Подробное описание и схема подключения трехфазного двигателя к однофазной сети
Современный рынок предлагает однофазные и трехфазные электродвигатели. Но, как известно, бытовая сеть – однофазная, отсюда закономерный вопрос: осуществимо ли подключение трехфазного двигателя к однофазной сети?
Приведем несколько вариантов решения обозначенной задачи. Чаще предпочтение отдается методу подключение трехфазного двигателя через конденсатор – один из элементов является рабочим, другой – пусковым. Обозначения Ср и Сп. На схеме рассмотрены варианты включения «звезда» (а) и «треугольник» (б).
Рис.1
За счет действия элемента схемы Сп достигается увеличение пускового момента. После того, как двигатель запущен, Сп отключают. В ситуациях, когда пуск электродвигателя выполняется без нагрузки, необходимость включать в цепь конденсатор Сп отпадает.
Для успешной реализации задачи важно правильно определить емкость рабочего конденсатора.
Ср=К(1ном/U), где
Ср – рабочая емкость (мкФ), 1ном – сила тока по номиналу (А), U – напряжение в однофазной цепи (В), К – коэффициент, который зависит от того, какая схема подключения трехфазного двигателя выбрана. Показатель «К» для «звезды» — 2800, «треугольника» — 4800.
Показатели номинального тока и напряжения можно найти в технической документации (паспорте) к каждому виду электрических двигателей.
Подключение трехфазного двигателя через конденсатор чаще предусматривает применение недорогого электролитического конденсатора ЭП. После каждого включения такой конденсатор крайне важно разряжать.
Как показывает практика, подключение трехфазного двигателя к однофазной сети с помощью конденсаторов оправдано. Такая схема дает мощность в 65-85% от приведенных в паспорте данных. Проблемы могут возникнуть только с подбором нужного типа конденсатора. Чтобы не решать подобных задач, большое распространение получила схема подключения трехфазного двигателя с применением активных сопротивлений.
Рис.2
Но необходимо учесть, что при помощи метода сопротивления часто не получается получить мощность силовой установки больше, чем половина ее номинала.
Выполняя подключение трехфазного двигателя в однофазную сеть через конденсатор важно понимать, что номинал конденсаторов модификаций КБГ-МН и БГТ приводится на постоянном токе. При работе в условиях переменного тока, величины допустимых напряжений не должны превышать приведенных в таблице ниже показателей.
Номинальное напряжение постоянного тока, В | Допустимое напряжение переменного тока, В, при частоте 50Гц и емкости конденсатора, мкФ: | |
---|---|---|
до 2 | 4-10 | |
400 600 1000 1500 | 250 300 400 500 | 200 250 350 — |
Определить величину пусковых активных сопротивлений можно, опираясь на величины, приведенные в таблице ниже. За основу принимаются мощности электрического двигателя в трехфазном режиме.
Мощность двигателя, кВт | Пусковое сопротивление, Ом |
---|---|
при включении по схеме Рис.2 (а) | |
0,6 1,0 1,7 2,8 4,5; 7,0 | 25-30 20-25 10-15 4-10 3-5 |
при включении по схеме Рис.2 (б) | |
0,6; 1,0 1,7; 2,8 4,5 | 8-15 3-4 1,5-3 |
В информационном разделе Дельта Привод вы также можете подробнее ознакомиться с вопросом включения двигателя постоянного тока в сеть 110/220 вольт.
Способы пуска асинхронного трехфазного двигателя от однофазной сети ~ Электропривод
Как запускать трехфазный асинхронный двигатель от однофазной сети?
Самый простой способ запуска трехфазного двигателя в качестве однофазного, основывается на подключении его третьей обмотки через фазосдвигающее устройство.
Прежде, чем подключать трехфазный двигатель в однофазную сеть, необходимо убедиться, что номинальное напряжение его обмоток соответствуют номинальному напряжению сети. Асинхронный трехфазный двигатель имеет три статорных обмотки. Соответственно в клемной коробке должно быть выведено 6 клемм для подключения питания. Если открыть клеммную коробку, то мы увидим борно двигателя. На борно, выведены 3 обмотки двигателя. Их концы подключены к клеммам. На эти клеммы и подключается питание двигателя.
Каждая обмотка имеет начало и конец. Начала обмоток маркируют как С1, С2, С3. Концы обмоток промаркированы соответственно С4, С5, С6. На крышке клемной коробки мы увидим схему включения двигателя в сеть при разных напряжениях питания. Согласно этой схемы мы и должны подключить обмотки. Т..е. если двигатель допускает использование напряжений 380/220, то для его подключения к однофазной сети 220В, необходимо переключить обмотки в схему «треугольник».
Если же его схема подключения допускает 220/127 В, то к однофазной сети 220 В, его необходимо подключать по схеме «звезда», как показано на рисунке.
Схема с пусковым активным сопротивлением
На рисунке показана схемы однофазного включения трехфазного двигателя с пусковым активным сопротивлением. Такая схема используется только в двигателях малой мощности, так как в резисторе теряетя большое количество энергии в виде тепла.
Схемы конденсаторного пуска асинхронного двигателя
Наибольшее распространение получили схемы с конденсаторами. Для изменения направления вращения двигателя необходимо применять переключатель. В идеале для нормальной работы такого двигателя необходимо, чтобы емкость конденсатора изменялась в зависимости от числа оборотов. Но такое условие выполнить довольно трудно, поэтому обычно применяют схему двухступенчатого управления асинхронным электродвигателем. Для работы механизма, приводимого в движение таким двигателем, используют два конденсатора.
При применении пусковых конденсаторов имеется возможность увеличить пусковой момент до величины Мп/Мн=1,6-2. Однако, при этом значительно увеличивается емкость пускового конденсатора, из за чего вырастают его размеры и стоимость всего фазосдвигающего устройства. Для достижения максимального пускового момента, величину емкости необходимо выбирать из соотношения, Xc=Zk, т. е. емкостное сопротивление равно сопротивлению короткого замыкания одной фазы статора. По причине высокой стоимости и габаритов всего фазосдвигающего устройства конденсаторный пуск применяется лишь при необходимости большого пускового момента. В конце пускового периода пусковой обмотки необходимо отключить, в противном случае пусковая обмотка перегреется и сгорит.
Пуск трехфазного асинхронного двигателя от однофазной сети, через частотный преобразователь
Для пуска и управления трехфазным асинхронным двигателем от однофазной сети, можно применять преобразователь частоты с питанием от однофазной сети. Структурная схема такого преобразователя представлена на рисунке. Пуск трехфазного асинхронного двигателя от однофазной сети с помощью преобразователя частоты является одним из самых перспективных. Поэтому именно он наиболее часто используется в новых разработках систем управления регулируемыми электроприводами. Принцип его лежит в том, что, меняя частоту и напряжение питания двигателя, можно в соответствии с формулой, изменять его частоту вращения.
Сам преобразователь состоит состоят из двух модулей, которые обычно заключены в один корпус:
— модуль управления, который управляет функционированием устройства;
— силовой модуль, который питает двигатель электроэнергией.
Применение преобразователя частоты для пуска трехфазного асинхронного двигателя. позволяет значительно снизить пусковой ток, так как электродвигатель имеет жесткую зависимость между током и вращающим моментом. Причем значения пускового тока и момента можно регулировать в достаточно больших пределах. Кроме того с помощью частотного преобразователя можно регулировать обороты двигателя и самого механизма, уменьшая при этом значительную часть потерь в механизме.
Недостатки применения частотного преобразователя для пуска трехфазного асинхронного двигателя от однофазной сети: достаточно высокая стоимость самого преобразователя и периферийных устройств к нему. Появление несинусоидальных помех в сети и снижение показателей качества сети.
Трехфазный двигатель в однофазной сети. Схема подключения трехфазного двигателя
Бывают в жизни ситуации, когда нужно включить какое-то промышленное оборудование в обычную домашнюю сеть электропитания (обычно это трехфазный двигатель). Тут же возникает проблема с числом проводов. У машин, предназначенных для эксплуатации на предприятиях, выводов, как правило, три, а бывает и четыре. Что с ними делать, куда их подключать? Те, кто пытался испробовать различные варианты, убедились, что моторы просто так крутиться не хотят. Возможно ли вообще однофазное подключение трехфазного двигателя? Да, добиться вращения можно. К сожалению, в этом случае неизбежно падение мощности почти вдвое, но в некоторых ситуациях это – единственный выход.
Напряжения трехфазной сети и их соотношение
Для того чтобы понять, как подключить трехфазный двигатель к обычной розетке, следует разобраться, как соотносятся напряжения в промышленной сети. Общеизвестны величины напряжений – 220 и 380 Вольт. Раньше еще было 127 В, но в пятидесятые годы от этого параметра отказались в пользу более высокого. Откуда взялись эти «волшебные цифры»? Почему не 100, или 200, или 300? Вроде бы круглые цифры считать легче.
Большая часть промышленного электрооборудования рассчитана на подключение к трехфазной сети переменного тока. Напряжение каждой из фаз по отношению к нейтральному проводу составляет 220 Вольт, совсем как в домашней розетке. Откуда же берутся 380 В? Это очень просто, достаточно рассмотреть равнобедренный треугольник с углами в 60, 30 и 30 градусов, который представляет собой векторная диаграмма напряжений. Длина самой длинной стороны будет равна длине бедра, умноженной на cos 30°. После нехитрых подсчетов можно убедиться, что 220 х cos 30°= 380.
Устройство трехфазного двигателя
Не все типы промышленных двигателей могут работать от одной фазы. Самые распространенные из них – «рабочие лошадки», составляющие большинство электромашин на любом предприятии – асинхронные машины мощностью в 1 – 1,5 кВА. Как работает такой трехфазный двигатель в трехфазной сети, для которой он предназначен?
Изобретателем этого революционного устройства стал русский ученый Михаил Осипович Доливо-Добровольский. Этот выдающийся электротехник был сторонником теории трехфазной питающей сети, которая в наше время стала главенствующей. Асинхронный двигатель трехфазный работает по принципу индукции токов от обмоток статора на замкнутые проводники ротора. В результате их протекания по короткозамкнутым обмоткам в каждой из них возникает магнитное поле, вступающее во взаимодействие с силовыми линиями статора. Так получается вращающий момент, приводящий к круговому движению оси двигателя.
Обмотки расположены под углом 120°, таким образом, вращающееся поле, создаваемое каждой из фаз, последовательно толкает каждую намагничиваемую сторону ротора.
Треугольник или звезда?
Трехфазный двигатель в трехфазной сети может включаться двумя способами – с участием нейтрального провода или без него. Первый способ называется «звезда», в этом случае каждая из обмоток находится под фазным напряжением (между фазой и нулем), равным в наших условиях 220 В. Схема подключения трехфазного двигателя «треугольником» предполагает последовательное соединение трех обмоток и подачу линейного (380 В) напряжения на узлы коммутации. Во втором случае двигатель будет выдавать большую примерно в полтора раза мощность.
Как включить мотор в обратном направлении?
Управление трехфазным двигателем может предполагать необходимость изменения направления вращения на противоположное, то есть реверс. Чтобы этого добиться, нужно просто поменять местами два провода из трех.
Для удобства изменения схемы в клеммной коробке двигателя предусмотрены перемычки, выполненные, как правило, из меди. Для включения «звездой» нежно соединить три выходных провода обмоток вместе. «Треугольник» получается немного сложнее, но и с ним справится любой электрик средней квалификации.
Фазосдвигающие емкости
Итак, порой возникает вопрос о том, как подключить трехфазный двигатель в обычную домашнюю розетку. Если просто попробовать подсоединить к вилке два провода, он вращаться не станет. Для того чтобы дело пошло, нужно сымитировать фазу, сдвинув подаваемое напряжение на какой-то угол (желательно 120°). Добиться этого эффекта можно, если применить фазосдвигающий элемент. Теоретически это может быть и индуктивность, и даже сопротивление, но чаще всего трехфазный двигатель в однофазной сети включается с использованием электрических емкостей (конденсаторов), обозначаемых на схемах латинской буквой С.
Что касается применений дросселей, то оно затруднено по причине сложности определения их значения (если оно не указано на корпусе прибора). Для замера величины L требуется специальный прибор или собранная для этого схема. К тому же выбор доступных дросселей, как правило, ограничен. Впрочем, экспериментально любой фазосдвигающий элемент подобрать можно, но это дело хлопотное.
Что происходит при включении двигателя? На одну из точек соединения подается ноль, на другую – фаза, а на третью — некое напряжение, сдвинутое на некоторый угол относительно фазы. Понятно и неспециалисту, что работа двигателя не будет полноценной в отношении механической мощности на валу, но в некоторых случаях достаточно самого факта вращения. Однако уже при запуске могут возникать некоторые проблемы, например, отсутствие начального момента, способного сдвинуть ротор с места. Что делать в этом случае?
Пусковой конденсатор
В момент пуска валу требуются дополнительные усилия для преодоления сил инерции и трения покоя. Чтобы увеличить момент вращения, следует установить дополнительный конденсатор, подключаемый к схеме только в момент старта, а затем отключающийся. Для этих целей лучшим вариантом является применение замыкающей кнопки без фиксации положения. Схема подключения трехфазного двигателя со стартовым конденсатором приведена ниже, она проста и понятна. В момент подачи напряжения следует нажать на кнопку «Пуск», и пусковой конденсатор создаст дополнительной сдвиг фазы. После того как двигатель раскрутится до нужных оборотов, кнопку можно (и даже нужно) отпустить, и в схеме останется только рабочая емкость.
Расчет величины емкостей
Итак, мы выяснили, что для того, чтобы включить трехфазный двигатель в однофазной сети, требуется дополнительная схема подключения, в которую, помимо пусковой кнопки, входят два конденсатора. Их величину нужно знать, иначе работать система не будет. Для начала определим величину электрической емкости, необходимую для того, чтобы заставить ротор тронуться с места. При параллельном включении она представляет собой сумму:
С = С ст + Ср, где:
С ст – стартовая дополнительная отключаемая после разбега емкость;
С р – рабочий конденсатор, обеспечивающий вращение.
Еще нам потребуется величина номинального тока I н (она указана на табличке, прикрепленной к двигателю на заводе-изготовителе). Этот параметр также можно определить с помощью нехитрой формулы:
I н = P / (3 х U), где:
U – напряжение, при подключении «звездой» — 220 В, а если «треугольник», то 380 В;
P – мощность трехфазного двигателя, ее иногда в случае утери таблички определяют на глаз.
Итак, зависимости требуемой рабочей мощности вычисляются по формулам:
С р = Ср = 2800 I н / U – для «звезды»;
С р = 4800 I н / U – для «треугольника»;
Пусковой конденсатор должен быть больше рабочего в 2-3 раза. Единица измерения – микрофарады.
Есть и совсем уж простой способ вычисления емкости: C = P /10, но эта формула скорее дает порядок цифры, чем ее значение. Впрочем, повозиться в любом случае придется.
Почему нужна подгонка
Метод расчета, приведенный выше, является приблизительным. Во-первых, номинальное значение, указанное на корпусе электрической емкости, может существенно отличаться от фактического. Во-вторых, бумажные конденсаторы (вообще говоря, вещь недешевая) часто используются бывшие в употреблении, и они, как всякие прочие предметы, подвержены старению, что приводит к еще большему отклонению от указанного параметра. В-третьих, ток, который будет потребляться двигателем, зависит от величины механической нагрузки на валу, а потому оценить его можно только экспериментально. Как это сделать?
Здесь потребуется немного терпения. В результате может получиться довольно объемный набор конденсаторов, соединенных параллельно и последовательно. Главное – после окончания работы все хорошенько закрепить, чтобы не отваливались припаянные концы от вибраций, исходящих от мотора. А потом не лишним будет еще раз проанализировать результат и, возможно, упростить конструкцию.
Составление батареи емкостей
Если в распоряжении у мастера нет специальных электролитических клещей, позволяющий замерять ток без размыкания цепей, то следует подключить амперметр последовательно к каждому проводу, который входит в трехфазный двигатель. В однофазной сети будет протекать суммарное значение, а подбором конденсаторов следует стремиться к наиболее равномерной загрузке обмоток. При этом следует помнить о том, что при последовательном подключении общая емкость уменьшается по закону:
1/С = 1/С1 + 1/С2… и так далее, а при параллельном – наоборот, складывается.
Также необходимо не забывать и о таком важном параметре, как напряжение, на которое рассчитан конденсатор. Оно должно быть не менее номинального значения сети, а лучше с запасом.
Разрядный резистор
Схема трехфазного двигателя, включенного между одной фазой и нейтральным проводом, иногда дополняется сопротивлением. Оно служит для того, чтобы на стартовом конденсаторе не накапливался заряд, остающийся после того, как машина уже выключена. Эта энергия может вызвать электрический удар, не опасный, но крайне неприятный. Для того чтобы обезопасить себя, следует параллельно с пусковой емкостью соединить резистор (у электриков это называется «зашунтировать»). Величина его сопротивления большая – от половины мегома до мегома, а по размерам он невелик, поэтому довольно и полуваттной мощности. Впрочем, если пользователь не боится быть «ущипнутым», то без этой детали вполне можно и обойтись.
Использование электролитов
Как уже отмечалось, пленочные или бумажные электрические емкости дорогие, и прибрести их не так просто, как хотелось бы. Можно произвести однофазное подключение трехфазного двигателя с использованием недорогих и доступных электролитических конденсаторов. При этом совсем уж дешевыми они тоже не будут, так как должны выдерживать 300 Вольт постоянного тока. Для безопасности их следует зашунтировать полупроводниковыми диодами (Д 245 или Д 248, например), но нелишним будет помнить о том, что при пробитии этих приборов переменное напряжение попадет на электролит, и он сперва сильно нагреется, а потом взорвется, громко и эффектно. Поэтому без крайней необходимости лучше все же использовать конденсаторы бумажного типа, работающие под напряжением хоть постоянным, хоть переменным. Некоторые мастера вполне допускают применение электролитов в пусковых цепях. В силу кратковременного воздействия на них переменного напряжения, они могут и не успеть взорваться. Лучше не экспериментировать.
Если нет конденсаторов
Где обычные граждане, не имеющие доступа к пользующимся спросом электрическим и электронным деталям, их приобретают? На барахолках и «блошиных рынках». Там они лежат, заботливо выпаянные чьими-то (обычно пожилыми) руками из старых стиральных машин, телевизоров и прочей вышедшей из обихода и строя бытовой и промышленной техники. Просят за эти изделия советского производства немало: продавцы знают, что если деталь нужна, то ее купят, а если нет – и даром не возьмут. Бывает, что как раз самого необходимого (в данном случае конденсатора) как раз и нет. И что же делать? Не беда! Сойдут и резисторы, только нужны мощные, желательно керамические и остеклованные. Конечно, идеальное сопротивление (активное) фазу не сдвигает, но в этом мире ничего нет идеального, и в нашем случае это хорошо. Каждое физическое тело обладает собственной индуктивностью, электрической мощностью и резистивностью, будь оно крошечной пылинкой или огромной горой. Включение трехфазного двигателя в розетку становится возможным, если на вышеприведенных схемах заменить конденсатор сопротивлением, номинал которого вычисляется по формуле:
R = (0,86 x U) / kI, где:
kI — величина тока при трехфазном подключении, А;
U – наши верные 220 Вольт.
Какие двигатели подойдут?
Перед тем как приобретать за немалые деньги мотор, который рачительный хозяин собирается использовать в качестве привода для точильного круга, циркулярной пилы, сверлильного станка или другого какого-либо полезного домашнего устройства, не помешает подумать о его применимости для этих целей. Не каждый трехфазный двигатель в однофазной сети вообще сможет работать. Например, серию МА (у него короткозамкнутый ротор с двойной клеткой) следует исключить, дабы не пришлось тащить домой немалый и бесполезный вес. Вообще, лучше всего сначала поэкспериментировать или пригласить опытного человека, электромеханика, например, и посоветоваться с ним перед покупкой. Вполне подойдет асинхронный двигатель трехфазный серии УАД, АПН, АО2, АО и, конечно же, А. Эти индексы указаны на заводских табличках.
Схема управления трехфазным двигателем от однофазной сети. Бесконденсаторный пуск трехфазных электродвигателей от однофазной сети
Всем электрикам известно, что трехфазные электродвигатели работают эффективнее, чем однофазные на 220 вольт. Поэтому если в вашем гараже проведена подводка питающего кабеля на три фазы, то оптимальный вариант – установить любой станок с мотором на 380 вольт. Это не только эффективно в плане экономичности работы, но и в плане стабильности. При этом нет необходимости добавлять в схему подключения какие-то пусковые устройства, потому что магнитное поле будет образовываться в обмотках статора сразу же после пуска двигателя. Давайте рассмотрим один вопрос, который сегодня встречается часто на форумах электриков. Вопрос звучит так: как правильно провести подключение трехфазного электродвигателя к трехфазной сети?
Схемы подключения
Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.
Существует две схемы подключения:
- Звезда.
- Треугольник.
Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет. Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.
Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора.
Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит. Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.
Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда. Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт. При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.
Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.
Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.
Внимание! Одновременно включать второй и третий пускатели нельзя. Произойдет короткое замыкание между подключенными к ним фазами, что приведет к сбрасыванию автомата. Поэтому между ними устанавливается блокировка. По сути, все будет происходить так – при включении одного, размыкаются контакты у другого.
Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.
Подключение электрического двигателя через магнитный пускатель
В принципе, схема подключения 3 фазного двигателя через магнитный пускатель практически точно такая же, как и через автомат. Просто в нее добавляется блок включения и выключения с кнопками «Пуск» и «Стоп».
Одна из фаз подключения к электродвигателю проходит через кнопку «Пуск» (она нормально замкнутая). То есть, при ее нажатии смыкаются контакты, и ток начинает поступать на электродвигатель. Но тут есть один момент. Если отпустить Пуск, то контакты разомкнуться, и ток поступать не будет по назначению. Поэтому в магнитном пускателе есть еще один дополнительный контактный разъем, который называется контактом самоподхвата. По сути, это блокировочный элемент. Он необходим для того чтобы при отжатой кнопке «Пуск» цепь подачи электроэнергии на электродвигатель не прерывалась. То есть, разъединить ее можно было бы только кнопкой «Стоп».
Что можно дополнить к теме, как подключить трехфазный двигатель к трехфазной сети через пускатель? Обратите внимание вот на какой момент. Иногда после долгой эксплуатации схемы подключения трехфазного электродвигателя кнопка «пуск» перестает работать. Основная причина – подгорели контакты кнопки, ведь при пуске двигателя появляется пусковая нагрузка с большой силой тока. Решить эту проблему можно очень просто – почистить контакты.
Похожие записи:
Итак, вам в руки попал промышленный трехфазный электродвигун на 380 вольт. Каким образом он у вас оказался – углубляться не будем а вот что с ним можно сделать, и как подключить электродвигатель 380 к 220в рассмотрим подробнее.
Для начала расшифруем наименования электродвигателя
Вначале проанализируем надписи на табличке нашего движка.
Там должно быть нанесено название с наименованием модели, например: двигатель асинхронный трехфазный 5АМХ160М2БПУ3 , расшифровывается это примерно как двигатель серии 5А модернизированный с алюминиевой станиной, высотой оси вращения 160мм, числом полюсов равным 2 (3000 об/мин).
Также она содержит несколько отдельных полей, из которых нас интересует наличие обозначения 380/220 – если таковое имеется, то это вполне подходит, т.к. его можно запускать в однофазной сети напряжением 220 вольт. Если же например присутствует надпись 380/660 – такой аппарат в сеть 220в к сожалению, не воткнешь. С
мотрим также скорость вращения – вполне приемлемая для бытовых целей от 1500 до 3000 об/мин, и мощность – для изготовления электронаждака, например, нормальной будет 250 .. 750 Вт. В надписях таблички еще может присутствовать номинал емкости конденсатора для включения в однофазную сеть и/или потребляемый агрегатом ток, что пригодится далее для расчета пусковой емкости. Если в обозначении присутствует только надпись электродвигатель 220 вольт, значит это скорее всего коллекторный постоянного тока.
Узнаем, как выполняется соединение обмоток трехфазных электродвигателей
Трехфазные асинхронные электродвигатели (синхронные машины применяются в качестве генераторов переменного тока) всегда имеют три одинаковые катушки (по числу фаз), и соответственно, 6 выводов. Посмотрим, сколько проводов выходит из нашего агрегата. Дла этого снимем крышку барно (это такая коробочка сверху, куда выведены концы намоток) and обратим свой внимательный взор на то, каким образом соединены выходы статора. Скорее всего, мы увидим следующее:
Начала выводов статора обозначаются символами С1 С2 С3, концы – С4 С5 С6. В одну точку могут соединяться либо начала, либо концы обмоток, эта схема соединения называется “звездой”. Если из корпуса двигателя просто выходят 6 проводов, то ищите на них обозначения С1 .. С6, нередко в таких случаях у таблички приводится схема включения с номиналами конденсаторов тоже.
Но для того, что бы можно было подключать машину 380в в сеть 220в, необходимо немного изменить схему подсоединения выводов.
Попробуем проделать подключение трехфазного электродвигателя в однофазную сеть
Для того, что бы запустить движок в домашней сети, потребуется переделать существующее соединение по схеме “треугольник”. Должно получиться следующее:
На схеме мы видим два конденсатора – рабочий и пусковой. Через них осуществляется питание “третьей фазы” двигателя. Конденсатор Спуск. включается кратковременно кнопкой без фиксации только на время, пока электродвигатель 220в разгонится до номинальных оборотов, на это уходит примерно от 2 до 5 сек. Данные номиналов конденсаторов можно рассчитать, исходя из потребляемого двигателем тока по формуле Сраб. = 4800 × I/V Cпуск. = 2.5 × Cраб.
Можно придерживаться упрощенной формулы “на каждый киловатт мощности 100мкф емкости”, т.е. Сраб = P/10. Но на практике как всегда лучшим методом расчета емкостей является подбор, поэтому тщательно подбираем конденсаторы исходя из надежного пуска и отсутствия перегрева движка при длительной работе. Номинальное напряжение конденсаторов должно быть не менее 400 вольт. Возможно соединение нескольких емкостей параллельно для увеличения общего номинала. и последовательно – для увеличения рабочего напряжения.
Изменить направление вращения двигателя можно перекидыванием концов блока емкостей к другому питающему проводу.
Схема включения в сеть 220 вольт
Практически включение можно осуществить по следующей схеме:
Подключение к питанию обязательно производим через предохранитель или . Запуск электромашины происходит при нажатии не фиксирующейся кнопки “Пуск” с двумя парами контактов, через одну из которых напряжение подается на катушку электромагнитного пускателя К1, а вторую – на пусковой конденсатор. После разгона двигателя с отпусканием кнопки “Пуск” аппарат не останавливается благодаря , включенным параллельно включающей кнопки. При необходимости остановить прибор нажимается кнопка “Стоп” и цепь питания магнитного пускателя разрывается, отключая двигатель от сети. Приведенная схема – базовая, она может быть дополнена элементами реверса, плавного торможения и другими вещами.
Стоит обратить внимание на то, что подключение 380-вольтового электродвигателя к 220 все таки нестандартно для трехфазных машин, поэтому мощность полученного агрегата редко составит более 50% от номинала.
При изготовлении и монтаже подобных устройств никогда не забывайте – электро-безопасность превыше всего!
Широко применяемые на производствах электродвигатели асинхронные соединяют «треугольником» или «звездой». Первый тип в основном используют для моторов продолжительного пуска и работы. Совместное подключение применяют для пуска высокомощных электродвигателей. Подключение «звезда» используют в начале пуска, переходя затем на «треугольник». Применяется также схема подключения трехфазного электродвигателя на 220 вольт.
Разновидностей моторов много, но для всех, главной характеристикой является напряжение, подаваемое на механизмы, и мощность самих двигателей.
При подключении к 220в на мотор действуют высокие пусковые токи, снижающие его срок эксплуатации. В промышленности редко используют соединение треугольником Мощные электродвигатели подключают «звездой».
Для перехода со схемы подключения электродвигателя 380 на 220 есть несколько вариантов, каждый из которых отличается преимуществами и недостатками.
Переподключение с 380 вольт на 220
Очень важно понимать, как подключается трехфазный электродвигатель к сети 220в. Чтобы трехфазный двигатель подключить к 220в, заметим, что у него есть шесть выводов, что соответствует трем обмоткам. При помощи тестера провода прозванивают, чтобы найти катушки. Их концы соединяем по два – получается соединение «треугольник» (и три конца).
Для начала, два конца сетевого провода (220 в) подключаем к любым двум концам нашего «треугольника». Оставшийся конец (оставшаяся пара скрученных проводов катушки) подсоединяется к концу конденсатора, а оставшийся провод конденсатора также соединяется с одним из концов сетевого провода и катушек.
От того, выберем мы один или другой, будет зависеть в какую сторону начнет вращаться двигатель. Проделав все указанные действия, запускаем двигатель, подав на него 220 в.
Электромотор должен заработать. Если этого не произошло, или он не вышел на требуемую мощность, необходимо вернуться на первый этап, чтобы поменять местами провода, т. е. переподключить обмотки.
Если при включении, мотор гудит, но не крутиться, требуется дополнительно установить (через кнопку) конденсатор. Он будет в момент пуска давать двигателю толчок, заставляя крутиться.
Видео: Как подключить электродвигатель с 380 на 220
Прозванивание, т.е. измерение сопротивления, проводится тестером. Если такой отсутствует, воспользоваться можно батарейкой и обычной лампой для фонарика: в цепь, последовательно с лампой, подсоединяют определяемые провода. Если концы одной обмотки найдены – лампа загорается.
Труднее гораздо найти определить начало и концы обмоток. Без вольтметра со стрелкой не обойтись.
Подсоединить потребуется к обмотке батарейку, а к другой — вольтметр.
Разрывая контакт провода с батарейкой, наблюдают, отклоняется ли стрелка и в какую сторону. Те же действия проводят с оставшимися обмотками, изменяя, если нужно, полярность. Добиваются чтобы отклонялась стрелка в ту же сторону, что при первом измерении.
Схема звезда-треугольник
В отечественных моторах часто «звезда» собрана уже, а треугольник требуется реализовать, т.е. подключить три фазы, а из оставшихся шести концов обмотки собрать звезду. Ниже дан чертеж, чтобы разобраться было легче.
Главным плюсом соединения трехфазной цепи звездой считают то, что мотор вырабатывает наибольшую мощность.
Тем не менее, подобное соединение «любят» любители, но не часто применяют на производствах, поскольку схема подключения сложная.
Чтобы она работала необходимо три пускателя:
К первому из них –К1 с одной стороны подключается обмотка статора, с другой – ток. Оставшиеся концы статора соединяют с пускателями К2 и К3, а затем для получения «треугольника» к фазам подключаются и обмотка с К2.
Подключив в фазу К3, незначительно укорачивают оставшиеся концы для получения схемы «звезда».
Важно: недопустимо одновременно включать К3 и К2, чтобы не произошло короткое замыкание, которое может приводить к отключению автомата мотора электрического. Во избежание этого, применяют электроблокировку. Работает это так: при включении одного из пускателей, другой отключается, т.е. его контакты размыкаются.
Как работает схема
При включении К1 с помощью реле времени включается К3. Мотор трехфазный, включенный по схеме «звезда» работает с большей мощностью, чем обычно. После некоторого времени, размыкаются контакты реле К3, но запускается К2. Теперь схема работы мотора — «треугольник», а мощность его становится меньше.
Когда требуется отключение питания, запускается К1. Схема повторяется при последующих циклах.
Очень сложное соединение требует навыков и не рекомендуется к реализации новичками.
Другие подключения электродвигателя
Схем несколько:
- Более часто, чем вариант описанный, применяется схема с конденсатором, который поможет значительно уменьшить мощность. Одни из контактов рабочего конденсатора подключается к нулю, второй – к третьему выходу мотора электрического. В результате имеем агрегат малой мощности (1,5 Вт). При большой мощности двигателя, в схему потребуется внесение пускового конденсатора. При однофазном подключении он просто компенсирует третий выход.
- Асинхронный мотор несложно соединить звездой или треугольником при переходе с 380в на 220. У таких моторов обмоток три. Чтобы изменить напряжение, необходимо выходы, идущие к вершинам соединений, поменять местами.
- При подключении электромоторов, важно тщательно изучить паспорта, сертификаты и инструкции, потому что в импортных моделях встречается часто «треугольник», адаптированный под наши 220В. Такие моторы при игнорировании этого и включении «звездой, просто сгорают. Если мощность более 3 кВт, к бытовой сети мотор нельзя. Чревато это коротким замыканием и даже выход из строя автомата УЗО.
Включение трехфазного двигателя в однофазную сеть
Ротор, подключенного к трехфазной цепи трехфазного двигателя, вращается благодаря магнитному полю, создаваемом током, идущим в разное время по разным обмоткам. Но, при подключении такого двигателя к цепи однофазной, не возникает вращающий момент, который мог бы вращать ротор. Наиболее простым способом подключения двигателей трехфазных к однофазной цепи является подсоединение его третьего контакта через фазосдвигающий конденсатор.
Включенные в однофазную сеть такой мотор имеет такую же частоту вращения, как при работе от трехфазной сети. Но о мощности нельзя сказать этого: ее потери значительны и зависят они от емкости конденсатора фазосдвигающего, условия работы мотора, выбранной схемы подключения. Потери на ориентировочно достигают 30-50%.
Цепи могут быть двух — , трех-, шестифазными, но наиболее применяемыми являются трехфазные. Под трехфазной цепью понимают совокупность цепей электрических с одинаковой частотой синусоидальной ЭДС, которые отличаются по фазе, но создаются общим источником энергии.
Если нагрузка в фазах одинакова, цепь является симметричной. У трехфазных несимметричных цепей – она разная. Полная мощность складывается из активной мощности трехфазной цепи и реактивной.
Хотя большинство двигателей справляется с работой от однофазной сети, но хорошо работать могут не все. Лучше других в этом смысле двигатели асинхронные, которые рассчитаны на напряжение 380/220 В (первое — для звезды, второе – треугольника).
Это рабочее напряжение всегда указывают в паспорте и на прикрепленной к двигателю табличке. Также там указана схема подключения и варианты ее изменения.
Если присутствует «А», это свидетельствует о том, что использоваться может как схема «треугольник», так и «звезда». «Б» сообщает о том, что подключены обмотки «звездой» и не могут быть соединены по – другому.
Получится в результате должно: при разрыве контактов обмотки с батареей, электрический потенциал той же полярности (т.е. отклонение стрелки происходит в ту же сторону) должен появляться на двух оставшихся обмотках. Выводы начала (А1, В1, С1) и конца (А2, В2, С2) помечают и подсоединяют по схеме.
Использование магнитного пускателя
Применение схемы подключения электродвигателя 380 через пускатель хорошо тем, что пуск производить можно дистанционно. Преимущество пускателя перед рубильником (или другим устройством) в том, что пускатель можно разместить в шкафу, а в рабочую зону вынести элементы управления, напряжение и токи при этом минимальны, следовательно, провода подойдут меньшего сечения.
Помимо этого, подключение с использованием пускателя обеспечивает безопасность в случае, если «пропадает» напряжение, поскольку при этом происходит размыкание силовых контактов, когда же напряжение вновь появится, пускатель без нажатия пусковой кнопки его не подаст на оборудование.
Схема подключения пускателя асинхронного двигателя электрического 380в:
На контактах 1,2,3 и пусковой кнопке 1 (разомкнутой) напряжение присутствует в начальный момент. Затем оно подается через замкнутые контакты этой кнопки (при нажатии на «Пуск») на контакты пускателя К2 катушки, замыкая ее. Катушкой создается магнитное поле, сердечник притягивается, контакты пускателя замыкаются, приводя в движение мотор.
Одновременно с этим происходит замыкание контакта NO, с которого подается фаза на катушку через кнопку «Стоп». Получается, что, когда отпускают кнопку «Пуск», цепь катушки остается замкнутой, как и силовые контакты.
Нажав «Стоп», цепь разрывают, возвращая размыкая силовые контакты. С питающих двигатель проводников и NO исчезает напряжение.
Видео: Подключение асинхронного двигателя. Определение типа двигателя.
Инструкция
Как правило, для подключения трёхфазного электродвигателя используют три провода и напряжение питания 380 вольт . В сети 220 вольт только два провода, поэтому, чтобы двигатель заработал, на третий провод тоже нужно подать напряжение. Для этого используют конденсатор, который называют рабочим конденсатором.
Емкость конденсатора зависит от мощности двигателя и рассчитывается по формуле:
C=66*P, где С – ёмкость конденсатора, мкФ, P – мощность электродвигателя, кВт.
То есть, на каждые 100 Вт мощности двигателя необходимо подобрать около 7 мкФ ёмкости. Таким образом, для двигателя мощностью 500 ватт нужен конденсатор ёмкостью 35 мкФ.
Необходимую ёмкость можно собрать из нескольких конденсаторов меньшей ёмкости, соединив их параллельно. Тогда общую ёмкость считают по формуле:
Cобщ = C1+C2+C3+…..+Cn
Важно помнить о том, что рабочее напряжение конденсатора должно быть в 1,5 раза больше питания электродвигателя. Следовательно, при напряжении питания 220 вольт конденсатор должен быть на 400 вольт. Конденсаторы можно использовать следующего типа КБГ, МБГЧ, БГТ.
Для подключения двигателя используют две схемы подключения – это «треугольник» и «звезда».
Если в трёхфазной сети двигатель был подключен по схеме «треугольник», тогда и к однофазной сети подключаем по этой же схеме с добавлением конденсатора.
Подключение двигателя «звездой» выполняют по следующей схеме.
Для работы электродвигателей мощность до 1,5 кВт достаточно ёмкости рабочего конденсатора. Если подключить двигатель большей мощности, то такой двигатель будет очень медленно разгоняться. Поэтому необходимо использовать пусковой конденсатор. Он подключается параллельно рабочему конденсатору и используется только во время разгона двигателя. Потом конденсатор отключается. Ёмкость конденсатора для запуска двигателя должна быть в 2-3 раза больше ёмкости рабочего.
Трехфазный двигатель в однофазной сетиТрехфазные двигатели необходимы для различных самоделок: циркулярок, деревообрабатывающих, заточных и сверлильных станков.
Среди различных способов запуска трехфазных электродвигателей в одфазных сетях, самый простой и эффективный — с подключением третьей обмотки через фазосдвигающий конденсатор. Учитывая, что конденсатор сдвигает фазу третьей обмотки на 90°С, а между первой и второй фазами сдвиг незначителен, электромотор теряет мощность примерно на 40…50% при включении обмоток по схеме треугольника. практике это условие выполнить трудно, двигателем обычно управляют двухступенчато: сначала включают с пусковым конденсатором (ввиду больших пусковых токов), а после разгона его отсоединяют, оставляя только рабочий (рис. 1).
С2=4800 I/U
U — напряжение сети, В.
Ток, потребляемый электродвигателем, можно измерить амперметром или же рассчитать по формуле:практике это условие выполнить трудно, двигателем обычно управляют двухступенчато: сначала включают с пусковым конденсатором (ввиду больших пусковых токов), а после разгона его отсоединяют, оставляя только рабочий (рис.1).
При нажатии па кнопку SB1 (можно использовать кнопку от стиральной машины — пускатель ПНВС-10 УХЛ2) электродвигатель М начинает разгоняться, а когда он наберет обороты, кнопку отпускают. SB1.2 размыкается, a SB1.1 и SB1.3 остаются замкнутыми. Их размыкают для остановки электродвигателя. Если SB 1.2 в кнопке не отходит, под него следует подложить шайбу так, чтобы он отходил. При соединении обмоток двигателя по схеме «треугольник» емкость рабочего конденсатора С2 определяется по формуле:
С2=4800 I/U
где I -ток, потребляемый мотором, А;
U — напряжение сети, В.
Ток, потребляемый электродвигателем, можно измерить амперметром или же рассчитать по формуле:
где Р — мощность двигателя, Вт;
U — напряжение сети, В;
n- КПД;
cosψ — коэффициент мощности. Емкость пускового конденсатора С1 выбирают в 2…2,5 раза больше рабочего при большой нагрузке на вал, а их допустимые напряжения должны превышать в 1,5 раза напряжение сети. Лучше всего применять конденсаторы марки МГБО, МБГП, МБГЧ с рабочим напряжением 500 В и выше. Пусковые конденсаторы необходимо зашунтировать резистором R1 сопротивлением 200…500 кОм, через который «стекает» оставшийся электрический заряд.
Реверсирование электромотора осуществляется путем переключения фазы на его обмотке тумблером SA1 (рис. 1) типа ТВ1…4 и т.п.
При работе в режиме холостого хода по питаемой через конденсаторы обмотке протекает ток, па 20…40% превышающий поминальный. Поэтому если электромотор будет часто использоваться в недогруженном режиме или вхолостую, емкость конденсатора С2 следует уменьшить. Например, для включения двигателя мощностью 1,5 кВт можно использовать в качестве рабочего конденсатор емкостью 100 мкФ, пускового — 60 мкФ. Значения емкостей рабочих и пусковых конденсаторов в зависимости от мощности двигателя приведены в таблице.
Если нет возможности приобрести бумажные конденсаторы, можно использовать оксидные (электролитические) в качестве пусковых» На рис.2 приведена схема замены бумажных конденсаторов на электролитические. Положительная полуволна переменного тока проходит через цепочку VD1C1, а отрицательная — через VD2C2, поэтому электролиты можно использовать с меньшим допустимым напряжением, чем для обычных бумажных конденсаторов. Так, если для бумажных конденсаторов необходимо напряжение 400 В и выше, то для электролита достаточно 300…350 В, потому что он пропускает только одну полуволну переменного тока, и следовательно, к нему прикладывается лишь половина действующего напряжения, а для надежности он должен выдержать амплитудное напряжение однофазной сети, т.е. примерно 300 В. Их расчет аналогичен расчету бумажных.
Схема включения трехфазного двигатель в однофазную сеть с помощью электролитических конденсаторов приведена на рис.3. Подобрать нужное значение емкости бумажных и оксидных конденсаторов проще всего измерив, ток в точках а, в, с — токи должны быть равны при оптимальной нагрузке на вал двигателя. Диоды VD1, VD2 выбираются с обратным напряжением не менее 300 В и 1пр. мах=10А. При большей мощности двигателя диоды устанавливаются на теплоотводы по два в плече, иначе может произойти пробой диодов и через оксидный конденсатор потечет переменный ток, в результате чего спустя некоторое время электролит может нагреться и разорваться. Электролитические конденсаторы в качестве рабочих применять нежелательно, поскольку длительное протекание через них больших токов приводит к их разогреванию и взрыву. Их лучше всего использовать в качестве пусковых.
Если трехфазный электродвигатель используется при динамических (больших) нагрузках на вал, можно использовать схему подключения пусковых конденсаторов с помощью токового реле, которое позволяет в момент больших нагрузок на вал автоматически подключать и отключать пусковые конденсаторы (рис.3).
При подключении обмоток трехфазного двигателя в однофазную сеть по схеме, приведенной на рис.4, мощность электродвигателя составляет 75% от номинальной мощности в трехфазном режиме, т. е. потери составляют примерно 25%, поскольку обмотки А и В включены противофазно на полное напряжение 220 В, а напряжение вращения определяется включением обмотки С. Фазирование обмоток показано точками.
Более практичны и удобны в работе с трехфазными двигателями резисторно-индуктивноемкостные преобразователи однофазной сети 220 В в трехфазную, с токами в фазах до 4А и сдвигом напряжений в фазах около 120°. Такие устройства универсальны, монтируются в жестяном корпусе и позволяют подключать трехфазные электродвигатели мощностью до 2,5 кВт в однофазную сеть 220 В практически без потери мощности.
В преобразователе используется дроссель с воздушным зазором. Устройство дросселя показано на рис.6. При правильном подборе R, С и соотношения витков в секциях обмотки дросселя такой преобразователь обеспечивает нормальную длительную работу электродвигателей независимо от их характеристик и степени нагрузки на вал. Вместо индуктивности дано индуктивное сопротивление XL, так как его проще измерить: обмотка дросселя крайними выводами через амперметр подключается к напряжению 100. ..220 В частотой 50 Гц параллельно с вольтметром. Индуктивное сопротивление (активным можно пренебречь) практически определяется как отношение напряжения в вольтах к току в амперах XL=U/J.
Конденсатор С1 должен выдерживать напряжение не менее 250 В, С2 — не менее 350 В. Если использовать конденсаторы КБГ, МБГ-4, то напряжение соответствует номиналу, указанному на маркировке, а конденсаторы МБГП, МБГО при включении в цепь переменного тока должны иметь примерно двукратный запас по напряжению. Резистор R1 должен быть рассчитан на ток до ЗА, т.е. на мощность около 700 Вт (наматывается никелево-хромовой проволокой диаметром 1,3…1,5 мм на фарфоровой трубке с передвигающейся скобой, позволяющей получать нужное сопротивление для разных мощностей двигателя). Резистор должен быть защищен от перегрева, огражден от других элементов, токоведущих частей, от прикосновения людей. Металлическое шасси корпуса необходимо заземлить.
Сечение магнитопровода дросселя S=16…18cm2, диаметр провода d=l,3. ..1,5 мм, общее число витков W=600…700. Форма магнитопровода и марка стали — любые, главное — предусмотреть воздушный зазор (а следовательно, возможность менять индуктивное сопротивление), которое устанавливается винтами (рис.6). Для устранения сильного дребезжания дросселя между Ш-об-разными половинами магнитопровода прокладывается деревянный брусок и зажимается винтами. В качестве дросселя подходят силовые трансформаторы от ламповых цветных телевизоров мощностью 270…450 Вт. Вся обмотка дросселя выполняется в виде одной катушки с тремя секциями и четырьмя выводами. Если использовать сердечник с постоянным воздушным зазором, придется изготовить пробную катушку без промежуточных отводов, собрать дроссель с примерным зазором, включить в сеть и измерить XL. Затем для подгонки полученного значения к требуемому. XL нужно отмотать или домотать несколько витков. Выяснив необходимое число витков, мотают необходимую катушку, разделив каркас на секции в отношении W1:W2:W3=1:1:2. Так, если общее число витков равно 600, то Wl =W2= 150, a W3=300. Чтобы увеличить выходную мощность преобразователя и избежать при этом несимметрии напряжений, нужно изменить значения XL, Rl, Cl, С2, которые рассчитываются из тех соображений, что токи в фазах А, В и С должны быть равны при номинальной нагрузке на вал двигателя. В режимах недогрузки двигателя несимметрия напряжений фаз не опасна, если наибольший из токов фаз не превышает номинальный ток двигателя. Пересчет параметров преобразователя на другую мощность производится по формулам:
С1=80Р;
С2=40Р;
Rl = 140/P;
XL = 110/P,
W=600/ Р,
S=16P,
d=1,4P;
Где P — мощность преобразователя в киловаттах, в то время как паспортная мощность двигателя — это его мощность на валу. Если коэффициент полезного действия двигателя неизвестен, его можно брать в среднем 75…80%.
Как подключить трёхфазный двигатель к однофазной сети 220 вольт.
При развитии любой гаражной мастерской, может возникнуть необходимость подключить трёхфазный электродвигатель в однофазную сеть на 220 вольт. Это не удивительно, так как промышленные трёхфазные двигатели на 380 в более распространены, чем однофазные (на 220 в), особенно больших габаритов и мощности. И изготовив какой нибудь станочек, или купив готовый (например токарный) любой гаражный мастер сталкивается с проблемой подключения трёхфазного электромотора к обычной гаражной розетке на 220 вольт. В этой статье мы и рассмотрим варианты подключения, а так же что для этого понадобится.
Для начала следует внимательно изучить шильдик (табличку) электродвигателя, чтобы узнать его мощность, так как от этой мощности будет зависеть ёмкость или количество конденсаторов, которые нужно будет купить. И прежде чем отправляться на поиски и покупку конденсаторов, для начала следует вычислить, какая ёмкость потребуется именно для вашего двигателя.
Расчёт ёмкости.
Ёмкость нужного конденсатора напрямую зависит от мощности вашего электродвигателя и высчитывается по простой формуле:
С = 66 Р мкФ .
Буква С означает ёмкость конденсатора в мкФ (микрофарад), а буква Р означает номинальную мощность электродвигателя в кВт (киловатт). Из этой простой формулы видно, что на каждые 100 ватт мощности трёхфазного двигателя, потребуется чуть менее 7 мкФ (если быть точным, то 6,6 мкФ) электрической ёмкости конденсатора. Например для эл. двигателя мощностью 1000 ватт (1 Квт) потребуется конденсатор ёмкостью 66 мкФ, а для эл. двигателя на 600 ватт нужен будет конденсатор ёмкостью примерно 42 мкФ.
Так же следует учесть, что потребуются конденсаторы, рабочее напряжение которых в 1,5 — 2 раза больше, чем напряжение в обычной однофазной сети. Обычно на базаре попадаются конденсаторы небольших ёмкостей (8 или 10 мкФ), но необходимую ёмкость легко собрать из нескольких параллельно соединённых конденсаторов маленькой ёмкости. То есть например 70 мкФ можно легко получить из семи параллельно спаянных конденсаторов по 10 мкФ.
Но всё же всегда следует стараться найти по возможности один конденсатор ёмкостью 100 мкФ, чем 10 конденсаторов по 10 мкФ, так надёжнее. Ну и рабочее напряжение, как я уже говорил, должно быть как минимум в 1,5 — 2 раза больше рабочего, а лучше в 3 — 4 раза больше (чем больше напряжение, на которое рассчитан конденсатор, тем надёжнее и долговечнее). Рабочее напряжение всегда пишется на корпусе конденсатора (как и мкФ).
Правильно вы подобрали (рассчитали) ёмкость конденсатора или нет, можно и на слух. При вращении мотора, должен быть слышен только шум от подшипников, ну и шум вентилятора воздушного охлаждения. Если же к этим шумам прибавляется и вой двигателя, нужно чуть уменьшить ёмкость (Ср) рабочего конденсатора. Если же звук нормальный, то можно наоборот немного увеличить ёмкость (так будет мощнее мотор), но только чтобы мотор работал тихо (до появления воя).
Проще говоря, нужно поймать момент, меняя ёмкость, когда к нормальному шуму от подшипников и крыльчатки, начнёт прибавляться еле слышимый посторонний вой. Это и будет необходимая ёмкость рабочего конденсатора. Это важно, так как если рабочая ёмкость конденсатора окажется больше необходимой, то мотор будет перегреваться, а если ёмкость будет меньше нужной, то мотор потеряет свою мощность.
Покупать лучше конденсаторы типа МБГЧ, БГТ, КБГ, ну а если не найдёте таких в продаже, можно применить и электролитические конденсаторы. Но при подключении электролитических конденсаторов, их корпуса нужно хорошо соединить между собой и изолировать от корпуса станка или ящика (если он металлический, но лучше использовать ящик для конденсаторов из диэлектрика — пластик, текстолит и т.п.).
При подключении трёхфазного двигателя к сети 220 вольт, частота вращения его вала (ротора) почти не изменится, а вот мощность его всё же немного уменьшится. И если подключить электродвигатель по схеме треугольник (рис 1), то мощность его уменьшится примерно процентов на 30 и будет составлять 70 — 75 % от его номинальной мощности (при звезде чуть меньше). Но можно подключить и по схеме звезда (рис 2), и при подсоединении звездой, мотор легче и быстрее запускается.
Чтобы подключить трёхфазный электродвигатель по схеме звезда, нужно его две фазные обмотки подключить в однофазную сеть, а третью фазную обмотку двигателя, подключить через рабочий конденсатор Ср к любому из проводов сети 220 в.
Чтобы подключить трёхфазный электромотор мощностью до полтора киловатта (1500 ватт), хватает только рабочего конденсатора необходимой ёмкости. Но при включении больших моторов (более 1500 ватт), движок либо очень медленно набирает обороты, либо вообще не запускается. В таком случае необходим пусковой конденсатор (Сп на схеме), ёмкость которого в два с половиной раза (лучше в 3 раза) больше ёмкости рабочего конденсатора. Лучше всего подходят в качестве пусковых конденсаторов электролитические (типа ЭП), но можно использовать и такого же типа как и рабочие конденсаторы.
Схема подсоединения трёхфазного мотора с пусковым конденсатором показана на рисунке 3 (а так же пунктирной линией на рисунках 1 и 2). Пусковой конденсатор включают только во время пуска двигателя, и когда он запустится и наберёт рабочие обороты (обычно хватает 2 секунд), пусковой конденсатор отключают и разряжают. В такой схеме используются кнопка и тумблер. При пуске аключается тумблер и кнопка одновременно и после запуска двигателя, кнопка просто отпускается и пусковой конденсатор отключается. Чтобы разрядить пусковой конденсатор, достаточно выключить двигатель (после окончания работы) и затем на короткое время нажать кнопку пускового конденсатора, и он разрядится через обмотки электродвигателя.
Определение фазных обмоток и их выводов.
При подключении необходимо знать, где какая обмотка электродвигателя. Как правило выводы обмоток статора электромоторов маркируют различными бирками с обозначением начала или конца обмоток, или помечают буквами на корпусе распределительной коробочки двигателя (или клеммной колодки). Ну а если же маркировка стёрлась или её вообще нет, то нужно прозвонить обмотки с помощью тестера (мультиметра), установив его переключатель на прозвонку, или с помощью обычной лампочки и батарейки.
Для начала следует узнать принадлежность каждого из шести проводов к отдельным фазам обмотки статора. Для этого следует взять любой из проводов (в клеммной коробочке) и подсоединить его к батарейке, например к её плюсу. Минус батарейки подсоедините к контрольной лампе, а второй вывод (провод) от лампочки, по очереди подсоединяйте к оставшимся пяти проводам двигателя, пока контрольная лампочка не загорится. Когда на каком то проводе лампочка загорится, это будет означать, что оба провода (тот что от батарейки и тот к которому подсоединили провод от лампы и лампа загорелась) принадлежат одной фазе (одной обмотке).
Теперь эти два провода пометьте картонными бирками (или малярным скотчем) п напишите на них маркероа начало первого провода С1, а второй провод обмотки С4. С помощью лампы и батарейки (или тестера) аналогично находим и помечаем начало и конец оставшиеся четырёх проводов (двух оставшихся фазных обмоток).Начало и конец второй фазной обмотки помечаем как С2 и С5, и начало и конец третьей фазной обмотки С3 и С6.
Далее следует точно определить, где начало и конец статорных обмоток. Я опишу далее способ, который поможет определить начало и конец статорных обмоток для двигателей до 5 киловатт. Да больше и не надо, так как однофазная сеть (проводка) гаража рассчитана на мощность 4 киловата, а если мощнее, то штатные провода не выдерживают. И вообще то редко кто использует двигатели в гараже, мощнее 5 киловатт.
Для начала соединим все начала фазных обмоток (С1, С2 и С3)в одну точку (согдасно помеченным бирками выводам), по схеме «звезда». И затем включим двигатель в сеть 220 в с использованием конденсаторов. Если при таком подключении, электродвигатель без гудения сразу раскрутится до рабочих оборотов, это значит, что вы попали в одну точку всеми началами или всеми концами фазных обмоток.
Ну а если же при включении в сеть, электродвигатель загудит и не сможет раскрутиться до рабочих оборотов, то в первой фазной обмотке нужно поменять местами выводы С1 и С4 (поменять местами начало и конец). Если это не поможет, то верните выводы С1 и С4 в первонаальное положение и попробуйте теперь поменять местами выводы С2 и С5. Если двигатель опять не набирает обороты и гудит, то верните назад выводы С2 и С5 поменяйте местами выводы третьей пары С3 и С6.
При всех вышеописанных манипуляциях с проводами, строго соблюдате правила техники безопасности. Провода держите только за изоляцию, лучше плоскогубцами с ручками из диэлектрика. Ведь электромотор имеет общий стальной магнитопровод и на зажимах остальных обмоток, может возникнуть довольно большое напряжение, опасное для жизни.
Изменение вращения вала электродвигателя (ротора).
Часто бывает, что вы например сделали шлифовальный станочек, с лепестковым кругом на валу. И лепестки из наждачной бумаги расположены под определённым углом, против которого вращается вал, а нужно в другую сторону. Да и опилки летят не на пол а наоборот вверх. Значит необходимо поменять вращение вала двигателя в другую сторону. Как это сделать?
Чтобы изменить вращение трёхфазного двигателя, включенного в однофазную сеть на 220 вольт по схеме «треугольник», нужно третью фазную обмотку W (см. рисунок 1,б) подключить через конденсатор к резьбовой клемме второй фазной обмотки статора V.
Ну а чтобы изменить вращение вала трёхфазного двигателя, подключенного по схеме «звезда», необходимо третью фазную обмотку статора W (см. рисунок 2,б) подключить через конденсатор к резьбовой клемме второй обмотки V.
Ну и напоследок хочу сказать, что шум двигателя от длительной его работы (несколько лет) может возникнуть со временем, и не следует путать его с гулом от неправильного подключения. Так же со временем может возникнуть и вибрация мотора. А бывает даже ротор трудно вращать вручную. Причиной этого как правило является выработка подшипников — их дорожки и шарики износились, да и сепаратор тоже. От этого возникают повышенные зазоры между деталями подшипников и они начинают шуметь, и со временем могут даже заклинить.
Этого допускать нельзя, и дело даже не только в том, что вал труднее будет вращаться и мощность двигателя упадёт, а ещё и в том, что между статором и ротором довольно маленький зазор, и при сильном износе подшипников, ротор может начать цеплять за статор, а это уже куда серьёзнее. Детали двигателя могут испортиться и восстановить их не всегда удаётся. Поэтому намного проще заменить зашумевшие подшипники новыми, от какой то авторитетной фирмы (как выбрать подшипник читаем вот тут), и электродвигатель снова будет работать долгие годы.
Надеюсь данная статья поможет гаражным мастерам, без проблем подключить трёхфазный двигатель какого то станка к однофазной гаражной сети на 220 вольт, ведь с применением различных станочков (шлифовальных, полировальных, сверлильных, токарных, гриндера и т. д.) намного упрощается процесс доводки деталей при тюнинге или ремонте.
Схемы подключения трёхфазного двигателя в однофазную сеть: конденсаторное, резисторное, через преобразователь
В личном хозяйстве часто требуется подключить какой-либо станок или приспособление для облегчения деятельности. Это может быть и корморезка, и самодельная дробилка, и циркулярка, и бетономешалка, и многое другое. На всех устройствах обычно используют асинхронные 3 фазные двигатели. Они самые распространённые. Остаётся лишь выбрать метод включения этого мотора в однофазную сеть 220 В.
Стандартное подключение
Все трехфазные асинхронные двигатели подсоединяют в сеть на 380 В. При этом они выдают максимальную мощность и наибольшие обороты. Но не у каждого хозяина есть возможность провести к себе на участок все три фазы. Это связано с финансовыми затратами по установке специальных счётчиков и различных щитов учёта электроэнергии. К тому же само оформление документов занимает довольно много времени.
По стандартной схеме, чтобы подключить трехфазный двигатель к 380 В, производят соединение трёх фаз со штатными клеммами мотора через пускатели, с помощью которых осуществляется запуск. В распределительной коробке двигателя обычно свободны три контакта, к которым и цепляют три фазы. Совершенно нет никакой разницы, какую фазу подсоединить к конкретному проводу. Правда, есть один нюанс – при смене проводов подключения, не трогая третий провод, получают вращение электродвигателя в другую сторону, что иногда необходимо в хозяйственной деятельности.
Соединение обмоток
Схемы соединения обмоток в двигателе только две – «звезда» или «треугольник». И оттого, как они соединены, зависят рабочие характеристики мотора. При любом соединении мощность не теряется. Зато при чрезмерной нагрузке двигатели со «звездой» медленнее скидывают свои обороты, чем их собратья с «треугольником». Отсюда делают вывод, что моторы со «звездой» требуют меньше пускового тока и, следовательно, менее нагружают электросеть при запуске.
Двигатели с соединением обмоток по «треугольнику» выдают свою мощность до конца даже при большой нагрузке, совершенно не теряя оборотов. Зато потом резко останавливаются, и для их следующего запуска требуется огромный пусковой ток, что чрезмерно перегружает электрическую сеть.
В промышленности используют обе схемы соединения. Двигатели со «звездой» применяют там, где требуется их систематическое включение и выключение, например, на каких-либо линиях производства, переработки, сборки и так далее. Моторы, у которых обмотки соединены по «треугольнику», нужны для работы на постоянных режимах нагрузки, например, выгрузной конвейер из шахты и другое.
В личных подсобных хозяйствах чаще всего используют двигатели, у которых соединение обмоток сделано по принципу «звезда». По такой схеме двигатели легко запускаются, а это не нагружает электрическую сеть частного дома.
Электрический двигатель в домашней сети
Обычное штатное напряжение домашней розетки 220 В. Оно считается однофазным, и на него рассчитаны все электрические бытовые приборы, начиная от телевизора и заканчивая последней моделью кофемолки.
А вот при необходимости включения трехфазного двигателя в однофазную сеть возникает несколько проблем. А именно:
- без дополнительных устройств запуск невозможен;
- при работе двигателя пропадает 30 – 40 % мощности. Это вынужденная потеря, так как в работе задействованы только две обмотки статора вместо трёх.
Всё-таки асинхронные трехфазные двигатели мощностью до 2,2 кВт с успехом подсоединяют к обычной домашней розетке. Для этого есть три проверенных способа.
- Конденсаторное включение электродвигателя.
- Резисторное включение.
- Включение через частотный преобразователь.
Все три метода подключения имеют свои плюсы и минусы, поэтому выбирают наиболее удобный применительно к конкретным условиям. А также всё зависит от финансовых возможностей хозяина.
Конденсаторное включение
Это наиболее распространённый способ. И заключается в введении некоторого количества ёмкостей, чтобы произошёл сдвиг фазы третьей незадействованной обмотки статора. Это намного облегчает запуск мотора. О том, как подключить 3х фазный двигатель на 220 вольт, подробно видно на схеме. Здесь сразу представлены два вида соединений обмоток статора.
- С1- С4, С2-С5, С3-С6 – обозначения обмоток статора;
- Ср – рабочий конденсатор;
- Сп – пусковой конденсатор;
- КН — кнопка для запуска.
Конечно, если двигатель без применения конденсаторов хорошенько раскрутить вручную до 1 тыс. об/мин., а потом включить в сеть на 220 В, то, скорее всего, он будет работать. Но этим никто и никогда не занимался. Обычно искали или покупали ёмкости для запуска.
Ёмкость рабочего конденсатора рассчитывают по формуле С=67×Р, где Р – мощность двигателя в кВт, а С – ёмкость конденсатора в мкФ. На практике пользуются ещё более простой формулой – 7 мкФ на каждые 100 Вт мощности. Например, для мотора 2,2 кВт нужен конденсатор ёмкостью 154 мкФ. Конденсаторы таких больших ёмкостей встречаются довольно редко, поэтому их набирают несколько и соединяют параллельно. При этом необходимо учитывать напряжение, на которое они рассчитаны. Оно должно быть больше 220 вольт примерно в полтора раза.
Обычно используют конденсаторы таких типов, как БГТ, КБП, МБГЧ, МБГО и им подобные. Это наиболее безопасные бумажные ёмкости, способные выдерживать значительную перегрузку при запуске двигателя. К тому же они слабо подвержены нагреву. Но при отсутствии их применяют и электролитические конденсаторы. В таком случае корпуса этих ёмкостей соединяют и хорошенько изолируют, так как они после высыхания электролита способны взрываться при нагрузке. Правда, довольно редко.
При запуске двигателя мощностью до 2,2 кВт используют только рабочий конденсатор. Его вполне хватает, чтобы разогнать мотор до штатных оборотов. При большей же мощности необходимо применять и пусковой конденсатор. Его ёмкость больше рабочего в 2,5 – 3 раза, то есть, для мотора в 2,2 кВт это будет 300 – 450 мкФ. В качестве пусковых ёмкостей часто применяют именно электролитические, так как в этом случае они работают кратковременно и нужны только для запуска. После набора мотором своих полных оборотов пусковые конденсаторы отключают кнопкой КН, что показано на схеме.
Чтобы изменить направление вращения электродвигателя, необходимо сделать переключения. Для этого нужно обратиться к схеме, где обмотки соединены «звездой»:
- вместо С1-С2 подключить в однофазную сеть С1-С3;
- рабочий конденсатор Ср включить между С2 и С3;
- кнопку с пусковым конденсатором тоже переключить на С2-С3.
В схеме соединения «треугольником» проводят аналогичные действия.
Существует специальная электрическая схема переключения вращения двигателя, которая на практике используется довольно редко. Обычно настраивают вращение в какую-нибудь одну сторону. Мотор нужен для привода конкретного устройства или агрегата, и чтобы поменять вращение рабочего органа, используют обыкновенный редуктор. Это можно увидеть на примере токарного или другого станка. В личном подсобном хозяйстве, например, для изменения хода ленты, где калибруют картофель, также употребляют редуктор. Это намного упрощает определённую задачу и обеспечивает хорошую технику безопасности.
Резисторное включение электродвигателя
При отсутствии конденсаторов для включения трехфазного мотора в однофазную сеть иногда используют резисторы. Это мощные керамические или стеклованные сопротивления. Вполне сгодится вольфрамовая проволока толщиной до 1 мм. При подключении её скручивают в пружину и укладывают в керамическую трубку.
Размер сопротивления вычисляется по формуле R = (0,87× U )/ I , где U – напряжение однофазной сети 220 В, а I – величина тока в амперах А.
Схема подключения с резисторами используется только для двигателей мощностью до 1 кВт, так как в сопротивлении происходит большая потеря энергии.
Через преобразователь частоты
Запуск 3-фазного мотора от сети на 220 В с помощью этого устройства сейчас является самым перспективным. Оттого оно употребляется в новейших проектах по управлению электроприводами. Дело в том, что при изменении напряжения и частоты сети меняется количество оборотов мотора, а в результате — и направление вращения.
Преобразователь представляет собой две электронные части, которые находятся в одном корпусе. Это управляющий модуль и силовой. Первый отвечает непосредственно за пуск и регулировки, а второй питает мотор электроэнергией.
Использование преобразователя для пуска трехфазного двигателя от домашней сети позволяет резко уменьшить пусковой ток и, следовательно, нагрузку. Практически пуск мотора можно производить постепенно, наращивая его обороты от 0 до 1000 – 1500 об/мин.
Пока такой прибор имеет очень высокую стоимость, что ограничивает его применение в домашнем хозяйстве. Кроме того, из-за плохих показателей качества самой электросети устройство постоянно находится в стадии усовершенствования. Это заставляет многих хозяев пользоваться старыми проверенными способами подключения трехфазных двигателей в однофазную сеть.
Применение однофазных двигателей в быту
Кроме трехфазных моторов широкое распространение получили и однофазные асинхронные двигатели. Они повсюду применяются в мощных насосах, в стиральных машинах, в тепловых и вентиляционных системах, а также пользуются популярностью у частных предпринимателей, которые решили открыть собственную пилораму.
Такие двигатели включают в обычную сеть на 220 В. Внутри этих моторов находятся две обмотки – одна из них пусковая, а другая рабочая. При создании сдвига фаз между ними получается вращающееся магнитное поле – это основное условие для запуска этих двигателей. Сдвигают фазы, как и в случае с трехфазными моторами, путём добавления ёмкостей. Схема подключения однофазного двигателя очень похожа на схему с трехфазным мотором.
Расчёт конденсаторов производят по такой же формуле или учитывают, что на каждый киловатт мощности мотора нужно 75 мкФ ёмкости. Это для рабочего конденсатора, а для пускового — в три раза больше. Кроме того, конденсаторы должны выдерживать напряжение не менее 300 В. При малой мощности двигателя вполне обходятся одной рабочей ёмкостью.
Трёхфазный двигатель в однофазной сети
Трёхфазные движки используются для циркулярок, заточки различных материалов, станков для сверления и т.п.
Имеется много вариантов запуска трёхфазных двигателей в однофазной сети, но самый эффективный, это подключение третьей обмотки через фазосдвигающий кондесатор. Нужно учитывать, что конденсатор сдвигает фазу третьей обмотки на 90 градусов, между первой и второй фазами сдвиг очень мал, электромотор начинает терять мощность около 40 — 50% на включении обмоток по схеме треугольника.
Для того, чтобы Электродвигатель с конденсаторным пуском работал хорошо, нужно чтобы ёмкость конденсатора менялась в зависимоти от количества оборотов. На деле этого добиться довольно тяжело, поскольку двигателем обычно управляют двухступенчатым способом, сначала активируют с пусковым конденсатором (с помощью больших пусковых токов), а после того как движок разгонится его отсоединяют и остаётся только рабочий (рис.1).
Если нажать на кнопку SB1 (её можно снять со стиральной машины — пускатель ПНВС-10 УХЛ2) электромотор М начинает набирать оброты, когда он разгонится кнопку отпускают. SB1.2 размыкается, a SB1.1 и SB1.3 остаются в замкнутом состоянии. Их размыкают, чтобы остановить движок. Бывает такое, что SB 1.2 в кнопке не отходит, в таком случае подложите под него шайбу таким образом, чтобы он отошёл. Чтобы соединить обмотки электродвигателя по схеме «треугольник» ёмкость С2 (рабочего конденсатор) определим с помощью формулы:
С2=4800 I/Uгде I — ток, потребляемый двигателем, А;U — напряжение сети, В.Ток, который потребляет электродвигатель, можно измерить амперметром или использовать формулу:
где Р — мощность электромтора, Вт;U — напряжение сети, В;n— КПД ; cos? — коэффициент мощности
Ёмкость С1 (пускового конденсатор) нужно выбирать в 2 — 2.5 раза больше рабочего на большой нагрузке на вал, их допустимые напряжения должны быть в 1.5 раза больше напряжения сети. В нашём случае наиболее лучшие конденсаторы это МГБО, МБГП, МБГЧ, у которых рабочее напряжение 500 В и больше.
Пусковые конденсаторы нужно будет зашунтировать с помощью резистора R1 сопротивлением 200 — 500 кОм, через него выходит остаток электрического заряда.
Реверсировать электромотор нужно с помощью переключения фазы на его обмотке тумблером SA1 (рис. 1) типа ТВ1 — 4.
На холостом ходу по питаемой через конденсаторы по обмотке протекает ток па 20 — 40% больше номинального. Поэтому уменьшайте ёмкость конденсатора С2 если двигатель будет часто работать в недогруженом режиме или на холостм ходу. Для активации двигателя с мощностью 1,5 кВт будет достаточно использовать рабочий конденсатор ёмкостью 100 мкф, а пусковой — 60 мкФ. Ёмкости рабочих и пусковых конденсаторов зависят от мощности самого двигателя, эти значения представлены в таблице, которая указана выше.
Желательно конечно использовать бумажные конденсаторы в роли пусковых, но если такой возможности у вас нет, то можно в качестве альтернативы использовать оксидные, т.е. электролитические. На рис. 2 показано как производить замену бумажных конденсаторов на электролитические. Положительная полуволна переменного тока протекает через цепь VD1C1, а отрицательная — через VD2C2, по это причине электролиты можно использовать с меньшим допустимым напряжением, чем для бумажных конденсаторов. Для бумажных конденсаторов нужно напряжение 400 В и более, то для электролита вполне хватает 300 — 350 В, по той причине, что он проводит лишь одну полуволну переменного тока и поэтому к нему прикладывается только половина напряжения, для точной надежности он должен держать амплитудное напряжение однофазной сети, это около 300 В. Этот расчет аналогичен расчету бумажных конденсаторов.
Схема для включения трёхфазного двигателя в однофазную сеть, используя электролитические конденсаторы показана на рис. 3. Чтобы подобрать нужную емкость бумажных и оксидных конденсаторов, лучше всего измерить ток в точках а, в, с — эти токи в обязательном порядке должны быть равны между собой при оптимальной нагрузке на вал электродвигателя. Диоды VD1, VD2 подбирайте с обратным напряжением не меньше 300 В и 1пр. мах=10А. Если мощность дыижка больше, то диоды устанавливайте на теплоотводы, по два в плече, в противном случае может случиться пробой диодов и через оксидный конденсатор побежит переменный ток, после чего, спустя немного времени электролит скорее всего нагреется и разорвётся. Электролитические конденсаторы в роли рабочих использовать не рекомендуется, потому что длительный проход через них высоких токов, как правило приводит к их нагреву и взрыву. Лучше используйте их для пусковых.
В случае если ваш трехфазный электромотор будет использоваться на динамических (высоких) нагрузках на вал, лучше используйте схему подключения пусковых конденсаторов при помощи токового реле, которое будет при больших нагрузках на вал автоматически включать и выключать пусковые конденсаторы (рис.3).
Во время подключения обмоток трехфазного электродвигателя в однофазную сеть с помощью схемы, которая представлена на рис. 4, мощность электромотора составляет 75% от номинальной мощности в трехфазном режиме, это значит потери составляют около 25%, потому что обмотки А и В подключены противофазно на всё напряжение 220 В, напряжение вращения определяется включением обмотки С. Фазирование обмоток изображено в виде точек.
Самые более надёжные,практичные и удобные при работе с трехфазными электродвигателями резисторно-индуктивноемкостные преобразователи однофазной сети 220 Вольт в трехфазную сеть, с токами в фазах до 4 ампер и сдвигом напряжений в фазах приверно 120 градусов. Эти устройства универсальны, устанавливаются они в жестяном корпусе и позволяют подсоединять трехфазные электромоторы мощностью до 2,5 килловатт в однофазную сеть 220 Вольт почти без потерь мощности.
В преобразователе используем дроссель с воздушным зазором. Его устройство представлено на рис. 6. Если правильно подобраны R, С и соотношения витков в секциях обмотки дросселя, то такой преобразователь даёт нормальную длительную работу электромоторов, это независимо от их характеристик и уровня нагрузки на вал. Вместо индуктивности представлено индуктивное сопротивление XL, потому что его легче измерить, обмотка дросселя крайними выводами через амперметр подсоединяется к напряжению 100 — 220 Вольт, частотой 50 Герц, параллельно с вольтметром. Индуктивное сопротивление (активным сопротивлением можно пренебречь) определяется отношением напряжения в вольтах к току в амперах XL=U/J.
Конденсатор С1 должен жержать напряжение не меньше 250 Вольт, а конденсатор С2 — не меньше чем 350 Вольт. Если вы используете конденсаторы КБГ, МБГ-4, то в таком случае напряжение будет соответствовать номиналу, который указан на маркировке, а конденсаторы МБГП, МБГО при посоединении к цепи переменного тока должны быть с двухкратным запасом напряжения. Резистор R1 должен быть рассчитан на ток до ЗА, это значит на мощность около 700 Вт (наматывается никелево-хромовая проволока диаметром 1,3 — 1,5 мм на фарфоровой трубке с передвигающейся скобой, которая позволяет получать необходимое сопротивление для различных мощностей электродвигателя). Резистор обязательно должен быть защищен от перегрева и ограждён от остальных компонентов, токоведущих частей, а также от возможного конакта человека с ним. Металлическое шасси корпуса в обязательном порядке необходимо заземлить.
Сечение магнитопровода дросселя должно составлять S=16 — 18cm2, диаметр провода d=l,3 — 1,5 мм, общее число витков W=600 — 700. Форма магнитопровода и марка стали могут быть любыми, главное помнить о воздушном зазоре (это даст вам возможность изменять индуктивное сопротивление), которое устанавливаем при помощи винтов (рис. 6). Для того чтобы избежать сильного дребезжания дросселя, нужно между Ш-об-разными половинами магнитопровода проложить деревянный брусок и зажать винтами. В роли дросселя подойдут силовые трансформаторы от ламповых цветных телевизоров с мощностью 270 — 450 Ватт. Обмотка дросселя в целом производится в виде одиной катушки, которая имеет три секции и четыре вывода. Если вы будете использовать сердечник с постоянным воздушным зазором, то вам придется изготавливать пробную катушку,которая не имеет промежуточных отводов, сделать дроссель с примерным зазором, подключить в сеть и измерить XL. XL необходимо отмотать или домотать ещё немного витков. Выясните необходимое количество витков, мотайте необходимую катушку, разделите каркас на секции в отношении W1:W2:W3=1:1:2. Итак, если у нас общее колисество витков равно 600, то из этого исходит Wl =W2= 150, a W3=300. Для того чтобы поднять выходную мощность преобразователя и не допустить при этом несиметрии напряжений, необходимо поменять значения XL, Rl, Cl, С2, которые отталкиваются от того,что токи в фазах А, В, С должны быть равными при номинальной нагрузке на вал электромотора. В режиме недогрузки электродвигателя несимметрия напряжений фаз не представляет какой либо опасности, в том случае если наибольший из токов фаз не будет превышать номинальный ток электродвигателя. Для пересчета параметров преобразователя на иную мощность используется формула:
С1 = 80РС2 = 40РRl = 140/PXL = 110/PW = 600/ РS = 16Pd = 1,4P
где P — это мощность преобразователя (в киловаттах), а мощность двигателя по паспорту — это является его мощностью на самом валу электродвигателя. В том случае если КПД (т.е. коэффициент полезного действия) электродвигателя вам неизвестен, то в таком случае его можно считать в среднем около 75 — 80%.
Как подключить трехфазный двигатель высокого и низкого напряжения
Трехфазный двигатель более эффективен, чем однофазный, из-за особенностей переменного тока. Когда питание двигателя подается по трем проводам, а не только по одному, и подача энергии проходит через каждый из них последовательно (отсюда, часть «А» переменного тока), это обеспечивает эффективный уровень мощности в √3 раза. выше (примерно в 1,728 раза), чем у соответствующей однофазной схемы.Как вы помните, электрическая мощность — это уровень напряжения, умноженный на ток.
Трехфазный двигатель может быть настроен в одной из двух конфигураций: Y-образный (часто пишется «звезда», как это произносится) или треугольный. Кроме того, эти двигатели имеют шесть или девять выводов. При установке с шестью выводами вы не можете выбрать, получаете ли вы систему высокого или низкого напряжения, но при установке с девятью выводами вы можете выбрать любой из них, используя любую конфигурацию. Это дает в общей сложности четыре варианта подключения.
Ваша схема может также использовать программируемые логические переключатели или ПЛК.
Для справки: L1, L2 и L3 обычно черные, красные и синие соответственно. Провода двигателя (от T1 до T9) обычно в порядке: синий, белый, оранжевый, желтый, черный, серый, розовый, красный и кирпично-красный. По возможности обращайтесь к диаграмме при выполнении следующих шагов.
Схема «звезда», низкое напряжение
Подключите 1 и 7 к L1, 2 и 8 к L2, а 3 и 9 к L3. Соедините оставшиеся выводы (4, 5 и 6) вместе.
Схема «звезда», высокое напряжение
Подключите 1 к L1, 2 к L2 и 3 к L3. Затем подключите 4 к 7, 5 к 8 и 6 к 9.
Дельта-конфигурация, низкое напряжение
Подключите 1, 6 и 7 к L1; 2, 4 и 8 к L2; и 3, 5 и 9 — L3.
Дельта-конфигурация, высокое напряжение
Подключите 1 к L1, 2 к L2 и 3 к L3. Подключите 4 к 7, 5 к 8 и 6 к 9.
Разница между однофазным и трехфазным источником питания переменного тока
Электропитание переменного тока (переменный ток) — это вид электричества, направление тока которого часто меняется.В начале 1900 года источник питания переменного тока использовался как для бизнеса, так и для дома, а теперь его расширили до. Система электропитания подразделяется на два типа: однофазный источник питания и трехфазный источник питания. В большинстве промышленных и коммерческих предприятий трехфазный источник питания используется для работы с высокими нагрузками, тогда как дома обычно питаются от однофазного источника питания, поскольку бытовая техника требует меньше энергии. В этой статье обсуждается разница между однофазными и трехфазными источниками питания, а — как определить однофазный или трехфазный .
Что такое фаза в электричестве?
Как правило, фазовое электричество — это ток или напряжение в существующем проводе, а также в нейтральном кабеле. Фаза означает распределение нагрузки, если используется один провод, на нем будет возникать дополнительная нагрузка, а если используются три провода, то нагрузки будут разделены между ними. Это можно назвать меньшей мощностью для 1 фазы и большей мощностью для 3 фазы.
Если это однофазная система, она включает в себя два провода, а когда это трехфазная система, то она состоит либо из трех (или) четырех проводов.Обе системы питания, такие как однофазные и трехфазные, используют питание переменного тока для обозначения блоков. Потому что ток, протекающий с использованием переменного тока, всегда имеет направление переменного тока. Основное отличие этих двух поставок — надежность доставки.
Однофазное питание
Во всей электрической сфере однофазное питание — это подача переменного тока системой, в которой происходит одновременное изменение всех напряжений питания. Этот тип разделения источника питания используется, когда нагрузки (бытовые приборы), как правило, нагреваются и освещаются огромными электродвигателями.
Когда однофазный источник питания подключен к двигателю переменного тока, он не генерирует вращающееся магнитное поле, вместо этого однофазные двигатели требуют дополнительных цепей для работы, но такие электродвигатели редко имеют номинальную мощность почти 10 кВт. В каждом из циклов однофазное системное напряжение достигает пикового значения два раза; прямая мощность нестабильна.
Однофазный сигналОднофазная нагрузка может приводиться в действие от трехфазного разделяющего трансформатора двумя способами.Один — это соединение между двумя фазами или соединение между одной фазой и нейтралью. Эти два будут давать разное напряжение от данного источника питания. Этот тип фазового питания обеспечивает выходное напряжение около 230 В. Применения этого источника питания используются для управления небольшими бытовыми приборами, такими как кондиционеры, вентиляторы, обогреватели и многие другие.
Преимущества
Преимущества выбора однофазного источника питания объясняются следующими причинами.
- Конструкция менее сложна
- Стоимость конструкции меньше
- Повышенная эффективность, обеспечивающая мощность переменного тока почти 1000 Вт
- Он обладает способностью обеспечивать максимальную мощность 1000 Вт
- Используется в различных отраслях промышленности и Приложения
Приложения
Применения однофазного источника питания включают следующее.
- Этот блок питания подходит как для дома, так и для бизнеса.
- Используется для подачи большого количества электроэнергии в дома, а также в непромышленные предприятия.
- Этого блока питания достаточно для работы двигателей мощностью до 5 лошадиных сил (л.с.).
Трехфазный источник питания
Трехфазный источник питания включает четыре провода, которые состоят из одной нейтрали и трех проводов. Три проводника удалены от фазы и пространства и имеют фазовый угол 120º друг от друга.Трехфазные блоки питания используются как однофазные блоки питания переменного тока.
Для работы с малой нагрузкой можно выбрать однофазный источник питания переменного тока вместе с нейтралью из системы трехфазного переменного тока. Это предложение является постоянным и не будет снижено до нулевого значения. Мощность этой системы можно проиллюстрировать в двух конфигурациях, а именно в соединении звездой (или) соединением треугольником. Соединение по схеме «звезда» используется для связи на большие расстояния, поскольку оно включает нейтральный кабель для тока ошибки.
Трехфазный сигналПреимущества
Преимущества трехфазного источника питания по сравнению с однофазным обусловлены следующими причинами:
- Трехфазный источник питания требует меньше меди
- Это показывает минимальный риск для работающих сотрудников с этой системой
- Он имеет более высокий КПД проводника
- Рабочие, которые работают в этой системе, также получают заработную плату
- Он даже может работать с расширенным диапазоном силовых нагрузок
Трехфазные приложения питания
трехфазного питания включают следующее.
- Эти типы источников питания используются в электрических сетях, вышках мобильной связи, центрах обработки данных, самолетах, кораблях, беспилотных системах, а также в других электронных нагрузках мощностью более 1000 Вт.
- Применимо к промышленным, производственным и крупным предприятиям.
- Они также используются в энергоемких центрах обработки данных и центрах обработки данных с высокой плотностью размещения.
Ключевые различия между однофазными и трехфазными источниками питания
Ключевые различия между однофазными и трехфазными источниками включают следующее.
Характеристика | Однофазный | Трехфазный |
Определение | Однофазный источник питания работает от одного провода | Трехфазный источник питания 20 |
Волновой цикл | Он имеет только один отчетливый волновой цикл | Он имеет три различных волновых цикла |
Подключение контура | Требуется только один провод для соединения с контуром | Эта фаза питания требует три провода для соединения с цепью |
Уровни выходного напряжения | Обеспечивает уровень напряжения почти 230 В | Обеспечивает уровень напряжения почти 415 В |
Имя фазы | Имя фазы одиночного фаза разделенная фаза | Нет спецификации IC имя для этой фазы |
Способность передачи энергии | Она имеет минимальную мощность для передачи энергии | Эта фаза имеет максимальную мощность для передачи энергии |
Сложность цепи | 1 фаза источник питания может быть сконструирован просто | Конструкция этого сложная |
Возникновение сбоя питания | Частое отключение питания | Отсутствие сбоя питания |
Потери | Потери в одной фазе максимальные | Потери в 3 фазах минимальные |
КПД | Минимальный КПД | Максимальный КПД |
Стоимость | Не дорого, чем Трехфазный источник питания | Немного дороже, чем однофазный e |
Приложения | Используется для домашнего использования | Трехфазный источник питания используется в огромных отраслях промышленности для работы с большими нагрузками. |
Самая запутанная концепция, с которой сталкиваются здесь люди, — это «, как определить однофазный и трехфазный» ?
Ответ заключается в определении ширины главного выключателя. Однофазные блоки питания имеют ширину в один полюс, а трехфазные блоки питания — в три полюса.
Как преобразовать однофазное в трехфазное?
Поскольку это наиболее важная концепция, которую необходимо знать, следующие пункты объясняют преобразование одной фазы в три фазы.
Когда существует крупногабаритный компрессор без какого-либо трехфазного источника питания, соответствующего системе, в которой построена локальная сеть, существует несколько путей для решения этой проблемы и обеспечения надлежащей мощности для компрессора. Отличное решение — преобразовать трехфазный двигатель в однофазный.
Для этого преобразования существует в основном три типа трехфазных преобразователей.
- Статический преобразователь — Когда трехфазный двигатель не запускается с помощью однофазной мощности, он может работать от владельца одной фазы после запуска.Это происходит с поддержкой конденсаторов. Но у этого метода не такая уж большая эффективность и меньший временной промежуток.
- Поворотный преобразователь фазы — Он работает как интеграция генератора и трехфазного двигателя. Он состоит из двигателя холостого типа, который, когда он находится в движении, вырабатывает мощность и благодаря всей этой настройке может должным образом стимулировать трехфазную систему.
- Преобразователь частотно-регулируемого привода — Он работает с использованием инверторов, которые генерируют переменный ток на любых уровнях частоты и воспроизводят почти все внутренние условия трехфазного двигателя.
Таким образом, это все о разнице между однофазными и трехфазными источниками питания и сравнительной таблице. Наконец, исходя из приведенной выше информации, мы можем сделать вывод, что при правильном подходе к проектированию источника питания проектировщик может дать подходящий совет для максимальной эффективности и экономии средств вашего проекта.
Выбор однофазной (или) трехфазной системы в основном зависит от требований к мощности конкретного приложения. В любом случае, хорошо спроектированный компонент обеспечит как надежное, так и надежное распределение энергии.Вот вам вопрос, каковы основные функции трехфазных и однофазных источников питания?
Что такое однофазные и трехфазные электрические системы? SESCOS
Это всего лишь фаза!
Вы слышали термины однофазный и трехфазный , когда речь идет об электропроводке? Если вам интересно, что это такое и как они влияют на вашу электрическую проводку, больше не удивляйтесь.
Даже если вы никогда не задумывались, всегда полезно понять основные электрические концепции.Вот краткое описание различий между двумя типами электрических систем.
Что это за фазы?
Трехфазное питание и однофазное питание — это разные способы настройки электрических систем. Большинство жилых домов, небольших многоквартирных домов и малых предприятий работают от однофазного источника питания.
Промышленные предприятия, такие как заводы, склады и перерабатывающие предприятия, работают от трехфазного источника питания. Если вы собираетесь подключить дом или офис, вам необходимо настроить его с помощью системы правильного типа.
Что такое однофазная система?
Однофазная установка требует двух проводов. Один должен быть проводником, а другой — нейтральным. По проводнику проходит ток. Нейтральный провод возвращает его.
Однофазная установка:
- Получает питание от одного источника.
- Имеет напряжение 230.
- Требуется два провода для замыкания цепи.
- Он имеет переменный источник питания, который может падать до нуля.
- Он менее эффективен, чем трехфазная система.
- Может питать фонари, мелкую бытовую технику и большую часть электроники.
Трехфазная система
Трехфазная система имеет четыре провода. Три — проводники, а один — нейтраль. Вы можете настроить трехфазную систему как однофазную, но нельзя сделать наоборот.
Трехфазная система:
- Получает питание от трех проводов.
- Имеет напряжение 415.
- Требуется четыре провода для замыкания цепи.
- Идеально подходит для интенсивного коммерческого использования.
- Имеет постоянный источник питания.
- Это более экономично, чем однофазная установка.
Есть ли двухфазная система?
Нет, нет. Вы получите только один или три.
Это сбивает с толку, потому что некоторые более крупные бытовые приборы работают от 240 вольт. Как они работают в однофазной системе?
В случаях, когда вам нужно 240 вольт, в цепь подаются оба горячих провода.Это устройство с двойным питанием считается «полнофазной цепью» , потому что в небольших приборах, работающих от 120 вольт, используется только один горячий провод. Вот почему однофазные системы иногда называют двухфазными.
Как узнать, какой у вас тип?
Спросите профессионального электрика всегда лучше, и вот два возможных варианта:
Первый — открыть коробку и посмотреть, сколько проводов находится внутри изоляции. Помните, что однофазная система имеет два провода.В трехфазной системе их четыре.
Другой способ — проверить напряжение. Если у вас трехфазная система, вы увидите показания 120 вольт между горячим проводом и заземляющим проводом. Вы увидите 206 вольт между двумя горячими проводами.
Если ваша система однофазная, вы измеряете 120 вольт между горячим проводом и заземляющим проводом. Вы также увидите 240 вольт между двумя горячими проводами.
В SESCOS установлены фазеры
Надеемся, вам понравилось узнать о фазах и схемах.
В SESCOS мы работаем с электрическими системами всех типов и размеров. Среди наших клиентов — местные жители, малый бизнес и крупные коммерческие предприятия. Свяжитесь с нами, если вам необходимо установить потолочный вентилятор, свет парковки или резервный генератор для вашего промышленного предприятия. Живете ли вы или работаете в Лисбурге, Рестоне или Винчестере, вы можете рассчитывать на SESCOS для всех ваших электрических нужд.
Схема однофазных электродвигателейУважаемый г-н.Электрик: Где найти схемы подключения однофазного электродвигателя?
Ответ: Я составил группу схем электрических соединений однофазного внутреннего электродвигателя и клеммных соединений, приведенных ниже. Внизу поста также видео о шунтирующих двигателях постоянного тока. ПРИМЕЧАНИЕ. Некоторые текстовые ссылки ниже ведут к соответствующим продуктам на Amazon и EBay.
Клеммы вращения двигателя — одно напряжение
ВРАЩЕНИЕ | L1 | L2 |
---|---|---|
По часовой стрелке | 1,5 | 4,8 |
Против часовой стрелки | 1,8 | 4,5 |
Вращение двигателя — двойное напряжение, только основная обмотка
НАПРЯЖЕНИЕ | ВРАЩЕНИЕ | L1 | L2 | СОЕДИНЕНИЕ |
---|---|---|---|---|
Высокая | Против часовой стрелки | 1 | 4, 5 | 2 и 3 и 8 |
Высокая | CW | 1 | 4, 8 | 2 и 3 и 5 |
Низкая | Против часовой стрелки | 1, 3, 8 | 2, 4, 5 | — |
Низкий | CW | 1, 3, 5 | 2, 4, 8 | — |
Вращение двигателя — двойное напряжение, основная и вспомогательная обмотки
НАПРЯЖЕНИЕ | ВРАЩЕНИЕ | L1 | L2 | СОЕДИНЕНИЕ |
---|---|---|---|---|
Высокая | Против часовой стрелки | 1, 8 | 4, 5 | 2 и 3, 6 и 7 |
Высокая | CW | 1, 5 | 4, 8 | 2 и 3, 6 и 7 |
Низкая | Против часовой стрелки | 1, 3, 6, 8 | 2, 4, 5, 7 | — |
Низкая | CW | 1, 3, 5, 7 | 2, 4, 6, 8 | — |
Подключения переключателя вспомогательной обмотки должны быть выполнены таким образом, чтобы обе вспомогательные обмотки были обесточены при размыкании переключателя.
СХЕМА ЭЛЕКТРОДВИГАТЕЛЯВнутренние электрические схемы электродвигателей малой и малой мощности
Индукция с разделенной фазой
Постоянно подключенный конденсатор с разделенной фазой
Запуск конденсатора с разделенной фазой
Запуск конденсатора с разделенной фазой
Запуск другого конденсатора с разделенной фазой
Индукция в режиме работы с разделенным фазным конденсатором (реверсивный)
Пусковое напряжение реактора
Однозначный конденсатор с разделенной фазой 905 Отталкивание
Индукция начала отталкивания (обратимая)
Затененный полюс
Каркасный затененный полюс
Универсальный
Асинхронный электродвигатель с расщепленной фазой оснащен короткозамкнутым ротором для работы с постоянной скоростью и имеет пусковую обмотку с высоким сопротивлением, которая физически смещена в статоре от основной обмотки.
Последовательно с пусковой обмоткой находится центробежный пусковой выключатель, который размыкает пусковую цепь, когда двигатель достигает примерно 75-80 процентов синхронной скорости. Функция пускового выключателя заключается в том, чтобы предотвратить потребление двигателем чрезмерного тока, а также защитить пусковую обмотку от чрезмерного нагрева.Двигатель может быть запущен в любом направлении путем реверсирования основной или вспомогательной (пусковой) обмотки.
Эти двигатели подходят для масляных горелок, воздуходувок, рабочих машин, полировальных машин, шлифовальных машин и т. Д.
Электродвигатель с постоянно подключенным конденсатором с расщепленной фазой.Электродвигатель с разделенной фазой и постоянно подключенным конденсатором также имеет короткозамкнутый ротор с основной и пусковой обмотками. Конденсатор постоянно включен последовательно со вспомогательной обмоткой.Двигатели этого типа запускаются и работают с фиксированным значением емкости последовательно с пусковой обмоткой.
Двигатель получает свой пусковой крутящий момент от вращающегося магнитного поля, создаваемого двумя физически смещенными обмотками статора. Основная обмотка подключается непосредственно к линии, в то время как вспомогательная или пусковая обмотка подключается к линии через конденсатор , обеспечивающий электрический фазовый сдвиг.
Этот двигатель подходит для приводов с прямым подключением, требующих низкого пускового момента, таких как вентиляторы, нагнетатели, некоторые насосы и т. Д.
Электродвигатель для запуска конденсатора с расщепленной фазой.Электродвигатель с пусковым механизмом с разделением фаз и конденсатором может быть определен как разновидность электродвигателя с расщепленной фазой, в котором конденсатор включен последовательно со вспомогательной обмоткой. Вспомогательная цепь размыкается центробежным переключателем, когда двигатель достигает 70-80 процентов синхронной скорости.
Также известен как асинхронный двигатель с конденсаторным пуском. Ротор представляет собой беличью клетку. Основная обмотка подключается непосредственно через линию, в то время как вспомогательная или пусковая обмотка подключается через конденсатор, который может быть включен в схему через трансформатор с обмоткой соответствующей конструкции и конденсатором таких значений, что две обмотки будут разнесены примерно на 90 градусов. .
Двигатели этого типа подходят для систем кондиционирования и охлаждения, вентиляторы с ременным приводом и т. Д.
Электродвигатель, работающий через конденсатор, разделенный фазойЭлектродвигатель, работающий через конденсатор, разделенный фазой. A Конденсатор с разделенной фазой Электродвигатель рабочего типа имеет рабочий конденсатор, постоянно включенный последовательно со вспомогательной обмоткой. Пусковой конденсатор подключен параллельно рабочему конденсатору только во время пускового периода. Двигатель запускается при замкнутом центробежном выключателе.
Amazon продает электродвигатели
Когда двигатель достигает 70-80 процентов синхронной скорости, пусковой выключатель размыкается и отключает пусковой конденсатор. Рабочий конденсатор обычно представляет собой масляно-заполненный конденсатор с промежутками между бумагами, обычно рассчитанный на 330 В переменного тока для непрерывной работы. Они могут варьироваться от 3 до 16 микрофарад.
Пусковой конденсатор обычно электролитического типа и может находиться в диапазоне от 80 до 300 мкФ для двигателей на 110 вольт и частотой 60 Гц.
Эти двигатели подходят для применений, требующих высокого пускового момента, таких как компрессоры, нагруженные конвейеры, поршневые насосы, холодильные компрессоры и т. Д.
Amazon продает центробежные переключатели
Другой электродвигатель, работающий на конденсаторе с расщепленной фазой.Другой тип электродвигателя с расщепленным фазным конденсатором Тип использует блок конденсаторного трансформатора и относится к типу с короткозамкнутым ротором с расщепленной фазой, в котором основная и вспомогательная обмотки физически смещены в статоре.В нем используется однополюсный двухпозиционный переключатель для подачи высокого напряжения на конденсатор во время запуска.
После того, как двигатель достигнет скорости от 70 до 80 процентов от синхронной, передаточный переключатель срабатывает для изменения отводов напряжения на трансформаторе. Напряжение, подаваемое на конденсатор с помощью трансформатора, может варьироваться от 600 до 800 вольт во время запуска. Для непрерывной работы выдается около 350 вольт.
Подходит для применений с высоким пусковым моментом, таких как компрессоры , нагруженные конвейеры, поршневые насосы, холодильные компрессоры и т. Д.
Асинхронный электродвигатель, работающий на разделенных фазах, конденсаторный (реверсивный).Асинхронный электродвигатель, работающий с разделенным фазным конденсатором (реверсивный). Когда реверсивный переключатель находится в положении «B», вспомогательная обмотка становится основной обмоткой, а основная обмотка становится вспомогательной. В положении «A» обмотки работают, как показано на схеме.
В двигателях с расщепленной фазой смена обмотки заставляет двигатель работать в обратном направлении. Обе обмотки должны быть идентичны по сечению провода и количеству витков.
Используйте это, если вам нужен реверсивный двигатель конденсаторного типа с переменным номинальным током и высоким крутящим моментом.
Электродвигатель с разделенной фазой и запуском реактора.Асинхронный электродвигатель с разделенной фазой и пуском реактора. Этот двигатель оснащен вспомогательной обмоткой, смещенной в магнитном положении относительно основной обмотки и подключенной параллельно ей. Реактор снижает пусковой ток и увеличивает запаздывание по току в основной обмотке.
При примерно 75% синхронной скорости пусковой выключатель срабатывает, чтобы шунтировать реактор, отключая вспомогательную обмотку от цепи.
Это двигатель с постоянной скоростью вращения, который лучше всего подходит для легких работающих машин, таких как вентиляторы, небольшие воздуходувки, бизнес-машины, шлифовальные машины и т. Д.
Amazon продает пусковые конденсаторы двигателя
Электродвигатель с однофазным конденсатором с расщепленной фазой (тип двойного напряжения).Электродвигатель с однофазным конденсатором, разделенный фазой (тип двойного напряжения). Этот двигатель имеет две одинаковые основные обмотки, которые могут быть включены последовательно или параллельно. При параллельном включении основной обмотки напряжение в сети обычно составляет 240 Ом.Когда основные обмотки соединены последовательно, используется напряжение 120 В.
Вспомогательная пусковая обмотка смещена в пространстве от основной на 90 градусов. Он также имеет центробежный выключатель и пусковой конденсатор. Обмотка такого типа дает только половину пускового момента при 120 вольт, чем при подключении на 240 вольт.
Электродвигатель отталкивания.Отталкивающий электродвигатель по определению является однофазным двигателем, который имеет обмотку статора, предназначенную для подключения к источнику энергии, и обмотку ротора, подключенную к коммутатору.Щетки и коммутаторы закорочены и расположены так, чтобы магнитная ось обмотки ротора была наклонена к магнитной оси обмотки статора.
Он имеет изменяющуюся характеристику скорости, высокий пусковой момент и умеренный пусковой ток. Благодаря низкому коэффициенту мощности, за исключением высоких скоростей, он может быть преобразован в двигатель с компенсированным отталкиванием, у которого есть другой набор щеток, расположенный посередине между короткозамкнутым набором, и этот дополнительный набор соединен последовательно с обмотками статора.
Электродвигатель индукционный с пуском отталкивания (реверсивный).Асинхронный электродвигатель с отталкивающим запуском (реверсивный) Асинхронный электродвигатель с отталкивающим запуском — это однофазный электродвигатель, имеющий ту же обмотку, что и отталкивающий электродвигатель, но при заданной скорости обмотка ротора замкнута накоротко или иным образом соединена, чтобы дать эквивалент обмотка беличьей клетки.
Этот двигатель запускается как отталкивающий двигатель, но работает как асинхронный двигатель с постоянной скоростью.Он имеет однофазную обмотку с распределенным возбуждением, ось щеток которой смещена относительно оси обмотки возбуждения. Якорь имеет изолированную обмотку. Ток, индуцированный в якоре, переносится щетками и коммутатором, что приводит к высокому пусковому моменту.
Когда достигается почти синхронная скорость, коллектор замыкается накоротко, так что якорь по своим функциям аналогичен якорю с короткозамкнутым ротором. На схеме изображен реверсивный тип, в котором две обмотки статора смещены, как показано.Реверс двигателя достигается путем перестановки соединений обмотки возбуждения.
Электродвигатель с экранированными полюсами.Электродвигатель с экранированными полюсами — это однофазный асинхронный двигатель, снабженный вспомогательной короткозамкнутой обмоткой или обмоткой, смещенной в магнитном положении относительно основной обмотки. Используется несколько различных методов строительства, но основной принцип тот же.
Затеняющая катушка состоит из медных перемычек с низким сопротивлением, встроенных с одной стороны каждого полюса статора и используемых для обеспечения необходимого пускового момента.Когда ток в основных катушках увеличивается, в затеняющих катушках индуцируется ток, который противодействует магнитному полю, которое создается в части полюсных наконечников, которые они окружают.
Когда ток основной катушки уменьшается, ток в затеняющей катушке также уменьшается до тех пор, пока полюсные наконечники не будут намагничены равномерно. По мере того, как ток основной катушки и магнитный поток полюсного наконечника продолжают уменьшаться, ток в экранирующих катушках меняется на противоположный и стремится поддерживать магнитный поток в части полюсных наконечников.
Когда ток в основной катушке падает до нуля, ток все еще течет в затеняющих катушках, создавая магнитный эффект, который заставляет катушки создавать вращающееся магнитное поле, вызывающее самозапуск двигателя.
Используется там, где требования к питанию невелики, например, в часах, приборах, фенах , маленьких вентиляторах и т. Д.
Каркасный электродвигатель с экранированными полюсамиКаркасный электродвигатель с экранированными полюсами. Электродвигатель с экранированными полюсами каркасного типа A предназначен для приложений, в которых требования к мощности очень малы. Цепь возбуждения с ее обмоткой построена вокруг обычного ротора с короткозамкнутым ротором и состоит из перфораций, которые поочередно уложены друг на друга, образуя перекрывающиеся соединения, так же, как собираются сердечники небольших трансформаторов.
Такие двигатели могут работать только на переменном токе, они просты по конструкции, дешевы и чрезвычайно прочны и надежны. Однако их основными ограничениями являются низкий КПД и низкий пусковой и рабочий крутящий момент.
Двигатель с экранированными полюсами не является реверсивным, если на каждой стороне полюса не предусмотрены экранирующие катушки и не предусмотрены средства для размыкания одной и замыкания другой катушки. По своей природе высокое скольжение двигателя с экранированными полюсами позволяет удобно получать изменение скорости при нагрузке вентилятора, например, за счет снижения напряжения.
Ebay продает ручные пускатели двигателей
Универсальный электродвигатель.Универсальный электродвигатель разработан для работы от переменного или постоянного тока (AC / DC). Это двигатель с серийным заводом. Он снабжен обмоткой возбуждения на статоре, которая последовательно соединена с коммутирующей обмоткой на роторе. Обычно производится с дробными размерами в лошадиных силах.
Скорости при полной нагрузке обычно находятся в диапазоне от 5000 до 10 000 об / мин со скоростью холостого хода от 12 000 до 18 000 об / мин.Типичное применение — переносные инструменты, офисная техника, электрические чистящие средства, кухонная техника, швейные машины и т. Д.
Скорость универсальных двигателей можно регулировать, последовательно подключив к двигателю сопротивление соответствующей величины. Это делает его подходящим для таких применений, как швейные машины, которые работают в диапазоне скоростей. Универсальные двигатели могут быть как компенсированными, так и некомпенсированными, причем последний тип используется только для более высоких скоростей и более низких номиналов.
Реверс этого двигателя достигается путем замены проводов щеткодержателя, при этом якорь подключен к нейтрали.В трехпроводном универсальном электродвигателе реверсивного типа с разделением последовательностей одна обмотка статора используется для получения одного направления, а другая обмотка статора — для получения другого направления, при этом в цепи одновременно находится только одна обмотка статора. Соединения якоря должны находиться в нейтральном положении, чтобы обеспечить удовлетворительную работу в обоих направлениях вращения.
РАЗМЕР РАМЫ ЭЛЕКТРОДВИГАТЕЛЯНиже приведена таблица размеров корпуса двигателя, которую я нашел в старой книге.
Таблица размеров электродвигателяЭту информацию о монтажных размерах двигателя я нашел в той же книге.
Таблица монтажных размеров электродвигателя NEMA C и J-Face. НЕКОТОРЫЕ СВЕДЕНИЯ ОБ ЭЛЕКТРОДВИГАТЕЛЯХ ПОСТОЯННОГО ТОКА Схема электрических соединений двигателя постоянного тока
Другие электрические схемы можно найти здесь .
Схема подключения трехфазного двигателя, 12 проводов
Соедините выводы двигателя 5 и 8 вместе. Цените вашу помощь, я думаю, что теперь я понимаю, хотя схема подключения 3-фазного двигателя 12 выводов — схема подключения 3-фазного двигателя 12 выводов. Каждая электрическая схема состоит из различных компонентов.Схема подключения 12-выводных двигателей «звездой» 12-выводные двигатели, соединенные звездой, отличаются от 9-выводных трехфазных двигателей с двойным напряжением тем, что ни одна из катушек не подключена постоянно, и поэтому все они могут быть проверены отдельно. Чтобы подключить двигатель к его номинальной высоковольтной конфигурации, на рис. 1 выше показана электрическая принципиальная схема 12-проводного двигателя с треугольной конфигурацией, подключенного таким образом к источнику питания переменного тока на 440 Вольт. Подключите вывод двигателя 2 к красному проводу L2. «Электродвигатель имеет электрическую схему на паспортной табличке, как показано ниже.7 Схема подключения потолочного вентилятора класса А. Выводы M 3 ~ Только односкоростные 3Ø СХЕМА ПОДКЛЮЧЕНИЯ U1 — Красный V1 — Желтый W1 — Синий Тепловые контакты (TB) Белый L1 L2 L3 N E Коды: ..31. и ..35. Имя: схема подключения двигателя с запуском по схеме звезда-треугольник — Отличная схема подключения трехфазного двигателя 3 звезда-треугольник и как подключить Agnitum Me; Тип файла: JPG; Источник: pinterest.com; Размер: 199,50 КБ; Размер: 990 х 823; СКАЧАТЬ. ваши собственные пины на Pinterest. Итак, это трехфазная 4-проводная система Wye 120/208, правильно? Когда вы используете свой палец или даже настоящую цепь глазами, легко ошибиться в отслеживании цепи.Трехфазный асинхронный двигатель — это тип асинхронного двигателя переменного тока, который работает от трехфазного источника питания по сравнению с однофазным асинхронным двигателем, где для его работы требуется однофазное питание. 6 Схема подключения однофазного двигателя. Откройте для себя (и сохраните!) Трехфазный ток питания создает электромагнитное поле в обмотке статора, которое приводит к возникновению крутящего момента в обмотке ротора трехфазного асинхронного двигателя, имеющего магнитное поле. В этом видео Джейми покажет вам, как читать электрическую схему и основы подключения электродвигателя электрического воздушного компрессора.Соедините провода двигателя 6 и 9 вместе. Выберите правильное подключение проводов, подключенных к имеющейся трехфазной цепи 208. «Отводы M 3 ~ Только односкоростная 3 Ø СХЕМА ПОДКЛЮЧЕНИЯ U1 — Красный V1 — Желтый W1 — Синий / Черный Термоконтакты (TB) Белый, если установлены L1 L2 L3 NE Коды: ..31. и ..35. В противном случае устройство не будет… Теги: Схема подключения трехфазного двигателя, 12 выводов, Схема электрических соединений трехфазного двигателя. МАРКИРОВКА КЛЕММ И ВНУТРЕННИЕ СХЕМЫ ПОДКЛЮЧЕНИЯ ОДНОФАЗНЫЕ И ПОЛИФАЗНЫЕ ДВИГАТЕЛИ СООТВЕТСТВИЕ СТАНДАРТАМ NEMA См. Рис.) * MG 1-2.24 Направление вращения. Я подключаю двигатель на 480 вольт. Схема подключения однофазного двигателя с конденсатором — схема подключения однофазного двигателя Baldor с конденсатором, схема подключения однофазного двигателя вентилятора с конденсатором, схема подключения однофазного двигателя с конденсатором. Каждая электрическая схема состоит из различных уникальных частей. Опубликовано в Электродвигатели Tagged 12-свинцовый двигатель, 3-свинцовый двигатель, 6-свинцовый двигатель, 9-свинцовый двигатель, проводка электродвигателя, как подключить трехфазный двигатель, частичная обмотка, электрическая схема, треугольник звезда-звезда 1 комментарий Навигация по публикациям ← Хотя это увеличивает время, необходимое для проверки всех возможных комбинаций; это позволяет вам лучше определить, где именно может произойти отказ двигателя.Некоторые методы идентификации немаркированных выводов требуют запуска двигателя на части его обмотки. Подключите вывод двигателя 1 к черному проводу L1. Двигатели с катушками концентрической формы не запустятся сами по себе на части своей обмотки. Схема подключения трехфазного 6-выводного двигателя, 480 В, добро пожаловать, спасибо, что посетили этот простой веб-сайт, мы пытаемся улучшить этот веб-сайт, веб-сайт находится в стадии разработки. Поддержка с вашей стороны в любой форме действительно помогает нам, мы очень ценим это. Выполните подключения для высоковольтной проводки на 460 В.7.1 Схема подключения трехпроводного потолочного вентилятора с конденсатором. … Вы, скорее всего, просто сможете завершить. Товарные знаки Nidec Motor Corporation, за которыми следует символ ®, зарегистрированы в Бюро патентов и товарных знаков США. Стандартное направление вращения для чередующихся генераторов — по часовой стрелке, если смотреть на конец машины напротив… 30 декабря 2015 г. — Этот штифт был обнаружен Асемом Вахби. Показания напряжения следует снимать с проводов с двигателем… ДВИГАТЕЛИ. Схема подключения 6-фазного трехфазного двигателя из приложений.usmotors.com Распечатайте электрическую схему, а также используйте маркеры для отслеживания сигнала. Многоскоростной 3-фазный двигатель, 3 скорости, 1 направление — схемы питания и управления. Однолинейная схема простой цепи контактора. А чтобы получить 208, я просто подключаю его последовательно, верно? 3 9 номенклатура nema и ‘ec — 12 выводов одно- или низковольтных двигателей с двумя напряжениями iec wi / v5v2 vi nema iec 12 1 9 / \ 4 nema 31 wi, v2 ui 85 vi, u2 7,12 u5, w6 8 , 10 v5, u6 9,11 w5, v6. Снимите крышку подключения проводов двигателя, стараясь не потерять четыре винта.(Диаграмма — звезда с 9 отведениями). Установка трехфазной электропроводки в доме — Схемы электрических соединений трехфазных двигателей IEC и NEC Информация об электрическом оборудовании Рисунки на диаграмме 18 — Схема электрических соединений пускателя трехфазного двигателя Pdf 10 hp eloectriv… Схема электрических соединений трехфазного электродвигателя 6 СХЕМА ЭЛЕКТРОПРОВОДКИ ДВИГАТЕЛЯ 466703 12 выводов, одно напряжение , Запуск звезды — треугольник или запуск с частичной намоткой. Редакция: 1/8/2014 NIDEC MOTOR CORPORATION ST. ЛУИ, МИССУРИ. † Все товарные знаки, не принадлежащие Nidec Motor Corporation, показанные на этом веб-сайте, являются собственностью соответствующих владельцев.(См. MG 1-2.21. Каждый компонент должен быть размещен и соединен с разными частями особым образом. Подсоедините провод двигателя 3… Вал должен вращаться, чтобы запустить их, что опасно. Соедините провода двигателя 4 и 7 вместе. 7.2 Схема подключения охлаждающего двигателя Видео Смотрите здесь: -7.3 Подключение обмотки трехфазного асинхронного двигателя со схемой; 7.4 Схема подключения обмотки трехфазного двигателя звезда-треугольник. Привет, Насир, Вы можете попробовать использовать частотно-регулируемый привод или инвертор для привода погружного насоса. входной источник питания — однофазный 240 В, и он преобразуется в трехфазный выход для вашего двигателя.Но, пожалуйста, примите во внимание, что номинальный ток вашего инвертора (в амперах) такой же, как номинальный ток (ампер) двигателя, или выше, чем у двигателя FLA. Эмпирическое правило для определения размера вашего инвертора -> FLA x 2 = номинальный ток VFD. Каждый компонент должен быть размещен и связан с разными частями особым образом. 2-11, в котором вектор 1 опережает вектор 2 на 120 градусов, а последовательность фаз равна 1, 2, 3.
ОДНОФАЗНЫЕ ИНДУКЦИОННЫЕ ДВИГАТЕЛИ (Электродвигатель)
1,2
Существует много типов однофазных электродвигателей.В этом разделе обсуждение будет ограничено теми типами, которые наиболее распространены для двигателей с интегральной мощностью от 1 л.с. и выше.
В промышленных приложениях по возможности следует использовать трехфазные асинхронные двигатели. В целом трехфазные электродвигатели имеют более высокий КПД и коэффициент мощности и более надежны, поскольку не имеют пусковых переключателей или конденсаторов.
В тех случаях, когда трехфазные электродвигатели недоступны или не могут использоваться из-за источника питания, для промышленного и коммерческого применения рекомендуются следующие типы однофазных электродвигателей: (1) двигатель с конденсаторным пуском, (2 ) двигатель с двумя конденсаторами и (3) двигатель с постоянным разделением конденсаторов.
Краткое сравнение характеристик однофазных и трехфазных асинхронных двигателей поможет лучше понять, как работают однофазные двигатели:
1. Трехфазные двигатели имеют фиксированный крутящий момент, потому что в воздушном зазоре в состоянии покоя имеется вращающееся поле. . Однофазный двигатель не имеет вращающегося поля в состоянии покоя и, следовательно, не развивает крутящий момент заторможенного ротора. Дополнительная обмотка необходима для создания вращающегося поля, необходимого для запуска. В однофазном двигателе со встроенной мощностью это часть сети RLC.
2. В трехфазном двигателе ток ротора и потери ротора незначительны без нагрузки. Однофазные двигатели имеют значительный ток ротора и потери в роторе без нагрузки.
3. Для данного момента пробоя однофазный двигатель требует значительно большего магнитного потока и более активного материала, чем эквивалентный трехфазный двигатель.
4. Сравнение потерь между однофазными и трехфазными двигателями показано на рис. 1.11. Обратите внимание на значительно более высокие потери в однофазном двигателе.
Общие характеристики этих типов однофазных асинхронных двигателей следующие.
1.2.1
Двигатели с конденсаторным пуском
Двигатель с конденсаторным пуском — это однофазный асинхронный двигатель, основная обмотка которого предназначена для прямого подключения к источнику питания, а вспомогательная обмотка подключена последовательно с конденсатором и пусковым выключателем для отключения вспомогательной обмотки от источника питания после запуска. На рисунке 1.12 представлена принципиальная схема двигателя с конденсаторным пуском.Наиболее часто используемый тип пускового выключателя — это выключатель с центробежным приводом, встроенный в двигатель. Рисунок
РИСУНОК 1.11 Сравнение потерь в процентах одно- и трехфазных двигателей.
РИСУНОК 1.12 Однофазный двигатель с конденсаторным пуском.
1.13 иллюстрирует каплезащищенный однофазный двигатель с конденсаторным пуском промышленного качества; обратите внимание на механизм переключения с центробежным приводом.
Однако другие типы устройств, такие как реле, чувствительные к току и напряжению, также используются в качестве пусковых переключателей.Совсем недавно были разработаны твердотельные переключатели, которые используются в однофазном двигателе с конденсаторным пуском.
РИСУНОК 1.13. (С любезного разрешения Magnetek, Сент-Луис, Миссури)
в ограниченной степени. Твердотельный коммутатор будет коммутатором будущего, поскольку он будет усовершенствован, а затраты уменьшены.
Все переключатели установлены так, чтобы оставаться замкнутыми и поддерживать цепь вспомогательной обмотки в рабочем состоянии до тех пор, пока двигатель не запустится и не разгонится примерно до 80% от скорости полной нагрузки. На этой скорости переключатель размыкается, отключая цепь вспомогательной обмотки от источника питания.
Затем двигатель работает от основной обмотки как асинхронный. Типичные характеристики скорости-момента для двигателя с конденсаторным пуском показаны на рис. 1.14. Обратите внимание на изменение крутящего момента двигателя в точке перехода, в которой срабатывает пусковой выключатель.
Типичные рабочие характеристики асинхронных двигателей со встроенной мощностью 1800 об / мин с конденсаторным пуском приведены в таблице 1.6. Для этих однофазных двигателей будет значительно более широкий разброс значений крутящего момента заторможенного ротора, крутящего момента пробоя и тягового момента, чем для сопоставимых трехфазных двигателей, и такое же изменение также существует для КПД и коэффициента мощности. (ПФ).Обратите внимание, что в однофазных двигателях тяговый момент является фактором, обеспечивающим запуск с высокоинерционными или трудно запускаемыми нагрузками. Поэтому важно знать характеристики конкретного двигателя с конденсаторным пуском, чтобы убедиться, что он подходит для применения.
1.2.2
Конденсаторный двигатель с двумя номиналами — это конденсаторный двигатель с разными значениями емкости для запуска и работы. Очень часто двигатель этого типа называют двигателем с конденсаторным запуском и запуском от конденсатора.
Изменение значения емкости от условий запуска к условиям работы происходит автоматически с помощью пускового переключателя, который аналогичен тому, который используется для двигателей с конденсаторным запуском. Предусмотрены два конденсатора: высокое значение емкости для условий запуска и более низкое значение для рабочих условий. Пусковой конденсатор обычно электролитического типа, который обеспечивает высокую емкость на единицу объема. Рабочий конденсатор обычно представляет собой блок из металлизированного полипропилена, рассчитанный на непрерывную работу.На рисунке 1.15 показан один из способов установки обоих конденсаторов на двигатель.
Принципиальная схема двигателя с конденсатором на две величины показана на рис. 1.16. Как показано, при пуске и запуске, и работе
РИСУНОК 1.14 Кривая скорость-крутящий момент для двигателя с конденсаторным пуском. Конденсаторы
включены последовательно со вспомогательной обмоткой. Когда пусковой переключатель размыкается, он отключает пусковой конденсатор от цепи вспомогательной обмотки, но оставляет рабочий конденсатор последовательно с вспомогательной обмоткой, подключенной к источнику питания.Таким образом, как основная, так и вспомогательная обмотки находятся под напряжением во время работы двигателя и вносят свой вклад в мощность двигателя. Типичный
л.с. | Производительность при полной нагрузке | Крутящий момент, фунт-фут | |||||
об / мин | А | Эфф. | PF Крутящий момент | Заблокирован | Разбивка | Подтягивание | |
1 | 1725 | 7.5 | 71 | 70 3,0 | 9,9 | 7,5 | 7,6 |
2 | 1750 | 12,5 | 72 | 72 6,0 | 17,5 | 14,7 | 11,5 |
3 | 1750 | 17,0 | 74 | 79 9,0 | 23,0 | 21,0 | 18,5 |
5 | 1745 | 27,3 | 78 | 77 15.0 | 46,0 | 32,0 | 35,0 |
a Четырехполюсные однофазные двигатели 230 В. Источник: любезно предоставлено Magnetek, Сент-Луис, Миссури. Кривая скорость-момент
для двухклапанного конденсаторного двигателя показана на рис. 1.17.
Для данного двигателя с конденсаторным пуском эффект добавления рабочего конденсатора в цепь вспомогательной обмотки следующий:
Повышенный момент пробоя: 5-30% Повышенный крутящий момент заторможенного ротора: 5-10% Повышенная эффективность при полной нагрузке: 2-7 точек
РИСУНОК 1.15 Двухзначный конденсатор, однофазный двигатель. (С любезного разрешения Magnetek, Сент-Луис, Миссури)
РИСУНОК 1.16 Двухзначный конденсатор, однофазный двигатель.
Повышенный коэффициент мощности при полной нагрузке: 10-20 баллов Снижение рабочего тока при полной нагрузке Пониженный магнитный шум Работает охладитель
Добавление рабочего конденсатора к однофазному двигателю с правильно спроектированными обмотками позволяет его рабочие характеристики приближаться к характеристикам трехфазный мотор. Типичные характеристики двухзначных конденсаторных двигателей с интегральной мощностью показаны в таблице 1.7. Сравнение этих характеристик с характеристиками, показанными в таблице 1.6 для двигателей с конденсаторным пуском, показывает улучшение как КПД, так и коэффициента мощности.
Оптимальные характеристики, которые могут быть достигнуты в однофазном двигателе с конденсаторами с двумя номиналами, зависят от экономических факторов, а также от технических соображений при проектировании двигателя. Чтобы проиллюстрировать это, в Таблице 1.8 показаны характеристики однофазного двигателя, конструкция которого оптимизирована для различных значений рабочей емкости./ кВтч. Обратите внимание, что основное улучшение характеристик двигателя происходит при первоначальном переходе от конденсаторного запуска к двухзначному конденсаторному двигателю с относительно низким значением рабочей емкости. Это первоначальное изменение конструкции также показывает самый короткий период окупаемости.
Определение оптимального двухзначного конденсаторного двигателя для конкретного применения требует сравнения стоимости двигателя и энергопотребления всех таких доступных двигателей. Это
ТАБЛИЦА 1.7 Типовые характеристики двигателей с двумя конденсаторами3
a Четырехполюсные однофазные двигатели на 230 В.Источник: любезно предоставлено Magnetek, Сент-Луис, Миссури.
рекомендовал, чтобы это сравнение проводилось методом стоимости жизненного цикла или методом чистой приведенной стоимости (изложено в теме 7). / кВтч, срок окупаемости для этих двигателей составил 8-20 месяцев.
Тип двигателя | |||||
Конденсатор пусковой | Конденсатор двухзначный | ||||
Рабочий конденсатор, MFD | 0 | 7,5 | 15 | 30 | 65 |
КПД при полной нагрузке | 70 | 78 | 79 | 81 | 83 |
Полная нагрузка PF | 79 | 9-1 | 97 | 99a | 99: l |
Снижение потребляемой мощности,% | 0 | 10.1 | 11,5 | 13,3 | 15 |
Стоимость,% | 100 | 130 | 110 | 151 | 196 |
Ориентировочный срок окупаемости | – | 1,3 | 1,0 | 1,8 | 2,9 |
a Опережающий коэффициент мощности.
ТАБЛИЦА 1.9 Сравнение эффективности: стандартные и энергоэффективные однофазные двигатели для бассейнов со скоростью 3600 об / минл.с. | Стандартные эффективные двигатели | Энергоэффективные двигатели |
0.75 | 0,677 | 0,76 |
1,00 | 0,709 | 0,788 |
1,50 | 0,749 | 0,827 |
2,00 | 0,759 | 0,85 |
3,00 | 0,809 | 0,869 |
РИСУНОК 1.18 Сравнение эффективности энергоэффективных и стандартных однофазных двигателей бассейновых насосов. (Предоставлено Magnetek, St.Луис, Миссури)
РИСУНОК 1.19 Годовая экономия на энергоэффективном двигателе для бассейнов мощностью 1 л.с., работающем 365 дней в году. (С любезного разрешения Magnetek, Сент-Луис, Миссури)
1.2.3
Однофазные асинхронные двигатели с постоянным разделением конденсаторов — это конденсаторные двигатели с одинаковым значением емкости, используемым как для запуска, так и для работы. Этот тип двигателя также называют однозначным конденсаторным двигателем.Применение однофазного двигателя этого типа обычно ограничивается прямым приводом таких нагрузок, как вентиляторы, нагнетатели или насосы, для которых не требуется нормальный или высокий пусковой крутящий момент. Следовательно, основным применением электродвигателя с постоянным разделением конденсаторов были вентиляторы и нагнетатели с прямым приводом. Эти двигатели не подходят для систем с ременным приводом и обычно ограничиваются более низкими значениями мощности в лошадиных силах.
Принципиальная схема двигателя с постоянным разделением конденсаторов показана на рис.1.20. Обратите внимание на отсутствие пускового переключателя. Этот тип двигателя по существу аналогичен двухзначному конденсаторному двигателю
РИСУНОК 1.20 Однофазный двигатель с постоянным разделенным конденсатором
, работающий на рабочем соединении, и будет иметь примерно такие же характеристики крутящего момента. Поскольку только рабочий конденсатор (который имеет относительно низкое значение) подключен последовательно со вспомогательной обмоткой при запуске, пусковой момент значительно снижается. Пусковой момент составляет всего 20-30% крутящего момента при полной нагрузке.Типичная кривая скорости-момента для двигателя с постоянным разделением конденсаторов показана на рис. 1.21. Рабочие характеристики этого типа двигателя с точки зрения КПД и коэффициента мощности такие же, как у двухзначного конденсаторного двигателя. Однако из-за низкого пускового момента его успешное применение требует тесной координации между производителем двигателя и производителем приводного оборудования.
Специальная версия конденсаторного двигателя используется для многоскоростных приводов вентиляторов. Этот тип конденсаторного двигателя обычно имеет главную обмотку с ответвлениями и ротор с высоким сопротивлением.Ротор с высоким сопротивлением используется для улучшения стабильной скорости и увеличения пускового момента. Существует ряд вариантов и способов намотки двигателей. Наиболее распространенная конструкция — двухскоростной двигатель, имеющий три обмотки: основную, промежуточную и вспомогательную. Для сети 230 В обычное соединение обмоток называется Т-образным соединением. Принципиальные схемы двухскоростных двигателей с Т-образным соединением показаны на рис. 1.22 и 1.23. Для
РИСУНОК 1.21 Кривая скорость-крутящий момент для двигателя с постоянным разделением конденсаторов.
высокоскоростной режим работы, промежуточная обмотка не включена в цепь, как показано на рис. 1.23, и линейное напряжение подается последовательно на основную обмотку и вспомогательную обмотку и конденсатор. Для низкоскоростной работы промежуточная обмотка включается последовательно с основной обмоткой и вспомогательной цепью, как показано на рис. 1.23. Это соединение снижает напряжение, приложенное как к основной обмотке, так и к вспомогательной цепи, тем самым уменьшая крутящий момент.
РИС. 1.22 Однофазный двигатель с постоянным разделенным конденсатором, Т-образное соединение и двухскоростной режим.
двигатель будет развиваться и, следовательно, скорость двигателя будет соответствовать требованиям нагрузки. Величина снижения скорости является функцией соотношения витков между основной и промежуточной обмотками и характеристиками крутящего момента ведомой нагрузки. Следует понимать, что для этого типа двигателя изменение скорости достигается за счет снижения скорости двигателя до необходимого минимума.
РИСУНОК 1.23 Однофазный двигатель с постоянным разделенным конденсатором с Т-образным соединением и расположением обмоток.
скорость; это не многоскоростной двигатель с более чем одной синхронной скоростью.
Пример кривых скорость-крутящий момент для конденсаторного двигателя с ответвленной обмоткой показан на рис. 1.24. Кривая нагрузки типичной нагрузки вентилятора накладывается на кривые скорость-крутящий момент двигателя, чтобы показать снижение скорости, полученное при низкоскоростном соединении.
РИСУНОК 1.24 Кривые скорость-крутящий момент для однофазного двигателя с постоянным разделенным конденсатором и ответвленной обмоткой.
типов однофазных асинхронных двигателей | Схема электрических соединений однофазного асинхронного двигателя
Поскольку жилые дома и многие коммерческие здания имеют только однофазное питание, однофазные асинхронные двигатели переменного тока находят множество применений. В домашних условиях стиральные и сушильные машины имеют по существу однофазный асинхронный двигатель мощностью около 1/3 лошадиных сил.
Типичный холодильный холодильник без замораживания имеет три двигателя: один является неотъемлемой частью компрессорного агрегата, один для вентилятора для циркуляции холодного воздуха и один для запуска таймера цикла размораживания.
В системах воздушного отопления имеется двигатель вентилятора. Кухонные приборы, такие как блендеры и миксеры, инструменты, такие как дрели, и другие устройства могут легко иметь несколько десятков однофазных асинхронных двигателей.
Асинхронный двигатель с расщепленной фазой
На рисунке 1 показан асинхронный двигатель с расщепленной фазой. Электродвигатель с расщепленной фазой полагается исключительно на разницу в сопротивлении и реактивном сопротивлении обмоток для создания фазового сдвига.
В цепи вспомогательной обмотки есть центробежный выключатель, который размыкается, когда двигатель достигает полной скорости.Двигатель с расщепленной фазой характеризуется относительно низким пусковым моментом, возможно, 100% -150% от номинального момента.
РИСУНОК 1: Схема (проводка) однофазного асинхронного двигателя (SPIM) и кривая крутящего момента-скорости.
Асинхронные двигатели с конденсаторным запуском
На рисунке 2 показан асинхронный двигатель с конденсаторным запуском. Двигатель с конденсаторным пуском использует конденсатор для фазового сдвига.
Его размер обеспечивает высокий пусковой крутящий момент, до 300% от номинального крутящего момента.Конденсатор не предназначен для непрерывной работы, поэтому в этом двигателе есть центробежный выключатель, который снимает вспомогательную обмотку после запуска.
РИСУНОК 2: Схема (проводка) конденсаторного асинхронного двигателя с пусковым конденсатором (CSIM) и кривая крутящего момента-скорости.
Однофазные двигатели по своей природе более шумные и менее плавные, чем многофазные двигатели. Поскольку существует компонент магнитного потока, вращающийся в обратном направлении, возникают пульсирующие крутящие моменты, поэтому кривая крутящего момента-скорости на самом деле является просто представлением среднего крутящего момента.
Если мы оставим конденсатор во вспомогательной обмотке после запуска двигателя, мы сможем приблизиться к двухфазной работе и получить более плавный и тихий двигатель.
Двигатель с постоянным разделенным конденсатором
Поскольку реактивное сопротивление обмотки двигателя и конденсатора являются функциями частоты, мы можем получить истинную двухфазную работу только при одной скорости двигателя для данного конденсатора.
Двигатель с постоянным разделенным конденсатором, показанный на рисунке 3, имеет конденсатор, рассчитанный на работу, что означает, что пусковой крутящий момент очень низкий, возможно, всего 75% от номинального крутящего момента.
РИСУНОК 3: Схема (проводка) двигателя с постоянным разделенным конденсатором (PSC) и кривая крутящего момента-скорости.
Реверсивный двигатель с постоянным разделенным конденсатором, показанный на рисунке 4, использует две идентичные обмотки, один конденсатор и селекторный переключатель. Селекторный переключатель используется для переключения конденсатора между двумя обмотками.
В положении переключателя 1 конденсатор подключается последовательно с обмоткой b, а в положении 2 — конденсатор последовательно с обмоткой a.В результате направление вращения меняется на противоположное.
РИСУНОК 4: Схема реверсивного двигателя с постоянным разделенным конденсатором (проводка)
Конденсатор пусковой конденсаторный двигатель
Для обеспечения хорошего пускового момента и хороших рабочих характеристик можно использовать два конденсатора, как показано на рисунке 5.
Один конденсатор обеспечивает высокий пусковой момент и отключается, когда двигатель достигает номинальной скорости. Другой конденсатор , меньшего размера, всегда остается в цепи.Этот тип двигателя называется конденсаторным пусковым конденсаторным двигателем .
РИСУНОК 5: Пусковой конденсатор , схема (проводка) двигателя и кривая крутящего момента-скорости.
Рисунок 6 — фотография асинхронного двигателя с конденсаторным пуском. Характерный выступ в верхней части двигателя — это место, где расположен конденсатор.
Асинхронный двигатель с расщепленной фазой не будет иметь горба, потому что в нем нет конденсатора. На рисунке 7 показана фотография конденсатора пробега .
На рисунках 8 и 9 представлены фотографии ротора и статора, оборудованных центробежным переключателем. На рисунке 8 грузы на валу отклоняются, когда двигатель приближается к синхронной скорости, в результате чего шайба на конце перемещается в сторону беличьей клетки. Это освобождает выключатель, который установлен в концевой раме двигателя, как показано на рисунке 9.
РИСУНОК 6: Асинхронный двигатель с конденсаторным пуском (CSIM). ( Предоставлено Baldor Electric Company )
РИСУНОК 7: Рабочий конденсатор для PSC, или двухконденсаторного двигателя.
РИСУНОК 8: Ротор с короткозамкнутым ротором с вращающейся частью центробежного переключателя.
РИСУНОК 9: Стационарная часть центробежного переключателя в концевой раме статора.
Электродвигатель с расщепленными полюсами
Другой член семейства асинхронных электродвигателей — электродвигатели с расщепленными полюсами. Обычно двигатель с экранированными полюсами представляет собой очень маленькую машину (0,05 л.с.), используемую для легко запускаемых нагрузок, таких как вентилятор.
Несмотря на то, что это не очень эффективный, это простой, дешевый и прочный аппарат.Тот факт, что это маленькая машина, как правило, компенсирует ее неэффективность. На рисунке 10 показан принцип работы двигателя с расщепленными полюсами.
Конструкция двигателя с экранированными полюсами
Часть железа статора обернута несколькими короткозамкнутыми витками медного проводника. Согласно закону Фарадея, ток в закороченных витках (затеняющая катушка) будет создавать поток, который будет противодействовать любому изменению потока через него.
На левом медном кольце на Рисунке 10 показан поток, увеличивающийся через кольцо.Изменение магнитного потока индуцирует ток в закороченном кольце, который противодействует изменению магнитного потока, как показано.
Кольцо справа показывает, что происходит, когда поток через кольцо уменьшается. Теперь индуцированный ток пытается поддерживать поток в кольце. В нижней половине рисунка 10 показан один тип двигателя с расщепленными полюсами. Пластины прямоугольные, с вырезом для катушки и еще одним вырезом для ротора, как показано. Катушка намотана через прямоугольное окно в стопке пластин.
РИСУНОК 10: Конструкция двигателя с экранированными полюсами и работа экранирующей вехи.
Работа двигателя с экранированными полюсами
Работа двигателя с прямоугольным экранированным полюсом показана на рисунке 11.
Первый вид (1) показывает двигатель, когда ток увеличивается в положительном направлении, как показано на синусоида в середине рисунка. В течение этого интервала большая часть потока проходит через центр ротора, а не через заштрихованные полюса.
В интервале секунд ток и магнитный поток уменьшаются. Таким образом, заштрихованный полюс пытается поддерживать поток, и большая часть потока проходит через заштрихованные полюса. Обратите внимание, что в результате общее направление потока изменилось с верхнего левого угла на нижний левый угол.
Процесс продолжается на видах 3 и 4, и в результате получается квази-вращающееся поле, которого достаточно для запуска и запуска двигателя. Направление вращения двигателя с экранированными полюсами можно изменить только путем физического разборки двигателя и изменения направления ротора на обратное.
РИСУНОК 11: Диаграммы магнитного потока в двигателе с расщепленными полюсами.
Основным преимуществом двигателя с расщепленными полюсами является его очень низкая цена. Многие читатели, возможно, купили в дисконтном магазине большой вентилятор с несколькими скоростями менее чем за 15 долларов.
Поскольку электродвигатель с расщепленными полюсами работает при больших значениях скольжения, регулирование скорости также очень дешево. Вспомните уравнение для напряжения, индуцированного в катушке:
$ {{E} _ {rms}} = 4.44fN {{\ phi} _ {\ max}} $
Управление скоростью двигателя с экранированными полюсами
Напряжение, подаваемое на двигатель, конечно, постоянно (или, по крайней мере, почти так). Если бы количество витков в обмотке было изменено, то поток изменился бы в противоположном направлении. Таким образом, скоростью двигателя с экранированными полюсами можно управлять, изменяя количество вольт на один виток обмотки статора, как показано на рисунке 12.
Управление скоростью осуществляется с помощью ответвленной обмотки и селекторного переключателя, как показано на рисунке. на рисунке 12 (а).Увеличение числа витков приведет к меньшему напряжению на виток и меньшему магнитному потоку; меньший магнитный поток означает меньший крутящий момент от машины, что приводит к работе с более высоким значением скольжения и более низкой скоростью.
РИСУНОК 12: Регулировка скорости двигателя с расщепленными полюсами.
Рисунок 13 — фотография ротора и статора двигателя с расщепленными полюсами. На рис. 14 представлена фотография круглого электродвигателя с расщепленными полюсами и шестью выступающими полюсами на статоре.
РИСУНОК 13: Ротор и статор с расщепленными полюсами.
РИСУНОК 14: Двигатель с круглым расщепленным полюсом.
Универсальный двигатель
Универсальный двигатель, по сути, представляет собой двигатель постоянного тока, предназначенный для работы от переменного тока. Поскольку катушки возбуждения воспринимают переменный ток, статор должен быть сделан из пластин, как и якорь. Якорь и поле соединены последовательно, как показано на виде в разрезе на Рисунке 15.
Когда ток меняет полярность, поток, создаваемый обеими обмотками, также меняет полярность, что приводит к однонаправленному вращению.
Если проследить течение тока на каждом изображении рисунка 15 и применить правило левой руки для двигателей, можно увидеть, что направление вращения всегда против часовой стрелки для этого конкретного расположения обмоток.
РИСУНОК 15: Универсальный двигатель с источником переменного тока.
Универсальный двигатель, как и последовательный двигатель постоянного тока, имеет очень высокую скорость холостого хода, которая быстро падает с увеличением нагрузки. На рисунке 16 показаны скоростные характеристики универсального двигателя.
Скорость холостого хода может быть настолько высокой, что центробежная сила может разорвать двигатель. Таким образом, двигатель должен быть постоянно подключен к какой-либо механической нагрузке.
В отличие от асинхронного двигателя разновидностей , универсальный двигатель не ограничивается работой со скоростью ниже синхронной. Универсальные двигатели используются в переносных дрелях, пилах, фрезерных станках, пылесосах и подобных устройствах.