Что такое дуговая сварка под флюсом: автоматическая, полуавтоматическая и ручная, технология процесса и оборудование

Содержание

автоматическая, полуавтоматическая и ручная, технология процесса и оборудование

Сварка под флюсом – это способ сварки деталей из высоколегированной марганцевой, никелевой или фторидной стали, при котором сварочная ванна и шов защищены от окисления слоем флюса в виде порошка или гранул.

Процесс формирования шва протекает в газовой полости под слоем непрерывно подаваемого флюса. Кроме функции защиты от окисления, флюс также легирует формируемый шов марганцем и кремнием, повышая его прочность и формируя соединение с высокой степенью однородности.

ГОСТ на сварку флюсом 8713-79 устанавливает размеры и типы сварных соединений, а также способы наложения шва под флюсом.


Виды флюсов и их особенности

По способу изготовления флюсы бывают:

  • плавленые;
  • керамические.

Плавленые флюсы изготавливают из шлакообразующих марганцевых руд и кварцевого песка путем размалывания, смешивания и расплавления с последующим гранулированием. Такие флюсы экономичны и хорошо подходят для сварки деталей из низколегированной стали.

Керамические (неплавленные) флюсы изготавливают из окислителей и солей амфотерных металлов, которые измельчают, смешивают с жидким стеклом до однородного состояния, после чего гранулируют и прокаливают.

сварка под флюсомПримерная стоимость керамических флюсов на Яндекс.маркет

Керамические флюсы имеют мелкодисперсную порошкообразную структуру, они применяются для сваривания сложных высоколегированных стальных сплавов, при этом состав флюса подбирается под конкретную марку свариваемой стали.

По химическому составу флюсы бывают:

  • солевые;
  • оксидные;
  • смешанные.

Солевые флюсы содержат соли фторидов и хлоридов, применяются для электросварки титана и стали, легированной никелем и хромом. Оксидные флюсы содержат оксиды активных металлов и кремния, применяются для сварки низкоуглеродистой стали. Смешанные флюсы содержат оксиды и соли металлов в различных пропорциях, применяются для сваривания многокомпонентных сплавов или деталей из разных металлов.

Описание технологии процесса

Существует три основных способа сварки под флюсом:

  • автоматический;
  • полуавтоматический;
  • ручной.

При автоматической сварке траектория и скорость движения электрода, а также скорость подачи проволоки регулируется управляющим процессором, рабочие участвуют только в качестве контролеров процесса для экстренного отключения сварочного агрегата.

Полуавтоматическая сварка под флюсом предполагает, что скорость подачи проволоки, сила тока сварки и угол наклона электрода к линии сварки регулируются автоматически, а ведение дуги осуществляется сварщиком вручную – через рукоятку или дистанционное управление. Полуавтоматический сварочный агрегат позволяет вручную изменять отдельные параметры тока непосредственно во время процесса сварки.

Сварка под флюсом вручную применяется в небольших агрегатах, где система подачи флюса встроена в неплавящийся электрод, при этом сварщик регулирует направление движения, угол наклона и скорость хода электрода в ручном режиме, специальными кнопками управляя подачей флюса и силой тока сварки.

Общий порядок действий при сварке под флюсом:

  1. С поверхностей деталей снимается оксидная пленка
    .
  2. Детали закрепляются на сварочной плите.
  3. Выбираются настройки и режим сварочного аппарата.
  4. Заполняется резервуар для флюса.
  5. Устанавливается бухта наплавной проволоки, конец которой заправляется в электрод.
  6. Происходит процесс сваривания.
  7. После остывания деталей собирается неизрасходованный флюс, и шов очищается от шлака.

Важно следить за расходованием проволоки и флюса, чтобы не допустить работы электрода вхолостую и повреждения деталей.

Оборудование для сварки

Для сварки флюсом потребуются стационарные условия и оборудование:

  • сварочная плита;
  • наплавная проволока;
  • неплавящийся электрод;
  • система подачи флюса;
  • система контроля.

Сварочные плиты выполняются на бетонном основании из жаростойких материалов с возможностью закрепления деталей. Проволока берется из материала свариваемых деталей, толщина от 0,3 до 12 мм. Электрод изготавливается из вольфрамового сплава с керамической оплеткой.

Система подачи флюса представляет собой резервуар и шланг, конец которого отстоит от электрода на 10-30 см. Диаметр шланга подачи флюса должен позволять гранулам свободно сыпаться перед электродом.

сварка под флюсомСхема процесса автоматической сварки под слоем флюса

Автоматическая и полуавтоматическая сварка под флюсом контролируется программным обеспечением, регулирующим направление и скорость движения электрода вдоль линии сваривания.

Выбор режима сварки

В зависимости от толщины и металла свариваемых деталей выбирается режим сварки под флюсом. Для каждого режима существует свой диапазон напряжения, силы тока сварки и диаметр проволоки. Скорость формирования шва колеблется в пределах от 6 до 100 метров в час.

Если толщина свариваемых деталей от 2 до 10 мм, то выбирается режим сварки на стальной подкладке под стыком деталей. Режим на флюсовой подушке подходит для сварки деталей толщиной 10-25 мм, а сварка деталей толщиной 16-70 мм выполняется в режиме предварительной ручной проварки нижней части шва.

С увеличением толщины свариваемых деталей растет диаметр проволочного электрода и сварочный ток, но уменьшается скорость формирования сварного шва.

Сила тока сварки (А) зависит от толщины проволоки (мм) следующим образом:

  • 2 мм – 200-400 А;
  • 3 мм – 300-600 А;
  • 4 мм
    – 400-800 А;
  • 5 мм – 700-1000 А;
  • 6 мм – 700-1200 А.

Напряжение сварки существенно увеличивается только при толщине деталей свыше 25 мм.

Достоинства и недостатки

К преимуществам сварки под флюсом относятся:

  • высокая степень автоматизации процесса;
  • возможность проведения сварки под большой силой тока;
  • высокая скорость сварки;
  • качественный шов без окислов и раковин;
  • возможность увеличения сварной ванны для более качественного провара.

Системы автоподачи флюса и сохранение постоянного расстояния от электрода до шва позволяет сваривать сложные детали с минимальным участием рабочих. Защитный слой флюса не дает расплавленному металлу разбрызгиваться, что позволяет производить сварку под высокими токами, многократно увеличивая скорость формирования и качество шва.

Однородность шва достигается за счет изоляции сварной ванны от кислорода воздуха, а также из-за легирования шва компонентами флюса, которые можно подобрать специально для материала свариваемых деталей. Также сварка под флюсом дает возможность использования одновременно двух электродов, расположенных на расстоянии 10-20 мм друг от друга и питаемых от одного источника тока – это позволяет сделать больше сварную ванну под флюсом, увеличив таким образом скорость сварки и степень однородности готового изделия.

К недостаткам сварки под флюсом относят трудности контроля процесса и технологическую сложность. Агрегаты для сварки под флюсом занимают большие площади и требуют обслуживания квалифицированными кадрами. Сварной шов формируется под слоем флюса и у сварщика нет возможности контролировать качество шва в режиме реального времени. Избежать брака можно путем дополнения агрегата ультразвуковыми или лазерными системами контроля наличия дефектов.


Автоматическая дуговая сварка под флюсом

Схема автоматической дуговой сварки под флюсом. 1 – токопровод, 2 – механизм перемещения проволоки, 3 – проволока, 4 – жидкий шлак, 5 – флюс, 6 – шлаковая корка, 7 – сварной шов, 8 – основной металл заготовки, 9 – жидкий металл, 10 – электрическая дуга

Автоматическая дуговая сварка под флюсом — сварка электрической дугой, горящей между концом сварочной проволоки и свариваемым металлом под слоем флюса.

Сварка под флюсом применяется в стационарных цеховых условиях для всех металлов и сплавов, включая разнородные металлы толщинами от 1,5 до 150 мм.

История

Придумал способ сварки под флюсом Н. Г. Славянов. В качестве флюса он применял дробленое стекло.

Промышленный способ автоматической сварки под флюсом был разработан в Институте сварки академиком Е. О. Патоном. Коллективом его института была создана технология сварки под флюсом, разработаны составы флюсов, созданы сварочные автоматы.

Сущность

При автоматической дуговой сварке под флюсом электрическая дуга горит под слоем флюса между концом сварочной проволоки и свариваемым металлом. Ролики механизма автоматически вытягивают электродную проволоку в дугу. Сварочный ток, переменный или постоянный, прямой или обратной полярности подводится к электродной проволоке, а другим контактом к изделию.

Сварочная дуга горит в газовом облаке, образованном в результате плавления и испарения флюса и металла. При гашении электрической дуги расплавленный флюс, остывая, образует шлаковую корку, которая отделяется от поверхности шва. Флюс засыпается перед дугой из бункера слоем толщиной 40—80 и шириной 40—100 мм. Количество флюса, идущего в шлаковую корку, равно массе расплавленной сварочной проволоки. Нерасплавившаяся часть флюса отсасывается пневмоотсосом в бункер и используется вновь.

Потери металла на угар и разбрызгивание при горении дуги под флюсом меньше, чем при ручной дуговой и сварке в защитных газах. Расплавленные электродный и основной металлы перемешиваются в сварочной ванне. Кристаллизуясь, они образуют сварной шов.

В промышленности используется сварка проволочными электродами — сварочной проволокой. Иногда сварку проводят ленточными, толщиной до 2 мм и шириной до 40 мм, или комбинированными электродами. Дуга, перемещаясь от одного края ленты к другому, равномерно оплавляет её торец и расплавляет основной металл. Изменяя форму ленты, можно изменить и форму поперечного сечения шва, достигая необходимого проплавления металла или получая равномерную глубину проплавления по всему сечению шва.

При сварке флюс насыпается слоем толщиной 50-60 мм; дуга утапливается в массе флюса и горит в жидкой среде расплавленного флюса, в газовом пузыре, образуемом газами и парами, непрерывно создаваемыми дугой. При среднем насыпном весе флюса около 1,5 г/см3 давление слоя флюса на жидкий металл составляет 7-9 г/см2. Этого давления достаточно для устранения механических воздействий дуги на ванну жидкого металла, приводящего к разбрызгиванию жидкого металла, нарушению формирования шва даже при очень больших токах.

Для электрической дуги, горящей без флюса нельзя проводить сварку при силе тока выше 500-600 А из-за разбрызгивания металла и нарушения формирования шва. Дуга же во флюсе позволяет увеличить токи в до 3000-4000 ампер с сохранением качества сварки и правильным формированием шва.

В качестве флюсов при сварке применяют искусственные силикаты, имеющие слабо кислый характер. Основой флюса являются двойной или тройной силикат закиси марганца, окиси кальция, окиси магния, алюминия и т. д. В качестве добавки, снижающей температуру плавления и вязкость, применяется плавиковый шпат.

Широко применяемых в промышленности высокомарганцовистый флюс ОСЦ-45[1]. Он представляет собой силикат марганца MnOSiO2 с добавкой фтористого кальция. Флюс АН-348 обеспечивает большую устойчивость горения дуги по сравнению с флюсом ОСЦ-45. Большая устойчивость горения дуги обеспечивается при использовании флюса АН-348-А, выделяющем меньше вредных газов.

Недостатки

  • велики трудозатраты, связанные со стоимостью флюса.
  • трудности корректировки положения дуги относительно кромок свариваемого изделия;
  • экологическое воздействие газов на оператора;
  • невидимость места сварки, расположенного под толстым слоем флюса;
  • нет возможности выполнять сварку во всех пространственных положениях без специального оборудования;
  • повышенная жидкотекучесть расплавленного металла и флюса;
  • требуется тщательная сборка кромок под сварку. При увеличенном зазоре между кромками возможно вытекание в него расплавленного металла и флюса и образование в шве дефектов.

Преимущества

  • повышенная производительность;
  • минимальные потери электродного металла;
  • отсутствие брызг;
  • максимально надёжная защита зоны сварки;
  • минимальная чувствительность к образованию оксидов;
  • не требуется защитных приспособлений от светового излучения, так как дуга горит под слоем флюса;
  • низкая скорость охлаждения металла обеспечивает высокие показатели механических свойств металла шва.

Примечания

Литература

Николаев Г. А. Сварка в машиностроении: Справочник в 4-х т. — М.: Машиностроение, 1978 (1-4 т).

Блащук, В.Е. Металл и сварка: учебное пособие / В.Е. Блащук ; 3-е изд., перераб. и доп. — Москва : Стройиздат, 2006. — 144с.

Брюханов, А.Н. Сварочные процессы в электронном машиностроении / А.Н. Брюханов // Коммерсант. — № 217 (2820) от 27.11.2003.

Ссылки

http://websvarka.ru/weld-58.html

http://www.autowelding.ru/index/0-41

http://www.svarkainfo.ru/rus/technology/autoflus

http://electrowelder.ru/index.php/flius.html?start=10

Cварка под слоем флюса — режимы, особенности

Тот, кто знаком со сварочными процессами, знает, как негативно влияет воздух на качество сварного шва. Вот почему самым качественным соединением считается процесс, который проводится в среде защитных материалов. Обычно для этого используются инертные газы или флюсы. Сварка под слоем флюса сегодня используется не так часто, особенно в бытовых условиях. Но в промышленности этот вид сваривания металлов применяется гораздо чаще. Тем более, качество шва при этой технологии гарантированно имеет высокие качественные характеристики. Поэтому когда разговор заходит о сварке под флюсом, необходимо понимать, что данный процесс является полуавтоматическим или автоматическим. В некоторых промышленных производствах устанавливается роботизированная сварка с применением флюсов.

maxresdefault (9)

Что такое сварка под защитными флюсами

По сути, это все тот же сварочный процесс с применением неплавящихся электродов и присадочной проволоки. Только вместо газа, который покрывает собою зону сварки, используется флюс – порошкообразный материал, засыпаемый поверх стыка двух металлических заготовок.

При высокой температуре сварки флюс расплавляется и выделяет все тот же защитный газ. При этом поверх зоны сваривания образуется прочная пленка, защищающая ее от негативного воздействия окружающего воздуха. Сгоревший порошок превращается в шлак, который легко снимается со сваренного шва. Остатки флюса можно собрать и использовать в другом месте.

Но самое главное, что все позиции, связанные с соединением стыкуемых деталей, точно такие же, как и в случае использования других сварочных технологий. А именно:

  • правильный подбор режима сварки, который зависит от структуры соединяемых металлов;
  • правильный выбор электрода;
  • присадочной проволоки, которая по своим свойствам должна соответствовать свойствам основных металлов;
  • грамотное формирование кромок;
  • зачистка торцов деталей, их обезжиривание.

Но есть и одна отличительная особенность – правильный выбор флюса.

Виды флюсов

Как уже было сказано выше, флюс для сварки – это порошок с размерами гранул 0,2-4 мм. Его классификация зависит от многих показателей. Но есть основные характеристики, которые разделяют его на группы и классы.

По способу производства сварочные флюсы делятся на:

  • плавленые: их компоненты сначала плавятся, затем гранулируются, прокаливаются и разделяются на фракции;
  • неплавленые или керамические: это сухие ингредиенты, которые смешиваются с жидким стеклом, сушатся, гранулируются, прокаливаются и разделяются на фракции.

Производители и специалисты отмечают плавленый вариант, как лучший из двух представленных.

Разделение по химическому составу.

  • Оксидные флюсы. В основе порошка содержатся оксиды металлов до 90% и остальное – это фторидные соединения. В этой группе есть подгруппы, которые определяют процентное содержание того или иного оксида. К примеру, оксид кремния. Если его содержится во флюсе до 1%, то такой порошок называется бескремнистый, если его содержание составляет 6-35% — низкокремнистый и больше 35% — высококремнистый. Оксидные флюсы предназначены для сварки низкоуглеродных и фтористых стальных заготовок.
  • Солевые. В них нет оксидов металлов, основу составляют соли: фториды и хлориды. Такой порошок используется для сваривания активных металлов, к примеру, титан.
  • Смешанные флюсы (солеоксидные). В них есть и оксиды и соли. Применяют их для соединения легированных сплавов.

