Схема р регулятора миндстормс: Пропорциональный интегральный дифференциальный ПИД-регулятор в робототехнике Lego Mindstorms. Пропорциональный регулятор.

Содержание

Пропорциональный интегральный дифференциальный ПИД-регулятор в робототехнике Lego Mindstorms. Пропорциональный регулятор.

Подробности
Автор: Коновалов Игорь
    Пропорциональный регулятор является усовершенствованием релейного регулятора . Главный минус релейного в том, что ему все равно, насколько текущие значения отличаются от нормального значения датчика. У него только два состояния — либо попытаться повысить значения датчика на определенное постоянное число, если они меньше нормального значения, либо повысить. Из-за этого происходят колебания с постоянной амплитудой, что очень неэффективно.
    Намного более логично определять, насколько «далеко» находятся текущие показания от нормальных, и в зависимости от этого менять амплитуду. Чтобы стало более понятно, разберем на примере. Пример, как и в прошлой статье, тот же самый: робот из Lego Mindstorms EV3 едет по черной линии с помощью одного датчика цвета в режиме освещенности.

    Робот пытается ехать вдоль границы между белым и черным, а там датчик показывает примерно 50 % освещенности. И чем дальше он от нормального положения, тем больше усилий прилагает робот, чтобы вернуться к 50 %.
    Для написания программы воспользуемся терминами «ошибка», «управляющее воздействие». Ошибка — разность текущего показания датчика и нормального. В нашем случае, если сейчас робот видит 20 % освещенности, то ошибка равна 20-50= -30 %. Знак ошибки указывает, в какую сторону роботу стоит повернуть, чтобы избавиться от ошибки. Теперь мы должны указать моторам, в какую сторону роботу поворачивать, с какой скоростью и насколько резко. Нужно оказать управляющее воздействие на моторы, под которым подразумевается, насколько резко ему стоит возвращаться к нормальному положению. Управляющее воздействие (UP) рассчитывается как ошибка (error) умноженная на коэффициент пропорциональности (k). Этот коэффициент используется для усиления или уменьшения влияния ошибки на управляющее воздействие.

Управляющее воздействие подается в рулевое управление, где устанавливается средняя скорость робота.
    Как же настроить коэффициент пропорциональности? Опытным путем подбирать значения, для проезда траектории он может быть, например, от 0,2 до 1,5 в зависимости от скорости и конструкции робота. Если коэффициент слишком большой, то робот будет сильно вилять, если маленький — ехать плавно, но в какой-то момент на повороте съехать из-за недостаточной величины управляющего воздействия. Напишем две версии программы — с переменными (для тех, кто их уже изучал) и без.


   Но и этот регулятор можно усилить с помощью введения пропорциональной и интегральной составляющей, описание будет в следующих статьях. До скорых встреч!

Пропорциональный интегральный дифференциальный ПИД-регулятор в робототехнике Lego Mindstorms. Релейный регулятор.



Пропорциональный интегральный дифференциальный ПИД-регулятор в робототехнике Lego Mindstorms.
Релейный регулятор.
Подробности
Автор: Коновалов Игорь
 В прошлой статье мы обсуждали, зачем нам нужны регуляторы в робототехнике. Сегодня мы рассмотрим самый простой из регуляторов — релейный регулятор. В чем же его задумка? Приведем пример поддержания определенной температуры в помещении с помощью датчика температуры и газового котла. Итак, допустим, мы хотим добиться постоянной температуры воздуха 25 градусов по Цельсию. Регулятор проверяет: если температура меньше, то увеличивает подачу газа, а если больше — то уменьшает. Все очень просто по смыслу и реализации.
Но этот релейный регулятор не будет учитывать, какова была разность нормальной и текущей температуры, он просто увеличивает или уменьшает температуру, поэтому будут происходить постоянные колебания температуры.
 А теперь применим релейный регулятор к Lego Mindstorms EV3. Одна из самых популярных задач соревновательной робототехники — проезд по черной линии на белом фоне(толщиной примерно 2 см), или наоборот — белой линии на черном фоне. Простой, но малоэффективный метод: метаться от белого к черному или в терминах освещенности — от хорошей освещенности к плохой освещенности.
 Если робот видит плохую освещенность (
  • < Назад
  • Вперёд >

Пропорциональный интегральный дифференциальный ПИД-регулятор в робототехнике Lego Mindstorms. Дифференциальная составляющая.

Подробности
Автор: Коновалов Игорь
    Эта статья является логическим продолжением статьи о пропорциональном регуляторе . Эта тема уже ни раз поднималась в литературе, но моя цель — объяснить ее понятным языком начинающим преподавателям робототехники и ребятам — самоучкам, у которых либо нет возможности обучаться в кружках робототехники, либо нет желания.
    Напомню, регулятор мы применяем к роботу Lego Mindstorms EV3, проезжающего по черной линии с помощью 1 датчика цвета (хотя можно и двумя, суть не поменяется). Можно применить данный регулятор к чему угодно, требующему автоматическое регулирование, меняя датчик цвета на любой другой в зависимости от задачи.

    В прошлой статье мы говорили о том, что ошибка — разность текущего показания датчика и нормального (идеального). А что если ввести кроме термина «ошибка» еще и «скорость изменения ошибки», то есть то число, которое показывает, насколько быстро меняется ошибка? Тогда можно было бы придавать роботу дополнительное управляющее воздействие, когда скорость изменения ошибки растет. Когда может возникнуть такая ситуация резкого увеличения скорости ошибки? Приведу наглядный пример: робот спокойно едет по границе между черным и белым, ошибка при этом имеет небольшое значение по модулю, недалеко уходящее от 0, так как текущие показания датчика и идеальные почти одинаковы. Но впереди робота ждет некоторая стрессовая ситуация — поворот трассы на 90 градусов. Ошибка резко возрастет, робот попытается ее исправить и, возможно, проедет нормально. А с помощью дифференциальной составляющей мы можем помочь роботу выравняться, ведь робот сможет распознать стрессовую ситуацию, так как скорость изменения ошибки вырастит.

    Разберемся, как же робот сможет посчитать скорость изменения ошибки. Нужно вычесть из текущей ошибки (той, которая посчиталась роботом именно сейчас) прошлую. А что же такое прошлая ошибка? Все просто: это та же текущая ошибка, только на прошлом шаге.
    В прошлой статье мы говорили, что нужно использовать коэффициент k для пропорциональной составляющей. Сегодня же мы назовем его k1, так как появляется второй коэффициент (k2) у дифференциальной составляющей. Как его выбрать? Обычно это довольно больше число (относительно k1) в пределах примерно от 2 до 20.
    Рассмотрим подробный алгоритм пропорционально-дифференциального регулятора.
    (Все действия в цикле)
    1) Найти ошибку
    2) Пропорциональная составляющая = ошибка * k1
    3) Дифференциальная составляющая = (ошибка — старая_ошибка)*k2
    4) старая ошибка = ошибка
    5) Управляющее воздействие = Пропорц. составл-я + Дифференц. составл-я
    6) Управляющее воздействие отправить в рулевое управление.

  • < Назад
  • Вперёд >

Регулятор мощности электроинструмента.

Здравствуйте! Из всего имеющегося у меня инструмента, самый используемый- УШМ (болгарка). Помимо распила различных материалов, очень часто применяется для зачистки, шлифовки поверхностей. При работе с деревянными материалами лепестковые круги часто жгут дерево. Слишком много оборотов. Круги на » липучке» по кафельной плитке тоже норовят слететь от центробежной силы.
Решением проблемы видел в дополнении болгарки регулятором оборотов. Критерием поиска была возможность встраивания в корпус инструмента с наименьшими затратами.

Микрообзор.

Верой и правдой очередная УШМ служит мне уже шестой год. Производитель ДИОЛД, под 125 круг. Более точное обозначение от времени стёрлось, а сам уже не помню.

Не хотел делать выносной регулятор. Место чуть-чуть в ручке имеется. Посмотрев на размеры крутилки на странице продавца и решив, что запихаю всё-таки, заказал.

Добиралась посылка примерно с месяц, трек не отслеживался.
ТТХ со страницы товара.

Модель: 6 скоростей
Максимальное напряжение: 250 (В)
Номинальный ток нагрева: 6 (A)
Рабочая температура: 0-50 ©
Материал: пластик.

Скоростей не 6, конечно, плавная регулировка потенциометром. Цифры для наглядности.

Размеры:

Длина — 30 мм;
Ширина- 17 мм;
Высота — 30 мм.

На одном торце эл. характеристики.

На противоположном- схема включения.

Примерная электрическая схема устройства. Обозреваемый регулятор отличается только наличием подстроечного потенциометра и выключателем ( дальше 6 позиции эл. регулировка отключается и на инструмент подаётся сетевое напряжение напрямую).

Внутри корпуса выглядит так. Симистор используется ВТВ08.

Характеристики:

VRRM, В 600
IT(RMS) (макс.), А 8
VDRM (макс.), В 600
IFSM (макс.), А 84
IFT, мА 35
dV/dt, В/мкс 400
dI/dt, А/мс 4.5
TA,°C от -40 до 125
Вполне может использоваться без радиатора до 1000Вт

Плата из текстолита. С обратной стороны только пайка.(флюсом я заляпал, комплектные провода короткие)

Разобрал УШМ. Место для установки оказалось только здесь.

Пропилил отверстие в корпусе. Корпус ручки болгарки из вязкого пластика. Регулятор вставляется очень плотно. Ничем не крепил.

Расположение получилось удачное. Не мешает при работе инструментом.

Примерно 5 мм не влез до конца, не критично абсолютно. Главное-удобно пользоваться.

Регулятор плавно меняет напряжение. Подключается в разрыв питающего провода. На первой позиции напряжение 154 В.

На шестой позиции 201 В.

Болгарка у меня маломощная, поэтому на 1 и 2 позициях при резке металла останавливается.
Зато с 3 и дальше отлично работает. То, что я ждал от регулятора, я получил. На работе подтачивал плитку. Насадка не пытается убежать с платформы, меньше вибрация и нет такого столба пыли.
Лепестковым кругом снимал фаски с торца доски- не жгёт.
Теперь УШМ полностью оправдывает своё название (угловая шлиф.машина).
Включаю болгарку на прямом включении к сети, а потом убираю обороты до нужных. Хотя она запускается и на низких оборотах. Может и зря, ну так, на всякий случай. Это есть на видео.

Небольшое видео работы.

Всем спасибо и удачных покупок!

Семь тиристорных регуляторов напряжения


Семь тиристорных регуляторов напряжения

С амплитуднофазовым управлением

  В регуляторе, схема которого показана на рис. 1, использованы два тринистора, открывающиеся один в положительный, а другой — в отрицательный полуперноды сетевого напряжения. Действующее напряжение на нагрузке Rн регулируют переменным резистором R3. Регулятор работает следующим образом. В начале положительного полупериода (плюс на верхнем по схеме проводе) тринисторы закрыты. По мере увеличения сетевого напряжения конденсатор. С1 заряжается через резисторы R2 и R3. Увеличение напряжения на конденсаторе отстает (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов R2 и R3 и емкости конденсатора С1. Заряд конденсатора продолжается до тех пор, пока напряжение на нем не достигнет порога открывания тринистора Д1. Когда тринистор откроется, через нагрузку Rн потечет ток, определяемый суммарным сопротивлением открытого тринистора и Rн. Тринистор Д1 остается открытым до конца полупериода. Подбором резистора R1 устанавливают желаемые пределы регулирования. При указанных на схеме номиналах резисторов и конденсаторов напряжение на нагрузке можно изменять в пределах 40- 220 В.

  В течение отрицательного полупериода аналогично работает тринистор Д4. Однако, конденсатор С2, частично заряженный в течение положительного полупериода (через резисторы R4 и R5 и диод Д6), должен перезаряжаться, а значит и время задержки включения тринистора должно быть большим. Чем дольше был закрыт тринистор Д1 в течение положительного полупериода, тем большее напряжение будет на конденсаторе С2 к началу отрицательного и тем дольше будет закрыт тринистор Д4. Синфазность работы тринисторов зависит от правильного подбора номиналов элементов R4, R5, С2. Мощность нагрузки может быть любой в пределах от 50 до 1000 Вт.

И.ЧУШАНОК г. Гродно


С фазоимпульсным управлением

  Регулятор, схема которого показана на рис. 2, управляется автоматически сигналом Uynp. В регуляторе использованы два тиристора — тринистор Д5 и динистор Д7. Тринистор открывается импульсами, которые формируются цепочкой, состоящей из динистора Д7 и конденсатора С1. В начале каждого полупериода тринистор и динистор закрыты и конденсатор С1 заряжается током коллектора транзистора Т1. Когда напряжение на конденсаторе достигнет порога открывания динистора, он откроется и конденсатор быстро разрядится через резистор R2 и первичную обмотку трансформатора Тр1. Импульс тока со вторичной обмотки трансформатора откроет тринистор. При этом управляющее устройство будет обесточено (так как падение напряжения на открытом тринисторе очень мало), динистор закроется. По окончании полупериода триннстор выключится и с началом следующего полупериода начнется новый цикл работы регулятора.

  Время задержки импульса, открывающего тринистор, относительно начала полупериода определяется скоростью заряда конденсатора С1, которая пропорциональна току коллектора транзистора Т1. Изменяя управляющее напряжение Uynp, можно управлять этим током и, в конечном итоге, регулировать напряжение на нагрузке. Источником сигнала Uynp может быть полосовой фильтр (с выпрямителем) цветомузыкальнои установки, программное устройство. В системах автоматического регулирования в качестве Uупр используют напряжение обратной связи.

  Резистор R5 необходимо подобрать таким, чтобы при Uynp=0 тринистор открывался в каждый полупериод в момент времени, близкий к окончанию полупериода. Для того, чтобы перейти на ручное регулирование, достаточно заменить резистор R5 последовательной цепочкой из переменного резистора и постоянного сопротивлением 10- 12 кОм. Напряжение стабилизации стабилитрона Д6 должно быть на 5-10 В больше максимального напряжения включения динистора.

  Транзистор Т1. может быть любым из серий МП21, МП25, МП26. Динистор можно применить типов КН102Б, Д227А, Д227Б, Д228А, Д228Б. Резистор R1 составлен из двух мощностью по 2 Вт. Импульсный трансформатор Тр1 намотан на кольцевом сердечнике, имеющем размеры 26Х18Х4 мм, из пермаллоя 79НМА (или такого же сечения из феррита М2000НМ1). Обмотка I содержит 70 витков, а обмотка II — 50 витков провода ПЭВ-2 0,33 мм. Межобмоточная изоляция должна выдерживать напряжение, близкое к сетевому. Вместо динистора в регуляторе можно использовать транзистор, работающий в лавинном режиме. О работе транзисторов, в этом режиме подробно рассказывалось в «Радио», 1974, № 5, С. 38-41. Схема одного из таких регуляторов показана на рис. 3.

  По принципу работы регулятор с транзистором, работающим в лавинном режиме, не отличается от предыдущего. Используемый транзистор типа ГТ311И имеет напряжение лавинного пробоя около 30 В (при сопротивлении резистора R3 равном 1 кОм). В случае применения других транзисторов — номиналы элементов R4, R5, С1 потребуется изменить.

  В регуляторе (рис. 3) могут быть использованы и другие транзисторы, в том числе и структуры р-n-р, например П416. В этом случае нужно у транзистора Т1 (см. рис. 3) поменять местами выводы эмиттера и коллектора. Резистор R3 во всех случаях должен быть включен между базой и эмиттером. Напряжение на нагрузке регулируют переменным резистором R4.

Инж. Е. ФУРМАНСКИЙ Москва


С аналогом однопереходного транзистора

  В регуляторе, схема которого показана на рис. 4, применен фазоимпульсный метод управления тринистором. В управляющем устройстве регулятора использован транзисторный аналог однопереходного транзистора (двухбазового диода). О работе однопереходных транзисторов можно прочитать в «Радио», 1972, № 7, с. 56.

  Силовая цепь регулятора построена так же, как у регулятора, опубликованного в «Радио», 1972, № 9, с. 55. При разомкнутых контактах выключателя В’2 действующее значение напряжения на нагрузке можно изменять в пределах от нескольких вольт до 110 В, а при замкнутых — от 110 до 220 В.

  По принципу работы управляющее устройство описываемого регулятора не отличается от устройств на динисторе или лавинном транзисторе (рис. 2 и 3). Мощность, подводимую к нагрузке, регулируют переменным резистором R5.

  Тринистор ДЗ и диод Д1 установлены на общем радиаторе площадью 50-80 см2. Резистор R1 составлен из двух резисторов мощностью 2 Вт.

Инж. В. ПОПОВИЧ г. Ижевск.


На симисторе

  Описываемый регулятор построен по схеме фазоимпульсного регулирования с использованием симистора (симметричного тирнстора). Схема регулятора показана на рис. 5. В управляющем устройстве применен транзисторный аналог однопереходного транзистора n-типа.

  При включении регулятора (выключателем В1) транзисторы Т1 ч Т2 закрыты и конденсатор С1 начинает заряжаться через резистор R4 (с помощью которого регулируют мощность, выделяемую на нагрузке Rн). Заряд продолжается до тех пор, пока напряжение на конденсаторе не превысит порог открывания транзистора Т1. В этот момент транзисторы открываются и переходят в режим насыщения. Конденсатор быстро разряжается через них на первичную обмотку импульсного трансформатора Тр1. Импульс тока со вторичной обмотки открывает симистор Д5. Порог открывания транзисторов определяется сопротивлениями резисторов делителя R2R3.

  Импульсный трансформатор Тр1 намотан на кольце из феррита М2000НМ1-15 типоразмера К20х 12х6. Обмотка I содержит 50 витков, а II — 30 витков провода ПЭЛШО 0,25 мм. Конденсатор С1 — МБМ с рабочим напряжением 160 В.

