Принципиальная электрическая схема зарядного устройства для автомобиля
Соблюдение режима эксплуатации аккумуляторной батареи автомобиля и её обслуживание, является залогом долгой работы аккумулятора. А для этого иногда требуется производить полную зарядку аккумулятора, поэтому в этой статье под названием самодельные схемы для заряжания аккумуляторной батареи автомобиля мы рассмотрим самые распространенные схемы таких зарядных устройств, которые под силу изготовить радиолюбителям самостоятельно в домашних условиях.
Буквально пару слов повторюсь, потому как у нас на сайте уже достаточно статей о зарядке АКБ автомобиля, но, тем не менее, повторю формулу вычисления тока заряда для аккумулятора
I-0.1/Q
- где I – это ток заряда, который нам нужно найти измеряется в Амперах
- 0.1 – это число, выведенное опытным путем за года практики производства и заряда аккумуляторных батарей, так же зачастую вместо 0.1 говорят заряжать 10% от мощности аккумулятора
- Q – Емкость аккумулятора, определенная производителем
Пример нужно найти сколько ампер выставить на заряднике для подзарядки 60 Амперного АКБ
I=0. 1/60 = 6А или ищем 10% от числа 60 = 60А*10%/100=6А по первой и второй формуле сила тока которую нужно выставить на зарядном устройстве при подключенном к нему 60 Амперном аккумуляторе равняется 6 Амперам, а напряжение выставляем больше 12 вольт в идеале 14-16 вольт. На хендай санта фе например стоит АКБ 74Ампера высчитываем 10% от емкости и получаем 7.4 Ампера зарядного тока.
Время заряда аккумулятора Q/силу тока которую вы выставили на заряднике в нашем случае = 60/6 = 10часов, за 10 часов при 6Амперах и 14 вольтах ваш АКБ зарядится на 100%, но есть небольшие нюансы о которых лучше прочитать в этой статье на нашем сайте про АКБ.
Классическая схема самодельного зарядного
Вот обычная классическая схема, понижающий трансформатор, диодный мост, реостат, и предохранитель. Как рассчитать и правильно намотать трансформатор читайте тут
Вторая схема зарядного устройства для автомобиля своими руками с использованием сглаживающего конденсатора, а также он гасит избыточное напряжение, как правило, ставят несколько конденсаторов, которые своим реактивным сопротивлением собственно и убирают избыточное напряжение
Схема ниже уже предполагает регулировку силы тока от 1 до 15 ампер, а конденсаторы С1-С4 позволяют задавать напряжение зарядки
Вот ниже еще несколько схем самодельных зарядных устройств для АКБ автомобиля
Список радиоэлементов:
- R1 = 4,7 кОм
- R2 -10K подстроечный
- T1 – BC547B
- Реле – 12В, 400 Ом, SPDT
- TR1 – напряжение вторичной обмотки 14.
Вольт, ток 1/10 от емкости аккумулятора
- Диодный мост – на ток, равный номинальному току трансформатора
- Диоды D2 и D3 = 1N4007
- C1 = 100uF/25V
Вот еще одна схема зарядника АКБ
Принцип работы: ток заряда регулируется транзистором VT3 в зависимости от напряжения АКБ, Резистор R3 ограничивает м зарядный ток, лучше ставить мощный не менее 10 Вт.
При полном заряде аккумулятора тока заряда снизится до нуля
Зарядное устройство для аккумулятора из подручных средств
Вот ещё одна схемка, которую я бы не рекомендовал, но это только мое личное мнение
В этой статье простые схемы зарядок для аккумулятора транспортного средства мы привели несколько наиболее распространенных схем для восстановления работоспособности аккумулятора. Если вы хорошо разбираетесь в схемотехнике и электронике для вас не составит труда собрать такие устройства. Посмотрите видео ниже как автовладельцы мастерят самодельные зарядки для АКБ.
youtube.com/embed/0Eq9-XS88ZE?feature=oembed» frameborder=»0″ allowfullscreen=»»/>
Простые схема зарядного устройства автомобильного аккумулятора
Качественно работающий автомобильный аккумулятор трудно переоценить. Однако, со временем он становится менее емким и способен быстрее разряжаться. На этот процесс оказывают влияние и другие факторы, связанные с условиями эксплуатации. Чтобы не попадать в затруднительную ситуацию, стоит иметь дома или в гараже простое зарядное устройство своими руками.
В большинстве случаев принципиальная схема зарядного устройства самодельной конструкции будет относительно несложной. Собрать такой аппарат удастся из подручных недорогих компонентов. При этом электрический агрегат поможет быстро запустить легковушку. Предпочтительней обзавестись пуско-зарядной аппаратурой, но она требует немного больших мощностей от используемых элементов.
Базовые полезные знания о зарядке батарей
Применять электрическую подпитку для АКБ нужно в тех ситуациях, когда замер на клеммах электроприбора демонстрирует уровень ниже 11,2 В для большинства легковых авто. Хотя двигатель способен запускаться при таком уровне вольтажа, но внутри начинаются нежелательные химические процессы. Происходит сульфатация и разрушение пластин. Емкость заметно снижается.
Важно знать, что во время длительной зимовки или стоянки авто в течение нескольких недель уровень заряда падает, поэтому рекомендуется контролировать данное значение мультиметром, а при необходимости в ход пускать сделанное своими руками ЗУ для автомобильных аккумуляторов либо купленное в автомагазине.
Для подпитки АКБ чаще всего применяются устройства двух типов:
- выдающее на «крокодилах» напряжение постоянного типа;
- системы с импульсным типом работы.
При зарядке от устройства постоянного тока подбирается значение тока заряда арифметически соответствующее 1/10 от установленного производителем значения емкости. Когда имеется в наличии батарея на 60 А*ч, то ампераж отдачи должен быть на уровне 6 А. Стоит учитывать исследования, согласно которым умеренное снижение количества ампер на отдачи способствует уменьшению процессов сульфатации.
Если же пластины частично стали покрываться нежелательным сульфатным налетом, то опытные автомобилисты задействуют операции по десульфатации. Применяемая методика заключается в следующем:
- на следующей стадии медленно полностью заряжаем блок от одноамперного источника;
- повторяются предыдущие операции на протяжении 7—10 циклов.
Подобный принцип работы задействован в заводских зарядных десульфатирующих устройствах импульсного типа. За один цикл на клеммы АКБ поступает в течение нескольких миллисекунд непродолжительный во времени импульс обратной полярности, сменяющийся прямой полярностью.
Необходимо контролировать состояние устройства и не допускать перезаряда батареи. При достижении значений 12,8—13,2 В на контактах стоит отключать систему от подпитки. В противном случае возникнет явление кипения, повышение концентрации и плотности залитого внутрь электролита и последующее разрушение пластин. Для предотвращения негативных явлений заводская принципиальная электрическая схема зарядного устройства наделена платами электронного контроля и автоматического отключения.
Какой бывает схема автомобильного зарядного устройства
В гаражных условиях можно воспользоваться несколькими типами зарядок для автомобиля. Они могут быть как максимально примитивными, состоящими из нескольких элементов, так и довольно громоздкими многофункциональными стационарными устройствами. Обычно автовладельцы идут по пути упрощения.
Простейшие схемы
Если в наличии нет заводского зарядного, а реанимировать АКБ необходимо без задержки, то подойдет наиболее простой вариант. В нем участвуют ограничительное сопротивление в виде нагрузки и источник питания, способный генерировать 12—25 В.
Собрать самодельное зарядное устройство получится даже «на коленках», если имеется в доме зарядка для ноутбука. Обычно они выдают около 19 В и 2 А. При сборке стоит учитывать полярность:
- наружный контакт – минус;
- внутренний контакт – плюс.
Важно! Обязательно должно быть установлено ограничительное сопротивление, в качестве которого нередко используют лампочку из салона.
Вывинчивать лампу из поворотник или даже «стопов» не стоит, так как они станут перегрузом для схемы. Цепь состоит из таких соединенных между собой элементов: отрицательная клемма блока ноутбука – лампа – отрицательная клемма заряжаемой батареи – положительная клемма заряжаемой батареи – плюс блока ноутбука. Достаточно полутора-двух часов для возвращения АКБ к жизни на столько, что от него можно будет запустить мотор.
При отсутствии ноутбуков или нетбуков рекомендуем отправиться заранее на радиорынок за мощным диодом, рассчитанным на обратное напряжение более 1000 В и ток выше 3 А.
Воспользоваться таким диодом можно в самодельной схеме. Предварительно откидываем и достаем аккумулятор. На следующем этапе монтируем цепочку из элементов: первый контакт бытовой розетки в квартире – отрицательный контакт на диоде – положительный контакт диода – лимитирующая нагрузка – отрицательная клемма аккумулятора – плюс аккумулятора – второй контакт бытовой розетки.
Лимитирующей нагрузкой в подобной сборке обычно служит мощная лампа накаливания. Их предпочтительней выбирать от 100 Вт. Получаемый ток можно определить из школьной формулы:
U * I = W, где
- U – напряжение, В;
- I – сила тока, А;
- W – мощность, кВт.
Исходя из расчетов при нагрузке в 100-ваттной нагрузке и 220-вольтном напряжении выдача мощности ограничивается примерно половиной ампера. За ночь аккумулятор получит около 5 А, что обеспечит заводку движку. Утроить мощность и одновременно ускорить зарядку удастся с помощью добавления в цепь еще пары таких ламп. Не стоит переусердствовать и запускать к такой системе мощных потребителей типа электроплиты, так как можно вывести из строя диод и АКБ.
Важно знать, что собранная прямозарядная схема автомобильного зарядного устройства своими руками рекомендуется к применению в крайнем случае, если иного выхода нет.
Переделка компьютерного блока питания
Прежде чем приступать к экспериментам с электроприборами, нужно объективно оценить собственные силы по реализации задуманного варианта исполнения. После можно приступать к сборкам.
В первую очередь проводится подбор материальной базы. Нередко для такого дела используют старые компьютерные системники. Из них вынимают блок питания. Традиционно они снабжены выводами разного вольтажа. Кроме пятивольтовых контактов, имеются отводы на 12 В. Последние также наделены током в 2 А. Подобных параметров почти хватает для сборки схемы своими руками.
Рекомендуем поднять напряжение до уровня 15 В. Часто это осуществляется эмпирически. Для корректировки понадобится килоомное сопротивление. Такой резистор накидывают параллельно другим имеющимся резисторам в блоке возле восьминожной микросхемы во вторичной цепи БП.
Подобным методом меняют значение коэффициента передачи цепи обратной связи, что оказывает влияние на выходной вольтаж. Способ обеспечивает обычно поднятие до 13,5 В, чего хватает для простых задач с автомобильным аккумулятором.
На выходные контакты накидываются защипы-крокодилы. Дополнительных лимитирующих защит ставить не нужно, так как внутри имеется ограничивающая электроника.
Трансформаторная схема
Из-за своей доступности, надежности и простоты давно востребована у бывалых водителей. В ней используются трансформаторы со вторичной обмоткой, выдающей 12—18 В. Такие элементы встречаются в старых телевизорах, магнитофонах и прочей бытовой технике. Из более современных приборов можно посоветовать отработанные бесперебойники. Они доступны на вторичном рынке за небольшую плату.
В наиболее минималистичном варианте схемы присутствует такой набор:
- диодный выпрямляющий мостик;
- подобранный по параметрам трансформатор;
- рассчитанная соответственно сети защитная нагрузка.
Так как по лимитирующей нагрузке течет большой ток, то от этого она перегревается. Чтобы сбалансировать ампераж, не допуская превышения тока зарядки, в цепь добавляют конденсатор. Его место – первичная цепь трансформатора.
В экстремальных ситуациях при грамотно просчитанном объеме конденсатора можно рискнуть и удалить трансформатор. Однако, подобная схема станет небезопасной в плане поражения электрическим током.
Оптимальными можно назвать цепи, в которых имеется регулировка параметров и лимитирование тока заряда. Представляем на странице один из примеров.
Получить диодный мостик удастся с минимальным усилием из вышедшего из строя автомобильного генератора. Достаточно выпаять его и перекоммутировать при необходимости.
Основы безопасности при сборке и эксплуатации схем
Во время работы по комплектации зарядного устройства для автомобильной АКБ стоит учитывать определенные факторы:
- все должно быть смонтировано и установлено на пожаробезопасной площадке;
- при работе с прямоточными примитивными зарядными устройствами нужно вооружиться средствами защиты от поражения током: резиновыми перчатками и ковриком;
- в процессе зарядки АКБ первый раз самодельными аппаратами необходимо контролировать текущее состояние работающей системы;
- контрольными точками являются сила тока с напряжением на выходе зарядки, допустимая степень нагрева батареи и зарядного устройства, недопущение закипания электролита;
- если оставлять оборудование на ночь, то важно оснастить схему устройством защитного отключения.
Важно! Рядом должен всегда находиться порошковый огнетушитель, чтобы уберечь от возможного распространения огня.
Интересное по теме:
загрузка…
Вконтакте
Одноклассники
Google+
схемы импульсных сетевых адаптеров для зарядки телефонов
Схемы импульсных сетевых адаптеров для зарядки телефонов
Большинство современных сетевых зарядных устройств собрано по простейшей импульсной схеме, на одном высоковольтном транзисторе (рис. 1) по схеме блокинг-генератора.
В отличие от более простых схем на понижающем 50 Гц трансформаторе, трансформатор у импульсных преобразователей той же мощности гораздо меньше по размерам, а значит, меньше размеры, вес и цена всего преобразователя. Кроме того, импульсные преобразователи более безопасны — если у обычного преобразователя при выходе из строя силовых элементов в нагрузку попадает высокое нестабилизированное (а иногда и вообще переменное) напряжение со вторичной обмотки трансформатора, то при любой неисправности «импульсника» (кроме выхода из строя оптрона обратной связи — но его обычно очень хорошо защищают) на выходе вообще не будет никакого напряжения.
Рис. 1
Простая импульсная схема блокинг-генератора
Подробнейшее описание принципа действия (с картинками) и расчета элементов схемы высоковольтного импульсного преобразователя (трансформатор, конденсаторы и пр.) можно прочитать, например, в «ТЕА152х Efficient Low Power Voltage supply» по ссылке http://www. nxp.com/acrobat/applicationnotes/AN00055.pdf (на английском).
Переменное сетевое напряжение выпрямляется диодом VD1 (хотя иногда щедрые китайцы ставят целых четыре диода, по мостовой схеме), импульс тока при включении ограничивается резистором R1. Здесь желательно поставить резистор мощностью 0,25 Вт — тогда при перегрузке он сгорит, выполнив функцию предохранителя.
Преобразователь собран на транзисторе VT1 по классической обратноходовой схеме. Резистор R2 нужен для запуска генерации при подаче питания, в этой схеме он необязателен, но с ним преобразователь работает чуть стабильней. Генерации поддерживается благодаря конденсатору С1, включенному в цепь ПОС на обмотке частота генерации зависит от его емкости и параметров трансформатора. При отпирании транзистора напряжение на нижних по схеме выводах обмоток / и II отрицательное, на верхних — положительное, положительная полуволна через конденсатор С1 еще сильней открывает транзистор, амплитуда напряжения в обмотках возрастает… То есть транзистор лавинообразно открывается. Через некоторое время, по мере заряда конденсатора С1, базовый ток начинает уменьшаться, транзистор начинает закрываться, напряжение на верхнем по схеме выводе обмотки II начинает уменьшаться, через конденсатор С1 базовый ток еще сильней уменьшается, и транзистор лавинообразно закрывается. Резистор R3 необходим для ограничения базового тока при перегрузках схемы и выбросах в сети переменного тока.
В это же время амплитудой ЭДС самоиндукции через диод VD4 подзаряжается конденсатор СЗ — поэтому преобразователь и называется обратноходовым. Если поменять местами выводы обмотки III и подзаряжать конденсатор СЗ во время прямого хода, то резко возрастет нагрузка на транзистор во время прямого хода (он может даже сгореть из-за слишком большого тока), а во время обратного хода ЭДС самоиндукции окажется нерастраченной и выделится на коллекторном переходе транзистора — то есть он может сгореть от перенапряжения. Поэтому при изготовлении устройства нужно строго соблюдать фазировку всех обмоток (если перепутать выводы обмотки II — генератор просто не запустится, так как конденсатор С1 будет наоборот, срывать генерацию и стабилизировать схему).
Выходное напряжение устройства зависит от количества витков в обмотках II и III и от напряжения стабилизации стабилитрона VD3. Выходное напряжение равно напряжению стабилизации только в том случае, если количество витков в обмотках II и III одинаковое, в противном случае оно будет другое. Во время обратного хода конденсатор С2 подзаряжается через диод VD2, как только он зарядится до примерно -5 В, стабилитрон начнет пропускать ток, отрицательное напряжение на базе транзистора VT1 чуть уменьшит амплитуду импульсов на коллекторе, и выходное напряжение стабилизируется на некотором уровне. Точность стабилизации у этой схемы не очень высока — выходное напряжение гуляет в пределах 15…25% в зависимости от тока нагрузки и качества стабилитрона VD3.
Схема более качественного (и более сложного) преобразователя показана на рис. 2
Рис. 2
Электрическая схема более сложного
преобразователя
Для выпрямления входного напряжения используется диодный мостик VD1 и конденсатор , резистор должен быть мощностью не менее 0,5 Вт, иначе в момент включения, при зарядке конденсатора С1, он может сгореть. Емкость конденсатора С1 в микрофарадах должна равняться мощности устройства в ваттах.
Сам преобразователь собран по уже знакомой схеме на транзисторе VT1. В цепь эмиттера включен датчик тока на резисторе R4 — как только протекающий через транзистор ток станет столь большим, что падение напряжения на резисторе превысит 1,5 В (при указанном на схеме сопротивлении — 75 мА), через диод VD3 приоткроется транзистор VT2 и ограничит базовый ток транзистора VT1 так, чтобы его коллекторный ток не превышал указанные выше 75 мА. Несмотря на свою простоту, такая схема защиты довольно эффективна, и преобразователь получается практически вечный даже при коротких замыканиях в нагрузке.
Для защиты транзистора VT1 от выбросов ЭДС самоиндукции, в схему добавлена сглаживающая цепочка VD4-C5-R6. Диод VD4 обязательно должен быть высокочастотным — идеально BYV26C, чуть хуже — UF4004-UF4007 или 1 N4936, 1 N4937. Если нет таких диодов, цепочку вообще лучше не ставить!
Конденсатор С5 может быть любым, однако он должен выдерживать напряжение 250…350 В. Такую цепочку можно ставить во все аналогичные схемы (если ее там нет), в том числе и в схему по рис. 1 — она заметно уменьшит нагрев корпуса ключевого транзистора и значительно «продлит жизнь» всему преобразователю.
Стабилизация выходного напряжения осуществляется с помощью стабилитрона DA1, стоящего на выходе устройства, гальваническая развязка обеспечивается оптроном V01. Микросхему TL431 можно заменить любым маломощным стабилитроном, выходное напряжение равно его напряжению стабилизации плюс 1,5 В (падение напряжения на светодиоде оптрона V01)’, для защиты светодиода от перегрузок добавлен резистор R8 небольшого сопротивления. Как только выходное напряжение станет чуть выше положенного, через стабилитрон потечет ток, светодиод оптрона начнет светиться, его фототранзистор приоткроется, положительное напряжение с конденсатора С4 приоткроет транзистор VT2, который уменьшит амплитуду коллекторного тока транзистора VT1. Нестабильность выходного напряжения у этой схемы меньше, чем у предыдущей, и не превышает 10…20%, также, благодаря конденсатору С1, на выходе преобразователя практически отсутствует фон 50 Гц.
Трансформатор в этих схемах лучше использовать промышленный, от любого аналогичного устройства. Но его можно намотать и самому — для выходной мощности 5 Вт (1 А, 5 В) первичная обмотка должна содержать примерно 300 витков проводом диаметром 0,15 мм, обмотка II — 30 витков тем же проводом, обмотка III — 20 витков проводом диаметром 0,65 мм. Обмотку III нужно очень хорошо изолировать от двух первых, желательно намотать ее в отдельной секции (если есть). Сердечник — стандартный для таких трансформаторов, с диэлектрическим зазором 0,1 мм. В крайнем случае, можно использовать кольцо внешним диаметром примерно 20 мм.
Сетевые адаптеры схемы
Разница между схемами и принципиальными схемами
Схемы, принципиальные схемы, электрические схемы, электрические схемы обычно используются в инженерных схемах. Возможно, вы слышали их очень часто, но они немного отличаются друг от друга. Обратитесь к этой странице, чтобы узнать о различиях между принципиальными схемами и схемами.
В этой статье показаны различия между принципиальными схемами и принципиальными схемами, и она может принести вам большую пользу при идентификации компонентов электрической системы, отслеживании цепи и даже при ремонте электрического оборудования.
Схематические диаграммы
Схема или схематическая диаграмма представляет элементы системы с абстрактными и графическими символами вместо реалистичных изображений. Принципиальная схема больше ориентирована на понимание и распространение информации, чем на выполнение физических операций. По этой причине в схеме обычно опускаются детали, не относящиеся к информации, которую она намеревается передать, и могут добавляться упрощенные элементы, чтобы помочь читателям понять особенности и взаимосвязи.
Электронная схема электроники — это то, что рецепт для повара. Он расскажет вам, какие ингредиенты использовать и как их расположить и соединить. Вместо того, чтобы подробно объяснять рецепт, используется схематическая диаграмма для изображения конструкции электроники. Электронные схемы состоят из цифровых электронных символов, которые представляют каждый из используемых компонентов. На следующей принципиальной схеме микроэлектронного устройства символы соединены линиями, показывающими, как соединять компоненты.
Принципиальные схемы также используются во многих других областях, а не только в электрических системах. Например, когда вы едете в метро, карта метро для пассажиров представляет собой своего рода схематическое изображение, на котором станции метро обозначены точками. Химический процесс также можно отобразить на принципиальной схеме с символами химического оборудования.
EdrawMax: швейцарский нож для всех ваших потребностей в создании диаграмм
- С легкостью создавайте более 280 типов диаграмм.
- Предоставьте различные шаблоны и символы в соответствии с вашими потребностями.
- Интерфейс перетаскивания и прост в использовании.
- Настройте каждую деталь с помощью интеллектуальных и динамичных наборов инструментов.
- Совместимость с различными форматами файлов, такими как MS Office, Visio, PDF и т. Д.
- Не стесняйтесь экспортировать, печатать и делиться своими схемами.
Электрические схемы
Принципиальная схема (также называемая электрической схемой, элементарной схемой и электронной схемой) представляет собой графическое представление электрической схемы. Принципиальные схемы широко используются для проектирования электрических цепей, изготовления и обслуживания электрического и электронного оборудования. Принципиальные схемы можно разделить на две категории — наглядные принципиальные схемы и принципиальные электрические схемы.
Наглядная принципиальная схема
Графические схемы намного легче понять, чем принципиальные электрические схемы.Соединяя реалистичные электрические компоненты с проводкой, наглядная диаграмма позволяет зрителям легко и быстро идентифицировать электрические компоненты системы немедленно, не требуя профессиональных знаний.
Принципиальная электрическая схема
Принципиальная электрическая схема представляет электрическую систему в виде рисунка, на котором показаны основные особенности или взаимосвязи, но не детали. На принципиальной схеме электрические компоненты и проводка не полностью соответствуют физическому устройству реального устройства.Если вы хотите понять схематическую диаграмму, вам необходимо владеть базовыми знаниями в области электричества и физики, а также международно стандартизованными символами. Посмотрите на параллельные цепи ниже, вы можете обнаружить, что батарея представлена двумя короткими линиями, индикаторы — кружком с крестом внутри, а проводка — линией. Инженеры-электрики в основном используют эту схему с унифицированными обозначениями. Ниже представлена принципиальная электрическая схема полупроводниковой электроники.
Принципиальные и принципиальные схемы являются важными инженерными схемами. Edraw all-in-one программа для построения диаграмм — отличный инструмент для создания схем и принципиальных схем. Бесплатно скачайте программу для создания своих работ.
Статьи по Теме
Программное обеспечение для создания принципиальных схем для Mac
Принципиальная схема Visio Alternative
Создать принципиальную схему для PPT
Электрическая схема | Статья об электрической схеме по The Free Dictionary
совокупность источников и приемников электрической энергии и их соединительные провода.Кроме того, электрическая цепь может включать автоматические выключатели, переключатели, предохранители и другие защитные и коммутационные устройства, а также измерительные и контрольные приборы. В цепи происходят передача, распределение и преобразование электрической (электромагнитной) или другой формы энергии, связанной с наличием в цепи электрического тока, разности потенциалов, электродвижущей силы (ЭДС) и т. Д. В источниках некоторая форма энергии преобразуется в электрическую энергию, в то время как в приемниках электрическая энергия преобразуется в тепло, механическую энергию или какую-либо другую форму энергии.
Работа электрической цепи характеризуется значениями токов и напряжений во всех ее частях, а отношения между этими величинами описываются законами Кирхгофа ( см. ЗАКОНЫ КИРХГОФА ). Основными компонентами электрической цепи являются резисторы, в которых электрическая энергия преобразуется в тепло; катушки индуктивности, которые накапливают энергию в магнитных полях токов, протекающих по их обмоткам; и конденсаторы, которые накапливают энергию в электрических полях зарядов на своих пластинах ( см. RESISTOR; INDUCTANCE COIL; и CAPACITOR ).
Электрическая цепь с сосредоточенными параметрами — это цепь, в которой каждый из ее компонентов может быть отнесен к одной точке схемы; процессы в таких схемах описываются обыкновенными дифференциальными уравнениями. Цепи с распределенными параметрами — это цепи, в которых необходимо учитывать геометрические размеры компонентов; такие схемы описываются уравнениями в частных производных.
Линейная электрическая цепь — это цепь, состоящая из компонентов, для которых отношения между током и напряжением, током и потокосцеплением, а также зарядом и напряжением являются линейными.В противном случае схема будет нелинейной. Для линейных цепей законы Кирхгофа записываются в виде системы линейных уравнений, решение которых определяет рабочие условия цепи. Для таких схем действует принцип суперпозиции. Нелинейные схемы вычисляются графическими или численными методами с использованием приближений и интерполяций для функций.
Различают цепи постоянного и переменного тока. Наиболее распространены среди последних цепи с гармоническими токами.В таких схемах эдс и токи являются синусоидальными временными функциями одной частоты, а их рабочие условия вычисляются символическим методом. Трехфазные цепи получили широкое распространение.
Электрические схемы могут быть представлены комбинацией двухполюсных сетей (источники и приемники электроэнергии), четырехконцевых сетей (линии связи, усилители, трансформаторы) или многотерминальных сетей (компьютерные сумматоры и запоминающие устройства).
Понятие «электрическая цепь» используется в электротехнике, радиотехнике, автоматизации, бионике и других отраслях науки.
СПРАВОЧНИК
Основы теории цепей , 4 изд. Москва, 1975.Большая Советская Энциклопедия, 3-е издание (1970-1979). © 2010 The Gale Group, Inc. Все права защищены.
Что такое электрическая цепь? (с рисунками)
Электрическая цепь — это устройство, которое использует электричество для выполнения определенной задачи, например, для создания вакуума или питания лампы. Схема представляет собой замкнутый контур, состоящий из источника питания, проводов, предохранителя, нагрузки и переключателя. Электричество проходит через цепь и доставляется к объекту, который питает, например, к вакуумному двигателю или лампочке, после чего электричество отправляется обратно к первоначальному источнику; этот возврат электричества позволяет цепи поддерживать электрический ток.Существуют три типа электрических цепей: последовательная цепь, параллельная цепь и последовательно-параллельная цепь; В зависимости от типа цепи, электричество может продолжать течь, если цепь перестает работать. Две концепции, закон Ома и напряжение источника, могут влиять на количество электричества, протекающего через цепь, и, следовательно, на то, насколько хорошо электрическая цепь функционирует.
Как это работает
Большинство устройств, работающих от электричества, содержат электрическую цепь; при подключении к источнику питания, например, к электрической розетке, электричество может проходить через электрическую цепь внутри устройства, а затем возвращаться к исходному источнику питания, чтобы продолжить поток электричества. Другими словами, когда переключатель питания включен, электрическая цепь замыкается, и ток течет от положительной клеммы источника питания через провод к нагрузке и, наконец, к отрицательной клемме. Любое устройство, которое потребляет энергию, протекающую по цепи, и преобразует эту энергию в работу, называется нагрузкой. Лампочка — один из примеров нагрузки; он потребляет электричество из цепи и преобразует его в работу — тепло и свет.
Типы цепей
Последовательная схема является самой простой, поскольку она имеет только один возможный путь, по которому может течь электрический ток; при разрыве электрической цепи ни одно из устройств нагрузки не будет работать. Разница с параллельными цепями состоит в том, что они содержат более одного пути для прохождения электричества, поэтому, если один из путей будет нарушен, другие пути будут продолжать работать.Однако последовательно-параллельная цепь представляет собой комбинацию первых двух: она подключает некоторые нагрузки к последовательной цепи, а другие — к параллельным цепям. При разрыве последовательной цепи ни одна из нагрузок не будет работать, но если одна из параллельных цепей разорвется, эта параллельная цепь и последовательная цепь перестанут работать, а другие параллельные цепи продолжат работу.
Закон Ома
Многие «законы» применимы к электрическим цепям, но Закон Ома, вероятно, наиболее известен. Закон Ома гласит, что ток электрической цепи прямо пропорционален ее напряжению и обратно пропорционален ее сопротивлению. Так, например, если напряжение увеличивается, ток также увеличивается, а если увеличивается сопротивление, ток уменьшается; обе ситуации напрямую влияют на эффективность электрических цепей.Чтобы понять закон Ома, важно понимать концепции тока, напряжения и сопротивления: ток — это поток электрического заряда, напряжение — это сила, которая движет ток в одном направлении, а сопротивление — это противоположность объекта наличию ток проходит через него. Формула закона Ома: E = I x R, где E = напряжение в вольтах, I = ток в амперах и R = сопротивление в омах; эту формулу можно использовать для анализа напряжения, тока и сопротивления электрических цепей.

Источник напряжения
Другое важное понятие, касающееся электрических цепей, напряжение источника относится к величине напряжения, которое вырабатывается источником питания и прикладывается к цепи.Другими словами, напряжение источника зависит от того, сколько электроэнергии будет получать цепь. Напряжение источника зависит от величины сопротивления в электрической цепи; это также может повлиять на величину тока, поскольку на ток обычно влияют как напряжение, так и сопротивление. Однако сопротивление не зависит от напряжения или тока, но может уменьшить как напряжение, так и ток в электрических цепях.
Резисторы — это электрические устройства, управляющие прохождением тока через цепь.
Лучшая принципиальная схема — Отличные предложения на принципиальной схеме от глобальной схемы продавцов
Отличные новости !!! Вы находитесь в нужном месте, чтобы увидеть принципиальную схему.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.
Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.
AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эта главная принципиальная схема должна стать одним из самых популярных бестселлеров в кратчайшие сроки. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что у вас есть принципиальная схема на AliExpress.С самыми низкими ценами в Интернете, дешевыми тарифами на доставку и возможностью получения на месте вы можете еще больше сэкономить.
Если вы все еще не уверены в принципиальной схеме и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз.
Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.
А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести принципиальную схему по самой выгодной цене.
У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните лучший опыт покупок прямо здесь.
% PDF-1.4
%
171 0 объект
>
endobj
xref
171 89
0000000016 00000 н.
0000003345 00000 н.
0000003558 00000 н.
0000003610 00000 н.
0000003739 00000 н.
0000004275 00000 н.
0000005032 00000 н.
0000005727 00000 н.
0000006477 00000 н.
0000007652 00000 н.
0000008568 00000 н.
0000008605 00000 н.
0000009025 00000 н.
0000013859 00000 п.
0000014230 00000 п.
0000014298 00000 п.
0000014729 00000 п.
0000014998 00000 н.
0000015058 00000 п.
0000019526 00000 п.
0000020030 00000 н.
0000020419 00000 п.
0000020792 00000 п.
0000026652 00000 п.
0000027430 00000 н.
0000027897 00000 н.
0000028581 00000 п.
0000028645 00000 п.
0000029064 00000 н.
0000039678 00000 п.
0000040665 00000 п.
0000041618 00000 п.
0000042326 00000 п.
0000042854 00000 п.
0000043830 00000 п.
0000044364 00000 п.
0000044444 00000 п.
0000044526 00000 п. 0000052562 00000 п.
0000053012 00000 п.
0000053398 00000 п.
0000053668 00000 п.
0000054114 00000 п.
0000055165 00000 п.
0000055788 00000 п.
0000056818 00000 п.
0000057864 00000 п.
0000067173 00000 п.
0000067939 00000 п.
0000068807 00000 п.
0000069316 00000 п.
0000069584 00000 п.
0000069865 00000 п.
0000070688 00000 п.
0000071937 00000 п.
0000074630 00000 п.
0000075586 00000 п.
0000137695 00000 н.
0000187828 00000 н.
0000192553 00000 н.
0000192993 00000 н.
0000193405 00000 н.
0000193731 00000 н.
0000193812 00000 н.
0000193884 00000 н.
0000194016 00000 н.
0000194108 00000 н.
0000194162 00000 н.
0000194280 00000 н.
0000194335 00000 н.
0000194432 00000 н.
0000194486 00000 н.
0000194610 00000 н.
0000194664 00000 н.
0000194796 00000 н.
0000194877 00000 н.
0000194931 00000 н.
0000195012 00000 н.
0000195066 00000 н.
0000195163 00000 н.
0000195217 00000 н.
0000195313 00000 н.
0000195367 00000 н.
0000195421 00000 н.
0000195501 00000 н.
0000195557 00000 н.
0000195639 00000 н.
0000195692 00000 н.
0000002076 00000 н.
трейлер
] >>
startxref
0
%% EOF
259 0 объект
> поток
x ڬ U {L [Uν} ܲ9 ڎ 6 G) [GDYcAy & шPoHel
# LH &
\ dcȦC> hQ_ |;
5 Бесплатное программное обеспечение для создания принципиальных схем
Рейтинги пользователей:
[Всего: 0 Среднее: 0/5] Вот список из 5 бесплатных программных схем, которые позволяют легко создавать принципиальные схемы, электронные схемы, логические схемы и другие технические схемы .Это бесплатное программное обеспечение для принципиальных схем подходит для тех, кому необходимо регулярно создавать принципиальные схемы и другие технические схемы. Эти создатели схем предлагают различные инструменты и компоненты, с помощью которых вы можете легко создавать принципиальные схемы и экспортировать их в различные форматы. Некоторые из этих инструментов позволяют вводить формулы, уравнения, строить графики и даже с легкостью создавать отчеты и решения.
Ниже я рассмотрел Circuit Diagram Maker , Solve Elec , LogicCircuit , FidoCadJ и Dia .
Изготовитель схем:
Circuit Diagram Maker — это бесплатное программное обеспечение для создания схем для Windows , которое позволяет создавать принципиальные схемы и разрабатывать электронные схемы . Он предлагает чистый и свободный от помех интерфейс, в котором все компоненты расположены в левой части окна, откуда вы можете выбрать необходимые компоненты для создания принципиальных схем. Этот производитель принципиальных схем предлагает вам широкий спектр электронных компонентов, таких как провод, микроконтроллер, резистор, термистор, трансформатор, кнопочный переключатель, вольтметр, источник питания, индуктор, диод, светозависимый резистор, сегментный дисплей, измеритель, переключатель, громкоговоритель, транзистор NPP, микрофон. , так далее.Он позволяет выполнять неограниченное количество операций отмены / повтора и в то же время позволяет масштабировать принципиальную схему. Это бесплатное программное обеспечение для принципиальных схем позволяет экспортировать принципиальные схемы в форматы файлов PNG и SVG.
Щелкните здесь, чтобы увидеть подробный обзор.
Возьмите конструктор принципиальных схем отсюда!
Логическая схема:
LogicCircuit — это еще одно бесплатное программное обеспечение для создания принципиальных схем для Windows , которое позволяет с легкостью создавать принципиальные и логические схемы.Лучшая часть этого конструктора принципиальных схем заключается в том, что он предлагает вам симулятор, который вы можете использовать для тестирования логических схем, выполняя симуляции. Это бесплатное программное обеспечение для принципиальных схем позволяет вам отлаживать поведение схемы с помощью осциллографа, перемещаться по иерархии работающих схем и создавать неограниченную иерархию схем с помощью многобитовых шин в интуитивно понятном графическом пользовательском интерфейсе. Он предлагает вам все логические компоненты, такие как Xor, NAnd, Or, XNor, Not и другие, которые вы можете использовать для создания принципиальных схем или логических схем.Он предлагает вам несколько электрических компонентов, таких как цифровые дисплеи, светодиоды, датчики, часы, 7-сегментный дисплей и многое другое, которые вы можете использовать в зависимости от ваших требований. Мало того, он позволяет добавлять текст на принципиальную схему. Это бесплатное программное обеспечение для принципиальных схем позволяет экспортировать принципиальные схемы в форматы файлов изображений JPEG, PNG, GIF, BMP и TIFF.
Щелкните здесь, чтобы увидеть подробный обзор.
Возьмите LogicCircuit отсюда!
FidoCadJ:
FidoCadJ — это бесплатное программное обеспечение для схемотехники , которое предлагает вам простой графический редактор , который позволяет рисовать и создавать принципиальные схемы и другие электронные схемы .