Симистор что это такое: Симистор. Принцип работы, параметры и обозначение на схеме.

Содержание

Симистор. Принцип работы, параметры и обозначение на схеме.

Если проанализировать путь развития полупроводниковой электроники, то почти сразу становится понятно, что все полупроводниковые приборы созданы на переходах или слоях (n-p, p-n).

Простейший полупроводниковый диод имеет один переход (p-n) и два слоя.

У биполярного транзистора два перехода и три слоя (n-p-n, p-n-p). А что будет, если добавить ещё один слой?

Тогда мы получим четырёхслойный полупроводниковый прибор, который называется тиристор. Два тиристора включенные встречно-параллельно и есть симистор, то есть симметричный тиристор.

В англоязычной технической литературе можно встретить название ТРИАК (TRIAC – triode for alternating current).

Вот таким образом симистор изображается на принципиальных схемах.

У симистора три электрода (вывода). Один из них управляющий. Обозначается он буквой G (от англ. слова gate – «затвор»). Два остальных – это силовые электроды (T1 и T2). На схемах они могут обозначаться и буквой A (A1 и A2).

А это эквивалентная схема симистора выполненного на двух тиристорах.

Следует отметить, что симистор управляется несколько по-другому, нежели эквивалентная тиристорная схема.

Симистор достаточно редкое явление в семье полупроводниковых приборов. По той простой причине, что изобретён и запатентован он был в СССР, а не в США или Европе. К сожалению, чаще бывает наоборот.

Как работает симистор?

Если у тиристора есть конкретные анод и катод, то электроды симистора так охарактеризовать нельзя, поскольку каждый электрод является и анодом, и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Очень простой схемой, характеризующей принцип работы и область применения симистора, может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.


Симисторный регулятор мощности

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим, с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется, и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность, он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения, тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае, изменяя управляющее напряжение, мы можем регулировать яркость электрической лампочки или температуру жала паяльника.

Симистор управляется как отрицательным, так и положительным током.

В зависимости от полярности управляющего напряжения рассматривают четыре, так называемых, сектора или режима работы. Но этот материал достаточно сложен для одной статьи.

Если рассматривать симистор, как электронный выключатель или реле, то его достоинства неоспоримы:

  • Невысокая стоимость.

  • По сравнению с электромеханическими приборами (электромагнитными и герконовыми реле) большой срок службы.

  • Отсутствие контактов и, как следствие, нет искрения и дребезга.

К недостаткам можно отнести:

  • Симистор весьма чувствителен к перегреву и монтируется на радиаторе.

  • Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.

  • Реагирует на внешние электромагнитные помехи, что вызывает ложное срабатывание.

Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка. Величина резистора R1 от 50 до 470 ом, величина конденсатора C1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.

Основные параметры симистора.

Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно, он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.

  • Максимальное обратное напряжение – 400V. Это означает, что он прекрасно может управлять нагрузкой в сети 220V и ещё с запасом.

  • В импульсном режиме напряжение точно такое же.

  • Максимальный ток в открытом состоянии – 5А.

  • Максимальный ток в импульсном режиме – 10А.

  • Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.

  • Наименьший импульсный ток – 160 мА.

  • Открывающее напряжение при токе 300 мА – 2,5 V.

  • Открывающее напряжение при токе 160 мА – 5 V.

  • Время включения – 10 мкс.

  • Время выключения – 150 мкс.

Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот. Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.).

Оптосимистор.

Современная и перспективная разновидность симистора – это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод, и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.


Оптосимистор MOC3023


Устройство оптосимистора

Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC, не используются, и не подключаются к элементам схемы. NC – это сокращение от Not Connect, которое переводится с английского как «не подключается».

Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

  • Как проверить диод мультиметром?

  • Как определить мощность трансформатора?

 

устройство, принцип работы, область применения

Симистор является полупроводниковым прибором. Его полное название – симметричный триодный тиристор. Его особенность – возможно проводить ток в обе стороны. Данный элемент цепи имеет три вывода: один является управляющим, а два других силовыми. В этой статье мы рассмотрим принцип работы, устройство и назначение симистора в различных схемах электроприборов.