  Максимально допустимый ток нагрузки регулятора 5 А. Пределы регулирования напряжения от нескольких вольт до 215 В.

Инж. В. ПОНОМАРЕНКО. инж. В. ФРОЛОВ г. Воронеж


C улучшенной регулировочной характеристикой

  В тиристорных регуляторах с фазоимпульсным управлением напряжение на конденсаторе RС-цепи во время его заряда увеличивается по экспоненциальному закону. При синусоидальной форме сетевого напряжения регулировочная характеристика, выражающая зависимость напряжения на нагрузке от сопротивления переменного резистора, оказывается резко нелинейной, что затрудняет плавную регулировку напряжения на нагрузке.

  Тиристорный регулятор, схема которого показана на рис. 6, в значительной степени свободен от этого недостатка. В регуляторе использован однопереходный транзистор. Улучшение линейности регулировочной характеристики достигается тем, что конденсатор С1 заряжается от напряжения сети (через резистор R4) и одновременно от источника постоянного стабилизированного напряжения (через делитель R5R6 и диод Д6}. Изменяя резистором R6 уровень постоянного напряжения, можно управлять моментом открывания тринистора и, следовательно, напряжением на нагрузке. Диод Д6 исключает возможность разряда конденсатора через резистор R6.

  Сопротивление резистора R4 выбирают таким, чтобы при замкнутом накоротко резисторе R6 напряжение на нагрузке было минимальным. Тогда при крайнем нижнем (по схеме) положении движка резистора R6 напряжение на нагрузке будет максимальным.



Со стабилизацией выходного напряжения

  Особенностью описываемого регулятора является способность стабилизировать напряжение на нагрузке при изменении напряжения питающей сети. Управляющее устройство построено на однопереходном транзисторе по схеме фазоимпульсного регулирования.

Источник: shems.h2.ru

ДИСКРЕТНЫЙ РЕГУЛЯТОР МОЩНОСТИ

   На сегодняшний день существует достаточно много простых и не очень схем регуляторов мощности. Каждая приципиальная схема имеет свои преимущества и недостатки. Рассматриваемая сегодня выбрана мной не случайно. Итак, попал ко мне советский электрокамин (обогреватель) Мрия. Состояние его можно оценить по фото.


Рисунок 1 – общий первоначальный вид

   Справа на верхней пластмассовой крышке имелось отверстие под ручку встроенного регулятора мощности, которого там не оказалось. По счастливой случайности мне через некоторое время попался рабочий экземпляр такого же камина. В качестве регулятора там оказалась на первый взгляд довольно сложная схема на двух тиристорах и множеством очень мощных резисторов. Её повторение не имело смысла, хотя у меня и есть доступ к практически любым советским радиодеталям, так как это обошлось бы в разы дороже, чем тот вариант, который изготовлен сейчас.

   Для начала камин был подключён к сети напрямую, ток потребления оказался 5,6 А, что соответствует паспортной мощности камина 1,25 кВт. Но зачем тратить столько энергии, тем более что она не дешёвая, и не всегда нужно включать обогреватель на полную мощность. Поэтому было принято решение приступить к поискам мощного регулятора мощности. У себя в загашниках нашёл уже готовую схему от китайского пылесоса, на симисторе ВТА12-600. Симистор, с его номинальным током 12 А, отлично мне подходил. Этот регулятор являлся фазовым, т.е. такой тип регуляторов пропускает не всю полуволну сетевого синусоидального напряжения, а только её часть, тем самым ограничивая мощность, подводимую к нагрузке. Регулировка осуществляется открытием симистора при нужном фазовом угле?


Рисунок 2 – а) обычная форма сетевого напряжения; б) напряжение, поданное через регулятор

   Преимущества фазового регулятора:


— простота изготовления
— дешевизна
— лёгкая управляемость

   Недостатки:

— при простой схеме нормальная работа наблюдается только с нагрузками типа ламп накаливания
— при мощной активной нагрузке появляется неприятный гул (дребезг), который может возникать как в самом симисторе, так и на нагрузке (нагревательная спираль)
— создаёт множество радиопомех
— загрязняет электросеть

   В итоге, протестировав схему регулятора из пылесоса, выявлено дребезжание спирали электрокамина.  


Рисунок 3 – Вид внутри камина

   Спираль имеет вид намотанной проволоки (материал определить не могу) на двух планках, залитой для фиксации на ребрах планок каким-то термостойким затвердителем. Возможно, дребезг мог вызвать его разрушение. Были предприняты попытки включить дроссель последовательно с нагрузкой, зашунтировать симистор RC-цепочкой (что является частичным спасением от помех). Но ни одна их этих мер не дала полного избавления от шума.

   Было принято решение использовать другой тип регулятора – дискретный. Такие регуляторы открывают симистор на период целой полуволны напряжения, но количество пропущенных полуволн ограничивается. Например, на рисунке 3 сплошная часть графика – прошедшие сквозь симистор полуволны, пунктиром – не прошедшие, то есть в это время симистор был закрыт.


Рисунок 4 – Принцип дискретного регулирования

   Преимущества дискретных регуляторов:


— меньший нагрев симистора
— отсутствие звуковых эффектов даже при достаточно мощной нагрузке
— отсутствие радиопомех
— отсутствие загрязнения электросети

   Недостатки:

— возможны скачки напряжения (при 220В на 4-6 В при нагрузке 1. 25 кВт), что может быть заметно на лампах накаливания. На остальной домашней технике этот эффект не заметен.

   Выявленный недостаток проявляется тем заметнее, чем на меньший предел регулировки установлен регулятор. На максимуме нагрузки скачков совершенно нету. Как возможное решение данной проблемы возможно использование стабилизатора напряжения для ламп накаливания. На просторах интернета была найдена следующая схема, которая привлекала своей простотой и удобством управления.


Рисунок 5 – Принципиальная схема дискретного регулятора

Описание управления

   При первом включении на индикаторе светится 0. Включение и отключение происходит одновременным нажатием и удержанием двух кнопок. Регулировка больше/меньше – каждой кнопкой по отдельности. Если не нажимать ни одну из кнопок, то после последнего нажатия через 2 часа регулятор отключится сам, индикатор будет моргать на ступени последнего рабочего уровня нагрузки. При отключении от сети запоминается последний уровень, который будет установлен при следующем включении. Регулировка происходит от 0 до 9 и далее от А до F. То есть всего 16 ступеней регулировки.


   При изготовлении платы первый раз применил ЛУТ, и не правильно отзеркалил при распечатке, поэтому контроллер перевёрнут вверх-ногами Индикатор тоже не совпал, поэтому припаял его проводками. Когда рисовал плату, по ошибке разместил стабилитрон после диода, пришлось его впаять на другой стороне платы.



Рисунок 6,7 – Готовая плата регулятора

   На рисунке указан симистор ВТ136, но мой ВТА12 прекрасно работает с указанными номанилами деталей. Радиатор возможно великоват, можно было поставить и по меньше, но другого у меня не оказалось. При первом включении у меня на индикаторе моргал 0, на нажатие кнопок не было реакции. Проблема решилась установкой конденсатора по питанию на 1000 мкФ, вместо 220. Так же изготовил ножки для камина. В итоге имеем следующую конструкцию.


Рисунок 8 – Конечный результат

   В течении недели использования никаких проблем в работе не выявлено. Схема, прошивка, печатная плата в архиве. Специально для сайта radioskot.ru. Anton [email protected]

   Форум по РМ

   Обсудить статью ДИСКРЕТНЫЙ РЕГУЛЯТОР МОЩНОСТИ

Как спроектировать схему источника питания SMPS 5 В, 2 А

Блок питания (PSU) — жизненно важная часть в проектировании любого электронного изделия. Для большинства бытовых электронных продуктов, таких как мобильные зарядные устройства, динамики Bluetooth, блоки питания, умные часы и т. Д., Требуется схема источника питания, которая могла бы преобразовать напряжение сети переменного тока в 5 В постоянного тока для их работы. В этом проекте мы построим аналогичную схему переменного тока в постоянный источник питания с номинальной мощностью 10 Вт. То есть наша схема преобразует сеть переменного тока 220 В в 5 В и обеспечит максимальный выходной ток до 2 А.Этой мощности должно хватить для питания большинства электронных устройств, работающих от 5 В. Также схема 5V 2A SMPS довольно популярна в электронике, так как существует множество микроконтроллеров, работающих от 5V.

Идея проекта состоит в том, чтобы сделать сборку максимально простой, поэтому мы спроектируем полную схему на точечной плате (перфорированной плате), а также построим наш собственный трансформатор, чтобы любой мог воспроизвести эту конструкцию или построить аналогичные. В восторге! Итак, приступим.Ранее мы также построили схему SMPS 12 В 15 Вт с использованием печатной платы, поэтому люди, которым интересно, как спроектировать печатную плату для проекта блока питания (блока питания), также могут проверить это.

Цепь ИИП, 5 В, 2 А — проектные характеристики

Различные типы источников питания по-разному работают в разных средах. Также SMPS работает в определенных границах ввода-вывода. Надлежащий анализ спецификации необходимо выполнить до того, как приступить к фактическому проектированию.

Входная спецификация:

Это будет SMPS в области преобразования переменного тока в постоянный. Следовательно, на входе будет переменный ток. В качестве значения входного напряжения хорошо использовать универсальный входной рейтинг для SMPS. Таким образом, напряжение переменного тока будет 85-265 В переменного тока с номинальной частотой 50 Гц. Таким образом, SMPS можно использовать в любой стране, независимо от величины сетевого напряжения переменного тока.

Технические характеристики выхода:

Выходное напряжение выбрано 5 В с номинальным током 2 А.Таким образом, будет на выходе 10Вт . Поскольку этот SMPS будет обеспечивать постоянного напряжения независимо от тока нагрузки, он будет работать в режиме CV (постоянное напряжение). Это выходное напряжение 5 В должно быть постоянным и устойчивым даже при самом низком входном напряжении при максимальной нагрузке (2 А) на выходе.

Крайне желательно, чтобы хороший блок питания имел пульсации напряжения менее 30 мВ пик-пик . Целевое напряжение пульсаций для этого ИИП составляет менее 30 мВ пик-пик пульсаций.Поскольку этот SMPS будет построен на плате с использованием коммутирующего трансформатора ручной работы , мы можем ожидать немного более высокие значения пульсации. Этой проблемы можно избежать, используя печатную плату.

Характеристики защиты:

Существуют различные схемы защиты, которые могут быть использованы в SMPS для безопасной и надежной работы. Схема защиты защищает SMPS, а также связанную с ним нагрузку. В зависимости от типа схема защиты может быть подключена к входу или выходу.

Для этого SMPS будет использоваться защита от перенапряжения на входе с максимальным рабочим входным напряжением 275 В переменного тока. Кроме того, для решения проблем с электромагнитными помехами будет использоваться фильтр синфазных помех для подавления генерируемых электромагнитных помех. На стороне выхода мы будем включать защиту от короткого замыкания , защиту от перенапряжения и защиту от перегрузки по току .

Выбор микросхемы управления питанием

Для каждой цепи SMPS требуется ИС управления питанием, также известная как ИС переключения, ИС SMPS или ИС осушителя.Подведем итоги проектных соображений, чтобы выбрать идеальную ИС управления питанием, которая будет подходить для нашей конструкции. Наши требования к дизайну:

  1. Мощность 10 Вт. 5В 2А при полной нагрузке.
  2. Универсальный входной рейтинг. 85-265 В переменного тока при 50 Гц
  3. Защита от перенапряжения на входе. Максимальное входное напряжение 275 В переменного тока.
  4. Выходная защита от короткого замыкания, перенапряжения и перегрузки по току.
  5. Работа с постоянным напряжением.

Из приведенных выше требований есть широкий выбор ИС, но для этого проекта мы выбрали Power integration .Power Integration — это компания, производящая полупроводники, у которой есть широкий спектр микросхем драйверов питания в различных диапазонах выходной мощности. Исходя из требований и доступности, мы решили использовать TNY268PN из семейства крошечных коммутаторов II. Ранее мы использовали эту ИС для построения схемы 12 В SMPS на печатной плате.

