Самая высокая теплопроводность у какого металла: У какого металла самая высокая теплопроводность

У какого металла самая высокая теплопроводность

Новые статьи

Содержание

  1. Теплопроводность металлов в зависимости от температуры
  2. Закон теплопроводности Фурье
  3. Связь с электропроводностью
  4. Коэффициент теплопроводности газов
  5. Теплопроводность в сильно разреженных газах
  6. Обобщения закона Фурье
  7. Коэффициенты теплопроводности различных веществ
  8. Примечания
  9. См. также
  10. Ссылки

Теплопроводность металлов в зависимости от температуры

В таблице представлена теплопроводность металлов в зависимости от температуры при отрицательных и положительных температурах (в интервале от -200 до 2400°C).

Таблица теплопроводности металлов содержит значения теплопроводности следующих чистых металлов: алюминий Al, кадмий Cd, натрий Na, серебро Ag, калий K, никель Ni, свинец Pb, кобальт Co, бериллий Be, литий Li, сурьма Sb, висмут Bi, магний Mg, цинк Zn, вольфрам W, олово Sn, уран U, железо Fe, палладий Pd, цирконий Zr, марганец Mn, платина Pt, золото Au, медь Cu, родий Rh, таллий Tl, молибден Mo, тантал Ta, иридий Ir.

Следует отметить, что теплопроводность металлов изменяется в широких пределах и может отличаться в десятки раз в одних и тех же условиях. Например, из приведенных в таблице металлов, наибольшей теплопроводностью обладает такой металл, как серебро Ag — его коэффициент теплопроводности равен 392 Вт/(м·град) при 100°С и это самый теплопроводный металл. Наименьшее значение теплопроводности при этой же температуре соответствует металлу висмут Bi с теплопроводностью всего 7,7 Вт/(м·град).

Теплопроводность большинства металлов при нагревании снижается. Их максимальная теплопроводность достигается при низких отрицательных температурах. Например, при температуре минус 100°С серебро имеет теплопроводность 419,8, а висмут — 11,9 Вт/(м·град).

Примечание: В таблице теплопроводности также даны значения теплопроводности металлов сверх-высокой чистоты (до 99,999%). Значение коэффициента теплопроводности в таблице указано в размерности Вт/(м·град).

Источник:
Промышленные печи. Справочное руководство для расчетов и проектирования. 2–е издание, дополненное и переработанное, Казанцев Е.И. М., «Металлургия», 1975.- 368 с.

Теплопрово́дность — способность материальных тел проводить энергию (теплоту) от более нагретых частей тела к менее нагретым частям тела, осуществляемому хаотически движущимися частицами тела (атомами, молекулами, электронами и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналог проводимости.

Количественно способность вещества проводить тепло характеризуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). В Международной системе единиц (СИ) единицей измерения коэффициента теплопроводности является Вт/(м·K).

Исторически считалось, что передача тепловой энергии связана с перетеканием гипотетического теплорода от одного тела к другому. Однако с развитием молекулярно-кинетической теории явление теплопроводности получило своё объяснение на основе взаимодействия частиц вещества. Молекулы в более нагретых частях тела движутся быстрее и передают энергию посредством столкновений медленным частицам в более холодных частях тела.

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

где q→ >> — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, ϰ — коэффициент теплопроводности (удельная теплопроводность), T — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad(T) (T)> (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

где P — полная мощность тепловых потерь, S — площадь сечения параллелепипеда, ΔT — перепад температур граней, l — длина параллелепипеда, то есть расстояние между гранями.

Связь с электропроводностью

Связь коэффициента теплопроводности ϰ с удельной электрической проводимостью σ в металлах устанавливает закон Видемана — Франца:

Коэффициент теплопроводности газов

В газах коэффициент теплопроводности может быть найден по приближённой формуле

где ρ — плотность газа, cv > — удельная теплоёмкость при постоянном объёме, λ — средняя длина свободного пробега молекул газа, v¯ >> — средняя тепловая скорость. Эта же формула может быть записана как

где i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5 , для одноатомного i=3 ), k — постоянная Больцмана, μ — молярная масса, T — абсолютная температура, d — эффективный (газокинетический) диаметр молекул, R — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).

Теплопроводность в сильно разреженных газах

Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть пропорциональна давлению в системе): ϰ∼13ρcvlv¯∝P >rho c_ l >propto P>, где l — размер сосуда, P — давление.

Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье неприменим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. п. Инерционность в уравнения переноса первым ввел Максвелл, а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:

Если время релаксации τ пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ

Графен4840 ± 440 — 5300 ± 480
Алмаз1001—2600
Графит278,4—2435
Арсенид бора200—2000
Карбид кремния490
Серебро430
Медь401
Оксид бериллия370
Золото320
Алюминий202—236
Нитрид алюминия200
Нитрид бора180
Кремний150
Латунь97—111
Хром107
Железо92
Платина70
Олово67
Оксид цинка54
Сталь нелегированная47—58
Свинец35,3
Сталь нержавеющая (аустенитная)15
Кварц8
Термопасты высокого качества5—6
Гранит2,4
Бетон сплошной1,75
Бетон на гравии или щебне из природного камня1,51
Базальт1,3
Стекло1—1,15
Термопаста КПТ-80,7
Бетон на песке0,7
Вода при нормальных условиях0,6
Кирпич строительный0,2—0,7
Силиконовое масло0,16
Пенобетон0,05—0,3
Газобетон0,1—0,3
Древесина0,15
Нефтяные масла0,12
Свежий снег0,10—0,15
Пенополистирол (горючесть Г1)0,038—0,052
Экструдированный пенополистирол (горючесть Г3 и Г4)0,029—0,032
Стекловата0,032—0,041
Каменная вата0,034—0,039
Воздух (300 K, 100 кПа)0,022
Аэрогель0,017
Аргон (273—320 K, 100 кПа)0,017
Аргон (240—273 K, 100 кПа)0,015
Вакуум (абсолютный)0 (строго)

Также нужно учитывать передачу тепла из-за конвекции молекул и излучения. Например, при полной нетеплопроводности вакуума, тепловая энергия передаётся излучением (Солнце, инфракрасные теплогенераторы). В газах и жидкостях происходит перемешивание разнотемпературных слоёв естественным путём или искусственно (примеры принудительного перемешивания — фены, естественного — электрочайники). Также в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепловой энергии, даже если зазоры представляют собой идеальный вакуум.

Примечания

См. также

  • Теплопередача
  • Конвекция
  • Равновесный градиент температуры
  • Тепловое излучение
  • Закон Ньютона — Рихмана
  • Уравнение диффузии
  • Теплоизоляция

Ссылки

  • Теплопроводность воды и водяного пара
  • Коэффициенты теплопроводности элементов
  • Таблица теплопроводности веществ и материалов

Самый теплопроводный металл: общие характеристики

Именно серебро лидирует в этом негласном конкурсе, имея теплопроводность в 408 Ватт на метр помноженный на Кельвин, опережая по этому показателю такие элементы с высоким коэффициентом удельной теплопроводности, как медь (384 Вт/(м*К), золото (312 Вт/(м*К) и алюминий (203 Вт/(м*К).

Будучи обладателем пальмы первенства, самый теплопроводный металл имеет наиболее широкое применение в различных сферах производства, причем, список того, где можно использовать серебро, можно продолжать до чуть ли не до бесконечности. Примечательно, что благодаря своим уникальным качествам, наиболее теплопроводный металл в мире использовался с самых давних времен, ведь согласно сохранившихся исторических очерков, еще воины древнего Египта широко использовали серебро для максимального ускорения процесса заживления ран и увечий, полученных в жестоких боях. Так, изготавливая тоненькие пластинки из чистого серебра и прикладывая их к ранам различны типов, они с удивлением отмечали целебные свойства, которыми обладал этот благородный металл.

Нельзя не уделить внимание той огромной роли серебра, которую оно играло для православия, ведь в большинстве русских церквей все сосуды и атрибутику старались изготавливать именно из него и ни для кого не секрет, что посеребренная вода, именуемая святой, способна сохранятся годами в закрытых емкостях, не меняя при этом свой цвет и запах.

А все потому, что серебро способно выступать, как своеобразное средство для дезинфекции, применимое не только для воды. Однако, на этом полезные свойства данного металла отнюдь не заканчиваются, ведь помимо высокой теплопроводности, он обладает отличной электропроводностью, а также совершенно не подвержен процессам окисления даже при длительном контакте с влажной средой. Благодаря своим многочисленным уникальным свойствам, серебро широко используется для изготовления мелких комплектующих для различного рода электроприборов, и именно поэтому техника с деталями из этого благородного металла пользуется таким большим спросом.

Рассуждая на тему о сферах применения серебра, невозможно упустить из внимания тот вклад, который продолжает вносить этот металл в ювелирное искусство, ведь оно пользуется не меньшей популярностью, чем золото. Причем, помимо всевозможных колец, сережек и браслетов, серебро используется для изготовления изысканных столовых приборов и различного рода декоративных элементов, в том числе интерьерных. И речь идет не только о красоте, но и о функциональности. В качестве примера можно привести зеркала, которые вместо традиционного алюминия покрывают тончайшим слоем серебра, чтобы улучшить их отражающую способность. Кроме того, серебро прекрасно подходит для изготовления целого ряда вспомогательных инструментов и довольно сложно придумать лучший материал, с помощью которого можно будет выполнять чеканку монет и орденов. При этом использовать его можно не только в чистом виде, но и во всевозможных сплавах и соединениях.

Так, определенные химические соединения, в которых принимает непосредственное участие аргентум, активно используются для изготовления зарядных батарей аккумуляторов, которые славятся своей способностью при относительно малом внутреннем сопротивлении генерировать большой ток.

меди, латуни и алюминия, теплопередача

Перед тем как работать с различными металлами и сплавами, следует изучить всю информацию, касающуюся их основных характеристик. Сталь является самым распространенным металлом и применяется в различных отраслях промышленности. Важным ее показателем можно назвать теплопроводность, которая варьируется в широком диапазоне, зависит от химического состава материала и многих других показателей.

  • Что такое теплопроводность
    • Показатели для стали
  • Влияние концентрации углерода
  • Значение в быту и производстве

Что такое теплопроводность

Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:

  1. Молекул.
  2. Атомов.
  3. Электронов и других частиц структуры металла.

Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.

Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.

Показатели для стали

Теплопроводность может существенно отличаться в зависимости от химического состава металла. Коэффициент данной величины у стали и меди будет разным. Кроме этого, при повышении или уменьшении концентрации углерода изменяется и рассматриваемый показатель.

Существуют и другие особенности теплопроводности:

  1. Для стали, которая не имеет примесей, значение составляет 70 Вт/(м* К).
  2. У углеродистых и высоколегированных сталей проводимость намного ниже. За счет увеличения концентрации примесей она существенно снижается.
  3. Само термическое воздействие также может оказывать воздействие на структуру металла. Как правило, после нагрева структура меняет значение проводимости, что связано с изменением кристаллической решетки.

Коэффициент теплопроводности алюминия значительно выше, что связано с более низкой плотностью этого материала. Теплопроводность латуни также отличается от соответствующего показателя стали.

Влияние концентрации углерода

Концентрация углерода в стали влияет на величину теплопередачи:

  1. Низкоуглеродистые стали имеют высокий показатель проводимости. Именно поэтому они используются при изготовлении труб, которые затем применяются при создании трубопровода системы отопления. Значение коэффициента варьирует в пределе от 54 до 47 Вт/(м* К).
  2. Средним коэффициентом для распространенных углеродистых сталей является значение от 50 до 90 Вт/(м* К). Именно поэтому подобный материал используется при изготовлении деталей различных механизмов.
  3. У металлов, которые не содержат различных примесей, коэффициент составляет 64 Вт/(м* К). Это значение несущественно изменяется при термическом воздействии.

Таким образом, рассматриваемый показатель у легированных сплавов может меняться в зависимости от температуры эксплуатации.

Значение в быту и производстве

Почему важно учитывать коэффициент теплопроводности? Подобное значение указывается в различных таблицах для каждого металла и учитывается в нижеприведенных случаях:

  1. При изготовлении различных теплообменников. Тепло является одним из важных носителей энергии. Его используют для обеспечения комфортных условий проживания в жилых и иных помещениях. При создании отопительных радиаторов и бойлеров важно обеспечить быструю и полную передачу тепла от теплоносителя к конечному потребителю.
  2. При изготовлении отводящих элементов. Часто можно встретить ситуацию, когда нужно провести не подачу тепла, а отвод. Примером назовем случай отвода тепла от режущей кромки инструмента или зубьев шестерни. Для того чтобы металл не терял свои основные эксплуатационные качества, обеспечивается быстрый отвод тепловой энергии.
  3. При создании изоляционных прослоек. В некоторых случаях материал не должен проводить передачу тепловой энергии. Для подобных условий эксплуатации выбирается металл, который обладает низким коэффициентом проводимости тепла.

Определяется рассматриваемый показатель при проведении испытаний в различных условиях. Как ранее было отмечено, коэффициент проводимости тепла может зависеть от температуры эксплуатации. Поэтому в таблицах указывается несколько его значений.

Best Heat Conductive Metals

Теплопроводность — это термин, который описывает, насколько быстро материал поглощает тепло из областей с высокой температурой и перемещает его в области с более низкой температурой. Лучшие теплопроводные металлы обладают высокой теплопроводностью и полезны для многих применений, таких как кухонная посуда, теплообменники и радиаторы. С другой стороны, металлы с более низкой скоростью теплопередачи также полезны, поскольку они могут выступать в качестве теплозащитного экрана в приложениях, выделяющих большое количество тепла, например, в двигателях самолетов.

Варианты теплопроводных металлов

Следующие металлы ранжируются от самой низкой до самой высокой средней теплопроводности в ваттах/метр-K при комнатной температуре. Обычно используются либо в качестве источника тепла, либо для теплопередачи, в зависимости от их рейтинга. Наименее проводящие металлы занимают первое место, вплоть до самых проводящих материалов.

  1. Нержавеющая сталь (16)
  2. Свинец (35)
  3. Углеродистая сталь (51)
  4. Кованое железо (59)
  5. Железо (73)
  6. Алюминий Бронза (76)
  7. Медная латунь (111)
  8. Алюминий (237)
  9. Медь (401)
  10. Серебро (429)

Нержавеющая сталь

Обладая одной из самых низких теплопроводностей среди металлических сплавов, нержавеющей стали требуется гораздо больше времени для отвода тепла от источника, чем у меди. Это означает, что кастрюля из нержавеющей стали будет нагревать пищу гораздо дольше, чем кастрюля с медным дном (хотя у нержавеющей стали есть и другие преимущества). В паровых и газовых турбинах на электростанциях используется нержавеющая сталь из-за ее термостойкости, среди прочих свойств. В архитектуре облицовка из нержавеющей стали может выдерживать более высокие температуры, сохраняя здания более прохладными на солнце.

Алюминий

Хотя алюминий имеет немного более низкую теплопроводность, чем медь, он легче по весу, дешевле и с ним проще работать, что делает его лучшим выбором для многих применений. Например, микроэлектроника, такая как светодиоды и лазерные диоды, использует крошечные радиаторы с алюминиевыми ребрами, которые выступают в воздух. Внутри алюминия тепло, выделяемое электроникой, передается от чипа через алюминий в воздух либо пассивно, либо с помощью принудительной конвекции воздушного потока или термоэлектрического охладителя.

Медь

Медь обладает очень высокой теплопроводностью, она намного дешевле и доступнее, чем серебро, которое лучше всего проводит тепло. Медь устойчива к коррозии и устойчива к биообрастанию, что делает ее хорошим материалом для солнечных водонагревателей, газовых водонагревателей, промышленных теплообменников, холодильников, кондиционеров и тепловых насосов.

Прочие факторы, влияющие на теплопроводность

При рассмотрении лучших металлов для теплопроводности вы также должны учитывать другие факторы, помимо теплопроводности, которая влияет на скорость теплового потока. Например, начальная температура металла может существенно повлиять на скорость его теплопередачи. При комнатной температуре железо имеет теплопроводность 73, но при 1832°F его проводимость падает до 35. Другие факторы включают разницу температур металла, толщину и площадь поверхности металла.

Применение для проводящих металлов

Теплопроводящие металлы являются важным ресурсом для проектирования структуры приложения. Электроника и специально разработанные механические компоненты полагаются на проводящие металлы для создания полностью функциональной конструкции, которая либо притягивает, либо отклоняет тепловую активность. Применение проводящих металлов включает:

  • Электроника
  • Изделия медицинские
  • Лабораторное оборудование
  • Строительное снаряжение
  • Электропроводка

Ваш местный поставщик металла, обслуживающий Южную Калифорнию, Аризону и Северную Мексику

Имея семь офисов, обслуживающих Калифорнию, Аризону, Неваду и Северную Мексику, IMS является поставщиком металла с полным спектром услуг, который понимает ваши потребности. Наш ассортимент металлических изделий включает в себя широкий спектр металлических форм и широкий выбор сплавов. Мы предлагаем следующие преимущества:

  • Звонок в тот же день
  • Доставка по городу на следующий день
  • Отличная цена со скидкой при больших объемах
  • Изготовление металла по индивидуальному заказу
  • Сертификат ISO 9001
  • Поддержка производственных процессов «точно в срок»
  • Нет минимальных покупок

 
Industrial Metal Supply — крупнейший на Юго-Западе поставщик всех видов металлообрабатывающих и металлообрабатывающих принадлежностей. Запросите предложение или свяжитесь с IMS сегодня.

Невероятный конкурент алмазу как лучшему проводнику тепла

Маловероятный материал, кубический арсенид бора, может обеспечить необычайно высокую теплопроводность — на уровне отраслевого стандарта, установленного дорогостоящим алмазом, — сообщают исследователи в текущем выпуске журнала Письма о физическом обзоре .

Открытие того, что химическое соединение бора и мышьяка может соперничать с алмазом, самым известным теплопроводником, удивило группу физиков-теоретиков из Бостонского колледжа и Военно-морской исследовательской лаборатории. Но новый теоретический подход позволил команде раскрыть секрет потенциально экстраординарной способности арсенида бора проводить тепло.

Меньшие по размеру, более быстрые и мощные микроэлектронные устройства создают сложную задачу по отводу выделяемого ими тепла. Хорошие теплопроводники, находящиеся в контакте с такими устройствами, быстро отводят тепло от нежелательных «горячих точек», что снижает эффективность этих устройств и может привести к их выходу из строя.

Алмаз — самый ценный из драгоценных камней. Но, помимо своего блеска и ювелирной красоты, он обладает многими другими замечательными свойствами. Наряду со своими углеродными родственниками графитом и графеном алмаз является лучшим проводником тепла при комнатной температуре, имея теплопроводность более 2000 ватт на метр на кельвин, что в пять раз выше, чем у лучших металлов, таких как медь. В настоящее время алмаз широко используется для отвода тепла от компьютерных чипов и других электронных устройств. К сожалению, алмазы редки и дороги, а производство высококачественных синтетических алмазов сложно и дорого. Это подтолкнуло к поиску новых материалов со сверхвысокой теплопроводностью, но в последние годы достигнут незначительный прогресс.

По словам соавтора Дэвида Бройдо, профессора физики Бостонского колледжа, хорошо изучена высокая теплопроводность алмаза, обусловленная легкостью составляющих его атомов углерода и жесткими химическими связями между ними. С другой стороны, не ожидалось, что арсенид бора будет особенно хорошим проводником тепла, и фактически было оценено — с использованием обычных критериев оценки — его теплопроводность в 10 раз меньше, чем у алмаза.

Команда обнаружила, что расчетная теплопроводность кубического арсенида бора чрезвычайно высока: более 2000 Вт на метр на кельвин при комнатной температуре и выше, чем у алмаза при более высоких температурах, по словам Бройдо и соавторов Тома Райнеке, старшего научного сотрудника в Лаборатория военно-морских исследований и Лукас Линдсей, научный сотрудник NRL, получивший докторскую степень в Британской Колумбии.

Бройдо сказал, что команда использовала недавно разработанный теоретический подход для расчета теплопроводности, который они ранее протестировали со многими другими хорошо изученными материалами. Уверенные в своем теоретическом подходе, команда более внимательно изучила арсенид бора, теплопроводность которого никогда не измерялась.

В отличие от металлов, где электроны переносят тепло, алмаз и арсенид бора являются электрическими изоляторами. Для них тепло переносится колебательными волнами составляющих атомов, и столкновение этих волн друг с другом создает внутреннее сопротивление тепловому потоку. Команда была удивлена, обнаружив необычное взаимодействие определенных колебательных свойств в арсениде бора, которое выходит за рамки рекомендаций, обычно используемых для оценки теплопроводности электрических изоляторов. Оказывается, ожидаемые столкновения между колебательными волнами гораздо менее вероятны в определенном диапазоне частот. Таким образом, на этих частотах арсенид бора может проводить большое количество тепла.

«Эта работа дает новый важный взгляд на физику переноса тепла в материалах и иллюстрирует возможности современных вычислительных методов в количественном прогнозировании материалов, теплопроводность которых еще предстоит измерить», — сказал Бройдо. «Мы рады видеть, что наше неожиданное открытие для арсенида бора может быть подтверждено измерениями. Если это так, это может открыть новые возможности для приложений пассивного охлаждения с использованием арсенида бора, и это еще раз продемонстрирует важную роль, которую такая теоретическая работа может играть в предоставление полезного руководства для определения новых материалов с высокой теплопроводностью».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *