Схема включения асинхронного двигателя: Как подключить асинхронный двигатель 380 — советы электрика

Содержание

Плавный пуск асинхронного электродвигателя — назначение устройства и схема его подключения

Автор Aluarius На чтение 4 мин. Просмотров 843 Опубликовано

То, что в асинхронных электродвигателях с короткозамкнутым ротором при пуске появляются высокие токи, известно. Теоретически эта проблема решена довольно-таки давно (плавные способы пуска известны), но вот на практике эти технологии использовались редко. В настоящее время многое изменилось. Научно-технический прогресс принес в последнее время много разработок в электронной технике, благодаря чему стали производиться компактные устройства, очень эффективные и удобные, которые обеспечивали плавный пуск асинхронного электродвигателя. Их еще называют софтстартеры.

Эти устройства помогает запускать асинхронный электродвигатель без рывков и нагрузки, что обеспечивает долгосрочную эксплуатацию и самого двигателя, и исполнительных механизмов, которые напрямую соединены с валом мотора. Обычно в качестве таких устройств выступают редукторы разных модификаций.

  • Если в схеме подключения не использовать устройство плавного пуска, то пусковой момент приводит к постепенному разрушению двигателя, особенно быстро выходят из строя подшипники.
  • Но и не только подшипники. Высокое пусковое напряжение и ток, превышающие номинальный в 6-10 раз, становятся причиной износа изоляции обмоток и пробивки медного провода, подгорают контакты.
  • К тому же подводящий питающий кабель рассчитывается с учетом именно максимального значения пускового тока. А это повышение его сечения, а, значит, повышение стоимости проводки, плюс перерасход самой электроэнергии.
  • При этом необходимо учитывать тот факт, что электродвигатель при пуске забирает на себя большое напряжение, что создает «просадку» напряжения в смежных электрических сетях. А это негативно влияет на технологическое оборудование в этих сетях, потому что напряжение в них резко падает. Это, во-первых, приводит к некорректной работе оборудования, во-вторых, снижает срок его эксплуатации.
  • В добавлении можно сказать, что пуск асинхронного двигателя создает достаточно серьезные электромагнитные помехи, что в свою очередь становится причиной нарушения работы электронных приборов и оборудования. При этом необязательно чтобы эти приборы были запитаны в электрическую схему электродвигателя. Начинают плохо работать даже те, которые просто рядом расположены с ним.

И еще есть один момент, который иногда не учитывается. Если при пусковом моменте асинхронный электродвигатель перегрелся или вообще сгорел, то используемая в его конструкции трансформаторная сталь теряет свои технические характеристики, слишком высока температура перегрева. Если такой двигатель отремонтировать, то гарантированно, что его мощность будет ниже номинальной приблизительно на треть. Поэтому такие моторы устанавливать на старое место не рекомендуется. Он просто не потянет нагрузки, для которых агрегат предназначен.

Вот такие негативные моменты есть у асинхронного двигателя, который работает без устройства плавного пуска.

Назначение устройства плавного пуска

Начнем с того, что это устройство объединяет в себе две функции: плавного пуска и торможения. Производители комплектуют их еще дополнительными опциями: связь с автоматикой и защитными функциями.

Теперь схема пуска асинхронного двигателя. В основе этого процесса лежит постепенный подъем напряжения, что обеспечивает медленный разгон вращения вала мотора (ротора). Это и приводит к снижению пусковых токов. Есть в этом деле три параметра, которые определяют плавный пуск. Это:

  • Начальное напряжение. Оно должно быть меньше номинального на 40-70 процентов.
  • Время, за которое вал электродвигателя разгонится до номинальной скорости. Здесь процесс происходит так: сначала подается напряжение скачком, которое доводится до начального, после чего уже напряжение увеличивается плавно до номинального.
  • Время торможения.

Применяя эту технологию пуска с установкой и подключением софтстартеров, можно отказаться от системы реле, включателей, магнитных пускателей и контакторов, и при этом создается надежная защита от перегрузок и перегревов, от пробивки изоляции и возникновения электромагнитных помех. Но самое главное, что конструкция устройства плавного пуска асинхронных двигателей очень проста. Их легко подсоединить к двигателю, главное точно подобрать прибор по параметрам. Вот схема такого подключения:

Как правильно выбрать устройство плавного пуска

  • В основе выборе лежит тот самый максимальный пусковой ток. В устройстве величина тока должна быть больше пускового у электродвигателя.
  • Обязательно надо обратить внимание, сколько пусков может за час выдерживать устройство. Обычно этот показатель в паспорте софтстартера указывается. Поэтому его придется подбирать под технологию, в которой установлен сам электродвигатель. Где-то его будут включать один раз в день, а где-то за час могут включить и отключить несколько раз.
  • И, конечно, это питающее напряжение. В паспорте устройства плавного пуска этот показатель обязательно указывается.

В принципе, это все, что можно было бы сказать о таком эффекте, как плавный пуск асинхронного двигателя.

Устройства и способы пуска асинхронного электродвигателя — прямой, звезда-треугольник, плавный и через частотный преобразователь

Асинхронные электрические двигатели с короткозамкнутым ротором благодаря своей крайней простоте получили широкое распространение, особенно в трехфазных сетях, где им не требуются дополнительные пусковые или смещенные по фазе обмотки.

При правильной эксплуатации асинхронный электродвигатель становится практически вечным – единственное, что в нем может потребовать замены, это подшипники ротора.

Однако ряд особенностей асинхронных двигателей определяет специфику их пускового режима: отсутствие обмотки якоря означает отсутствие противоЭДС индукции в момент включения обмоток статора, а следовательно – высокий пусковой ток.

Если для маломощных электрических двигателей это не критично, то в промышленных электродвигателях пусковые токи могут достигать очень высоких значений, что приводит к просадкам напряжения в сети, перегрузкам подстанций и электропроводки.

ПРЯМОЙ ПУСК АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ

Как уже было сказано выше, прямое включение обмотки асинхронного двигателя может применяться только при низкой мощности. В этом случае пусковой ток превышает номинальный в 5-7 раз, что не является проблемой для коммутационного оборудования и электропроводки.

Основной проблемой прямого пуска становится подключение нескольких электродвигателей к маломощной подстанции или генератору.

Включение в сеть нового электродвигателя может вызвать настолько сильную просадку напряжения, что уже работающие двигатели остановятся, а новому мотору не хватит пускового момента, чтобы стронуться с места.

Пусковой ток асинхронного двигателя достигает максимального значения в момент включения и плавно снижается до номинального по мере раскрутки ротора.

Следовательно, для уменьшения времени перегрузки сети асинхронный двигатель должен включаться с минимальной нагрузкой, если это возможно.

Мощные токарные станки, гильотины для рубки металла не имеют фрикционных муфт, и все их вращающиеся механизмы раскручиваются в момент включения электродвигателя.

В этом случае длительные просадки напряжения приходится прямо закладывать в проектируемое для них электроснабжение.

ПЛАВНЫЙ ПУСК АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ

Логичным способом снижения пускового тока стало снижение напряжения, подаваемого на статор в момент запуска, с его постепенным увеличением при разгоне двигателя.

Простейший и наиболее старый способ плавного пуска – реостатный пуск электродвигателя: в цепь статора последовательно включается несколько мощных резисторов, последовательно закорачиваемых контакторами.

Также могут использоваться и дроссели высокой индуктивности (реакторы), а также автотрансформаторы.

Подобный способ плавного пуска имеет очевидные недостатки:

Проблематичность автоматизации.

Работа контакторов не привязывается к реальному значению тока, они либо переключаются вручную, либо перебираются с помощью реле времени автоматически.

Усложнение пуска под нагрузкой.

Так как крутящий момент асинхронного двигателя пропорционален квадрату напряжения питания, снижение напряжения в момент пуска в 2 раза приведет к снижению крутящего момента в 4 раза. Применение плавного пуска с электродвигателями, напрямую подключенными к нагрузке, значительно увеличивает время выхода на рабочие обороты.

Совершенствование силовой электроники позволило создать компактные автоматические устройства плавного пуска (также называемые софтстартерами от английского soft start – «мягкий пуск») для асинхронных электродвигателей, устанавливаемые на стандартную монтажную рейку электрощитов.

Они обеспечивают не только плавный разгон, но и торможение двигателя, позволяя регулировать параметры токов пуска и остановки в различных режимах:

Постоянное токоограничение.
В момент запуска ток ограничивается на заданном превышении номинального и удерживается на этой величине все время разгона двигателя. Обычно используется ограничение на уровне 200-300% номинального тока. Перегрузка становится малозначительной, хотя ее длительность возрастает.
Формирование тока.
В данном случае токовая кривая в момент включения двигателя имеет больший наклон, после чего софтстартер переходит в режим токоограничения.

Такой метод плавного пуска применяется при подключении к маломощным подстанциям или генераторам для снижения стартовой нагрузки, однако пусковой момент электродвигателя в данном случае минимален. Для устройств, лишенных холостого хода электродвигателя, использовать формирование тока с пологой стартовой кривой невозможно.

Ускоренный пуск (кик-старт).
Применяется с двигателями, напрямую приводящими нагрузку, так как иначе их пусковой крутящий момент может оказаться недостаточным для страгивания ротора.

В этом случае устройство плавного пуска допускает кратковременное превышение пускового тока в несколько раз (фактически осуществляется прямая коммутация), по истечении заданного времени ток снижается до двух-трехкратного превышения номинала.

Останов на выбеге.
При отключении двигателя напряжение с него снимается полностью, вращение якоря продолжается по инерции. Наиболее простой способ коммутации, применимый при небольших мощностях и малой инерции привода.

Однако в момент разрыва цепи происходит сильный индуктивный выброс, приводящий к сильному искрению в контакторах. На мощных электродвигателях, а также при высоких рабочих напряжениях данный способ отключения неприемлем.

Линейное снижение напряжения.
Применяется для более плавной остановки двигателя. Нужно помнить, что крутящий момент двигателя при этом снижается нелинейно из-за квадратичной зависимости момента от напряжения, то есть снижение момента происходит наиболее резко в начале кривой.

Отключение питания происходит при минимальном токе в обмотке, соответственно коммутирующие выключатели практически не изнашиваются образованием искры между контактами.

Для снижения нагрузок при остановке применяется управляемое снижение напряжения:

  • вначале ток снижается минимально;
  • затем кривая начинает снижаться круче.

Снижение крутящего момента электродвигателя при этом близко к линейному. Этот способ управления остановом электродвигателя применяется в устройствах с высокой инерционностью привода.

При использовании такого рода устройств плавного пуска пусконаладочные работы заключаются в настройке нужного типа кривой пускового тока и, в случае использования режимов формирования тока или ускоренного старта, настройке длительности временного интервала начального участка кривой.

Применение устройств плавного пуска позволяет автоматизировать пусковой режим, но его главный минус остается – либо приходится закладывать в устройство возможность холостого хода электродвигателя, либо допускать кратковременные перегрузки сети, раскручивая мотор и нагрузку с кик-стартом.

ПУСК ПО СХЕМЕ ЗВЕЗДА-ТРЕУГОЛЬНИК

Другим способом запуска, использующимся на трехфазных двигателях, является перекоммутация обмоток: в момент пуска обмотки соединяются звездой, по мере разгона ротора обмотки переводятся в нормальное включение треугольником.

Такой метод пуска фактически является частным случаем способа пуска асинхронного электродвигателя на пониженном напряжении, так как напряжение на обмотках при этом снижаетсяпримерно в 1,73 раза.

Подобный способ пуска может быть легко реализован с помощью набора контакторов с ручным управлением или с приводом от реле времени, поэтому достаточно дешев и распространен. Основные недостатки этого способа:

  1. При отказе одного из контакторов произойдет нарушение коммутации, в результате чего либо станет невозможным пуск, либо значительно снизится мощность двигателя.
  2. Снижение напряжения и тока является фиксированным.
  3. Крутящий момент двигателя при включении обмоток звездой уменьшается, поэтому запуск желательно также производить без нагрузки.

ПУСК ЭЛЕКТРОДВИГАТЕЛЯ ЧЕРЕЗ ЧАСТОТНЫЙ ПРЕОБРАЗОВАТЕЛЬ

Наиболее гибкий способ управления не только режимом пуска, но и рабочими характеристиками асинхронного электродвигателя – это применение частотного преобразователя. По своей сути частотный преобразователь представляет собой узкоспециализированный инвертор:

  • входное напряжение в нем выпрямляется;
  • затем заново преобразуется в переменное, но уже с заданной частотой и амплитудой.

Это происходит благодаря работе генератора широтно-импульсной модуляции (ШИМ), который создает серию прямоугольных импульсов заданной частоты и скважности (отношения длительности импульса к его периоду). Генерируемые импульсы управляют силовыми ключами, коммутирующими выпрямленное напряжение питания на обмотки выходного трансформатора.

Как осуществляется плавный пуск через частотный преобразователь?

В данном случае становится возможным плавное изменение не только напряжения, но и частоты питающего электродвигатель напряжения. Благодаря тому, что ШИМ-генератор частотного преобразователя легко может управляться с обратной связью по потребляемому току, становится возможным пусковой режим, в котором ток не превышает номинальный – таким образом перегрузка питающей сети фактически отсутствует.

Однако такой пусковой режим требует значительного усложнения частотного преобразователя, поэтому для управления асинхронными электродвигателями обычно используется комбинация с отдельным устройством плавного пуска (УПП).

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Как поменять направление вращения однофазного двигателя, схема включения асинхронного электродвигателя

Вариант 3: смена пусковой обмотки на рабочую, и наоборот

Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.

На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечены коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.

В этом случае поступают так:

  1. Снимают конденсатор с начального вывода А;
  2. Подсоединяют его к конечному выводу D;
  3. От проводов А и D, а также фазы, пускают отводки (можно сделать реверс с использованием ключа).

Посмотрите на рисунок выше. Теперь, если подключить фазу к отводку D, то ротор вращается в одну сторону. Если же фазный провод перекинуть на ветку A, то можно изменить направление вращения в противоположную сторону. Реверс можно осуществлять, вручную разъединяя и соединяя провода. Облегчить работу поможет использование ключа.

Важно! Последний вариант реверсивной схемы подключения асинхронного однофазного мотора неправильный. Его можно использовать, только если соблюдаются условия:

  • Длина пусковой и рабочей намоток одинакова;
  • Площадь их поперечного сечения соответствует друг другу;
  • Эти провода изготовлены из одного и того же материала.

Все эти величины влияют на сопротивление. Оно у обмоток должно быть постоянным. Если вдруг длина или толщина проводов отличаются друг от друга, то после того, как вы организуете реверс, окажется, что сопротивление рабочей намотки станет таким же, как было раньше у пусковой, и наоборот. Это может стать и причиной того, что мотор не сможет запуститься.

Внимание! Даже если длина, толщина и материал обмоток совпадают, работа при измененном направлении вращения ротора не должна быть продолжительной. Это чревато перегревом и выходом из строя двигателя. КПД при этом тоже оставляет желать лучшего.

Осуществить реверс асинхронного мотора 220В просто, если концы обмоток отводятся из корпуса наружу. Сложнее его организовать, когда выводов всего три. Рассмотренный нами третий способ реверсирования подходит только для кратковременного включения двигателя в сеть. Если работа с обратным вращением обещает быть продолжительной, то мы рекомендуем вскрыть коробку для переключения методами, описанными в 1 и 2 варианте: так безопасно для агрегата, и сохраняется КПД.

Типовые конфигурации и принципы действия электродвигателей

Есть два наиболее распространенных вида моторов, подключение которых можно выполнить без дополнительных деталей. Это асинхронные двигатели с однофазным или трехфазным питанием и коллекторные устройства.

В асинхронных однофазных двигателях обмотка на роторе короткозамкнутая, по конструкции напоминающая колесо для белки. Замкнутые на кругах стержни входят в пазы сердечника, где при индукции тока создается поле уравновешивающее электромагнитное поле катушки. Для того, чтобы после подключения к сети мотор заработал, нужен стартовый толчок. В некоторых случаях, например на точильном станке двигатель можно запустить вручную, простым вращательным движением вала.

Можно также снабдить самодельный инструмент дополнительной стартовой обмоткой или частотным преобразователем, который обеспечит плавный запуск мотора. Начало вращения в асинхронных двигателях с трехфазной обмоткой статора происходит автоматически, благодаря чередованию фаз

Как видно на структурной схеме, в коллекторном электродвигателе имеются рабочая и пусковая обмотки. Переключение обмотки на роторе происходит при помощи графитовых щеток, единовременно под напряжением находится только одна из рамок, с магнитным полем, перпендикулярным полю статорной обмотки.

Разница полюсов сдвигает ротор по кругу, достигая определенного угла, контакт с щетками перебрасывается на вторую рабочую обмотку, что обеспечивает непрерывное вращательное движение.

Способы подключения асинхронных двигателей

Различные модели асинхронных двигателей используются в бытовых кондиционерах, в насосных системах и аппаратуре промышленного назначения. Они, как правило, оснащаются преобразователями частоты, которые в зависимости от предназначения, выполняют постепенный набор оборотов при включении, или плавное, не ступенчатое, переключение скоростей.

Схема подключения обычно дается прямо на корпусе, где маркируются выводящие провода пусковой и рабочей обмотки. В других случаях их можно определить при помощи замеров сопротивления. Величина в Омах в двух вариантах последовательного соединения должна в сумме быть равной показателю сопротивления пары обмоток ротора и статора.

Рабочая обмотка может отличаться и визуальной толщиной в сечении. Она подключается к конденсатору, а вывод от статора напрямую к 220В.

Конденсаторы могут быть установлены по схеме подключения к статорной обмотке, для обеспечения пуска электродвигателя, или в качестве рабочего устройства, подсоединенного к основной обмотке. Возможен и комбинированный вариант с двумя конденсаторами.

Емкость теплообменника зависит от мощности мотора в расчете 7мкФ на 100Вт. Чрезмерный нагрев корпуса после запуска свидетельствует о недостаточной емкости подключенных конденсаторов. Если наблюдается спад мощности и замедление оборотов, следует уменьшить емкость.

Трехфазными двигателями, отличающимися большой мощностью и возможностью автоматического старта оборудуют деревообрабатывающие и токарные станки. К трехфазной сети питания такие моторы подсоединяются в двух конфигурациях: треугольной или в виде звезды.

Для подключения к сети с одной фазой необходимо наличие переходного конденсатора, но в этом случае будут потери мощности и скорости оборотов двигателя.

Частотные преобразователи – важный элемент системы управления двигателем, могут быть заменены симисторами для плавного пуска, которые подключаются по трехфазной схеме. Это позволяет снизить расход электроэнергии и износ мотора, предотвращает перегрев и дает ряд дополнительных возможностей для подключения автоматики.

Подготовка асинхронного электродвигателя к включению

Виды электродвигателей

На самом первом этапе нам следует определиться с типом двигателя, который мы собрались подключать. Это может быть трехфазный асинхронный двигатель с короткозамкнутым или фазным ротором, двух- или однофазный двигатель, а может быть и вовсе синхронная машина.

Помочь в этом может бирка на электродвигателе, на которой указана нужная информация. Иногда это можно сделать чисто визуально — так как мы рассматриваем подключение трехфазных электрических машин, то двигатель с короткозамкнутым ротором не имеет коллектора, а машина с фазным ротором имеет таковой.

Определение начала и конца обмотки

Трехфазный асинхронный электродвигатель имеет шесть выводов. Это три обмотки, каждая из которых имеет начало и конец.

Для правильного подключения мы должны определить начало и конец каждой обмотки. Существует множество вариантов того, как это сделать — мы остановимся на наиболее простых из них, применимых в домашних условиях.

Обмотки статора электродвигателя

  • Для того чтоб определить начало и конец обмотки трехфазного двигателя своими руками, мы должны для начала определить выводы каждой отдельной обмотки, то есть определить каждую отдельную обмотку.
  • Сделать это достаточно просто. Между концом и началом одной обмотки у нас обязательно будет цепь. Определить цепь нам помогут либо двухполюсный указатель напряжения с соответствующей функцией, либо обычный мультиметр.
  • Для этого один конец мультиметра подключаем к одному из выводов и другим концом мультиметра касаемся поочередно остальных пяти выводов. Между началом и концом одной обмотки у нас будет значение близкое к нулю, в режиме измерения сопротивления. Между остальными четырьмя выводами значение будет практически бесконечным.
  • Следующим этапом будет определение их начала и конца.

ЭДС при различных вариантах соединения обмоток электродвигателя

  • Для того чтоб определить начало и конец обмотки, давайте немного погрузимся в теорию. В статоре электродвигателя имеется три обмотки. Если подключить конец одной обмотки к концу другой обмотки, а на начало обмоток подать напряжение, то в месте подключения ЭДС будет равен или близок к нулю. Ведь ЭДС одной обмотки компенсирует ЭДС второй обмотки. При этом в третьей обмотке ЭДС не будет наводиться.
  • Теперь рассмотрим второй вариант. Вы соединили один конец обмотки с началом второй обмотки. В этом случае ЭДС наводится в каждой из обмоток, в результате получается их сумма. За счет электромагнитной индукции ЭДС наводится в третьей обмотке.

Схема определения начала и конца обмоток электродвигателя

  • Используя этот метод, мы можем найти начало и конец каждой из обмоток. Для этого к выводам одной обмотки подключаем вольтметр или лампочку. А любых два вывода других обмоток соединяем между собой. Два оставшихся вывода обмоток подключаем к электрической сети в 220В. Хотя можно использовать и меньшее напряжение.
  • Если мы соединили конец и конец двух обмоток, то вольтметр на третьей обмотке покажет значение близкое к нулю. Если же мы подключили начало и конец двух обмоток правильно, то, как говорит инструкция, на вольтметре появится напряжение от 10 до 60В (данное значение является весьма условным и зависит от конструкции электродвигателя).
  • Подобный опыт повторяем еще дважды, пока точно не определим начало и конец каждой из обмоток. Для этого обязательно подписывайте каждый полученный результат, дабы не запутаться.

Выбор схемы подключения электродвигателя

Практически любой асинхронный электродвигатель имеет два варианта подключения – это звезда или треугольник. В первом случае обмотки подключаются на фазное напряжение, во втором на линейное напряжение.

Электродвигатель асинхронный трехфазный и подключение звезда–треугольник зависит от особенностей обмотки. Обычно оно указано на бирке двигателя.

Номинальные параметры на бирке электродвигателя

  • Прежде всего, давайте разберемся, в чем отличие этих двух вариантов. Наиболее распространенным является соединение «звезда». Оно предполагает соединение между собой всех трех концов обмоток, а напряжение подается на начала обмоток.
  • При соединении «треугольник» начало каждой обмотки соединятся с концом предыдущей обмотки. В результате каждая обмотка у нас получается стороной равностороннего треугольника – откуда и пошло название.

Разница между схемами соединения «звезда» и «треугольник»

  • Отличие этих двух вариантов соединения состоит в мощности двигателя и условий пуска. При соединении «треугольником» двигатель способен развивать большую мощность на валу. В то же время момент пуска характеризуется большой просадкой напряжения и большими пусковыми токами.
  • В бытовых условиях выбор способа подключения обычно зависит от имеющегося класса напряжения. Исходя из этого параметра и номинальных параметров, указанных на табличке двигателя, выбирают способ подключения к сети.

Подключение асинхронного электродвигателя

Электродвигатель асинхронный трехфазный и схема подключения зависят от ваших потребностей. Наиболее распространенным вариантом является схема прямого включения, для двигателей, подключенных схемой «треугольника», возможна схема включения на «звезде» с переходом на «треугольник», при необходимости возможен вариант реверсивного включения.

В нашей статье мы рассмотрим наиболее популярные схемы прямого включения и прямого включения с возможностью реверса.

Схема прямого включения асинхронного электродвигателя

В предыдущих главах мы подключили обмотки двигателя, и вот теперь пришло время включения его в сеть. Двигатели должны включаться в сеть при помощи магнитного пускателя, который обеспечивает надежное и одновременное включение всех трех фаз электродвигателя.

Пускатель в свою очередь управляется кнопочным постом – те самые кнопки «Пуск» и «Стоп» в одном корпусе.

Трехполюсный автоматический выключательНо прежде чем приступать непосредственно к подключению, давайте разберем, какое электрооборудование нам для этого необходимо. Прежде всего, это автоматический выключатель, номинальный ток которого соответствует, либо немного выше номинального тока электродвигателя.
Номинальные параметры пускателейСледующим коммутационным аппаратом является уже упоминавшийся нами пускатель. В зависимости он номинального тока пускатели разделяются на изделия 1, 2 и т. д. до 8-ой величины. Для нас важно, чтобы номинальный ток пускателя был не меньше, чем номинальный ток электродвигателя.
Кнопочный пост на две кнопкиПускатель управляется при помощи кнопочного поста. Он может быть двух видов. С кнопками «Пуск» и «Стоп» и с кнопками «Вперед», «Стоп» и «Назад». Если у нас не используется реверс, то нам необходим кнопочный пост на две кнопки и наоборот.
Таблица выбора сечения проводаКроме указанных аппаратов нам потребуется кабель соответствующего сечения. Так же желательно, но не обязательно, установка амперметра хотя бы на одну фазу, для контроля тока двигателя.

Обратите внимание! Вместо автомата вполне возможно применение предохранителей. Только их номинальный ток должен соответствовать номинальному току двигателя. А также должен учитывать пусковой ток, который у разных типов двигателей колеблется от 6 до 10 крат от номинального.

  1. Теперь приступаем непосредственно к подключению. Его условно можно разделить на два этапа. Первый это подключение силовой части, и второй — подключение вторичных цепей. Силовые цепи – это цепи, которые обеспечивают связь двигателя с источником электрической энергии. Вторичные цепи необходимы для удобства управления двигателем.
  2. Для подключения силовых цепей нам достаточно подключить вывода двигателя с первыми выводами пускателя, выводы пускателя с выводами автоматического выключателя, а сам автомат с источником электрической энергии.

Обратите внимание! Подключение фазных выводов к контактам пускателя и автомата не имеют значения. Если после первого пуска мы определим, что вращение неправильное, мы сможем легко его изменить. Цепь заземления двигателя подключается помимо всех коммутационных аппаратов.

Схема подключения первичных и вторичных цепей схемы включения электродвигателя

Теперь рассмотрим более сложную схему вторичных цепей. Для этого нам, прежде всего, как на видео, следует определиться с номинальными параметрами катушки пускателя. Она может быть на напряжение 220В или 380В.

  • Так же следует разобраться с таким элементом, как блок-контакты пускателя. Данный элемент имеется практически на всех типах пускателей, а в некоторых случаях он может приобретаться отдельно с последующим монтажом на корпус пускателя.

Расположение элементов пускателя

  • Эти блок-контакты содержат набор контактов – нормально закрытых и нормально открытых. Сразу предупредим – не пугайтесь в этом нет нечего сложного. Нормально закрытым называется контакт, который при отключенном положении пускателя – замкнут. Соответственно нормально открытый контакт в этот момент разомкнут.
  • При включении пускателя нормально закрытые контакты размыкаются, а нормально открытые контакты замыкаются. Если мы говорим за электродвигатель трехфазный асинхронный и подключение его к электрической сети, то нам необходим нормально открытый контакт.

Нормально закрытые и нормально открытые контакты

  • Такие контакты есть и на кнопочном посту. Кнопка «Стоп» имеет нормально закрытый контакт, а кнопка «Пуск» нормально открытый. Сначала подключаем кнопку «Стоп».
  • Для этого соединяем один провод с контактами пускателя между автоматическим выключателем и пускателем. Его подключаем к одному из контактов кнопки «Стоп». От второго контакта кнопки должно отходить сразу два провода. Один идет к контакту кнопки «Пуск», второй к блок-контактам пускателя.

Подключение кнопки «Пуск» и «Стоп»

  • От кнопки «Пуск» прокладываем провод к катушке пускателя, туда же подключаем провод от блок-контактов пускателя. Второй конец катушки пускателя подключаем либо ко второму фазному проводу на силовых контактах пускателя, при использовании катушки на 380В, либо он подключается к нулевому проводу, при использовании катушки на 220В.
  • Все, наша схема прямого включения асинхронного двигателя готова к использованию. После первого включения проверяем направление вращения двигателя и если вращение неправильное, то просто меняем местами два силовых провода на выводах пускателя.

Схема реверсивного включения электродвигателя

Распространенным вариантом подключения асинхронного электродвигателя является вариант с использованием реверса. Такой режим может потребоваться в случаях, когда необходимо изменять направление вращения двигателя в процессе эксплуатации.

  • Для создания такой схемы нам потребуются два пускателя из-за чего цена такого подключения несколько возрастает. Один будет включать двигатель в работу в одну сторону, а второй в другую. Тут очень важным моментом является недопустимость одновременного включения обоих пускателей. Поэтому нам необходимо во вторичной схеме предусмотреть блокировку от таких включений.
  • Но сначала давайте подключим силовую часть. Для этого, как и приведенном выше варианте, подключаем от автомата пускатель, а от пускателя — двигатель.
  • Единственным отличием будет подключение еще одного пускателя. Его подключаем к вводам первого пускателя. При этом важным моментом будет поменять местами две фазы, как на фото.

Схема реверсивного подключения электродвигателя с катушкой пускателя на 220В

  • Вывода второго пускателя просто подключаем к выводам первого. Причем здесь уже ничего не меняем местами.
  • Ну, а теперь, переходим к подключению вторичной схемы. Начинается все опять с кнопки «Стоп». Ее подключаем к одному из приходящих контактов пускателя – неважно первого или второго. От кнопки «Стоп» у нас вновь идут два провода. Но теперь один к контакту 1 кнопки «Вперед», а второй к контакту 1 кнопки «Назад».

Схема реверсивного подключения электродвигателя с катушкой пускателя на 220В

  • Дальнейшее подключение приводим по кнопке «Вперед» — по кнопке «Назад» оно идентично. К контакту 1 кнопки «Вперед» подключаем контакт нормально открытого контакта блок-контактов пускателя. Каламбур, но точнее не скажешь. К контакту 2 кнопки «Вперед» подключаем провод от второго контакта блок-контактов пускателя.
  • Туда же подключаем провод, который пойдет к нормально закрытому контакту блок-контактов пускателя номер два. А уже от этого блок-контакта он подключается к катушке пускателя номер 1. Второй конец катушки подключается к фазному или нулевому проводу в зависимости от класса напряжения.
  • Подключение катушки второго пускателя производится идентично, только ее мы подводим к блок-контактам первого пускателя. Именно это обеспечивает блокировку от включения одного пускателя, при подтянутом положении второго.

С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем

Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.

На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.

Важное предупреждение

Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.

Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.

В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).

Как состояние подшипников влияет на работу двигателя

Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.

Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.

Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.

Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.

Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.

Обращайте особое внимание на состояние подшипников, выполнение нормативов по допускам и посадкам, качество смазки. Сухую и старую смазку обязательно необходимо заменять свежей.

Что надо учитывать в конструкции статорных обмоток и как их подготовить

Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.

Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.

Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.

Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.

Это позволяет первоначально оценивать их состояние обычным цифровым мультиметром в режиме омметра при отключенном напряжении.

Однофазный асинхронный двигатель имеет две разные обмотки на статоре, разнесенные на 90 угловых градусов. Одна из них создана для длительного прохождения тока в номинальном режиме работы и поэтому называется основной, главной либо рабочей.

Для уменьшения нагрева ее делают более толстым проводом, обладающим меньшим электрическим сопротивлением.

Перпендикулярно ей смонтирована вторая обмотка большего сопротивления и меньшего диаметра, что позволяет различать ее визуально. Она создана для кратковременного протекания пусковых токов и отключается сразу при наборе ротором номинального числа оборотов.

Пусковая или вспомогательная обмотка занимает примерно 1/3 пазов статора, а остальная часть отведена рабочим виткам.

Однако, приведенное правило имеет исключения: на практике встречаются однофазные электродвигатели с двумя одинаковыми обмотками.

Для подключения статора к питающей сети концы обмоток выводят наружу проводами. С учетом того, что одна обмотка имеет два конца, то у трехфазного электродвигателя может быть, как правило, шесть выводов, а у однофазного — четыре.

Но из этого простого правила встречаются исключения, связанные с внутренней коммутацией выводов для упрощения монтажа на специальном оборудовании:

  • у трехфазных двигателей из статора могут выводиться:
    • три жилы при внутренней сборке схемы треугольника;
    • или четыре — для звезды;
  • однофазный электродвигатель может иметь:
    • три вывода при внутреннем объединении одного конца пусковой и рабочей обмоток;
    • или шесть концов для конструкции с пусковой обмоткой и встроенным контактом ее отключения от центробежного регулятора.

Как видите, судить о конструкции асинхронного двигателя по количеству выведенных проводов на клеммнике от обмоток статора можно, но вероятность ошибки довольно высока. Нужен более тщательный анализ его устройства.

Техническое состояние изоляции обмоток

Где и в каких условиях хранился статор не всегда известно. Если он находился без защиты от атмосферных осадков или внутри влажных помещений, то его изоляция требует сушки.

В домашней обстановке разобранный статор можно поместить в сухую комнату для просушки. Ускорить процесс допустимо обдувом вентилятора или нагревом обычными лампами накаливания.

Обращайте внимание, чтобы разогретое стекло лампы не касалось провода обмоток, обеспечивайте воздушный зазор. Окончание процесса сушки связано с восстановлением свойств изоляции. Этот процесс необходимо контролировать замерами мегаомметром.

Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице

Привожу выдержку из книги Алиева И И про асинхронные двигатели, вернее таблицу основных электрических характеристик.

Как видите, промышленностью массово выпущены модели с:

  • повышенным сопротивлением пусковой обмотки;
  • пусковым конденсатором;
  • рабочим конденсатором;
  • пусковым и рабочим конденсатором;
  • экранированными полюсами.

А еще здесь не указаны более новые разработки, называемые АЭД — асинхронные энергосберегающие двигатели, обеспечивающие:

  • значительное снижение реактивной мощности;
  • повышение КПД;
  • уменьшение потребления полной мощности при той же нагрузке на вал, что и у обычных моделей.

Их конструкторское отличие: внутри зубцов сердечника статора выполнены углубления. В них жестко вставлены постоянные магниты, взаимодействующие с вращающимся магнитным полем.

Во всем этом многообразии вам предстоит разбираться самостоятельно с неизвестной конструкцией. Здесь большую помощь может оказать техническое описание или шильдик на корпусе.

Я же дальше рассматриваю только две наиболее распространенные схемы запуска АД в работу.

Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки

Например, мы определили, что из статора выходят четыре или три провода. Вызваниваем между ними активное сопротивление омметром и определяем пусковую и рабочую обмотку.

Допустим, что у четырех проводов между собой вызваниваются две пары с сопротивлением 6 и 12 Ом. Скрутим произвольно по одному проводу от каждой обмотки, обозначим это место, как «общий провод» и получим между тремя выводами замер 6, 12, 18 Ом.

Точками на этой схеме я обозначил начала обмоток. Пока на этот вопрос не обращайте внимание. Но, к нему потребуется вернуться дальше, когда возникнет необходимость выполнять реверс.

Цепочка между общим выводом и меньшим сопротивлением 6Ω будет главной, а большим 12Ω — вспомогательной, пусковой обмоткой. Последовательное их соединение покажет суммарный результат 18 Ом.

Помечаем эти 3 конца уже понятной нам маркировкой:

  • О — общий;
  • П — пусковой;
  • Р — рабочий.

Дальше нам понадобиться кнопка ПНВС, специально созданная для запуска однофазных асинхронных двигателей. Ее электрическая схема представлена тремя замыкающими контактами.

Но, она имеет важное отличие от кнопки запуска трехфазных электродвигателей ПНВ: ее средний контакт выполнен с самовозвратом, а не фиксацией при нажатии.

Это означает, что при нажатии кнопки все три контакта замыкаются и удерживаются в этом положении. Но, при отпускании руки два крайних контакта остаются замкнутыми, а средний возвращается под действием пружины в разомкнутое состояние.

Эту кнопку и клеммы вывода обмоток статора из электродвигателя соединяем трехжильным кабелем так, чтобы на средний контакт ПНВС выходил контакт пусковой обмотки. Выводы П и Р подключаем на ее крайние контакты и помечаем.

С обратной стороны кнопки между контактами пусковой и рабочей обмоток жестко монтируем перемычку. На нее и второй крайний контакт подключаем кабель питания бытовой сети 220 вольт с вилкой для установки в розетку.

При включении этой кнопки под напряжение все три контакта замкнутся, а рабочая и пусковая обмотка станут работать. Буквально через пару секунд двигатель закончит набирать обороты, выйдет на номинальный режим.

Тогда кнопку запуска отпускают:

  • пусковая обмотка отключается самовозвратом среднего контакта;
  • главная обмотка двигателя продолжает раскручивать ротор от сети 220 В.

Это самая доступная схема подключения асинхронного двигателя с пусковой обмоткой для домашнего мастера. Однако, она требует наличия кнопки ПНВС.

Если ее нет, а электродвигатель требуется срочно запустить, то ее допустимо заменить комбинацией из двухполюсного автоматического выключателя и обычной электрической кнопки соответствующей мощности с самовозвратом.

Придется включать их одновременно, а кнопку отпускать после раскрутки электродвигателя.

Все запуски электродвигателей и любого электрического оборудования всегда выполняйте с защитой этих цепей автоматическими выключателями. Они предотвратят развитие аварийных ситуаций при возникновении любых случайных ошибок.

С целью закрепления материала по этой теме рекомендую посмотреть видеоролик владельца Oleg pl. Он как раз показывает конструкцию встроенного центробежного регулятора, предназначенного для автоматического отключения вспомогательной обмотки.

Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии

Статор с обмотками для запуска от конденсаторов имеет примерно такую же конструкцию, что и рассмотренная выше. Отличить по внешнему виду и простыми замерами мультиметром его сложно, хотя обмотки могут иметь равное сопротивление.

Ориентируйтесь по заводскому шильдику и таблице из книги Алиева. Такой электродвигатель можно попробовать подключить по схеме с кнопкой ПНВС, но он не станет раскручиваться.

Ему не хватит пускового момента от вспомогательной обмотки. Он будет гудеть, дергаться, но на режим вращения так и не выйдет. Здесь нужно собирать иную схему конденсаторного запуска.

2 конца разных обмоток подключают с общим выводом О. На него и второй конец рабочей обмотки подают через коммутационный аппарат АВ напряжение бытовой сети 220 вольт.

Конденсатор подключают к выводам пусковой и рабочей обмоток.

В качестве коммутационного аппарата можно использовать сдвоенный автоматический выключатель, рубильник, кнопки типа ПНВ или ПНВС.

Здесь получается, что:

  • главная обмотка работает напрямую от 220 В;
  • вспомогательная — только через емкость конденсатора.

Эта схема используется для легкого запуска конденсаторных электродвигателей, включаемых в работу без тяжелой нагрузки на привод, например, вентиляторы, наждаки.

Если же в момент запуска необходимо одновременно раскручивать ременную передачу, шестеренчатый механизм редуктора или другой тяжелый привод, то в схему добавляют пусковой конденсатор, увеличивающий пусковой момент.

Принцип работы такой схемы удобно приводить с помощью все той же кнопки ПНВС.

Ее контакт с самовозвратом подключается на вспомогательную обмотку через дополнительный пусковой конденсатор Сп. Второй конец его обкладки соединяется с выводом П и рабочей емкостью Ср.

Дополнительный конденсатор в момент запуска электродвигателя с тяжелым приводом помогает ему быстро выйти на номинальные обороты вращения, а затем просто отключается, чтобы не создавать перегрев статора.

Эта схема таит в себе одну опасность, связанную с длительным хранением емкостного заряда пусковым конденсатором после снятия питания 220 при отключении электродвигателя.

При неаккуратном обращении или потере внимательности работником ток разряда может пройти через тело человека. Поэтому заряженную емкость требуется разряжать.

В рассматриваемой схеме после снятия напряжения и выдергивания вилки со шнуром питания из розетки это можно делать кратковременным включением кнопки ПНВС. Тогда емкость Сп станет разряжаться через пусковую обмотку двигателя.

Однако не все люди так поступают по разным причинам. Поэтому рекомендуется в цепочку пуска монтировать два дополнительных резистора.

Сопротивление Rр выбирается номиналом около 300÷500 Ом нескольких ватт. Его задача — после снятия напряжения питания осуществить разряд вспомогательной емкости Сп.

Резистор Rо низкоомный и мощный выполняет роль токоограничивающего сопротивления.

Добавление резисторов в схему пуска электродвигателя повышает безопасность его эксплуатации, автоматически ограничивает протекание емкостного тока разряда заряженного конденсатора через тело человека.

Где взять номиналы главного и вспомогательного конденсаторов?

Дело в том, что величину пусковой и рабочей емкости для конденсаторного запуска однофазного АД завод определяет индивидуально для каждой модели и указывает это значение в паспорте.

Отдельных формул для расчета, как это делается для конденсаторного запуска трехфазного двигателя в однофазную сеть по схемам звезды или треугольника просто нет.

Вам потребуется искать заводские рекомендации или экспериментировать в процессе наладки с разными емкостями, выбирая наиболее оптимальный вариант.

Владелец
видеоролика “I V Мне интересно” показывает способы оптимальной настройки параметров схемы запуска конденсаторных двигателей.

Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы

Высока вероятность того, что АД запустили по одному из вышеперечисленных принципов, а он крутится не в ту сторону, что требуется для привода.

Другой вариант: на станке необходимо обязательно выполнять реверс для обработки деталей. Оба эти случаи поможет реализовать очередная разработка.

Возвращаю вас к начальной схеме, когда мы случайным образом объединяли концы главной и вспомогательной обмоток. Теперь нам надо сменить последовательность включения одной из них. Показываю на примере смены полярности пусковой обмотки.

В принципе так можно поступить и с главной. Тогда ток по этой последовательно собранной цепочке изменит направление одного из магнитных потоков и направление вращения ротора.

Для одноразового реверса этого переключения вполне достаточно. Но для станка с необходимостью периодической смены направления движения привода предлагается схема реверса с управлением тумблером.

Этот переключатель можно выбрать с двумя или тремя фиксированными положениями и шестью выводами. Подбирать его конструкцию необходимо по току нагрузки и допустимому напряжению.

Схема реверса однофазного АД с пусковой обмоткой через тумблер имеет такой вид.

Пускать токи через тумблер лучше от вспомогательной обмотки, ибо она работает кратковременно. Это позволит продлить ресурс ее контактов.

Реверс АД с конденсаторным запуском удобно выполнить по следующей схеме.

Для условий тяжелого запуска параллельно основному конденсатору через средний контакт с самовозвратом кнопки ПНВС подключают дополнительный конденсатор. Эту схему не рисую, она показана раньше.

Переключать положение тумблера реверса необходимо исключительно при остановленном роторе, а не во время его вращения. Случайная смена направления работы двигателя под напряжением связана с большими бросками токов, что ограничивает его ресурс.

Поэтому место расположения тумблера реверса на станке необходимо выбирать так, чтобы исключить случайное оперирование им во время работы. Устанавливайте его в углублениях конструкции.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.

Со всеми этими

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Как все может выглядеть на практике

Основная информация

Синхронный однофазный двигатель переменного тока работает от общественной сети

Итак, особенностью однофазного двигателя является то, что он способен запитываться от стандартной электрической сети с частотой 50 Гц и напряжением 220 В.

  • Ставят такие электромоторы в основном в устройствах небольшой мощности, так как по эффективности они существенно уступают двухфазным и трехфазным аналогам.
  • Мощность данных агрегатов варьируется от 5 Вт до 10 кВт.
  • Однофазная схема подключения двигателя существенно влияет на его КПД, который приблизительно равен 70% от показателей такого же по мощности двигателя, но трехфазного. Также у них меньше пусковой момент, а перегрузочная способность выше.

Электрический двигатель в разрезе

  • На самом деле, если разобрать строение такого двигателя, то он будет иметь 2 фазы, но так как задействуется, фактически, лишь одна из них, то и называют его однофазным.
  • Строение мотор имеет самое что ни наесть классическое – подвижная часть (ротор или якорь) и неподвижная часть (статор).
  • Вращение подвижных частей двигателя происходит за счет взаимодействия магнитных полей – подробнее об этом чуть дальше.
  • Несомненным плюсом такого мотора можно считать простую и надежную конструкцию с короткозамкнутым ротором.
  • А главным минусом можно посчитать неспособность самостоятельно выработать магнитное поле, что не позволяет ему самостоятельно запускаться при подключении к сети питания.
  • Считается, что для того чтобы ротор пришел в движение требуется минимум 2 обмотки, а также смещение одной относительно второй на определенный градус.

Асинхронный двигатель переменного тока

  • Если сопоставить все эти моменты, то можно понять следующее.
  • На статоре однофазного электромотора располагается пусковая обмотка, которая смещена по отношению к рабочей, основной обмотке на 90 градусов.
  • В цепь, питающую обмотку, включаю фазосдвигающее устройство – конденсаторы, катушки индуктивности, резисторы активного типа.
  • То есть, фактически мы говорим про те же моторы двух- и трехфазного типа, только сдвиг фазы достигается не за счет подключения, а за счет схем согласования.

Принцип действия однофазного двигателя

Однофазный синхронный двигатель переменного тока

Теперь давайте попробуем систематизировать то, что мы понаписали в предыдущей главе, чтобы принцип работы таких устройств стал понятен каждому.

Как работает асинхронный электродвигатель однофазный

  • Итак, при подключении питания, ток начинает бежать по обмоткам статора. Движение тока порождаем пульсирующее магнитное поле. Почему пульсирующее, да потому что ток в общественных сетях имеет частоту в 50 Гц, то есть за секунду 50 раз меняет направление своего движения. Соответственно меняются и параметры магнитного поля
  • Мы все знаем про такое явление, как электромагнитная индукция. Если кто-то не знает, то бегом читать – вкратце, это явление порождает электрический ток в проводнике, который перемещается поперек магнитного поля, причем нет никакой разницы, что будет двигаться – проводник или поле.
  • Если устройство не будет иметь пусковых механизмов, то ротор останется неподвижным, так как в нем до сих пор нет тока, а значит и магнитного поля, а магнитные поля от тока в статора равнозначны, и тянут, так сказать, в разных направлениях, как лебедь, рак и щука.
  • Но если ротору дать толчок в любую из сторон, в нем моментально начнет расти электродвижущая сила (ЭДС), которая начнет генерировать свое магнитное поле. В результате взаимодействия этих полей двигатель продолжит вращаться в туже сторону, несмотря на то, что основное магнитное поле постоянно меняет свое направление.

Однофазный коллекторный электродвигатель переменного тока – принцип работы

  • Заставляет сдвинуться с места ротор пусковая обмотка, которую мы уже упоминали. Точнее делает это результирующее магнитное поле от основной и пусковой обмоток.
  • Эта обмотка требует включения только при пуске мотора.

Интересно знать! В маломощных моторах пусковая обмотка является короткозамкнутой.

  • Момент включения пусковой обмотки связан с пусковой кнопкой – обычно ее необходимо удерживать на протяжении нескольких секунд, пока двигатель не начнет вращаться с нормальной скоростью.
  • Когда контакт на кнопке размыкается, двигатель переходит полностью в однофазный режим.
  • Важно помнить, что пусковая фаза не предназначается для долгой работы – обычно время ее активного состояния составляет около 3 секунд. Если попытаться превысить данное значение обмотка начнет перегреваться, что может привести к выходу элемента из строя.
  • Становится понятным, что ручной контроль за пуском двигателя неэффективен и малонадежен, поэтому данный процесс в современных устройствах автоматизирован. В них устанавливаются тепловые реле и центробежные выключатели.
  • Первый элемент контролирует нагрев обеих обмоток и отключает питание, если температура достигает критического значения.
  • Второй отключает питание пусковой фазы, как только ротор разгонится до нужных оборотов.

Подключение двигателя

Как подключается коллекторный однофазный электродвигатель переменного тока

Итак, мы уже поняли, что для работы такому мотору требуется всего одна фаза на 220 В, то есть включается он в обыкновенную розетку, что, собственно, и делает эти устройства такими популярными несмотря на низкий КПД и прочие недостатки.

Интересно знать! Практически все бытовые приборы оборудованы именно такими двигателями.

Различные варианты подключения

  • Однофазные двигатели переменного тока по подключению делят на три типа: вариант с пусковой обмоткой и рабочим конденсатором.
  • В первом пусковая обмотка запитана через конденсатор только во время старта – собственно, его мы описали в предыдущей главе.
  • Во втором она подключена через конденсатор постоянно.
  • В третьем вместо конденсатора используется сопротивление.

Коллекторный однофазный двигатель переменного тока от стиральной машины

  • Для последнего типа подключения может использоваться пусковой резистор, который подключается к пусковой обмотке последовательно. За счет этого удается получить сдвиг фаз на 30 градусов, чего вполне хватает для раскрутки двигателя.
  • Также дополнительная обмотка может сама по себе иметь высокое активное сопротивление.
  • Сдвиг фаз также может быть получен за счет того, что пусковая фаза будет иметь высокое сопротивление и меньшую индуктивность.

Конденсаторный пуск имеет следующие особенности:

  • Чтобы достигнуть максимального значения пускового момента, достаточного для старта двигателя, нужно вращающееся круговое магнитное поле. Таковое возникает, когда обмотки сдвинуты относительно друг друга на 90 градусов – сразу становится понятно, что ни резистор, ни дроссель не смогут задать такое значение. А вот если правильно подобрать емкость конденсатора – ну вы поняли…
  • Конденсатор необходимо подбирать по потребляемому току.

Конденсатор и переменный ток

Интересно знать! На нашем сайте есть очень познавательная статья про то, как конденсаторы ведут себя в цепи переменного тока. Если интересно, обязательно ознакомьтесь.

Кстати, если вы пытаетесь самостоятельно подключить такой двигатель в сеть, но не знаете, какие выводы к какой обмотке относятся, просто замерьте их сопротивление. Для основной оно составит где-то 12 Ом, а для пусковой – 30.

Строение асинхронного однофазного двигателя

Однофазный коллекторный двигатель переменного тока

Итак, мы вами в первой части статьи разобрали общие понятия об однофазных двигателях, принципе их работы и подключении. Такой информации хватило бы для поверхностного изучения, но нас такой подход не совсем устраивает. Для любителей технических подробностей, давайте разберем теперь все детальнее.

Асинхронный двигатель

Электрические моторы бывают синхронными и асинхронными. Разница между ними состоит в том, что в синхронном, скорость вращения якоря совпадает с вращением магнитного поля, а в асинхронном ротор несколько отстает.

  • Последний вариант является самым распространенным, так как имеет более простую конструкцию и очень надежен. Синхронные применяются лишь в тех сферах, где очень важен контроль за оборотами двигателя.
  • Вы уже, наверное, обратили внимание на то, что словом фаза называются разные понятия – и количество питающих проводов, и обмотки на статоре и сдвиг по углам. И мы даже сказали, что однофазные двигатели, фактически имеют две фазы, но называются они таковыми именно по количеству питающих проводов.
  • Мы также писали, что мотор имеет подвижную и неподвижную части. Давайте разберем их строение подробнее.

Коллекторные электродвигатели переменного тока однофазные

  • Ротор агрегата представляет собой вал, который держится в корпусе двигателя при помощи подшипников вращения. За счет них же он свободно крутится вокруг своей оси. Строение этого элемента будет отличаться в зависимости от того является двигатель коллекторным или бесколлекторным. Давайте начнем со второго.
  • На валу бесколлекторного фазного ротора закреплен магнитопровод, который набирается из шихтованных стальных пластин.
  • Снаружи магнитопровода имеются пазы, в которых находятся стержни обмоток – обычно из меди.

Двигатель с ротором фазного типа

  • С концов стержни соединяются с кольцами, которые накоротко их замыкают – их называют замыкающими кольцами.

Строение фазного ротора

  • Внутри данной обмотки будет течь ток, который индуктируется магнитным полем статора – никаких внешних подключений он не имеет.
  • Магнитопровод служит для лучшего прохождения магнитного поля, которое создается в роторе.
  • Для таких устройств характерна высокая надежность, так как они не имеют трущихся деталей. Управление скоростью вращения двигателя осуществляется только за счет тока на основной обмотке статора.
  • Коллекторный двигатель переменного тока однофазный по своему строению мало чем отличается от ротора двигателя постоянного тока. Собственно, такие двигатели являются универсальными и могут запитываться как переменным, так и постоянным током.
  • Фазы ротора подключаются к питающей сети через коллектор, который контактирует со щетками, которые в свою очередь уже соединяются с питающей цепью.
  • Строение таких двигателей более сложное, также их надежность будет ниже, но они являются более гибкими в управлении.

На фото – статор электродвигателя

  • Статор является пассивной частью электромотора – он неподвижен и состоит из магнитопровода и обмотки.
  • Назначение этого элемента – генерирование неподвижного или вращающегося магнитного поля.
  • У однофазного двигателя от статора будет отходить четыре вывода – два для рабочей обмотки и два для пусковой. Как их отличить мы уже писали.

Помимо этих элементов двигатели имеют следующие составляющие:

  • Станина и корпус устройства, которые удерживают в себе все рабочие части и позволяют закрепить устройство на поверхности;
  • Внешняя электрическая цепь – кнопка включения, устройство регулировки оборотов, провода и устройства для шунтирования дополнительной обмотки;
  • Крыльчатка – активное охлаждение двигателя, располагается также на валу;
  • Подшипники вращения.

Что происходит в обмотках при включении

Чтобы лучше понять принцип взаимодействия магнитных полей, давайте представим, что у нашего двигателя обмотка имеет всего один виток. Провод при этом уложен в магнитопроводе так, что его части разведены на 180 градусов, то есть уложены друг напротив друга.

  • Подключаем питание, и по нашему проводу начинает течь синусоидальный или переменный ток.

Полный период синусоидального тока

  • Период синусоидального тока состоит из двух полупериодов, при которых ток двигается в разных направлениях. Именно это изображено на схеме выше.
  • Как вы можете видеть, изначально значение тока равно нулю, затем он растет, достигая пика, после чего падает до нулевой отметки и опять возрастает, но уже в другом направлении.
  • Давайте представим, что ток и магнитное поле от него замерли в какой-то точке. Представьте, что смотрите на виток сбоку – он будет похож на букву «С».
  • Ток протекает в верхней горизонтальной части обмотки влево, соответственно, в нижней – вправо. При этом ток одинаков и получается так, что создаваемое им магнитное поле противодействует друг другу. Почему ротор и находится в неподвижном состоянии.
  • Итак, ток течет, меняется его величина и направление, как и у магнитного поля, но они всегда остаются в противовесном состоянии, поэтому ротор так и продолжает стоять.

Как же создается сила, заставляющая ротор вращаться?

Инструкция по работе однофазного двигателя переменного тока

  • Как вариант можно толкнуть его рукой и этого будет достаточно, чтобы совершить пуск, но мы же говорим про техническое решение вопроса!
  • Ну ладно, мы уже знаем, что нам потребуется еще одна обмотка.
  • Обмотка сделана из более толстого провода, чтобы она смогла пропустить большие токи. Фаза тока в этой обмотке отстает от основной на 90 градусов, то есть когда ток в основной обмотке уже опустился до нуля, здесь он буден на пике (отстает на четверть периода). В итоге разница магнитных полей придает ротору первый вращающий импульс. Направление вращения зависит от полярности подключения концов пусковой обмотки.
  • Как только ротор начинает вращаться, в нем создается ЭДС.
  • Направление тока в стержнях будет противоположно направленным, так как на них воздействуют разные магнитные поля.
  • За счет возникновения вращающего момента двигатель моментально подхватит направление вращения и начнет раскручивать ротор до достижения им максимальных оборотов. Но почему не происходит торможения, когда ток в статоре меняет свое направление на обратное?
  • Дело в том, что, по сути ничего не меняется. Просто подталкивающая вращение сила будет переходить с верхней части обмотки на нижнюю и обратно. А так как двигатель уже получил смещение в одну из сторон, а противодействующая сила может лишь уравновесить, то коэффициент ускорения будет несколько сильнее торможения.

То есть, в роторе будут наводиться токи с разной частотой, которые будут создавать моменты сил с разными направлениями, именно поэтому якорь продолжит вращаться в том же направлении.

На этом закончим наш материал. Мы узнали, как устроены электродвигатели переменного тока однофазные, если тема вам интересно, то посмотрите следующее увлекательное видео.

Однофазный асинхронный двигатель: принцип работы

Однофазный двигатель работает за счет вращающегося магнитного поля, которое возникает при смещении в пространстве двух обмоток статора, соединенных параллельно, относительно друг друга. Важным условием работы однофазного двигателя является сдвиг по фазе токов обмоток. Для этого в конструкции двигателя предусмотрен фазосмещающий элемент (как правило, это конденсатор), он подключен последовательно одной из статорных обмоток. Роль фазосмещающего сетевого элемента может выполнять активное сопротивление или индуктивность.

В том случае если при работе двигателя цепь обмотки разрывается, прекращается движение магнитного потока (Ф) статора. Происходит инерционное вращение ротора, поэтому, поток остается вращающимся по отношению к обмотке ротора и наводит ЭДС, силу тока (I) и собственный магнитный поток (Ф), при этом движение магнитного потока (Ф) ротора совпадает со статорным магнитным потоком.

Магнитный поток ротора изменяется. Данное действие основывается на синусоидальном законе согласно которому, изменяя направление на противоположное, ротор остается в состоянии вращения. В связи с этим запуск мотора возможен в том случае если наличествует внешний фактор, который способен осуществить возвратное вращательное движение ротора в первоначальное направление.

Так как при запуске однофазного двигателя применяется пусковая катушка с применением фазосмещающего элемента. Сопротивление активного типа используется в этом роде очень часто, в связи с дешевизной.

После запуска двигателя возникает отключение обмотки действующей для запуска. Обмотка пуска работает в кратковременном режиме, и для ее изготовления применяется более тонкий провод, чем идет на изготовление рабочей обмотки.

Подключение однофазного асинхронного двигателя

Рис. №1.Схемы подключения асинхронного двигателя к однофазной сети

Для подключения однофазного асинхронного двигателя к однофазной сети прибегают к помощи резистора, используемого для запуска, и присоединенного к пусковой катушке (обмотке) последовательным методом, таким образом, между токами, которые присутствуют в обмотке двигателя, наблюдается сдвиг фаз на 30 о. этого хватает для запуска асинхронной машины в работу. В конструкции двигателя, в котором присутствует сопротивление пуска, наличие фазового угла объясняется неодинаковым комплексным сопротивлением в электрических цепях двигателя.

Рис. №2. Схема включения асинхронного однофазного двигателя с распределенной статорной обмоткой, используемой в качестве привода активатора стиральных машин бытового назначения.

Кроме, использования сопротивления пуска применяется подключение однофазного двигателя к однофазной цепи с конденсаторным пуском. Двигатель, выполняющий эту операцию, будет использовать расщепленную фазу. Особенность этого способа в том, что вспомогательная катушка, в которую встроен конденсатор используется в момент времени запуска. Чтобы достигнуть максимально возможного эффекта сдвиг токов относительно обмоток должен достигать максимально высокого значения угла – 90 о .

Среди разнообразия элементов, используемых для сдвига фаз, только использование конденсатора дает возможность получения максимально лучшего пускового эффекта однофазного асинхронного двигателя .

Однофазный двигатель с расщепленной фазой и экранированными полюсами

При рассмотрении однофазных электродвигателей нельзя забыть о моделях двигателей в конструкции, которых применяются экранированные полюса, в такой машине присутствует расщепленная фаза и короткозамкнутая вспомогательная обмотка. Статор такого двигателя имеет явно выраженные полюса, каждый из которых разделен аксиальным пазом на две неодинаковые части, на меньшей части находится короткозамкнутый виток.

При присоединении статора двигателя в электрическую сеть, магнитный поток, для которого характерно пульсирующее действие и созданный в магнитопроводе машины, делится на 2 части. Движение одной из них идет по части полюса без экрана, вторая следует по части полюса покрытой экраном. Индуктивность витка приводит к отставанию тока по фазе от наведенной магнитным потоком ЭДС. Магнитный поток короткозамкнутой обмотки создает результирующий поток, который движется в экранированной части полюса. В разноименных частях полюсов наблюдается сдвиг разных магнитных потоков на определенное значение угла, а также на разницу во времени.

Недостаток этих моделей заключается в значительных электрических потерях, которые присутствуют в витках обмотки замкнутой накоротко.

Используется в конструкции тепловентиляторов и вентиляторов.

Пуск синхронного двигателя — первичный двигатель и демпферная обмотка

Синхронный двигатель — это устройство, которое преобразует переменный ток в механическую работу с синхронной скоростью . Пуск синхронного двигателя не выполняется сам по себе. Это означает, что синхронный двигатель не самозапускается . Его можно запустить следующими способами, приведенными ниже.

  • Пуск с помощью внешнего первичного двигателя
  • Пуск с помощью демпферных обмоток

Подробное описание методов приводится ниже.

Пуск двигателя с помощью внешнего первичного двигателя

В этом методе внешний первичный двигатель приводит в движение синхронный двигатель и переводит его на синхронную скорость. Затем синхронная машина синхронизируется с шиной как синхронный генератор. Затем первичный двигатель отключается. При работе в параллельном режиме синхронная машина будет работать как двигатель. Таким образом, нагрузка может быть подключена к синхронному двигателю.

Поскольку нагрузка не подключена к синхронному двигателю перед синхронизацией, пусковой двигатель должен преодолеть инерцию синхронного двигателя на холостом ходу.Следовательно, мощность двигателя, который необходимо запустить, намного меньше, чем мощность синхронного двигателя. Сегодня на валах большого синхронного двигателя установлена ​​бесщеточная система возбуждения . Эти возбудители используются в качестве пусковых двигателей.

Запуск двигателя с демпферной обмоткой

Демпферная обмотка — наиболее широко используемый метод запуска синхронного двигателя. Демпферная обмотка состоит из тяжелых медных стержней, вставленных в пазы полюсных поверхностей ротора, как показано на рисунке ниже.

Эти медные шины закорочены концевыми кольцами на обоих концах ротора. Таким образом, эти короткозамкнутые стержни образуют обмотку с короткозамкнутым ротором. Когда к статору подключено трехфазное питание, запускается синхронный двигатель с демпферной обмоткой. Он работает как трехфазный асинхронный двигатель. Как только двигатель приближается к синхронной скорости, на обмотки возбуждения подается возбуждение постоянным током. В результате ротор двигателя синхронизируется с магнитным полем статора.

Введение в службы эмуляции цепей

Введение

Служба эмуляции схем

(CES) позволяет прозрачно расширять каналы DS-n и E-n в сети ATM с использованием постоянных виртуальных каналов ATM (PVC) с постоянной скоростью передачи (CBR) или мягких PVC. CES основан на стандарте ATM Forum af-vtoa-0078.0000 (PDF). Этот стандарт определяет функцию взаимодействия CES (CES-IWF), которая позволяет осуществлять связь между цепями CBR не-ATM (такими как T1, E1, E3 и T3) и интерфейсами ATM UNI.CES обычно реализуется на коммутаторах ATM, но может быть реализован и на граничных устройствах ATM (например, маршрутизаторах). CES в основном используется для связи между телефонными устройствами, отличными от ATM (такими как PBX, TDM и банки каналов) или видеоустройствами (такими как CODEC) и устройствами ATM (такими как коммутатор ATM Cisco LS1010 и Catalyst 8540-MSR), или через восходящие каналы ATM (например, PA-A2 на маршрутизаторе Cisco 7200).

Прежде чем начать

Условные обозначения

См. Раздел Условные обозначения технических советов Cisco для получения дополнительной информации об условных обозначениях в документе.

Предварительные требования

Для этого документа нет особых предпосылок.

Используемые компоненты

Этот документ не ограничивается конкретными версиями программного и аппаратного обеспечения.

Информация, представленная в этом документе, была создана на устройствах в определенной лабораторной среде. Все устройства, используемые в этом документе, были запущены с очищенной (по умолчанию) конфигурацией. Если вы работаете в действующей сети, убедитесь, что вы понимаете потенциальное влияние любой команды перед ее использованием.

Концепции CES

В этом разделе вводится базовая терминология CES. Обратитесь к подтемам в этом разделе для получения более подробной информации.

Примечание: В этом документе больше внимания уделяется примерам T1, но вы можете применить теорию и к E1.

CES обычно используется для передачи голосового или видеотрафика по сети ATM. Голос и видео, в отличие от трафика данных, очень чувствительны к задержкам и дисперсии задержек. CES использует виртуальные каналы (VC) категории обслуживания CBR ATM, что гарантирует приемлемую задержку и вариацию задержки.Следовательно, он удовлетворяет требованиям как голосового, так и видеотрафика. Первый уровень адаптации ATM (AAL1), указанный в ITU-T.I.363.1, используется на CES-IWF.

Некоторые типичные применения CES перечислены ниже:

  • Расширение частной телефонной сети на несколько кампусов, как показано ниже. Например, есть два кампуса с частной телефонной станцией (PBX) на каждом. Вы можете использовать сеть ATM для соединения двух УАТС, не имея возможностей ATM на самой УАТС.Таким образом, голосовой трафик между двумя кампусами использует вашу частную магистраль ATM вместо выделенных линий, тем самым используя одну и ту же сеть ATM для ваших потребностей в передаче голоса и данных.

  • Видеоконференцсвязь между несколькими сайтами, как показано ниже:

Форум ATM определил CES-IWF для многих типов телекоммуникационных каналов (таких как DS-1, DS-3, E-1, E-3, J-1 и J-3), но для CES-IWF наиболее распространенными типами являются услуга DS-1 и услуга E-1.На корпоративной арене Cisco предоставляет T-1 и E-1 CES для 8510-MSR, Catalyst 8540-MSR и адаптер порта PA-A2 для маршрутизатора серии 7200. Cisco также поддерживает CES в некоторых продуктах своих поставщиков услуг, таких как MGX 8220. Однако в этом документе основное внимание уделяется корпоративным продуктам.

CES-IWF преобразует весь кадр DS-n или E-n, поступающий от оборудования в помещении клиента (CPE) (например, PBX), в ячейки ATM AAL1 и передает их по сети ATM с использованием одного виртуального канала. Коммутатор или маршрутизатор ATM на удаленном конце преобразует ячейки ATM AAL1 в кадр DS-n или E-n, который затем передается на устройство CPE Ds-n или E-n.Этот тип CES называется неструктурированным CES , который расширяет свободный канал T1 (все 24 канала) по сети ATM (на одном VC).

В дополнение к этой базовой функциональности, CES поддерживает службы T1 с разделением каналов, разделяя T1 на несколько каналов Nx64k и передавая эти каналы T1 с разделением каналов на разные VC ATM с одним или несколькими адресатами. Это позволяет, например, одной УАТС взаимодействовать с несколькими удаленными УАТС, используя один порт T1 на центральной УАТС.Этот тип ступицы и спицы, известный как структурированный CES , показан ниже.

Типы сигналов

Существует два типа сигнализации, связанной с эмуляцией цепи T1 и T1: сигнализация, связанная с каналом (CAS), и сигнализация общего канала (CCS). CAS — это внутриполосная сигнализация, а CCS — внеполосная сигнализация.

Как правило, CAS можно использовать для прозрачной передачи проприетарных протоколов сигнализации, которые используют биты ABCD кадра T1.На коммутаторах Cisco ATM, настроенных для CAS, биты ABCD не будут изменены или обработаны, что обеспечивает расширение проприетарной сигнализации по сети ATM.

Примечание: Вам необходимо использовать структурированный CES, если вы предоставляете CAS.

Вы также можете использовать CAS для обнаружения положенной трубки на корпоративных коммутаторах ATM Cisco. CAS с обнаружением положенной трубки поддерживается только для каналов DS0 (56k / 64k). CES-IWF требует, чтобы голос передавался как трафик CBR ATM, метод, который заставляет коммутатор ATM зарезервировать полосу пропускания для голосового канала, даже если нет пользовательского трафика (голоса) для отправки.Таким образом, когда голосовая связь отсутствует, ячейки AAL1 по-прежнему используют полосу пропускания канала ATM, отправляя «NULL» данные. Решение для минимизации «NULL» ячеек на каналах ATM состоит в том, чтобы не отправлять «NULL» ячейки, если нет голосовой связи.

8510-MSR реализует обнаружение положенной трубки следующим образом:

  • Обнаружение положенной / снятой трубки. Это требует, чтобы шаблон ABCD был настроен таким образом, чтобы указывать на сигнал положенной трубки, который использует CPE. Другими словами, CPE определяет, как это должно быть настроено на 8510-MSR; CPE и 8510-MSR должны быть настроены одинаково.

  • Прекратить отправку ячеек AAL1 при обнаружении положенной трубки.

  • Указывает коммутатору ATM, у которого есть цепь CBR назначения, что он находится в режиме положенной трубки. Это не позволяет удаленному коммутатору объявлять потерю разграничения ячеек (LCD), если никакие ячейки (данные или «NULL») не получены.

  • Начать отправку ячеек AAL1, когда положенная трубка больше не определяется (то есть, когда шаблон ABCD, исходящий от оборудования CPE, больше не соответствует настроенному шаблону).

Примечание: CAS с обнаружением положенной трубки на 8510-MSR может использоваться только в том случае, если оборудование CPE поддерживает CAS и может обнаруживать состояние положенной трубки.

Сигнализация с украденным битом на коммутаторах и маршрутизаторах Cisco Enterprise настраивается с помощью

Toyota Tacoma 2015-2018 Руководство по обслуживанию: Цепь концевого переключателя двигателя переключения передач (P17AC) — сенсорный выбор 2-4 и система High-Low

ОПИСАНИЕ

При переключении режимов передачи клеммы TL1, TL2 и TL3 предельного переключатели находятся в одной из комбинаций ВКЛ / ВЫКЛ, перечисленных в таблице ниже.

Терминал

Когда 2WD

Переключение между 2WD и h5

Когда h5

Переключение между h5 и L4

Когда L4

TL1

ВКЛ (ЗЕМЛЯ)

ВКЛ (ЗЕМЛЯ)

ВЫКЛ. (ОТКРЫТО)

ВЫКЛ. (ОТКРЫТО)

ВЫКЛ. (ОТКРЫТО)

TL2

ВЫКЛ. (ОТКРЫТО)

ВЫКЛ. (ОТКРЫТО)

ВЫКЛ. (ОТКРЫТО)

ВКЛ (ЗЕМЛЯ)

ВКЛ (ЗЕМЛЯ)

TL3

ВЫКЛ. (ОТКРЫТО)

ВКЛ (ЗЕМЛЯ)

ВКЛ (ЗЕМЛЯ)

ВКЛ (ЗЕМЛЯ)

ВЫКЛ. (ОТКРЫТО)

Неисправность обнаруживается в зависимости от комбинации 3 цепей, которые составьте концевой выключатель привода переключения раздаточной коробки.

DTC №

Элемент обнаружения

Условие обнаружения DTC

Область неисправности

P17AC

Цепь концевого выключателя двигателя переключения передач

  • Состояние диагностики: сразу после поворота ключа зажигания. в положение ON, или при переключении между 2WD и h5, или при переключении между h5 и L4 (двигатель переключения передач работает) при зажигании переключатель включен
  • Состояние неисправности: комбинация TL1, TL2 и TL3 делает не соответствует шаблону
  • Время неисправности: 0 секунд
  • Другое: логика диагностирования за 1 поездку
  • Жгут проводов и разъем
  • ЭБУ управления полным приводом
  • Привод переключения передач в сборе

СХЕМА ПОДКЛЮЧЕНИЯ

ПРОЦЕДУРА

1.

ПРОВЕРЬТЕ ЖГУТ ПРОВОДОВ И РАЗЪЕМ (ЭБУ УПРАВЛЕНИЯ ПРИВОДОМ 4 КОЛЕС — ПЕРЕКЛЮЧЕНИЕ ПЕРЕДАЧ ПРИВОД В СБОРЕ)

(a) Отсоедините разъем F13 ЭБУ системы управления полным приводом.

(b) Отсоедините разъем привода механизма переключения раздаточной коробки Т4.

(c) Измерьте сопротивление в соответствии со значениями в таблице ниже.

Стандартное сопротивление:

Подключение тестера

Состояние

Условия использования

F13-11 (TL1) — T4-3 (TL1)

Всегда

Ниже 1 Ом

F13-10 (TL2) — T4-4 (TL2)

Всегда

Ниже 1 Ом

F13-9 (TL3) — T4-5 (TL3)

Всегда

Ниже 1 Ом

T4-6 (GND1) — масса

Всегда

Ниже 1 Ом

F13-11 (TL1) или T4-3 (TL1) — масса

Всегда

10 кОм или выше

F13-10 (TL2) или T4-4 (TL2) — масса

Всегда

10 кОм или выше

F13-9 (TL3) или T4-5 (TL3) — масса

Всегда

10 кОм или выше

F13-11 (TL1) — T4-4 (TL2) и T4-5 (TL3)

Всегда

10 кОм или выше

F13-10 (TL2) — T4-3 (TL1) и T4-5 (TL3)

Всегда

10 кОм или выше

F13-9 (TL3) — T4-3 (TL1) и T4-4 (TL2)

Всегда

10 кОм или выше

NG

ОТРЕМОНТИРУЙТЕ ИЛИ ЗАМЕНИТЕ ЖГУТ ПРОВОДОВ ИЛИ РАЗЪЕМ

ОК

2.

ПРОВЕРЬТЕ ЭБУ УПРАВЛЕНИЯ ПРИВОДОМ 4 КОЛЕС (ВЫХОДНОЕ НАПРЯЖЕНИЕ ЭБУ)

(a) Отсоедините разъем узла привода раздаточной коробки.

(b) Измерьте напряжение в соответствии со значениями в таблице ниже.

Стандартное напряжение:

Подключение тестера

Состояние переключения

Условия использования

T4-3 (TL1) — масса

Замок зажигания включен

от 10 до 14 В

T4-4 (TL2) — масса

Замок зажигания включен

от 10 до 14 В

T4-5 (TL3) — масса

Замок зажигания включен

от 10 до 14 В

Текст в иллюстрации

* а

Разъем жгута проводов, вид спереди

(к узлу привода переключения передач)

ОК

ЗАМЕНИТЕ ПРИВОД ПЕРЕКЛЮЧЕНИЯ ПЕРЕДАЧ В СБОРЕ

NG

ЗАМЕНИТЕ ЭБУ УПРАВЛЕНИЯ ПРИВОДОМ 4 КОЛЕС

Цепь переключателя сцепления
ОПИСАНИЕ При нажатии на педаль сцепления блок пускового переключателя сцепления посылает сигнал к клемме MTN ЭБУ управления полным приводом.Пока сигнал поступает, переключение между h5 и …
Другие материалы:

Неисправность заднего левого центрального датчика (C1AE7)
ОПИСАНИЕ Ультразвуковой датчик № 1 (задний центральный датчик LH) установлен сзади бампер. ЭБУ обнаруживает препятствия на основе сигналов, полученных от ультразвуковой станции №1. датчик (задний центральный датчик LH). Если ультразвуковой датчик №1 (задний центральный датчик LH) имеет обрыв цепи или другую ма …

Осмотр на автомобиле
Осмотр на автомобиле ПРОЦЕДУРА 1.ПРОВЕРИТЬ СВОБОДНЫЙ ХОД РУЛЕВАЯ (a) Остановите автомобиль и выровняйте шины прямо. (b) Осторожно поверните рулевое колесо вправо и влево рукой и проверьте свободный ход рулевого колеса. Максимальная свободная игра: 30 мм (1,18 дюйма) Текст i …

Порядок действий при устранении неполадок
ВНИМАНИЕ / УВЕДОМЛЕНИЕ / СОВЕТ ПОДСКАЗКА: Используйте следующую процедуру для поиска и устранения неисправностей в системе механической трансмиссии. *: Используйте Techstream.ПРОЦЕДУРА 1. АВТОМОБИЛЬ ПРИВЕСТИ К МАСТЕРСКОЙ СЛЕДУЮЩИЙ …

Асинхронный двигатель | КСБ

Асинхронный двигатель имеет пассивный ротор, который закорочен постоянно (короткозамкнутый ротор) или временно (см. Ротор с контактным кольцом). Он может производить до нескольких мегаватт и чаще всего используется в качестве стандартного трехфазного двигателя в промышленных приложениях.

Магнитное поле в асинхронном двигателе создается током намагничивания, передаваемым через предоставленную электрическую энергию. Асинхронные двигатели характеризуются скольжением, т.е. е. зависящая от нагрузки разница между скоростью вращения ротора и скоростью вращающегося поля питающего напряжения.

Ротор представляет собой металлическую клетку с осевыми стержнями, расположенными симметрично по кругу и прикрепленными к кольцу короткого замыкания (концевому кольцу) на каждом конце.

Статор состоит из распределенных катушек, которые индуцируют напряжение в стержнях ротора (см. Индукция) посредством вращающегося магнитного поля.Это приводит к сильному протеканию тока в короткозамкнутых стержнях, который создает силу между ротором и статором в магнитном поле и приводит к электромагнитному взаимодействию, ответственному за асинхронизм. Асинхронные двигатели подвержены значительным потерям в статоре и роторе.

В двигателях с контактным ротором трехфазная обмотка ротора подключается к переменным резисторам, обычно используемым в качестве жидкостных пускателей, через контактные кольца. Такая конструкция обеспечивает плавный процесс запуска, который не создает ударной нагрузки на сеть электропитания и позволяет в определенной степени изменять скорость.Однако это также приводит к значительным потерям мощности.

Обмотки ротора с короткозамкнутым ротором обычно состоят из одинарных или двухпроводных шин, закороченных на концах кольцевым проводником. Роторы с короткозамкнутым ротором очень просты по конструкции, надежны и не требуют обслуживания. См. Рис.1 Асинхронный двигатель

Рис.1 Асинхронный двигатель: асинхронный двигатель в разрезе

В отношении контакта с водой различают двигатели с сухим ротором, погружные двигатели и двигатели с мокрым ротором. См. Рис.2 Асинхронный двигатель

Внутреннее смачивание Внешнее смачивание
Ротор Обмотка Сухой корпус Мокрый корпус (погружной 9018 9018 Сухой двигатель) 9018 Сухой двигатель (с защитой от проникновения воды или без нее) Сухой (заполненный воздухом) погружной двигатель
Мокрый (двигатель с мокрым ротором) Сухой (герметичный двигатель) Двигатель с мокрым ротором насоса с мокрым ротором Полностью погружной электродвигатель (заполненный жидкостью)

Рис.2 Асинхронный двигатель: Обозначение асинхронных двигателей в зависимости от влажности

Сухой двигатель имеет различные типы защиты от проникновения воды (см. Тип защиты).

Погружной электродвигатель частично или полностью погружен в воду и обычно устанавливается в вертикальном положении. Тепло, вырабатываемое двигателем, передается непосредственно окружающей обрабатываемой жидкости. Его отличительной особенностью является корпус двигателя, который смачивается снаружи (см. Погружной электронасос).Внутреннее смачивание и глубина погружения отличают погружные двигатели с масляным или воздушным наполнением для малых и средних глубин погружения (погружные насосы для сточных вод) от полностью погружных двигателей.
См. Рис. 3, 4 Насос для сточных вод

Полностью погружные двигатели смачиваются жидкостью, находящейся внутри и снаружи. Они рассчитаны на любую глубину погружения и, прежде всего, используются в скважинах (см. Погружные скважинные насосы), поэтому они имеют небольшой диаметр и относительно длинные.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *