Удельное сопротивление проводников: Удельное электрическое сопротивление проводника

Содержание

Какое удельное электрическое сопротивление проводника

Понятие об электрическом сопротивлении и проводимости

Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.

Электронная теория так объясняет сущность электрического сопротивления металлических проводников. Свободные электроны при движении по проводнику бесчисленное количество раз встречают на своем пути атомы и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии. Электроны испытывают как бы сопротивление своему движению. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.

Точно тем же объясняется сопротивление жидких проводников и газов прохождению электрического тока. Однако не следует забывать, что в этих веществах не электроны, а заряженные частицы молекул встречают сопротивление при своем движении.

Сопротивление обозначается латинскими буквами R или r .

За единицу электрического сопротивления принят ом.

Ом есть сопротивление столба ртути высотой 106,3 см с поперечным сечением 1 мм2 при температуре 0° С.

Если, например, электрическое сопротивление проводника составляет 4 ом, то записывается это так: R = 4 ом или r = 4ом.

Для измерения сопротивлений большой величины принята единица, называемая мегомом.

Один мегом равен одному миллиону ом.

Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник.

Следовательно, для характеристики проводника (с точки зрения прохождения через него электрического тока) можно рассматривать не только его сопротивление, но и величину, обратную сопротивлению и называемую, проводимостью.

Электрической проводимостью называется способность материала пропускать через себя электрический ток.

Так как проводимость есть величина, обратная сопротивлению, то и выражается она как 1/ R ,обозначается проводимость латинской буквой g.

Влияние материала проводника, его размеров и окружающей температуры на величину электрического сопротивления

Сопротивление различных проводников зависит от материала, из которого они изготовлены. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.

Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм2. Удельное сопротивление обозначается буквой греческого алфавита р. Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.

Например, удельное сопротивление меди равно 0,017, т. е. медный проводник длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,017 ом. Удельное сопротивление алюминия равно 0,03, удельное сопротивление железа – 0,12, удельное сопротивление константана – 0,48, удельное сопротивление нихрома – 1-1,1.

Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.

Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой, т. е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.

Электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь площадь поперечного сечения проводника :

где – R – сопротивление проводника, ом, l – длина в проводника в м, S – площадь поперечного сечения проводника, мм 2 .

Площадь поперечного сечения круглого проводника вычисляется по формуле:

где Пи – постоянная величина, равная 3,14; d – диаметр проводника.

А так определяется длина проводника:

Эта формула дает возможность определить длину проводника, его сечение и удельное сопротивление, если известны остальные величины, входящие в формулу.

Если же необходимо определить площадь поперечного сечения проводника, то формулу приводят к следующему виду:

Преобразуя ту же формулу и решив равенство относительно р, найдем удельное сопротивление проводника:

Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Для этого надо определить удельное сопротивление проводника и, пользуясь таблицей, найти материал, обладающий таким удельным сопротивлением.

Еще одной причиной, влияющей на сопротивление проводников, является температура .

Установлено, что с повышением температуры сопротивление металлических проводников возрастает, а с понижением уменьшается. Это увеличение или уменьшение сопротивления для проводников из чистых металлов почти одинаково и в среднем равно 0,4% на 1° C . Сопротивление жидких проводников и угля с увеличением температуры уменьшается.

Электронная теория строения вещества дает следующее объяснение увеличению сопротивления металлических проводников с повышением температуры. При нагревании проводник получает тепловую энергию, которая неизбежно передается всем атомам вещества, в результате чего возрастает интенсивность их движения. Возросшее движение атомов создает большее сопротивление направленному движению свободных электронов, отчего и возрастает сопротивление проводника. С понижением же температуры создаются лучшие условия для направленного движения электронов, и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов .

Сверхпроводимость , т. е. уменьшение сопротивления металлов до нуля, наступает при огромной отрицательной температуре – 273° C , называемой абсолютным нулем. При температуре абсолютного нуля атомы металла как бы застывают на месте, совершенно не препятствуя движению электронов.

Удельное сопротивление металлов является мерой их свойства противодействовать прохождению электрического тока. Эта величина выражается в Ом-метр (Ом⋅м). Символ, обозначающий удельное сопротивление, является греческая буква ρ (ро). Высокое удельное сопротивление означает, что материал плохо проводит электрический заряд.

Удельное сопротивление

Удельное электрическое сопротивление определяется как отношение между напряженностью электрического поля внутри металла к плотности тока в нем:

где:
ρ — удельное сопротивление металла (Ом⋅м),
Е — напряженность электрического поля (В/м),
J — величина плотности электрического тока в металле (А/м2)

Если напряженность электрического поля (Е) в металле очень большая, а плотность тока (J) очень маленькая, это означает, что металл имеет высокое удельное сопротивление.

Обратной величиной удельного сопротивления является удельная электропроводность, указывающая, насколько хорошо материал проводит электрический ток:

σ — проводимость материала, выраженная в сименс на метр (См/м).

Электрическое сопротивление

Электрическое сопротивление, одно из составляющих закона Ома, выражается в омах (Ом). Следует заметить, что электрическое сопротивление и удельное сопротивление — это не одно и то же. Удельное сопротивление является свойством материала, в то время как электрическое сопротивление — это свойство объекта.

Электрическое сопротивление резистора определяется сочетанием формы и удельным сопротивлением материала, из которого он сделан.

Например, проволочный резистор, изготовленный из длинной и тонкой проволоки имеет большее сопротивление, нежели резистор, сделанный из короткой и толстой проволоки того же металла.

В тоже время проволочный резистор, изготовленный из материала с высоким удельным сопротивлением, обладает большим электрическим сопротивлением, чем резистор, сделанный из материала с низким удельным сопротивлением. И все это не смотря на то, что оба резистора сделаны из проволоки одинаковой длины и диаметра.

В качестве наглядности можно провести аналогию с гидравлической системой, где вода прокачивается через трубы.

  • Чем длиннее и тоньше труба, тем больше будет оказано сопротивление воде.
  • Труба, заполненная песком, будет больше оказывать сопротивление воде, нежели труба без песка

Сопротивление провода

Величина сопротивления провода зависит от трех параметров: удельного сопротивления металла, длины и диаметра самого провода. Формула для расчета сопротивления провода:


где:
R — сопротивление провода (Ом)
ρ — удельное сопротивление металла (Ом.m)
L — длина провода (м)
А — площадь поперечного сечения провода (м2)

В качестве примера рассмотрим проволочный резистор из нихрома с удельным сопротивлением 1.10×10-6 Ом.м. Проволока имеет длину 1500 мм и диаметр 0,5 мм. На основе этих трех параметров рассчитаем сопротивление провода из нихрома:

R=1,1*10 -6 *(1,5/0,000000196) = 8,4 Ом

Нихром и константан часто используют в качестве материала для сопротивлений. Ниже в таблице вы можете посмотреть удельное сопротивление некоторых наиболее часто используемых металлов.

Поверхностное сопротивление

Величина поверхностного сопротивления рассчитывается таким же образом, как и сопротивление провода. В данном случае площадь сечения можно представить в виде произведения w и t:


Для некоторых материалов, таких как тонкие пленки, соотношение между удельным сопротивлением и толщиной пленки называется поверхностное сопротивление слоя RS:

где RS измеряется в омах. При данном расчете толщина пленки должна быть постоянной.

Часто производители резисторов для увеличения сопротивления вырезают в пленке дорожки, чтобы увеличить путь для электрического тока.

Свойства резистивных материалов

Удельное сопротивление металла зависит от температуры. Их значения приводится, как правило, для комнатной температуры (20°С). Изменение удельного сопротивления в результате изменения температуры характеризуется температурным коэффициентом.

Например, в термисторах (терморезисторах) это свойство используется для измерения температуры. С другой стороны, в точной электронике, это довольно нежелательный эффект.
Металлопленочные резисторы имеют отличные свойства температурной стабильности. Это достигается не только за счет низкого удельного сопротивления материала, но и за счет механической конструкции самого резистора.

Много различных материалов и сплавов используются в производстве резисторов. Нихром (сплав никеля и хрома), из-за его высокого удельного сопротивления и устойчивости к окислению при высоких температурах, часто используют в качестве материала для изготовления проволочных резисторов. Недостатком его является то, что его невозможно паять. Константан, еще один популярный материал, легко паяется и имеет более низкий температурный коэффициент.

Как нам известно из закона Ома, ток на участке цепи находится в следующей зависимости: I=U/R. Закон был выведен в результате серии экспериментов немецким физиком Георгом Омом в XIX веке. Он заметил закономерность: сила тока на каком-либо участке цепи прямо зависит от напряжения, которое к этому участку приложено, и обратно – от его сопротивления.

Позже было установлено, что сопротивление участка зависит от его геометрических характеристик следующим образом: R=ρl/S,

где l- длина проводника, S – площадь его поперечного сечения, а ρ – некий коэффициент пропорциональности.

Таким образом, сопротивление определяется геометрией проводника, а также таким параметром, как удельное сопротивление (далее – у. с.) – так назвали этот коэффициент. Если взять два проводника с одинаковым сечением и длиной и поставить их в цепь по очереди, то, измеряя силу тока и сопротивление, можно увидеть, что в двух случаях эти показатели будут разными. Таким образом, удельное электрическое сопротивление – это характеристика материала, из которого сделан проводник, а если быть еще более точным, то вещества.

Проводимость и сопротивление

У.с. показывает способность вещества препятствовать прохождению тока. Но в физике есть и обратная величина — проводимость. Она показывает способность проводить электрический ток. Выглядит она так:

σ=1/ρ, где ρ – это и есть удельное сопротивление вещества.

Если говорить о проводимости, то она определяется характеристиками носителей зарядов в этом веществе. Так, в металлах есть свободные электроны. На внешней оболочке их не больше трех, и атому выгоднее их «отдать», что и происходит при химических реакциях с веществами из правой части таблицы Менделеева. В ситуации же, когда мы располагаем чистым металлом, он имеет кристаллическую структуру, в которой эти наружные электроны общие. Они-то и переносят заряд, если приложить к металлу электрическое поле.

В растворах носителями заряда являются ионы.

Если говорить о таких веществах, как кремний, то по своим свойствам он является полупроводником и работает несколько по иному принципу, но об этом позже. А пока разберемся, чем же отличаются такие классы веществ, как:

Проводники и диэлектрики

Есть вещества, которые ток почти не проводят. Они называются диэлектриками. Такие вещества способны поляризоваться в электрическом поле, то есть их молекулы могут поворачиваться в этом поле в зависимости от того, как распределены в них электроны. Но поскольку электроны эти не являются свободными, а служат для связи между атомами, ток они не проводят.

Проводимость диэлектриков почти нулевая, хотя идеальных среди них нет (это такая же абстракция, как абсолютно черное тело или идеальный газ).

Условной границей понятия «проводник» является ρ

Физика 8 класс. Электрическое сопротивление. Удельное сопротивление :: Класс!ная физика

Физика 8 класс. ЭЛЕКТРИЧЕСКОЕ СОПРОТИВЛЕНИЕ

Электрическое сопротивление ( R ) — это физическая величина, численно равная отношению
напряжения на концах проводника к силе тока, проходящего через проводник.
Величину сопротивления для участка цепи можно определить из формулы закона Ома для участка цепи.

Однако, сопротивление проводника не зависит от силы тока в цепи и напряжения, а определяется только формой, размерами и материалом проводника.

где l — длина проводника ( м ), S — площадь поперечного сечения (кв.м ),
r ( ро) — удельное сопротивление (Ом м ).

Удельное сопротивление

— показывает, чему равно сопротивление проводника, выполненного из данного вещества,
длиной в 1м и с поперечным сечением 1 м кв.

Единица измерения удельного сопротивления в системе СИ: 1 Ом м

Однако, на практике толщина проводов значительно меньше 1 м кв,
поэтому чаще используют внесистемную единицу измерения удельного сопротивления:


Единица измерения сопротивления в системе в СИ:

[R] = 1 Ом

Сопротивление проводника равно 1 Ом, если при разности потенциалов на его концах в 1 В,
по нему протекает ток силой 1 А.

___

Причиной наличия сопротивления у проводника является взаимодействие движущихся электронов с ионами кристалической решетки проводника. Из-за различия в строении криталической решетки у проводников, выполненных из различных веществ, сопротивления их отличаются друг от друга.

ЗАПОМНИ !

Существует физическая величина обратная сопротивлению — электрическая проводимость.

R — это сопротивление проводника,
1/R — это электрическая проводимость проводника
___

Величины проводимости проводников и изоляторов различаются в большое число раз,
измеряемое единицей с двадцатью двумя нулями!

ЗНАЕШЬ ЛИ ТЫ ?

… что сопротивления кожи человека обычно изменяется от 1 кОм ( для влажной кожи )
до 500 кОм ( для сухой кожи ). Сопротивление других тканей тела равно от 100 до 500 Ом. 19) имеют очень большое удельное сопротивление и почти не проводят электрический ток, их  используют для изоляторов.

Реостаты

Реостат — прибор, который используется для регулирования силы тока в цепи.

Самый простой реостат — проволока с большим удельным сопротивлением , такая как никелиновая или нихромовая.

Виды реостатов:

Ползунковый реостат — еще один вид реостатов , в котором  стальная проволока намотана на керамический цилиндр.Проволока покрыта тонким слоем окалины , которая не проводит электрический ток , поэтому ее витки изолированы друг от друга.Над обмоткой — металлический стержень по которому перемещается ползунок .

Он прижат к виткам обмотки.От трения ползунка о витки слой окалины стирается и электрический ток в цепи проходит от витков проволоки к ползунку, потом в стержень.Когда реостат подключили в цепь , можно передвигать ползунок , таким образом увеличивать или уменьшать сопротивление реостата.

Жидкостный реостат — представляет бак с электролитом, в который погружаются металлические пластины.  

Проволочный реостат — cостоит из проволоки из материала в котором высокое удельное сопротивление, натянутый на раму. 

Нельзя превышать силу тока реостата, потому что обмотка реостата может перегореть.

Реостат мы часто применяем в повседневной жизни, например, регулируя громкость телевизора и радио, увеличивая и уменьшая скорость езды на машине. 

Нужна помощь в учебе?



Предыдущая тема: Закон Ома для участка цепи: формулировка и формула, применение
Следующая тема:&nbsp&nbsp&nbspПоследовательное и параллельное соединение проводников

Расчёт сопротивления проводника. Удельное сопротивление.

Цель: исследовать зависимость сопротивления проводника от его характеристик.

Задачи

обучающие:

  • исследовать зависимость сопротивления проводника от его длины, площади поперечного сечения и вещества, из которого он изготовлен;
  • сформировать первичные представления знаний о новой физической величине « удельное электрическое сопротивление»;
  • продолжить формирование умений решать задачи;

развивающие:

  • работать над формированием исследовательских компетенций учащихся путем организации фронтального виртуального мини-исследования с использованием электронных ресурсов;
  • работать над формированием умений учащихся воспринимать и представлять информацию в словесной и символической формах через обсуждение результатов демонстрационного эксперимента и самостоятельных виртуальных экспериментов;
  • формировать умения делать выводы на основе проведенного анализа;
  • работать над формированием коммуникативных компетенций учащихся;

воспитательные:

  • знакомить с экспериментальным методом научного познания природы; создать условия для развития самостоятельности учащихся;
  • развивать познавательный интерес учащихся к предмету.

Тип урока: комбинированный.

Формы работы учащихся:

  • групповая (исследовательская самостоятельная работа с электронными ресурсами)
  • коллективное обсуждение результатов виртуальных экспериментов;
  • индивидуальная (текущий контроль, самостоятельная работа с ЭОР К-типа)

Методы обучения, используемые на уроке: словесные, наглядные, практические.

Демонстрационное оборудование: источник питания ВС-24М, лампочки на 3В и 12 В, ключ, цифровой амперметр, реохорд, соединительные провода.

Средства ИКТ: ПК (для учителя), видеопроектор, интерактивная доска, нетбук (на индивидуальном рабочем месте каждого учащегося). Презентация SMART Notebook по теме «Расчет сопротивления проводников. Удельное сопротивление».

Структура и ход урока

1.Организационный этап 

Деятельность учителя

Деятельность ученика

Приветствует учащихся.

Проверяет готовность учащихся к занятию.

Приветствуют учителя.

Проверяют готовность к уроку.

2. Проверка домашнего задания

Деятельность учителя

Деятельность ученика

Проводит проверку домашнего задания.

(Приложение 1)

Выполняют тест (варианты разного уровня сложности)

3. Актуализация знаний 

Деятельность учителя

Деятельность ученика

Готовит учащихся к восприятию новых знаний.

Предлагает разгадать анаграммы, сопоставить текст – изображение.


Давайте вспомним, что является причиной сопротивления проводника?

Зависит ли сила тока от сопротивления проводника? Как зависит? Зависит ли сопротивление от силы тока и напряжения?

Выполняют интерактивные задания.

Составляют название приборов, правила их подключения для измерения физических величин.

Сопоставляют условное обозначение прибора на схеме с его названием.


Отвечают на вопросы учителя

4. Создание проблемной ситуации

Деятельность учителя

Деятельность ученика

1.Предлагает вниманию учащихся следующий эксперимент:


К источнику тока с напряжением 3 В включают поочерёдно лампочки на 3В и 12 В. Почему лампочка на 12 В не светится.

2. Проверяет исправность лампы, увеличив напряжение источника тока.

Выдвигают предположения:

  • неисправность лампы.
  • большое сопротивление лампы.

 

5. Постановка цели урока. Изучение новой темы

Деятельность учителя

Деятельность ученика

1.Подводит учащихся к цели урока. Разные потребители тока имеют разное сопротивление, что необходимо знать, чтобы изготовить проводник с необходимым сопротивлением? Зависимость сопротивления от геометрических размеров проводника (длины и площади поперечного сечения) и вещества, из которого он изготовлен, впервые установил Георг Ом.

1. Формулируют с учителем цель урока.

2. Выясните: от чего и зависит сопротивление проводника? Краткие рекомендации по работе над учебным модулем (Расчет сопротивления проводника. Удельное сопротивление. Реостаты).

Разделяет учащихся по группам и предлагает самостоятельно решить поставленную задачу, сделать выводы и поделиться выводами со всем классом.


 

2. Слушают рекомендации учителя для выполнения практического задания. Работают с учебным модулем (1-5 пункты). Проводят исследования и составляют краткий конспект.

Делают выводы по результатам выполнения каждого задания в отдельности.

Обобщают результаты трех виртуальных экспериментов и формулируют общий вывод.

 

3. Предлагает проверить результаты исследований на экспериментальной установке.

 

3.Совместно с учителем проводят эксперимент подтверждающий справедливость сделанных выводов.


4. Предлагает учащимся продолжить работу с учебным модулем.

Выясните: какая физическая величина характеризует зависимость сопротивления проводника от материала, из которого изготовлен проводник.

4. Продолжают работу с учебным модулем (6 пункт) и выполняют записи в тетрадях.

5.Предлагает учащимся поработать с таблицей удельного сопротивления некоторых веществ(стр.105 учебник физика 8 класс, автор А.В.Пёрышкин) и ответить на вопросы:

  • В каких единицах измерения представлены значения удельного сопротивления в таблице?
  • Какое вещество имеет наибольшее удельное сопротивление?
  • Какое вещество имеет наименьшее удельное сопротивление?
  • Почему провода линий электропередач не изготовляют из золота и серебра, ведь у них малое значение удельного сопротивления?
  • Какое вещество используется в проводах линий электропередач? Почему?
  • Чему равно удельное сопротивление никелина? Что означает эта запись в таблице?

5. Работают с таблицей удельного сопротивления (учебник) и отвечают на вопросы учителя.

 

6. Предлагает учащимся обобщить полученные закономерности и составить формулу для нахождения сопротивления проводника. Провести проверку.


6. Анализируют полученные результаты и составляют формулу сопротивления. Используя, учебный модуль (7пункт) проводят проверку полученной формулы.

7. Предлагает получить дополнительные формулы.

 

7. Сравнивают полученные формулы.


6. Этап первичного освоения знаний

Деятельность учителя

Деятельность ученика

1. Дает задание учащимся по работе с тестом для первичной диагностики уровня освоения знаний.

(Удельное электрическое сопротивление веществ)

В практический модуль включены 7 интерактивных заданий различных типов с возможностью автоматизированной проверки для закрепления знаний. Модуль относится к II уровню интерактивности

Отвечает на вопросы учащихся по разъяснению правил выполнения работы.

1.Слушают рекомендации учителя по выполнению задания.

Задают организационные вопросы учителю.

Выполняют практическое задание.

2.Определяет успешность выполнения задания. Интересуется возникшими трудностями. Определяет задания, с которыми учащиеся не смогли справиться.

2. Сообщают, какие задания теста вызвали затруднения.

3.Организует работу учащихся по демонстрации верных решений.

3.Объясняют решение заданий.


7. Этап закрепления полученного материала

Деятельность учителя

Деятельность ученика

1. Учитель приглашает ученика к доске записать решение задачи и проверить ответ.

Чему равно сопротивление 100 м медного провода сечением 1 мм2?


2.Предлагает учащимся для закрепления нового материала выполнение практического модуля, для решения которого необходимы новые знания. Для сильных учащихся тестирование из 9 вопросов, для слабых учащихся – три расчетных задачи.

1.Учащиеся записывают условие и решение задачи в тетрадь.

 

2.Определяет успешность выполнения заданий. Фиксирует результаты. Отмечает (для себя) учащихся, которые наиболее (наименее) успешно справились с заданием.

2.Выполняют тест.

Сообщают результаты учителю.


8. Рефлексия (Подведение итогов)

Деятельность учителя

Деятельность ученика

Предлагает учащимся вернуться к цели и задачам урока, проанализировать степень их достижения, объяснить результаты эксперимента, поставленного в начале урока с использованием новой терминологии, сделать выводы.

Сообщает оценки за урок.

Вспоминают цель урока. Анализируют степень ее достижения.

Формулируют выводы.

Оценивают успешность своей работы на уроке и уровень усвоения знаний.

9. Домашнее задание

Деятельность учителя

Деятельность ученика

Сообщает домашнее задание:

1.§45, 46; упражнение 20 № 2 (а), 4.

2.Интерактивная лекция для тех, кто плохо разобрался с материалом

3.Тест

Записывают в дневниках домашнее задание.

Электрическое сопротивление | Физика

На рисунке 33 изображена электрическая цепь, в которую включена панель с разными проводниками. Эти проводники отличаются друг от друга материалом, а также длиной и площадью поперечного сечения. Подключая по очереди эти проводники и наблюдая за показаниями амперметра, можно заметить, что при одном и том же источнике тока сила тока в разных случаях оказывается различной. С увеличением длины проводника и уменьшением его сечения сила тока в нем становится меньше. Уменьшается она и при замене никелиновой проволоки проволокой такой же длины и сечения, но изготовленной из нихрома. Это означает, что разные проводники оказывают различное противодействие току. Противодействие это возникает из-за столкновений носителей тока со встречными частицами вещества.

Физическая величина, характеризующая противодействие, оказываемое проводником электрическому току, обозначается буквой R и называется электрическим сопротивлением (или просто сопротивлением) проводника:

R — сопротивление.

Единица сопротивления называется омом (Ом) в честь немецкого ученого Г. Ома, который впервые ввел это понятие в физику. 1 Ом — это сопротивление такого проводника, в котором при напряжении 1 В сила тока равна 1 А. При сопротивлении 2 Ом сила тока при том же напряжении будет в 2 раза меньше, при сопротивлении 3 Ом — в 3 раза меньше и т. д.

На практике встречаются и другие единицы сопротивления, например килоом (кОм) и мегаом (МОм):

1 кОм= 1000 Ом, 1 МОм= 1 000 ООО Ом.

Сопротивление однородного проводника постоянного сечения зависит от материала проводника, его длины l и площади поперечного сечения S и может быть найдено по формуле

R = ρl/S      (12.1)

где ρ — удельное сопротивление вещества, из которого изготовлен проводник.

Удельное сопротивление вещества — это физическая величина, показывающая, каким сопротивлением обладает сделанный из этого вещества проводник единичной длины и единичной площади поперечного сечения.

Из формулы (12.1) следует, что

ρ = RS/l

Так как в СИ единицей сопротивления является 1 Ом, единицей площади 1 м2, а единицей длины 1 м, то единицей удельного сопротивления в СИ будет

1 Ом · м2/м, или 1 Ом · м.

На практике площадь сечения тонких проводов часто выражают в квадратных миллиметрах (мм2). В этом случае более удобной единицей удельного сопротивления является Ом·мм2/м. Так как 1 мм2 = 0,000001 м2, то

1 Ом · мм2/м = 0,000001 Ом · м.

У разных веществ удельные сопротивления различны. Некоторые из них приведены в таблице 3.

Приведенные в этой таблице значения соответствуют температуре 20 °С. (С изменением температуры сопротивление вещества изменяется.) Например, удельное сопротивление железа равно 0,1 Ом · мм2/м. Это означает, что если изготовить из железа провод с площадью сечения 1 мм2 и длиной 1 м, то при температуре 20 °С он будет обладать сопротивлением 0,1 Ом.

Из таблицы 3 видно, что наименьшим удельным сопротивлением обладают серебро и медь. Значит, именно эти металлы являются наилучшими проводниками электричества.

Из той же таблицы видно, что, наоборот, такие вещества, как фарфор и эбонит, обладают очень большим удельным сопротивлением. Это и позволяет использовать их в качестве изоляторов.

??? 1. Что характеризует и как обозначается электрическое сопротивление? 2. По какой формуле находится сопротивление проводника? 3. Как называется единица сопротивления? 4. Что показывает удельное сопротивление? Какой буквой оно обозначается? 5. В каких единицах измеряют удельное сопротивление? 6. Имеются два проводника. У какого из них больше сопротивление, если они: а) имеют одинаковую длину и площадь сечения, но один из них сделан из константана, а другой — из фехраля; б) сделаны из одного и того же вещества, имеют одинаковую толщину, но один из них в 2 раза длиннее другого; в) сделаны из одного и того же вещества, имеют одинаковую длину, но один из них в 2 раза тоньше другого? 7. Проводники, рассматриваемые в предыдущем вопросе, поочередно подключают к одному и тому же источнику тока. В каком случае сила тока будет больше, в каком меньше? Проведите сравнение для каждой пары рассматриваемых проводников.

Практическая работа «Определение удельного сопротивления проводника»

Тема: Практическая работа «Определение удельного  сопротивления проводника»

Задачи урока:

 Образовательные:

  • повторить и обобщить знания основных понятий и законов постоянного тока;
  • совершенствовать навыки решения расчётных задач;

Развивающие:

  • развивать умения переноса опорных знаний обучающихся в профессиональную ситуацию;
  • развивать познавательную активность обучающихся;
  • стимулировать логическое мышление, творческие способности обучающихся;
  • развивать навыки самоконтроля и взаимоконтроля;
  • развивать коммуникативные способности обучающихся.
  • Воспитательные:
    • формировать навыки коллективной работы в сочетании с самостоятельной деятельностью обучающихся.

Тип урока: практическое занятие.

Ход урока:

1. Организационный этап.

2. Актуализация знаний обучающихся

2.1  Ответьте на вопросы

3. Какими основными физическими величинами характеризуется электрический ток? (сила тока, напряжение, сопротивление)

4.Сформулируйте закон Ома для участка цепи.

(Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи)

2. 2.Установите соответствие

а) между физическими величинами и их обозначениями

Величина

Обозначение

1. Напряжение

 А.  S

2. Сила тока

 Б.  ρ

3. Сопротивление

 В.  L 

4.Удельное сопротивление

 Г.   U

5.Длина проводника

 Д.  I

6.Сечение проводника

 Е.  R

 

1

2

3

4

5

6

Г

Д

Е

Б

В

А

 

б) между физическими величинами и их единицами измерений

 Величина

Единица измерения

1. Напряжение

 А.  м2

2. Сила тока

 Б.   м

3. Сопротивление

 В.  Ом . м

4.Удельное сопротивление

 Г.  В

5.Длина проводника

 Д.  А

6.Сечение проводника

 Е.   Ом

 

1

2

3

4

5

6

Г

Д

Е

В

Б

А

 

 

2. 3 Решите задачу: (каждая команда решает одну задачу)

1.Сила тока в спирали электрического кипятильника 4А .Определите сопротивление спирали, если напряжение на клеммах кипятильника 220 В.

2.При каком напряжении в сети будет гореть полным накалом электрическая лампа, если необходимая для этого сила тока равна 0,25 А, а сопротивление равно 480 Ом?

3. Определите сопротивление электрической лампы, сила тока в которой 0,5 А при напряжении 120В.

4. Определите напряжение на концах проводника сопротивлением 20 Ом, если сила тока в проводнике 0,4 А.

3. Выполните практическую работу «Определение удельного сопротивления проводника»

Оборудование: сопротивление, амперметр, вольтметр, источник тока, соединительные провода.

Ход работы:  1. Начертите схему электрической цепи и соберите цепь по схеме.

2.Начертите таблицу для записи измерений, занесите показания амперметра и вольтметра в таблицу.

4.Используйте закон Ома для участка цепи, вычислите Rx.

5.Найдите удельное сопротивление ρ проводника

6.Результаты вычислений занесите в таблицу:

U (В)

I (А)

Rx (Ом)

S (м²)

ℓ (м)

ρ (Ом∙м)

1.

 

 

 

0,1.10-6

1,1

 

Сделайте вывод: Сравните полученное опытным путем  значение удельного сопротивления проводника с табличным, определите из чего изготовлен проводник.

*Найдите силу тока в медном проводнике длиной 5 м и сечением 1,5 мм2, на который подано напряжение 18мВ

4.Итог урока

5.ВСР (составьте кроссворд по теме «Электрическое освещение»)

От чего зависит удельное сопротивление проводника: металлического проводника

Работая с электрооборудованием, люди задаются вопросом — от чего зависит сопротивление проводника? Физическая величина отображает проводимость электрического тока. При рассмотрении вопроса учитывается длина проводника и его тип.

Что это такое

Препятствование прохождению тока по проводнику называют сопротивлением. Показатель высчитывается, исходя из разности электрических потенциалов. Дополнительно учитывается сила тока на проводнике. Основоположником теории принято считать Георга Ома. Ещё в 1826 году, проведены исследования электрического тока.

Сопротивление проводника

Важно! Василий Петров подтвердил закон электрической цепи и провел собственные исследования в жидкости.

Условия, определяющие сопротивление проводников

При определении сопротивления учитывается ряд характеристик:

  • сечение элемента;
  • длина проводника;
  • удельное сопротивление;
  • тип материала.

Предметы с высоким сопротивлением практически не проводят ток. Также есть обратная зависимость, которая прописана в законе Ома. Для расчета показателя учитывается электрическая проводимость. Она показывает возможность проводника принимать электрический ток.

Проводимость электрического тока

Изменения проводника при увеличении длины

Во время испытаний замечено, что при увеличении длины проводника его электрическое сопротивление увеличивается. Для проведения эксперимента, необходимо выбрать заготовки из одинакового материала. К примеру, это может быть проволока из никелина. Для считывания параметров используется амперметр, который подключен к зажимам.

Устанавливая заготовки меньшей длины, отмечено, что ток в цепи увеличивается. Даже на одном изделии можно поиграться с амперметром. Поставив щуп на середину заготовки, к примеру, может отображаться значение 50 ампер.

Показатель амперметра

Интересно! Если отводить его в сторону, к краю, чтобы увеличить дальность держателя, показатель тока будет снижаться. Тоже самое, касается проводников из других материалов.

Виды

Проводником называют среду или предмет, который способен проводить электрический ток. Внутри него, при подключении к источнику энергии, начинает активно двигаться заряженная частица. Амперметр показывает возрастание электрического напряжения в цепи. Рассматривая проводники разных типов, учитывается удельная электропроводность и тип материала:

  • медь;
  • алюминий;
  • метал;
  • золото;
  • сплав никеля и хрома.

В научной среде есть понятие сверхпроводника, который считается идеальным. Он обладает значительным углом диэлектрической потери. Когда ток идёт от цепи, учитывается процент смещения. У сверхпроводника данный параметр минимален.

Из меди

Медь относится к компонентам 11 группы из таблицы химических элементов. По классификации он является пластинчатым, встречается в разных видах. Зачастую вещество имеет розовый оттенок. В электротехнике медь отличается низким удельным сопротивлением и лежит на одной нише с серебром, золотом.

Серебро и золото

Материал применим при изготовлении проводки, а также печатных плат. Ещё вещество востребовано при изготовлении электроприводов. Рассматривая сложные управляемые, электромеханические системы, заметно, что у них используются обмотки с низким удельным сопротивлением.

Если оценивать силовые трансформаторы, у них также применяется данный металл, однако он зачастую используется с примесями. Это необходимо, чтобы снизить показатель электропроводимости. В печатных платах медь используется на пару с алюминием. Рассматривая радиодетали, востребованными остаются сплавы на основе меди, которые также отличаются низким сопротивлением.

Разбирая персональные компьютеры, вещество встречается с бронзой либо латунью. Также используются добавки из цинка либо никеля. Чтобы повысить упругость проводника, применяются другие материалы, такие как олово, цинк. По таблице удельного сопротивления, веществу присвоен показатель 0,0157 Ом.

Свойства меди

Из алюминия

Среди элементов 13 группы в таблице выделяется алюминий. Он является отличным проводником в цепи, изготовлен из парамагнитного металла. По цвету наблюдается серебристый оттенок. Проводник хорошо поддается механической обработке. Помимо значительной электропроводимости, отмечается коррозийная стойкость.

При термической обработке образуется оксидная пленка, которая защищает поверхность. В природе предусмотрены различные соединения алюминия. Если рассматривать стандартную проволоку небольшого сечения, она востребована в электрических катушках. Вещество обладает низкой плотностью, а также массой, поэтому аналоги сложно подобрать. Используя алюминий в движущихся элементах, можно повысить их производительность.

Зачастую проводник встречается в жестких дисках, а также аудиосистемах. Востребованными остаются проволоки, покрытые слоем лака. Встречаются эмалированные аналоги, отличающиеся повышенной защищенностью. В качестве изоляции используется резина, берилл. Производители выпускают проводники с сечением от 0.003 мм.

Свойства алюминия

Помимо катушек индуктивности проволока может устанавливаться в индукторах, громкоговорителях, наушниках. Касательно соединений, встречаются варианты с алунитами. Дополнительная информация о физических свойствах:

  • низкая температура плавления;
  • высокая теплоемкость;
  • значительная твёрдость;
  • слабый парамагнетик;
  • широкий температурный диапазон.

Алюминий встречается в печатных платах, поскольку поддается в штамповке. Коррозионная стойкость — дополнительное преимущество. Алюминиевые проводники являются популярными и востребованными в промышленности. Удельное сопротивление — 0,028 Ом. Также необходимо рассмотреть недостаток — значительное содержание примесей.

Из металла

Среди металлов, распространенными типами проводников считаются следующие:

  • свинец;
  • олово;
  • платина;
  • никель;
  • вольфрам.

Свинец — это элемент из 14 группы, который может использоваться в качестве проводника. У него предельная плотность 11.35 грамм на кубический метр. Область применения ограничена, поскольку материал токсичен и относится к тяжелым металлам. История происхождения формулы неясна, есть лишь догадки.

Группы металлов

Если говорить о проводниковых элементах, то зачастую применяется нитрат свинца. В источниках тока, резервных блоках встречается версия с хлоридом. Рассматривая неорганические соединения, выделяется материал теллурид. Он подходит в качестве термоэлектрического проводника, поэтому используется в электростанциях разной мощности. Ещё металлический элемент востребован в холодильниках.

Если детально рассматривать теллурид, к числу особенности стоит приписать значительную диэлектрическую проницаемость. В составе помимо свинца имеется олово и теллур. По отдельности вещества встречаются в фоторезисторах и диодах. Если разбирать полупроводниковые приборы, элементы содержатся в стабилизаторах и указывают направление тока.

Важно! Олово — это проводник из 14 группы химических элементов. Материал безопасен, не содержит токсичных веществ.

Наравне с золотом, олово обладает отличными антикоррозионными свойствами. Зачастую в технике применяется дисульфид. Наиболее высокий показатель сопротивления показывает двуокись олова. В аккумуляторах он используется в чистом виде. Рассматривая гальванические элементы, стоит упомянуть про марганцево-оловянный диоксид.

Платина — это проводника с десятой группы химических элементов. Представленный металл имеет электросопротивление 0,098 Ом, и отличается повышенной плотностью. Если рассматривать сферу применения, то зачастую вещество встречается в лазерной технике. Речь идет о принтерах, а также измерительных приборах.

Свойства платины

Дополнительно платина используется в электромагнитных реле. В представленных автоматических устройствах он выступает проводником. Речь идет о механических, тепловых либо оптических реле. В электронных датчиках платина содержится в меньшем количестве, однако используется за счёт широкого диапазона температур. В частности, можно рассмотреть электронный термометр сопротивления. Резистивный элемент по большей части состоит из платины.

Из золота

Удельное сопротивление золота 0,023 Ом. Материал относится к первой группе металлов и по физическим свойствам является мягким. Золото встречается с примесями и в чистом виде. Плотность составляет 19,32 г/см³, сфера применения широка. В промышленности проводник востребован в качестве припоя.

Припой золото

Его разрешается наносить на различные поверхности, он служит отличным материалом для соединения заготовок, поскольку наблюдается низкая температура плавления. Также золото востребовано для защиты от коррозии.

Недостатки:

  • мягкость материала;
  • подвержен точечной коррозии.

Если использовать материал с добавками, то снижается температура плавления. Также это оказывает воздействие на механические свойства вещества.

Золото с добавками

Из сплавов никеля и хрома

Никель обладает удельным сопротивлением 0,087 Ом. Это элемент из 8 группы, который является пластинчатым. При термической обработке элемент покрывается пленкой оксида.

Особенности:

  • высокое электрическое сопротивление;
  • значительное линейное расширение;
  • упругость.

Никель активно используется в качестве проводника в аккумуляторах.

Различные добавки:

  • нихром;
  • пермаллои;
  • золото.

По сопротивлению элемент схож с константином, никелином. Хром является элементом шестой группы, проводник внешне имеет голубоватый оттенок. В качестве проводника он встречается в бытовой технике. Наиболее часто хром используется на пару с легированными сталями.

Свойства хрома

При соединении с нержавейкой образуется отличный проводник. Он демонстрирует антикоррозионные свойства, плюс повышенную твердость. На печатной плате элемент не боится износа. Устройства из хрома востребованы в авиакосмической промышленности.

Выше рассмотрены факторы, от чего зависит сопротивление проводника. Элементы изготавливаются из различных материалов, необходимо учитывать их свойства.

Таблица удельного электрического сопротивления и проводимости

В этой таблице представлены удельное электрическое сопротивление и электрическая проводимость нескольких материалов.

Удельное электрическое сопротивление, обозначаемое греческой буквой ρ (ро), является мерой того, насколько сильно материал противостоит прохождению электрического тока. Чем ниже удельное сопротивление, тем легче материал пропускает электрический заряд.

Электропроводность — это величина, обратная удельному сопротивлению.Электропроводность — это мера того, насколько хорошо материал проводит электрический ток. Электропроводность может быть представлена ​​греческой буквой σ (сигма), κ (каппа) или γ (гамма).

Таблица удельного сопротивления и проводимости при 20 ° C

Материал ρ (Ом • м) при 20 ° C
Удельное сопротивление
σ (См / м) при 20 ° C
Электропроводность
Серебро 1. 59 × 10 −8 6,30 × 10 7
Медь 1,68 × 10 −8 5,96 × 10 7
Медь отожженная 1,72 × 10 −8 5.80 × 10 7
Золото 2,44 × 10 −8 4,10 × 10 7
Алюминий 2,82 × 10 −8 3,5 × 10 7
Кальций 3.36 × 10 −8 2,98 × 10 7
Вольфрам 5.60 × 10 −8 1,79 × 10 7
цинк 5,90 × 10 −8 1,69 × 10 7
Никель 6,99 × 10 −8 1,43 × 10 7
Литий 9,28 × 10 −8 1,08 × 10 7
Утюг 1. 0 × 10 −7 1,00 × 10 7
Платина 1,06 × 10 −7 9,43 × 10 6
Олово 1,09 × 10 −7 9,17 × 10 6
Углеродистая сталь (10 10 ) 1,43 × 10 −7
Свинец 2,2 × 10 −7 4,55 × 10 6
Титан 4.20 × 10 −7 2,38 × 10 6
Электротехническая сталь с ориентированной зернистостью 4.60 × 10 −7 2,17 × 10 6
Манганин 4,82 × 10 −7 2,07 × 10 6
Константан 4,9 × 10 −7 2,04 × 10 6
Нержавеющая сталь 6,9 × 10 −7 1. 45 × 10 6
Меркурий 9,8 × 10 −7 1,02 × 10 6
нихром 1,10 × 10 −6 9,09 × 10 5
GaAs 5 × 10 −7 до 10 × 10 −3 5 × 10 −8 до 10 3
Углерод (аморфный) 5 × 10 −4 до 8 × 10 −4 1.От 25 до 2 × 10 3
Углерод (графит) 2,5 × 10 −6 до 5,0 × 10 −6 // базисная плоскость
3,0 × 10 −3 ⊥ базальная плоскость
от 2 до 3 × 10 5 // базальная плоскость
3,3 × 10 2 ⊥ базальная плоскость
Карбон (алмаз) 1 × 10 12 ~ 10 −13
Германий 4,6 × 10 −1 2,17
Морская вода 2 × 10 -1 4. 8
Питьевая вода 2 × 10 1 до 2 × 10 3 5 × 10 −4 до 5 × 10 −2
Кремний 6,40 × 10 2 1,56 × 10 −3
Дерево (влажное) 1 × 10 3 до 4 10 −4 до 10 -3
Деионизированная вода 1,8 × 10 5 5.5 × 10 −6
Стекло 10 × 10 10 до 10 × 10 14 10 −11 до 10 −15
Твердая резина 1 × 10 13 10 −14
Древесина (сушка в духовке) 1 × 10 14 до 16 10 −16 до 10 -14
сера 1 × 10 15 10 −16
Воздух 1. 3 × 10 16 до 3,3 × 10 16 3 × 10 −15 до 8 × 10 −15
Парафиновый воск 1 × 10 17 10 −18
Плавленый кварц 7,5 × 10 17 1,3 × 10 −18
ПЭТ 10 × 10 20 10 −21
тефлон 10 × 10 22 до 10 × 10 24 10 −25 до 10 −23

Факторы, влияющие на электропроводность

На проводимость или удельное сопротивление материала влияют три основных фактора:

  1. Площадь поперечного сечения: Если поперечное сечение материала велико, через него может проходить больший ток.Точно так же тонкое поперечное сечение ограничивает ток.
  2. Длина проводника: Короткий проводник позволяет току течь с большей скоростью, чем длинный провод. Это немного похоже на попытку переместить множество людей через коридор.
  3. Температура: Повышение температуры заставляет частицы вибрировать или больше двигаться. Увеличение этого движения (повышение температуры) снижает проводимость, потому что молекулы с большей вероятностью будут мешать прохождению тока.При чрезвычайно низких температурах некоторые материалы становятся сверхпроводниками.

Ресурсы и дополнительная информация

Удельное сопротивление | Физика проводников и изоляторов

Расчет сопротивления проводов

Номинальная допустимая нагрузка проводника — это грубая оценка сопротивления, основанная на потенциале тока для создания опасности возгорания. Однако мы можем столкнуться с ситуациями, когда падение напряжения, вызванное сопротивлением проводов в цепи, вызывает другие проблемы, кроме предотвращения возгорания.Например, мы можем проектировать схему, в которой напряжение на компоненте является критическим и не должно опускаться ниже определенного предела. В этом случае падение напряжения из-за сопротивления проводов может вызвать технические проблемы, будучи в пределах безопасных (пожарных) пределов допустимой нагрузки:

Если нагрузка в указанной выше цепи не выдерживает напряжения ниже 220 В при напряжении источника 230 В, то лучше убедиться, что проводка не упадет более чем на 10 вольт по пути.Если считать как питающие, так и обратные проводники этой цепи, это оставляет максимально допустимое падение в 5 вольт по длине каждого провода. Используя закон Ома (R = E / I), мы можем определить максимально допустимое сопротивление для каждого отрезка провода:

Мы знаем, что длина каждого куска провода составляет 2300 футов, но как определить величину сопротивления для конкретного размера и длины провода? Для этого нам понадобится другая формула:

Эта формула связывает сопротивление проводника с его удельным сопротивлением (греческая буква «ро» (ρ), которая похожа на строчную букву «p»), его длиной («l») и поперечным сечением. площадь сечения («А»).Обратите внимание, что с переменной длины в верхней части дроби значение сопротивления увеличивается по мере увеличения длины (аналогия: труднее протолкнуть жидкость через длинную трубу, чем через короткую) и уменьшается по мере увеличения площади поперечного сечения ( аналогия: жидкость легче течет по толстой трубе, чем по тонкой). Удельное сопротивление является константой для типа рассчитываемого материала проводника.

Удельное сопротивление нескольких проводящих материалов можно найти в следующей таблице.Внизу таблицы мы находим медь, уступающую только серебру по низкому удельному сопротивлению (хорошей проводимости):

Удельное сопротивление при 20 градусах Цельсия
Материал Элемент / Сплав (Ом-смил / фут) (мкОм-см)
нихром Сплав 675 112,2
Нихром В Сплав 650 108,1
Манганин Сплав 290 48. 21
Константан Сплав 272,97 45,38
Сталь * Сплав 100 16,62
Платина Элемент 63,16 10,5
Утюг Элемент 57,81 9,61
Никель Элемент 41,69 6,93
цинк Элемент 35.49 5,90
Молибден Элемент 32,12 5,34
Вольфрам Элемент 31,76 5,28
Алюминий Элемент 15,94 2,650
Золото Элемент 13,32 2,214
Медь Элемент 10,09 1.678
Серебро Элемент 9,546 1,587

* = Стальной сплав с содержанием железа 99,5%, углерода 0,5%

Обратите внимание, что значения удельного сопротивления в приведенной выше таблице даны в очень странной единице «Ом-см-мил / фут» (Ом-см-мил / фут). Эта единица указывает, какие единицы мы должны использовать в формуле сопротивления ( R = ρl / A). В этом случае эти значения удельного сопротивления предназначены для использования, когда длина измеряется в футах, а площадь поперечного сечения измеряется в круглых милах.

Метрической единицей измерения удельного сопротивления является ом-метр (Ом-м) или ом-сантиметр (Ом-см), с 1,66243 x 10 -9 Ом-метров на Ом-см-мил / фут (1,66243 x 10 -7 Ом-см на Ом-см-дюйм / фут). В столбце таблицы Ом-см цифры фактически масштабированы как мкОм-см из-за их очень малых величин. Например, железо указано как 9,61 мкОм-см, что может быть представлено как 9,61 x 10 -6 Ом-см.

При использовании единицы измерения удельного сопротивления Ом-метр в формуле R = ρl / A длина должна быть в метрах, а площадь — в квадратных метрах.При использовании единицы Ом-сантиметр (Ом-см) в той же формуле длина должна быть в сантиметрах, а площадь — в квадратных сантиметрах.

Все эти единицы измерения удельного сопротивления действительны для любого материала (Ом-см / фут, Ом-м или Ом-см). Тем не менее, можно предпочесть использовать Ω-cmil / ft при работе с круглой проволокой, площадь поперечного сечения которой уже известна в круглых милах. И наоборот, при работе с шиной нестандартной формы или изготовленной по индивидуальному заказу шиной, вырезанной из металлического материала, где известны только линейные размеры длины, ширины и высоты, более подходящими могут быть единицы измерения удельного сопротивления в Ом-метр или Ом-см.

Решение

Возвращаясь к нашей примерной схеме, мы искали провод с сопротивлением 0,2 Ом или меньше на длине 2300 футов. Предполагая, что мы собираемся использовать медный провод (самый распространенный тип производимого электрического провода), мы можем настроить нашу формулу следующим образом:

Алгебраически решая относительно A, мы получаем значение 116 035 круговых милов. Ссылаясь на нашу таблицу размеров сплошных проводов, мы обнаруживаем, что проволока «двойной длины» (2/0) с длиной 133 100 см является достаточной, в то время как следующий меньший размер, «одинарная проводка» (1/0) с длиной 105 500 см слишком мала. .Имейте в виду, что ток в нашей цепи составляет скромные 25 ампер. Согласно нашей таблице допустимой токовой нагрузки для медного провода на открытом воздухе, достаточно было бы провода калибра 14 (что касается , а не , вызывающего пожар). Однако с точки зрения падения напряжения провод 14-го калибра был бы совершенно неприемлемым.

Ради интереса, давайте посмотрим, как провод 14 калибра повлияет на работу нашей силовой цепи. Глядя на нашу таблицу размеров проводов, мы обнаруживаем, что проволока калибра 14 имеет площадь поперечного сечения 4 107 круглых милов.Если мы все еще используем медь в качестве материала для проволоки (хороший выбор, если только мы не действительно богаты и не можем позволить себе 4600 футов серебряной проволоки 14 калибра!), То наше удельное сопротивление все равно будет 10,09 Ом-см-мил / фут. :

Помните, что это 5,651 Ом на 2300 футов медного провода калибра 14, и что у нас есть два участка по 2300 футов во всей цепи, поэтому каждый кусок провода в цепи имеет сопротивление 5,651 Ом:

Полное сопротивление проводов нашей схемы равно 2 умноженным на 5. 651 или 11,301 Ом. К сожалению, это сопротивление на слишком большое, чтобы обеспечить ток 25 ампер при напряжении источника 230 вольт. Даже если бы сопротивление нагрузки было 0 Ом, сопротивление нашей проводки 11,301 Ом ограничило бы ток в цепи до 20,352 ампер! Как вы можете видеть, «небольшое» сопротивление провода может иметь большое значение в характеристиках схемы, особенно в силовых цепях, где токи намного выше, чем обычно встречаются в электронных схемах.

Давайте рассмотрим пример проблемы сопротивления для отрезка сборной шины, изготовленной по индивидуальному заказу.Предположим, у нас есть кусок сплошного алюминиевого стержня шириной 4 см, высотой 3 см и длиной 125 см, и мы хотим рассчитать сквозное сопротивление по длине (125 см). Во-первых, нам нужно определить площадь поперечного сечения стержня:

Нам также необходимо знать удельное сопротивление алюминия в единицах измерения, соответствующих данному применению (Ом-см). Из нашей таблицы удельных сопротивлений мы видим, что это 2,65 x 10 -6 Ом-см. Установив нашу формулу R = ρl / A, мы имеем:

Как видите, из-за большой толщины шины обеспечивает очень низкое сопротивление по сравнению со стандартными размерами проводов, даже при использовании материала с большим удельным сопротивлением.

Процедура определения сопротивления шины принципиально не отличается от определения сопротивления круглого провода. Нам просто нужно убедиться, что площадь поперечного сечения рассчитана правильно и что все единицы соответствуют друг другу, как должны.

ОБЗОР:

  • Сопротивление проводника увеличивается с увеличением длины и уменьшается с увеличением площади поперечного сечения, при прочих равных условиях.
  • Удельное сопротивление («ρ») — это свойство любого проводящего материала, показатель, используемый для определения сквозного сопротивления проводника данной длины и площади в этой формуле: R = ρl / A
  • Удельное сопротивление материалов указывается в единицах Ом-см / фут или Ом-метр (метрическая система). Коэффициент преобразования между этими двумя единицами составляет 1,66243 x 10 -9 Ом-метров на Ом-см-мил / фут или 1,66243 x 10 -7 Ом-см на Ом-см-мил / фут.
  • Если падение напряжения в цепи критично, перед выбором сечения проводов необходимо произвести точный расчет сопротивления проводов.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Сопротивление проводника — Energy Education

Рис. 1. Нить накаливания загорается из-за сопротивления проводящего провода. [1]

Сопротивление проводника — это свойство проводника при определенной температуре, и оно определяется как величина сопротивления протеканию электрического тока через проводящую среду. [2] Сопротивление проводника зависит от площади поперечного сечения проводника, длины проводника и его удельного сопротивления. Важно отметить, что электрическая проводимость и удельное сопротивление обратно пропорциональны, а это означает, что чем больше проводимость, тем меньше сопротивление.

Сопротивление проводника можно рассчитать при температуре 20 ° C с помощью: [3]

[математика] \ R = \ frac {\ rho L} {A} [/ математика]

где:

  • [math] R [/ math] — сопротивление в омах (Ω)
  • [math] \ rho [/ math] — удельное сопротивление материала в омметрах (Ом · м)
  • [math] L [/ math] — длина проводника в метрах (м)
  • [math] A [/ math] — площадь поперечного сечения проводника в метрах в квадрате (м 2 )

Эта формула говорит нам, что сопротивление проводника прямо пропорционально [математике] \ rho [ / math] и [math] L [/ math], и обратно пропорционально [math] A [/ math].Поскольку сопротивление некоторого проводника, такого как кусок провода, зависит от столкновений внутри самого провода, сопротивление зависит от температуры. С повышением температуры сопротивление провода увеличивается, так как столкновения внутри провода увеличиваются и «замедляют» протекание тока. Величина изменения определяется температурным коэффициентом. [4] Положительный температурный коэффициент приводит к увеличению сопротивления с повышением температуры, тогда как отрицательный температурный коэффициент приводит к уменьшению сопротивления с повышением температуры.Поскольку проводники обычно демонстрируют повышенное удельное сопротивление с повышением температуры, они имеют положительный температурный коэффициент. Наиболее распространенные типы резисторов — это переменные резисторы и постоянные резисторы.

Используя сопротивление проводника, можно создать свет в лампе накаливания. В лампочке накаливания есть проволочная нить определенной длины и ширины, что обеспечивает определенное сопротивление. Если это сопротивление правильное, ток, протекающий по проводу, замедляется ровно настолько, без остановки из-за слишком большого сопротивления, что нить накала нагревается до точки, в которой она начинает светиться. [5]

Подробнее о сопротивлении проводника см. HyperPhysics.

PhET: Сопротивление в проводе

Университет Колорадо любезно разрешил нам использовать следующую симуляцию Фета. Изучите моделирование, чтобы увидеть, как сопротивление проводника изменяется в зависимости от геометрии и удельного сопротивления:

Для дальнейшего чтения

Для получения дополнительной информации см. Соответствующие страницы ниже:

Список литературы

Произошла ошибка: SQLSTATE [42000]: синтаксическая ошибка или нарушение прав доступа: 1064 У вас есть ошибка в синтаксисе SQL; проверьте руководство, соответствующее версии вашего сервера MySQL, чтобы найти правильный синтаксис рядом с ‘)’ в строке 1

Что такое электрическое сопротивление? — Matmatch

Удельное электрическое сопротивление — это свойство, уникальное для каждого материала, которое необходимо понимать перед созданием и проектированием электрических и электронных систем.Знание того, как материалы различаются по удельному сопротивлению, дает информацию для выбора подходящих материалов, используемых для изготовления двигателей, электрических цепей, диэлектриков, резистивного нагрева и сверхпроводящих приложений.

Какое удельное электрическое сопротивление материала?

Удельное электрическое сопротивление, обозначаемое греческой буквой ρ (rho), представляет собой меру сопротивления определенного материала заданного размера проводимости электрического тока, протекающего через него. Его также называют удельным электрическим сопротивлением или объемным сопротивлением [1].Единица измерения удельного электрического сопротивления в системе СИ выражается в ом-метрах (Ом · м). Он также измеряется в единицах (мкОм · см). Изоляторы имеют высокие значения удельного электрического сопротивления в диапазоне 10 10 Ом · м или более, тогда как металлические проводники имеют очень низкие значения удельного сопротивления в диапазоне 10 -8 Ом · м.

Какова формула удельного электрического сопротивления?

Удельное электрическое сопротивление (ρ) твердого объекта определяют путем пропускания электрического тока через образец и последующего измерения результирующего падения напряжения на определенной длине. Это выражается соотношением между электрическим полем внутри материала и протекающим электрическим током.

Фундаментальная взаимосвязь между сопротивлением материала потоку электронов представлена ​​законом Ома [2]:

где,

В = I. R

В — приложенное напряжение, (вольт: В)

Я электрика

л расход тока (амперы: A)

R — сопротивление материала (Ом: Ом)

Изображение 1 Источник для справки — https: // www.subsurfaceinsights.com/images/ohmslaw.png

Разделив напряжение на длину образца L, в результате чего возникнет электрическое поле E, и ток на площадь поперечного сечения A, в результате чего получится плотность тока J, удельное электрическое сопротивление можно описать как внутреннее свойство материала следующим образом:

ρ — удельное электрическое сопротивление материала (ом-метр: Ом · м)

E — величина электрического поля в материале (вольт / метр: В / м)

Дж — величина плотности электрического тока в материале (ампер / кв. м: А / м 2 )

Для идеального резистора или проводника с однородным поперечным сечением, физическим составом и равномерным током формула электрического сопротивления может быть записана как:

где,

R — электрическое сопротивление однородного образца (Ом: Ом)

A — площадь поперечного сечения образца (квадратных метров: 2 м)

L — длина образца (метры: м) [2]

Проводимость, в отличие от удельного сопротивления, является свойством материала, которое связано с легкостью, с которой электрический ток может протекать в материале.Это величина, обратная удельному сопротивлению, выражается как 1 / ρ с единицей измерения Сименс / метр (См / м). Сверхпроводник имеет практически нулевое омическое сопротивление и бесконечную проводимость [3].

Сопротивление против сопротивления

Удельное сопротивление и сопротивление нельзя путать друг с другом. Удельное сопротивление — это свойство материала, имеющее внутреннюю ценность, как и теплопроводность, в то время как сопротивление зависит от формы, геометрии и удельного сопротивления. Рассмотрим два стержневых образца из проводящего материала одинакового состава и длины, но разного диаметра.Ожидается, что удельное сопротивление будет одинаковым для обоих, но тот, у которого меньшая площадь поперечного сечения, будет иметь относительно большее сопротивление. Если, однако, диаметры были одинаковыми, а длина одного стержня увеличилась, более длинный стержень будет иметь большее сопротивление. Таким образом, можно сказать, что сопротивление проводника пропорционально его длине (R ∝ L) [4].

Удельное сопротивление и температура

Удельное электрическое сопротивление зависит от температуры, и для большинства материалов табличные значения обычно даются при комнатной температуре (20 ° C).Металлические проводники обычно имеют увеличивающееся удельное сопротивление пропорционально температуре, тогда как удельное сопротивление полупроводников, таких как кремний, уменьшается с повышением температуры. Это делает полупроводники идеальными для применения в электронике [2].

Удельное сопротивление и выбор материалов

Электрические и электронные системы используют удельное электрическое сопротивление как ключевой параметр при выборе материала. Это позволяет дизайнерам определить правильный материал, который будет использоваться для конкретного приложения.Например, системы распределения электроэнергии полагаются на электрическое сопротивление для оценки линий электропередачи, заземления и материала почвы.

Материалы, которые служат проводниками, должны иметь низкий уровень удельного сопротивления, несмотря на то, что их протягивают в длинные тонкие провода. Знание удельного электрического сопротивления различных материалов дает информацию о практичности их использования и позволяет исследовать подходящие альтернативы. Например, хотя серебро и золото имеют низкие значения удельного сопротивления и являются отличными проводниками, они дороги по сравнению с медью.Медь обладает высокой пластичностью и высокой электропроводностью, поэтому она является лучшим вариантом. Удельное сопротивление также важно для определения материалов, которые должны действовать как изоляторы для размещения проводов и соединений.

5.3 Удельное сопротивление и сопротивление — Введение в электричество, магнетизм и схемы

ЦЕЛИ ОБУЧЕНИЯ

К концу этого раздела вы сможете:
  • Различия между сопротивлением и удельным сопротивлением
  • Определите термин проводимость
  • Опишите электрический компонент, известный как резистор
  • Укажите взаимосвязь между сопротивлением резистора и его длиной, площадью поперечного сечения и удельным сопротивлением
  • Укажите взаимосвязь между удельным сопротивлением и температурой

Что движет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока.Все такие устройства создают разность потенциалов и называются источниками напряжения. Когда источник напряжения подключен к проводнику, он создает разность потенциалов, которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на свободные заряды, вызывая ток. Величина тока зависит не только от величины напряжения, но и от характеристик материала, через который протекает ток. Материал может сопротивляться потоку зарядов, и мера того, насколько материал сопротивляется потоку зарядов, известна как удельное сопротивление .Это удельное сопротивление грубо аналогично трению между двумя материалами, которые сопротивляются движению.

Удельное сопротивление

Когда к проводнику прикладывается напряжение, создается электрическое поле, и заряды в проводнике ощущают силу, создаваемую электрическим полем. Плотность тока зависит от электрического поля и свойств материала. Эта зависимость может быть очень сложной. В некоторых материалах, включая металлы при данной температуре, плотность тока приблизительно пропорциональна электрическому полю.В этих случаях плотность тока можно смоделировать как

где — электропроводность . Электропроводность аналогична теплопроводности и является мерой способности материала проводить или передавать электричество. Проводники имеют более высокую электропроводность, чем изоляторы. Поскольку удельная электропроводность равна, единицы равны

.

Здесь мы определяем единицу с именем Ом с греческим символом омега в верхнем регистре,.Устройство названо в честь Георга Симона Ома, которого мы обсудим позже в этой главе. Используется, чтобы избежать путаницы с числом. Один Ом равен одному вольту на ампер:. Таким образом, единицы электропроводности.

Электропроводность — это внутреннее свойство материала. Другим неотъемлемым свойством материала является удельное сопротивление , или удельное электрическое сопротивление. Удельное сопротивление материала — это мера того, насколько сильно материал противостоит прохождению электрического тока.Символом удельного сопротивления является строчная греческая буква ро, а удельное сопротивление является обратной величиной удельной электропроводности:

.

Единица измерения удельного сопротивления в единицах СИ — ом-метр. Мы можем определить удельное сопротивление через электрическое поле и плотность тока,

(5.3.1)

Чем больше удельное сопротивление, тем большее поле необходимо для создания заданной плотности тока. Чем ниже удельное сопротивление, тем больше плотность тока, создаваемого данным электрическим полем.Хорошие проводники обладают высокой проводимостью и низким удельным сопротивлением. Хорошие изоляторы обладают низкой проводимостью и высоким удельным сопротивлением. В таблице 5.3.1 приведены значения удельного сопротивления и проводимости для различных материалов.

(таблица 5.3.1)

Таблица 5.3.1 Сопротивление и удельная электропроводность различных материалов при
[1] Значения сильно зависят от количества и типов примесей.

Материалы, перечисленные в таблице, разделены на категории проводников, полупроводников и изоляторов на основе широких групп удельного сопротивления. У проводников наименьшее удельное сопротивление, а у изоляторов наибольшее; полупроводники имеют промежуточное удельное сопротивление. Проводники имеют разную, но большую плотность свободных зарядов, тогда как большинство зарядов в изоляторах связаны с атомами и не могут двигаться. Полупроводники являются промежуточными, имеют гораздо меньше свободных зарядов, чем проводники, но обладают свойствами, из-за которых количество свободных зарядов сильно зависит от типа и количества примесей в полупроводнике. Эти уникальные свойства полупроводников находят применение в современной электронике, о чем мы поговорим в следующих главах.

ПРИМЕР 5.3.1


Плотность тока, сопротивление и электрическое поле для токоведущего провода

Рассчитайте плотность тока, сопротивление и электрическое поле отрезка медного провода диаметром (), по которому проходит ток.

Стратегия

Мы можем рассчитать плотность тока, сначала найдя площадь поперечного сечения провода, а также определение плотности тока. Сопротивление можно найти, используя длину провода, площадь и удельное сопротивление меди, где.Удельное сопротивление и плотность тока можно использовать для определения электрического поля.

Решение

Сначала рассчитаем плотность тока:

Сопротивление провода

Наконец, мы можем найти электрическое поле:

Значение

Исходя из этих результатов, неудивительно, что медь используется для проводов для передачи тока, потому что сопротивление довольно мало. Обратите внимание, что плотность тока и электрическое поле не зависят от длины провода, но напряжение зависит от длины.

ПРОВЕРЬТЕ ПОНИМАНИЕ 5.5


Медные провода обычно используются для удлинителей и домашней электропроводки по нескольким причинам. Медь имеет самый высокий рейтинг электропроводности и, следовательно, самый низкий рейтинг удельного сопротивления среди всех недрагоценных металлов. Также важна прочность на разрыв, где прочность на разрыв является мерой силы, необходимой для того, чтобы подтянуть объект к точке, где он сломается. Прочность материала на разрыв — это максимальное значение растягивающего напряжения, которое он может выдержать перед разрушением.Медь обладает высокой прочностью на разрыв. Третья важная характеристика — пластичность. Пластичность — это мера способности материала вытягиваться в проволоку и мера гибкости материала, а медь обладает высокой пластичностью. Подводя итог, можно сказать, что проводник является подходящим кандидатом для изготовления проволоки, по крайней мере, с тремя важными характеристиками: низкое удельное сопротивление, высокая прочность на разрыв и высокая пластичность. Какие еще материалы используются для электромонтажа и в чем их преимущества и недостатки?

Температурная зависимость удельного сопротивления

Возвращаясь к таблице 5.3.1, вы увидите столбец «Температурный коэффициент». Удельное сопротивление некоторых материалов сильно зависит от температуры. У некоторых материалов, таких как медь, удельное сопротивление увеличивается с повышением температуры. Фактически, в большинстве проводящих металлов удельное сопротивление увеличивается с повышением температуры. Повышение температуры вызывает повышенные колебания атомов в структуре решетки металлов, которые препятствуют движению электронов. В других материалах, таких как углерод, удельное сопротивление уменьшается с повышением температуры.Во многих материалах зависимость является приблизительно линейной и может быть смоделирована с помощью линейного уравнения:

(5.3.2)

где — удельное сопротивление материала при температуре, — температурный коэффициент материала, а — удельное сопротивление при, обычно принимаемое равным.

Отметим также, что температурный коэффициент для полупроводников, перечисленных в Таблице 5.3.1, отрицательный, что означает, что их удельное сопротивление уменьшается с увеличением температуры. Они становятся лучшими проводниками при более высоких температурах, потому что повышенное тепловое перемешивание увеличивает количество свободных зарядов, доступных для переноса тока. Это свойство уменьшаться с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках.

Сопротивление

Теперь рассмотрим сопротивление провода или компонента. Сопротивление — это мера того, насколько сложно пропустить ток через провод или компонент. Сопротивление зависит от удельного сопротивления. Удельное сопротивление является характеристикой материала, используемого для изготовления провода или другого электрического компонента, тогда как сопротивление является характеристикой провода или компонента.

Чтобы рассчитать сопротивление, рассмотрите сечение токопроводящего провода с площадью поперечного сечения, длиной и удельным сопротивлением. Батарея подключается к проводнику, обеспечивая на нем разность потенциалов (рисунок 5.3.1). Разность потенциалов создает электрическое поле, пропорциональное плотности тока, согласно.

(рисунок 5.3.1)

Рисунок 5.3.1. Потенциал, создаваемый батареей, прикладывают к сегменту проводника с площадью поперечного сечения и длиной.

Величина электрического поля на участке проводника равна напряжению, деленному на длину,, а величина плотности тока равна току, деленному на площадь поперечного сечения,. Используя эту информацию и вспоминая, что электрическое поле пропорционально удельному сопротивлению и плотности тока, мы можем видеть, что напряжение пропорционально току:

СОПРОТИВЛЕНИЕ


Отношение напряжения к току определяется как сопротивление :

(5.3.3)

Сопротивление цилиндрического сегмента проводника равно удельному сопротивлению материала, умноженному на длину, деленную на площадь:

(5.3.4)

Единицей измерения сопротивления является ом. Для данного напряжения, чем выше сопротивление, тем ниже ток.

Резисторы

Обычным компонентом электронных схем является резистор. Резистор можно использовать для уменьшения протекания тока или обеспечения падения напряжения. Рисунок 5.3.2 показаны символы, используемые для резистора в принципиальных схемах цепи. Два обычно используемых стандарта для принципиальных схем предоставлены Американским национальным институтом стандартов (ANSI, произносится как «AN-см.») И Международной электротехнической комиссией (IEC). Обе системы обычно используются. Мы используем стандарт ANSI в этом тексте для его визуального распознавания, но отметим, что для более крупных и сложных схем стандарт IEC может иметь более четкое представление, что упрощает чтение.

(рисунок 5.3.2)

Рисунок 5.3.2. Обозначения резистора, используемого в принципиальных схемах. (а) символ ANSI; (b) символ IEC.
Зависимость сопротивления материала и формы от формы

Резистор можно смоделировать как цилиндр с площадью поперечного сечения и длиной, сделанный из материала с удельным сопротивлением (рисунок 5.3.3). Сопротивление резистора составляет.

(рисунок 5.3.3)

Рисунок 5.3.3 Модель резистора в виде однородного цилиндра длины и площади поперечного сечения. Его сопротивление потоку тока аналогично сопротивлению, оказываемому трубой потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление. Чем больше площадь его поперечного сечения, тем меньше сопротивление.

Наиболее распространенным материалом для изготовления резистора является углерод. Углеродная дорожка обернута вокруг керамического сердечника, к нему прикреплены два медных вывода. Второй тип резистора — это металлопленочный резистор, который также имеет керамический сердечник. Дорожка сделана из материала оксида металла, который имеет полупроводниковые свойства, аналогичные углеродным.Опять же, в концы резистора вставляются медные провода. Затем резистор окрашивается и маркируется для идентификации. Резистор имеет четыре цветные полосы, как показано на рисунке 5.3.4.

(рисунок 5.3.4)

Рисунок 5.3.4 Многие резисторы напоминают рисунок, показанный выше. Четыре полосы используются для идентификации резистора. Первые две цветные полосы представляют собой первые две цифры сопротивления резистора. Третий цвет — множитель. Четвертый цвет обозначает допуск резистора.Показанный резистор имеет сопротивление.

Сопротивление может быть разным. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление или более. Сухой человек может иметь сопротивление руки к ноге, тогда как сопротивление человеческого сердца составляет около. Кусок медного провода большого диаметра длиной в метр может иметь сопротивление, а сверхпроводники вообще не имеют сопротивления при низких температурах. Как мы видели, сопротивление связано с формой объекта и материалом, из которого он состоит.

Сопротивление объекта также зависит от температуры, поскольку оно прямо пропорционально. Мы знаем, что для цилиндра, если и не сильно изменяются с температурой, имеет ту же температурную зависимость, что и. (Исследование коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, поэтому влияние температуры на и примерно на два порядка меньше, чем на. ) Таким образом,

(5.3.5)

— это температурная зависимость сопротивления объекта, где — исходное сопротивление (обычно принимаемое равным), а — сопротивление после изменения температуры. Цветовой код показывает сопротивление резистора при температуре.

Многие термометры основаны на влиянии температуры на сопротивление (рисунок 5.3.5). Один из наиболее распространенных термометров основан на термисторе, полупроводниковом кристалле с сильной температурной зависимостью, сопротивление которого измеряется для определения его температуры.Устройство небольшое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.

(рисунок 5.3.5)

Рисунок 5.3.5 Эти знакомые термометры основаны на автоматическом измерении сопротивления термистора в зависимости от температуры.

ПРОВЕРЬТЕ ПОНИМАНИЕ 5.6


Тензодатчик — это электрическое устройство для измерения деформации, как показано ниже. Он состоит из гибкой изолирующей основы, поддерживающей рисунок из проводящей фольги.Сопротивление фольги изменяется по мере растяжения основы. Как меняется сопротивление тензодатчика? Влияет ли тензодатчик на изменение температуры?

ПРИМЕР 5.3.3


Сопротивление коаксиального кабеля

Длинные кабели иногда могут действовать как антенны, улавливая электронные шумы, которые являются сигналами от другого оборудования и приборов. Коаксиальные кабели используются во многих случаях, когда требуется устранение этого шума. Например, их можно найти дома через кабельное телевидение или другие аудиовизуальные соединения.Коаксиальные кабели состоят из внутреннего проводника радиуса, окруженного вторым внешним концентрическим проводником радиуса (рисунок 5.3.6). Пространство между ними обычно заполнено изолятором, например полиэтиленовым пластиком. Между двумя проводниками возникает небольшой ток радиальной утечки. Определите сопротивление коаксиального кабеля соответствующей длины.

(рисунок 5.3.6)

Рисунок 5.3.6 Коаксиальные кабели состоят из двух концентрических жил, разделенных изоляцией.Они часто используются в кабельном телевидении или других аудиовизуальных средствах связи.
Стратегия

Мы не можем использовать уравнение напрямую. Вместо этого мы смотрим на концентрические цилиндрические оболочки с толщиной и интегрируем.

Решение

Сначала мы находим выражение, а затем интегрируем от до,

Значение

Сопротивление коаксиального кабеля зависит от его длины, внутреннего и внешнего радиусов, а также удельного сопротивления материала, разделяющего два проводника.Поскольку это сопротивление не бесконечно, между двумя проводниками возникает небольшой ток утечки. Этот ток утечки приводит к ослаблению (или ослаблению) сигнала, передаваемого по кабелю.

ПРОВЕРЬТЕ ПОНИМАНИЕ 5.7


Сопротивление между двумя проводниками коаксиального кабеля зависит от удельного сопротивления материала, разделяющего два проводника, длины кабеля и внутреннего и внешнего радиуса двух проводников. Если вы разрабатываете коаксиальный кабель, как сопротивление между двумя проводниками зависит от этих переменных?

Candela Citations

Лицензионный контент CC, конкретная атрибуция

  • Загрузите бесплатно с http: // cnx.org/contents/[email protected]. Получено с : http://cnx.org/contents/[email protected]. Лицензия : CC BY: Атрибуция

Температурная зависимость удельного сопротивления — Материалы исследования для IIT JEE


Удельное сопротивление

Удельное сопротивление известно как удельное электрическое сопротивление или объемное сопротивление. Его можно определить как внутреннее свойство данного материала, которое показывает, как он противостоит току.Его также можно определить как сопротивление проводника с единичной длиной и единичной площадью поперечного сечения. Таким образом, это не зависит от длины и площади поперечного сечения материала. Но сопротивление материала зависит от длины и площади поперечного сечения материала. Удельное сопротивление выражается как ρ = R A / L, где R — сопротивление в омах, A — площадь поперечного сечения в квадратных метрах, а L — длина в метрах. Единица измерения удельного сопротивления — омметр.


Температурная зависимость удельного сопротивления

Удельное сопротивление материалов зависит от температуры.ρ t = ρ 0 [1 + α (T — T 0 ) — это уравнение, которое показывает связь между температурой и удельным сопротивлением материала. В уравнении ρ 0 — удельное сопротивление при стандартной температуре, ρ t — удельное сопротивление при t 0 C, T 0 — эталонная температура, а α — температурный коэффициент удельного сопротивления.

Изменение удельного сопротивления проводников

Мы знаем, что ток — это движение свободных электронов от одного атома к другому при наличии разности потенциалов. В проводниках нет запрещенной зоны между зоной проводимости и валентной зоной. Во многих случаях обе полосы перекрывают друг друга. Валентные электроны слабо связаны с ядром в проводниках. Обычно металлы или проводники имеют низкую энергию ионизации и поэтому очень легко теряют электроны. При подаче электрического тока делокализованные электроны могут свободно перемещаться внутри структуры. Так бывает при нормальной температуре.

Когда температура увеличивается, колебания ионов металлов в решеточной структуре возрастают.Атомы начинают вибрировать с большей амплитудой. Эти колебания, в свою очередь, вызывают частые столкновения между свободными электронами и другими электронами. Каждое столкновение истощает часть энергии свободных электронов и делает их неспособными двигаться. Таким образом, он ограничивает движение делокализованных электронов. Когда происходит столкновение, скорость дрейфа электронов уменьшается. Это означает, что удельное сопротивление металла увеличивается и, следовательно, ток в металле уменьшается. Увеличение удельного сопротивления означает, что проводимость материала снижается.

Для металлов или проводников считается, что они имеют положительный температурный коэффициент. Значение α положительное. Для большинства металлов удельное сопротивление линейно увеличивается с повышением температуры в диапазоне 500 К. Примеры для положительного температурного коэффициента включают серебро, медь, золото и т. Д.

Температурная зависимость удельного сопротивления металлов


Изменение удельного сопротивления в полупроводниках

Кремний — полупроводник.В полупроводниках ширина запрещенной зоны между зоной проводимости и валентной зоной мала. При 0K валентная зона полностью заполнена, а зона проводимости может быть пустой. Но при приложении небольшого количества энергии электроны легко перемещаются в зону проводимости. Кремний — это пример полупроводника. В нормальных условиях кремний играет роль плохого проводника. Каждый атом кремния связан с 4 другими атомами кремния. Связи между этими атомами представляют собой ковалентные связи, в которых электроны находятся в фиксированных позитонах.Таким образом, при 0K электроны не перемещаются внутри структуры решетки.

При повышении температуры запрещенная зона между двумя зонами становится очень меньше, и электроны перемещаются из валентной зоны в зону проводимости. Таким образом, некоторые электроны ковалентных связей между атомами Si могут свободно перемещаться внутри структуры. Это увеличивает проводимость материала. Увеличение проводимости означает уменьшение удельного сопротивления. Таким образом, когда температура в полупроводнике повышается, плотность носителей заряда также увеличивается, а удельное сопротивление уменьшается.О полупроводниках говорят, что они имеют отрицательный температурный коэффициент. Значит, значение температурного коэффициента удельного сопротивления α отрицательно.

Кривая нелинейная в широком диапазоне температур.

Температурная зависимость от удельного сопротивления для полупроводников


Изменение удельного сопротивления в изоляторах

В изоляторах большой запрещенный энергетический зазор между зоной проводимости и валентной зоной.Валентная зона полностью заполнена электронами. Запрещенная щель между двумя зонами будет больше 3 eV. Таким образом, для перехода валентного электрона в зону проводимости требуется большое количество энергии. Алмаз — это пример изолятора. Здесь все валентные электроны участвуют в образовании ковалентной связи и проводимости не происходит. Электроны прочно связаны с ядром.

Когда температура повышается, атомы материала колеблются, и это заставляет валентные электроны, присутствующие в валентной зоне, переходить в зону проводимости.Это, в свою очередь, увеличивает проводимость материала. Когда проводимость материала увеличивается, это означает, что удельное сопротивление уменьшается, и поэтому ток увеличивается. Таким образом, некоторые изоляторы при комнатной температуре превращаются в проводники при высокой температуре. Для изоляторов они имеют отрицательный температурный коэффициент. Значит, значение температурного коэффициента удельного сопротивления α отрицательно.

Проводники и изоляторы

Сверхпроводники

Мы знаем, что когда электрический ток проходит по проводникам, некоторая энергия теряется в виде тепла.Количество потерь энергии зависит от сопротивления материала. В 1911 году некоторые ученые охладили образец ртути до 4,2 ° выше абсолютного нуля. Таким образом, сопротивление материала упало до нуля. Так был открыт первый сверхпроводник. Таким образом, ученые обнаружили, что в некоторых случаях некоторые материалы не проявляют никакого сопротивления. Материалы с нулевым сопротивлением называются сверхпроводниками. При нулевом сопротивлении материалы проводят ток без потери энергии.Когда температура таких материалов снижается, свободные электроны перестают сталкиваться с положительными ионами и, таким образом, оказывает нулевое сопротивление. Температура, при которой сопротивление падает до нуля, называется критической температурой .

Когда сверхпроводник помещается в магнитное поле, магнитное поле огибает материал, не позволяя магнитному полю проходить через них. Когда напряженность магнитного поля увеличивается, в определенный момент поле может проникать через сверхпроводник и, таким образом, его поведение нарушается.

Считайте, что через сверхпроводник проходит электрический ток. Предположим, что плотность тока увеличивается, при определенном значении плотности тока он теряет свою сверхпроводимость и, наконец, ведет себя как нормальный материал. Плотность тока, выше которой материал теряет сверхпроводимость, называется критической плотностью тока. Высокая температура, сильное магнитное поле и высокая плотность тока разрушают сверхпроводимость материала. Сейчас эти материалы используются в аппаратах МРТ.

Прочие материалы

Удельное сопротивление таких материалов, как нихром, манганин и константан, не сильно зависит от температуры и показывает очень низкую зависимость. Следовательно, эти материалы используются в проволочных стандартных резисторах, поскольку изменение значения сопротивления незначительно при изменении температуры.

Манганин Константан


Факторы, влияющие на удельное сопротивление

Мы знаем, что удельное сопротивление ρ = m / ne 2 , где e — заряд электрона, ԏ — среднее время между столкновениями или время релаксации электронов, а m — масса электрона, n — плотность заряда.Таким образом, это показывает, что сопротивление зависит от ряда факторов, таких как время релаксации между столкновениями и плотность заряда. Из приведенных выше сценариев ясно, что при повышении температуры средняя скорость электронов увеличивается, и, следовательно, происходит больше столкновений. Таким образом, время релаксации между каждым столкновением уменьшается.

В случае металлов плотность заряда в некоторой степени не зависит от температуры. Таким образом, это влияет на другие факторы, такие как ԏ, что означает, что при повышении температуры среднее время между столкновениями уменьшается, что приводит к увеличению удельного сопротивления.

Для полупроводников и изоляторов плотность заряда n увеличивается при повышении температуры. Это компенсирует уменьшение значения ԏ. Следовательно, удельное сопротивление уменьшается при понижении температуры.

Сводка
  • Удельное сопротивление — это сопротивление проводника, имеющего единицу длины и единицу площади поперечного сечения. Единица измерения удельного сопротивления — омметр. Формула: ρ = RA / L, где R — сопротивление в омах, A — площадь поперечного сечения в квадратных метрах, а L — длина в метрах.

  • ρ t = ρ 0 [1 + α (T — T 0 ) — это уравнение, которое показывает связь между температурой и удельным сопротивлением материала. ρ 0 — удельное сопротивление при стандартной температуре, ρ t — удельное сопротивление при t 0 C, T 0 — эталонная температура, а α — температурный коэффициент удельного сопротивления.

  • Для металлов или проводников, когда температура увеличивается и удельное сопротивление металла увеличивается, и, следовательно, ток в металле уменьшается.У них положительный температурный коэффициент. Значение α положительное.

  • Для полупроводников, когда температура повышается, увеличивается проводимость материала. Это означает, что удельное сопротивление материала уменьшается, и поэтому ток увеличивается. Для полупроводников они имеют отрицательный температурный коэффициент. Значит, значение температурного коэффициента удельного сопротивления α отрицательно.

  • Для изоляторов электропроводность материала увеличивается при повышении температуры.Когда проводимость материала увеличивается, мы знаем, что удельное сопротивление уменьшается и, таким образом, увеличивается ток. Таким образом, некоторые изоляторы при комнатной температуре превращаются в проводники при высокой температуре. Для изоляторов они имеют отрицательный температурный коэффициент. Значение температурного коэффициента удельного сопротивления α отрицательно.

  • Материалы с нулевым сопротивлением называются сверхпроводниками. Температура, при которой сопротивление падает до нуля, называется критической температурой.Высокая температура, сильное магнитное поле и высокая плотность тока ослабят свойство сверхпроводимости материала. Меркурий — пример сверхпроводника.

  • Такие материалы, как нихром, манганин и константан, не сильно зависят от температуры. Таким образом, изменение удельного сопротивления материала при изменении температуры незначительно.


Посмотрите это видео, чтобы получить дополнительную информацию


Другие показания

Температурная зависимость удельного сопротивления

Измерение удельного сопротивления проводников — это не ракетостроение!

Определение удельного сопротивления металла требует точного измерения очень низких сопротивлений (и, следовательно, низких напряжений).Многие методы, используемые для металлов, применимы к другим приложениям, таким как сопротивление сверхпроводников, нанопроволоки, графен (форма углерода толщиной в один атом) и другие наноматериалы. Все они связаны с измерением малых напряжений, при которых подаваемая мощность должна быть низкой, чтобы предотвратить самонагрев устройства.

На рисунке 1 показана система для определения удельного сопротивления металлического стержня или стержня. Источник тока подключен к обоим концам образца, а выводы вольтметра расположены на известном расстоянии друг от друга на его поверхности (L). Удельное сопротивление проводящих материалов обычно определяется путем получения известного тока (I), измерения падения напряжения (V), затем вычисления удельного сопротивления (ρ) по измеренному напряжению, величине тока источника, площади поперечного сечения (A = wt) и расстояние между выводами вольтметра, используя это уравнение:

Для проводящих материалов, таких как металлы, это падение напряжения обычно составляет всего лишь микровольт или нановольт, поэтому точные измерения имеют решающее значение. К потенциальным источникам ошибок относятся сопротивление измерительных проводов, термоэлектрические напряжения, низкочастотный шум, внешние источники шума, шум Джонсона и использование вольтметра с недостаточной чувствительностью.К счастью, могут существовать специальные методы, чтобы уменьшить влияние этих ошибок. Например, использование четырехпроводного метода, при котором один набор выводов используется для подачи тока, а другой набор — для измерения падения напряжения на образце, устранит влияние сопротивления выводов.

Рисунок 1. Определение удельного сопротивления металлического стержня или стержня

Термоэлектрическое напряжение

Термоэлектрическое напряжение — частый источник ошибок при измерениях низкого напряжения и низкого сопротивления.Эти напряжения возникают, когда разные металлы в цепи имеют разную температуру. Чтобы снизить термоэлектрические напряжения, создавайте испытательные схемы, используя те же материалы для межсоединений. Сведите к минимуму температурные градиенты в испытательной цепи и дайте испытательному оборудованию прогреться и достичь теплового равновесия. Наконец, используйте метод компенсации смещения для преодоления этих нежелательных смещений, такой как метод реверсирования тока или метод компенсации смещения дельта-режима (см. Ниже).

Джонсон Шум

Основной предел измерения — шум Джонсона в сопротивлении источника.При любом сопротивлении тепловая энергия вызывает движение заряженных частиц. Это движение заряда приводит к возникновению шума, который часто называют шумом Джонсона или тепловым шумом. Мощность (P), доступная от этого движения, определяется выражением:

.

P = 4 КБ

где: k = постоянная Больцмана (1,38 × 10–23 Дж / К)

T = абсолютная температура в K

B = ширина полосы шума в Гц

Металлические проводники приближаются к этому теоретическому пределу шума, в то время как другие материалы производят несколько более высокий уровень шума.Шум напряжения Джонсона (E), возникающий в резисторе (R), составляет:

и шум тока Джонсона (I), создаваемый резистором (R):

Все реальные источники напряжения и тока содержат внутреннее сопротивление; следовательно, они демонстрируют шум Джонсона. На рис. 2 показана зависимость напряжения шума Джонсона от сопротивления источника для различных значений ширины полосы (или времени нарастания) при комнатной температуре.

Рисунок 2: Зависимость шумового напряжения от ширины полосы при различных сопротивлениях источника

Предыдущие уравнения предлагают несколько способов уменьшения шума Джонсона. Возможно, удастся уменьшить полосу пропускания, температуру источника или сопротивление источника.

Шум Джонсона также накладывает теоретический предел достижимого разрешения по напряжению или току. Это повлияет на выбор прибора, который используется для измерения необходимых низких напряжений. Как показано на рисунке 3, нановольтметры — лучший прибор для измерения очень низких напряжений, которые близки к теоретическим пределам, но только до определенного сопротивления устройства.

Рисунок 3: Теоретические пределы измерения напряжения и различные приборы с разными уровнями шума

Дельта-режим — это метод устранения как постоянных тепловых сдвигов, так и переменных тепловых сдвигов.Техника включает в себя подачу тока и измерение напряжения, затем реверсирование тока и повторное измерение напряжения еще два раза. Разница между измерениями и их средним значением — это отклик напряжения, обусловленный только образцом, полученным в результате приложенного уровня тока. Повторение процесса и использование усреднения снижает шум. Нановольтметр Keithley модели 2182A и источники тока модели 6220 или 6221 автоматизируют эти измерения в дельта-режиме и подходят для широкого диапазона удельного сопротивления.

Источники внешнего шума — это помехи, создаваемые другим электрическим оборудованием. Им можно управлять путем экранирования и фильтрации или просто путем устранения источника шума. Поскольку эти источники шума часто находятся на частоте линии электропередачи, избегайте тестовых частот, которые являются точными кратными или долями от 50 Гц или 60 Гц. При использовании приборов постоянного тока и методов реверсирования уменьшение внешнего шума может быть достигнуто простым интегрированием каждого измерения для целого числа циклов линии питания.

Измерение удельного сопротивления проводников может быть сложной задачей из-за всех потенциальных источников ошибок, но методы, описанные в этом блоге, могут значительно улучшить результаты измерений. Большинство цифровых мультиметров не могут измерить падение напряжения на уровне микровольт или нановольт с достаточной точностью, чтобы произвести хорошее измерение. Для правильных измерений необходим очень чувствительный вольтметр, такой как нановольтметр модели 2182A с разрешением 1 нВ. Также необходимо иметь точный источник тока, такой как источник тока модели 6220 или 6221, чтобы уменьшить ошибки при вычислении удельного сопротивления.

Вы можете узнать больше о дельта-режиме и других измерениях сопротивления в этом связанном блоге: Измерение низкого сопротивления с помощью SourceMeter: Могу ли я использовать методы измерения реверсирования тока, компенсации смещения или дельта-режима?

Для получения дополнительной информации о продуктах, обсуждаемых в этом блоге, щелкните следующие ссылки:

Чтобы узнать больше об измерениях удельного сопротивления, загрузите примечание по применению: Измерение удельного сопротивления и определение типа проводимости полупроводниковых материалов с помощью четырехточечного коллинеарного зонда и источника постоянного и переменного тока модели 6221

Чтобы узнать больше о создании точных приборов низкого уровня, загрузите Справочник по измерениям низкого уровня — 7 th Edition

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *