Расчет балки на прочность при изгибе онлайн калькулятор: Расчет балки на прогиб и прочность

Содержание

Балки под сосредоточенной нагрузкой | Онлайн калькулятор

В данном разделе можно выполнить онлайн расчеты статически определимых балок в условиях прямого поперечного изгиба под действием сосредоточенной нагрузки. Расчеты определяют прогиб, угол поворота и изгибающий момент в произвольно заданной точке балки при различных граничных условиях. Определив наибольший изгибающий момент и соответствующее опасное сечение балки легко подобрать его размеры исходя из допускаемых напряжений в сечении.

Исходные данные:

L — длина балки, в миллиметрах;

a — координата точки приложения сосредоточенной нагрузки, в миллиметрах;

X — координата точки нахождения изгибающего момента, угла поворота и прогиба балки, в миллиметрах;

F — нагрузка, в ньютонах;

Ix — момент инерции сечения относительно оси, перпендикулярной действию нагрузки, в метрах 4;

Е — модуль упругости материала балки, в паскалях.

Расчет балки # 1.1

Расчет изгибающего момента, угла поворота и прогиба в произвольно заданной точке консольно закрепленной балки под действием сосредоточенной нагрузки.

Граничные условия:

RL = 0 — реакция опоры в крайней левой точке;

ML = 0 — изгибающий момент в крайней левой точке;

θR = 0 — угол поворота в крайней правой точке;

YR = 0 — прогиб балки в крайней правой точке.

Расчет балки # 2.1

Расчет изгибающего момента, угла поворота и прогиба в произвольно заданной точке балки c защемленным концом и скользящей опорой под действием сосредоточенной нагрузки.

Граничные условия:

RL = 0 — реакция опоры в крайней левой точке;

θL = 0 — угол поворота в крайней левой точке;

θR = 0 — угол поворота в крайней правой точке;

YR = 0 — прогиб балки в крайней правой точке.

Расчет балки # 3.1

Расчет изгибающего момента, угла поворота и прогиба в произвольно заданной точке балки c защемленным концом и шарнирной опорой под действием сосредоточенной нагрузки.

Граничные условия:

МL = 0 — изгибающий момент в крайней левой точке;

YL = 0 — прогиб балки в крайней левой точке;

θR = 0 — угол поворота в крайней правой точке;

YR = 0 — прогиб балки в крайней правой точке.

Расчет балки # 4.1

Расчет изгибающего момента, угла поворота и прогиба в произвольно заданной точке балки c защемленными концами под действием сосредоточенной нагрузки.

Граничные условия:

θL = 0 — угол поворота в крайней левой точке;

YL = 0 — прогиб балки в крайней левой точке;

θR = 0 — угол поворота в крайней правой точке;

YR = 0 — прогиб балки в крайней правой точке.

Расчет балки # 5.1

Расчет изгибающего момента, угла поворота и прогиба в произвольно заданной точке балки c шарнирными опорами под действием сосредоточенной нагрузки.

Граничные условия:

МL = 0 — изгибающий момент в крайней левой точке;

YL = 0 — прогиб балки в крайней левой точке;

МR = 0 — изгибающий момент в крайней правой точке;

YR = 0 — прогиб балки в крайней правой точке.

Расчет балки # 6.1

Расчет изгибающего момента, угла поворота и прогиба в произвольно заданной точке балки c шарнирной и скользящей опорами под действием сосредоточенной нагрузки.

Граничные условия:

RL = 0 — реакция опоры в крайней левой точке;

θL = 0 — угол поворота балки в крайней левой точке;

МR = 0 — изгибающий момент в крайней правой точке;

YR = 0 — прогиб балки в крайней правой точке.

©ООО»Кайтек», 2020. Любое использование либо копирование материалов или подборки материалов сайта, может осуществляться лишь с разрешения автора (правообладателя) и только при наличии ссылки на сайт www.caetec.ru

Расчет балки онлайн с расчетом на прочность и построение эпюр онлайн с решением. —  

Расчет балки

Подробный ход решения — расчет балки, построение эпюр

Заменим распределенную нагрузку равнодействующей

Q1 = 6·2 = 12кН

Составим уравнения равновесия для определения реакций опор

Σ MA = + P · 2 + M + Q1 · 3 — RE · 6= + 12 · 2 + 8 + 12 · 3 — RE · 6=0

Σ ME = — P · 4 + M — Q1 · 3 + RA · 6= — 12 · 4 + 8 — 12 · 3 + RA · 6=0

Из этих уравнений находим реакции опор

RA = 12.67кН.

RE = 11.33кН.

Записываем уравнения поперечных сил и изгибающих моментов на участках балки , используя метод сечений

На участке AB: (0 ≤ z1 ≤ 2 м )

Q(z1) = + RA = + 12.67 = 12.667 кН

M(z1) = + RA · z = + 12.67 · z

M(0) = 0 кНм

M(2) = 25.333 кНм

На участке BC: (2 ≤ z2 ≤ 4 м )

Q(z2) = + RA — P — q1·(z — 2) = + 12.

67 — 12 — 6·(z — 2)

Q(2) = 0.667 кН

Q(4) = -11.333 кН

M(z2) = + RA · z — P·(z — 2) — q1·(z — 2)2/2 = + 12.67 · z — 12·(z — 2) — 6·(z — 2)2/2

M(2) = 25.333 кНм

M(4) = 14.667 кНм

Поскольку поперечная сила на участке пересекает ноль при z = 2.11 м, в этой точке будет экстремум на эпюре M

M(2.11) = 25.4 кНм

На участке CD: (4 ≤ z

3 ≤ 5 м )

Q(z3) = + RA — P — Q1 = + 12.67 — 12 — 12 = -11.333 кН

M(z3) = + RA · z — P·(z — 2) — Q1·(z — 3) = + 12.67 · z — 12·(z — 2) — 12·(z — 3)

M(4) = 14.667 кНм

M(5) = 3.333 кНм

На участке DE: (5 ≤ z4 ≤ 6 м )

Q(z4) = + RA — P — Q1 = + 12.67 — 12 — 12 = -11.333 кН

M(z4) = + RA · z — P·(z — 2) + M — Q 1·(z — 3) = + 12.67 · z — 12·(z — 2) + 8 — 12·(z — 3)

M(5) = 11. 333 кНм

M(6) = 0 кНм

Максимальный момент в балке составляет Mmax = 25.4 кНм. По этому значению подбираем сечение балки.

Условие прочности при изгибе σ = Mmax / W ≤ [σ]

Отсюда, минимально необходимый момент сопротивления вычисляем по формуле Wmin=Mmax / [σ]

Расчет опорных реакций балки на двух опорах онлайн

Расчет выполняется по следующей методике:

1. Заменяем распределенную нагрузку ее равнодействующей, которая является сосредоточенной силой. Для равномерно распределенной нагрузки равнодействующая равна произведению интенсивности нагрузки q на длину участка L, на котором она действует: Fq = q*L.

2. Обозначаем опоры. Общепринято их обозначать буквами А и В. Простая балка имеет одну шарнирно-неподвижную и одну шарнирно-подвижную опоры.

3. Освобождаемся от опор и заменяем их действие на балку реакциями.
Реакции опор при такой нагрузке будут только вертикальными.

4. Составляем уравнения равновесия вида:
MA = 0; MB = 0,
Моментом силы относительно точки называется произведение этой силы на плечо — кратчайшее расстояние от этой точки приложения силы (в общем случае — до линии действия силы).

5. Выполним проверку решения. Для этого составим уравнение равновесия: Y = 0,
Если оно удовлетворено, то реакции найдены правильно, а если нет, но в решении допущена ошибка.

6. Строим эпюру поперечных сил Qx. Для этого определяем значения поперечных сил в характерных точках. Напомним, что поперечная сила в сечении равна сумме проекций всех сил, расположенных только слева или только справа от рассматриваемого сечения, на ось, перпендикулярную оси элемента. Силу, расположенную слева от рассматриваемого сечения и направленную вверх, считают положительной (со знаком «плюс»), а направленную вниз — отрицательной (со знаком «минус»). Для правой части балки — наоборот.

В сечениях, соответствующих точкам приложения сосредоточенных сил, в том числе в точках приложения опорных реакций, необходимо определить два значения поперечной силы: чуть левее рассматриваемой точки и чуть правее ее. Поперечные силы в этих сечениях обозначаются соответственно Qлев и Qправ.
Найденные значения поперечных сил в характерных точках откладываются в некотором масштабе от нулевой линии. Эти значения соединяются прямыми линиями по следующим правилам:
а) если к участку балки нет распределенной нагрузки, то под этим участком значения поперечных сил соединяются прямой линией, параллельной нулевой линии;
б) если на участке балки приложена распределенная нагрузка, то под этим участком значения поперечных сил соединяются прямой, наклонной к нулевой линии. Она может пересекать или не пересекать нулевую линию.
Соединив все значения поперечных сил по указанным правилам, получим график изменения поперечных сил по длине балки. Такой график называется эпюрой Qx.

7. Строим эпюру изгибающих моментов М

x. Для этого определяем изгибающие моменты в характерных сечениях. Напомним, что изгибающий момент в рассматриваемом сечении равен сумме моментов всех сил (распределенных, сосредоточенных, в том числе и опорных реакций, а также внешних сосредоточенных моментов), расположенных только слева или только справа от этого сечения. Если любое из перечисленных силовых воздействий стремится повернуть левую часть балки по часовой стрелке, то оно считается положительным (со знаком «плюс»), если против — отрицательным (со знаком «минус»), а для правой части наоборот.

В сечениях, соответствующих точкам приложения сосредоточенных моментов, необходимо определить два значения изгибающего момента: чуть левее рассматриваемой точки и чуть правее ее. Изгибающие моменты в этих точках обозначаются соответственно М
лев
и Мправ. В точках приложения сил определяется одно значение изгибающего момента.
Полученные значения откладываются в некотором масштабе от нулевой линии. Эти значения соединяются в соответствии со следующими правилами:
а) если на участке балки нет распределенной нагрузки, то под этим участком балки два соседних значения изгибающих моментов соединяются прямой линией;
б) если к участку балки приложена распределенная нагрузка, то под этим участком значения изгибающих моментов для двух соседних точек соединяются по параболе. Пример решения балки:

Построение эпюр усилий онлайн

Інструкція.

Программа позволяет определить опорные реакции и построить эпюры внутренних усилий для двухопорной и консольной балки.

Дальнейшие инструкции будут приведены на примере балки на двух опорах.

1. Выберите условия крепления концов балки. Возможны варианты — свободный, шарнир и жесткое. В нашем примере левый и правый конец стержня не имеют креплений, поэтому выбираем вариант «свободный».

Если по ошибке был выбран другой вариант, нажимаем на кнопку «Новая схема».

2. Указываем длину балки и координаты опор. Длина балки равна «13», а координаты опор от левого конца балки, в соответствии к опоры A — «2» и к опоре B — «11».

3. Указываем нагрузку.
Выбираем количество сосредоточенных моментов — «2». В таблице вводим значения моментов и их координаты от левого конца балки. M1=40, a1=6 и M2=-20, a2=13 (момент который вращается против часовой стрелки — положительный, по — отрицательный).
Выбираем количество сосредоточенных сил — «2». В таблице вводим значение сил и их координаты. F 1=9, b1=0 и F2=6.93, b2=9 (сила направленная вниз — положительная, вверх — отрицательная).
Выбираем количество равномерно распределенной нагрузки — «1». В таблице вводим значение РРН, координаты начала и конца РРН. q1=12, c1=2 та d1=8 (РРН направлена вниз — положительная, вверх — отрицательная).

4. Нажимаем на кнопку «Построить эпюры». После нажатия определяются опорные реакции и строятся эпюры усилий. Если нужно определить усилия в произвольном сечении, введите координату в форму. Если нужно, задайте точность расчета и выберите правое или левое сечение.

Скриншот к примеру:

Скриншот к примеру (эпюра поперечных сил):

Скриншот к примеру (эпюра изгибающих моментов):

Онлайн расчет статически неопределенной балки

Расчет выполняется методом сил

Канонические уравнения метода сил:

Где коэффициенты системы определяются:

Принцип ввода данных, рассмотрим с помощью следующего примера:

1. Задание длины (12м) и условий закрепления стержня. Левый конец стержня свободен, а правый — жестко закрепленный. Задаем координаты опор (отсчет ведется от левого конца стержння). Первая опора имеет координату 2м, вторая — 7м.

2. Задаем нагрузки, использовав соответствующие правила знаков:

3. В случае, если жесткость балки переменная, задайте необходимые пропорции (нажмите на кнопку «Изменить жесткость»):

4. Для начала расчета нажмите на кнопку «Построить эпюры».

Для расчета балок используется следующая основная система (ОС). Выбрать ОС невозможно.

Решение системы уравнений:

Опорные реакции:

Расчет онлайн для разнотипных балочных конструкций.

Строительство зданий – сложная работа, требующая точных расчетов и качественного выполнения работы. Основным материалом в строительстве жилых домов является древесина. Несущие конструкции изготавливаются из этого материала. Рассмотрим способы расчета балки онлайн.

Разновидности перекрытий

Назначение:

  1. Межэтажные.
    Прочное, надежное перекрытие. Между двумя материалами складываются звуко- и теплоизоляционные наполнители.
  2. Чердачное.
    Является частью стропильной конструкции крыши. Чердак оборудован изоляцией от шума и пара.
  3. Цокольное.
    Выносят высокие нагрузки. Делаются с теплоизоляцией.

Балки бывают двух видов:

  1. цельные;
  2. клееные.

Слабым звеном монолитных балок является ограниченная длина. Не могут быть больше 5 метров.

Преимуществами клееных балок над цельными являются:

  • перекрытие больших пролетов;
  • легкость установки;
  • маленькая масса;
  • длительная эксплуатация;
  • пожароустойчивые;
  • не деформируются.

Каким образом определяется длина балки?

Обычно размещаются параллельно самой маленькой стене. Размеры зависят от материалов, из которых изготавливаются блоки и от общего объема материала. Для крепления используют металлические крепежи (кронштейны, уголки, пластинки с перфорацией, плитки). Если применяете один из этих видов крепежа, то длина балки должна соответствовать пролету комнаты.

Также балки могут быть частью стропильных элементов. Конструкция опирается на мауэрлат. Данный способ увеличивает длину исходного материала на метр.

Советы для правильного расчета:

  1. Учитывайте глубину введения материалов в стену. Глубина вхождения для стен из кирпича составляет от 150 мм для балок из бруса и 100 мм для досок. В домах из дерева – от 70 мм.
  2. Длина балки составляет минимум 6 м.

Инструкция для подсчета:

  1. замерьте пролет;
  2. выберите закрепляющие элементы;
  3. рассчитайте влияющую нагрузку;
  4. подберите шаг и сечение.

При строительстве можно выпустить балки наружу на 31- 60 см. Таким образом, формируется свес крыши.

Определение действующей нагрузки

В жилом помещении имеется два дверных пролета. Обычно отличаются по размерам, но в квадратной комнате могут быть одинаковыми.

Перемычки укладывают в более коротком проеме ,длиной 3-4 метра. По стандарту, стороны должны соотноситься в пропорции семь к пяти. Так исключается деформация. Если не соблюдать этих пропорций, балки прогнутся. Возможный деформация – два см на четыре метра.

Для устранения провисания бруса, изготовьте снизу на несколько см, при этом придав форму арки.

Прогиб можно рассчитать по формуле f(нор)= L/200

L –длина пролета,

200 – расстояние на единицу погружения дерева.

Нагрузка на любую конструкцию определяется по нескольким формулам.

Первая – геометрическая характеристика сечения стержнями:

W≥M/R . M – время относительно нейтральной оси сечения балки или другого твердого тела,

R – рассчитываемое сопротивление, которое нужно взять из справочника исходя из основы.

Для стержней прямоугольной формы формула выглядит так:

W_Z =b∙ h 2/6,

b – ширина балки,

h – высота.

Перекрытие во многих случаях является кровлей и полом следующего и предшествующего этажей. Объединяйте, учитывая нагрузку мебели на поверхности. Если неправильно распределить, появляется риск разрушения конструкций. Не следует применять уж очень широкий шаг промеж балками и отказываться от лагов. Учитывайте, что пространство между основами зависит от толщины досок. Если имеются лаги, то расстояние посередине должно составлять метр.

Совет! Предусмотрите массу утеплителя. Цокольное перекрытие, длиной 1 м2, весит 100 килограммов. Увеличивает вдвое одну и ту же массу опилкобетон. Керамзит еще тяжелее.

Выяснение сечения и шага балки

  1. Параметры балок строго регламентированы. Так, соразмерность – 1:1:4. Широта – с 5 до 21 сантиметра, высота – от 10 до 31 сантиметра. Учитывайте утеплитель! Бревна перекрытия должны иметь диаметр от 11 до 31 сантиметра.
  2. Установочный шаг – примерно 30–120 сантиметров. При каркасном строении шаг соответствует дистанции промеж твердыми основами.

Требования, предъявляемые к конструкциям:

  • влагосодержание материала – максимум 15%;
  • нельзя использовать испорченную древесину, то есть синюшную, поражённую грибком, насекомыми, грызунами;
  • обработка антисептическим составом;
  • размерное отношение – 7:5 для брусьев;
  • чем больше высота лаг, тем больше нагрузка, выдерживаемая балкой;
  • для ровного перекрытия сделайте подъем ярусов;
  • брусья и бревна замените досками, уложенными на ребро, если укладка интенсивная.

Онлайн калькулятор для расчета деревянных балок

Высота балки (мм)
Ширина балки (мм)
Материал древесины
Пролет (м)
Шаг балок (м)

Произвести расчет балки возможно самостоятельно: рассчитать нагрузки, воздействующие на перекрытие по формулам и параметрам или воспользоваться онлайн калькулятором. Также можно выбрать подходящую конструкцию, исходя из имеющихся условий.

Бесплатный Калькулятор Луча | Изгибающий момент, Калькулятор поперечной силы и прогиба

Добро пожаловать в наш бесплатный онлайн калькулятор изгибающего момента и диаграммы силы сдвига, который может генерировать реакции, Диаграммы силы сдвига (SFD) и диаграммы изгибающих моментов (BMD) консольной балки или опертой балки. Используйте этот калькулятор балок, чтобы определить реакции на опорах, нарисуйте диаграмму сдвига и момента для балки и рассчитайте прогиб стали или дерево луч. Бесплатный онлайн лучевой калькулятор для генерации реакций, расчет прогиба стальной или деревянной балки, составление диаграмм сдвига и момента для балки. Это бесплатная версия нашей полной SkyCiv. Beam Software. Доступ к нему можно получить в любом из наших Платные аккаунты, который также включает программное обеспечение для полного структурного анализа.

Используйте интерактивную рамку выше для просмотра и удаления длины луча, поддерживает и добавляет нагрузки. Любые сделанные изменения автоматически перерисовывают диаграмму свободного тела любым простым или консольным лучом.. Калькулятор реакции луча и расчеты изгибающего момента будут запущены, как только «Решить» нажата кнопка и автоматически сгенерирует диаграммы моментов сдвига и изгиба. Вы также можете нажать отдельные элементы этого калькулятора луча LVL, чтобы редактировать модель.

Калькулятор пролета луча легко рассчитает реакции на опорах. Умеет рассчитывать реакции на опорах для консольных или простых балок.. Это включает в себя расчет реакций для балки кантилевера, который имеет реакцию изгибающего момента, а также х,у сил реакции.

Вышеуказанный калькулятор балок со стальной балкой — это универсальный инструмент для расчета конструкций, используемый для расчета изгибающего момента в алюминии., деревянная или стальная балка. Его также можно использовать в качестве калькулятора грузоподъемности балки, используя его в качестве калькулятора напряжения изгиба или напряжения сдвига. Может вместить до 2 различные сосредоточенные точечные нагрузки, 2 распределенные нагрузки и 2 моменты. Распределенные нагрузки могут быть расположены так, чтобы они были равномерно распределенными нагрузками. (UDL), треугольные распределенные нагрузки или трапециевидные распределенные нагрузки. Все нагрузки и моменты могут иметь как восходящее, так и нисходящее направление по величине., которые должны быть в состоянии учитывать наиболее распространенные ситуации анализа пучка. Расчет изгибающего момента и силы сдвига может занять до 10 секунд, чтобы появиться и, пожалуйста, обратите внимание, что вы будете перенаправлены на новую страницу с реакциями, Диаграмма силы сдвига и диаграмма изгибающего момента балки.

Одна из самых мощных функций использует его в качестве калькулятора отклонения луча (или калькулятор смещения луча). Это может быть использовано для наблюдения расчетного отклонения балки с простой опорой или балки кантилевера. Возможность добавлять формы и материалы раздела, это делает его полезным в качестве калькулятора для деревянных балок или в качестве калькулятора для стальных балок для LVL-лучей или I-лучевой конструкции. На данный момент, эта функциональность доступна в SkyCiv Beam который имеет гораздо больше функциональных возможностей для древесины, конструкция из бетона и стальных балок.

SkyCiv предлагает широкий спектр программного обеспечения для анализа и проектирования облачных вычислений для инженеров. Как постоянно развивающаяся технологическая компания, мы стремимся к инновациям и стимулированию существующих рабочих процессов, чтобы сэкономить время инженеров в их рабочих процессах и проектах.

Расчет балки на прогиб — онлайн калькулятор

Онлайн калькулятор по определению прогиба балки.
Для расчета вам необходимо:
1. Выбрать форму поперечного сечения
2. Выбрать материал (при использовании металлических балок — можно использовать сортамент)
3. Выбрать необходимую расчетную схему
4. Выбрать вид нагрузки (распределенная по длине балки либо сосредоточенная)
5. Указать геометрические размеры, указанные на картинках
6. Задать нагрузку (нагрузку можно рассчитать онлайн здесь)


Из возможных поперечных сечений в данном онлайн калькуляторе выбраны само часто встречающиеся сечения: круг, труба, двутавр, швеллер, уголок, прямоугольник, квадрат и профильная труба.
В расчет входят такие материалы как дерево, сталь, железобетон, алюминий, медь и стекло.
Также есть возможность выбора расчетной схемы: шарнир-шарнир, заделка-шарнир, заделка-заделка и заделка-свободный конец.
После того, как прогиб балки рассчитается – появится кнопка Подробнее, нажав на которую, можно узнать площадь сечения рассчитываемого элемента, его массу, распределенную нагрузку от собственного веса и момент инерции заданного сечения).
Зная значение длины пролета балки по СП 20.13330.2016 «Нагрузки и воздействия» для таких конструкций как балка, ферма, ригель, прогон, плита, настил покрытий и перекрытий, рассчитывается предельный прогиб, который можно сравнить с получившимся прогибом и принять решение о сечении вашей конструкции (для уменьшения прогиба в 1-ую очередь надо увеличивать высоту сечения).

При расчете балки программа уже учитывает собственный вес.


Помимо того, что Вы рассчитаете балку на прогиб, нужно ее проверить и на прочность здесь .

Если данный калькулятор оказался Вам полезен – не забывайте делиться им с друзьями и коллегами ссылкой в соц.сети, а также посмотреть другие строительные калькуляторы онлайн, они простые, но здорово облегчают жизнь строителям и тем, кто решил сам строить свой дом с нуля.


Последние изменения:
— Добавлен расчет предельного прогиба балки
— Добавлена возможность загружения балки сосредоточенной силой
— Исправлены графические замечания с расположением швеллера
— Добавлен расчет таврого сечения
— Исправлено положение прямоугольного сечения
— Добавлена возможность поворота швеллера
— Добавлена возможность ввода своих значений модуля упругости и плотности материала
— Исправлено отображение толщины стенки и полки швеллера

Калькулятор отклонения балки

КАЛЬКУЛЯТОРЫ КОМПРЕССИОННЫХ УЧАСТНИКОВ
Калькулятор Определение
Расчет элементов сжатия (продольного изгиба)
ПРОСТО ОПОРНАЯ БАЛКА КАЛЬКУЛЯТОРЫ ПРОГНОЗА
Балка с простой опорой и множественными точечными / распределенными нагрузками и моментами
Балка с простой опорой и сосредоточенной нагрузкой в ​​любой точке
Просто поддерживаемая балка с двумя Точечные нагрузки
Балка с простой опорой и частично распределенной промежуточной нагрузкой
Балка с простой опорой и двумя частично распределенными промежуточными нагрузками
Балка с простой опорой и моментом
Балка с простой опорой и двумя моментами
КАНТИЛЬВЕРНАЯ БАЛКА КАЛЬКУЛЯТОРЫ ПРОГНОЗА
Консольная балка с множественными точечными / распределенными нагрузками и моментами
Консольная балка с одинарной нагрузкой
Распределенная нагрузка консольной балки
Консольная балка с одним моментом
КАЛЬКУЛЯТОРЫ ПРОБЕГА ФИКСИРОВАННОЙ ЛУЧИ
Фиксированный -Фиксированная балка с множественными точечными / распределенными нагрузками и моментами
Фиксированная — фиксированная балка с одинарной нагрузкой
Фиксированный — Неподвижная балка с распределенной нагрузкой
Фиксированная — фиксированная балка с одним моментом

Калькулятор отклонения балки

Этот калькулятор отклонения балки поможет вам определить максимальное отклонение балки для балок с простой опорой и консольных балок, несущих простых конфигураций нагрузки . Вы можете выбрать один из нескольких типов нагрузки, которые могут воздействовать на балку любой длины по вашему желанию. Величина и расположение этих нагрузок влияют на то, насколько балка изгибается. В этом калькуляторе отклонения балки вы узнаете о различных формулах отклонения балки , используемых для расчета отклонений балок с жесткой опорой и балок консольных балок. Вы также узнаете, как модуль упругости балки и момент инерции ее поперечного сечения влияют на расчетный максимальный прогиб балки.

Что такое прогиб балки и изгиб балки

В строительстве мы обычно используем каркасные конструкции , которые удерживаются на месте фундаментом в земле. Эти каркасные конструкции подобны каркасам зданий, домов и даже мостов. В кадре мы называем вертикальное обрамление колонн , а горизонтальные балки . Балки — это длинные элементы конструкции, которые несут нагрузки, создаваемые горизонтальными плитами конструкций, включая перекрытия и крыши.

Когда балки несут слишком тяжелые для них нагрузки, они начинают гнуться. Мы называем величину изгиба балки , прогиб балки . Отклонение балки — это вертикальное смещение точки вдоль центра тяжести балки. Мы также можем рассматривать поверхность балки как опорную точку, если нет изменений в высоте или глубине балки во время изгиба.

Как рассчитать максимальный прогиб балки

Мы снабдили наш калькулятор прогиба балки формулами, которые инженеры и студенты-инженеры используют для быстрого определения максимального прогиба, который будет испытывать конкретная балка из-за нагрузки, которую она несет.Однако эти формулы могут решать только простые нагрузки и их комбинацию. Мы составили для вас таблицы этих формул, как показано ниже:

Формулы прогиба балок без опоры

Формулы отклонения консольной балки


Метод наложения

Для расчета максимального прогиба балки с комбинацией нагрузок мы можем использовать метод наложения . Метод наложения утверждает, что мы можем приблизительно оценить полное отклонение балки, сложив вместе все отклонения, вызванные каждой конфигурацией нагрузки.Однако этот метод дает нам лишь приблизительное значение фактического максимального прогиба. Расчет сложных нагрузок потребует от нас использования так называемого метода двойного интегрирования .

Жесткость балки

Для расчета прогиба балки необходимо знать жесткость балки и величину силы или нагрузки, которые могут повлиять на изгиб балки. Мы можем определить жесткость балки, умножив модуль упругости балки , E , на ее момент инерции , I .Модуль упругости зависит от материала балки. Чем выше модуль упругости материала, тем больше прогиб может выдержать огромные нагрузки, прежде чем достигнет предела разрушения. Модуль упругости бетона составляет 15-50 ГПа (гигапаскалей), а у стали — около 200 ГПа и выше. Эта разница в значениях модуля упругости показывает, что бетон может выдерживать лишь небольшой прогиб и трескается быстрее, чем сталь.

Вы можете узнать больше о модуле упругости, воспользовавшись нашим калькулятором напряжений.С другой стороны, чтобы определить момент инерции для определенного поперечного сечения балки, вы можете воспользоваться нашим калькулятором момента инерции. Момент инерции представляет собой величину сопротивления материала вращательному движению. Момент инерции зависит от размеров поперечного сечения материала.

Момент инерции также зависит от оси вращения материала. Чтобы лучше понять эту концепцию, давайте рассмотрим поперечное сечение прямоугольной балки шириной 20 см и высотой 30 см.Используя формулы, которые вы также можете увидеть в нашем калькуляторе момента инерции, мы можем вычислить значения момента инерции этого поперечного сечения следующим образом:

Iₓ = ширина * высота³ / 12
= 20 * (30³) / 12
= 45000 см⁴

Iᵧ = высота * ширина³ / 12
= 30 * (20³) / 12
= 20,000 см⁴

Обратите внимание на два значения момента инерции. Это потому, что мы можем рассматривать изгиб балки по вертикали (по оси x, то есть Iₓ) или по горизонтали (по оси y, то есть Iᵧ).Поскольку мы учитываем отклонение балки при вертикальном изгибе, для расчетов всегда нужно использовать Iₓ . Полученные нами значения говорят нам о том, что балку труднее изгибать при вертикальной нагрузке и легче изгибать при горизонтальной нагрузке. Эта разница в значениях момента инерции является причиной того, что мы видим балки в этой конфигурации, в которой ее высота больше, чем ее ширина.

Понимание формул прогиба балки

Теперь, когда мы знаем концепции модуля упругости и момента инерции, мы можем теперь понять, почему эти переменные являются знаменателями в наших формулах отклонения балки.Формулы показывают, что чем жестче балка, тем меньше будет ее прогиб. Однако, изучив наши формулы, мы также можем сказать, что длина балки также напрямую влияет на прогиб балки. Чем длиннее балка, тем больше она может изгибаться и тем больше может быть прогиб.

С другой стороны, нагрузки

влияют на отклонение балки двумя способами: направление отклонения и величина отклонения . Нисходящие нагрузки склонны отклонять балку вниз.Нагрузки могут быть в виде точечной нагрузки, линейного давления или моментной нагрузки. Формулы в этом калькуляторе ориентированы только на нисходящие или восходящие направления для точечной нагрузки и распределенных нагрузок. Распределенные нагрузки аналогичны давлению, но учитывают только длину балки, а не ширину балки. Формулы в этом калькуляторе также учитывают момент или крутящий момент нагрузки как по часовой стрелке, так и против часовой стрелки. Просто проконсультируйтесь по направлениям стрелок на соответствующем изображении формулы, чтобы выяснить, в каком направлении имеется положительное значение нагрузки.

Пример расчета прогиба балки

Для примера расчета прогиба балки рассмотрим простую деревянную скамью с ножками на расстоянии 1,5 метра друг от друга в их центрах. Допустим, у нас есть доска из восточной белой сосны толщиной 4 см и шириной 30 см, которая служит сиденьем для этой скамейки. Мы можем рассматривать это сиденье как балку, которая отклоняется, когда кто-то садится на скамейку. Зная размеры этого сиденья, мы можем вычислить его момент инерции, как в нашем примере выше.Поскольку нам нужно рассчитать Iₓ, его момент инерции будет:

Iₓ = ширина * высота³ / 12
= 30 * (4³) / 12
= 160,0 см⁴ или 1,6x10⁻⁶ м⁴

Сосна восточная белая имеет модуль упругости 6800 МПа (6,8x10⁹ Па) , что является значением, которое мы получили из Справочника по древесине. Вы также можете легко получить значение модуля упругости для других материалов, таких как сталь и бетон, в Интернете или в местной библиотеке.Теперь, когда мы знаем эти значения, давайте рассмотрим нагрузку, которую будет нести этот стенд. Предположим, что ребенок 400 N сидит в центре скамейки. Теперь мы можем рассчитать прогиб сиденья скамейки из-за точечной нагрузки в его центре:

δₘₐₓ = P * L³ / (48 * E * I)
δₘₐₓ = (400 Н) * (1,5 м) ³ / (48 * 6,8x10⁹ Па * 1,6x10⁻⁶ м⁴)
δₘₐₓ = 0,002585 m = 2,5850 мм

Это означает, что многоместное сиденье прогнется примерно на 2.6 миллиметров на от исходного положения, когда ребенок сидит посередине скамейки.

Если вы нашли эту тему интересной и хотели бы узнать больше о прочности материалов, вам также может понравиться наш калькулятор запаса прочности. Вы также можете воспользоваться нашим конвертером силы, если хотите изучить различные единицы измерения точечных нагрузок и расчета сил.

Калькулятор балок: реакции опор, изгибающий момент, напряжения

Этот онлайн-калькулятор балки рассчитывает силы и моменты , , , в двух подшипниках (= опорные реакции), а также углы наклона статически определенных или статически неопределимые балки.Кроме того, поперечная сила , изгибающий момент , , напряжение изгиба и отклонение может быть определено в желаемом месте. Изгибающий момент, поперечная сила и прогиб как функция длины x показаны. графически в виде двух диаграмм . Расчет максимального изгибающего момента , максимального напряжения изгиба , максимальное отклонение и соответствующее положение также возможно.

Подшипники могут быть выполнены в виде неподвижного подшипника, подвижного подшипника, фиксированного зажима или свободного конца. В качестве нагрузки, равной нагрузки или точечной нагрузки, или их комбинации, или треугольной нагрузки. (влево или вправо) можно выбрать.

* Чтобы ввести эти значения, выберите в разделе «Поперечное сечение A» -> «Другие профили» -> «Собственный профиль».

** Модуль упругости вводится автоматически при выборе материала и может быть изменен в любой момент; подходящих значений вы можете найти, например, в википедии.

Осторожно:

Для профилей с отверстием только I, W и максимальное напряжение изгиба правильно рассчитываются с помощью дополнительных функций. Для других значений выберите профиль без отверстия!

С помощью этого калькулятора можно рассчитать опорные силы как статически определенных, так и статически неопределенных систем. Возможны следующие комбинации:

Страница создана в августе 2019 года. Последнее изменение: 24 октября 2020 года.

Калькулятор для инженеров — изгибающий момент и поперечное усилие для балки с простой опорой

Избранные ссылки

Калькулятор преобразования напряжения
Расчет главного напряжения, максимального напряжения сдвига и их плоскостей

Калькулятор для анализа подвижной нагрузки
Для определения абсолютного макс. Б.М. из-за движущихся грузов.

Калькулятор преобразования напряжения
Расчет главного напряжения, максимального напряжения сдвига и их плоскостей

Калькулятор момента инерции
Расчет момента инерции плоских сечений e.грамм. швеллер, уголок, тройник и др.

Калькулятор железобетона
Расчет прочности железобетонной балки

Калькулятор распределения моментов
Решение неопределенных балок

Калькулятор прогиба и уклона
Расчет прогиба и уклона свободно опертой балки для многих случаев нагружения

Калькулятор фиксированной балки
Инструмент для расчета изгибающего момента и поперечной силы для фиксированной балки для многих случаев нагружения

Калькулятор BM и SF для консоли
Расчет SF и BM для консоли

Калькулятор прогиба и наклона консоли
Для многих случаев нагружения консоли

Вычислитель выступающей балки
Для SF и BM многих случаев нагружения выступающей балки

Дополнительные ссылки

Викторина по гражданскому строительству
Проверьте свои знания по различным темам гражданского строительства

Научные статьи
Исследования, диссертации и диссертации

Небоскребы мира
Высокие здания мира

Предстоящие конференции
Список конференций, семинаров и практикумов по гражданскому строительству

Профиль инженеров-строителей
Познакомьтесь с выдающимися инженерами-строителями

Профессиональные общества
Всемирные профессиональные общества инженеров-строителей

Продолжайте посещать, чтобы получать обновления или присоединяйтесь к нашему списку рассылки, чтобы получать обновления

Поищите на нашем сайте больше…

Расскажите о нас своим друзьям

Другие полезные ссылки

Калькулятор изгибающего момента и поперечной силы

Bendingmomentdiagram.com — это бесплатный онлайн-калькулятор, который генерирует диаграммы изгибающего момента (BMD) и диаграммы поперечного усилия (SFD) для большинства простых балок. Калькулятор полностью настраивается для работы с большинством балок; эта функция недоступна в большинстве других калькуляторов. Программное обеспечение работает на базе SkyCiv, предлагая мощное программное обеспечение для структурного анализа и проектирования в облаке.

Инструмент полностью функциональный, поэтому посетите наше Бесплатное программное обеспечение Beam, чтобы начать работу! Он будет работать со всеми опорными, определяющими балками и способен воспринимать точечные нагрузки, сосредоточенные моменты и распределенные нагрузки. Кроме того, его можно легко настраивать и настраивать, чтобы вы могли создавать свои собственные лучи. Это чрезвычайно точный инструмент и, в отличие от современных калькуляторов, очень удобный. Это чрезвычайно полезный инструмент для студентов университетов, колледжей и старшеклассников, которым утомительно приходится перерисовывать BMD и SFD для заданий и практических / учебных вопросов.

У нас также есть Учебная страница, которая поможет студентам университетов с расчетами, ожидаемыми в их инженерной степени, а также школьникам. Эти студенты могут научиться рассчитывать и создавать диаграммы поперечной силы и изгибающего момента, и мы понимаем, что процесс анализа балки иногда может быть трудным, поэтому мы предоставили простое пошаговое руководство по расчету диаграмм изгибающего момента и поперечной силы. Включены простые уравнения и формулы изгибающего момента, которые хорошо помогают в ваших расчетах.Существуют также примеры и генераторы случайных балок, которые позволят вам поэкспериментировать с тем, как различные нагрузки влияют на расчет балки, а также на поперечную силу и изгибающий момент балки.

Схема

Bending Moment Diagram разработана командой SkyCiv Engineering, которая предлагает пакеты для студентов и профессионалов, которые предоставляют пользователям доступ к разнообразному программному обеспечению для проектирования конструкций для выполнения работы. Все учетные записи основаны на подписке, поэтому вы можете ежемесячно оплачивать программное обеспечение по мере необходимости! Больше никаких проблем с установкой, загрузкой или лицензированием!

Калькулятор деревянных балок | Какой размер мне нужен?

Рассчитайте размер, необходимый для балки, фермы или заголовка, изготовленных из No.2 сосны или LVL. Охватывает любой пролет и любую нагрузку с высокой точностью. Дважды проверьте себя с помощью этих диаграмм. Работает только с равномерно распределенными нагрузками.

Есть два разных типа нагрузок. Это либо внешняя, либо внутренняя нагрузка. Другими словами, он будет либо на внешней стене, либо где-то внутри. Нагрузка на внешнюю стену с чистыми пролетными фермами составляет ровно половину нагрузки на каждую стену. Например, если размер здания составляет 24 x 24 дюйма, и в нем есть фермы, а нагрузка на крышу будет составлять 30 фунтов снеговой нагрузки, а потолок без хранилища будет таким.Это будет вдвое больше нагрузки на внешние стены по сравнению со зданием с центральной стеной. Калькулятор учитывает все это. Вам нужно только выбрать все применяемые нагрузки.

Большинство внутренних балок должны учитывать нагрузку на крышу. Если есть какие-либо вопросы по другому поводу, вам следует обратиться к поставщику или инженеру. Этот калькулятор соответствует 90% приложений в Международной книге кодов жилищного строительства 2012 года.

Здравый смысл

По моему опыту никогда не использовать балку меньше двухслойной 2 x 8.Независимо от того, что говорят спецификации. Эти небольшие области обычно представляют собой дверные проемы внутри, и людей учат, что эти области являются самым надежным местом в доме в случае возникновения чрезвычайной ситуации.

Подшипник

Согласно кодам IRC 2012 года любая балка, балка или коллектор никогда не должны иметь наклон менее 1 1/2 дюйма. Что-нибудь 5 ‘и выше мы всегда как минимум вдвое калечим. На более длинных пролетах балке может потребоваться гораздо больше места для опоры, как указано в этой таблице.

Крепление

Балки, состоящие из более чем одного слоя, необходимо скреплять вместе гвоздями или болтами.Код IRC 2012 года требует минимум 32 ″ O.C. в шахматном порядке с использованием гвоздя размером не менее 3 ″ на 120 ″. На собственном опыте мы научились использовать гвоздь с пазом размером не менее 3 1/4 дюйма x 131 дюйм в столбике из четырех на каждую ногу вниз по ламинату.

Единственный случай, когда вам когда-либо понадобится использовать болты, будет, если материал будет иметь такие серьезные деформации, как плохая «чашка», которую невозможно преодолеть гвоздями.

Онлайн калькулятор луча

| Калькулятор изгибающего момента и силы сдвига выступающей балки

NEWS | ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ | ЛИСТ

Бесплатный онлайн-калькулятор предназначен для расчета величины поперечной силы и изгибающего момента в точке свисающей балки, несущей равномерно распределенную нагрузку (UDL), или точечной нагрузки в любой точке по длине.

Он даже обеспечивает количество наивысшего изгибающего момента, в котором его местоположение появляется. Калькуляторы соответствуют установленным формулам для поперечной силы и изгибающего момента нависающей балки и предложены преподавателями колледжа.

В случае объединения нагрузок можно применить закон суперпозиции для вычисления результирующих величин.

Примеры нагрузки для выступающей балки: калькулятор предлагает результаты для поперечной силы и изгибающего момента на части выступающей балки, вероятно, по отношению к точечной нагрузке на пролете.Вычисленные величины можно использовать для набросков изгибающего момента и поперечной силы.

Калькулятор также можно использовать для определения ординат диаграммы линий влияния для зданий.

Равномерная нагрузка на балку: калькулятор предлагает результаты для поперечной силы и изгибающего момента на части выступающей балки, вероятно, в отношении равномерно распределенной нагрузки на участке пролета. Пожалуйста, сделайте ссылку на представление и введите количество нагрузки и пролеты в форму, представленную ниже, а затем нажмите «Рассчитать».

Предполагается, что все восходящие рабочие нагрузки положительны, а нисходящие — отрицательны.

Онлайн-калькуляторы изгибающего момента и поперечной силы выступающей балки.

Прочтите следующий видеоурок, чтобы получить дополнительную информацию.

Лектор: Параг Пал

.

Рассчитываем вес балки, применяя онлайн калькулятор

Скачать калькулятор балки онлайн и бесплатно получить код можно на этой странице

Балка как металлический профиль

Этот вид металлопроката можно отнести к специальному, особому виду прокатных изделий, который используется для изготовления металлоконструкций, которые будут соответствовать всем необходимым техническим требованиям при эксплуатации.

Балка изготавливается из специальной стали, углеродистой или низколегированной. Способ её изготовления – при помощи литья в формы, прокат заготовки горячим или холодным способом.

Её профиль считается сложным, поэтому при её изготовлении затрачивается времени гораздо больше, чем при изготовлении, например, уголка.

Так как балка выполняет очень важную задачу, становясь основой или скелетом для будущего сооружения, к ней предъявляются особые требования, которые зависят от качества изготовления балки.

Виды балок, которые выпускаются из металлопроката

На самом деле существует несколько видов балок, но наиболее востребованными считаются: профиль в буквы «Т», называемый тавровым и профиль в виде буквы «Н» или соединёнными буквами «Т», то есть двутавровыми.

Выбирая тот или другой профиль балки, нужно просчитать наибольшую нагрузку, которую она сможет нести. Для этого используют расчеты, которые есть в формулах по сопромату. Можно использовать онлайн – калькулятор для расчета, который имеется на сайте.

В основном этот вид проката испытывает нагрузку на изгиб и нагрузку на ось. Но не нужно забывать, что при таком виде нагрузок появляется крутящийся момент, который также нужно учитывать при выборе профиля.

По данным расчета выбирают форму сечения, его размеры и материал, из которого изготовлен прокат. Площадь сечения является основным критерием расчета.

По форме сечения они бывают следующие:

  1. Обычные тавровые балки и двухскатные, которые используются между опорами, имеющими среднее расстояние друг от друга.
  2. Двутавровая балка, которая используется между опорами с максимально длинным расстоянием, имеет повышенную стойкость на изгиб.
  3. Балка с сечением в виде прямоугольника, которая используется между опорами с небольшим расстоянием друг от друга. Также применяется в случае, когда крутящийся момент на опору будет увеличен.
  4. Балка с сечением в виде буквы «Г», применяется для фасадов, применение не столь частое.

В свою очередь, двутавровые балки также имеют свои разновидности:

  • Двутавр, который имеет угол наклона граней полок 6 – 12 градусов. Изготавливается согласно ГОСТа 8239-89.
  • Двутавр с параллельными гранями полок. Он изготавливается согласно ГОСТа 26020-83 и СТО АСЧМ-20-93.
  • Двутавр специальный, который изготавливается по ГОСТу 19425-74 и делится, в свою очередь на тип «М» с углом наклоном граней до 12 градусов и тип «С» с углом наклона граней до 16 градусов.
  • Тавр изготавливается согласно ТУ 14-2-685-86.
Двутавровая балка, общий вид

Промышленность также впускает составные балки, которые изготавливаются на предприятии сварным способом или при помощи болтов.

Также этот прокат разделяется по ассортименту для удобства выбора со склада:

  • Б – стандартный вид балок;
  • Ш– широкополочный вид балок;
  • К– балки колонные двутавровые специальные.

Нормативы по которым выпускается прокат

Выпуск каждого вида проката строго регламентируется государственным стандартом, в котором указаны и размеры проката – величина углов, ширина полок, наклон граней и все размеры, которые входят в площадь поперечного сечения, а также длина проката. Кроме этого регламентируется материал, из которого он изготовлен, а также его технические характеристики.

Общие технические условия для металлопроката оговорены в ГОСТе 27772-88.

По горячекатаному двутавру из стали нужно руководствоваться ГОСТ 8239-89, который разработан для горячекатаных стальных профилей, имеющих уклон внутренних граней полок.

Сечение горячекатаной балки по ГОСТ 8239-89

Согласно ГОСТа:

  • h – высота двутавра,
  • b – ширина полки,
  • s – толщина стенки,
  • t – средняя толщина полки,
  • R – радиус внутреннего закругления,
  • r- радиус закругления полки.

В этом же документе отражены и пределы отклонений при изготовлении профиля.

На основании этого и ряда других ГОСТов был принят ГОСТ 5350-2005, который регламентирует технические условия для проката из стали углеродистой, в том числе и на прокат балки двутавровой, как стандартной, так и специального назначения. Механические свойства стали должны соответствовать таким параметрам, как временное сопротивление, предел текучести, ударной вязкости и другим параметрам, которые указаны в этом ГОСТе.

Наименование профиля двутавраВысота (h), ммШирина полки (b), ммТолщина стенки (s), ммСредняя толщина полки (t), ммМасса 1 м балки, кгМетров балки в тонне
Балка 10100554.57.29.46105.71
Балка 12120644.87.311.586.96
Балка 14140734.97.513.772.99
Балка 161608157.815.962.89
Балка 18180905.18.118.454.35
Балка 202001005.28.42147.62
Балка 222201105.48.72441.67
Балка 242401155.69.527.336.63
Балка 2727012569.831.531.75
Балка 303001356.510.236.527.4
Балка 33330140711.242.223.7
Балка 363601457.512.348.620.58
Балка 404001558.3135717.54
Балка 45450160914.266.515.04
Балка 505001701015.278.512.74
Балка 555501801116.592.610.8
Балка 606001901217.81089.26

ГОСТ 19425-74, в котором указаны параметры для выпуска специальных балок «М» и»С». Серия «М» применяется для подвесных путей, а серия «С» для оборудования шахтных проходов, причем по точности они могут изготовляться как высокой точности – маркируются буквой «А» и обычной точности- маркируются буквой «В».

Балка двутавровая по ГОСТ 19425-74. Профили и вес

Наименование профиля двутавраВысота (h), ммШирина полки (b), ммТолщина стенки (s), ммСредняя толщина полки (t), ммМасса 1 м балки, кгМетров балки в тонне
Балка 14С140805.59.116.959.17
Балка 20С200100711.427.935.84
Балка 20Са200102911.431.132.15
Балка 22С2201107.512.333.130.21
Балка 27С2701228.513.742.823.36
Балка 27Са27012410.513.74721.28
Балка 36С3601401415.871.314.03
Балка 18М1809071225.838.76
Балка 24М2401108.21438.326.11
Балка З0М30013091550.219.92
Балка 36М3601309.51657.917.27
Балка 45М45015010.51877.612.89

Балки с параллельными гранями полок имеют свой ГОСТ 26020-83

По обозначению: h – высота двутавра, b – ширина полки двутавра, s – толщина основной стенки, t – толщина полки, r – радиус сопряжения.

 

Двутавры стальные горячекатаные с параллельными гранями полок по ГОСТ 26020-83

Наименование профиля двутавраВысота (h), ммШирина полки (b), ммТолщина стенки (s), ммСредняя толщина полки (t), ммМасса 1 м балки, кгМетров балки в тонне
Нормальные двутавры
Балка 10Б1100554.18.1123.46
Балка 12Б1117.6643.88.7114.94
Балка 12Б2120644.410.496.15
Балка 14Б1137.4733.810.595.24
Балка 14Б2140734.712.977.52
Балка 16Б115782412.778.74
Балка 16Б216082515.863.29
Балка 18Б1177914.315.464.94
Балка 18Б2180915.318.853.19
Балка 20Б12001005.622.444.64
Балка 23Б12301105.625.838.76
Балка 26Б12581205.82835.71
Балка 26Б2261120631.232.05
Балка 30Б12961405.832.930.4
Балка 30Б2299140636.627.32
Балка 35Б13461556.238.925.71
Балка 35Б23491556.543.323.09
Балка 40Б1392165748.120.79
Балка 40Б23961657.554.718.28
Балка 45Б14431807.859.816.72
Балка 45Б24471808.467.514.81
Балка 50Б14922008.87313.7
Балка 50Б24962009.280.712.39
Балка 55Б15432209.58911.24
Балка 55Б25472201097.910.21
Балка 60Б159323010.5106.29.42
Балка 60Б259723011115.68.65
Балка 70Б169126012129.37.73
Балка 70Б269726012.5144.26.93
Балка 80Б179128013.5159.56.27
Балка 80Б279828014177.95.62
Балка 90Б1893300151945.15
Балка 90Б290030015.5213.84.68
Балка 100Б199032016230.64.34
Балка 100Б299832017258.23.87
Балка 100Б3100632018285.73.5
Балка 100Б4101332019.5314.53.18
Широкополочные двутавры
Балка 20Ш1193150630.632.68
Балка 23Ш12261556.536.227.62
Балка 26Ш1251180742.723.42
Балка 26Ш22551807.549.220.33
Балка 30Ш1291200853.618.66
Балка 30Ш22952008.56116.39
Балка 30Ш3299200968.314.64
Балка 35Ш13382509.575.113.32
Балка 35Ш23412501082.212.17
Балка 35Ш334525010.591.310.95
Балка 40Ш13883009.596.110.41
Балка 40Ш239230011.5111.19
Балка 40Ш339630012.5123.48.1
Балка 50Ш148430011114.48.74
Балка 50Ш248930014.5138.77.21
Балка 50Ш349530015.5156.46.39
Балка 50Ш450130016.5174.15.74
Балка 60Ш158032012142.17.04
Балка 60Ш258732016176.95.65
Балка 60Ш359632018205.54.87
Балка 60Ш460332020234.24.27
Балка 70Ш168332013.5169.95.89
Балка 70Ш269132015197.65.06
Балка 70Ш370032018235.44.25
Балка 70Ш470832020.5268.13.73
Балка 70Ш571832023305.93.27
Колонные двутавры
Балка 20К11952006.541.524.1
Балка 20К2198200746.921.32
Балка 23К1227240752.219.16
Балка 23К2230240859.516.81
Балка 26K1255260865.215.34
Балка 26K2258260973.213.66
Балка 26K32622601083.112.03
Балка 30К1296300984.811.79
Балка 30К23043001096.310.38
Балка 30К330030011.5108.99.18
Балка 35К134335010109.79.12
Балка 35К234835011125.97.94
Балка 35К335335013144.56.92
Балка 40К1393400111387.25
Балка 40К240040013165.66.04
Балка 40К340940016202.34.94
Балка 40К441940019242.24.13
Балка 40К543140023291.23.43
Двутавры дополнительной серии (Д)
Балка 24ДБ12391155.527.835.97
Балка 27ДБ1269125631.931.35
Балка 36ДБ13601457.249.120.37
Балка 35ДБ13491275.833.629.76
Балка 40ДБ13991396.239.725.19
Балка 45ДБ14501527.452.619.01
Балка 45ДБ24501807.66515.38
Балка 30ДШ1300.6201.99.472.713.76
Балка 40ДШ1397.630211.51248.06
Балка 50ДШ1496.2303.814.21556.45

Если на двутавр существуют ГОСТ ы, то изготовление тавровой балки осуществляется по ТУ 14-2-685-86

Обозначение здесь такое же, как и у двутавровой балки.

Тавры колонные и Тавры ШТ по ТУ 14-2-685-86 имеют следующие размеры

Тавры ШТ по ТУ 14-2-685-86. Наименование профиля, вес.

Наименование профиля двутавраВысота (h), ммШирина полки (b), ммТолщина стенки (s), ммСредняя толщина полки (t), ммМасса 1 м балки, кгМетров балки в тонне
Балка 13ШТ112218071021.147.39
Балка 13ШТ21241807.51224.440.98
Балка 15ШТ114220081126.637.59
Балка 15ШТ21442008.51330.233.11
Балка 15ШТ314620091533.929.5
Балка 17,5ШТ1165.52509.512.537.326.81
Балка 17,5ШТ2167250101440.824.51
Балка 17,5ШТ316925010.51645.422.03
Балка 20ШТ1190.53009.51447.820.92
Балка 20ШТ2192.530011.51655.218.12
Балка 20ШТ3194.530012.51861.316.31
Балка 25ШТ1238.5300111556.917.57
Балка 25ШТ224130014.517.568.914.51
Балка 25ШТ324430015.520.577.712.87
Балка 25ШТ424730016.523.586.611.55
Балка 30ШТ1286.5320121770.714.14
Балка 30ШТ22903201620.58012.5
Балка 30ШТ32943201824.5102.39.78
Балка 30ШТ42983202028.5116.58.58

Тавры колонные по ТУ 14-2-685-86. Название профиля и вес

Наименование профиля двутавраВысота (h), ммШирина полки (b), ммТолщина стенки (s), ммСредняя толщина полки (t), ммМасса 1 м балки, кгМетров балки в тонне
Балка 10KT1942006.51020.648.54
Балка 10KT295.5200711.523.243.1
Балка 11,5KT1110240710.525.938.61
Балка 11,5KT2111.524081229.533.9
Балка 13KT112426081232.430.86
Балка 13KT2125.5260913.536.327.55
Балка 13KT3127.52601015.541.324.21
Балка 15KT1144.5300913.542.123.75
Балка 15KT2146.53001015.547.920.88
Балка 15KT3148.53001117.554.118.48
Балка 17,5KT1168350101554.618.32
Балка 17,5KT2170.53501117.562.615.97
Балка 20KT11934001116.568.714.56
Балка 20KT2196.5400132082.412.14

Применение балок в промышленности

Балка, как наиболее мощный металлопрокат, используется в различных областях. В строительстве она выступает как основа перекрытий, перераспределяя нагрузку с перекрытия на несущие конструкции и далее на фундамент. Из неё строится основа здания, которую затем обшивают другими элементами.

Тавровая балка выдерживает меньшую нагрузку, но она также очень востребована. Балки и двойная и одинарная необходима при строительстве мостов, тоннелей, складов, ну и естественно, при строительстве зданий, как жилых, так и промышленных.

Специальные балки с повышенной прочностью используют в качестве монорельса для подъемного оборудования и для строительства туннелей шахт, при строительстве метро и тому подобных ответственных сооружений.

Одно из хороших качеств горячекатаных балок можно назвать то, что они менее подвержены коррозии по сравнению с холоднокатаными.

Балка может быть изготовлена из алюминиевого сплава, в тех случаях, когда нужна лёгкость конструкции. При этом прочность её достаточно высокая.

Поставщики металлопроката

В России есть много металлургических заводов, около 60, но балки выпускают только некоторые из них.

Например, выпускает балку Алапаевский металлургический завод в числе остальных прокатных изделий, Магнитогорский металлургический комбинат выпускает балку горячекатаную, Белорецкий металлургический комбинат, Челябинский металлургический комбинат, Петровск – Забайкальский завод, Оскольский электрометаллургический завод, Омутнинский металлургический комбинат. Другие предприятия выпускают этот прокат при наличии соответствующего заказа, конечно заказ должен быть большим. Так как балка это продукция со специфическими свойствами, её иногда закупают за рубежом.

Заказ балки можно сделать как на предприятии, так и у металлотрейдеров, поставляющих металлопрокат, в Москве их есть много. Желательно работать с крупными организациями, у которых высокий рейтинг.

Для заказа продукции нужно высчитать вес балки. По приведенным здесь размерам выбираете вес одного погонного метра балки нужно вам профиля. Потом вес 1 метра погонного умножаем на длину проката, то есть балки. Для простоты расчета предлагаем использовать наш онлайн калькулятор веса, пользоваться которым очень просто и надёжно. Результат получаете мгновенно.

Расчет двутавра на прогиб и изгиб


Калькулятор

Пример расчета

Калькуляторы по теме:

  • Сбор нагрузок на балки перекрытия онлайн
  • Расчет прямоугольной трубы
  • Расчет квадратной трубы
  • Расчет швеллера
  • Расчет уголка
  • Расчет деревянной балки
  • Расчет двутавра на устойчивость.

Эпюры M и Q. Сопромат. Эпюры изгибающих моментов и поперечных сил, как построить. Изгиб.

Основные вопросы, которые рассмотрены в видео: — правило знаков при изгибе для моментов и поперечных сил. Откуда оно появилось и как его быстрее запомнить — что такое эпюра M и Q, эпюра изгибающего момента и поперечной силы. Как ней пользоваться и зачем нужна — пара простых лайфхаков как быстрее и проще запомнить методику построения эпюр изгибающих моментов и поперечных сил В этом видео уроке доступно и просто объясняется страшная тайна ))) как построить эпюры. После моего объяснения мои студенты обычно спрашивают: «Что так просто?» Да. Действительно построение эпюр при изгибе важная часть сопротивления материалов. И часто при объяснении преподаватели в ВУЗе делают это или не качественно. Это и не удивительно, ведь этот материал они могут излагать уже 3 раз за день. Или студента могло что-то отвлечь и важную деталь он упустил. Как построить Эпюры M и Q. Сопромат. Эпюры изгибающих моментов и поперечных сил, Изгиб. Сопромат, Изгиб. Построение эпюр и определение внутренних усилий поперечная сила Q(x) и момент M(x). Понятие и правило знаков. Пример для консольной балки (консоли). 5:09 пример построения эпюр внутренних усилий при изгибе Q(x) — поперечной силы и M(x) — изгибающего момента Задаеть вопросы: — через сайт: https://stroymex.online — skype: zabolotnyiAN — email: [email protected] — комменты к видео Телеграм канал: https://t.me/sroymexOnline Не тратьте время зря, задавайте вопросы. Узнайте стоимость обучения: https://stroymex.online/usloviya-i-tsena-onlayn-obucheniya-sopromat-i-stroymeh. Получите первую консультацию бесплатно! Facebook: https://www.facebook.com/SopromatOnline

2019-11-19

Вот какие еще уроки по сопротивлению материалов вы найдете на моем сайте:

Load more

Гипотезы и определения при изгибе

Прежде всего начнем с определений:

Что такое балка? Балка — это стержень, длина которого значительно больше чем ширина и высота. При этом он испытывает деформацию изгиба.


балка — длина значительно больше ширины и высоты

Изгиб, что это? Это такой вид деформации, при котором происходит искривление продольной оси балки, но продольные волокна друг на друга не давят, а сечения плоские до изгиба остаются такими и после изгиба.


правило знаков при изгибе

На рисунке выше изображена схема для вывода формулы напряжений и демонстрация напряжений, которые возникают при чистом изгибе. Этот термин придется изложить в другой статье. А пока продолжим.

Эпюра — это график изменения величины, для которой он построен. Так эпюра изгибающего момента — это график изменения внутреннего усилия — изгибающего момента по длине балки. Используя этот график, построенный в масштабе, можно с помощь простых операций определить значение изгибающего момента в любой точке по длине балки. Эпюра поперечной силы — аналогично, график ее изменения внутреннего усилия поперечная сила по длине балки.

Инструкция к калькулятору

Обращаю ваше внимание, что в нецелых числах необходимо ставить точку, а не запятую, то есть, например, 5.7 м, а не 5,7. Также двутавр необходимо проверять на устойчивость (на заваливание от момента). Это можно сделать с помощью калькулятора, ссылка на который расположена выше (в списке «Калькуляторы по теме»). Если что-то не понятно, задавайте свои вопросы через форму комментариев, расположенную в самом низу.

Исходные данные

Расчетная схема:

Длина пролета (L) — минимальное расстояние между двумя крайними опорами или длина консоли.

Расстояния (A и B) — расстояния от опор до мест приложения нагрузок. Для 3 схемы А равна длине консоли балки, опирающейся на 2 опоры.

Нормативная и расчетная нагрузки — нагрузки, на которые рассчитывается квадратная труба. Рассчитать их можно с помощью следующих материалов:

  • калькулятор по сбору нагрузок на балку перекрытия;
  • пример сбора нагрузок на балку перекрытия.

Fmax — максимально возможный прогиб согласно таблицы E.1 СНиПа «Нагрузки и воздействия». Некоторые из них выписаны в таблицу 1.

Количество двутавров — этот показатель введен на случай, если балку перекрытия придется усилить еще такой же, положив ее рядом. То есть, если у вас одна балка, то указывается «один», если две рядом, то необходимо выбрать «две».

Расчетное сопротивление Ry— для каждой марки стали он свой. Наиболее распространенные значения приведены в таблице 2.

Размер двутавра — здесь следует выбрать профиль двутавра по тому или иному ГОСТу.

Методика выполнения расчета на прогиб

Прежде чем приступать к расчету, нужно будет вспомнить некоторые зависимости из теории сопротивления материалов и составить расчетную схему. В зависимости от того, насколько правильно выполнена схема и учтены условия нагружения, будет зависеть точность и правильность расчета.

Используем простейшую модель нагруженной балки, изображенной на схеме. Простейшей аналогией балки может быть деревянная линейка, фото.

В нашем случае балка:

  1. Имеет прямоугольное сечение S=b*h, длина опирающейся части составляет L;
  2. Линейка нагружена силой Q, проходящей через центр тяжести изгибаемой плоскости, в результате чего концы поворачиваются на небольшой угол θ, с прогибом относительно начального горизонтального положения, равным f;
  3. Концы балки опираются шарнирно и свободно на неподвижных опорах, соответственно, не возникает горизонтальной составляющей реакции, и концы линейки могут перемещаться в произвольном направлении.

Для определения деформации тела под нагрузкой используют формулу модуля упругости, который определяется по соотношению Е=R/Δ, где Е – справочная величина, R— усилие, Δ— величина деформации тела.

Вычисляем моменты инерции и сил

Для нашего случая зависимость будет выглядеть так: Δ = Q/(S·Е). Для распределенной вдоль балки нагрузки q формула будет выглядеть так: Δ = q·h/(S·Е).

Далее следует наиболее принципиальный момент. Приведенная схема Юнга показывает прогиб балки или деформацию линейки так, если бы ее раздавливали под мощным прессом. В нашем случае балку изгибают, а значит, на концах линейки, относительно центра тяжести, приложены два изгибающих момента с разным знаком. Эпюра нагружения такой балки приведена ниже.

Чтобы преобразовать зависимость Юнга для изгибающего момента, необходимо обе части равенства умножить на плечо L. Получаем Δ*L = Q·L/(b·h·Е).

Если представить, что одна из опор жестко закреплена, а на второй будет приложен эквивалентный уравновешивающий момент сил Mmax = q*L*2/8, соответственно, величина деформации балки будет выражаться зависимостью Δх = M·х/((h/3)·b·(h/2)·Е). Величину b·h3/6 называют моментом инерции и обозначают W. В итоге получается Δх = M·х/(W·Е) основополагающая формула расчета балки на изгиб W=M/E через момент инерции и изгибающий момент.

Чтобы точно выполнить расчет прогиба, потребуется знать изгибающий момент и момент инерции. Величину первого можно посчитать, но конкретная формула для расчета балки на прогиб будет зависеть от условий контакта с опорами, на которых находится балка, и способа нагружения, соответственно для распределенной или концентрированной нагрузки. Изгибающий момент от распределенной нагрузки считается по формуле Mmax = q*L2/8. Приведенные формулы справедливы только для распределенной нагрузки. Для случая, когда давление на балку сконцентрировано в определенной точке и зачастую не совпадает с осью симметрии, формулу для расчета прогиба приходится выводить с помощью интегрального исчисления.

Момент инерции можно представить, как эквивалент сопротивления балки изгибающей нагрузке. Величину момента инерции для простой прямоугольной балки можно посчитать по несложной формуле W=b*h4/12, где b и h – размеры сечения балки.

Из формулы видно, что одна и та же линейка или доска прямоугольного сечения может иметь совершенно разный момент инерции и величину прогиба, если положить ее на опоры традиционным способом или поставить на ребро. Недаром практически все элементы стропильной системы крыши изготавливаются не из бруса 100х150, а из доски 50х150.

Реальные сечения строительных конструкций могут иметь самые разные профили, от квадрата, круга до сложных двутавровых или швеллерных форм. При этом определение момента инерции и величины прогиба вручную, «на бумажке», для таких случаев становится нетривиальной задачей для непрофессионального строителя.

Формулы для практического использования

На практике чаще всего стоит обратная задача – определить запас прочности перекрытий или стен для конкретного случая по известной величине прогиба. В строительном деле очень сложно дать оценку запасу прочности иными, неразрушающими методами. Нередко по величине прогиба требуется выполнить расчет, оценить запас прочности здания и общее состояние несущих конструкций. Мало того, по выполненным измерениям определяют, является деформация допустимой, согласно расчету, или здание находится в аварийном состоянии.

Совет! В вопросе расчета предельного состояния балки по величине прогиба неоценимую услугу оказывают требования СНиПа. Устанавливая предел прогиба в относительной величине, например, 1/250, строительные нормы существенно облегчают определение аварийного состояния балки или плиты.

Например, если вы намерены покупать готовое здание, простоявшее достаточно долго на проблемном грунте, нелишним будет проверить состояние перекрытия по имеющемуся прогибу. Зная предельно допустимую норму прогиба и длину балки, можно безо всякого расчета оценить, насколько критическим является состояние строения.

Строительная инспекция при оценке прогиба и оценке несущей способности перекрытия идет более сложным путем:

  • Первоначально измеряется геометрия плиты или балки, фиксируется величина прогиба;
  • По измеренным параметрам определяется сортамент балки, далее по справочнику выбирается формула момента инерции;
  • По прогибу и моменту инерции определяют момент силы, после чего, зная материал, можно выполнить расчет реальных напряжений в металлической, бетонной или деревянной балке.

Вопрос – почему так сложно, если прогиб можно получить, используя для расчета формулу для простой балки на шарнирных опорах f=5/24*R*L2/(E*h) под распределенным усилием. Достаточно знать длину пролета L, высоту профиля, расчетное сопротивление R и модуль упругости Е для конкретного материала перекрытия.

Ответ прост — необходимо непросто рассчитать, но и сохранить на бумаге ход выполнения проверочного расчета, чтобы сделанные выводы о состоянии перекрытия можно было проверить и перепроверить по всем этапам проверки.

Совет! Используйте в своих расчетах существующие ведомственные сборники различных проектных организаций, в которых в сжатом виде сведены все необходимые формулы для определения и расчета предельного нагруженного состояния.

Расчет опорных реакций балки на двух опорах онлайн

Расчет выполняется по следующей методике:

1. Заменяем распределенную нагрузку ее равнодействующей, которая является сосредоточенной силой. Для равномерно распределенной нагрузки равнодействующая равна произведению интенсивности нагрузки q на длину участка L, на котором она действует: Fq = q*L.

2. Обозначаем опоры. Общепринято их обозначать буквами А и В. Простая балка имеет одну шарнирно-неподвижную и одну шарнирно-подвижную опоры.

3. Освобождаемся от опор и заменяем их действие на балку реакциями.
Реакции опор при такой нагрузке будут только вертикальными.

4. Составляем уравнения равновесия вида:
MA = 0; MB = 0,
Моментом силы относительно точки называется произведение этой силы на плечо — кратчайшее расстояние от этой точки приложения силы (в общем случае — до линии действия силы).

5. Выполним проверку решения. Для этого составим уравнение равновесия: Y = 0,
Если оно удовлетворено, то реакции найдены правильно, а если нет, но в решении допущена ошибка.

6. Строим эпюру поперечных сил Qx. Для этого определяем значения поперечных сил в характерных точках. Напомним, что поперечная сила в сечении равна сумме проекций всех сил, расположенных только слева или только справа от рассматриваемого сечения, на ось, перпендикулярную оси элемента. Силу, расположенную слева от рассматриваемого сечения и направленную вверх, считают положительной (со знаком «плюс»), а направленную вниз — отрицательной (со знаком «минус»). Для правой части балки — наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных сил, в том числе в точках приложения опорных реакций, необходимо определить два значения поперечной силы: чуть левее рассматриваемой точки и чуть правее ее. Поперечные силы в этих сечениях обозначаются соответственно Qлев и Qправ.
Найденные значения поперечных сил в характерных точках откладываются в некотором масштабе от нулевой линии. Эти значения соединяются прямыми линиями по следующим правилам:
а) если к участку балки нет распределенной нагрузки, то под этим участком значения поперечных сил соединяются прямой линией, параллельной нулевой линии;
б) если на участке балки приложена распределенная нагрузка, то под этим участком значения поперечных сил соединяются прямой, наклонной к нулевой линии. Она может пересекать или не пересекать нулевую линию.
Соединив все значения поперечных сил по указанным правилам, получим график изменения поперечных сил по длине балки. Такой график называется эпюрой Qx.

7. Строим эпюру изгибающих моментов Мx. Для этого определяем изгибающие моменты в характерных сечениях. Напомним, что изгибающий момент в рассматриваемом сечении равен сумме моментов всех сил (распределенных, сосредоточенных, в том числе и опорных реакций, а также внешних сосредоточенных моментов), расположенных только слева или только справа от этого сечения. Если любое из перечисленных силовых воздействий стремится повернуть левую часть балки по часовой стрелке, то оно считается положительным (со знаком «плюс»), если против — отрицательным (со знаком «минус»), а для правой части наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных моментов, необходимо определить два значения изгибающего момента: чуть левее рассматриваемой точки и чуть правее ее. Изгибающие моменты в этих точках обозначаются соответственно Млев и Мправ. В точках приложения сил определяется одно значение изгибающего момента.
Полученные значения откладываются в некотором масштабе от нулевой линии. Эти значения соединяются в соответствии со следующими правилами:
а) если на участке балки нет распределенной нагрузки, то под этим участком балки два соседних значения изгибающих моментов соединяются прямой линией;
б) если к участку балки приложена распределенная нагрузка, то под этим участком значения изгибающих моментов для двух соседних точек соединяются по параболе.

Пример решения балки:

Онлайн калькулятор для расчета желебобетонных балок перекрытия дома

Далее
Пересчитать

Назначение калькулятора

Калькулятор для расчёта железобетонных балок перекрытий предназначен для определения габаритов, конкретного типа и марки бетона, количества и сечения арматуры, требующихся для достижения балкой максимального показателя выдерживаемой нагрузки.

Соответственно СНиП 2.03.01-84 «Бетонные и железобетонные конструкции» габариты железобетонных балок перекрытия и их устройство подсчитываются по дальнейшим принципам:

  • Минимальная высота балки перекрытия должна составлять не меньше 1/20 части длины перекрываемого проёма. К примеру при длине проёма в 5 м минимальная высота балок должна составлять 25 см;
  • Ширина железобетонной балки устанавливается по соотношению высоты к ширине в коэффициентах 7:5;
  • Армировка балки состоит минимум из 4 арматур – по два прута снизу и сверху. Применяемая арматура должна составлять не меньше 12 мм в диаметре. Нижнюю часть балки можно армировать прутами большего сечения, чем верхнюю;
  • Железобетонные балки перекрытия бетонируются без перерывов заливки, одной порцией бетонной смеси, чтобы не было расслоения бетона.

Дистанцию между центрами укладываемых балок определяют длиной блоков и установленной шириной балок. К примеру, длина блока составляет 0,60 м, а ширина балки 0,15. Дистанция между центрами балок будет равна – 0,60+0,15=0,75 м.

Принцип работы

Согласно ГОСТ 26519-85 «Конструкции железобетонные заглублённых помещений с перекрытием балочного типа. Технические условия» формула расчёта полезной нагрузки железобетонных балок перекрытия складывается из следующих характеристик:

  • Нормативно-эксплуатационная нагрузка на балки перекрытия с определённым коэффициентным запасом. Для жилых зданий данный показатель нагрузки составляет 151 кг на м2, а коэффициентный запас равен 1,3. Получаемая нагрузка – 151*1,3=196,3 кг/м2;
  • Нагрузка от общей массы блоков, которыми закладываются промежутки между балками. Блоки из лёгких материалов, к примеру из пенобетона или газобетона, показатель плотности которых D-500, а толщина 20 см будут нести нагрузку – 500*0,2=100 кг/м2;
  • Испытываемая нагрузка от массы армированного каркаса и последующей стяжки. Вес стяжки с толщиной слоя 5 см и показателем плотности 2000 кг на м3 будет образовывать следующую нагрузку – 2000*0,05=100 кг/м2 (масса армировки добавлена в плотность бетонной смеси).

Показатель полезной нагрузки железобетонной балки перекрытия составляется из суммы всех трёх перечисленных показателей – 196,3+100+100=396,3 кг/м2.

Калькулятор балок – основные расчеты для перекрытий и стропил + видео

Балки в доме относятся обычно к стропильной системе или перекрытию, и, чтобы получить надежную конструкцию, эксплуатация которой может осуществляться без каких-либо опасений, необходимо использовать калькулятор балок.

На чем строится калькулятор балок

Когда стены уже подведены под второй этаж или под крышу, необходимо сделать перекрытие, во втором случае плавно переходящее в стропильные ноги. При этом материалы нужно подобрать так, чтобы и нагрузка на кирпичные либо бревенчатые стены не превышала допустимую, и прочность конструкции была на должном уровне. Следовательно, если вы собираетесь использовать древесину, нужно правильно подобрать балки из нее, сделать расчеты для выяснения нужной толщины и достаточной длины.

Калькулятор балок

Укажите размеры балок перекрытий и шаг.

Проседанию или частичному разрушению перекрытия могут послужить разные причины, например, слишком большой шаг между лагами, прогиб поперечин, слишком малая площадь их сечения или дефекты в структуре. Чтобы исключить возможные эксцессы, следует выяснить предполагаемую нагрузку на перекрытие, будь оно цокольное или межэтажное, после чего используем калькулятор балок, учитывая их собственную массу. Последняя может меняться в бетонных перемычках, вес которых зависит от плотности армирования, для дерева и металла при определенной геометрии масса постоянна. Исключением бывает отсыревшая древесина, которую не используют в строительных работах без предварительной сушки.

На балочные системы в перекрытиях и стропильных конструкциях оказывают нагрузку силы, действующие на изгиб сечения, на кручение, на прогиб по длине. Для стропил также нужно предусмотреть снеговую и ветровую нагрузку, которые также создают определенные усилия, прилагаемые к балкам. Также нужно точно определить необходимый шаг между перемычками, поскольку слишком большое количество поперечин приведет к лишней массе перекрытия (или кровли), а слишком малое, как было сказано выше, ослабит конструкцию.