На изображении выше показана максимальная мощность 15 Вт. Однако мы сделаем ИИП в открытом корпусе и для универсального входного рейтинга. В таком сегменте TNY268PN может обеспечить выходную мощность 15 Вт.Давайте посмотрим на схему контактов.

Проектирование цепи SMPS 5 В 2 А

Лучший способ собрать 5V 2A SMPS Schematic — использовать экспертное программное обеспечение PI Power Integration. Загрузите программное обеспечение PI expert и используйте версию 8.6. Это отличное программное обеспечение для проектирования источников питания. Схема, показанная ниже, построена с использованием экспертного программного обеспечения PI Power Integration. Если вы новичок в этом программном обеспечении, вы можете обратиться к разделу проектирования этой схемы 12 В SMPS, чтобы понять, как использовать программное обеспечение.

Прежде чем приступить к созданию прототипа, давайте рассмотрим принципиальную схему SMPS 5v 2A и его работу.

Схема состоит из следующих участков —

  1. Защита от перенапряжения и отказа SMPS
  2. Преобразование переменного тока в постоянное
  3. ПИ-фильтр
  4. Схема драйвера или схема переключения
  5. Защита от пониженного напряжения.
  6. Цепь зажима.
  7. Магниты и гальваническая развязка.
  8. Фильтр электромагнитных помех
  9. Вторичный выпрямитель и демпферная цепь
  10. Секция фильтра
  11. Раздел обратной связи.

Защита от перенапряжения и отказа SMPS :

Эта секция состоит из двух компонентов, F1 и RV1. F1 — это плавкий предохранитель с задержкой срабатывания 1 А, 250 В переменного тока, а RV1 — это 7-миллиметровый, 275 В MOV ( Металлооксидный варистор ). Во время скачка высокого напряжения (более 275 В переменного тока) MOV резко замыкается и перегорает входной предохранитель. Однако благодаря функции медленного срабатывания предохранитель выдерживает пусковой ток через ИИП.

Преобразование переменного тока в постоянное :

Этот участок управляется диодным мостом. Эти четыре диода (внутри DB107) образуют полный мостовой выпрямитель. Диоды — 1N4006, но стандартный 1N4007 справится с этой задачей отлично. В этом проекте эти четыре диода заменены полным мостовым выпрямителем DB107.

ПИ-фильтр :

В разных штатах разные стандарты подавления электромагнитных помех. Эта конструкция соответствует стандарту EN61000-Class 3 , а фильтр PI разработан таким образом, чтобы уменьшить подавление синфазных электромагнитных помех .Этот раздел создается с использованием C1, C2 и L1. C1 и C2 — конденсаторы 400 В 18 мкФ. Это нечетное значение, поэтому для этого приложения выбрано 22 мкФ 400 В. L1 — это синфазный дроссель, который принимает дифференциальный сигнал электромагнитных помех для устранения обоих.

Схема драйвера или схема переключения :

Это сердце ИИП. Первичная обмотка трансформатора управляется коммутационной схемой TNY268PN. Частота переключения 120-132 кГц. Благодаря этой высокой частоте коммутации можно использовать трансформаторы меньшего размера.Схема переключения состоит из двух компонентов: U1 и C3. U1 — это основная микросхема драйвера TNY268PN. C3 — это байпасный конденсатор , который необходим для работы нашей микросхемы драйвера.

Защита от пониженного напряжения :

Защита от блокировки при пониженном напряжении обеспечивается резисторами R1 и R2. Он используется, когда SMPS переходит в режим автоматического перезапуска и определяет линейное напряжение. Значение R1 и R2 генерируется с помощью инструмента PI Expert .Два последовательно подключенных резистора — это мера безопасности и хороший способ избежать проблем с отказом резистора. Таким образом, вместо 2М в серии используются два резистора 1М.

Схема зажима :

D1 и D2 — цепь зажима. D1 — это TVS-диод , а D2 — — сверхбыстрый восстанавливающийся диод . Трансформатор действует как огромная катушка индуктивности на интегральной схеме драйвера питания TNY268PN. Поэтому во время выключения трансформатор создает скачков напряжения из-за индуктивности рассеяния трансформатора .Эти высокочастотные всплески напряжения подавляются диодным зажимом на трансформаторе. UF4007 выбран из-за сверхбыстрого восстановления, а P6KE200A выбран для работы TVS. В соответствии с конструкцией целевое напряжение ограничения (VCLAMP) составляет 200 В. Поэтому выбран P6KE200A, а для проблем, связанных со сверхбыстрой блокировкой, UF4007 выбран как D2.

Магниты и гальваническая развязка :

Трансформатор представляет собой ферромагнитный трансформатор, который не только преобразует переменный ток высокого напряжения в переменный ток низкого напряжения, но также обеспечивает гальваническую развязку.

Фильтр электромагнитных помех :

Фильтрация электромагнитных помех осуществляется конденсатором C4. Это увеличивает невосприимчивость схемы, чтобы уменьшить высокие помехи EMI. Это конденсатор Y-класса с номинальным напряжением 2 кВ.

Вторичный выпрямитель и цепь демпфера :

Выходной сигнал трансформатора выпрямляется и преобразуется в постоянный ток с помощью выпрямительного диода Шоттки D6. Демпферная цепь на D6 обеспечивает подавление переходных процессов напряжения во время операций переключения.Демпферная цепь состоит из одного резистора и одного конденсатора, R3 и C5.

Секция фильтра :

Секция фильтра состоит из конденсатора фильтра C6. Это конденсатор с низким ESR для лучшего подавления пульсаций. Кроме того, LC-фильтр, использующий L2 и C7, обеспечивает лучшее подавление пульсаций на выходе.

Отдел обратной связи :

Выходное напряжение измеряется U3 TL431 и R6 и R7. После измерения линии U2 оптопара управляется и гальванически изолирует часть измерения вторичной обратной связи с контроллером первичной стороны.Оптопара имеет внутри транзистор и светодиод. Управляя светодиодом, можно управлять транзистором. Поскольку связь осуществляется оптически, она не имеет прямого электрического соединения, что обеспечивает гальваническую развязку цепи обратной связи.

Теперь, когда светодиод напрямую управляет транзистором, обеспечивая достаточное смещение через светодиод оптопары, можно управлять транзистором оптопары , а точнее схемой драйвера. Эта система управления используется TL431.Шунтирующий регулятор. По мере того как параллельный стабилизатор имеет резистор делитель через него контрольный штифт, он может контролировать оптрон светодиод, который соединен через него. Контактная обратная связь имеет опорное напряжение 2.5V . Следовательно, TL431 может быть активен только при достаточном напряжении на делителе. В нашем случае делитель напряжения установлен на значение 5В. Следовательно, когда выходное напряжение достигает 5 В, TL431 получает 2,5 В через опорный вывод и, таким образом, активирует светодиод оптопары, который управляет транзистором оптопары и косвенно управляет TNY268PN.Если напряжение на выходе недостаточное, цикл переключения немедленно приостанавливается.

Сначала TNY268PN активирует первый цикл переключения, а затем определяет свой вывод EN. Если все в порядке, он продолжит переключение, если нет, через некоторое время он попытается еще раз. Этот цикл продолжается до тех пор, пока все не нормализуется, что предотвращает проблемы с коротким замыканием или перенапряжением. Вот почему эта топология называется flyback topology , так как выходное напряжение возвращается к драйверу для измерения связанных операций.Кроме того, цикл попыток называется режимом икоты при отказе.

D3 — это диод с барьером Шоттки . Этот диод преобразует высокочастотный выход переменного тока в постоянный. Диод Шоттки 3A 60V выбран для надежной работы. R4 и R5 выбираются и рассчитываются PI Expert. Он создает делитель напряжения и передает ток на светодиод оптопары от TL431.

R6 и R7 — это простой делитель напряжения, рассчитываемый по формуле TL431 REF Voltage = (Vout x R7) / R6 + R7 .Опорное напряжение 2.5V и Vout является 12V. Выбрав значение R6 23,7k, R7 стал примерно 9,09k.

Создание коммутирующего трансформатора для нашей цепи SMPS

Обычно для схемы SMPS требуется коммутирующий трансформатор, эти трансформаторы можно приобрести у производителей трансформаторов в соответствии с вашими проектными требованиями. Но проблема здесь в том, что если вы изучаете материал по созданию прототипа, вы не можете найти на полках точный трансформатор для своего дизайна.Итак, мы узнаем, как построить переключающий трансформатор на основе проектных требований, предоставленных нашим экспертным программным обеспечением PI.

Рассмотрим построенную схему построения трансформатора.

Как показано на изображении выше, нам нужно выполнить 103 витка одного провода 32 AWG на первичной стороне и 5 витков двух проводов 25 AWG на вторичной стороне.

На изображении выше начальная точка обмотки и направление обмотки описаны в виде механической схемы.Для изготовления этого трансформатора необходимы:

  1. Сердечник EE19, NC-2H или эквивалентная спецификация и зазор для ALG 79 nH / T 2
  2. Шпулька с 5 штифтами на первичной и вторичной стороне.
  3. Барьерная лента толщиной 1 мил. Требуется лента шириной 9 мм.
  4. 32 AWG эмалированный медный провод с паяемым покрытием.
  5. 25AWG эмалированный медный провод с паяемым покрытием.
  6. Измеритель LCR.

Требуется ядро ​​EE19 с NC-2H с зазором ядра 79nH / T2; как правило, это доступно парами.Шпулька стандартная с 4-мя первичными и 5-ю вторичными штифтами. Однако здесь используется шпулька с 5 штифтами с обеих сторон.

Для барьерной ленты используется стандартная клейкая лента, имеющая базовую толщину более 1 мил (обычно 2 мил). Во время операций, связанных с нарезанием резьбы, ножницами отрезают ленту до идеальной ширины. Медные провода закупаются у старых трансформаторов, их также можно купить в местных магазинах. Сердечник и шпулька, которые я использую, показаны ниже

.

Шаг 1: Добавьте припой на 1-й и 5-й штырьки первичной стороны.Припаяйте провод 32 AWG к выводу 5, направление намотки — по часовой стрелке. Продолжайте движение до 103 оборотов, как показано ниже

.

Это формирует первичную обмотку нашего трансформатора. Когда 103 витка обмотки завершены, мой трансформатор выглядел так, как показано ниже.

Шаг 2: Наклейте изоленту в качестве изоляции, необходимо 3 витка изоленты. Это также помогает удерживать катушку на месте.

Шаг 3: Включите вторичную обмотку с выводов 9 и 10.Вторичная сторона сделана с использованием двух жил из эмалированных медных проводов 25AWG. Припаяйте один медный провод к контакту 9, а другой — к контакту 10. Направление намотки снова по часовой стрелке. Продолжайте до 5 оборотов и припаяйте концы на штырях 5 и 6. Добавьте изоленту, применив изоленту так же, как и раньше.

После того, как первичная и вторичная обмотки были выполнены и изолента была использована, мой трансформатор выглядел так, как показано ниже.

Шаг 4: Теперь мы можем плотно закрепить две жилы изолентой.После завершения готовый трансформатор должен выглядеть так, как показано ниже.

Шаг 5: Также не забудьте обернуть клейкую ленту бок о бок. Это уменьшит вибрацию при передаче магнитного потока высокой плотности.

После выполнения вышеуказанных шагов и тестирования трансформатора с помощью измерителя LCR, как показано ниже. Измеритель показывает индуктивность 1,125 мГн или 1125 мкГн.

Построение цепи SMPS:

Когда трансформатор готов, мы можем приступить к сборке других компонентов на точечной плате.Детали, необходимые для схемы, можно найти в списке материалов ниже

.

После пайки компонентов моя плата выглядит примерно так.

Тестирование цепи SMPS 5V 2A

Чтобы проверить схему, я подключил входную сторону к источнику питания через VARIAC для управления входным напряжением сети переменного тока. Выходное напряжение при 85 и 230 В переменного тока показано ниже:

.


Как вы можете видеть в обоих случаях, выходное напряжение поддерживается на уровне 5 В.Но затем я подключил выход к моему прицелу и проверил рябь. Измерение пульсации показано ниже

.

Пульсации на выходе довольно высокие, они показывают пульсации 150 мВ пик-пик на выходе. Это совершенно не подходит для цепи питания. Согласно анализу, высокая пульсация обусловлена ​​факторами ниже —

.
  1. Неправильное проектирование печатной платы.
  2. Проблема с отскоком от земли.
  3. Неправильный радиатор печатной платы.
  4. Нет отключения на шумных линиях питания.
  5. Повышенные допуски на трансформаторе из-за ручного наматывания. Производители трансформаторов наносят лак окунанием на обмотки машин для лучшей устойчивости трансформаторов.

Если схема преобразована в надлежащую печатную плату, мы можем ожидать пульсации выходного сигнала источника питания в пределах 50 мВ пик-пик даже с трансформатором с ручной обмоткой. Тем не менее, поскольку Veroboard не является безопасным вариантом для создания импульсного источника питания в области переменного тока в постоянный, постоянно предлагается установить надлежащую печатную плату перед применением цепей высокого напряжения в практических сценариях.Вы можете проверить видео в конце этой страницы, чтобы проверить, как схема работает в условиях нагрузки.

Надеюсь, вы поняли руководство и научились создавать свои собственные схемы SMPS с помощью трансформатора ручной работы. Если у вас есть какие-либо вопросы, оставьте их в разделе комментариев ниже или воспользуйтесь нашим форумом, чтобы задать дополнительные вопросы.

Цепь регулятора напряжения постоянного тока

— Пост электроники

Регулятор напряжения постоянного тока

Регулятор напряжения постоянного тока — это устройство, которое поддерживает постоянное выходное напряжение обычного источника питания независимо от колебаний нагрузки или изменений на входе a.c. вольтаж .

Как правило, электронные схемы на лампах или транзисторах требуют источника постоянного тока. сила. Однако батареи для этой цели используются редко, поскольку они дороги и требуют частой замены. Итак, на практике d.c. Питание для электронных схем удобнее всего получать от коммерческого переменного тока. линий с использованием системы выпрямителя-фильтра, называемой постоянным током. источник питания.

Постоянный ток. напряжение от обычного источника питания остается постоянным, пока переменный ток напряжение сети или нагрузка не изменились.Однако во многих электронных приложениях желательно, чтобы постоянный ток напряжение должно оставаться постоянным независимо от изменений переменного тока. сеть или нагрузка. Для этого используется стабилизатор постоянного напряжения.

Типы регуляторов постоянного напряжения

Регулятор напряжения постоянного тока обычно использует электронные устройства для достижения этой цели. Различные типы регуляторов напряжения постоянного тока:

Стабилизатор постоянного напряжения для низких напряжений

Для низкого постоянного тока выходное напряжение (до 50 В), используется либо стабилитрон, либо стабилитрон в сочетании с транзистором.Такие блоки питания называются транзисторными блоками питания. Источник питания транзистора может давать только низкие стабилизированные напряжения, потому что безопасное значение VCE составляет около 50 В, и если оно будет выше этого значения, может произойти пробой перехода.

Регулятор напряжения постоянного тока для высоких напряжений

Для напряжений выше 50 В используются лампы накаливания в сочетании с ламповыми усилителями. Такие источники обычно называются ламповыми источниками питания и широко используются для правильной работы вакуумных клапанов.

Схема регулятора напряжения постоянного тока

Схема стабилизатора напряжения на стабилитроне

Схема регулятора напряжения серии

Схема регулятора напряжения обратной связи серии

Схема транзисторного шунтирующего стабилизатора напряжения

Принципиальная схема регулятора напряжения с шунтовой обратной связью

Схема регулятора напряжения накаливания

Принципиальная схема триодного регулятора напряжения серии

Схема двойного триодного регулятора напряжения серии

Схема регулятора напряжения

IC

Существует четыре основных типа регуляторов напряжения IC, поэтому я покажу вам принципиальную схему каждого из них по отдельности.

Схема стабилизатора постоянного положительного напряжения

Принципиальная схема регулятора постоянного отрицательного напряжения

Схема регулируемого регулятора напряжения

Схема двойного следящего регулятора напряжения

Вам могут понравиться следующие статьи

Sasmita

Привет! Я Сасмита. В Электронной Почте.com Я продолжаю свою любовь к преподаванию. Я магистр электроники и телекоммуникаций. И, если вы действительно хотите узнать обо мне больше, посетите мою страницу «О нас». Узнать больше

Цепи

Подробнее »Электроника

— обзор основ регулятора схем стабилитрона и способ, в котором стабилитрон может быть использован для обеспечения опорного напряжения в качестве источника питания электроники.


Пособие по схемам источника питания и руководство Включает:
Обзор электроники источника питания Линейный источник питания Импульсный источник питания Защита от перенапряжения Характеристики блока питания Цифровая мощность Шина управления питанием: PMbus Бесперебойный источник питания


Самую простую схему регулятора напряжения можно создать с помощью простого последовательного резистора и стабилитрона.Это схема шунтирующего стабилизатора, состоящая из последовательного резистора и стабилитрона, подключенного к земле через нагрузку.

Цепи стабилитрона

обычно используются для приложений с низким энергопотреблением, где требуется только разумный уровень стабилизации. Схема на стабилитроне сможет обеспечить разумный уровень стабилизации, но для более строгих требований требуется более сложная схема.

Основы

Стабилитрон работает при обратном смещении.По мере увеличения напряжения на диоде он сначала не проводит. Однако, когда напряжение достигает определенного уровня, диод начинает проводить, и он будет пытаться поддерживать одинаковое напряжение на диоде почти для всех уровней тока. Таким образом, если нагрузка помещается на стабилитрон, в простой схеме регулятора напряжение будет поддерживаться, несмотря на изменения в требованиях по току для нагрузки. Стабилитрон будет воспринимать изменения тока, необходимые для поддержания постоянного напряжения на диоде.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *