Конвертер удельного электрического сопротивления • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения
Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева
Высоковольтная линия идет на север от атомной электростанции в Пикеринге, Онтарио, Канада
Общие сведения
Алюминиевый провод высоковольтной линии электропередачи
Как только электричество покинуло лаборатории учёных и стало широко внедряться в практику повседневной жизни, встал вопрос о поиске материалов, обладающих определёнными, порой совершенно противоположными, характеристиками по отношению к протеканию через них электрического тока.
Трубчатый нагреватель кухонной плиты
Например, при передаче электрической энергии на дальнее расстояние, к материалу проводов предъявлялись требования минимизации потерь из-за джоулева нагрева в сочетании с малыми весовыми характеристиками. Примером тому являются всем знакомые высоковольтные линии электропередач, выполненные из алюминиевых проводов со стальным сердечником.
Или, наоборот, для создания компактных трубчатых электронагревателей требовались материалы с относительно высоким электрическим сопротивлением и высокой термостойкостью. Простейшим примером прибора, в котором применяются материалы с подобными свойствами, может служить конфорка обыкновенной кухонной электроплиты.
От проводников, используемых в биологии и медицине в качестве электродов, зондов и щупов, требуется высокая химическая устойчивость и совместимость с биоматериалами в сочетании с малым контактным сопротивлением.
Александр Николаевич Лодыгин. Источник: Wikimedia CommonsВольфрамовая спираль лампы накаливания
К разработке такого ныне привычного всем прибора, как лампа накаливания, свои усилия приложила целая плеяда изобретателей из разных стран: Англии, России, Германии, Венгрии и США. Томас Эдисон, проведя более тысячи опытов проверки свойств материалов, подходящих на роль нитей накала, создал лампу с платиновой спиралью. Лампы Эдисона, хотя и имели высокий срок эксплуатации, но не были практичными из-за высокой стоимости исходного материала.
Последующие работы русского изобретателя Лодыгина, предложившего использовать в качестве материалов нити относительно дешёвые тугоплавкие вольфрам и молибден с более высоким удельным сопротивлением, нашли практическое применение. К тому же Лодыгин предложил откачивать из баллонов ламп накаливания воздух, заменяя его инертными или благородными газами, что привело к созданию современных ламп накаливания. Пионером массового производства доступных и долговечных электрических ламп стала компания General Electric, которой Лодыгин переуступил права на свои патенты и далее успешно работал в лабораториях компании долгое время.
Низкое качество электропроводки часто является причиной пожаров в каркасных домах
Этот перечень можно продолжать, поскольку пытливый человеческий ум настолько изобретателен, что порой для решения определённой технической задачи ему нужны материалы с невиданными доселе свойствами или с невероятными сочетаниями этих свойств. Природа уже не успевает за нашими аппетитами и учёные всех стран мира включились в гонку создания материалов, не имеющих природных аналогов.
Одной из важнейших характеристик как природных, так и синтезированных материалов является удельное электрическое сопротивление. Примером электрического прибора, в котором в чистом виде применяется это свойство, может служить плавкий предохранитель, защищающий нашу электро- и электронную аппаратуру от воздействия тока, превышающего допустимые значения.
При этом надо заметить, что именно самодельные заменители стандартных предохранителей, выполненные без знаний удельного сопротивления материала, порой служат причиной не только выгорания различных элементов электрических схем, но и возникновения пожаров в домах и возгорания проводки в автомобилях.
Различные плавкие предохранители, применяемые для защиты электронной аппаратуры
То же самое относится и к замене предохранителей в силовых сетях, когда вместо предохранителя меньшего номинала устанавливается предохранитель с большим номиналом тока срабатывания. Это приводит к перегреву электропроводки и даже, как следствие, к возникновению пожаров с печальными последствиями. Особенно это присуще каркасным домам.
Историческая справка
Понятие удельного электрического сопротивление появилось благодаря трудам известного немецкого физика Георга Ома, который теоретически обосновал и в ходе многочисленных экспериментов доказал связь между силой тока, электродвижущей силой батареи и сопротивлением всех частей цепи, открыв таким образом закон элементарной электрической цепи, названным затем его именем. Ом исследовал зависимость величины протекающего тока от величины приложенного напряжения, от длины и формы материала проводника, а также от рода материала, используемого в качестве проводящей среды.
При этом надо отдать должное работам сэра Гемфри Дэви, английского химика, физика и геолога, который первым установил зависимости электрического сопротивления проводника от его длины и площади поперечного сечения, а также отметил зависимость электропроводности от температуры.
Исследуя зависимости протекания электрического тока от рода материалов, Ом обнаружил, что каждый доступный ему проводящий материал обладал некоторой присущей только ему характеристикой сопротивления протеканию тока.
Надо заметить, что во времена Ома один из самых обыкновенных ныне проводников — алюминий — имел статус особо драгоценного металла, поэтому Ом ограничился опытами с медью, серебром, золотом, платиной, цинком, оловом, свинцом и железом.
В конечном итоге Ом ввёл понятие удельного электрического сопротивления материала как фундаментальной характеристики, совершенно ничего не зная ни о природе протекания тока в металлах, ни о зависимости их сопротивления от температуры.
Удельное электрическое сопротивление. Определение
Удельное электрическое сопротивление или просто удельное сопротивление — фундаментальная физическая характеристика проводящего материала, которая характеризует способность вещества препятствовать похождению электрического тока. Обозначается греческой буквой ρ (произносится как ро) и рассчитывается исходя из эмпирической формулы для расчёта сопротивления, полученной Георгом Омом.
R = ρ ∙ L/S
или, отсюда
ρ = R ∙ S/L
где R — сопротивление в Омах, S — площадь в м²/, L — длина в м
Размерность удельного электрического сопротивления в Международной системе единиц СИ выражается в Ом•м.
Это сопротивление проводника длиной в 1 м и площадью поперечного сечения в 1 м²/ величиной в 1 Ом.
В электротехнике, для удобства расчётов, принято пользоваться производной величины удельного электрического сопротивления, выражаемой в Ом•мм²/м. Значения удельного сопротивления для наиболее распространённых металлов и их сплавов можно найти в соответствующих справочниках.
В таблицах 1 и 2 приведены значения удельных сопротивлений различных наиболее распространённых материалов.
Таблица 1. Удельное сопротивление некоторых металлов
Металл | ρ, Ом•мм²/м | Металл | ρ, Ом•мм²/м | Металл | ρ, Ом•мм²/м |
---|---|---|---|---|---|
Серебро | 0,015…0,0162 | Алюминий | 0,0262…0,0295 | Железо | 0,098 |
Медь | 0,01724…0,018 | Цинк | 0,059 | Платина | 0,107 |
Золото | 0,023 | Никель | 0,087 | Олово | 0,12 |
Таблица 2. Удельное сопротивление распространенных сплавов
Сплав | ρ, Ом•мм²/м | Сплав | ρ, Ом•мм²/м | Сплав | ρ, Ом•мм²/м |
---|---|---|---|---|---|
Сталь | 0,103…0,137 | Манганин | 0,43…0,51 | Хромаль | 1,3…1,5 |
Эваном | 0,764 | Нихром | 1,05…1,4 | Латунь | 0,025…0,108 |
Константан | 0,5 | Фехраль | 1,15…1,35 | Бронза | 0,095…0,1 |
Источник: Статья Википедии «Удельное электрическое сопротивление» с изменениями и дополнениями
Кристалл кварца
Удельные электрические сопротивления различных сред. Физика явлений
Удельные электрические сопротивления металлов и их сплавов, полупроводников и диэлектриков
Сегодня, вооружённые знаниями, мы в состоянии заранее просчитать удельное электрическое сопротивление любого, как природного, так и синтезированного материала исходя из его химического состава и предполагаемого физического состояния.
Эти знания помогают нам лучшим образом использовать возможности материалов, порой весьма экзотические и уникальные.
В силу сложившихся представлений, с точки зрения физики твёрдые тела подразделяются на кристаллические, поликристаллические и аморфные вещества.
Кварцевые резонаторы в различных устройствах
Проще всего, в смысле технического расчёта удельного сопротивления или его измерения, дело обстоит с аморфными веществами. Они не имеют выраженной кристаллической структуры (хотя и могут иметь микроскопические включения таковых веществ), относительно однородны по химическому составу и проявляют характерные для данного материала свойства.
У поликристаллических веществ, образованных совокупностью относительно мелких кристаллов одного химического состава, поведение свойств не очень отличается от поведения аморфных веществ, поскольку удельное электрическое сопротивление, как правило, определяется как интегральное совокупное свойство данного образца материала.
Кварцевый резонатор в форме камертона в корпусе и со снятым корпусом
Сложнее дело обстоит с кристаллическими веществами, особенно с монокристаллами, которые имеют различное удельное электрическое сопротивление и другие электрические характеристики относительно осей симметрии их кристаллов. Это свойство называется анизотропией кристалла и широко используется в технике, в частности, в радиотехнических схемах кварцевых генераторов, где стабильность частоты определяется именно генерацией частот, присущих данному кристаллу кварца.
Каждый из нас, являясь обладателем компьютера, планшета, мобильного телефона или смартфона, включая владельцев наручных электронных часов вплоть до iWatch, одновременно является обладателем кристаллика кварца. По этому можно судить о масштабах использования в электронике кварцевых резонаторов, исчисляемых десятками миллиардов.
Помимо прочего, удельное сопротивление многих материалов, особенно полупроводников, зависит от температуры, поэтому справочные данные обычно приводятся с указанием температуры измерения, обычно равной 20 °С.
Уникальные свойства платины, имеющей постоянную и хорошо изученную зависимость удельного электрического сопротивления от температуры, а также возможность получения металла высокой чистоты послужили предпосылкой создания на её основе датчиков в широком диапазоне температур.
Для металлов разброс справочных значений удельного сопротивления обусловлен способами изготовления образцов и химической чистотой металла данного образца.
Для сплавов более сильный разброс справочных значений удельного сопротивления обусловлен способами изготовления образцов и непостоянством состава сплава.
Удельное электрическое сопротивление жидкостей (электролитов)
Вода имеет максимальную плотность при 4 °С
В основе понимания удельного сопротивления жидкостей лежат теории термической диссоциации и подвижности катионов и анионов. Например, в самой распространённой жидкости на Земле – обыкновенной воде, некоторая часть её молекул под воздействием температуры распадается на ионы: катионы Н+ и анионы ОН– . При подаче внешнего напряжения на электроды, погружённые в воду при обычных условиях, возникает ток, обусловленный перемещением вышеупомянутых ионов. Как выяснилось, в воде образуются целые ассоциации молекул — кластеры, порой соединяющимися с катионами Н+ или анионами ОН–. Поэтому передача ионов кластерами под воздействием электрического напряжения происходит так: принимая ион в направлении приложенного электрического поля с одной стороны, кластер «сбрасывает» аналогичный ион с другой стороны. Наличие в воде кластеров прекрасно объясняет тот научный факт, что при температуре около 4 °C вода имеет наибольшую плотность. Большая часть молекул воды при этом находится в кластерах из-за действия водородных и ковалентных связей, практически в квазикристаллическом состоянии; термодиссоциация при этом минимальна, а образование кристаллов льда, который имеет более низкую плотность (лёд плавает в воде), ещё не началось.
В целом проявляется более сильная зависимость удельного сопротивления жидкостей от температуры, поэтому эта характеристика всегда измеряется при температуре в 293 K, что соответствует температуре 20 °C.
Помимо воды имеется большое число других растворителей, способных создавать катионы и анионы растворяемых веществ. Знание и измерение удельного сопротивления таких растворов также имеет большое практическое значение.
Для водных растворов солей, кислот и щелочей существенную роль в определении удельного сопротивления раствора играет концентрация растворённого вещества. Примером может служить следующая таблица, в которой приведены значения удельных сопротивлений различных растворённых в воде веществ при температуре 18 °С:
Таблица 3. Значения удельных сопротивлений различных растворённых в воде веществ при температуре 18 °С
Удельное сопротивление, Ом•м | |||||||
---|---|---|---|---|---|---|---|
Концентрация c, % | NH₄Cl | NaCl | ZnSO₄ | CuSO₄ | КОН | NaOH | H₂SO₄ |
5,0 | 10,9 | 14,9 | 52,4 | 52,9 | 5,8 | 5,1 | 4,8 |
15,0 | 3,9 | 6,1 | 24,1 | 23,8 | 2,4 | 2,9 | 1,8 |
25,0 | 2,5 | 4,7 | 20,8 | — | 1,9 | 3,7 | 1,4 |
Данные таблиц взяты из Краткого физико-технического справочника, Том 1, — М. : 1960
Цветная гибкая полихлорвиниловая и жидкая изоленты
Удельное сопротивление изоляторов
Огромное значение в отраслях электротехники, электроники, радиотехники и робототехники играет целый класс различных веществ, имеющий относительно высокое удельное сопротивление. Вне зависимости от их агрегатного состояния, будь оно твёрдое, жидкое или газообразное, такие вещества называются изоляторами. Такие материалы используются для изолирования отдельных частей электрических схем друг от друга.
Примером твёрдых изоляторов может служить всем знакомая гибкая изолента, благодаря которой мы восстанавливаем изоляцию при соединении различных проводов. Многим знакомы фарфоровые изоляторы подвески воздушных линий электропередач, текстолитовые платы с электронными компонентами, входящими в состав большинства изделий электронной техники, керамика, стекло и многие другие материалы. Современные твёрдые изоляционные материалы на базе пластмасс и эластомеров делают безопасным использование электрического тока различных напряжений в самых разнообразных устройствах и приборах.
Мощные понижающие трансформаторы на трансформаторной подстанции в Торонто, Канада
Помимо твёрдых изоляторов широкое применение в электротехнике находят жидкие изоляторы с высоким удельным сопротивлением. В силовых трансформаторах электросетей жидкое трансформаторное масло предотвращает межвитковые пробои из-за ЭДС самоиндукции, надёжно изолируя витки обмоток. В масляных выключателях масло используется для гашения электрической дуги, которая возникает при переключении источников тока. Конденсаторное масло используется для создания компактных конденсаторов с высокими электрическими характеристиками; помимо этих масел в качестве жидких изоляторов используются природное касторовое масло и синтетические масла.
При нормальном атмосферном давлении все газы и их смеси являются с точки зрения электротехники отличными изоляторами, но благородные газы (ксенон, аргон, неон, криптон) в силу их инертности обладают более высоким удельным сопротивлением, что широко используется в некоторых областях техники.
Но самым распространённым изолятором служит воздух, в основном состоящий из молекулярного азота (75% по массе), молекулярного кислорода (23,15% по массе), аргона (1,3% по массе), углекислого газа, водорода, воды и некоторой примеси различных благородных газов. Он изолирует протекание тока в обычных бытовых выключателях света, переключателях тока на основе реле, магнитных пускателях и механических рубильниках. Необходимо отметить, что снижение давления газов или их смесей ниже атмосферного приводит к росту их удельного электрического сопротивления. Идеальным изолятором в этом смысле является вакуум.
Красными стрелками показано заземление оборудования столба высоковольтной линии электропередачи в жилом районе. На желтом фоне написано, что заземляющий провод изготовлен из омеднённой стали и не представляет ценности при сдаче в металлолом.
Удельное электрическое сопротивление различных грунтов
Одним из важнейших способов защиты человека от поражающего действия электрического тока при авариях электроустановок является устройство защитного заземления.
Оно представляет собой преднамеренное соединение кожуха или корпуса электроустройств с защитным заземляющим устройством. Обычно заземление выполняется в виде зарытых в землю на глубину более 2,5 метра стальных или медных полос, труб, стержней или уголков, которые в случае аварии обеспечивают протекание тока по контуру устройство — корпус или кожух — земля — нулевой провод источника переменного тока. Сопротивление этого контура должно быть не более 4 Ом. В этом случае напряжение на корпусе аварийного устройства снижается до безопасного для человека величин, а автоматические устройства защиты электрической цепи тем или иным способом производят отключение аварийного устройства.
При расчёте элементов защитного заземления существенную роль играет знание удельного сопротивления грунтов, которое может варьироваться в широких пределах.
Сообразуясь с данными справочных таблиц, выбирается площадь заземляющего устройства, по ней вычисляется количество заземляющих элементов и собственно конструкция всего устройства. Соединение элементов конструкции устройства защитного заземления производится сваркой.
Электротомография
Электроразведка изучает приповерхностную геологическую среду, применяется для поиска рудных и нерудных полезных ископаемых и других объектов на основе исследования различных искусственных электрических и электромагнитных полей. Частным случаем электроразведки является электротомография (Electrical Resistivity Tomography) — метод определения свойств горных пород по их удельному сопротивлению.
Суть метода заключается в том, что при определённом положении источника электрического поля проводятся замеры напряжения на различных зондах, затем источник поля перемещают в другое место или переключают на другой источник и повторяют измерения. Источники поля и зонды-приёмники поля размещают на поверхности и в скважинах.
Затем полученные данные обрабатываются и интерпретируются с помощью современных компьютерных методов обработки, позволяющих визуализировать информацию в виде двухмерных и трёхмерных изображений.
Электротомография оказывает неоценимую помощь геологам, археологам и палеозоологам
Являясь очень точным методом поиска, электротомография оказывает неоценимую помощь геологам, археологам и палеозоологам.
Определение формы залегания месторождений полезных ископаемых и границ их распространения (оконтуривание) позволяет выявить залегание жильных залежей полезных ископаемых, что существенно снижает затраты на их последующую разработку.
Археологам этот метод поиска даёт ценную информацию о расположении древних захоронений и наличия в них артефактов, тем самым сокращая затраты на раскопки.
Палеозоологи с помощью электротомографии ищут окаменевшие останки древних животных; результаты их работ можно увидеть в музеях естественных наук в виде поражающих воображение реконструкций скелетов доисторической мегафауны.
Кроме того, электротомография применяется при возведении и при последующей эксплуатации инженерных сооружений: высотных зданий, плотин, дамб, насыпей и других.
Определение диаметра проволоки
Определения удельного сопротивления на практике
Порой для решения практических задач перед нами может встать задача определения состава вещества, например, проволоки для резака пенополистирола. Имеем два мотка проволоки подходящего диаметра из различных неизвестных нам материалов. Для решения задачи необходимо найти их удельное электрическое сопротивление и далее по разнице найденных значений или по справочной таблице определить материал проволоки.
Отмерим рулеткой и отрежем по 2 метра проволоки от каждого образца. Определим диаметры проволок d₁ и d₂ микрометром. Включив мультиметр на нижний предел измерения сопротивлений, измеряем сопротивление образца R₁. Повторяем процедуру для другого образца и также измеряем его сопротивление R₂.
Учтём, что площадь поперечного сечения проволок рассчитывается по формуле
S = π · d2/4
Теперь формула для расчёта удельного электрического сопротивления будет выглядеть следующим образом
Измерение сопротивления куска проволоки
ρ = R · π · d
Подставляя полученные значения L, d₁ и R₁ в формулу для расчёта удельного сопротивления, приведенную в статье выше, вычисляем значение ρ₁ для первого образца.
ρ1 = 0,12 ом мм2/м
Подставляя полученные значения L, d₂ и R₂ в формулу, вычисляем значение ρ₂ для второго образца.
ρ2 = 1,2 ом мм2/м
Из сравнения значений ρ₁ и ρ₂ со справочными данными вышеприведенной Таблицы 2, делаем вывод, что материалом первого образца является сталь, а второго — нихром, из которого и изготовим струну резака.
Автор статьи: Сергей Акишкин
Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.
Удельное сопротивление меди, таблица
Использование проводников из чистой меди и медных сплавов востребовано в различных отраслях промышленности. Материал имеет низкое удельное сопротивление, по данному параметру выделяется среди ряда других металлов. При организации протяженных кабельных трасс удельное сопротивление необходимо учитывать, так как потери на выходе могут быть значительными при передаче напряжения на большое расстояние.
Почему низкое удельное сопротивление – основная причина применения меди
С точки зрения физики, удельное сопротивление меди и других материалов показывает способность вещества препятствовать прохождению электрического тока, уровень потерь на единицу длины проводника. По сравнению с другими металлами, медь обладает низким удельным сопротивлением в 0,017, по данному показателю уступает только серебру. Благодаря подобным характеристикам медь является востребованным на рынке проводником:
- низкое удельное сопротивление гарантирует минимальный уровень потерь при прохождении электрического тока;
- внешние климатические нагрузки не оказывают значительного воздействия на технические характеристики металла;
- расчет сечения кабеля выполнить намного проще за счет минимальных потерь между входом и выходом;
- низкое сопротивление позволяет использовать для прокладки силовых, контрольных, специальных кабелей более тонкие проводники.
Стандартный медный провод поставляется в нескольких вариантах исполнения, отличается содержанием примесей, толщиной, характеристиками. При этом сопротивление меди может незначительно изменяться в зависимости от внешних условий.
Как рассчитать и от чего зависит сопротивление меди
Использование медного кабеля недостаточной толщины ведет к перегреву проводки, выходу оборудования из строя. При выборе излишне толстых проводов увеличиваются затраты. Поэтому важно знать сопротивление меди. Получить данную информацию можно несколькими способами:
- наиболее простой вариант – получить подобную информацию из приведенной ниже таблицы. Для большинства случаев такой способ является рабочим, позволяет получить данные для проводников в стандартных условиях измерения;
- более сложный вариант – расчет сопротивления меди по формуле. Для получения точных значений необходимо длину и сечение провода. Исходя их входных данных можно рассчитать сопротивление проводника;
- еще один способ достаточно трудоемкий, предполагает использование специального прибора. С помощью омметра проводится измерение электрического сопротивления проводника с помощью подачи постоянного напряжения.
В зависимости от текущих условий измерения удельное сопротивление меди может меняться. При наличии льда в изоляции, непроводящего ток, сопротивление проводника увеличивается. Также параметры напрямую зависят от типа кабеля. Стандартные значения удельного сопротивления приведены в таблице:
Марка | Медь | О2 | P | Способ получения, основные примеси |
---|---|---|---|---|
М00к | 99.98 | 0.01 | — | Продукт электролитического рафинирования, заключительная стадия переработки медной руды. |
М0к | 99. 97 | 0.015 | 0.001 | |
М1к | 99.95 | 0.02 | 0.002 | |
М2к | 99.93 | 0.03 | 0.002 | |
М00 | 99.99 | 0.001 | 0.0003 |
Переплавка катодов |
М0 | 99.97 | 0.001 | 0. 002 | |
М1 | 99.95 | 0.003 | 0.002 | |
М00 | 0.03 | 0.0005 | Переплавка катодов в обычной атмосфере. Повышенное содержание кислорода. Отсутствие фосфора | |
М0 | 99.93 | 0.04 | — | |
М1 | 99.9 | 0.05 | — | |
М2 |
99. |
0.07 | — | Переплавка лома. Повышенное содержание кислорода, фосфора нет |
М3 | 99.5 | 0.08 | — | |
М1ф | 99.9 | — | 0.012 — 0.04 |
|
М1р | 99.9 | 0.01 | 0.002 — 0.01 | |
М2р | 99. 7 | 0.01 | 0.005 — 0.06 | |
|
99.5 | 0.01 | 0.005 — 0.06 |
Удельное сопротивление меди
Удельное сопротивление меди это физическое понятие встречающее в электротехнике. Что же это, спросите Вы.
Итак начнем с понятия — сопротивление проводника, которое означает процесс прохождения через него электричества. В данном случае проводником будет служить медь, а значит её свойства мы и будем рассматривать .
У всех металлах есть конкретное строение в виде кристаллической решетки. На каждом из углов этой решетки есть атомы, которые периодически колеблются относительно узлов. Когда атомы отталкиваются или притягиваются друг к другу, это влияет на нахождение и расположение всех узлов, во всех металлах по разному. Окружение атомов занимают электроны, которые совершают вращение по своей oрбите, удерживаясь на ней благодаря равновeсию сил.
Для любителей настоящего мороженного! Есть интересное предложение, на сайте http://oceanpower.ru/category/id001/. Зайдите и узнайте о настольные фризеры для мягкого мороженого и не только.
Как же реагирует медь, когда к ней применимо электрическоe поле. Внутри данного проводника все оторванные электросилой электроны, от своей oрбиты, стремятся к полюсу со знаком плюс. Данное движение и называется электрическим током. Во время движения электроны сталкиваются с атомами и другими электронами, которые не были оторваны от своих oрбит. При этом столкнувшиеся электроны меняют направление и теряется их энергия. Это и есть основное определение сопротивления проводника. Другими словами это решетки атомы с электронами вращающиеся по своим орбитам которые и создают сопротивление сорванным с орбит движущимся электродам проводника.
Однако сопротивление зависит так же от нескольких факторов, она индивидуальна для каждого из металлов. На нее влияет размер кристаллической решетки и температура. Когда температура проводника повышается , его атомы проделывают более учащенные колебания. А следовательно, и электроны движутся с наибольшей скоростью и сопротивлением, а орбиты будут большими по радиусу.
Значение удельного сопротивление меди находиться в справочных таблицах по физике. Оно составляет 0,0175 Ом*мм2/м, при температуре 20 градусов. Ближайшим металлом по значению к меди, будет алюминий = 0,0271Ом*мм2/м. Проводимость меди уступает лишь серебру = 0,016Ом*мм2/м. о чем свидетельствует ее широкое применение , к примеру в силовых кабелях или в разнообразных проводниках. Однако без меди не создать силовые трансформаторы и двигатели маленьких энергосберегающих приборов.
Нужно знать обозначения удельного сопротивления, так как без этого нельзя проводить вычисления общего сопротивления разных проводников, во время разработки или проектирования новых приборов. Для этого существует формула:
R=p*I/S
в которой: R — будет общим сопротивлением проводников, р — будет удельным сопротивлением металлов, I- будет длинной конкретного проводника, S — площадью сечения проводников.
Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:
Удельное сопротивление. Реостаты — урок. Физика, 8 класс.
Соберём цепь, изображённую на рисунке. Силу тока в цепи измеряют амперметром, напряжение — вольтметром. Зная напряжение на концах проводника и силу тока в нём, по закону Ома можно определить сопротивление каждого из проводников.
В цепь источника тока по очереди будем включать различные проводники, например, никелиновые проволоки одинаковой толщины, но разной длины. Выполнив указанные опыты, мы установим, что из двух никелиновых проволок одинаковой толщины более длинная проволока имеет большее сопротивление.
В следующем эксперименте по очереди будем включать никелиновые проволоки одинаковой длины, но разной толщины (разной площади поперечного сечения). Установим, что из двух никелиновых проволок одинаковой длины большее сопротивление имеет проволока, поперечное сечение которой меньше.
В третьем эксперименте по очереди будем включать никелиновую и нихромовую проволоки одинаковой длины и толщины. Установим, что никелиновая и нихромовая проволоки одинаковых размеров имеют разное сопротивление.
Зависимость сопротивления проводника от его размеров и вещества, из которого изготовлен проводник, впервые на опытах изучил Ом. Он установил:
Сопротивление прямо пропорционально длине проводника, обратно пропорционально площади его поперечного сечения и зависит от вещества проводника.
Обрати внимание!
Сопротивление проводника прямо пропорционально его длине, т.е. чем длиннее проводник, тем больше его электрическое сопротивление.
Сопротивление проводника обратно пропорционально площади его поперечного сечения, т.е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.
Причиной наличия сопротивления у проводника является взаимодействие движущихся электронов с ионами кристаллической решётки проводника. Из-за различия в строении кристаллической решётки у проводников, выполненных из различных веществ, сопротивления их отличаются друг от друга. Для характеристики материала вводят величину, которую называют удельным сопротивлением.
Удельное сопротивление — это физическая величина, которая определяет сопротивление проводника из данного вещества длиной \(1\) м и площадью поперечного сечения \(1\) м².
Введём буквенные обозначения: \(ρ\) — удельное сопротивление проводника, \(l\) — длина проводника, \(S\) — площадь его поперечного сечения. Тогда сопротивление проводника \(R\) выразится формулой:
R=ρ⋅lS.
Из этой формулы можно выразить и другие величины:
l=R⋅Sρ, S=ρ⋅lR, ρ=R⋅Sl.
Из последней формулы можно определить единицу удельного сопротивления. Так как единицей сопротивления является \(1\) Ом, единицей площади поперечного сечения — \(1\) м², а единицей длины — \(1\) м, то единицей удельного сопротивления будет:
1 Ом ⋅1м21 м=1 Ом ⋅1 м, т.е. Ом⋅м.
Удобнее выражать площадь поперечного сечения проводника в квадратных миллиметрах, так как она чаще всего бывает небольшой. Тогда единицей удельного сопротивления будет:
1 Ом ⋅1мм21 м, т.е. Ом⋅мм2м.
В таблице приведены значения удельного сопротивления некоторых веществ при \(20\) °С.
Обрати внимание!
Удельное сопротивление с изменением температуры меняется.
Опытным путём было установлено, что у металлов, например, удельное сопротивление с повышением температуры увеличивается.
Обрати внимание!
Из всех металлов наименьшим удельным сопротивлением обладают серебро и медь. Следовательно, серебро и медь — лучшие проводники электричества.
При проводке электрических цепей используют алюминиевые, медные и железные провода.
Во многих случаях нужны приборы, имеющие большое сопротивление. Их изготавливают из специально созданных сплавов — веществ с большим удельным сопротивлением. Например, как видно из таблицы, сплав нихром имеет удельное сопротивление почти в \(40\) раз большее, чем алюминий.
Обрати внимание!
Стекло и дерево имеют такое большое удельное сопротивление, что почти совсем не проводят электрический ток и являются изоляторами.
На практике часто приходится менять силу тока в цепи, делая её то больше, то меньше. Так, изменяя силу тока в динамике радиоприёмника, мы регулируем громкость звука. Изменением силы тока в электродвигателе швейной машины можно регулировать скорость его вращения.
Для регулирования силы тока в цепи применяют специальные приборы — реостаты.
Простейшим реостатом может служить проволока из материала с большим удельным сопротивлением, например, никелиновая или нихромовая. Включив такую проволочку в цепь источника электрического тока через контакты А и С и передвигая подвижный контакт С, можно уменьшать или увеличивать длину включённого в цепь участка АС. При этом будет меняться сопротивление цепи, а следовательно, и сила тока в ней, это покажет амперметр.
Реостатам, применяемым на практике, придают более удобную и компактную форму. Для этой цели используют проволоку с большим удельным сопротивлением. Один из реостатов (ползунковый реостат) изображён на рисунке.
В этом реостате никелиновая проволока намотана на керамический цилиндр. Проволока покрыта тонким слоем не проводящей ток окалины, поэтому витки её изолированы друг от друга. Над обмоткой расположен металлический стержень, по которому может перемещаться ползунок. Своими контактами он прижат к виткам обмотки. От трения ползунка о витки слой окалины под его контактами стирается, и электрический ток в цепи проходит от витков проволоки к ползунку, а через него в стержень, имеющий на конце зажим \(1\). С помощью этого зажима и зажима \(2\), соединённого с одним из концов обмотки и расположенного на корпусе реостата, реостат подсоединяют в цепь. Перемещая ползунок по стержню, можно увеличивать или уменьшать сопротивление реостата, включённого в цепь.
Условное обозначение реостата в схемах показано на рисунке:
Каждый реостат рассчитан на определённое сопротивление и на наибольшую допустимую силу тока, превышать которую не следует, так как обмотка реостата накаляется и может перегореть. Сопротивление реостата и наибольшее допустимое значение силы тока указаны на нём.
Обрати внимание!
Реостат нельзя полностью выводить, так как сопротивление его при этом становится равным нулю, и если в цепи нет других приёмников тока, то сила тока может оказаться очень большой и амперметр испортится.
На рисунке изображён реостат, с помощью которого можно менять сопротивление в цепи не плавно, а ступенями — скачками, т.к. каждая спираль реостата имеет определённое сопротивление.
Источники:
Пёрышкин А.В. Физика. 8 класс// ДРОФА, 2013.
http://class-fizika.narod.ru/8_31.htm
http://electricalschool.info/main/osnovy/394-jelektricheskojj-soprotivlenie.html
http://xn--h2adlho.xn--g1ababalj7azb.xn--p1ai/%D1%83%D0%B4%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5-%D1%81%D0%BE%D0%BF%D1%80%D0%BE%D1%82%D0%B8%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5/
http://xn--h2adlho.xn--g1ababalj7azb.xn--p1ai/%D1%83%D1%80%D0%BE%D0%BA-38-%D1%80%D0%B5%D0%BE%D1%81%D1%82%D0%B0%D1%82%D1%8B/
http://mugo.narod.ru/Fiziks/15.html
Удельное сопротивление металлов, электролитов и веществ (Таблица)
Удельное сопротивление металлов и изоляторов
В справочной таблице даны значения удельного сопротивления р некоторых металлов и изоляторов при температуре 18—20° С, выраженные в ом·см. Величина р для металлов в сильной степени зависит от примесей, в таблице даны значения р для химически чистых металлов, для изоляторов даны приближенно. Металлы и изоляторы расположены в таблице в порядке возрастающих значений р.
Таблица удельное сопротивление металлов
Чистые металлы | 104 ρ (ом·см) | Чистые металлы | 104 ρ (ом·см) |
---|---|---|---|
Серебро | 0,016 | Хром | 0,131 |
Медь | 0,017 | Тантал | 0,146 |
Золото | 0,023 | Бронза 1) | 0,18 |
Алюминий | 0,029 | Торий | 0,18 |
Дюралюминий | 0,0335 | Свинец | 0,208 |
Магний | 0,044 | Платинит 2) | 0,45 |
Кальций | 0,046 | Сурьма | 0,405 |
Натрий | 0,047 | Аргентан | 0,42 |
Марганец | 0,05 | Никелин | 0,33 |
Иридий | 0,063 | Манганин | 0,43 |
Вольфрам | 0,053 | Константан | 0,49 |
Молибден | 0,054 | Сплав Вуда 3) | 0,52 (0°) |
Родий | 0,047 | Осмий | 0,602 |
Цинк | 0,061 | Сплав Розе 4) | 0,64 (0°) |
Калий | 0,066 | Хромель | 0,70-1,10 |
Никель | 0,070 | ||
Кадмий | 0,076 | Инвар | 0,81 |
Латунь | 0,08 | Ртуть | 0,958 |
Кобальт | 0,097 | Нихром 5) | 1,10 |
Железо | 0,10 | Висмут | 1,19 |
Палладий | 0,107 | Фехраль 6) | 1,20 |
Платина | 0,110 | Графит | 8,0 |
Олово | 0,113 |
Таблица удельное сопротивление изоляторов
Изоляторы | ρ (ом·см) | Изоляторы | ρ (ом·см) |
---|---|---|---|
Асбест | 108 | Слюда | 1015 |
Шифер | 108 | Миканит | 1015 |
Дерево сухое | 1010 | Фарфор | 2·1015 |
Мрамор | 1010 | Сургуч | 5·1015 |
Целлулоид | 2·1010 | Шеллак | 1016 |
Бакелит | 1011 | Канифоль | 1016 |
Гетинакс | 5·1011 | Кварц _|_ оси | 3·1016 |
Алмаз | 1012 | Сера | 1017 |
Стекло натр | 1012 | Полистирол | 1017 |
Стекло пирекс | 2·1014 | Эбонит | 1018 |
Кварц || оси | 1014 | Парафин | 3·1018 |
Кварц плавленый | 2·1014 | Янтарь | 1019 |
Удельное сопротивление чистых металлов при низких температурах
В таблице даны значения удельного сопротивления (в ом·см) некоторых чистых металлов при низких температурах (0°С).
Чистые металлы | t (°С) | Удельное сопротивление, 104 ρ (ом·см) |
---|---|---|
Висмут | -200 | 0,348 |
Золото | -262,8 | 0,00018 |
Железо | -252,7 | 0,00011 |
Медь | -258,6 | 0,00014 1 |
Платина | -265 | 0,0010 |
Ртуть | -183,5 | 0,0697 |
Свинец | -252,9 | 0,0059 |
Серебро | -258,6 | 0,00009 |
Отношение сопротивлении Rt/Rq чистых металлов при температуре Т °К и 273° К.
В справочной таблице дано отношение Rt/Rq сопротивлений чистых металлов при температуре Т °К и 273° К.
Чистые металлы | Т (°К) | RT/R0 |
---|---|---|
Алюминий | 77,7 | 1,008 |
20,4 | 0,0075 | |
Висмут | 77,8 | 0,3255 |
20,4 | 0,0810 | |
Вольфрам | 78,2 | 0,1478 |
20,4 | 0,0317 | |
Железо | 78,2 | 0,0741 |
20,4 | 0,0076 | |
Золото | 78,8 | 0,2189 |
20,4 | 0,0060 | |
Медь | 81,6 | 0,1440 |
20,4 | 0,0008 | |
Молибден | 77,8 | 0,1370 |
20,4 | 0,0448 | |
Никель | 78,8 | 0,0919 |
20,4 | 0,0066 | |
Олово | 79,0 | 0,2098 |
20,4 | 0,0116 | |
Платина | 91,4 | 0,2500 |
20,4 | 0,0061 | |
Ртуть | 90,1 | 0,2851 |
20,4 | 0,4900 | |
Свинец | 73,1 | 0,2321 |
20,5 | 0,0301 | |
Серебро | 78,8 | 0,1974 |
20,4 | 0,0100 | |
Сурьма | 77,7 | 0,2041 |
20,4 | 0,0319 | |
Хром | 80,0 | 0,1340 |
20,6 | 0,0533 | |
Цинк | 83,7 | 0,2351 |
20,4 | 0,0087 |
Удельное сопротивление электролитов
В таблице даны значения удельного сопротивления электролитов в ом·см при температуре 18° С. Концентрация растворов с дана в процентах, которые определяют число граммов безводной соли или кислоты в 100 г раствора.
c (%) | Nh5Cl | NaCl | ZnSO4 | CuSO4 | КОН | NaOH | h3SO4 |
---|---|---|---|---|---|---|---|
5 | 10,9 | 14,9 | 52,4 | 52,9 | 5,8 | 5,1 | 4,8 |
10 | 5,6 | 8,3 | 31,2 | 31,3 | 3,2 | 3,2 | 2,6 |
15 | 3,9 | 6,1 | 24,1 | 23,8 | 2,4 | 2,9 | 1,8 |
20 | 3,0 | 5,1 | 21,3 | — | 2,0 | 3,0 | 1,5 |
25 | 2,5 | 4,7 | 20,8 | — | 1,9 | 3,7 | 1,4 |
_______________
Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, — М. : 1960.
Зависимость электрического сопротивления от сечения, длины и материала проводника
Сопротивление различных проводников зависит от материала, из которого они изготовлены.
Можно проверить это практически на следующем опыте.
Рисунок 1. Опыт, показывающий зависимость электрического сопротивления от материала проводника
Подберем два или три проводника из различных материалов, возможно меньшего, но одинакового поперечного сечения, например, один медный, другой стальной, третий никелиновый. Укрепим на планке два зажима а и б на расстоянии 1 —1,5 м один от другого (рис. 1) и подключим к ним аккумулятор через амперметр. Теперь поочередно между зажимами а и б будем на 1—2 сек включать сначала медный, потом стальной и, наконец, никелиновый проводник, наблюдая в каждом случае за отклонением стрелки амперметра. Нетрудно будет заметить, что наибольший по величине ток пройдет по медному проводнику, а наименьший — по никелиновому.
Из этого следует, что сопротивление медного проводника меньше, чем стального, а сопротивление стального проводника меньше, чем никелинового.
Таким образом, электрическое сопротивление проводника зависит от материала, из которою он изготовлен.
Для характеристики электрического сопротивления различных материалов введено понятие о так называемом удельном сопротивлении.
Определение: Удельным сопротивлением называется сопротивление проводника длиной в 1 м и сечением в 1 мм2 при температуре +20 С°.
Удельное сопротивление обозначается буквой ρ («ро») греческого алфавита.
Каждый материал, из которого изготовляется проводник, обладает определенным удельным сопротивлением. Например, удельное сопротивление меди равно 0,0175 Ом*мм2/м, т. е. медный проводник длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,0175 Ом.
Ниже приводится таблица удельных сопротивлений материалов, наиболее часто применяемых в электротехнике.
Удельные сопротивления материалов, наиболее часто применяемых в электротехнике
Материал | Удельное сопротивление, Ом*мм2/м |
Серебро | 0,016 |
Медь | 0,0175 |
Алюминий | 0,0295 |
Железо | 0,09-0,11 |
Сталь | 0,125-0,146 |
Свинец | 0,218-0,222 |
Константан | 0,4-0,51 |
Манганин | 0,4-0,52 |
Никелин | 0,43 |
Вольфрам | 0,503 |
Нихром | 1,02-1,12 |
Фехраль | 1,2 |
Уголь | 10-60 |
Любопытно отметить, что например, нихромовый провод длиною 1 м обладает примерно таким же сопротивлением, как медный провод длиною около 63 м (при одинаковом сечении).
Разберем теперь, как влияют размеры проводника, т. е. длина и поперечное сечение, на величину его сопротивления.
Воспользуемся для этого схемой, изображенной на рис. 1. Включим между зажимами а и б для большей наглядности опыта проволоку из никелина. Заметив показание амперметра, отключим от зажима б проводник, которой соединяет прибор с минусом аккумулятора, и освободившимся концом проводника прикоснемся к никелиновой проволоке на некотором удалении от зажима а (рис. 2). Уменьшив таким образом длину проводника, включенного в цепь, нетрудно заметить по показанию амперметра, что ток в цепи увеличился.
Рисунок 2. Опыт, показывающий зависимость электрического сопротивления от длины проводника
Это говорит о том, что с уменьшением длины проводника сопротивление его уменьшается. Если же перемещать конец проводника по никелиновой проволоке вправо, т. е. к зажиму б, то, наблюдая за показаниями амперметра, можно сделать вывод, что с увеличением длины проводника сопротивление его увеличивается.
Таким образом, сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление..
Выясним теперь, как зависит сопротивление проводника от его поперечного сечения, т. е. от толщины.
Подберем для этого два или три проводника из одного и того же материала (медь, железо или никелин), но различного поперечного сечения и включим их поочередно между зажимами а и б, как указано на рис. 1.
Наблюдая каждый раз за показаниями амперметра, можно убедиться, что чем тоньше проводник, тем меньше ток в цепи, а следовательно, тем больше сопротивление проводника. И, наоборот, чем толще проводник, тем больше ток в цепи, а следовательно, тем меньше сопротивление проводника.
Значит, сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.
Чтобы лучше уяснить эту зависимость, представьте себе две пары сообщающихся сосудов (рис. 3), причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая.
Рисунок 3. Вода по толстой трубке перейдет быстрее, чем по тонкой
Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой. Это значит, что толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.
Обобщая результаты произведенных нами опытов, можно сделать следующий общий вывод:
электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь его поперечного сечения. .
Математически эта зависимость выражается следующей формулой:
где R—сопротивление проводника в Ом;
ρ — удельное сопротивление материала в Ом*мм2/м;
l — длина проводника в м;
S—площадь поперечного сечения проводника в мм2.
Примечание. Площадь поперечного сечения круглого проводника вычисляется по формуле
где π—постоянная величина, равная 3,14;
d—диаметр проводника.
Указанная выше зависимость дает возможность определить длину проводника или его сечение, если известны одна из этих величин и сопротивление проводника.
Так, например, длина проводника определяется по формуле:
Если же необходимо определить площадь поперечного сечения проводника, то формула принимает следующий вид:
Решив это равенство относительно ρ, получим выражение для определения удельного сопротивления проводника:
Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Определив по формуле удельное сопротивление проводника, можно найти материал, обладающий таким удельным сопротивлением.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Похожие материалы:
Добавить комментарий
Сопротивление удельное металлов — Справочник химика 21
Сплавы облада от большим остаточным сопротивлением, причем для многих (нержавеющая сталь, монель, мельхиор и др.) р яа Ро и слабо зависит от температуры (табл. 3.14). Упругая и пластическая дефор-ма 1ия заметно изменяют удельное электрическое сопротивление чистых металлов (рис. 3.16) и практически не влияют на сопротивление сплавов. Это свойство чистых метал- [c.235]
Удельное электрическое сопротивление чистых металлов при значительном наклепе возрастает приблизительно на 2-6 %. Увеличение электрического сопротивления металлов можно объяснить прежде всего тем, что при наклепе искажается пространственная решетка кристаллов. На значение электрического сопротивления влияет также и изменение межатомных связей, вызванных наклепом. Эго изменение приводит также к увеличению межатомных расстояний. [c.57]
ВАВИСИМОСТЬ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ ЧИСТЫХ МЕТАЛЛОВ ОТ ТЕМПЕРАТУРЫ [c.932]
Печи сопротивления. Нагрев металла сопротивлением осуществляется прохождением электрического тока через металл. Печи сопротивления обычно применяются для тугоплавких металлов. Электрооборудование этих печей дешевле, чем индукционных. Греющий элемент должен иметь возможно большее удельное сопротивление. Греющими элементами могут служить уголь, графит, криптол (зернистый уголь), карборунд, тугоплавкие металлы. В таких печах можно [c.341]
Для практического осуществления электронагревания пользуются или проводниками из материалов с большим удельным сопротивлением (некоторые металлы, уголь и т. п.) или электрической дугой, которая по существу есть тоже проводник с очень большим сопротивлением. Электрическая дуга позволяет получать большое падение потенциала, а следователыю, и весьма высокую температуру на очень коротком участке цепи. [c.25]
Магнитная восприимчивость и удельное сопротивление некоторых металлов [c.453]
Электрические свойства карбида кремния определяются тем, что он относится к группе электронных полупроводников. Этим обстоятельством, в частности, объясняется то, что электрическое сопротивление карбида кремния характеризуется цифрами, промежуточными между значениями сопротивления типичных металлов (проводников) и типичных изоляторов. Удельное электрическое сопротивление 51С лежит в пределах от 1 до 10 ом см, см ) [13, 14, 15]. Приведенные цифры характеризуют линейную (или приближенно линейную) проводимость [c.130]
ЗАВИСИМОСТЬ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ ЧИСТЫХ МЕТАЛЛОВ ОТ ТЕМПЕРАТУРЬ [c.933]
Значения удельного сопротивления и температурного коэффициента сопротивления для ряда материалов приведены в табл. 1, а на рнс. 12 показан характер изменения удельного сопротивления некоторых металлов в зависимости от температуры. [c.35]
П1-2- Удельное сопротивление р металлов и сплавов, применяемых в нагревательных устройствах [c.41]
Удельное электрич. сопротивление токопроводящего металла кабеля Рк Р 1 Ом мм /м ( [c.34]
Величину К можно рассчитать теоретически, но для этого надо знать эмиссионную способность и удельное сопротивление данного металла. Чаще величину К определяют на экспериментальном аппарате, в котором можно найти зависимость между У и / и изготовить регулирующие приборы, которые будут поддерживать постоянство величины и, таким образом, обеспечат устойчивую температуру. Так были созданы специальные автоматические регулирующие устройства — так называемые БАУ (блоки автоматического управления), широко используемые Б технологии титана и циркония. [c.322]
Величину К можно рассчитать теоретически, но для этого надо знать эмиссионную способность и удельное сопротивление данного металла Чаще величину К определяют на экспериментальном аппарате, в котором можно найти зависимость между [c.322]
Зависимость удельного электрического сопротивления чистых металлов (а) слюды (б) от температуры i — свинец г — железо 3 — медь. [c.765]
Удельное сопротивление металлических слоев, полученных методом катодного распыления, значительно больше, чем удельное сопротивление массивного металла, однако, благодаря чрезвычайно хорошему охлаждению металла в тонких слоях, последние могут выдерживать чрезмерные плотности тока при -затяжке. [c.75]
Удельное сопротивление чистых металлов в области высоких температур примерно пропорционально температуре, т. е. изменение удельного сопротивления на один градус почти постоянно. В области низких температур скорость изменения удельного сопротивления снижается, а при самых низких температурах удельное сопротивление металла приближается к постоянной величине. Поэтому термометр сопротивления из металла является плохим термометром при температурах жидкого гелия. В термометрах сопротивления иногда используют сплавы [55, 87, 121. [c.299]
Удельное сопротивление некоторых металлов при комнатной [c.136]
Поверхность металлов обычно покрыта окислами, удельное сопротивление которых намного больше сопротивления самого металла это сопротивление, однако, тем меньше, чем выше температура. В точках соприкосновения при прохождении тока развивается тепло, здесь-то и переходит ток с одной поверхности на другую. В контактах металл — металл число точек соприкосновения обычно больше, чем в контактах металл—графит при повышении плотности тока в отдельных точках этого контакта быстро повышается температура, углерод выгорает и контакт портится. С увеличением давления на поверхность контакта сопротивление его падает. [c.71]
Электролиты проводят ток значительно хуже, чем металлы, т. е. обладают при тех же размерах большим сопротивлением. Удельное сопротивление электролита р определяют по таблицам или по кривым, приведенным в книгах по гальваностегии и соответствующих справочниках. Ниже для примера приведено удельное [c.12]
Электромагнитные насосы, являющиеся электрическими машинами, имеют все же более низкий к. п. д., чем электрические вращающиеся машины соответствующей мощности. Это объясняется, прежде всего, более высоким удельным сопротивлением жидких металлов по сравнению, например, с медью, неизбежной [c.28]
При выборе соотношения сечений термоэлектродов для данной термопары следует учитывать, что коэффициент теплопроводности и удельные сопротивления разных металлов и сплавов существенно различны, поэтому оптимальное сечение термоэлектродов в одних и тех же условиях также должно быть различным. Сечения термоэлектродов термопары рекомендуется выбирать такими, чтобы они были пропорциональны квадратным корням их удельных сопротивлений и обратно пропорциональны квадратным корням их коэффициентов теплопроводности. Из этих соображений в случае, например, термопары медь — константан медную проволоку лучше брать значительно меньшего сечения, чем константа-новую. [c.154]
Путем катодного распыления удается получать пленки тугоплавких металлов. Для получения нитридов тугоплавких металлов применяется разряд в смеси аргона с азотом, для получения карбидов — смесь аргона с метаном или аргона с окисью углерода. Поскольку такие металлы, как титан, тантал, цирконий и ниобий, являются хорошими газопоглотителями, то даже при распылении в атмосфере аргона без специальной добавки ре-а 1(тивного газа образуются пленки, удельное электрическое сопротивление которых больше, чем удельное сопротивление распыляемого металла. Эти пленки имеют такую же структуру, как и сам распыляемый металл, а растворенные в них атомы газов, не вытесняя атомов металла из кристаллической решетки, располагаются в промежутках между ее узлами. [c.21]
Под толщиной металлической пленки в данном случае понимают ту толщину, которую имел бы слой, если бы его сопротивление было равно удельному сопротивлению массивного металла. На самом деле лишь для некоторых пленок их проводимость мало отличается от проводимости исходного материала. [c.255]
Устройство для индукционного нагрева металлов в самом общем виде представляет собой обмотку, питаемую переменным током, В переменном магнитном поле, создаваемом этой обмоткой, называемой индуктором, помещается нагреваемое металлическое тело. Переменный магнитный поток возбуждает в металлическом теле переменную э. д. с. ц вихревые токи, которые и нагревают тело. Таким образом, теплота, выделяющаяся в теле, зависит, помимо других факторов, от удельного сопротивления нагреваемого металла. В частности, в непроводниках ток проводимости не возникает и джоулево тепло не выделяется, что позволяет при индукционном нагреве выделять энергию исключительно в нагреваемом металле. [c.8]
Как видно из выражений (1-16д), (1-16е) и др., выделение энергии в металле тем меньше, чем меньше его удельное сопротивление. Поэтому металлы с малым удельным сопротивлением иногда (ч. И) выплавляют в тиглях из графита или металлов с достаточно большим удельным сопротивлением, например из стали. [c.32]
При образовании твердого раствора электропроводность металла снижается. При размещении в пространственной решетке растворителя чуждых атомов растворенного вещества электрическое поле решетки растворителя искажается, и рассеяние элеюронов увеличивается. Электрические свойства твердого раствора обусловлены также химическим взаимодействием компонентов. При наклепе удельное электрическое сопротивление твердых растворов, так же как и чистых металлов, повьш1ается, а при отжиге понижается. При наклепе и отжиге твердых растворов, даже слабо-концентрирюванных, их электрическое сопротивление изменяется в большей степени, чем сопротивление чистых металлов в тех же условиях. [c.58]
Физические свойства. Металлический ванадий — блестящий металл серо-стального цвета. Ванадий — один из наиболее твердых металлов, тверже стали и кварца. Он хорошо шлифуется и полируется, причем его отполированная поверхность долгое время сохраняет блеск. Наиболее чистые образцы V достаточно ковки, тягучи, но после нагревания с водородом становятся хрупкими. Металлический ванадий поддается намагничиванию, Удельное сопротивление холодного металла 26 10 ом1смР см удельная теплоемкость 0,120 кал град- г (в интервале 20—100° С). Ванадий в расплавленном состоянии не обладает заметной летучестью даже в высоком вакууме. [c.305]
В табл. 19.1 представлены значения удельного сопротивления и температурного коэффициента сопротивления чистых металлов, а также, в некоторых случаях, отношение удельного сопротивления при температуре жидкого гелия к удельному сопротивлению при нормальных условиях, р4,2 >к/р273°к, характеризующее достигнутую степень чистоты материала. В тех случаях, когда для данного металла приводятся более подробные данные, соответствующее указание дается в первом столбце таблицы. Металлы в таблице расположены в порядке возрастания массового числа. [c.304]
При частотах 10 гц (и выше) удельное сопротивление некоторых металлов, используемых в качестве вводов (ковар),становится недопустимо высоким. Для снижения удельного сопротивления коваровые вводы, работающие в области высоких частот, обязательно покрывают медью или золотом. [c.274]
Интересны цифры, характеризующие удельное электросопротивление гексаборидов они, как правило, меньше, чем сопротивление чистых металлов (см. табл. 29). Г. В Самсонов и Ю. Б. Падерно [743] объясняют это тем, что электроны бсра восполняют пробелы в недостроенной оболочке лантанида и тем самым снижают его электросопротивление. [c.283]
Окклюзия газов металлами является важным разделом в новом учении О материалах. Окклюдированные газы могут существенно влиять на механические, физические и коррозионные свойства металлов. В течение последних пятнадцати лет стало очевидным, что пластичными можно получить сплавы, например сплавы Т1, Nb, Сг, Мо и , только при малом остаточном содержании газа. При большом содержании газов у этих и других металлов IV, V и VI групп изменяются такие физические свойства как магнитная восприимчивость, электрическое сопротивление, удельная теплоемкость и сверхпроводимость. Для сплавов 2г сопротивляемость коррозии в воде при повышенных температурах изменяется при ок-клюдировании даже небольшого количества водорода, образующегося в результате окисления металла водой. Наличие окклюдированных газов в металлах по-разному влияет на их рабочие характеристики. Поэтому для правильного использования металлов в промышленности необходимо не только знать, каким образом в разных условиях изменяются свойства металлов, содержащих окклюдированные газы, по и ясно понимать процесс окклюзии. [c.202]
Эти обстоятельства (необходимость достаточно высокого удельного электрического сопротивления расплавляемого металла и наличие в большинстве случаев конденсаторной батареи и преобразователей частоты) ограничивают области применения индукционных печей без сердечника в этих печах рационально плавить или специальные сорта стали, которые невозможно или неэкономично (из-за сложности технологического процесса) плавить в дуговых печах, или такие металлы или сплавьи, высокая стоимость которых позволяет пренебречь пониженным электрическим к. п. д. этих печей (если экономия на угаре ценного металла в индукционных печах компенсирует понижение [c.177]
Ошибка разрыва связи
ECE 1250-001 Весна 2018
Перейти к содержанию Приборная панельАвторизоваться
Панель приборов
Календарь
Входящие
История
Помощь
- Мой Dashboard
- ECE 1250-001 Весна 2018
- Home
- Задания
- Pages
- Files
- Syllabus
- Media Gallery
- My Media
- Office 365
- Adobe Creative Cloud
- ConexED
- ProctorU
- Zoom 28 Отзывы о курсе 28 Отзывы о курсе
- Удельное электрическое сопротивление
- Электрическое сопротивление материала на единицу объема.Удельное сопротивление — это свойство материала, которое не зависит от его геометрии (площади поперечного сечения и длины). Высокое удельное сопротивление указывает на то, что материал плохо проводит электричество. Удельное электрическое сопротивление выражается в Ом-дюймах (или Ом-см) и т. Д.
- Электропроводность
- Обратное сопротивление. Это мера способности материала проводить электрический ток, обычно по сравнению с медью, и обычно выражается в% IACS (Международный стандарт отожженной меди).
- Температурный коэффициент сопротивления
- Константа, которая отражает изменение электрического сопротивления материала (удельного сопротивления) из-за изменения температуры на один градус. Выражается в единицах на градус Цельсия (или единицах на градус Фаренгейта).
- Ответ
Серебро, золото и алюминий используются для изготовления проволоки.Все четыре материала обладают высокой проводимостью, серебро — самой высокой. Все четыре элемента легко сворачиваются в проволоку и обладают высоким пределом прочности на разрыв, хотя и не таким высоким, как медь. Очевидным недостатком золота и серебра является их стоимость, но серебряные и золотые провода используются для специальных применений, таких как провода для динамиков. Золото не окисляется, улучшая связи между компонентами. У алюминиевых проводов есть свои недостатки. Алюминий имеет более высокое удельное сопротивление, чем медь, поэтому требуется больший диаметр, чтобы соответствовать сопротивлению на длину медных проводов, но алюминий дешевле, чем медь, поэтому это не является серьезным недостатком.Алюминиевая проволока не обладает такой высокой пластичностью и прочностью на разрыв, как медная, но пластичность и прочность на разрыв находятся в допустимых пределах. Есть несколько проблем, которые необходимо решить при использовании алюминия, и следует соблюдать осторожность при выполнении соединений. Алюминий имеет более высокий коэффициент теплового расширения, чем медь, что может привести к ослаблению соединений и возможной опасности возгорания. Окисление алюминия не проводит и может вызвать проблемы. При использовании алюминиевых проводов необходимо использовать специальные методы, а компоненты, такие как электрические розетки, должны быть рассчитаны на прием алюминиевых проводов.
- Ответ
Рисунок фольги растягивается по мере растяжения основы, а дорожки фольги становятся длиннее и тоньше.Поскольку сопротивление рассчитывается как \ (R = \ rho \ dfrac {L} {A} \), сопротивление увеличивается по мере того, как дорожки из фольги растягиваются. При изменении температуры меняется и удельное сопротивление дорожек фольги, изменяя сопротивление. Один из способов борьбы с этим — использовать два тензодатчика, один используется в качестве эталона, а другой — для измерения деформации. Два тензодатчика поддерживаются при постоянной температуре
- Ответ
Чем больше длина, тем меньше сопротивление. Чем больше удельное сопротивление, тем выше сопротивление. Чем больше разница между внешним радиусом и внутренним радиусом, то есть чем больше соотношение между ними, тем больше сопротивление. Если вы пытаетесь максимизировать сопротивление, выбор значений для этих переменных будет зависеть от приложения.Например, если кабель должен быть гибким, выбор материалов может быть ограничен.
Сэмюэл Дж.Линг (Государственный университет Трумэна), Джефф Санни (Университет Лойола Мэримаунт) и Билл Мобс со многими авторами. Эта работа лицензирована OpenStax University Physics в соответствии с лицензией Creative Commons Attribution License (4.0).
- Аккумулятор 9В
- Неизолированный медный провод 30 см (меньшего сечения)
- 30 см неизолированного медного провода (большего сечения)
- 30 см неизолированной железной проволоки (того же диаметра, что и более тонкая медная проволока)
- 30 см неизолированной железной проволоки (такого же диаметра, как и у более толстой медной проволоки)
- Любые другие провода, которые вы хотите проверить
- Кусачки
- Амперметр
- Вольтметр
- Линейка
- Подсоедините положительный провод амперметра к отрицательной клемме 9-вольтовой батареи.
- Присоедините отрицательный вывод амперметра к одному концу одного из проводов.
- Подключите другой конец провода к положительной клемме 9-вольтовой батареи.
- Используйте вольтметр для измерения падения напряжения на проводе разной длины (начните с 2 см, затем измерьте 3 см, 4 см и т. Д.). Убедитесь, что положительный вывод вольтметра касается начала провода.
- Запишите ток (по амперметру) и падение напряжения (по вольтметру) для каждой длины каждого проверенного провода.
- Используйте закон Ома для определения сопротивления и того, как длина, калибр и материал влияют на сопротивление.
- Постройте ваши результаты для каждого типа провода. Нанесите длину провода (в метрах) по оси абсцисс, а сопротивление (в омах) — по оси ординат.
- Рассчитайте удельное сопротивление по формуле:
- Используйте удельное сопротивление ρ для расчета электропроводности σ .
- ↑ H. Zhang et al., «Послойная струйная печать для изготовления композитной пленки из восстановленного графена и полиоксометаллата для химических сенсоров», Phys. Chem. Chem. Phys. , т. 14, вып. 37, pp. 12757–12763, октябрь 2012 г.
- ↑ Y. Song, H. Yang, Y. Wang, S. Chen, D. Li, S. Zhang и X. Zhang, «Управление сборкой оксида графена с помощью электролитного подхода», Nanoscale, vol. . 5, вып. 14. С. 6458–63, июл.2013.
- ↑ G. C. Chinchen et al., «Измерение площади поверхности меди с помощью реактивной фронтальной хроматографии», J. Catal ., Vol. 103, нет. 1. С. 79–86, январь 1987 г.
- ↑ Дж. Э. Шредер, Д. Пули и Х. Дж. Сейм, «Серебряный порошок с большой площадью поверхности в качестве кислородного катализатора».
- ↑ М. Д. Столлер, С. Парк, Ю. Чжу, Дж. Ан и Р. С. Руофф, «Ультраконденсаторы на основе графена», Nano Lett., Vol. 8, вып. 10. С. 3498–502, октябрь 2008 г.
- ↑ Д. Коэн-Тануги и Дж.К. Гроссман, «Опреснение воды через нанопористый графен», Nano Lett., Vol. 12, вып. 7. С. 3602–8, июль 2012 г.
- ↑ [1] Н. Моханти и В. Берри, «Биологическое устройство с одним бактериальным разрешением на основе графена и ДНК-транзистор: взаимодействие производных графена с наноразмерными и микромасштабными биокомпонентами», Nano Lett., Vol. 8, вып. 12. С. 4469–76, декабрь 2008 г.
- ↑ 8,0 8,1 М. Ф. Эль-Кади и др., «Лазерная разметка высокоэффективных и гибких электрохимических конденсаторов на основе графена», Science , vol.335, нет. 6074, стр. 1326–1330, март 2012 г.
- ↑ X. Yang et al., «Жидкостная плотная интеграция графеновых материалов для компактного емкостного накопления энергии», Science , vol. 341, нет. 6145, стр. 534–537, август 2013 г.
- ↑ Б. Поллард, «Выращивание графена с помощью химического осаждения из паровой фазы», стр. 1–47, 2011 г.
К сожалению, вы обнаружили неработающую ссылку!
Электрическое сопротивление | Фиск Сплав
Электрическое сопротивление проводов обычно выражается в омах на единицу длины.В английской системе это Ω / mft (Ом на 1000 футов), в метрических Ω / км (Ом на 1000 метров) при стандартной температуре 20ºC (68ºF).
Измерение
Стандартная процедура измеряет сопротивление постоянному току на минимальной длине 5 футов (1,5 метра) и преобразует его в единицы Ω / mft или Ω / km. Использование резистивного моста предотвращает резистивный нагрев образца, особенно в меньших калибрах.
Определения
Сопротивление проводника
R = ρL / A
Где R — сопротивление в омах, ρ — объемное удельное сопротивление, L — длина образца, а A — площадь поперечного сечения образца.
Электропроводность и удельное сопротивление (ρ) обычных проводниковых сплавов
МАТЕРИАЛ ПРОВОДНИКА | % 1ACS | Ом-см · дюйм / фут |
Медь (C110) | 100 | 10.37 |
Percon 24 | 90 | 11,52 |
C18135 | 85 | 12,20 |
Percon 11 | 90 | 11,52 |
Percon 17 | 85 | 12,20 |
Percon 19 | 73 | 14,21 |
Кадмий Медь (C162) | 85 | 12,20 |
Сталь плакированная медью (40%) | 39 | 26.45 |
Температурная коррекция
Температура окружающей среды влияет на электрическое сопротивление большинства металлов. Как правило, более высокая температура увеличивает сопротивление. Для правильной интерпретации показания должны быть скорректированы до стандартной эталонной температуры, обычно 20ºC (68ºF).
Формула температурной коррекции:
RT = Rt / [1 + α (t-T)]
Где RT — сопротивление при эталонной температуре T, Rt — сопротивление, измеренное при температуре t, α — температурный коэффициент сопротивления, T — эталонная температура (обычно 20ºC (68ºF), а t — температура измерения.
Температурные поправочные коэффициенты (α) для обычных проводниковых сплавов при 20ºC (68ºF)
МАТЕРИАЛ ПРОВОДНИКА | α (PER ºC) |
Медь (C110) | 0,00393 |
Percon 24 | 0,00342 |
C18135 | 0,00342 |
Percon 11 | 0,00354 |
Percon 17 | 0.00322 |
Percon 19 | 0,00305 |
Кадмий Медь (C162) | 0,00322 |
Сталь плакированная медью (40%) | 0,00378 |
Примечание: Коэффициент α зависит от материала, проводимости и диапазона температур. Значение для меди с проводимостью 100% IAC при 20ºC (68ºF) составляет 0,00393. Значения коэффициентов для других материалов, проводимости и температуры можно найти в NBS Handbook-100, таблица 2.
9.4: Сопротивление и сопротивление — Physics LibreTexts
Что движет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока. Все такие устройства создают разность потенциалов и называются источниками напряжения. Когда источник напряжения подключен к проводнику, он прикладывает разность потенциалов В, , которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на свободные заряды, вызывая ток.Величина тока зависит не только от величины напряжения, но и от характеристик материала, через который протекает ток. Материал может сопротивляться потоку зарядов, и мера того, насколько материал сопротивляется потоку зарядов, известна как удельное сопротивление . Это удельное сопротивление грубо аналогично трению между двумя материалами, которые сопротивляются движению.
Удельное сопротивление
Когда к проводнику прикладывается напряжение, создается электрическое поле \ (\ vec {E} \), и заряды в проводнике ощущают силу, создаваемую электрическим полем.Полученная плотность тока \ (\ vec {J} \) зависит от электрического поля и свойств материала. Эта зависимость может быть очень сложной. В некоторых материалах, включая металлы при данной температуре, плотность тока приблизительно пропорциональна электрическому полю. В этих случаях плотность тока можно смоделировать как
\ [\ vec {J} = \ sigma \ vec {E}, \]
, где \ (\ sigma \) — это значение электропроводности . Электропроводность аналогична теплопроводности и является мерой способности материала проводить или передавать электричество.{-1} \).
Электропроводность — это внутреннее свойство материала. Другим внутренним свойством материала является удельное сопротивление, или электрическое сопротивление , . Удельное сопротивление материала — это мера того, насколько сильно материал противостоит прохождению электрического тока. Символ удельного сопротивления — строчная греческая буква ро, \ (\ rho \), а удельное сопротивление — величина, обратная удельной электропроводности:
.\ [\ rho = \ dfrac {1} {\ sigma}. \]
Единицей измерения удельного сопротивления в системе СИ является ом-метр \ ((\ Omega \ cdot m \).Мы можем определить удельное сопротивление через электрическое поле и плотность тока.
\ [\ rho = \ dfrac {E} {J}. \]
Чем больше удельное сопротивление, тем большее поле необходимо для создания заданной плотности тока. Чем ниже удельное сопротивление, тем больше плотность тока, создаваемого данным электрическим полем.{-1}\)ConductorsSemiconductors [1]Insulators»>
Материалы, перечисленные в таблице, разделены на категории проводников, полупроводников и изоляторов на основе широких групп удельного сопротивления. У проводников наименьшее удельное сопротивление, а у изоляторов наибольшее; полупроводники имеют промежуточное удельное сопротивление. Проводники имеют разную, но большую плотность свободных зарядов, тогда как большинство зарядов в изоляторах связаны с атомами и не могут двигаться. Полупроводники являются промежуточными, имеют гораздо меньше свободных зарядов, чем проводники, но обладают свойствами, из-за которых количество свободных зарядов сильно зависит от типа и количества примесей в полупроводнике.Эти уникальные свойства полупроводников находят применение в современной электронике, о чем мы поговорим в следующих главах.
Пример \ (\ PageIndex {1} \): плотность тока, сопротивление и электрическое поле для токоведущего провода
Рассчитайте плотность тока, сопротивление и электрическое поле 5-метрового медного провода диаметром 2,053 мм (калибр 12), по которому проходит ток \ (I — 10 \, мА \).
Стратегия
Мы можем рассчитать плотность тока, сначала найдя площадь поперечного сечения провода, которая равна \ (A = 3.{-5} \ dfrac {V} {m}. \ End {align *} \]
Значение
Исходя из этих результатов, неудивительно, что медь используется для проводов, проводящих ток, потому что сопротивление довольно мало. Обратите внимание, что плотность тока и электрическое поле не зависят от длины провода, но напряжение зависит от длины.
Упражнение \ (\ PageIndex {1} \)
Медные провода обычно используются для удлинителей и домашней электропроводки по нескольким причинам.2} \). Третья важная характеристика — пластичность. Пластичность — это мера способности материала вытягиваться в проволоку и мера гибкости материала, а медь обладает высокой пластичностью. Подводя итог, можно сказать, что проводник является подходящим кандидатом для изготовления проволоки, по крайней мере, с тремя важными характеристиками: низким удельным сопротивлением, высокой прочностью на разрыв и высокой пластичностью. Какие еще материалы используются для электромонтажа и в чем их достоинства и недостатки?
ФЭТ
Просмотрите это интерактивное моделирование, чтобы увидеть, как площадь поперечного сечения, длина и удельное сопротивление провода влияют на сопротивление проводника. Отрегулируйте переменные с помощью ползунков и посмотрите, станет ли сопротивление меньше или больше.
Температурная зависимость удельного сопротивления
Вернувшись к таблице \ (\ PageIndex {1} \), вы увидите столбец с надписью «Температурный коэффициент». Удельное сопротивление некоторых материалов сильно зависит от температуры.В некоторых материалах, таких как медь, удельное сопротивление увеличивается с повышением температуры. Фактически, в большинстве проводящих металлов удельное сопротивление увеличивается с повышением температуры. Повышение температуры вызывает повышенные колебания атомов в структуре решетки металлов, которые препятствуют движению электронов. В других материалах, таких как углерод, удельное сопротивление уменьшается с повышением температуры. Во многих материалах зависимость является приблизительно линейной и может быть смоделирована с помощью линейного уравнения:
\ [\ rho \ приблизительно \ rho_0 [1 + \ alpha (T — T_0)], \]
, где \ (\ rho \) — удельное сопротивление материала при температуре T , \ (\ alpha \) — температурный коэффициент материала, а \ (\ rho_0 \) — удельное сопротивление при \ (T_0 \) , обычно принимается как \ (T_0 = 20.oC \).
Обратите внимание, что температурный коэффициент \ (\ alpha \) отрицателен для полупроводников, перечисленных в таблице \ (\ PageIndex {1} \), что означает, что их удельное сопротивление уменьшается с увеличением температуры. Они становятся лучшими проводниками при более высоких температурах, потому что повышенное тепловое перемешивание увеличивает количество свободных зарядов, доступных для переноса тока. Это свойство уменьшения \ (\ rho \) с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках.
Сопротивление
Теперь рассмотрим сопротивление провода или компонента. Сопротивление — это мера того, насколько сложно пропустить ток через провод или компонент. Сопротивление зависит от удельного сопротивления. Удельное сопротивление является характеристикой материала, используемого для изготовления провода или другого электрического компонента, тогда как сопротивление является характеристикой провода или компонента.
Чтобы рассчитать сопротивление, рассмотрим участок проводящего провода с площадью поперечного сечения A , длиной L и удельным сопротивлением \ (\ rho \).Батарея подключается к проводнику, обеспечивая разность потенциалов \ (\ Delta V \) на нем (рисунок \ (\ PageIndex {1} \)). Разность потенциалов создает электрическое поле, которое пропорционально плотности тока, согласно \ (\ vec {E} = \ rho \ vec {J} \).
Рисунок \ (\ PageIndex {1} \): потенциал, обеспечиваемый батареей, прикладывается к сегменту проводника с площадью поперечного сечения \ (A \) и длиной \ (L \).Величина электрического поля на отрезке проводника равна напряжению, деленному на длину, \ (E = V / L \), а величина плотности тока равна току, деленному на поперечную площадь сечения \ (J = I / A \).Используя эту информацию и вспоминая, что электрическое поле пропорционально удельному сопротивлению и плотности тока, мы можем видеть, что напряжение пропорционально току:
\ [\ begin {align *} E & = \ rho J \\ [4pt] \ dfrac {V} {L} & = \ rho \ dfrac {I} {A} \\ [4pt] V & = \ left (\ rho \ dfrac {L} {A} \ right) I. \ end {align *} \]
Определение: Сопротивление
Отношение напряжения к току определяется как сопротивление \ (R \):
\ [R \ Equiv \ dfrac {V} {I}.\]
Сопротивление цилиндрического сегмента проводника равно удельному сопротивлению материала, умноженному на длину, разделенную на площадь:
\ [R \ Equiv \ dfrac {V} {I} = \ rho \ dfrac {L} {A}. \]
Единицей измерения сопротивления является ом, \ (\ Omega \). Для заданного напряжения чем выше сопротивление, тем ниже ток.
Резисторы
Обычным компонентом электронных схем является резистор. Резистор можно использовать для уменьшения протекания тока или обеспечения падения напряжения.На рисунке \ (\ PageIndex {2} \) показаны символы, используемые для резистора в принципиальных схемах цепи. Два широко используемых стандарта для принципиальных схем предоставлены Американским национальным институтом стандартов (ANSI, произносится как «AN-см.») И Международной электротехнической комиссией (IEC). Обе системы обычно используются. Мы используем стандарт ANSI в этом тексте для его визуального распознавания, но отметим, что для более крупных и сложных схем стандарт IEC может иметь более четкое представление, что упрощает чтение.
Рисунок \ (\ PageIndex {2} \): символы резистора, используемые в принципиальных схемах. (а) символ ANSI; (б) символ IEC.Зависимость сопротивления материала и формы от формы
Резистор можно смоделировать как цилиндр с площадью поперечного сечения A и длиной L , сделанный из материала с удельным сопротивлением \ (\ rho \) (Рисунок \ (\ PageIndex {3} \)) . Сопротивление резистора \ (R = \ rho \ dfrac {L} {A} \)
Рисунок \ (\ PageIndex {3} \): Модель резистора в виде однородного цилиндра длиной L и площадью поперечного сечения A .Его сопротивление потоку тока аналогично сопротивлению трубы потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление. Чем больше его площадь поперечного сечения A , тем меньше его сопротивление.Чаще всего для изготовления резистора используется углерод. Углеродная дорожка намотана на керамический сердечник, к нему прикреплены два медных вывода. Второй тип резистора — это металлопленочный резистор, который также имеет керамический сердечник. Дорожка сделана из материала оксида металла, который имеет полупроводниковые свойства, аналогичные углеродным.Опять же, в концы резистора вставляются медные провода. Затем резистор окрашивается и маркируется для идентификации. Резистор имеет четыре цветные полосы, как показано на рисунке \ (\ PageIndex {4} \).
Рисунок \ (\ PageIndex {4} \): Многие резисторы напоминают рисунок, показанный выше. Четыре полосы используются для идентификации резистора. Первые две цветные полосы представляют собой первые две цифры сопротивления резистора. Третий цвет — множитель. Четвертый цвет обозначает допуск резистора.{-5} \, \ Omega \), а сверхпроводники вообще не имеют сопротивления при низких температурах. Как мы видели, сопротивление связано с формой объекта и материалом, из которого он состоит.Сопротивление объекта также зависит от температуры, поскольку \ (R_0 \) прямо пропорционально \ (\ rho \). oC \), а R — сопротивление после изменения температуры \ (\ Дельта Т \).oC \).
Многие термометры основаны на влиянии температуры на сопротивление (Рисунок \ (\ PageIndex {5} \)). Один из наиболее распространенных термометров основан на термисторе, полупроводниковом кристалле с сильной температурной зависимостью, сопротивление которого измеряется для определения его температуры. Устройство небольшое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.
Рисунок \ (\ PageIndex {5} \): Эти знакомые термометры основаны на автоматическом измерении сопротивления термистора в зависимости от температуры.oC) \ right) \\ [5pt] & = 4.8 \, \ Omega \ end {align *} \]Значение
Обратите внимание, что сопротивление изменяется более чем в 10 раз, когда нить накала нагревается до высокой температуры, а ток через нить накала зависит от сопротивления нити и приложенного напряжения. Если нить накаливания используется в лампе накаливания, начальный ток через нить накала при первом включении лампы будет выше, чем ток после того, как нить накала достигнет рабочей температуры.
Упражнение \ (\ PageIndex {2} \)
Тензодатчик — это электрическое устройство для измерения деформации, как показано ниже. Он состоит из гибкой изолирующей основы, поддерживающей рисунок из проводящей фольги. Сопротивление фольги изменяется по мере растяжения основы. Как меняется сопротивление тензодатчика? Влияет ли тензодатчик на изменение температуры?
Сопротивление коаксиального кабеля
Длинные кабели иногда могут действовать как антенны, улавливая электронные шумы, которые являются сигналами от другого оборудования и приборов.Коаксиальные кабели используются во многих случаях, когда требуется устранение этого шума. Например, их можно найти дома через кабельное телевидение или другие аудиовизуальные соединения. Коаксиальные кабели состоят из внутреннего проводника с радиусом \ (r_i \), окруженного вторым внешним концентрическим проводником с радиусом \ (r_0 \) (рисунок \ (\ PageIndex {6} \)). Пространство между ними обычно заполнено изолятором, например полиэтиленовым пластиком. Между двумя проводниками возникает небольшой ток радиальной утечки.Определите сопротивление коаксиального кабеля длиной L .
Рисунок \ (\ PageIndex {6} \): Коаксиальные кабели состоят из двух концентрических проводников, разделенных изоляцией. Они часто используются в кабельном телевидении или других аудиовизуальных средствах связи.Стратегия
Мы не можем использовать уравнение \ (R = \ rho \ dfrac {L} {A} \) напрямую. Вместо этого мы смотрим на концентрические цилиндрические оболочки толщиной dr и интегрируем. {r_0} \ dfrac {1} {r} dr \\ [5pt] & = \ dfrac {\ rho} {2 \ pi L} \ ln \ dfrac {r_0} {r_i}.\ end {align *} \]
Значение
Сопротивление коаксиального кабеля зависит от его длины, внутреннего и внешнего радиусов, а также удельного сопротивления материала, разделяющего два проводника. Поскольку это сопротивление не бесконечно, между двумя проводниками возникает небольшой ток утечки. Этот ток утечки приводит к ослаблению (или ослаблению) сигнала, передаваемого по кабелю.
Упражнение \ (\ PageIndex {3} \)
Сопротивление между двумя проводниками коаксиального кабеля зависит от удельного сопротивления материала, разделяющего два проводника, длины кабеля и внутреннего и внешнего радиуса двух проводников.Если вы разрабатываете коаксиальный кабель, как сопротивление между двумя проводниками зависит от этих переменных?
Phet: Цепь батарейного резистора
Просмотрите это моделирование, чтобы увидеть, как приложенное напряжение и сопротивление материала, через который протекает ток, влияют на ток через материал. Вы можете визуализировать столкновения электронов и атомов материала, влияющие на температуру материала.
Авторы и авторство
: медь — лучший металлический проводник? | Научный проект
Где R — сопротивление в омах, L — длина провода в метрах, A — площадь поперечного сечения провода в квадратных метрах, а ρ — удельное электрическое сопротивление в ом-метрах.
Электрическое Электропроводность — это величина, обратная удельному сопротивлению: это способность материала пропускать ток. Обозначается греческой буквой сигма, σ, и измеряется в единицах Сименс ( S ).
В этом эксперименте вы сможете определить удельное сопротивление и проводимость материалов, которые вы тестируете, используя закон Ома, который гласит, что напряжение пропорционально произведению тока и сопротивления. Амперметр поможет вам измерить ток, протекающий по цепи, в то время как вольтметр покажет падение напряжения на участке, который вы проверяете.
Где В, — напряжение, измеренное в вольтах, I — ток, измеренный в амперах, а R — сопротивление в омах.
Задача: Определите удельное сопротивление различных материалов и толщину материалов и рассчитайте электрическую проводимость.
Какой материал будет более резистивным? Проводящий?
Материалы
Процедура
Где R — сопротивление в Ом ρ — удельное сопротивление в ом-метрах L — длина провода в метрах, а A — площадь поперечного сечения провода в метрах.* площадь поперечного сечения проводов разного калибра можно посмотреть в Интернете.
Результаты
Более толстые провода будут иметь меньшее сопротивление, но более длинные провода будут иметь более высокое сопротивление. Медь имеет более низкое удельное сопротивление и лучше проводит электричество, чем железо.
Почему?
Сопротивление провода увеличивается с увеличением длины. Поскольку сопротивление — это свойство материала, который сопротивляется потоку электронов, логично, что чем больше у вас материала (большей длины), тем большее сопротивление у вас будет.Удельное электрическое сопротивление, ρ , является константой, которая является свойством материала и нормализует сопротивление к площади поперечного сечения материала, через который проходит ток. Наклон линии на графике зависимости длины от сопротивления — это удельное электрическое сопротивление.
Итак, медь — лучший металлический проводник? Медь является лучшим проводником, чем железо, а это означает, что ток может проходить легче (с меньшим сопротивлением) через медь. Это неотъемлемое свойство материала.
Вы можете использовать закон Ома для расчета сопротивления измеряемой секции, потому что цепь относится к серии , что означает, что ток будет одинаковым во всех частях цепи.
Заявление об ограничении ответственности и меры предосторожностиEducation.com предлагает идеи проекта Science Fair для информационных целей. только для целей. Education.com не дает никаких гарантий или заверений относительно идей проектов Science Fair и не несет ответственности за любые убытки или ущерб, прямо или косвенно вызванные использованием вами таких Информация.Получая доступ к идеям проекта Science Fair, вы отказываетесь от отказаться от любых претензий к Education.com, которые возникают в связи с этим. Кроме того, ваш доступ к веб-сайту Education.com и идеям проектов Science Fair покрывается Политика конфиденциальности Education.com и Условия использования сайта, которые включают ограничения об ответственности Education.com.
Настоящим дается предупреждение, что не все идеи проекта подходят для всех индивидуально или при любых обстоятельствах. Реализация идеи любого научного проекта должны проводиться только в соответствующих условиях и с соответствующими родительскими или другой надзор.Прочтите и соблюдайте правила техники безопасности всех Материалы, используемые в проекте, являются исключительной ответственностью каждого человека. За Для получения дополнительной информации обратитесь к справочнику по научной безопасности вашего штата.
Графен — Энергетическое образование
Одиночный слой атомов углерода, расположенный в гексагональной «сотовой» структуре, образует графен [1] .Графен представляет собой кристаллическую форму углерода толщиной в один атом. Структура графена имеет гексагональную (сотовую) форму и может существовать естественным образом в виде штабеля из графита или древесного угля.Графен также образует фундаментальные структурные единицы графеновых нанотрубок. Графен наиболее известен своей превосходной прочностью на разрыв, прозрачностью для света и высокой электрической и теплопроводностью [2] . Он имеет чрезвычайно высокое отношение площади поверхности к массе, что обуславливает многие его свойства.
Недвижимость
Электропроводность и теплопроводность графена являются одними из самых высоких среди всех известных элементов при комнатной температуре. Теплопроводность — это скорость, с которой тепловая энергия может передаваться через материал.Площадь поверхности — это общая площадь граней объектов. Электрическое сопротивление графена — одно из самых низких среди известных материалов при комнатной температуре. Его можно определить как легкость, с которой электроны могут проходить через материал. Графен также имеет очень высокую прозрачность для света, поглощая только 2,3% всего белого света, проходящего через него. В настоящее время графен очень дорогой, но, по прогнозам, к 2022 году его цена упадет в 4 раза (, цит. По ).
Таблица 1.Площадь поверхности, сопротивление и теплопроводность графена, меди и серебра [3] [4] .
Графен | Медь | Серебро | |
---|---|---|---|
Площадь поверхности (метр 2 / грамм) | 1520 | 4,11 | 2-6 |
Сопротивление (Ом / метр) | 1×10 -8 | 1.68×10 -8 | 1,59×10 -8 |
Теплопроводность (Ватт / метр * Кельвин) | 4.84×10 3 | 401 | 429 |
Приложения
Электронный : Графен имеет низкое электрическое сопротивление, что позволяет использовать его в экранах ЖК-дисплеев, транзисторах и электрических цепях. Графен также применяется в солнечных элементах из-за его высокой оптической прозрачности.
Накопитель энергии : Благодаря большой площади поверхности и низкой электропроводности графена может применяться в качестве электродов в суперконденсаторах и литий-ионных батареях [5] .
Дистилляция : с однородным размером пор графен используется при дистилляции этанола и опреснении воды [6] .
Медицинский : Из-за все более дешевых методов производства ученые предложили использовать графен для обнаружения микробов [7] .
Производство
Графен можно получить разными способами. В настоящее время самыми дешевыми методами производства графена являются лазерный скрайбинг графена, струйная печать, термическое восстановление оксида графена, а также химическое осаждение графена.
Образец графена с лазерным скрайбированием в лаборатории Калифорнийского университета в Лос-Анджелесе [8] .Графен с лазерной разметкой
Графен с лазерной разметкой получают путем заливки оксида графена на DVD-диск с пластиковым покрытием и оставляют его сохнуть. После высыхания графен и DVD-диск вставляются в записывающий DVD-привод LightScribe. Записывающее устройство DVD испускает излучение на оксид графена, расщепляя связи между углеродными и кислородными группами. Графен является продуктом этой реакции, и его можно увидеть по изменению цвета от светло-коричневого до черного на DVD [8] .
Струйная печать и термическое восстановление графена
Графен, полученный методом струйной печати, использует растворенный в воде оксид графена в качестве «чернил» для принтера. Размер частиц имеющегося в продаже оксида графена намного больше, чем размер внутреннего диаметра сопла. Это приводит к засорению сопла, препятствующему прохождению частиц. Это смягчается фильтрацией графена с помощью шприца из mylex и бомбардировкой молекул оксида графена звуковыми волнами для уменьшения размера частиц.Затем раствор оксида графена загружается в картридж для впрыскивания. Крошечные капельки, создаваемые соплом, печатаются на жестяном листе и помещаются в духовку. Печь добавляет тепловую энергию к оксиду графена, отщепляя атом кислорода, производя графен [9] .
Химическое осаждение графена из газовой фазы
Химическое осаждение из паровой фазы — это процесс, при котором атомы углерода связываются с нижележащим слоем (металлической подложкой) при очень высоких температурах. Когда атом углерода связывается с материалом, он занимает место в пространстве на поверхности материала.Атомы углерода отталкивают друг друга, когда они соединяются с нижележащим слоем. После заполнения каждой позиции в нижележащем слое образуется сплошной слой атомов углерода толщиной в один атом. Затем температура снижается, и атомы углерода образуют связи друг с другом, образуя лист графена [10] .
Углеродные нанотрубки
Графен используется для создания углеродных нанотрубок, которые представляют собой небольшие полые волокна с самой высокой прочностью на разрыв, известной человеку. На данный момент они чрезвычайно дороги, но в будущем они могут применяться в легкой бронежилете, сверхпрочном углеродном волокне и даже небольших и легких проводах для передачи электричества.
Для дальнейшего чтения
Список литературы
Resistivity and Resistance — University Physics Volume 2
Теперь рассмотрим сопротивление провода или компонента. Сопротивление — это мера того, насколько сложно пропустить ток через провод или компонент.Сопротивление зависит от удельного сопротивления. Удельное сопротивление является характеристикой материала, используемого для изготовления провода или другого электрического компонента, тогда как сопротивление является характеристикой провода или компонента.
Чтобы рассчитать сопротивление, рассмотрите участок проводящего провода с площадью поперечного сечения A , длиной L и удельным сопротивлением. Батарея подключается к проводнику, обеспечивая разность потенциалов на нем ((рисунок)). Разность потенциалов создает электрическое поле, пропорциональное плотности тока, согласно.
Величина электрического поля на сегменте проводника равна напряжению, деленному на длину,, а величина плотности тока равна току, деленному на площадь поперечного сечения. Используя эту информацию и вспомнив что электрическое поле пропорционально удельному сопротивлению и плотности тока, мы можем видеть, что напряжение пропорционально току:
Единицей измерения сопротивления является ом,. Для заданного напряжения чем выше сопротивление, тем ниже ток.
Резисторы
Обычным компонентом электронных схем является резистор. Резистор можно использовать для уменьшения протекания тока или обеспечения падения напряжения. (Рисунок) показывает символы, используемые для резистора в принципиальных схемах цепи. Два широко используемых стандарта для принципиальных схем предоставлены Американским национальным институтом стандартов (ANSI, произносится как «AN-см.») И Международной электротехнической комиссией (IEC). Обе системы обычно используются. Мы используем стандарт ANSI в этом тексте для его визуального распознавания, но отметим, что для более крупных и сложных схем стандарт IEC может иметь более четкое представление, что упрощает чтение.
Обозначения резистора, используемого в принципиальных схемах. (а) символ ANSI; (б) символ IEC.
Зависимость сопротивления от материала и формы
Резистор можно смоделировать как цилиндр с площадью поперечного сечения A и длиной L , сделанный из материала с удельным сопротивлением ((Рисунок)). Сопротивление резистора составляет.
Модель резистора в виде однородного цилиндра длиной L и площадью поперечного сечения A .Его сопротивление потоку тока аналогично сопротивлению трубы потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление. Чем больше площадь поперечного сечения A , тем меньше его сопротивление.
Чаще всего для изготовления резистора используется углерод. Углеродная дорожка намотана на керамический сердечник, к нему прикреплены два медных вывода. Второй тип резистора — это металлопленочный резистор, который также имеет керамический сердечник. Дорожка сделана из материала оксида металла, который имеет полупроводниковые свойства, аналогичные углеродным.Опять же, в концы резистора вставляются медные провода. Затем резистор окрашивается и маркируется для идентификации. Резистор имеет четыре цветные полосы, как показано на (Рисунок).
Многие резисторы имеют вид, показанный на рисунке выше. Четыре полосы используются для идентификации резистора. Первые две цветные полосы представляют собой первые две цифры сопротивления резистора. Третий цвет — множитель. Четвертый цвет обозначает допуск резистора. Показанный резистор имеет сопротивление*** QuickLaTeX не может составить формулу: 20 \ phantom {\ rule {0.{5} \ phantom {\ rule {0.2em} {0ex}} \ text {Ω} Ошибка пакета inputenc: символ Юникода ± (U + 00B1) начальный текст: ... ext {Ω} \ phantom {\ rule {0.2em} {0ex}} \ text {±} Файл завершился при сканировании использования \ text @. Экстренная остановка.
.
Сопротивления варьируются на много порядков. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление или более. Сухой человек может иметь сопротивление руки к ноге, тогда как сопротивление человеческого сердца составляет около.Кусок медного провода большого диаметра длиной в метр может иметь сопротивление, а сверхпроводники вообще не имеют сопротивления при низких температурах. Как мы видели, сопротивление связано с формой объекта и материалом, из которого он состоит.
Плотность тока, сопротивление и электрическое поле для токоведущего провода. Рассчитайте плотность тока, сопротивление и электрическое поле медного провода длиной 5 м и диаметром 2,053 мм (калибр 12), по которому проходит ток 0,5 м.
СтратегияМы можем рассчитать плотность тока, сначала найдя площадь поперечного сечения провода, которая есть, и определение плотности тока. Сопротивление можно найти, используя длину провода, площадь и удельное сопротивление меди, где. Удельное сопротивление и плотность тока можно использовать для определения электрического поля.
Решение Сначала мы рассчитываем плотность тока:
Сопротивление провода
Наконец, мы можем найти электрическое поле:
Значимость Исходя из этих результатов, неудивительно, что медь используется для проводов, проводящих ток, потому что сопротивление довольно мало.Обратите внимание, что плотность тока и электрическое поле не зависят от длины провода, но напряжение зависит от длины.
Сопротивление объекта также зависит от температуры, так как оно прямо пропорционально. Мы знаем, что для цилиндра L и A не сильно изменяются с температурой, R имеет ту же температурную зависимость, что и (Исследование коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, поэтому влияние температуры на L и A примерно на два порядка меньше, чем на
— это температурная зависимость сопротивления объекта, где — исходное сопротивление (обычно принимается равным, а R — сопротивление после изменения температуры. Цветовой код показывает сопротивление резистора при температуре.
Многие термометры основаны на влиянии температуры на сопротивление ((Рисунок)). Один из наиболее распространенных термометров основан на термисторе, полупроводниковом кристалле с сильной температурной зависимостью, сопротивление которого измеряется для определения его температуры. Устройство небольшое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.
Эти знакомые термометры основаны на автоматическом измерении сопротивления термистора в зависимости от температуры.
Проверьте свои знания Тензодатчик — это электрическое устройство для измерения деформации, как показано ниже. Он состоит из гибкой изолирующей основы, поддерживающей рисунок из проводящей фольги. Сопротивление фольги изменяется по мере растяжения основы. Как меняется сопротивление тензодатчика? Влияет ли тензодатчик на изменение температуры?
Рисунок фольги растягивается по мере растяжения основы, а дорожки фольги становятся длиннее и тоньше.Поскольку сопротивление рассчитывается как, сопротивление увеличивается по мере того, как дорожки из фольги растягиваются. При изменении температуры меняется и удельное сопротивление дорожек фольги, изменяя сопротивление. Один из способов борьбы с этим — использовать два тензодатчика, один используется в качестве эталона, а другой — для измерения деформации. Два тензодатчика поддерживаются при постоянной температуре
Сопротивление коаксиального кабеля Длинные кабели иногда могут действовать как антенны, улавливая электронные шумы, которые являются сигналами от другого оборудования и приборов.Коаксиальные кабели используются во многих случаях, когда требуется устранение этого шума. Например, их можно найти дома через кабельное телевидение или другие аудиовизуальные соединения. Коаксиальные кабели состоят из внутреннего проводника с радиусом, окруженного вторым, внешним концентрическим проводником с радиусом ((Рисунок)). Пространство между ними обычно заполнено изолятором, например полиэтиленовым пластиком. Между двумя проводниками возникает небольшой ток радиальной утечки. Определите сопротивление коаксиального кабеля длиной L .
Коаксиальные кабели состоят из двух концентрических жил, разделенных изоляцией. Они часто используются в кабельном телевидении или других аудиовизуальных средствах связи.
Стратегия Мы не можем использовать уравнение напрямую. Вместо этого мы смотрим на концентрические цилиндрические оболочки толщиной dr и интегрируем.
Решение Сначала находим выражение для dR , а затем интегрируем от до,
Значение Сопротивление коаксиального кабеля зависит от его длины, внутреннего и внешнего радиусов, а также удельного сопротивления материала, разделяющего два проводника.Поскольку это сопротивление не бесконечно, между двумя проводниками возникает небольшой ток утечки. Этот ток утечки приводит к ослаблению (или ослаблению) сигнала, передаваемого по кабелю.
Проверьте свое понимание Сопротивление между двумя проводниками коаксиального кабеля зависит от удельного сопротивления материала, разделяющего два проводника, длины кабеля и внутреннего и внешнего радиуса двух проводников. Если вы разрабатываете коаксиальный кабель, как сопротивление между двумя проводниками зависит от этих переменных?
Чем больше длина, тем меньше сопротивление.Чем больше удельное сопротивление, тем выше сопротивление. Чем больше разница между внешним радиусом и внутренним радиусом, то есть чем больше соотношение между ними, тем больше сопротивление. Если вы пытаетесь максимизировать сопротивление, выбор значений для этих переменных будет зависеть от приложения. Например, если кабель должен быть гибким, выбор материалов может быть ограничен.
Глубина кожи / Эффект кожи и калькулятор
Поскольку высокочастотные сигналы плохо проникают в хорошие проводники, сопротивление, связанное с проводником на этих высоких частотах, будет выше, чем сопротивление постоянному току.Этот эффект известен как скин-эффект, поскольку высокочастотный ток течет в тонком слое у поверхности проводника. Формула для определения эффективной глубины скин-слоя для проводника показана ниже.
Уравнение для расчета глубины скин-слоя или скин-эффекта медного проводника
для чистой меди В этом случае d — глубина скин-слоя (в м), f — интересующая частота (в Гц), m — проницаемость материала (м o , или 1,2566E-6 H / м для большинства материалов), s — проводимость материала (в Сименсах / м или 1 / r, где r — удельное сопротивление в Ом-м).Диаграмма, показывающая эффективное сопротивление круглой проволоки за счет скин-эффекта
Если используется круглый провод с радиусом a, эффективное сопротивление провода можно рассчитать, как показано ниже, где l — длина провода, а другие переменные определены, как указано выше.
Уравнение для расчета эффективного сопротивления провода в зависимости от глубины скин-слоя
при a >> d
Приведенное выше уравнение применимо для тех случаев, когда глубина скин-слоя находится между 0 и радиусом проволоки a.Если глубина скин-слоя больше, чем радиус провода, то эквивалентное сопротивление провода переменному току не отличается от сопротивления постоянному току и просто определяется по стандартной формуле с использованием всей площади поперечного сечения провода. Когда частота приближается к нулю (dc), глубина скин-слоя становится бесконечной, а с увеличением частоты глубина скин-слоя становится все меньше и меньше.
В следующей таблице показано, как толщина скин-слоя изменяется в зависимости от материала проводника (чистая медь и чистый алюминий) для типичных импульсных частот и частот согласования мощности в диапазоне от 1 кГц до 1 ГГц.
Частота (Гц) | Глубина кожи в меди (см) | Глубина кожи в алюминии (см) |
1000 | 2.09E-1 | 2.68E-1 |
10 000 | 6.61E-2 | 8,46E-2 |
100 000 | 2.09E-2 | 2.68E-2 |
1 000 000 | 6.61E-3 | 8.46E-3 |
10 000 000 | 2.09E-3 | 2,68E-3 |
100 000 000 | 6.61E-4 | 8,46E-4 |
1 000 000 000 | 2.09E-4 | 2,68E-4 |
Калькулятор, представленный ниже, можно использовать для определения глубины скин-слоя для данного сплава материала и рабочей частоты. Он также будет отображать удельное сопротивление, проводимость и проницаемость, принятые для выбранного материала.Рекомендуется, чтобы пользователи дважды проверяли эту информацию, поскольку удельное сопротивление материала может варьироваться в зависимости от точного состава, отпуска и т.