  • Конструкция и принцип действия
  • Управляющие сигналы
  • Достоинства и недостатки
  • Область применения
  • Основные характеристики

Конструкция и принцип действия

Особенность симистора является двунаправленной проводимости идущего через прибор электрического тока. Конструкция устройства строится на использовании двух встречно-параллельных тиристоров с общим управлением. Такой принцип работы дал название от сокращенного «симметрические тиристоры». Поскольку электроток может протекать в обе стороны, нет смысла обозначать силовые выводы как анод и катод. Дополняет общую картину управляющий электрод.

Условное обозначение на схеме по ГОСТ:

Внешний вид следующий:

В симисторе есть пять переходов, позволяющих организовать две структуры. Какая из них будет использоваться зависит от места образования (конкретный силовой вывод) отрицательной полярности.

Как работает симистор? Исходно полупроводниковый прибор находится в запертом состоянии и ток по нему не проходит. При подаче тока на управляющий электрод, последний переходит в открытое состояние и симистор начинает пропускать через себя ток. При работе от сети переменного тока полярность на контактах постоянно меняется. Схема, где используется рассматриваемый элемент, при этом будет работать без проблем. Ведь ток пропускается в обоих направлениях. Чтобы симистор выполнял свои функции, на управляющий электрод подают импульс тока, после снятия импульса ток через условные анод и катод продолжает протекать до тех пор, пока цепь не будет разорвана или они не будут находится под напряжением обратной полярности.

При использовании в цепи переменного тока симистор закрывается на обратной полуволне синусоиды, тогда нужно подавать импульс противоположной полярности (той же, под которой находятся «силовые» электроды элемента).

Принцип действия системы управления может корректироваться в зависимости от конкретного случая и применения. После открытия и начала протекания подавать ток на управляющий электрод не нужно. Цепь питания разрываться не будет. При надобности отключить питание следует понизить ток в цепи ниже уровня величины удержания или кратковременно разорвать цепь питания.

Управляющие сигналы

Чтобы добиться желаемого результата с симистором используют не напряжение, а ток. Чтобы прибор открылся, он должен быть на определённом небольшом уровне. Для каждого симистора сила управляющего тока может быть разной, её можно узнать из даташита на конкретный элемент. Например, для симистора КУ208 этот ток должен быть больше 160 мА, а для КУ201 —не менее 70 мА.

Полярность управляющего сигнала должна совпадать с полярностью условного анода. Для управления симистором часто используют выключатель и токоограничительный резистор, если он управляется микроконтроллером – может понадобиться дополнительная установка транзистора, чтобы не сжечь выход МК, или использовать симисторный оптодрайвер, типа MOC3041 и подобных.

Четырёхквадрантные симисторы могут отпираться сигналом с любой полярностью. В этом преимуществе есть и недостаток – может потребоваться увеличенный управляющий ток.

При отсутствии прибор заменяется двумя тиристорами. При этом следует правильно подбирать их параметры и переделывать схему управления. Ведь сигнал будет подаваться на два управляющих вывода.

Достоинства и недостатки

Для чего нужен рассматриваемый полупроводниковый прибор? Самый популярный вариант использования – коммутация в цепях переменного тока. В этом плане симистор очень удобен – используя небольшой элемент можно обеспечить управление высоковольтного питания.

Популярны решения, когда им заменяют обычное электромеханическое реле. Плюс такого решения – отсутствует физический контакт, благодаря чему включение питания становится надежнее, переключение бесшумным, ресурс на порядки больше, быстродействие выше. Еще одно достоинство симистора – относительно невысокая цена, что вместе с высокой надёжностью схемы и временем наработки на отказ выглядит привлекательно.

Полностью избежать минусов разработчикам не удалось. Так, приборы сильно нагреваются под нагрузкой. Приходится обеспечивать отвод тепла. Мощные (или «силовые») симисторы устанавливают на радиаторы. Ещё один недостаток, влияющий на использование, это создание гармонических помех в электросети некоторыми схемами симисторных регуляторов (например, бытовой диммер для регулировки освещенности).

Отметим, что напряжение на нагрузки будет отличаться от синусоиды, что связано с минимальным напряжением и током, при которых возможно включение. Из-за этого подключать следует только нагрузку, не предъявляющую высоких требований к электропитанию. При постановке задачи добиться синусоиды такой способ коммутации не подойдёт. Симисторы сильно подвержены влиянию шумов, переходных процессов и помех. Также не поддерживаются высокие частоты переключения.

Область применения

Характеристики, небольшая стоимость и простота устройства позволяет успешно применять симисторы в промышленности и быту. Их можно найти:

  1. В стиральной машине.
  2. В печи.
  3. В духовках.
  4. В электродвигателе.
  5. В перфораторах и дрелях.
  6. В посудомоечной машине.
  7. В регуляторах освещения.
  8. В пылесосе.

На этом перечень, где используется этот полупроводниковый прибор, не ограничивается. Применение рассматриваемого проводникового прибора осуществляется практически во всех электроприборах, что только есть в доме. На него возложена функция управления вращением приводного двигателя в стиральных машинках, они используются на плате управления для запуска работы всевозможных устройств – легче сказать, где их нет.

Основные характеристики

Рассматриваемый полупроводниковый прибор предназначен для управления схемами. Независимо от того, где в схеме он применяется, важны следующие характеристики симисторов:

  1. Максимальное напряжение. Показатель, который будучи достигнут на силовых электродах не вызовет, в теории, выхода из строя. Фактически является максимально допустимым значением при условии соблюдения диапазона температур. Будьте осторожны – даже кратковременное превышение может обернуться уничтожением данного элемента цепи.
  2. Максимальный кратковременный импульсный ток в открытом состоянии. Пиковое значение и допустимый для него период, указываемый в миллисекундах.
  3. Рабочий диапазон температур.
  4. Отпирающее напряжение управления (соответствует минимальному постоянному отпирающему току).
  5. Время включения.
  6. Минимальный постоянный ток управления, нужный для включения прибора.
  7. Максимальное повторяющееся импульсное напряжение в закрытом состоянии. Этот параметр всегда указывают в сопроводительной документации. Обозначает критическую величину напряжения, предельную для данного прибора.
  8. Максимальное падение уровня напряжения на симисторе в открытом состоянии. Указывает предельное напряжение, которое может устанавливаться между силовыми электродами в открытом состоянии.
  9. Критическая скорость нарастания тока в открытом состоянии и напряжения в закрытом. Указываются соответственно в амперах и вольтах за секунду. Превышение рекомендованных значений может привести к пробою или ошибочному открытию не к месту. Следует обеспечивать рабочие условия для соблюдения рекомендованных норм и исключить помехи, у которых динамика превышает заданный параметр.
  10. Корпус симистора. Важен для проведения тепловых расчетов и влияет на рассеиваемую мощность.

Вот мы и рассмотрели, что такое симистор, за что он отвечает, где применяется и какими характеристиками обладает. Рассмотренные простым языком теоретические азы позволят заложить основу для будущей результативной деятельности. Надеемся, предоставленная информация была для вас полезной и интересной!

Что такое симистор — симисторный переключатель » Electronics Notes

Симисторы — это полупроводниковые устройства, которые широко используются для коммутации переменного тока средней мощности — их преимущество в том, что они могут коммутировать обе половины переменного цикла.


Симистор, диак, тиристор Учебное пособие Включает:
Основы работы с тиристорами Структура тиристорного устройства Тиристорный режим Затвор выключения тиристора, ГТО Технические характеристики тиристора Что такое симистор Технические характеристики симистора Обзор Диака


Триаки — это электронные компоненты, которые широко используются в устройствах управления питанием переменного тока. Они могут переключать высокое напряжение и высокий уровень тока, а также обе части сигнала переменного тока. Это делает симисторные схемы идеальными для использования в различных приложениях, где требуется переключение питания.

Одним из конкретных применений симисторных цепей являются диммеры для бытового освещения, а также они используются во многих других ситуациях управления мощностью, включая управление двигателем и электронные переключатели.

Симистор среднего тока

Из-за своих характеристик симисторы, как правило, используются для электронных коммутационных устройств малой и средней мощности, в то время как тиристоры используются для коммутации переменного тока с очень высокими тепловыми нагрузками.

Основы симистора

Симистор является развитием тиристора. В то время как тиристор может контролировать ток только в течение одной половины цикла, симистор контролирует его в течение двух половин формы волны переменного тока.

Форма сигнала переключения симистора

Таким образом, симистор можно рассматривать как пару параллельных, но противоположных тиристоров с двумя затворами, соединенными вместе, и анодом одного устройства, подключенным к катоду другого, и т. д.

Тот факт, что действие переключения симистора происходит на обеих половинах сигнала переменного тока, означает, что для приложений электронного переключения переменного тока можно использовать полный цикл.

Для базовых тиристорных цепей используется только половина формы волны, и это означает, что базовые схемы, использующие тиристоры, не будут использовать обе половины цикла. Для использования обеих половин требуется два устройства.

Однако симистору требуется только одно устройство для управления обеими половинами сигнала переменного тока, и во многих отношениях это идеальное решение для электронного переключателя переменного тока.

Символ симистора

Как и другие электронные компоненты, симистор имеет собственный символ цепи для использования на принципиальных схемах, что указывает на его двунаправленные свойства. Символ симистора можно рассматривать как пару символов тиристора в противоположных смыслах, слитых вместе.

Символ цепи симистора

Как и тиристор, симистор имеет три вывода. Однако их названия немного сложнее присвоить, потому что основные токоведущие клеммы подключены к тому, что фактически является катодом одного тиристора и анодом другого в общем устройстве.

Есть ворота, которые действуют как триггер для включения устройства. В дополнение к этому другие терминалы называются анодами или основными терминалами. Они обычно обозначаются как Анод 1 и Анод 2 или Основной Терминал 1 и Основной Терминал 2 (MT1 и MT2). При использовании симисторов и МТ1, и МТ2 имеют очень похожие свойства.

Как работает симистор?

Прежде чем рассматривать, как работает симистор, полезно иметь представление о том, как работает тиристор. Таким образом, основные понятия можно понять для более простого полупроводникового устройства, а затем применить к более сложному симистору.

Подробнее о . . . . Основы тиристора/тиристора.

Для работы симистора из символа схемы можно представить, что симистор состоит из двух тиристоров, включенных параллельно, но по-разному. Таким образом можно рассматривать работу симистора, хотя реальная работа на полупроводниковом уровне несколько сложнее.

Эквивалентная схема симистора

Структура симистора показана ниже, и можно увидеть, что есть несколько областей из материала N-типа и P-типа, которые образуют то, что фактически представляет собой пару тиристоров, расположенных спиной к спине.

Базовая структура симистора

Симистор может проводить больше проводов, чем тиристор. Он может проводить ток независимо от полярности напряжения на клеммах MT1 и MT2. Он также может запускаться положительным или отрицательным током затвора, независимо от полярности тока MT2. Это означает, что существует четыре режима запуска или квадранта:

  • Режим I+   Ток MT2 +ve, ток затвора +ve
  • I-Mode   Ток MT2 равен +ve, ток затвора равен -ve
  • Режим III+:   Ток MT2 равен -ve, ток затвора равен +ve
  • III- Режим:   Ток MT2 -ve, ток затвора -ve

Установлено, что чувствительность триггерного тока триггера наибольшая, когда токи MT2 и затвора имеют одинаковую полярность, т. е. оба положительные или оба отрицательные. Если токи затвора и MT2 имеют противоположную полярность, то чувствительность обычно составляет примерно половину значения, когда они одинаковы.

Типичная ВАХ симистора показана на диаграмме ниже, где отмечены четыре различных квадранта.

Характеристики симистора IV

Применение симистора

Триаки

используются во многих приложениях. Эти электронные компоненты часто используются для коммутации переменного тока малой и средней мощности. Там, где необходимо переключать большие уровни мощности, как правило, используются два тиристора / тринистора, поскольку ими легче управлять.

Тем не менее симисторы широко используются во многих приложениях:

  • Управление освещением, особенно бытовыми диммерами.
  • Управление вентиляторами и малыми двигателями.
  • Электронные выключатели для общего включения и управления переменным током

Естественно, существует множество других применений симистора, но эти являются одними из самых распространенных.

В одном конкретном приложении симисторы могут быть включены в модули, называемые твердотельными реле. Здесь оптическая версия этого полупроводникового устройства активируется светодиодным источником света, который включает твердотельное реле в соответствии с входным сигналом.

Обычно в твердотельных реле светодиодный или инфракрасный источник и оптический симистор находятся в одном корпусе, при этом обеспечивается достаточная изоляция, чтобы выдерживать высокие напряжения, которые могут достигать сотен вольт или, возможно, даже больше.

Твердотельные реле бывают разных форм, но те, которые используются для переключения переменного тока, могут использовать симистор.

Использование симисторов

При использовании симисторов необходимо учитывать ряд моментов. Хотя эти полупроводниковые устройства работают очень хорошо, чтобы получить от них максимальную производительность, необходимо понять несколько советов по использованию симисторов.

Обнаружено, что из-за их внутренней конструкции и небольших различий между двумя половинками эти электронные компоненты не срабатывают симметрично. Это приводит к генерированию гармоник: чем менее симметрично срабатывает симистор, тем выше уровень генерируемых гармоник.

Обычно нежелательно иметь высокие уровни гармоник в энергосистеме, поэтому симисторы не рекомендуются для систем большой мощности. Вместо этого для этих систем можно использовать два тиристора, так как легче контролировать их открытие.

Чтобы решить проблему несимметричного срабатывания симистора и возникающих в результате гармоник, другое полупроводниковое устройство, известное как диод (диодный переключатель переменного тока), часто помещают последовательно с затвором симистора.

Включение этого полупроводникового устройства помогает сделать переключение более равномерным для обеих половин цикла и тем самым создать более эффективный электронный переключатель.

Это связано с тем, что характеристика переключения диака намного более равномерна, чем у симистора. Поскольку симистор предотвращает протекание любого тока затвора до тех пор, пока напряжение триггера не достигнет определенного напряжения в любом направлении, это делает точку срабатывания симистора более равномерной в обоих направлениях.

Внутренняя схема симисторного диммера

Примеры симисторной схемы

Существует множество способов использования симисторов. Два приведенных ниже примера дают представление о том, что можно сделать с этими полупроводниковыми устройствами.

  • Простая схема электронного переключателя симистора:  Симистор может функционировать как электронный переключатель — он может позволить пусковому импульсу маломощного переключателя включить симистор для управления гораздо более высокими уровнями мощности, которые могут быть возможны с простой переключатель. Схема простого симисторного переключателя
  • Симистор с регулируемой мощностью или диммер: Одна из самых популярных симисторных схем изменяет фазу на входе симистора для управления мощностью, которая может рассеиваться в нагрузку.
    Базовая симисторная схема, использующая фазу входного сигнала для управления рассеиваемой мощностью в нагрузке

Существует множество других схем симисторов, которые можно использовать. Устройство очень универсально и может использоваться в различных схемах, как правило, для обеспечения различных форм переключения переменного тока.

Примечание по симисторным схемам и конструкции:

Симисторные схемы могут переключать обе половины на переменный сигнал с помощью одного устройства, что делает их очень привлекательными для использования во многих схемах переключения переменного тока малой и средней мощности.

Подробнее о Симисторные схемы и дизайн

Технические характеристики симистора

Триаки имеют многие характеристики, которые очень похожи на характеристики тиристоров, хотя очевидно, что они предназначены для работы симистора в обеих половинах цикла и должны интерпретироваться как таковые.

Однако, поскольку их действие очень похоже, то же самое можно сказать и о базовых типах спецификаций. Такие параметры, как ток срабатывания затвора, повторяющееся пиковое напряжение в закрытом состоянии и т. п., необходимы при разработке симисторной схемы, обеспечивая достаточный запас для надежной работы схемы.

Подробнее о . . . . характеристики симистора.

Симисторы

идеально подходят для использования во многих маломощных устройствах переменного тока. Симисторные схемы для использования в качестве диммеров и небольших электронных переключателей широко распространены, они просты и легки в реализации. При использовании симисторов в схему часто включают диаки, как упоминалось выше, чтобы помочь снизить уровень производимых гармоник.

Другие электронные компоненты:
Резисторы конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор полевой транзистор Типы памяти Тиристор Соединители ВЧ-разъемы Клапаны/трубки Батареи Переключатели Реле Технология поверхностного монтажа
    Вернуться в меню «Компоненты». . .

Что такое TRIAC? Определение, конструкция, работа и применение TRIAC

Определение : TRIAC в основном представляет собой 3-контактный переключатель переменного тока , который показывает проводимость в обоих направлениях . Они запускаются в проводимость низкоэнергетическим сигналом затвора. TRIAC является сокращением TRI ода для A чередующегося C тока. Это двунаправленное устройство , которое принадлежит к семейству тиристоров и в основном представляет собой диод с затворной клеммой, используемой для управления условиями включения устройства.

Более конкретно мы можем сказать в TRIAC, Tri обозначает 3 клеммы устройства и ac обозначает устройство, которое используется для управления переменным током . Легко доступен симистор мощностью 16 кВт. Для управляющих приложений они широко используются в области силовой электроники.

Давайте посмотрим на условное обозначение симистора:

Конструкция симистора

На приведенной ниже схеме показана базовая структура симистора:

Как мы уже обсуждали, это 3-х клеммное устройство и 4-х уровневое устройство , оно состоит из 2 SCR в инверсно-параллельном соединении с клеммой затвора. Он имеет 6 легированных областей, а омический контакт осуществляется затвором как с N-, так и с P-областями. Благодаря этому любая полярность триггерного импульса может запускать проводимость в устройстве.

Давайте посмотрим на электрический эквивалент базовой структуры симистора.

Поскольку это двунаправленное устройство, анод и катод не имеют значения. Таким образом, терминалы представлены как MT 1 и MT 2 вместе с терминалом ворот G .

Работа симистора

Симистор — это устройство, проводящее независимо от полярности напряжения на клеммах. В результате существует 4 различных варианта операций.

Теперь рассмотрим случаи отдельно:

1. Когда затвор и МТ 2 находятся под положительным потенциалом по отношению к МТ 1 :

При подаче положительного потенциала на МТ 2 относительно MT 1 , два соединения P 1 -N 1 и P 2 -N 2 получают смещение вперед. Следовательно, ток протекает через P 1 -N 1 -P 2 -N 2 . Таким образом, симистор в таком состоянии считается смещенным положительно.

2. Когда MT 2 имеет положительный потенциал, а затвор имеет отрицательный потенциал по отношению к MT 1 :

Как и в предыдущем случае, здесь ток также протекает через P 1 -N 1 -P 2 -N 2 . Но здесь соединение P 2 -N 3 смещается в прямом направлении, и симистор включается за счет введения носителей в P 2 .

3. Когда затвор и ИП 2 имеют отрицательный потенциал по отношению к ИП 1 :

1 -Н 4 . Развязка Р 2 1 и P 1 -N 4 смещены в прямом направлении, и в то же время N 1 -P 2 заблокированы, поэтому говорят, что он смещен отрицательно. Приложенный отрицательный потенциал затвора смещает вперед соединение P 2 -N 3 , таким образом, инициируя проводимость в устройстве.

4. Когда MT 2 имеет отрицательный потенциал, а затвор имеет положительный потенциал по отношению к MT 1 :

Здесь также, как и в предыдущем случае, ток протекает через P 2 -N 1 -P 1 -N 4 . Соединения P 2 -N 1 и P 1 -N 4 смещены в прямом направлении, что приводит к инжекции носителей, что приводит к включению устройства.

Характеристика симистора

Характеристическая кривая симистора в основном содержит следующие 4 режима:

Режим 1 : Это первый квадрант, где В MT21 G 0227 оба положительные .

Режим 2 : Это операция второго квадранта, где V MT21 положительное и V G1 отрицательное .

Режим 3 : Это операция третьего квадранта, где V MT21 и V G1 оба являются отрицательными .

Режим 4 : Это операция четвертого квадранта, где V MT21 это отрицательный и V G1 это положительный .

Здесь В MT21 представляет собой напряжение на клемме MT 2 по отношению к клемме MT 1 , а V G1 представляет напряжение затвора по отношению к клемме MT 1 .

Через устройство протекает очень большой ток, когда оно начинает проводить ток. Однако такой большой ток может повредить устройство. Таким образом, внешнее сопротивление используется для ограничения избыточного тока. Здесь управляющим терминалом является затвор, и правильно приложенный потенциал затвора управляет углом открытия устройства.

Значения напряжения и тока для типичного симистора приведены ниже:

  1. Ток в открытом состоянии: – 25 A
  2. Напряжение во включенном состоянии: – 1,5 В
  3. Средний ток срабатывания: – 5 мА
  4. Ток удержания: – 75 мА

Цепь управления симистором

Давайте взглянем на схему управления симистором, показанную ниже:

Во время положительной половины и отрицательной половины входного цикла мощность переменного тока регулируется для нагрузки путем переключения между включением и выключением. Положительная половина смещает D1 вперед и смещает D2 назад, а затвор положителен по отношению к A 1 .

Однако, во время отрицательного полупериода, D 2 теперь смещается в прямом направлении, а D 1 смещается в обратном направлении, и вентиль является положительным относительно клеммы A 2 .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *