Схема силового трансформатора: Схема силового трансформатора

Содержание

Электрическая схема трансформатора

В России эра преобразования напряжения из одной величины в другую берёт начало из работ по изучению ферромагнитных материалов великим российским физиком Александром Григорьевичем Столетовым, который впервые открыл в 1880-х годах гистерезисную петлю, а так же перераспределение доменов в ферромагнитном материале при воздействии на него электромагнитного поля.

Ранее, тогда ещё не изученный этот эффект позволил выявить Майклу Фарадею в 1831 году возможность передачи энергии по всей плоскости ферромагнитного материала – так называемое явление электромагнитной индукции. Через 17 лет Генрих Даниэль Румкорф впервые положил прообраз графического изображения намагниченной катушки.

Первый трансформатор передачи переменного тока представлял собой ферромагнитный стержень с несколькими обмотками. Данное изобретение было зафиксировано выдачей патента Яблочникову Павлу Николаевичу в 1876 году, но трансформатор в его современном представлении был представлен уже через год в 1877 году Мотовиловым Дмитрием Николаевичем. Тогда же появилось первая электрическая схема трансформатора, отображающая две обмотки на ферромагнитном материале.

В скором времени в Лондоне в 1884 году на станции Гровнерской галереи (считается, что здесь появилась первая электростанция) были применены последовательно соединённые трансформаторы Голяра и Гиббса на основе замкнутого сердечника. За два года до этого в галерее были установлены первые паровые генераторы Томаса Эдисона. В том же году братья Эдуард и Джон Гобкинсоны произвели в свет первые трансформаторы с замкнутыми сердечниками. Промышленное производство трансформаторов с замкнутым сердечником началось в 1885 году в Венгрии электромашиностроительным заводом «Ганц и Ко». Это были конструкции на кольцевом, броневом и стрежневом сердечниках. Венгерский конструктор Макс Дери в этом же году получает патент на конструкцию трансформаторов с параллельным соединением. Первые модели тут же выявили один существенный недостаток – быстрый перегрев магнитопровода из-за большой величины нагрузки потребителей, что приводило в негодность обмотки трансформатора. В 1889 году шведский изобретатель Д. Свинберн для уменьшения перегрева обмоток погрузил рабочий трансформатор в керамический сосуд, наполненный маслом, назвав его при этом «масляным трансформатором». В этом же году шведский инженер Джонс Венстрем изобретает трёхфазную систему для генераторов, трансформаторов и электродвигателей. В это время появляется трёхфазная электрическая схема трансформатора, которую изобретает русский ученый М. О. Доливо-Добровольский, а уже в 1891 году Чарльз Браун и Волтер Бовери в швейцарском городе Баден организовали компанию по передаче высоковольтной энергии. Спрос на электричество рос экспоненциальной прогрессией и в 1893 году компания Брауна – Бовери предоставила Европе первую промышленную электростанцию на основе применения трёхфазных трансформаторов. Электричество вырабатывалось паровыми генераторами Эдисона. В Российской империи уже упомянутая фирма «Ганц и Ко» в оперном театре Одессы для его освещения запустила одну из первых установок переменного тока. Это произошло в 1887 году.

С тех пор развитие в этой области шагнуло далеко вперёд и на сегодняшний день существует 7 классификаторов трансформаторов. Разделяют трансформаторы по предназначению:
— Силовые трансформаторы – достаточно общее понятие, объединяющее применение трансформаторов в статических преобразователях для преобразования переменного тока в постоянный (выпрямители), либо, наоборот — из постоянного в переменный (инверторы). Их основное предназначение заключается в преобразовании одной величины напряжения и тока в напряжение и ток другой величины без изменения мощности (с учётом, конечно, потерь из-за индукции рассеяния).
— Силовые трансформаторы специального назначения – чаще всего их можно встретить в старых сварочных аппаратах, устройствах пониженной или повышенной частоты (в электрооборудовании железных дорог) и т.д.
— Испытательные трансформаторы применяются для получения высоких или сверхвысоких напряжений и токов. В промышленности их применяют для проверки пробоя изоляции (керамических изоляторов, к примеру), в высоковольтных испытательных лабораториях. Долговременная работа таких трансформаторов исключена.
— К измерительным трансформаторам относят трансформаторы напряжения и тока. Применяют их преимущественно в силовой электронике или в электроустановках с высоким напряжением, где необходимо измерение высоковольтных цепей стандартным измерительным оборудованием.
— Ещё до совсем недавнего времени в блоках питания радиоустройств бытовой электроники применялись радиотрансформаторы. Так же этот тип используют для согласования сопротивлений в межблочных соединениях электрических цепей. Сегодня в блоках питания им на смену пришла импульсная технология, а радиотрансформаторы применяются лишь в устройствах, критичных к чИстоте питающего напряжения (мощных дорогих звуковых усилителях, например).

По виду охлаждения трансформаторы подразделяются на сухие и масляные. Количество фаз в силовой обмотке делит трансформаторы на однофазные и трёхфазные. Так же существует классификация по форме магнитопровода: стержневые (строчные трансформаторы в телеаппаратуре), броневые, тороидальные и овальные.

Электрическая схема трансформатора в самом простом исполнении должна содержать как минимум две обмотки. Такие трансформаторы называют двуобмоточными. Если обмоток больше двух, то они попадают в класс многообмоточных. Конструктивное исполнение обмоток трансформаторов разделяет их на цилиндрические, дисковые и концентрические.

По соотношению обмоток трансформаторы делятся на повышающие – если напряжение вторичной обмотки больше силовой, и понижающий (соответственно наоборот).

Принцип работы устройства хорошо виден из принципиальной электрической схемы трансформатора.

Первичная обмотка W1, при подключении к ней источника переменного напряжения U1, за счёт протекания тока I1 наводит в сердечнике из магнитопроводящего материала переменный магнитный поток Ф, который, в свою очередь, индуктирует в первичной и вторичной (W2) обмотках ЭДС Е1 и Е2. За счёт коэффициента трансформации (отношения ЭДС или количества витков первичной обмотки к вторичной) и эффекта магнитной индукции в обмотке W2 при подключении нагрузки Zн начинает протекать ток I2 . На нагрузке появляется напряжение U2 .

Коэффициент трансформации определяет отношение ЭДС либо количество витков первичной обмотки к вторичной. Если значение K>1, то трансформатор считается понижающим, если K<1 – то повышающим. Один и тот же трансформатор в зависимости от обмотки подключаемого источника напряжения может быть как понижающим, так и повышающим.

Способность передать энергию через магнитопровод без потерь, которые будут неизбежны, определяет КПД трансформатора. Современные трансформаторы в заводском исполнении позволяют достичь КПД до 99%. Основными причинами снижения КПД в трансформаторах являются магнитные потери в сердечнике за счёт вихревых токов и гистерезиса (потери энергии из-за перемагничивания сердечника), удельного сопротивления обмоток трансформатора, качества исполнения намотки, величины подключённой нагрузки по отношению к габаритной мощности сердечника.

Многие компьютерные программы, позволяющие производить симуляцию работы электронных схем, для обработки результатов физических процессов преобразования энергии трансформатором используют электронную схему замещения трансформатора. В такой схеме магнитная связь, обычно, заменяется электрической цепью. Существует 2 типа схем эмуляции трансформатора: Т-образная и упрощённая. 

В данной электрической схеме замещения трансформатора магнитные связи заменяют электрическими. R1 и X1 совместно с R2 и X2 представляют собой электрическую эмуляцию первичной и вторичной обмоток трансформатора, а R0 и X0 – намагничивание и холостой ход. Если брать в расчёт идеальный трансформатор без потерь, то электрическая схема трансформатора будет выглядеть следующим образом. 

1 января 1970 года был утверждён единый международный ГОСТ условного графического отображения трансформаторов. Согласно ГОСТу 2.723—68, электрическая схема трансформатора может отображаться в 3-х вариантах: упрощённом однолинейном, упрощённом многолинейном и развёрнутом. Упрощённое отображение УГО (условного графического отображения) представляет магнитную связь трансформатора в виде окружности .

К примеру, трёхфазный автотрансформатор с ферромагнитным магнитопроводом и девятью выводами на схеме отобразится следующим образом . Данный тип отображения электрической схемы трансформаторов чаще встречается в старых схемах 70-х годов. Современные принципиальные схемы используют УГО низкочастотных трансформаторов по 2-му типу в виде обозначения двух дросселей и ферромагнитного материала —  (трансформатор с магнитодиэлектрическим сердечником). Электрическая схема трансформатора импульсного типа всё чаще встречается в таком обозначении .

В последнее время современная бытовая электроника практически полностью перешла на использование в блоках питания импульсной схемотехники. Преимущество её очевидно — меньшие массогабаритные размеры, большее КПД и лучшие мощностные показатели блоков питания. Во многих решениях сегодня используются трансформаторы на сердечниках с высокой магнитной проницаемостью от 400HH и выше. Такие трансформаторы называют высокочастотными или, в простонародье – импульсными. Разберите любой импульсный компьютерный блок питания, и вы увидите его схемотехнику и трансформаторы в том числе. К примеру, на принципиальной электрической схеме ниже представлена реализация мощного зарядного устройства (или блока питания) на основе популярного ШИМ контроллера UC3842, силового полевого транзистора UFN432 и высокочастотного силового трансформатора с изолированным магнитным материалом Т1.  

Сердечники импульсных трансформаторов выпускают с немагнитным зазором и без него. Немагнитный зазор применяется для того, чтобы под воздействием больших индукционных токов ферромагнитный сердечник не входил в насыщение, что чревато снижением КПД, быстрым перегревом трансформатора и выходом его из строя. Как правило, такие трансформаторы применяют в импульсных блоках питания, работающих по принципу Flyback (однотактного преобразования энергии). По сути, на его первичную обмотку через силовой ключ поступают импульсы заданной ШИМом частоты. В сердечнике в рабочий период импульса накапливается ЭДС, а в момент паузы накопленная энергия, согласно коэффициенту трансформации передаётся в нагрузку вторичной обмоткой. То есть на практике мы получаем двуобмоточный дроссель. Выше приведённая схема (и большинство схем сетевых понижающих импульсных блоков питания) работает именно по такому принципу. Сетевые импульсные сварочные аппараты (большей частью) так же используют данный тип сердечника.

Сердечники без немагнитоного зазора (торроидальные, броневые и т.д.) используются чаще в топологии импульсных преобразователей по схеме Push-pool. Эта технология чаще используется в импульсных повышающих / понижающих преобразователях, когда необходимо из одного постоянного напряжения сделать напряжение другой величины. К примеру, по приведённой ниже схеме, реализуется простой блок питания автомобильного аудио усилителя. 

В данной электрической схеме работа трансформатора Т1 подобна работе обычного трансформатора, то есть на обмотки I и II поочерёдно через ключи VT3 и VT4 поступают прямоугольные импульсы (в идеале). Через коэффициент трансформации напряжение снимается с обмоток III и IV. Возможно, читатель задаст вопрос о том, что если импульсы будут идти непрерывно, то, по сути, это же постоянное напряжение, которое приведёт к сквозным токам в первичной обмотке нашего трансформатора и транзисторам, что приведёт к практически моментальному выходу их из строя. Специально для этого в любой микросхеме ШИМ присутствует такой параметр, как «мёртвое время», задающее паузу подачи импульсов на один ключ и другой. Этим временем мы можем изменять напряжённость электромагнитного поля и его индуктивность, тем самым регулируя уровень напряжения на выходе преобразователя. Изучение работы импульсного трансформатора занимает довольно обширный материал, не входящий в специфику этой статьи.

Электрическая схема с применением импульсного трансформатора требует грамотного расчёта и подбора элементной базы, ведь такое схемотехническое решение является в первую очередь высокочастотным, что подразумевает использование специфических радиодеталей (транзисторы с низким сопротивлением перехода, низкоимпедансные конденсаторы, расчёт мощностей критических сопротивлений и т.д.). Особо важным моментом является расчёт импульсного трансформатора. Не вдаваясь в подробности, скажем, что наиболее простыми и удобными компьютерными программами для расчёта импульсных трансформаторов являются программы человека с ником Starichok (Владимир Денисенко) из Пскова.

Flyback – программа, позволяющая произвести расчёт импульсного трансформатора для обратноходового преобразователя или блока питания.

ExcellentIT – программа для расчёта импульсного трансформатора для двухтактного преобразователя.

Tranz50Hz – расчёт силового трансформатора для электрической 50Hz сети на различных сердечниках.

Все его программы имеют удобный интерфейс, обширную базу параметров заводских сердечников, файл помощи. Кроме того, автор без проблем отвечает на заданные вопросы. Эти и многие другие программы присутствуют в ветках автора на радиоэлектронных форумах.

Принцип работы силового трансформатора

Трансформаторные будки есть практически на каждой улице любого города вне зависимости от размеров. Вся планета подвержена власти электричества. Что такое силовой трансформатор? Для чего они? Принцип работы силового трансформатора? При должном объяснении все станет понятно любому школьнику.

  • Зачем это нужно?
  • Принцип работы силового трансформатора
  • Индукция
  • Устройство трансформатора
  • Принцип работы
  • Почему трансформатор называют силовым
  • Виды трансформаторов
  • Контроль работы устройства

Зачем это нужно?

Трансформатор служит для повышения или понижения подаваемой электроэнергии. Зачем нужно преобразовывать ток? Смысл в том, что согласно закону Джоуля-Ленца тепло, которое выделяет проводник при прохождении по нему электрического тока выделяется в зависимости от силы тока. Причем зависимость эта квадратичная, так как сила тока в формуле имеет вторую степень.

На практике это означает, что увеличение силы тока в 2 раза приведет к увеличению тепловыделений в 4 раза. Все бы ничего, но закон сохранения энергии пока никто не отменял. На нагрев проводника расходуется электроэнергия, которую с таким трудом добывает человечество. Единственный выход: повысить напряжение до максимум.

Согласно закону Ома всегда сохраняется некое равенство: произведение силы тока на сопротивление равняется напряжению в сети. Предположим, что сопротивление не изменяется, так как оно зависит от свойств проводящего материала. Тогда единственным выходом будет максимально задрать напряжение, чтобы уменьшить силу тока в сети.

Высоковольтные линии придумали не ради развлечения. Единственная цель столь сложной системы с трансформаторами: максимальное сокращение потерь.

Принцип работы силового трансформатора

Чтобы говорить о принципе работы силового трансформатора требуется вспомнить некоторые понятия из школьного курса физики. В итоге будет проще понять объяснения рабочей схемы устройства.

Индукция

Чтобы понять, как работает силовой трансформатор, надо разбираться в понятии индукции. Именно на ней основана львиная доля современной электроники. Суть этого явления в том, что при прохождении через проводник ток создает переменное электрическое поле. Движение электронов в свою очередь порождает переменное магнитное поле, которое при попадании в другой проводник породит так переменное электрическое поле.

То есть, если поставить рядом два проводника, причем один из них подключить к источнику тока, а другое не подключать – электричество будет течь в обоих проводниках. Причем во втором проводнике направление тока будет противоположным таковому в исходном варианте.

Свойство индукции используется достаточно часто: в усилителях, передатчиках и, конечно, школьных опытах

Устройство трансформатора

Корпус аппарата представляет собой бак, в который заливается масло. Масло насыщается минералами, чтобы лучше отводить тепло. Выбросы тепловой энергии при работе трансформатора огромны. Однако даже такие потери в тысячи раз меньше возможных утечек энергии при транспортировке.

Масло циркулирует по внутреннему и внешнему контуру трансформатора. Отдельно отметим, что внешний контур часто представляет собой оребренный радиатор. Увеличение площади теплоотдачи приводит к улучшению отдачи тепла. Проще говоря, чем больше площадь соприкосновения масла из внутреннего контура и внешнего радиатора – тем лучше будет отводится тепло, тем меньше вероятность аварии на трансформаторной подстанции.

Само устройство силового трансформатора представляет собой квадратного сечения сердечник, набранный из тонких электростальных пластинок. Используются именно наборные сердечники, чтобы свести к минимум появление самоиндукционных токов, которые приводят к перегреву и увеличению потерь энергии.

На противоположные стороны квадрата наносят обмотку. Обмотка, на которую поддается ток, называется первичной, обмотка, отдающая преобразованную энергию, вторичной.

Принцип работы

Схема работы силового трансформатора выглядит так:

  1. Ток подается на первичную обмотку.
  2. Первичная обмотка в результате прохождения электрического тока начинает генерировать переменное магнитное поле.
  3. Магнитное поле, проходящее сквозь вторичную обмотку, вызывает в ней электрический ток.

Вес секрет процесса в количестве витков. Отношение принятого напряжения к отданному равняется отношению количества витков первичной обмотки к количеству витков вторичного обмотки. Это же отношение называют коэффициентом трансформации. То есть коэффициент показывает, во сколько раз уменьшится или увеличится выходное напряжение на подстанции.

Почему трансформатор называют силовым

Как мы уже сказали, силовые трансформаторы используют для понижения высоковольного тока до приемлемых для города параметров, то есть 220/360 В – в зависимости от местности и прочих условий. Но нужно отметить, что напряжение высоковольтных линий ненамного больше 1000 к В, а это больше миллиона вольт. Именно за трансформацию столь сильного напряжения, устройство и назвали таким красивым именем.

Именно силовые трансформаторы используются для преобразования электричества городских и квартальных сетей. Получается многоступенчатая система снабжения страны электроэнергией:

  1. Сначала повышающие трансформаторы увеличивают напряжение до огромных значений
  2. По проводам ток течет в города и села
  3. Понижающие трансформаторы понижают напряжение сначала до общегородских, а потом и до квартальных значений.

Отдельно нужно сказать, что иногда приходится понижать значение напряжения до 360 В в городе, потому что высоковольтные линии проводить в городской черте запрещено.

Виды трансформаторов

Уже были названы повышающие и понижающие трансформаторы. В зависимости от места использования можно выделить сетевые и силовые аппараты. Сетевые трансформаторы используются в устройствах, поскольку даже квартальные параметры тока слишком высоки для простого телевизора или ноутбука. Поэтому используется трансформатор, чтобы преобразовать ток в подходящий для конкретного предмета бытовой техники.

Сразу использовать маленькие параметры в городе нельзя из тех же соображений экономии. К тому же, разные приборы требуют разных параметров – всем производителям электроники не угодишь, а потому проще каждому встраивать в свой прибор трансформатор.

Отдельной строкой идут автомобильные трансформаторы, которые позволяют заводить машину с использованием небольшого электрического импульса. Выделяют и импульсные и многие другие трансформаторы, но всех их объединяет одно: принцип работы. Отличия кроются только в рабочих параметрах тока и предназначении трансформатора.

Контроль работы устройства

Во время сервисных работ строго запрещается заглядывать внутрь бака, сливать полностью масла и проводить какие-либо манипуляции с содержимым корпуса трансформатора. Работоспособность изделия проверяется путем химической оценки пробы масла и холостого подключения аппарата. В результате удается узнать, насколько трансформатор работоспособен в данный момент времени.

Даже к месту монтажа привозят уже готовую конструкцию, которую остается только подключить к сети. Заливка маслом производится на заводе, не говоря уже о более сложных процедурах. Для доставки оборудования используется специализированная техника.

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 79 чел.
Средний рейтинг: 3 из 5.

Силовые трансформаторы

Google Ads

  • Изучив этот раздел, вы сможете описать:
  • • Врезки.
  • • Силовые трансформаторы с ламинированным и тороидальным сердечником.
  • • Изоляция.
  • • Автотрансформаторы.
  • • Импульсные трансформаторы питания.
  • • Неисправности трансформатора.

Рис. 11.3.1 Силовой трансформатор с многослойным сердечником.

Силовые трансформаторы с многослойным сердечником

Задача силового трансформатора в электронной системе состоит в том, чтобы обеспечить эту систему несколькими источниками переменного тока с различными напряжениями и подходящими значениями тока от высоковольтной общественной электросети. Кроме того, может потребоваться обеспечить электрическую изоляцию между электронной схемой и внешним источником питания общего пользования.

Типичная конструкция силового трансформатора с многослойным сердечником показана на рис. 11.3.1.

Сердечник из тонких стальных пластин в форме букв «Е» и «I» используется для снижения воздействия вихревых токов. Они скреплены вместе, а первичная и вторичная обмотки намотаны на каркас, расположенный вокруг центрального стержня сердечника. Обмотки могут быть отдельными, как показано, или часто, для большей эффективности, намотаны концентрически слоями (первичная, вторичная, первичная, вторичная и т. д.). Трансформаторы часто изготавливаются специально для конкретного приложения или оборудования, в котором они используются. Поэтому для правильной идентификации обмоток может потребоваться ссылка на данные производителя.

Рис. 11.3.2 Принципиальная схема силового трансформатора с ответвлениями


.

Врезки.

Чтобы трансформаторы могли подавать различные вторичные напряжения к различным частям цепи, силовые трансформаторы обычно имеют «обмотки с отводами». То есть обмотки разделены на различные секции с использованием ряда соединений, выведенных из одной обмотки, каждое из которых имеет определенное количество витков вдоль обмотки, как показано на схематической диаграмме символов рис. 11.3.2 ниже.

Обеспечивает выбор различных соотношений витков между первичной и вторичной обмотками, что позволяет использовать различные входные напряжения и получать различные выходные напряжения.

При использовании обмотки с центральным ответвлением, например 9В 0В 9В, может быть обеспечен сбалансированный источник питания, дающий два одинаковых напряжения (9В) противоположной полярности, или один источник питания 18В.

Тороидальные силовые трансформаторы

Рис. 11.3.3 Тороидальный силовой трансформатор

Популярная конструкция силовых трансформаторов основана на тороидальном сердечнике, показанном на рис. 11.3.3 (тороид представляет собой просто сердечник в форме пончика). Эта конструкция обеспечивает превосходную связь между первичной и вторичной обмотками, поскольку обе катушки наматываются друг на друга вокруг одного и того же сердечника, а не на отдельных обмотках, используемых в сердечниках трансформаторов E-I. Потери на вихревые токи в тороидальном сердечнике поддерживаются на низком уровне за счет изготовления сердечника из спиральной полосы текстурированной стали или отливки сердечника из ферритового материала с высокой проницаемостью. Тороидальная конструкция трансформатора, хотя, как правило, более дорогая, чем типы с многослойным стальным сердечником в форме EI, тороидальный сердечник обеспечивает меньший и легкий трансформатор, чем для данной номинальной мощности, вместе с более высоким КПД и меньшей утечкой магнитного поля вокруг трансформатора.

Изоляция.

Одним из преимуществ трансформаторов (за исключением автотрансформаторов) является отсутствие электрического соединения между входной цепью, соединенной с первичной, и выходной цепью, соединенной со вторичной; поэтому их можно использовать для гальванической развязки двух цепей.

Сетевые (линейные) изолирующие трансформаторы используются для обеспечения большей безопасности пользователей электрооборудования, такого как электроинструменты, предназначенные для использования вне помещений, и для техников, обслуживающих оборудование, где можно прикоснуться к токоведущим проводникам и компонентам, за счет обеспечения входных и выходных клемм, которые электрически изолированы от основной контур.

Большие изолирующие трансформаторы обычно способны работать с выходной мощностью около 250-500 ВА (вольт-ампер) без перегрузки. Их первичная обмотка подключается непосредственно к сети питания, и для получения сетевого (или линейного) выходного напряжения соотношение их витков составляет 1:1, как показано на рис. 11.3.4. Они также имеют заземленный металлический экран между первичной и вторичной обмотками для предотвращения прохождения переменного тока за счет электростатической (емкостной), а также индуктивной связи между двумя обмотками.

Рис. 11.3.4 Сетевой изолирующий трансформатор.

Использование изолирующего трансформатора значительно снижает риск поражения электрическим током человека, одновременно касающегося проводника под напряжением и земли, поскольку вторичная цепь не имеет заземления и, следовательно, не имеет непрерывной цепи для протекания тока. Изолирующий трансформатор НЕ защищает от поражения электрическим током тех, кто одновременно прикасается к току и нейтрали.

Изолирующие трансформаторы гораздо меньшего размера используются в оборудовании для передачи голоса и данных, таком как факсимильные аппараты и модемы, где их задачей является безопасное разъединение оборудования, которое в условиях неисправности может привести к возникновению высокого напряжения на его интерфейсе с системой телефонной связи общего пользования. . Они также используются для согласования импеданса входов и выходов оборудования с импедансом телефонных линий.

Рис. 11.3.5 Принципиальная схема


Автотрансформатор.

Автотрансформаторы.

Это специальный тип трансформатора, который имеет только одну обмотку. Он часто используется для преобразования между различными сетевыми (линейными) напряжениями, что позволяет использовать электрическое оборудование на международном уровне. Единая непрерывная обмотка разделена на несколько «ответвлений», как показано на рис. 11.3.5, для получения различных напряжений. Между каждым ответвлением предусмотрено соответствующее количество витков для получения требуемого напряжения, исходя из соотношения витков между полной обмоткой и ответвлением. Полезным методом расчета неизвестных напряжений на автотрансформаторе, если известно количество витков на различных ответвлениях, является использование метода вольт на виток, описанного на странице «Основные операции с трансформатором». В отличие от обычного трансформатора с первичной и вторичной обмотками автотрансформатор не обеспечивает никакой изоляции между входом и выходом.

Автотрансформаторы также используются для обеспечения очень высокого напряжения, необходимого для таких приложений, как автомобильные системы зажигания и приводы электронно-лучевых трубок в ЭЛТ-телевизорах и мониторах.

Часть имени «Авто» в данном случае не означает автоматический, а имеет значение «Один – действующий сам по себе», как в авто номус.

Импульсные трансформаторы питания

Большие трансформаторы с многослойным сердечником в настоящее время менее распространены из-за использования импульсных источников питания (SMPS). Эти схемы работают на гораздо более высоких частотах, чем старые источники питания на 50–60 Гц. В дополнение к тому, что SMPS более эффективны, они имеют то преимущество, что многие компоненты в цепи питания могут быть физически намного меньше и легче, включая трансформатор. Трансформаторы SMPS, работающие на частоте около 500 кГц, как в примере на рис. 11.3.6 в телевизионном приемнике, используют феррит вместо ламинированных сердечников, поскольку потери в феррите на высоких частотах намного меньше, чем в ламинированных сердечниках. Формы сигналов, обрабатываемых трансформаторами в SMPS, помимо того, что они являются высокочастотными, обычно имеют прямоугольную форму. Из-за этого они будут содержать много гармоник на еще более высоких частотах. Это создает проблему из-за «скин-эффекта»; токи высокой частоты, протекающие по проводам, имеют тенденцию течь только по внешней оболочке проводов, что усложняет обычные расчеты площади поперечного сечения провода. Поскольку эффективная площадь поперечного сечения изменяется с частотой, то же самое будет и с эффективной индуктивностью обмотки. Кроме того, расположение компонентов относительно трансформаторов SMPS требует тщательного проектирования, так как электромагнитные помехи на высоких частотах больше.

Рис. 11.3.6 Импульсный источник питания


Трансформатор.

Неисправности трансформатора

Трансформаторы, как правило, очень надежны; их очень высокая эффективность означает, что в нормальных условиях небольшая мощность рассеивается в виде тепла (во многих компонентах это самый большой убийца!). Как и в случае с любым электронным устройством, именно те, которые работают с наибольшей мощностью, являются наименее надежными, поэтому силовые трансформаторы, особенно те, которые работают с высоким напряжением, более подвержены поломке, чем трансформаторы других типов.

Перегрев, вызванный внутренней неисправностью или перегрузкой, может привести к опасным ситуациям, вплоть до полного «расплавления». По этой причине многие силовые трансформаторы могут быть оснащены плавким предохранителем или автоматическим выключателем.

В маловероятном появлении отказа этого устройства обычно первичная обмотка оказывается разомкнутой. Часто бывает трудно или невозможно удалить и/или отремонтировать предохранитель, который находится глубоко внутри обмоток. Также, возможно, это будет неразумно, так как трансформатор перегреется по одной из двух возможных причин:

  • 1. Трансформатор был серьезно перегружен в течение длительного времени; в этом случае могло произойти внутреннее повреждение изоляции. Самый безопасный вариант – заменить трансформатор.
  • 2. В трансформаторе произошло внутреннее короткое замыкание. Это означает, что изоляция между двумя витками обмотки пробита. В результате получается обмотка из одного витка. Коэффициент трансформации теперь огромен! Представьте себе трансформатор с 1000 витками на первичной обмотке и 100 витками на вторичной обмотке, который страдает от короткого замыкания на вторичной обмотке. Соотношение оборотов только что изменилось с 10:1 до 1000:1! В результате получается очень небольшое вторичное напряжение, но огромный ток. В этом случае снова единственным решением является замена.

Единственная неисправность, с которой я лично с какой-то регулярностью сталкивался за 26 лет обслуживания электроники, это пробой изоляции на трансформаторах очень высокого напряжения; тип, используемый для генерации нескольких тысяч вольт в телевизионных приемниках. Большинство этих неисправностей произошло по субботам летом, причина? Люди, возвращавшиеся из отпуска, часто делали это в субботу днем, а телевизор не использовался неделю или больше. За это время в обмотки трансформатора проникла влага, и при повторном подаче высокого напряжения произошло искрение, и трансформатор сразу же получил короткое замыкание.

При любой неисправности, связанной с подозрением на трансформатор (любого типа), вероятность того, что он является виновником, очень низка в списке вероятностей.

Как работают трансформаторы. Основы цепей

Трансформатор представляет собой электрическое устройство, предназначенное для передачи электрической энергии от одной цепи к другой с той же частотой. Его также называют статическим механизмом, так как он не имеет движущихся частей. Он используется для контроля уровней напряжения между цепями. Он состоит из трех основных частей, состоящих из двух обмоток и металлического сердечника, на который намотаны обмотки. Эти обмотки выполнены в виде катушек, изготовленных из материалов с хорошими токопроводящими свойствами. Обмотки в трансформаторе играют главную роль в машине, поскольку эти катушки обмотки служат катушками индуктивности.

Анатомия A T Ransformer

Трансформатор состоит из следующих деталей:

  • Первичная катушка
  • Вторичная катушка
  • Core
  • Насильными материалами
  • Transformer Milat
  • Betroling Materiator
  • Охлаждающие трубки
  • Реле Бухгольца
  • Взрывоотвод

Как работают трансформаторы

Первичная обмотка, вторичная обмотка и сердечник являются основными частями силового трансформатора. Эти детали очень важны для работы трансформатора.

Первичная обмотка обычно изготавливается из меди из-за ее высокой проводимости и пластичности. Число витков катушки должно быть кратно числу витков вторичной обмотки. Он также отвечает за создание магнитного потока. Магнитный поток создается, когда первичная катушка подключена к электрическому источнику. Медный проводник, используемый в первичной обмотке, должен быть тоньше, чем у вторичной обмотки, чтобы ток вторичной обмотки был выше, чем ток первичной обмотки.

Вторичная катушка, которая также состоит из меди, принимает магнитный поток, создаваемый первичной катушкой. Поток проходит через сердечник и соединяется со вторичной катушкой. Вторичная обмотка отдает энергию в нагрузку при изменении напряжения. В этой катушке будет индуцироваться напряжение, поэтому обмотка должна иметь большее число витков по сравнению с первичной катушкой. Ток, исходящий от первичной катушки, будет генерировать переменный магнитный поток в сердечнике, вызывая электромагнитную связь между первичной и вторичной катушками. Магнитный поток, проходящий через две катушки, индуцирует электродвижущую силу, величина которой пропорциональна числу витков катушки.

Накрутки проводов катушки, выходное напряжение и ток

Величина наведенного напряжения, вызванного наведенным током во вторичной катушке, зависит от количества витков вторичной катушки. Связь между витками проволоки и напряжением в каждой катушке определяется уравнением трансформатора :

Уравнение трансформатора показывает, что отношение входного и выходного напряжений трансформатора равно отношению количества витков на первичная и вторичная катушки.

Расчет входного и выходного напряжения/тока в зависимости от витков первичной и вторичной обмотки

Связь входного и выходного тока и витков обмотки трансформатора определяется выражением:

Данное уравнение показывает, что отношение входного и выходного тока трансформатора равно отношению числа витков двух катушек.

Оценивая два уравнения выше, мы можем сделать вывод, что если напряжение увеличивается, ток уменьшается. Точно так же, если напряжение уменьшается, ток увеличивается.

Что такое рейтинг ВА?

Номинал ВА или вольт-ампер обычно используется для определения силы тока при заданном напряжении в трансформаторе. Вольт-ампер также используется для обозначения полной мощности в электрической цепи. Этот рейтинг определяет, сколько вольт-ампер способен выдать трансформатор.

Определение ВА и расчет максимального тока для первичной и вторичной обмоток

Для расчета тока первичной и вторичной обмотки трансформатора с заданной мощностью ВА мы используем следующее:

Для отношения числа витков, напряжения и тока,

Для максимального тока первичной обмотки,

Для максимального тока вторичной обмотки,

Обозначение выходного напряжения для трансформаторов с отводом от средней точки

A Отвод от средней точки Трансформатор также широко известен как «двухфазный трехпроводной трансформатор».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *