Как сделать простой и мощный регулятор постоянного тока
Очень простой и мощный регулятор без ШИМ и микросхем можно собрать своими руками на транзисторах. Данное устройство подойдет для регулировки постоянного тока до 20 Ампер при напряжении до 55 Вольт. Такую схему можно с успехом использовать в зарядниках, регуляторах нитей накала и тп.
Детали:
- Транзистор IRF3205 — 4 шт. — http://alii.pub/68qqw8
- Транзистор IRFZ44N — http://alii.pub/5ct567
- Стабилизатор L7812CV — http://alii.pub/68qr7p
- Резисторы 10 кОм, 22 кОм — http://alii.pub/5h6ouv
- Переменный резистор 10 кОм — 2 шт. — http://alii.pub/5o27v2
- Вентилятор DC 12 В 0,07 А — http://alii.pub/68qraf
- Терморезистор NTC10K — http://alii.pub/68qqvn
Изготовление простого регулятора постоянного тока
Схема строится на основе 4-х N-канальных силовых КМОП-транзисторов HEXFET с обратным диодом, имеющих низкое сопротивление в активном состоянии и высокое быстродействие при переключении.
В нее можно установить lm317, IRF3205N либо IRF1405N (если позволяют финансы). Эти полевики имеют большую мощность рассеивания и повышенную рабочую температуру перехода (до 175 градусов Цельсия), поэтому для нормальной работы устройства необходимо заранее позаботиться о хорошем радиаторе.
Найдя подходящую пластину для охлаждения, крепим на ней «мосфеты» (можно использовать термопасту). Для удобства дальнейшей сборки лучше разместить их поблизости друг от друга.
Далее на истоках транзисторов подпаиваем буферные нагрузки. Для этого можно использовать готовые резисторы по 11 Вт 0,1 Ом или самостоятельно намотать катушки толстым проводом, как показано на картинке.
Другие концы нагрузок соединяем между собой общей шиной.
Аналогично соединяем отдельными шинами стоки и затворы полевиков. При этом между истоком и затвором первого транзистора помещаем резистор на 22 кОм. На край радиаторной подложки выводим два провода: один красный от стоков транзисторов (подключается напрямую), второй синий от их затворов (подключается через резистор 10 кОм и потенциометр WL 10 K). Их можно приклеить к радиатору суперклеем.
Шину от стоков подпаиваем на левую ножку (вход) переменного резистора, от затворов через сопротивление – на центральную (выход). Провод с его правой ножки соединяем с синим отводом. Сам потенциометр также можно приклеить к радиатору, но изолируя его корпус от пластины.
Теперь крепим к радиатору стабилизатор напряжения на 12 В (L7812CV) и еще один полевой транзистор (IRFZ44N). Оба компонента тщательно изолируем от подложки (лучше несколько прокладок!).
На полевик подпаиваем подстроечный резистор на 10 кОм (W103). Его вторую и третью ножку крепим к затвору транзистора, первую – к истоку.
Между затвором и стоком IRFZ44N ставим терморезистор 10 кОм. Потом его можно «уложить на корпус одного из «мосфетов».
Синюю шину соединяем с «землей» (в данном случае средней ножкой) стабилизатора L7812CV и истоком IRFZ44N. Красную шину подпаиваем ко входу L7812CV. Далее берем кулер на 12 В (к примеру, DC 12 V 0,07 A) и подключаем его красный провод к выходу стабилизатора L7812CV, черный – к стоку IRFZ44N.
Подав на красную и синюю шины питание (12-25 В) убеждаемся, что вентилятор работает, причем скорость его вращения регулируется резистором W103.
Крепим вентилятор к краю основания радиатора, а между синей шиной и шиной истоков IRF3205N включаем «нагрузку» (пять, соединенных параллельно, автомобильных лампочек на 12 В / 21 Вт).
Подав на красную и синюю шины питание 22 В видим, что лампочки загорелись. Регулировать их яркость можно потенциометром.
При увеличении мощности включается вентилятор. Когда 12 В уменьшается до положения короткого замыкания, вентилятор останавливается.
Чтобы не горели полевики при длительной работе устройства, можно добавить резистор 330-500 Ом между потенциометром и отрицательной линией. Также можно поставить простенькую защиту на реле от короткого замыкания.
Смотрите видео
Как сделать регулировку яркости в светодиодной лампе — https://sdelaysam-svoimirukami.ru/8491-kak-sdelat-regulirovku-jarkosti-v-svetodiodnoj-lampe.html
схема и инструкция.
Регулятор постоянного токаНа сегодняшний день многие приборы производятся с возможностью регулировки тока. Таким образом пользователь имеет возможность контролировать мощность устройства. Работать указанные приборы способны в сети с переменным, а также постоянным током. По своей конструкции регуляторы довольно сильно отличаются. Основной деталью устройства можно назвать тиристоры.
Также неотъемлемыми элементами регуляторов являются резисторы и конденсаторы. Магнитные усилители используются только в высоковольтных приборах. Плавность регулировки в устройстве обеспечивается за счет модулятора. Чаще всего можно встретить именно поворотные их модификации. Дополнительно в системе имеются фильтры, которые помогают сглаживать помехи в цепи. За счет этого ток на выходе получается более стабильным, чем на входе.
Схема простого регулятора
Схема регулятора тока обычного типа тиристоры предполагает использовать диодные. На сегодняшний день они отличаются повышенной стабильностью и прослужить способны много лет. В свою очередь, триодные аналоги могут похвастаться своей экономичностью, однако, потенциал у них небольшой. Для хорошей проводимости тока транзисторы применяются полевого типа. Платы в системе могут использоваться самые разнообразные.
Для того чтобы сделать регулятор тока на 15 В, можно смело выбирать модель с маркировкой КУ202. Подача запирающего напряжения происходит за счет конденсаторов, которые устанавливаются в начале цепи. Модуляторы в регуляторах, как правило, применяются поворотного типа. По своей конструкции они довольно просты и позволяют очень плавно изменять уровень тока. Для того чтобы стабилизировать напряжение в конце цепи, применяются специальные фильтры. Высокочастотные их аналоги могут устанавливаться только в регуляторах свыше 50 В. С электромагнитными помехами они справляются довольно хорошо и большой нагрузки на тиристоры не дают.
Устройства постоянного тока
Схема регулятора постоянного тока характеризуется высокой проводимостью. При этом тепловые потери в устройстве являются минимальными. Чтобы сделать регулятор постоянного тока, тиристор требуется диодного типа. Подача импульса в данном случае будет высокой за счет быстрого процесса преобразования напряжения. Резисторы в цепи должны быть способны выдерживать максимальное сопротивление 8 Ом. В данном случае это позволит привести к минимуму тепловые потери. В конечном счете модулятор не будет быстро перегреваться.
Современные аналоги рассчитаны примерно на предельную температуру в 40 градусов, и это следует учитывать. Полевые транзисторы ток способны пропускать в цепи только в одном направлении. Учитывая это, располагаться в устройстве они обязаны за тиристором. В результате уровень отрицательного сопротивления не будет превышать 8 Ом. Высокочастотные фильтры на регулятор постоянного тока устанавливаются довольно редко.
Модели переменного тока
Регулятор переменного тока отличается тем, что тиристоры в нем применяются только триодного типа. В свою очередь, транзисторы стандартно используются полевого вида. Конденсаторы в цепи применяются только для стабилизации. Встретить высокочастотные фильтры в устройствах данного типа можно, но редко. Проблемы с высокой температурой в моделях решаются за счет импульсного преобразователя. Устанавливается он в системе за модулятором. Низкочастотные фильтры используются в регуляторах с мощностью до 5 В. Управление по катоду в устройстве осуществляется за счет подавления входного напряжения.
Стабилизация тока в сети происходит плавно. Для того чтобы справляться с высокими нагрузками, в некоторых случаях применяются стабилитроны обратного направления. Соединяются они транзисторами при помощи дросселя. В данном случае регулятор тока должен быть способным выдерживать максимум нагрузкуи в 7 А. При этом уровень предельного сопротивления в системе обязан не превышать 9 Ом. В этом случае можно надеяться на быстрый процесс преобразования.
Как сделать регулятор для паяльника?
Сделать регулятор тока своими руками для паяльника можно, используя тиристор триодного типа. Дополнительно потребуются биполярные транзисторы и низкочастотный фильтр. Конденсаторы в устройстве применяются в количестве не более двух единиц. Снижение тока анода в данном случае должно происходить быстро. Чтобы решить проблему с отрицательной полярностью, устанавливаются импульсные преобразователи.
Для синусоидального напряжения они подходят идеально. Непосредственно контролировать ток можно за счет регулятора поворотного типа. Однако кнопочные аналоги также встречаются в наше время. Чтобы обезопасить устройство, корпус используется термостойкий. Резонансные преобразователи в моделях также можно встретить. Отличаются они, по сравнению с обычными аналогами, своей дешевизной. На рынке их часто можно встретить с маркировкой РР200. Проводимость тока в данном случае будет невысокой, однако управляющий электрод со своими обязанностями справляться должен.
Приборы для зарядного устройства
Чтобы сделать регулятор тока для зарядного устройства, тиристоры необходимы только триодного типа. Запирающий механизм в данном случае будет контролировать управляющий электрод в цепи. Полевые транзисторы в устройствах используются довольно часто. Максимальной нагрузкой для них является 9 А. Низкочастотные фильтры для таких регуляторов не подходят однозначно. Связано это с тем, что амплитуда электромагнитных помех довольно высокая. Решить эту проблему можно просто, используя резонансные фильтры. В данном случае проводимости сигнала они препятствовать не будут. Тепловые потери в регуляторах также должны быть незначительными.
Применение симисторных регуляторов
Симисторные регуляторы, как правило, применятся в устройствах, мощность которых не превышает 15 В. В данном случае они предельное напряжение способны выдерживать на уровне 14 А. Если говорить про приборы освещения, то они использоваться могут не все. Для высоковольтных трансформаторов они также не подходят. Однако различная радиотехника с ними способна работать стабильно и без каких-либо проблем.
Регуляторы для активной нагрузки
Схема регулятора тока для активной нагрузки тиристоры предполагает использовать триодного типа. Сигнал они способны пропускать в обоих направлениях. Снижение тока анода в цепи происходит за счет понижения предельной частоты устройства. В среднем данный параметр колеблется в районе 5 Гц. Напряжение максимум на выходе должно составлять 5 В. С этой целью резисторы применяются только полевого типа. Дополнительно используются обычные конденсаторы, которые в среднем способны выдерживать сопротивление 9 Ом.
Импульсные стабилитроны в таких регуляторах не редкость. Связано это с тем, что амплитуда электромагнитных колебаний довольно большая и бороться с ней нужно. В противном случае температура транзисторов быстро возрастает, и они приходят в негодность. Чтобы решить проблему с понижающимся импульсом, преобразователи используются самые разнообразные. В данном случае специалистами также могут применяться коммутаторы. Устанавливаются они в регуляторах за полевыми транзисторами. При этом с конденсаторами они соприкасаться не должны.
Как сделать фазовую модель регулятора
Сделать фазовый регулятор тока своими руками можно при помощи тиристора с маркировкой КУ202. В этом случае подача запирающего напряжения будет проходить беспрепятственно. Дополнительно следует позаботиться о наличии конденсаторов с предельным сопротивлением свыше 8 Ом. Плата для этого дела может быть взята РР12. Управляющий электрод в этом случае обеспечит хорошую проводимость. Импульсные преобразователи в регуляторах данного типа встречаются довольно редко. Связано это с тем, что средний уровень частоты в системе превышает 4 Гц.
В результате на тиристор оказывается сильное напряжение, которое провоцирует возрастание отрицательного сопротивления. Чтобы решить эту задачу, некоторые предлагают использовать двухтактные преобразователи. Принцип их работы построен на инвертировании напряжения. Изготовить самостоятельно регулятор тока данного типа в домашних условиях довольно сложно. Как правило, все упирается в поиски необходимого преобразователя.
Устройство импульсного регулятора
Чтобы сделать импульсный регулятор тока, тиристор потребуется триодного типа. Подача управляющего напряжения осуществляется им с большой скоростью. Проблемы с обратной проводимостью в устройстве решаются за счет транзисторов биполярного типа. Конденсаторы в системе устанавливаются только в парном порядке. Снижение тока анода в цепи происходит за счет смены положения тиристора.
Запирающий механизм в регуляторах данного типа устанавливается за резисторами. Для стабилизации предельной частоты фильтры могут применяться самые разнообразные. Впоследствии отрицательное сопротивление в регуляторе не должно превышать 9 Ом. В данном случае это позволит выдерживать большую токовую нагрузку.
Модели с плавным пуском
Для того чтобы сконструировать тиристорный регулятор тока с плавным пуском, нужно позаботиться о модуляторе. Наиболее популярными на сегодняшний день принято считать поворотные аналоги. Однако они между собой довольно сильно отличаются. В данном случае многое зависит от платы, которая применяется в устройстве.
Если говорить про модификации серии КУ, то они работают на самых простых регуляторах. Особой надежностью они не выделяются и определенные сбои все же дают. Иначе обстоят дела с регуляторами для трансформаторов. Там, как правило, применяются цифровые модификации. В результате уровень искажений сигнала значительно сокращается.
Как сделать схемы регулятора напряжения
Регулятор напряжения — это устройство, используемое для изменения колеблющегося напряжения на его входе на определенное и стабильное напряжение на его выходе. Регуляторы напряжения могут быть механическими, электрическими, переменного или постоянного тока. В этой статье мы рассмотрим электронные линейные регуляторы постоянного тока.
Применение регуляторов
Для большинства цепей требуется постоянное напряжение питания, не зависящее от потребляемого тока. Даже небольшое перенапряжение может оказаться разрушительным, поэтому следует использовать регуляторы. Но регуляторы также очень помогают в устранении сетевого шума в аудиоусилителях. В генераторах сигналов или генераторах выходная частота зависит от напряжения питания и также должна быть хорошо отрегулирована, чтобы поддерживать ее постоянной.
Типы регуляторов
Существует три основных класса или типа регуляторов: положительные регуляторы с положительным входным напряжением, отрицательные регуляторы с отрицательным входным напряжением, сдвоенные регуляторы напряжения, которые представляют собой наборы обоих , например, схема операционного усилителя и, наконец, регулируемые регуляторы , где может присутствовать любой из вышеперечисленных, но иметь ручку управления для изменения выходного напряжения по требованию.
Простой регулятор Zener rЗенеровский диод — это тип диода, который при подключении в конфигурации с обратным смещением (см. ниже) начинает «пробиваться» или проводить ток при определенном напряжении, называемом напряжением Зенера. Как только он начинает проводить, ток не останавливается, поэтому резистор (R1 показан ниже) должен ограничивать ток до безопасного значения.
В приведенном выше простом регуляторе Vin равно 12 В, Vout равно 5 В, а I равно 10 мА. Без стабилитрона R1 это было бы R=V/I = 12-5/0,01 = 700 Ом. Однако регулирования не будет, так как Зенер не будет дирижировать. Используя эмпирическое правило, стабилитрон должен проводить в два-пять раз больше тока нагрузки, скажем, 50 мА. Учитывая это, должно быть I = 50 + 10 = 60 мА, поэтому R1 = 7/0,06 = 116 Ом.
Проблема, однако, заключается в том, что рассеиваемая мощность на резисторах R1 и D1 при больших токах нагрузки будет чрезмерной. Но это вполне подходящая схема для преобразования уровней сигналов, скажем, 5В вниз, в 3,3В модули.
Стабилитрон в качестве эталона и транзистор Q1
Здесь мы использовали стабилитрон в качестве эталона и транзистор Q1 в качестве последовательного регулятора, выполняющего тяжелую работу. Резистор R2 обеспечивает смещение для включения транзистора Q1 и подачи гораздо меньшего тока через стабилитрон D2. Если Vout равно 5 В, к этому добавляется падение напряжения база-эмиттер 0,6 В, поэтому D2 должен быть равен 5,6 В (обычно доступно), а R2 теперь должен обеспечивать ток коллектора / hfe транзистора (скажем, 1000). Для источника питания 1 А, 1/1000 10 мА, R2 = 12-5,6/0,01 = 640 Ом плюс немного тока для стабилитрона, скажем, 560 Ом.
Но все равно много тока тратится на нагрев стабилитрона. Итак, теперь мы добавили Q5 и сеть обратной связи от Vout, чтобы обеспечить полезную схему:
D4 больше не критичен и может быть любым в диапазоне от 1 В до 4 В и регулируемым. Поскольку Vout пытается превысить напряжение базы/эмиттера Q5 +0,6 + D4, он начинает отбирать ток у базы Q4, стабилизируя напряжение. R6 теперь может быть более значительным значением и не критично, так как 1k подойдет. R7 и R8 также обеспечивают более легкую регулировку.
Давайте сделаем еще один шаг вперед и добавим защиту от перегрузки по току:
Падение напряжения на D6 и D7 всегда будет 0,6 + 0,6 = 1,2 В, а Vbe Q6 также равно 0,6 В. Например, если мы тщательно выбираем R14, чтобы он соответствовал точке, в которой мы хотим предотвратить перегрузку по току, скажем, 2 А, как только V на R14 = 1,2 В, D6 и D7 отнимут ток у базы Q6, не допуская дальнейшего тока питания более 2 А. .
Следовательно, R14 = 1,2/2 = 0,6 Ом. Но есть еще одно улучшение, которое мы можем сделать, чтобы предотвратить большие токи в диодах.
Заменены диоды на Q9. Все, что ему нужно, это 0,6, чтобы включить его и вызвать ограничение тока. Для 2А это будет R19 = 0,6/2 = 0,3 Ом.
Регулятор постоянного напряжения
Здесь у нас есть простой трехвыводной регулятор постоянного напряжения. ИС стабилизаторов напряжения серии LM78xx выпускаются с несколькими различными напряжениями. Например, LM7812 выдает 12 В, LM7809 выдает 9 В, а LM7805 выдает 5 В.
C4 и C10 не следует путать со сглаживающими конденсаторами. Они предназначены для шума и стабильности и должны иметь низкое ESR (эквивалентное последовательное сопротивление). C4 обычно 10 мкФ, а C10 1 мкФ. Обратите внимание, что диод D9заключается в том, чтобы разряжать любую большую емкость в нагрузке назад, чтобы предотвратить обратное смещение регулятора, когда вход становится низким.
Регулируемый регулятор напряжения
И, наконец, мы подошли к концу эволюции с регулируемым трехвыводным регулятором — знаменитым регулятором напряжения LM317 и его отрицательным аналогом, отрицательным регулятором напряжения LM337.
C2 для шума и может быть 1 мкФ. Соотношение R20 и R23 задает выходное напряжение. Это могут быть два постоянных резистора или регулируемый потенциометр. R20 указано в даташите как нестандартное 240Ом, но если сделать его стандартным 220Ом, то при любом напряжении между В max и V min, R7 = (176*V из ) – 220.
Таким образом, если вы хотите 9 В, R23 может быть фиксированным значением, т. е. 176*9 – 220 = 1k4. Обратите внимание, что, поскольку внутреннее опорное напряжение составляет 1,25 В, что является самым низким значением, которое может обеспечить регулятор, ему также требуется не менее 2 В между входом и выходом, а максимальное напряжение составляет 32 В, поэтому он может обеспечивать регулировку от 1,2 В до 30 В. Сделать R23 10k.
Мощность, рассеиваемая регулятором, составляет (Vin-Vout )* Iout. Таким образом, для входа 12 В и выхода 5 В при 1 А мощность составляет (12-5) * 1 = 7 Вт. Это нелогично, но это означает, что регулятор рассеивает большую часть мощности, когда он установлен на самое низкое выходное напряжение.
Если вы берете из регулятора более 1А или он слишком горячий, чтобы держать его пальцами, ему нужен радиатор. Вы можете попробовать установить его на корпус алюминиевой коробки, которую вы используете, или установить на кусок плоского алюминия или, что еще лучше, на подходящий радиатор и угадать размер. Вы должны быть в состоянии удобно держать регулятор, не обжигая при этом руку или пальцы.
Не забудьте оставить комментарий ниже, если у вас есть какие-либо вопросы!
Как сделать регулятор напряжения постоянного тока
••• источник питания изображение PM Photo from Fotolia.com
Обновлено 24 апреля 2017 г.
Автор: Kim Lewis
Регуляторы напряжения помогают контролировать или регулировать напряжение через электрические устройства, такие как источники питания переменного тока. Источники питания переменного тока имеют колебания, возникающие в результате размыкания или замыкания выключателей или молнии. Регуляторы постоянного напряжения обеспечивают опорное напряжение, которое помогает стабилизировать эти колебания.
Чтобы сделать регулятор постоянного напряжения, используйте линейный монолитный стабилизатор на ИС. Они легкие, недорогие и способны выдавать стабильное опорное напряжение. Они также относительно прочны для своего размера. Регуляторы напряжения IC имеют три клеммы или контакта, которые обычно подключаются к конденсаторам для контроля пульсаций или колебаний.
- Регулятор напряжения на ИС серии 78xx
- Спецификации на ИС 78xx
- Конденсатор 0,1 мкФ
- Конденсатор 0,22 мкФ
- Источник питания 12 В
- Цифровой мультиметр
Для предотвращения перегрева монолитным интегральным микросхемам могут потребоваться внешние радиаторы.
Емкость конденсаторов, используемых для контроля пульсаций, может варьироваться, например, от 0,1 до 1 микрофарад, в зависимости от требований схемы.
Полупроводники являются чувствительными устройствами; не превышайте номинальные значения мощности, тока и температуры, указанные производителем.
Всегда соблюдайте осторожность при построении электрических цепей, чтобы не обжечься и не повредить оборудование.
Определите требования к выходному напряжению и мощности, которые вам нужны, и на этой основе выберите регулятор напряжения на ИС. Например, если требуется пять вольт, выберите стабилизатор напряжения LM7805, который имеет выходное напряжение пять вольт. Микросхема LM7806 имеет выходное напряжение шесть вольт. Оба могут выдерживать токи нагрузки до одного ампера.
Используйте техпаспорт и изучите технические характеристики и распиновку регулятора IC. Для серии 78xx требуется, чтобы входное напряжение было на первом контакте, а выходное — на втором. Поскольку при включении в цепь происходит падение напряжения на два-три вольта, входное напряжение должно быть на два-три вольта больше, чем выходное.
Подключите положительный конец источника питания к одному концу конденсатора на 0,22 мкФ. При необходимости можно использовать конденсатор большей емкости.
Подсоедините один контакт регулятора IC к той же стороне конденсатора, которая подключена к источнику питания. Подключите свободный конец конденсатора к земле.
Добавьте провод и соедините третий контакт с землей. Третий контакт обычно подключается непосредственно к земле, хотя иногда для регулировки выходного напряжения используется резистор.
Добавьте конденсатор емкостью 0,1 мкФ, подключив один конец к контакту два, а другой конец к земле. Подключите отрицательную сторону источника питания к цепи.
Включите питание. Поместите мультиметр на постоянное напряжение и измерьте выходной сигнал со второго контакта. Величина должна приблизительно соответствовать опорному напряжению регулятора IC, например, пять вольт или шесть вольт.
Вещи, которые вам понадобятся
Предупреждения
Связанные статьи
Ссылки
- «Электронные принципы»; Альберт Мальвино; 1999
- «Начало работы в области электроники»; Форрест Мимс III; 2000
- «Искусство электроники»; Пол Горовиц и Уинфилд Хилл; 1997
Наконечники
- Для защиты от перегрева монолитным интегральным микросхемам могут потребоваться внешние радиаторы.
- Емкость конденсаторов, используемых для контроля пульсаций, может варьироваться, например, от 0,1 до 1 микрофарад, в зависимости от требований схемы.