результаты (6)
Часть | Модель ECAD | Производитель | Описание | Техническое описание Скачать | Купить Часть |
---|---|---|---|---|---|
UJ3C120040K3S | UnitedSiC | Мощный полевой транзистор, 65 А I(D), 1200 В, 0,045 Ом, 1-элементный, N-канальный, карбид кремния, полевой транзистор, TO-247 | |||
UJ3C065080T3S | UnitedSiC | Мощный полевой транзистор | |||
UF3C065030K4S | UnitedSiC | Мощный полевой транзистор, 85 А I(D), 650 В, 0,035 Ом, 1-элементный, N-канальный, карбид кремния, переходной полевой транзистор, TO-247 | |||
UF3C065080K3S | UnitedSiC | 650 В, 80 мОм SiC FET TO-247-3L | |||
UF3C120400K3S | UnitedSiC | 1200 В-410 мОм SiC FET TO-247-3L | |||
UF4C120053K3S | UnitedSiC | 1200 В-53 мОм SiC FET TO-247-3L |
MOSFET%20схема%20сварка%20инвертор Листы данных Context Search
Каталог Лист данных | MFG и тип | ПДФ | Ярлыки для документов |
---|---|---|---|
д 434 мосфет Резюме: T0220AB MOSFET 345 T0-220AB MOSFET MOSFET N BUK854-500IS 200B 100a MOSFET MOSFET 606 | OCR-сканирование | БУК100-50ДЛ БУК100-50ГЛ БУК100-50ГС БУК101-50ДЛ БУК101-50ГЛ БУК101-50ГС БУК102-50ДЛ БУК102-50ГЛ БУК102-50ГС БУК104-50Л д 434 мосфет T0220AB мосфет 345 Т0-220АБ мосфет МОП-транзистор N БУК854-500ИС 200Б 100а мосфет МОП-транзистор 606 | |
2006 — ан799 Реферат: MOSFET 500V 15A MOSFET 55 nf 06 an799 микрочип tc1426 TC4431 приложение 348 MOSFET MOSFET 6A «MOSFET» 400V TC4425 | Оригинал | АН799 500В14АН ан799 МОП-транзистор 500В 15А мосфет 55 нф 06 микросхема ан799 тк1426 Приложение TC4431 348 мосфет МОП-транзистор 6А «МОП-транзистор» 400В TC4425 | |
БУК417-500Б Реферат: TOPFETs FETs T0-220AB mosfet BUK454-600 BUK617-500BE BUK551-100A PHILIPS MOSFET igbt Руководство по выбору полупроводников Philips Руководство Igbts | OCR-сканирование | T0220AB ОТ186 ОТ186 БУК856-400ИЗ БУК417-500Б полевые транзисторы Т0-220АБ мосфет БУК454-600 БУК617-500БЭ БУК551-100А PHILIPS МОП-транзистор igbt Руководство по выбору полупроводников Philips Руководство по IGBT | |
Т0-220АБ Реферат: PHILIPS MOSFET igbt mosfet переключатель BUK866 4001z | OCR-сканирование | БУК100-50ДЛ БУК100-50ГЛ БУК100-50ГС БУК101-50ДЛ БУК101-50ГЛ БУК101-50ГС БУК102-50ДЛ БУК102-50ГЛ БУК102-50ГС БУК104-50Л Т0-220АБ PHILIPS МОП-транзистор igbt МОП-переключатель БУК866 4001з | |
МОП-транзистор Реферат: AN9506 ISL6572 переключатель zvs драйвер SEM600 Lloyd H. Dixon ISL6752 ISL6753 индуктор переключающий MOSFET каталог MOSFET | Оригинал | ИСЛ6752ИСЛ6753 АН1262 ISL6752 ISL6753 АН1002 АН1246 ИСЛ6752ИСЛ6753ЗВС АН1002АН1246 МОП-транзистор АН9506 ISL6572 переключить драйвер zvs СЭМ600 Ллойд Х. Диксон ISL6752 ISL6753 индуктор переключающий мосфет каталог мосфетов | |
ссф7509 Резюме: MC33035 K1 mosfet SIL-PAD400 mosfet 400a 1335W MOSFet MOSFET B TO220 RthJA 400A mosfet | Оригинал | SSF7509 15 кГц MC33035 SSF7509 MC33035 МОП-транзистор K1 SIL-PAD400 мосфет 400а 1335 Вт MOSFet МОП-транзистор B ТО220 РтЯ МОП-транзистор 400А | |
Схема контактов MOSFET Реферат: LM3641 MOSFET 2KV mosfet+on+09ng | Оригинал | LM3641 схема выводов MOSFET LM3641 МОП-транзистор 2 кВ мосфет+на+09нг | |
Мощный МОП-транзистор 200 кГц Резюме: транзистор c 558 mosfet 4b npn транзистор dc 558 транзистор dc 558 npn 12v 10A dc драйвер управления двигателем mosfet mosfet драйвер с npn транзистором ic 558 mosfet 300v 10a импульсный трансформатор привод pwm ic | Оригинал | Ан-558 AN010063-01-JP 112нс 200нс Мощный мосфет 200 кГц транзистор с 558 мосфет 4b npn-транзистор постоянного тока 558 транзистор постоянного тока 558 npn МОП-транзистор управления двигателем постоянного тока 12 В 10 А драйвер мосфета с транзистором npn ик 558 мосфет 300в 10а привод импульсного трансформатора pwm ic | |
2007 — LM25116 Реферат: Si7850DP TSSOP-20-EP amp mosfet принципиальная схема IC MOSFET QG 6 PIN mosfet | Оригинал | ЛМ25116 50 кГц ЦСОП-20ЭП дс300075 DS300156-01-JP ЛМ25116 Si7850DP ЦСОП-20-ЭП схема усилителя мосфета IC МОП-транзистор QG 6 PIN мосфет | |
1970 — МОП-транзистор-48В Аннотация: схема powr607 emmc 4700uF mosfet-n EIA96 ISPPAC-POWR607 eMMC DC-DC 5V-3,3V ISPPAC-POWR1014 | Оригинал | ГС-12В MOSFET8сек32сек 12VNMOSFET 12В12В страница-126- 32сек2сек ispPAC-POWR1220AT8 AldecActive-HDLHDL9-10 МОП-транзистор-48В мощность607 схема эммк 4700 мкФ мосфет-н ОВОС96 ИСППАК-POWR607 eMMC DC-DC 5В-3,3В ИСППАК-POWR1014 | |
837 мосфет Реферат: 912 MOSFET T0-220AB PHILIPS MOSFET igbt BUK108-50DL 50SP 200b MOSFET MOSFET 1053 MOSFET справочник | OCR-сканирование | БУК100-50ДЛ БУК100-50ГЛ БУК100-50ГС БУК101-50ДЛ БУК101-50ГЛ БУК101-50ГС БУК102-50ДЛ БУК102-50ГЛ БУК102-50ГС БУК104-50Л 837 МОП-транзистор 912 МОП-транзистор Т0-220АБ PHILIPS МОП-транзистор igbt БУК108-50ДЛ 50СП 200b мосфет МОП-транзистор 1053 руководство по МОП-транзисторам | |
2007 — IC MOSFET QG 6 PIN Резюме: MOSFET amp ic ZF 24060 14 В 10 А MOSFET 100 ампер MOSFET 200 кГц мощность MOSFET MOSFET 12 В 4A BAT54 IC MOSFET QG LM78L05 | Оригинал | LM2747 дс201509 50 кГц 250 кГц 50кГц1МГц 250 кГц 1 МГц ЦСОП-14 IC МОП-транзистор QG 6 PIN MOSFET усилитель IC ЗФ 24060 мосфет 14В 10А МОП-транзистор на 100 ампер Мощный мосфет 200 кГц мосфет 12В 4А БАТ54 IC МОП-транзистор QG LM78L05 | |
1995 — 10063 Реферат: SIEMENS MOSFET 14 MOSFET 10063 AN-558 IRF330 IRF450 SIEMENS MOSFET TI MOSFET RRD-B30M115 10063 | Оригинал | ТЛ/Г/10063 Ан-558 ТЛ/Г/10063 РРД-Б30М115/Печать ЦСП-9-111С2 10063 Сименс МОП-транзистор 14 мосфет 10063 Ан-558 IRF330 IRF450 сименс мосфет TI МОП-транзистор РРД-Б30М115 10063 | |
2001 — IRHNJ597230SCS Аннотация: международный выпрямитель SMD 30CLJQ100SCS IRHNJ597034SCS IRHG6110SCS IRHNJ57234SESCS IRFE130SCX 35CLQ045SCS IRHNJ597130SCS IRHNJ7430SESCS | Оригинал | 4047А ИРХНДЖ597130 ИРХНДЖ593130 О-254АА 22JGQ045SCV 22GQ100SCV 25GQ045SCS ИРХНДЖ597230СКС международный выпрямитель SMD 30CLJQ100SCS ИРХНДЖ597034СКС ИРХГ6110СКС ИРХНДЖ57234СЕСКС IRFE130SCX 35CLQ045SCS ИРХНДЖ597130СКС IRHNJ7430SESCS | |
2007 — МОП-транзистор 14В 10А Аннотация: IC MOSFET QG 6-контактный MOSFET AMP IC MOSFET 12V 4A 300 Amp MOSFET RCS 72 BAT54 FDS6898A LM2747 LM78L05 | Оригинал | LM2747 дс201509 50 кГц 250 кГц 50кГц1МГц 250 кГц 1 МГц ЦСОП-14 мосфет 14В 10А IC МОП-транзистор QG 6 PIN MOSFET усилитель IC мосфет 12В 4А МОП-транзистор на 300 ампер ркс 72 БАТ54 ФДС6898А LM2747 LM78L05 | |
2001 — ИРХНА57064СКС Резюме: IRHNJ597230SCS IRHNJ9130SCS IRHG6110SCS IRHY7434 IRHE57130SCS 8CLJQ045SCV IRHNJ57034SCS irfy9230 35CLQ045SCS | Оригинал | 94046Б ИРХНДЖ597230 ИРХНДЖ593230 О-254АА 22JGQ045SCV 22GQ100SCV 25GQ045SCS ИРХНА57064СКС ИРХНДЖ597230СКС IRHNJ9130SCS ИРХГ6110СКС ИРХИ7434 IRHE57130SCS 8CLJQ045SCV ИРХНДЖ57034СКС irfy9230 35CLQ045SCS | |
2005 г. — 5 мм Резюме: LDR 5 мм 300 кГц драйвер MOSFET IC ldr 10k LM2655MTC-ADJ 593D 594D LM2653 LM2655 MTC16 | Оригинал | LM2655 ЦСОП-16 300 кГц DS101284-04-JP LM2655 nat2000 5 мм лдр ЛДР 5мм Микросхема драйвера МОП-транзистора 300 кГц лдр 10к LM2655MTC-ADJ 593D 594Д LM2653 МТС16 | |
Мощный МОП-транзистор Реферат: МОП-переключатель Диод Шоттки 40В 2А Диод Шоттки 30В MOSFET | Оригинал | Si4642DY SiE726DF 1-1500 мкФ 47-680 мкФ Мощный МОП-транзистор МОП-переключатель Диод Шоттки 40В 2А диод шоттки 30v МОП-транзистор | |
2010 — Схема усилителя MOSFET Реферат: IC MOSFET QG IC MOSFET CFT top 256 en схема LM25116 модулятор RDS Si7850DP MOSFET 2KV | Оригинал | ЛМ25116 50 кГц ЦСОП-20ЭП DS300156-03-JP МХА20А схема усилителя мосфета IC МОП-транзистор QG IC МОП-транзистор CFT топ 256 ru схема ЛМ25116 модулятор РДС Si7850DP МОП-транзистор 2 кВ | |
2005 — СЛУП169 Реферат: slup206 peter markowski Руководство по проектированию и применению SLUP206 для высокоскоростных MOSFET IC SEM 2005 СПИСОК ДРАЙВЕРОВ МОП-транзисторов Драйвер IGBT-транзистора Bill Andreycak SLUA341 Синхронный выпрямитель MOSFET | Оригинал | SLUA341 SLUP169 slup206 Питер Марковски СЛУП206 Руководство по проектированию и применению высокоскоростных полевых МОП-транзисторов ИК СЭМ 2005 СПИСОК ДРАЙВЕРОВ МОП-транзисторов Драйвер IGBT MOSFET Билл Андрейчак SLUA341 синхронный выпрямитель mosfet | |
2007 — AC24V Аннотация: DC24V LM3102 | Оригинал | LM3102 ЭЦСОП-20 DC5VDC12VDC24VAC12VAC24V ДС300213-03-ДжП LM3102 AC24V DC24V | |
стабилитрон 5a6 Реферат: Двойной MOSFET dip стабилитрон 6.2v 1w 10v ZENER DIODE 5A6 smd sot23 DG9415 | Оригинал | Si4418DY 130 мОм@ Si4420BDY Si6928DQ 35 мОм@ Si6954ADQ 53 мОм@ SiP2800 СУМ47Н10-24Л 24 мОм@ стабилитрон 5а6 двойной мосфет провал диод стабилитрон 6.2в 1вт 10В ЗЕНЕРСКИЙ ДИОД 5А6 смд сот23 ДГ9415 | |
2007 — MOSFET ВЧ усилитель Реферат: Схема усилителя MOSFET IC MOSFET QG LM25116 Si7850DP 13MOSFET 5256A | Оригинал | ЛМ25116 50 кГц ЦСОП-20ЭП дс300075 DS300156-01-JP МОП-транзистор ВЧ усилитель схема усилителя мосфета IC МОП-транзистор QG ЛМ25116 Si7850DP 13МОП-транзистор 5256А | |
2006 — S 170 МОП-транзистор Резюме: 8203 двойной MOSFET S 170 MOSFET SOT323 MOSFET P MOSFET ЧАСТОТА ПЕРЕКЛЮЧЕНИЯ IPS09N03LA P-канальный силовой MOSFET SO-8 TDA21102 MOSFET все MOSFET эквивалент книги | Оригинал | Б152-Х8203-Г4-С-7600 S 170 МОП-транзистор 8203 двойной мосфет S 170 МОП-транзистор МОП-транзистор SOT323 P ЧАСТОТА ПЕРЕКЛЮЧЕНИЯ MOSFET IPS09N03LA P-канальный силовой MOSFET SO-8 TDA21102 мосфет все mosfet эквивалент книги | |
2008 — АН1114 Реферат: smd транзистор 2t1 smps* ZVT AN1114A DELTA 2000 smps микросхема 1414 термистор ptc 10d DS01114A AN-1114 90VAC-230VAC | Оригинал | АН1114 ДС01114А АН1114 смд транзистор 2t1 смпс* ЗВТ АН1114А ДЕЛЬТА 2000 смс микросхема 1414 термистор ptc 10d Ан-1114 90В переменного тока-230В переменного тока |
Предыдущий 1 2 3 .