Еще одна характеристика – активность флюсов. По сути, это скорость окисления порошка при его нагреве. Измеряется данный показатель от нуля до единицы и делит флюсы на четыре категории:

  1. Меньше 0,1 – это пассивные материалы.
  2. От 0,1 до 0,3 – малоактивные.
  3. От 0,3 до 0,6 – активные.
  4. Выше 0,6 – высокоактивные.

И последнее. Это деление по строению гранул. Здесь три позиции: стекловидные, пемзовидные и цементированные. Необходимо отметить, что сварка под стекловидным флюсом дает более широкий сварной шов, чем под пемзовидным. Если используется порошок с мелкими частицами, то шов под ним образуется глубокий и неширокий с высокими прочностными качествами.

Полезные советы

  • Большое значение в технологии сварки под флюсом играет переход металлов (марганца и кремния) в металл сварочного шва. Марганец переходит быстрее, если концентрация его оксида (MnO) больше, чем оксида кремния (SiO2). Чем меньше активность флюса, тем быстрее происходит переход.
  • Поры в швах образуются, если флюс не был хорошо просушен, если он не соответствует свойствам металла свариваемых заготовок и металлу присадочной проволоки, если между деталями оказался слишком большой зазор, если флюсовый слой оказался недостаточным, если его качества низкие.
  • Негативно на сварочный шов влияет водород. Поэтому его с помощью флюсов связывают в нерастворимые соединения. Это лучше делает порошок с большим содержанием кремния и с пемзовидной формой гранул.
  • Чтобы в сварном шве не образовывались трещины, необходимы флюсы с высоким содержанием и кремния, и марганца.

Сегодня все чаще в промышленности используется сдвоенная или двухэлектродная сварка, в которой электроды располагаются на расстояние меньше 20 мм друг от друга и питаются от одного источника электрической энергии. При этом они варят в одной зоне, формируя единую сварочную ванну. Располагаться электроды могут как в продольном положении, так и в поперечном.

Применяют и двухдуговую сварку, в которой расходники питаются от двух разных источников, при этом ток может быть на двух стержнях переменным или постоянным. А может быть и разным. Расположение же электродов может быть перпендикулярным плоскости сваривания или под наклоном. Варьируя углом наклона, можно увеличить глубину проварки или уменьшить. Соответственно будет изменяться и ширина шва.

Дуговая сварка под флюсом может проводиться и при повышении расстояния между расходниками. В этом случаи сварка будет проводиться параллельно в двух ваннах. Но первый электрод будет выполнять функции нагревателя зоны сварки, второй будет ее проваривать. При такой технологии соединения металлических заготовок электроды устанавливаются перпендикулярно плоскости сваривания. Данный способ отличается тем, что в процессе сварки двумя электродами не образуются закалочные участки как в самом сварочном шве, так и в прилегающих к нему зонах на основных деталях.

Режимы сварки под флюсом

Необходимо отметить тот факт, что механизированная сварка под флюсом отличается от ручной тем, что появляется возможность использовать сварочный ток высокой плотности. Он варьируется в диапазоне 25-100 А/мм². Соответственно и сила тока будет использоваться большая. Это отражается на глубокой проварке шва, возможности сваривать толстостенные заготовки без формирования кромок, увеличивать скорость самого процесса.

К примеру, при сваривании деталей толщиною 20-40 мм при однодуговой ручной сварке скорость процесса составляет не более 70 м/час. Используя двухдуговую сварку, можно увеличить данный показатель до 300 м/час. Конечно, силу тока подбирают в основном от диаметра используемого электрода. В таблице указана их зависимость между собой.

Диаметр электрода, мм Сила сварочного тока, А
2 200-400
3 300-600
4 400-800
5 700-1000
6 700-1200

Необходимо добавить, что сварочно-флюсовая технология является еще и экономичной. Все дело в том, что расход материалов уменьшается за счет меньшего разбрызгивания металла, к примеру, в ручной сварке этот показатель составляет 15%, в флюсовой механизированной меньше 3%. Уменьшается объем угара, не образовываются огарки и другие неприятные моменты. Сохранение тепла под флюсом дает возможность сэкономить и электроэнергию. Уже доказано, что уменьшение потребления электрического тока происходит до 40%. Сокращаются и трудозатраты, которые обычно уходят на формирование кромок, на очистку шва после сварки от окалин, брызг и шлака.

Единственный минус – это ограничение по положению сварочной ванны. Варить можно в нижнем положении автоматами или полуавтоматами или с небольшим наклоном в пределах 10-15°.

Обязательно посмотрите видео, в котором показано, как можно варить две металлические детали под флюсом.

Поделись с друзьями

0

0

0

0

что это такое? ГОСТ сварочного флюса, его выбор для сварки стали и меди, режимы, преимущества и недостатки

До момента изобретения первых флюсовых составов, случившегося во второй половине XIX века, соединить металлические детали между собой зачастую можно было только ковкой. Ковка требовала наличия оборудованной кузницы и определенных навыков, тогда как сварка для обывателя несколько проще и при этом не отличается в сторону ухудшения надежности. При этом перед самостоятельными опытами в теорию вникнуть все-таки стоит.

Что это такое?

Большинство металлов, взаимодействуя с атмосферным кислородом, быстро покрываются тонким слоем оксида. С одной стороны, он даже обеспечивает некоторую защитную функцию, не допуская коррозии внутренних слоев металла, но для сварки оксид представляет большую проблему, поскольку не дает получить доступ к металлическому изделию напрямую.

Оксидный слой образуется заново довольно быстро, потому варить металл без какой-либо защиты поверхности от доступа кислорода непродуктивно. Тот или иной состав, которым покрывается рабочая поверхность, называется сварочным флюсом – он может состоять из различных компонентов, нередко умеет разрушать уже образовавшийся оксид.

Известно не менее полусотни видов флюсов, однако, такое разнообразие не значит, что можно брать любой из них – у каждого есть специфические особенности. Ко всем существующим маркам выдвигаются четкие требования, прописанные в ГОСТе 9087-81. Сущность сварки под флюсом как процесса заключается в том, что электрическая дуга горит под флюсовой смесью, а не только там, где мы ее видим. Горение дуги возможно благодаря подаче на электродную проволоку высокого напряжения. Вокруг дуги образуется облако газов, образовавшихся при плавке как флюса, так и самого металла.

Сама сварка и создаваемые с ее помощью соединения описаны другим ГОСТом – 8713-19.

Достоинства и недостатки

Сварка не во всех случаях обязательно должна происходить с защитой рабочей поверхности флюсом, и в некоторых случаях использование флюсовых смесей игнорируется. Тем не менее в профессиональной сварке флюсы чаще все-таки используются, потому что у такого метода масса преимуществ:

  • электрическая дуга приобретает особую стойкость и стабильность;
  • меньше энергии тратится на нагревание металлов и разбрызгивание, потому коэффициент полезного действия возрастает, как и экономия электричества;
  • сварка с флюсом на токах высокой интенсивности позволяет плавить металл значительно быстрее, благодаря чему возрастает и эффективность;
  • металл в процессе сварки не угорает, потому шов получается более качественным и аккуратным;
  • сварщик пребывает в условиях повышенной безопасности, так как пламя дуги по большей мере «спрятано» с обратной стороны флюсового слоя.

Если бы сварка под флюсом была абсолютно безупречным методом, она давно стала бы безальтернативным решением. Тем не менее во многих случаях сварщики до сих пор обходятся без флюсовых составов, а это значит, что у методики есть и определенные минусы. Их всего два, но иногда они могут сыграть определяющую роль:

  • шов скрыт флюсом до тех пор, пока вы полностью не закончите работу, а значит, в процессе выполнения нет никакой возможности оценить то, что получается;
  • и сами флюсовые смеси, и другие расходники, используемые при этом способе сварки, провоцируют существенное удорожание работы.

Сферы применения

Флюсы применяются как для ручной, так и для автоматической дуговой сварки, чтобы защитить обрабатываемую поверхность от ненужного образования оксида, угара металла и повысить качество получаемого шва. При этом специфика применения флюса для разных нужд несколько отличается.

При ручной сварке варимую деталь обычно покрывают слоем флюсового порошка толщиной ориентировочно в полсантиметра. Экономить на расходнике, хоть он и недешевый, неразумно – тонкий слой флюса может привести к низкокачественной проварке и последующему образованию трещин. Досыпать флюс следует по мере перемещения электрода по заготовке.

Промышленный метод немного отличается: если вы варите полуавтоматическим или автоматическим способом, то и флюс к месту варения будет подаваться по особой трубке. Перестараться с количеством флюсового порошка в такой ситуации сложно, потому что в составе агрегата предусмотрен пневматический отсос лишнего порошка.

Тот флюс, который действительно необходим для работы, превращается в шлаковый слой, который удаляют уже после завершения работы.

Подбираем все, что нужно

Сварка под флюсом покажет себя с лучшей стороны только в том случае, если максимально правильно подобрать для нее все необходимое. Это утверждение касается как оборудования, так и флюсовых составов.

Оборудование

В промышленности чаще всего используется специальный автоматический стенд сборочного типа, позволяющий не только варить любые конструкции, но и надежно фиксировать их в том положении, в каком они должны будут пребывать постоянно после завершения работы. Подобное оборудование отличается повышенными показателями надежности крепления элементов – это позволяет гарантировать отсутствие отклонений по швам или форме будущего изделия, тем более что мастер в процессе работы сам шов не видит.

Такой агрегат удобен для выполнения стыковых и угловых швов, работает быстро, обеспечивает высокое качество и надежность соединений. Конструкция управляет собой сама, потому стоит дорого – в качестве альтернативы на стенд иногда устанавливают мобильные головки.

Полуавтомат стоит ощутимо дешевле, но требует от оператора куда большей вовлеченности в процесс. Направление проволоки и контроль вылета электрода целиком и полностью перекладываются на плечи сварщика, хотя подача проволоки все же производится автоматически. Мощность напряжения, скорость перемещения по шву и угол наклона электрода – это те параметры режима сварки, которые мастер должен выбрать самостоятельно в зависимости от специфики обрабатываемой детали.

Ручное оборудование чаще применяется в небольших мастерских или любителями, хотя есть и специфические сферы применения, где это наиболее удобный вариант для выполнения поставленной задачи. Так, ручная сварка возможна даже в труднодоступных местах и в любых положениях.

Подобное оборудование стоит сравнительно недорого, потому широко используется непрофессионалами.

Флюсы

Сварочные флюсы бывают различных видов, их маркировка строго привязана к действующему ГОСТу. Классификация таких составов возможна по разным признакам, мы рассмотрим лишь некоторые из них. В первую очередь все флюсы делятся на классы в зависимости от материала, для сварки которого они годятся. Для высоколегированной стали нужен один класс составов, для углеродистой или легированной – другой. Третий, отдельный класс флюсов, выпускается производителями специально для цветных металлов и сплавов – меди, бронзы и так далее.

По способу производства флюсы делятся на керамические и плавленые. Керамические хороши тем, что обеспечивают повышенные качества шва и обладают легирующими свойствами. Производится масса путем экструзии сыпучих керамических компонентов с последующим добавлением жидкого стекла. Плавленые флюсы отличаются структурой, напоминающей пемзу или стекло, производятся они плавлением и спеканием ингредиентов с дальнейшим образованием гранул.

Существует также классификация флюсов по их химическому составу. Выделяют следующие классы.

  • Солевые составы состоят из хлоридов и фторидов. Типичная сфера их применения – варение активных металлов и шлакового переплава.
  • Оксидные смеси представляют собой металлические окислы с некоторой примесью соединений фтора. Это оптимальный выбор для сварки фтористых и низколегированных сталей.
  • Смешанные флюсы, как следует из названия, представляют собой комбинацию солевых и оксидных. Лучше всего такое вещество подходит для варки легированных сталей.

Классифицируют флюсовые смеси также и по тому, в каком виде они продаются. Гранулы и порошок являются наиболее характерными формами флюса, но только в том случае, если сварка будет электрической. Состав может приобретать форму пасты или даже газа, но тогда он предназначен для более редкой газовой сварки. Некоторые начинающие сварщики по привычке стремятся определить еще и лучшего производителя флюсов, по традиции отдавая предпочтение составам импортных марок.

На самом деле при выборе флюса это самый последний фактор, на который стоит обращать внимание, – куда важнее правильно подобрать смесь по всем остальным критериям.

Режимы

Выбор режима сварки зависит от различных показателей, например, способа разделки кромок, их толщины, планируемого количества проходов по будущему шву и метода удерживания сварочной ванны. Сила и напряжение тока, диаметр сечения проволоки, скорость сварки, положение самого изделия и вылет электрода тоже оказывают влияние на выбор тактики обработки заготовки. Расчет параметров для каждой заготовки всегда производится индивидуально.

Например, для наиболее ходовой сварки стыковых швов хватит одного одностороннего прохода под флюсом при условии, что толщина заготовки не превышает 3 см. Если детали толще, шов варят с двух сторон и могут добавлять дополнительные проходы. Одностороннее варение актуально лишь в тех случаях, если материал не боится перегрева, а швы не должны дать сварочные трещины.

Если свариваемые листы совсем тонкие (не толще 6 мм), разделка кромок как этап подготовки к дальнейшей обработке не выполняется, при этом соединяемые детали прикладывают друг к другу как можно ближе, стараясь минимизировать зазор до предела. При толщине заготовок порядка 1-1,2 см зазор, наоборот, оставляют – это поможет добиться повышенного качества шва и заодно уменьшить избыток расплавившегося металла. В любом из описанных случаев фиксация деталей требуется особая – либо подкладкой, либо подварочным швом, либо предварительной сборкой «в замок».

Подкладка является наиболее ходовым решением для варения металлических листов толщиной не более 1 см. Как правило, она стальная, толщиной 3-6 мм при ширине 3-5 см. Сварку «в замок» используют для соединения важных деталей, где прожог материала недопустим. Кроме того, это лучший метод соединения больших и тяжелых конструкций. Что же касается подварочного шва, то это сравнительно редкий режим сварки, который уместен лишь в том случае, если перекантовка изделия не представляется реальной.

Технология

Для начала надо подготовить сварные кромки – дуговая сварка под флюсом не выдвигает каких-либо требований по способу их подготовки, это может быть как механическая обработка, так и термическая резка. Сама кромка и участки непосредственно около нее подлежат обязательной очистке от пленок оксида или масла, ржавчины и иных загрязнений. Ширина зоны зачистки обычно колеблется в пределах 3-4 см от края, подлежащего свариванию.

Перед тем как начинать варить шов, будущую конструкцию собирают на специальном стеллаже так, чтобы ее фрагменты находились в правильном положении по отношению друг к другу. Фиксация деталей осуществляется прихватками и технологическими планками.

Средняя длина прихватки составляет 5-10 см, они располагаются с интервалом 50-55 см по линии будущего соединения. Если необходимо сварить угловой шов, процедуру выполняют на выводных технологических планках.

Для всех случаев используется проволока толщиной от 3 до 5 мм. Точная технология сварки очень зависима от того, как выглядят детали по отдельности и как они должны быть соединены между собой. На специфику процедуры влияют также и многочисленные другие показатели, среди которых конфигурация и протяженность швов, химический состав металла и его толщина, а также используемое оборудование.

Возможные проблемы

Даже несмотря на строгое следование инструкциям, новичок может столкнуться с некоторыми проблемами, причина возникновения которых ему неизвестна. Наиболее яркий пример – появление пор на шве, свидетельствующих о том, что под флюсом оказался газ, которого там не должно было быть. В большинстве случаев пористость вызвана присутствием водорода либо углекислого газа, реже корень зла – азот. Азотистые поры возможны только при работе с микролегированной сталью, если материал имеет нитридное упрочнение.

Такая же проблема встречается, если заготовку резали плазменным резаком. Углекислый газ попадает под флюс в том случае, если в сварочной ванне недостаточно раскислителей. Для препятствования образованию пор в жидкую ванну добавляют хотя бы 0,2% кремния. Также реакция раскисления происходит при снижении температуры, и наоборот – углекислого газа будет больше при ее повышении. Наиболее частой первопричиной пор является водород, источником для него часто становится недостаточная чистка кромок от загрязнений или ржавчины.

Кроме того, источником водородных пор в заваренном шве может оказаться влажный флюс.

В следующем видео вас ждет автоматическая сварка под флюсом двутавровой балки на заводе.

ДУГОВАЯ СВАРКА ПОД ФЛЮСОМ — это… Что такое ДУГОВАЯ СВАРКА ПОД ФЛЮСОМ?


ДУГОВАЯ СВАРКА ПОД ФЛЮСОМ

дуговая сварка с защитой металла флюсом от окисления и азотирования (см. рис.). Этот способ сварки механизирован и по сравнению со сваркой покрытым алектродом обеспечивает повышение производительности в 3 — 6 раз, в особо благоприятных условиях — в 25 раз, например при работе на полном автоматич. режиме, осуществляемом при помощи трактора для дуговой сварки. Сварной шов под флюсом получается проваренным по всей толщине, высокого качества.

Схема дуговой сварки под флюсом: 1 — электрод; 2 — воронка; 3 — порошкообразный грану лированный флюс; 4 — защитный газовый пузырь; 5 — сварной шов; 6 — шлаковая корка

Большой энциклопедический политехнический словарь. 2004.

  • ДУГОВАЯ СВАРКА
  • ДУГОВАЯ УГОЛЬНАЯ ЛАМПА

Смотреть что такое «ДУГОВАЯ СВАРКА ПОД ФЛЮСОМ» в других словарях:

  • Дуговая сварка под флюсом — Сварка неплавящимся электродом 10. Дуговая сварка под флюсом Дуговая сварка, при которой дуга горит под слоем сварочного флюса Источник: ГОСТ 2601 84: Сварка металлов. Термины и определения основных понятий оригинал документа …   Словарь-справочник терминов нормативно-технической документации

  • дуговая сварка под флюсом — Дуговая сварка, при которой дуга горит под слоем сварочного флюса сварка под флюсом. [ГОСТ 2601 84] Тематики сварка, резка, пайка EN submerged arc welding DE UnterpulverlichtbogenschweißenUnterpulverschweißenUP Schweißen FR soudage à l’arc sous… …   Справочник технического переводчика

  • Дуговая сварка под флюсом — Submerged arc welding Дуговая сварка под флюсом. Дуговая сварка, при которой дуга между голым металлическим элетродом и заготовкой защищается порошковым плавким материалом, находящемся поверх соединения. Давление к соединению не прикладывается,… …   Словарь металлургических терминов

  • дуговая сварка под флюсом — Syn: дуговое сваривание под флюсом …   Металлургический словарь терминов

  • дуговая сварка под флюсом ленточным электродом — 4.2.4.9 дуговая сварка под флюсом ленточным электродом (122): Дуговая сварка под флюсом, при которой используют сплошной или порошковый ленточный электрод. Источник: ГОСТ Р ИСО 857 1 2009: Сварка и родственные процессы. Словарь. Часть 1. Процессы …   Словарь-справочник терминов нормативно-технической документации

  • дуговая сварка под флюсом несколькими проволочными электродами — 4.2.4.10 дуговая сварка под флюсом несколькими проволочными электродами (123): Дуговая сварка под флюсом, при которой используют более одного проволочного электрода. Источник: ГОСТ Р ИСО 857 1 2009: Сварка и родственные процессы. Словарь. Часть 1 …   Словарь-справочник терминов нормативно-технической документации

  • дуговая сварка под флюсом порошковыми проволочными электродами — 4.2.4.12 дуговая сварка под флюсом порошковыми проволочными электродами (125): Дуговая сварка под флюсом одним или несколькими порошковыми проволочными электродами. Источник: ГОСТ Р ИСО 857 1 2009: Сварка и родственные процессы. Словарь. Часть 1 …   Словарь-справочник терминов нормативно-технической документации

  • дуговая сварка под флюсом проволочным электродом — 4.2.4.8 дуговая сварка под флюсом проволочным электродом (121): Дуговая сварка под флюсом, при которой используют только один проволочный электрод. Источник: ГОСТ Р ИСО 857 1 2009: Сварка и родственные процессы. Словарь. Часть 1. Процессы сварки… …   Словарь-справочник терминов нормативно-технической документации

  • дуговая сварка под флюсом с добавлением металлического порошка — 4.2.4.11 дуговая сварка под флюсом с добавлением металлического порошка (124): Дуговая сварка под флюсом, при которой используют один или несколько проволочных электродов с добавлением металлического порошка. Источник: ГОСТ Р ИСО 857 1 2009:… …   Словарь-справочник терминов нормативно-технической документации

  • дуговая сварка под флюсом (ДСФ) — 3.2 дуговая сварка под флюсом (ДСФ): Сварка плавлением, при которой нагрев осуществляется электрической дугой, горящей под слоем сварочного флюса. Источник …   Словарь-справочник терминов нормативно-технической документации

Автоматическая дуговая сварка под флюсом — Студопедия

Для автоматической дуговой сварки под флюсом используют непокрытую электродную проволоку и флюс для защиты дуги и сварочной ванны от воздуха. Подача и перемещение электродной проволоки механизированы. Автоматизированы процессы зажигания дуги и заварки кратера в конце шва. В процессе автоматической сварки под флюсом (рис. 13) дуга 10 горит между проволокой-электродом 3 и основным металлом 8. Столб дуги и жидкая металлическая ванна 9 со всех сторон плотно закрыты слоем флюса 5 толщиной 30 – 50 мм. Часть флюса расплавляется, в результате чего вокруг дуги образуется газовая полость, а на поверхности расплавленного металла – ванна жидкого шлака 4. Для сварки под флюсом характерно глубокое проплавление основного металла. Под действием мощной дуги и весьма быстрого движения электрода вдоль заготовки происходит оттеснение расплавленного металла в сторону, противоположную направлению сварки. По мере поступательного движения электрода металлическая и шлаковая ванны затвердевают с образованием сварного шва 7, покрытого твердой шлаковой коркой 6. Проволоку подают в дугу и перемещают ее вдоль шва с помощью механизмов подачи 2 и перемещения. Ток к электроду поступает через токопровод 1.

Повышенное качество сварных швов обусловлено получением более высоких механических свойств наплавленного металла благодаря надежной защите сварочной ванны флюсом, интенсивному раскислению и легированию вследствие увеличения объема жидкого шлака, сравнительно медленного охлаждения шва под флюсом и горячей твердой шлаковой коркой; улучшением формы, поверхности сварного шва и постоянством его размеров по всей длине вследствие регулирования режима сварки, механизированных подачи и перемещения электродной проволоки.


Флюсы. Для изоляции сварочной ванны от атмосферы воздуха, обеспечения устойчивого горения дуги, формирования ровной поверхности шва и получения заданных состава и свойств наплавленного металла используют флюсы. По назначению их разделяют на флюсы для сварки низкоуглеродистых и низколегированных сталей, легированных и высоколегированных сталей.

Флюсы для сварки низкоуглеродистых и низколегированных сталей предназначены для раскисления шва и легирования его марганцем и кремнием. Для этого применяют плавленые высококремнистые марганцевые флюсы. Их шлаки имеют высокое содержание Si02 и МnО. Флюсы изготовляют путем плавления марганцевой руды, кремнезема, плавикового шпата в электропечах.


Флюсы для сварки легированных и высоколегированных сталей должны обеспечивать минимальное окисление легирующих элементов в шве. Для этого применяют плавленые и керамические низкокремнистые, бескремнистые и фторидные флюсы. Их шлаки имеют высокое содержание CaO, CaF2 и А12О3. Плавленые флюсы изготовляют из плавикового шпата, алюмосиликатов, алюминатов путем плавления в электропечах. Их шлаки имеют основной характер. Керамические флюсы приготовляют из порошкообразных компонентов путем замеса их на жидком стекле, гранулирования и последующего прокаливания. Основу керамических флюсов составляют мрамор, плавиковый шпат и хлориды щелочноземельных металлов. В них также входят ферросплавы сильных раскислителей (кремния, титана, алюминия), легирующие элементы и чистые металлы. Шлаки керамических флюсов имеют основной или пассивный характер и обеспечивают получение в металле шва заданное содержание легирующих элементов.

При выполнении односторонних швов с полным проваром для предупреждения прожогов применяют различные подкладки со стороны корня шва: остающиеся стальные, съемные флюсовые или медные. Возможна также сварка по ручной подварке корня шва.

Дуговую сварку под флюсом выполняют неподвижными подвесными автоматическими сварочными головками и передвижными сварочными автоматами (сварочными тракторами), перемещающимися непосредственно по изделию. Назначение сварочных автоматов – подача электродной проволоки в дугу и поддержание постоянного режима сварки в течение всего процесса. Автоматическую сварку под флюсом применяют в серийном и массовом производствах для выполнения длинных прямолинейных и кольцевых швов в нижнем положении на металле толщиной 2 – 100 мм. Под флюсом сваривают стали различных классов. Автоматическую сварку широко применяют при изготовлении котлов, резервуаров для хранения жидкостей и газов, корпусов судов, мостовых балок и других изделий. Она является одним из основных звеньев автоматических линий для изготовления сварных автомобильных колес и станов для производства сварных прямошовных и спиральношовных труб, рис. 14.

Основные преимущества автоматической сварки под флюсом по сравнению с ручной дуговой сваркой состоят в повышении производительности процесса сварки в 5 – 20 раз, качества сварных соединений и уменьшении себестоимости 1 пог.м сварного шва. Повышение производительности достигается за счет возможности использования больших сварочных токов (до 2000 А) и непрерывности процесса сварки. Применение непокрытой проволоки позволяет приблизить токопровод на расстояние 30 – 50 мм от дуги и тем самым устранить опасный разогрев электрода при большом токе. Плотная флюсовая защита сварочной ванны предотвращает разбрызгивание и угар расплавленного металла. При этом более полно используется тепловая мощность дуги (КПД дуги возрастает до 0,9 – 0,95) и увеличивается коэффициент наплавки aн до 18 – 20г/(А×ч). Увеличение тока позволяет сваривать металл большой толщины (до 20 мм) за один проход без разделки кромок, что приводит к существенной экономии наплавленного металла по сравнению со сваркой в разделку.

 
 

Рис. 14. Схема автоматической линии изготовления спирально-шовных труб с применением автоматической дуговой сварки под флюсом: 1 – рулон полосовой стали: 2 – -летучий агрегат для обрезки и сварки, позволяющий наращивать полосу; 3 – парные дисковые ножницы для обрезки кромок под сварку; 4 – толкающие валики; 5 – штанга для ввода автоматов для сварки внутреннего шва трубы; б – -формовочное устройство; 7 – автомат для сварки наружного шва: 8 – летучее устройство для резки непрерывной трубы на трубы мерной длины: 9-спирально-шовная труба

Сварка под флюсом — это… Что такое Сварка под флюсом?


Сварка под флюсом
        дуговая Сварка с применением для защиты сварочной ванны от воздействия воздуха и для улучшения формирования сварного шва специального сварочного материала (См. Сварочные материалы) флюса. Этот способ обеспечивает постоянство режима, позволяет увеличить сварочный ток до 1000—2000 а, получить большую глубину проплавления материала и высокое качество сварного шва по всей длине.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

  • Сварка пластмасс
  • Сварное соединение

Смотреть что такое «Сварка под флюсом» в других словарях:

  • Сварка под флюсом — – дуговая сварка, при которой дуга горит под слоем сварочного флюса. [ГОСТ Р ИСО 857 1 2009] Рубрика термина: Сварка Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника …   Энциклопедия терминов, определений и пояснений строительных материалов

  • сварка под флюсом — Дуговая сварка, при которой электрическая дуга горит под слоем сварочного флюса [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Тематики сварка, резка, пайка EN submerged arc welding DE UnterpulverschweißenUP… …   Справочник технического переводчика

  • сварка под флюсом — [submerged arc welding] дуговая сварка с применением для защиты сварочной ванны от воздействия воздуха и для улучшенного формирования сварного шва специального сварочного материала флюса. Этот способ обеспечивает постоянство режима, позволяет… …   Энциклопедический словарь по металлургии

  • СВАРКА ПОД ФЛЮСОМ — дуговая сварка, при которой электрическая дуга горит под слоем сварочного флюса (Болгарский язык; Български) заваряване под слой от флюс (Чешский язык; Čeština) svařování pod tavidlem (Немецкий язык; Deutsch) Unterpulverschweißen; UP Schweißen… …   Строительный словарь

  • СВАРКА ПОД ФЛЮСОМ — [submerged arc welding] дуговая сварка с применением для защиты сварочной ванны от воздейстействия воздуха и для улучшения формирования сварного шва специального сварочного материала флюса. Этот способ обеспечивает постоянство режима,… …   Металлургический словарь

  • сварка под флюсом автоматизированная — Способ электродуговой сварки с применением автоматических устройств и использованием для защиты сварочной ванны от воздействия воздуха и для улучшения формирования сварного шва специального сварочного материала флюса. [РД 01.120.00 КТН 228 06]… …   Справочник технического переводчика

  • Дуговая сварка под флюсом — Сварка неплавящимся электродом 10. Дуговая сварка под флюсом Дуговая сварка, при которой дуга горит под слоем сварочного флюса Источник: ГОСТ 2601 84: Сварка металлов. Термины и определения основных понятий оригинал документа …   Словарь-справочник терминов нормативно-технической документации

  • дуговая сварка под флюсом — Дуговая сварка, при которой дуга горит под слоем сварочного флюса сварка под флюсом. [ГОСТ 2601 84] Тематики сварка, резка, пайка EN submerged arc welding DE UnterpulverlichtbogenschweißenUnterpulverschweißenUP Schweißen FR soudage à l’arc sous… …   Справочник технического переводчика

  • дуговая сварка под флюсом ленточным электродом — 4.2.4.9 дуговая сварка под флюсом ленточным электродом (122): Дуговая сварка под флюсом, при которой используют сплошной или порошковый ленточный электрод. Источник: ГОСТ Р ИСО 857 1 2009: Сварка и родственные процессы. Словарь. Часть 1. Процессы …   Словарь-справочник терминов нормативно-технической документации

  • дуговая сварка под флюсом несколькими проволочными электродами — 4.2.4.10 дуговая сварка под флюсом несколькими проволочными электродами (123): Дуговая сварка под флюсом, при которой используют более одного проволочного электрода. Источник: ГОСТ Р ИСО 857 1 2009: Сварка и родственные процессы. Словарь. Часть 1 …   Словарь-справочник терминов нормативно-технической документации


Что такое сварка под флюсом? — TWI

Сварка под флюсом (SAW) — это обычный процесс дуговой сварки, который включает образование дуги между непрерывно подаваемым электродом и заготовкой. Покрытие из порошкового флюса создает экран защитного газа и шлак (а также может использоваться для добавления легирующих элементов в сварочную ванну), который защищает зону сварного шва.

Защитный газ не требуется. Дуга находится под защитным слоем флюса и обычно не видна во время сварки.

Это хорошо зарекомендовавший себя и чрезвычайно универсальный метод сварки.

Электрод может быть сплошной или порошковой проволокой, либо полосой, изготовленной из листа или спеченного материала. Флюс может быть получен либо путем плавления компонентов с образованием стекловидного шлака (который затем измельчается с образованием порошка), либо путем агломерации компонентов с использованием связующего и процесса очистки. Химическая природа и распределение флюса по размерам способствует стабильности дуги и определяет механические свойства металла шва и форму валика.

SAW обычно работает как механизированный процесс. Сварочный ток (обычно от 300 до 1000 ампер), напряжение дуги и скорость движения — все это влияет на форму валика, глубину проплавления и химический состав наплавленного металла шва. Поскольку оператор не может наблюдать за сварочной ванной, следует больше полагаться на настройку параметров и расположение присадочной проволоки.

Хотя SAW обычно работает с одной проволокой с использованием переменного или постоянного тока, существует ряд вариантов, включая использование двух или более проволок, добавление рубленой проволоки к стыку перед сваркой и использование добавок металлического порошка.Дополнительная производительность может быть достигнута за счет подачи непроводящей проволоки небольшого диаметра в переднюю кромку сварочной ванны. Это может увеличить производительность наплавки до 20%. Эти варианты используются в определенных ситуациях для повышения производительности за счет увеличения производительности наплавки и / или скорости движения. Замена проволоки полосой толщиной 0,5 мм, обычно шириной 60 мм, позволяет использовать этот процесс для наплавки компонентов.

SAW идеально подходит для выполнения продольных и кольцевых стыковых швов, необходимых для изготовления трубопроводов и сосудов высокого давления.Сварка обычно выполняется в плоском (BS EN ISO 6947 PA) положении из-за высокой текучести сварочной ванны и расплавленного шлака, а также из-за необходимости поддерживать слой флюса. Угловые соединения также могут быть выполнены сваркой в ​​плоском или горизонтально-вертикальном (PB) положениях.

Дополнительная информация

Если у вас есть вопросы или вам нужна помощь, напишите нам, чтобы получить консультацию специалиста: [email protected]

.

Что такое дуговая сварка под флюсом? (с иллюстрациями)

Дуговая сварка под флюсом, часто сокращенно называемая SAW, — это особый и популярный тип дуговой сварки, при котором область плавления и сварки покрывается слоем флюса. Это дает сварщикам ряд преимуществ: от снижения УФ-излучения до обеспечения более высокого качества сварки. В традиционной дуговой сварке электрический ток используется для создания электрической дуги между электродом и обрабатываемым металлом. Эта электрическая дуга плавит и соединяет материалы вместе, а электричество может вырабатываться либо постоянным (DC), либо переменным (AC) током.

Сварка заключается в соединении двух металлических предметов вместе.

Разница между традиционной дуговой сваркой и дуговой сваркой под флюсом заключается в слое флюса, покрывающего материалы. Флюс — это материал, который при плавлении создает путь для прохождения электрической дуги.Дуга проходит от электрода через флюс к материалу, который необходимо сваривать. В этом методе также можно использовать постоянный или переменный ток.

При дуговой сварке под флюсом флюс создает газовую защиту на объекте, способствуя соединению металлов.

У этого типа сварки много преимуществ. Поскольку сварной шов находится под водой, он предотвращает разбрызгивание и обратное разбрызгивание горячих материалов. Поток также помогает предотвратить испускание высоких уровней УФ-излучения. Давление не требуется для создания сварного шва, поскольку всю работу выполняет электрический ток. Этот тип сварки не только обеспечивает эти преимущества по сравнению с другими формами, но и отлично подходит для быстрого соединения тонких металлических листов и обеспечивает хорошее сплавление материалов.

Этот процесс можно проводить как в помещении, так и на открытом воздухе, где наиболее удобно разместить оборудование. Чтобы флюс оставался в правильном положении, сварка должна выполняться на плоской и горизонтальной поверхности; в противном случае флюс может сместиться и вызвать неправильную сварку.При правильном выполнении дуговая сварка под флюсом дает качественные и привлекательные результаты.

Однако у этого метода есть недостатки. Хотя он помогает предотвратить разбрызгивание и излучение, количество материалов, на которых его можно использовать, ограничено.Сталь и нержавеющая сталь являются наиболее распространенными типами, которые работают с этим типом сварки, наряду с некоторыми сплавами на основе никеля. Также есть некоторые опасения по поводу безопасности флюса, поскольку потенциально опасные остатки могут остаться.

.

Как работает дуговая сварка под флюсом?

Дуговая сварка под флюсом (SAW) — это наиболее часто используемый процесс сварки, при котором сварочная дуга проходит под слоем гранулированного флюса. В этом способе сварки плавящийся твердый или трубчатый электрод непрерывно подается в зону сварки. Одновременно с этим на зону сварного шва заливается слой гранулированного плавкого флюса, который погружает сварочную дугу и защищает ее от атмосферного загрязнения. Гранулированный флюс содержит кремнезем, известь, фторид кальция, оксид марганца и другие соединения.Когда флюс расплавлен, он становится проводящим и обеспечивает прохождение тока между электродом и заготовкой. Толстый слой флюса полностью покрывает расплавленный металл и предотвращает разбрызгивание (покрытие каплями или пятнами металла) и искры, а также скрывает пары интенсивного ультрафиолетового излучения, образующиеся во время процесса.

Этот процесс сварки был открыт в 1935 году. Первоначально он был разработан и запатентован Кеннеди, Джонсом и Ротермундом.

SAW может работать в полуавтоматическом (ручном) или автоматическом режиме.Но обычно он работает в автоматическом режиме.

Блок питания

Источник питания постоянного или переменного тока может использоваться для SAW. А для многоэлектродных систем обычно используется комбинация постоянного и переменного тока.

Диапазон тока, используемого в процессе, составляет от 300 до 2000 А. для нескольких дуг, также использовался ток до 5000 А.

Основные части или оборудование

Основные части или оборудование, используемое в процессе дуговой сварки под флюсом (SAW):

.

Сварка под флюсом: тогда и сейчас

Сварка под флюсом (SAW) названа так потому, что зона сварного шва и дуги погружены под слой флюса. Флюс становится проводящим, когда он расплавлен, создавая путь для прохождения тока между электродом и заготовкой. Покрытие из флюса предотвращает разбрызгивание и искры, а также защищает от ультрафиолетового света и дыма, которые обычно являются частью дуговой сварки защищенного металла. Флюс обычно подается в сварочную головку через небольшой бункер.Система сбора собирает излишки флюса для повторного использования.

В процессе используется один или несколько электродов (проволоки) с непрерывной подачей для поддержания дуги. SAW известна своей способностью быстро, стабильно и безопасно наносить большие объемы металла. Основное оборудование SAW — это источник питания, блок управления, блок проволоки и сопло.

Инновации, вызванные необходимостью

Хотя в конце 1920-х годов были поданы многочисленные патенты на специализированные флюсы и процесс без видимой дуги, заслуга компании National Tube Works Co., McKeesport, PA, за разработку в 1930 году того, что сегодня известно как сварка под флюсом. Компании требовалось добиться более высокой производительности наплавки при сварке швов труб.

В конце 1930-х годов развитие процесса ускорилось с появлением спроса на боевые корабли и другое военное оборудование для поддержки войны. Сообщается, что в письме тогдашнего президента Рузвельта Уинстону Черчиллю даже упоминается «техника сварки, которая позволяет нам строить торговые суда со скоростью, не имеющей аналогов в истории торгового судоходства», и что этот процесс сварки был «до 20 раз быстрее. «по сравнению с предыдущими сварочными процессами.1Поскольку конструкция корпуса судов способствовала этому процессу, производство военного времени выдвинуло недавно появившуюся технологию дуговой сварки на передний план в мире сварки.

Однако он не получил широкого распространения, потому что только производители толстолистового проката и другие высокопроизводительные операции по производству черных металлов, требующие сварки в плоском или горизонтальном положении, могли действительно получить выгоду. Кроме того, временами были ограничения на муниципальное электроснабжение. Процесс всегда считался надежным и качественным, поэтому постоянно рос.

Во время беспрецедентного промышленного бума с 1950-х по 1990-е годы потребность в трудолюбии была очевидна, но не было убедительных причин для долгосрочной эффективности, потому что в США было много сырья, площадей, рабочей силы, энергии и прибыль. SAW по-прежнему использовалась для определенных приложений, но не было реальных бизнес-факторов, которые могли бы улучшить ее.

Развитие, вызванное спросом

Перенесемся в 2000 год, и все готово для современной эволюции SAW.Нет сомнений в том, что производителям необходимо лучше использовать ресурсы в сегодняшней ультраконкурентной производственной среде. В условиях экспоненциального роста индустриального мира потребность в производстве с высокой скоростью и эффективностью становится выше, чем в любой другой период истории. Добавьте к этому климату больше требований к доставке продукции по всему миру; растущие инфраструктурные проекты, такие как строительство мостов, стальные конструкции и спиральные трубы; и все, что связано с энергией, например, ветряные башни, морские нефтяные вышки и горнодобывающее оборудование, и настало время для того, чтобы процесс SAW стал всем, чем он может быть.

В соответствии с современными требованиями к сварке достижения в области сварки под флюсом за последние 5–10 лет создали значительные преимущества. Скорость наплавки более 100 фунтов. в час теперь сообщается в некоторых случаях (см. Рисунок 1 ). Также можно сваривать очень большие площади стыка с меньшим количеством проходов и минимальной подготовкой. Пользователи SAW заключили партнерские отношения с производителями оборудования, чтобы создать отрасль, отвечающую их собственным потребностям.

«Мы привыкли говорить, что большая часть наших технологических разработок была вызвана спросом клиентов», — сказал Кен Фишер, менеджер по дуговой сварке под флюсом Miller Electric Mfg.Co., Appleton, Wis.

«Теперь мы можем легко сказать, что все это вызвано потребительским спросом. Наши клиенты перестали просить об увеличении производства и стали требовать этого ».

Где находится пила?

Как выглядит новая технология? Сегодняшнее удобное для пользователя рабочее место сильно отличается от того, что отец спартанского цеха занимал от 50 до 75 лет назад. SAW, естественно, подходит для более цивилизованной среды. Это всегда был экологически чистый и безопасный процесс с минимальным проникновением дыма и отсутствием защиты от дуговых лучей, что делало его одним из наиболее приятных условий для работы при сварке ( см. Рисунок 2 ).Технологические достижения в области силового оборудования и средств управления сделали реальностью выполнение SAW с большей легкостью и точностью, чем это было возможно ранее.

At the Arc

Способность SAW использовать несколько дуг в одной ванне приводит к чрезвычайно высокой скорости наплавки, что обеспечивает более быстрое проникновение тепла и стабильность дуги. В традиционных источниках питания, когда волна переходит от положительного (EP) к отрицательному (EN) в течение своего полупериода, в дуге может возникнуть задержка или прерывание, что впоследствии приведет к проблемам в сварке.Хотя этот фактор и связанные с ним проблемы ввода и вывода ранее ограничивали скорость и производительность, теперь он решен в современном силовом оборудовании.

Во-первых, теперь можно сваривать полярность переменного и постоянного тока в одной ванне, используя один и тот же источник питания. Раньше требовались разные машины, и иногда сварные швы на постоянном и переменном токе приходилось выполнять разными проходами. Теперь две или более машины могут быть соединены вместе или отключены для использования по отдельности в других операциях. Сегодняшняя SAW может поместить до пяти проволок в одну ванну, что дает возможность создавать сварные швы быстрее и с уникальными специальными свойствами.Преимущества переменного тока для высокой наплавки, стабильности и устранения дуги могут быть реализованы, в то время как DCEP / DCEN обеспечивают стабильное проплавление на гораздо более высоких скоростях.

Благодаря тому, что происходит в задней части этих новых аппаратов, сварщики теперь имеют гораздо больше возможностей для дуги. Старое оборудование работало в соответствии с ограниченным набором параметров; сегодняшние источники энергии работают и реагируют.

«Машина выполняет большую часть работы», — сказал Майк Флэгг, менеджер SAW компании Lincoln Electric Co., Кливленд.«Пользователь просто должен настроить параметры, когда это необходимо. Новое оборудование довольно просто для операторов в эксплуатации ».

Power and Control

На стороне ввода больше нет необходимости использовать только однофазное питание. Новые машины могут подключаться к трехфазному источнику питания и Для обоих используется один и тот же источник питания.Это достигается простой модификацией вилки, чтобы ток и напряжение оставались стабильными и постоянными.Инверторы позволяют использовать одно и то же оборудование в любой точке мира.

Современные средства управления на ПАВ полностью цифровые, что обеспечивает постоянную обратную связь для контроля и изменения напряжения, силы тока, скорости подачи проволоки и т. Д. Цифровые ПЛК настраиваются для взаимодействия с приложением, выбранным на источнике питания, и в некоторых случаях один контроллер может обрабатывать любой выбор AC, DC CV или DC CC.

Сохраняемые настройки позволяют оператору вводить три или четыре разные программы и записывать их одну за другой, не запоминая оптимальные диапазоны нагрева и мощности для данной работы.После ввода параметров их можно вызвать и снова использовать в том же приложении. Можно запрограммировать диапазоны наплавки и нагрева, и система будет следить за тем, чтобы оператор оставался в этих диапазонах.

Программируемость контроллеров позволяет компаниям работать в реальных бизнес-условиях. В некоторых случаях опытные операторы могут обучать и управлять неопытными сварщиками, не рискуя потерять контроль над одной или несколькими переменными.

Возможность создания отчетов также доступна через программное обеспечение для мониторинга с использованием сетевых коммуникаций.Как и в станках с ЧПУ, источник сварочного тока можно программировать удаленно и контролировать по сети. То, что можно просматривать локально, можно просматривать в любой точке мира. Данные о проникновении и теплоте осаждения, скорости и качестве могут быть отправлены по электронной почте.

Скорости хода и расходные материалы

Гибкость новых источников питания позволяет производителям сосредоточиться на более высоких скоростях хода, что повышает качество сварных швов с наплавкой.

«В 50-е и 60-е годы тракторы были огромными.Теперь они стали намного меньше и могут работать быстрее », — сказал Фишер.

Одной из проблем ранних SAW была переменная скорость подачи трактора. Теперь тракторы, оснащенные системой управления скоростью, могут изменять скорость при изменении нагрузки, сохраняя другие параметры более постоянными. . Адаптивность по-прежнему является главной задачей, поэтому даже модульные тракторы можно разобрать без инструментов, чтобы пропустить их через небольшие пространства, где они снова собираются для выполнения необходимых операций. Эти высококлассные тракторы чрезвычайно универсальны в том, что они могут делать.

Точно так же, как промышленность улучшила системы питания и применения, также были обновлены расходные материалы для соответствия текущим требованиям.

Трубчатая проволока, также называемая проволокой с металлическим сердечником, имеет металлическую проволоку снаружи и металлический порошок внутри, состоящий из сплавов, которые зависят от области применения, например смеси флюсов. Эти проволоки позволяют выполнять операции, которые ранее требовали нескольких проходов за один или два прохода. Они также позволяют использовать более универсальный и менее дорогой флюс.

Производство и поставка флюсов также расширились, чтобы соответствовать производственным требованиям SAW. Флюс с трубчатым сердечником зависит от области применения и обеспечивает дополнительную прочность и качество сварного шва. Обычный флюс теперь можно купить в мешках размером до 3000 фунтов, а в некоторых случаях он может храниться до пяти лет, сохраняя при этом свои свойства.

SAW также позволяет применять ленточную облицовку — процесс, который впервые появился в 1960-х годах. Расходный материал представляет собой полосу из металла или сплава толщиной 0 °.От 79 до 4,72 дюйма в ширину и около 0,020 дюйма в толщину, который используется вместо обычного проволочного электрода. Дуга проходит между полосой и заготовкой, а флюс защищает сварной шов от атмосферы, а оператора — от брызг. Это еще один вариант для достижения высокого уровня наплавки и устранения количества проходов.

Барьеры

SAW не подходят для каждого применения. Поскольку это плоский или горизонтальный процесс, существуют ограничения на типы операций, которые могут принести пользу. Кроме того, это в основном характерно для черных металлов.На некоторых материалах, таких как алюминий, проблемы с едким флюсом сводят на нет преимущества SAW для окружающей среды и безопасности и требуют другого процесса.

Производители должны учитывать стоимость входа при оценке SAW для своих операций. Хотя технология управления предлагает широкие возможности, она имеет свою цену. Объемы производства определят, будет ли оборудование оправданным. Доступны недорогие источники питания, но многие из них не обладают наиболее востребованными возможностями.

У SAW светлое будущее.По мере индустриализации целых культур во всем мире, приложения, которые поддаются этому процессу, также будут расти. В то время как текущая технология уже готова удовлетворить новые требования со скоростью и точностью, производители будут продолжать искать, что еще можно сделать, чтобы помочь пользователям SAW быть эффективными и конкурентоспособными.

.

Отправить ответ

avatar
  Подписаться  
Уведомление о