Вам также может быть интересна статья о расчёте количества необрезной и обрезной доски в кубе: https://remoskop.ru/kolichestvo-dosok-v-kube.html

Как рассчитать нагрузку на балку перекрытия

Расстояние между стенами называется пролетом, и в помещении их насчитывается два, причем один пролет обязательно будет меньше другого, если форма комнаты не квадратная. Перемычки межэтажного или чердачного перекрытия следует укладывать по более короткому пролету, оптимальная длина которого – от 3 до 4 метров. При большем расстоянии могут потребоваться балки нестандартных размеров, что приведет к некоторой зыбкости настила. Оптимальным выходом в этом случае будет использование металлических поперечин.

Что касается сечения деревянного бруса, есть определенный стандарт, требующий, чтобы стороны балки соотносились как 7:5, то есть высота делится на 7 частей, и 5 из них должны составить ширину профиля. В этом случае деформация сечения исключается, если же отклониться от вышеуказанных показателей, то при ширине, превышающей высоту, получится прогиб, либо, при обратном несоответствии – загиб в сторону. Чтобы подобное не получилось из-за чрезмерной длины бруса, нужно знать, как рассчитать нагрузку на балку. В частности, допустимый прогиб вычисляется из соотношения к длине перемычки, как 1:200, то есть должен составлять 2 сантиметра на 4 метра.

Чтобы брус не провисал под тяжестью лагов и настила, а также предметов интерьера, можно выточить его снизу на несколько сантиметров, придав форму арки, в этом случае его высота должна иметь соответствующий запас.

Теперь обратимся к формулам. Тот же прогиб, о котором говорилось ранее, рассчитывается так: fнор = L/200, где L – длина пролета, а 200 – допустимое расстояние в сантиметрах на каждую единицу проседания бруса. Для железобетонной балки, распределенная нагрузка q на которую обычно приравнивается 400 кг/м2, расчет предельного изгибающего момента выполняется по формуле Мmax = (q · L2)/8. При этом количество арматуры и ее вес определяется по следующей таблице:

Площади поперечных сечений и масса арматурных стержней

 Диаметр,  мм

Площадь поперечного сечения, см2, при числе стержней

Масса 1 пог.м, кг

 Диаметр,  мм

1

2

3

4

5

6

7

8

9

Проволочная и стержневая арматура

3

0.071

0.141

0.212

0.283

0.353

0.424

0.5

0.565

0.636

0.052

3

4

0.126

0.25

0.38

0.5

0.68

0.75

0.88

1

1.18

0.092

4

5

0.196

0.39

0.59

0.79

0.98

1.18

1.38

1.57

1.77

0.154

5

6

0.283

0.57

0.85

1.13

1.42

1.7

1.98

2.26

2.55

0.222

6

7

0.385

0.77

1.15

1.54

1.92

2.31

2.69

3.08

3.46

0.302

7

8

0.503

1.01

1.51

2.01

2.52

3.02

3.52

4.02

4.58

0.395

8

9

0.636

1.27

1.91

2.54

3.18

3.82

4.45

5.09

5.72

0.499

9

10

0.785

1.57

2.36

3.14

3.93

4.71

5.5

6.28

7.07

0.617

10

12

1.131

2.26

3.39

4.52

5.65

6.78

7.91

9.04

10.17

0.888

12

14

1.539

3.08

4.61

6.15

7.69

9.23

10.77

12.3

13.87

1.208

14

16

2.011

4.02

6.03

8.04

10.05

12.06

14.07

16.08

18.09

1.578

16

18

2.545

5.09

7.63

10.17

12.7

15.26

17.8

20.36

22.9

1.998

18

20

3.142

6.28

9.41

12.56

15.7

18.84

22

25.13

28.27

2.465

20

22

3.801

7.6

11.4

15.2

19

22.81

26.61

30.41

34.21

2.984

22

25

4.909

9.82

14.73

19.64

24.54

29.45

34.36

39.27

44.18

3.85

25

28

6.153

12.32

18.47

24.63

30.79

36.95

43.1

49.26

55.42

4.83

28

32

8.043

16.09

24.18

32.17

40.21

48.26

56.3

64.34

72.38

6.31

32

36

10.179

20.36

30.54

40.72

50.89

61.07

71.25

81.43

91.61

7.99

36

40

12.561

25.13

37.7

50.27

62.83

75.4

87.96

100.53

113.1

9.865

40

45

15.904

31.81

47.71

63.62

79.52

95.42

111.33

127.23

148.13

12.49

45

50

19.635

39.27

58.91

78.54

98.18

117.81

137.45

157.08

176.72

15.41

50

55

23.76

47.52

71.28

95.04

118.8

142.56

166.32

190.08

213.84

18.65

55

60

28.27

56.54

84.81

113.08

141.35

169.62

197.89

226.16

254.43

22.19

60

70

38.48

76.96

115.44

153.92

192.4

220.88

269.36

307.84

346.32

30.21

70

80

50.27

100.54

150.81

201.08

251.35

301.62

351.89

402.16

452.43

39.46

80

Семипроволочные канаты класса К-7

4.5

0.127

0.25

0.38

0.51

0.64

0.76

0.89

1.01

1.14

0.102

4.5

6

0.226

0.45

0.68

0.9

1.13

1.36

1.58

1.81

2.03

0.181

6

7.5

0.354

0.71

1.06

1.41

1.77

2.12

2.48

2.83

3.18

0.283

7.5

9

0.509

1.02

1.53

2.04

2.54

3.05

3.56

4.07

4.58

0.407

9

12

0.908

1.82

2.72

3.63

4.54

5.45

6.35

7.26

8.17

0.724

12

15

1.415

2.83

4.24

5.66

7.07

8.49

9.9

11.32

12.73

1.132

15

Нагрузка на любую балку из достаточно однородного материала рассчитывается по ряду формул. Для начала высчитывается момент сопротивления W ≥ М/R. Здесь М – это максимальный изгибающий момент прилагаемой нагрузки, а R – расчетное сопротивление, которое берется из справочников в зависимости от используемого материала. Поскольку чаще всего балки имеют прямоугольную форму, момент сопротивления можно рассчитать иначе: Wz = b · h2 /6, где b является шириной балки, а h – высотой.

Что еще следует знать про нагрузки на балку

Перекрытие, как правило, является заодно и полом следующего этажа и потолком предыдущего. А значит, нужно сделать его таким, чтобы не было риска объединить верхние и нижние помещения путем банального перегруза меблировкой. Особенно такая вероятность возникает при слишком большом шаге между балками и отказе от лагов (дощатые полы настилаются прямо на брус, уложенный в пролеты). В этом случае расстояние между поперечинами напрямую зависит от толщины досок, например, если она составляет 28 миллиметров, то длина доски не должна быть более 50 сантиметров. При наличии лагов минимальный промежуток между балками может достигать 1 метра.

Также обязательно следует учитывать массу утеплителя, используемого для пола. Например, если укладываются маты из минеральной ваты, то квадратный метр цокольного перекрытия будет весить от 90 до 120 килограммов, в зависимости от толщины термоизоляции. Опилкобетон увеличит массу такого же участка в два раза. Использование же керамзита сделает перекрытие еще тяжелее, поскольку на квадратный метр будет приходиться нагрузка в 3 раза больше, чем при укладке минеральной ваты. Далее, не следует забывать про полезную нагрузку, которая для межэтажных перекрытий составляет 150 килограммов на квадратный метр минимум. На чердаке достаточно принять допустимую нагрузку в 75 килограммов на квадрат.

Оцените статью: Поделитесь с друзьями!

размеров стальных балок | SkyCiv

Наличие хорошего ресурса для размеров двутавровой балки очень важно при проектировании конструкций. Как инженеру-строителю нам важно определить участки, которые не только безопасны, но и рентабельны. С приведенной ниже таблицей размеров стальных балок SkyCiv стремится иметь бесплатный ресурс, к которому можно получить доступ в любое время через браузер. Приведенная ниже таблица размеров стальных балок поможет инженерам-строителям найти подходящий размер и форму, которые вам нужны для вашего проекта.Эти свойства важны для проверки прочности сечения, что является само определением конструкции.

Таблица размеров стальных балок представляет собой интерактивную таблицу, в которой перечислены размерные и геометрические свойства сечения. Эти свойства могут помочь инженерам найти нужный стальной профиль. Просто выберите свою систему единиц измерения, библиотеку перед выбором формы, чтобы отобразить размеры луча этой формы. Библиотека содержит разделы из Австралии, США, Канады, Великобритании и Европы.Программное обеспечение извлекает размеры балки непосредственно из базы данных Structural 3D, которая является основным программным обеспечением для трехмерного структурного анализа платформы SkyCiv, которое также доступно для использования в веб-браузере. Эта информация обычно требует, чтобы пользователь держал под рукой руководство или диаграммы стальных балок, что может быть неудобно, то есть, если у пользователя есть копия. Несмотря на то, что приобретение стального руководства требует денежных затрат, мы должны еще раз подчеркнуть, что справочная таблица SkyCiv легко доступна здесь бесплатно.

Некоторые из размеров, которые может отображать этот инструмент:

  • Размеры двутавровой балки
  • Размеры S-образной балки
  • Полый квадрат/HSS Размеры
  • Круглые размеры из быстрорежущей стали
  • Широкие фланцевые балки, размеры
  • Т-образная балка Размеры
  • Размеры каналов
  • Размеры уголков
  • Имперские и метрические размеры балки

Приведенные выше размеры стальных профилей должны дать пользователю возможность легко получить доступ к свойствам и размерам элементов часто используемых профилей в различных библиотеках по всему миру.Мы надеемся, что инженеры найдут ссылку на эти размеры и размеры стальных балок, полезные для их рабочего процесса. Опять же, в настоящее время существуют стальные размеры и размеры для австралийских, американских, британских, европейских и канадских форм. Если конкретная библиотека, которую вы используете, недоступна, вы можете связаться с нами здесь. Мы открыты для улучшения и расширения нашей базы данных. Еще одним замечательным аспектом этого инструмента является то, что он может преобразовывать размеры луча из метрических в имперские и наоборот. Это экономит время инженера при работе с системами единиц измерения и снижает риск ошибки в расчетах.

Свойства сечения, отображаемые в приведенной выше таблице, включая площадь поперечного сечения (A), полярный момент инерции (J), момент площади (Iz, Iy), модуль сечения и постоянную деформации (Iw). Эти результаты чрезвычайно важны при выборе конструкционной стали для конструкций балок и колонн. Это свойства, которые контролируют количество и тип силы, которую может выдержать стальной элемент.

Здесь, в SkyCiv, у нас есть ряд программ (бесплатных и платных), которые позволяют инженерам моделировать и проектировать свои конструкции.Наш бесплатный калькулятор балок – это простой в использовании калькулятор, помогающий анализировать консольные и свободнонесущие балки. Вы также можете воспользоваться нашим калькулятором ферм для быстрого анализа двухмерных ферм. Для небольших 2D-рам вы можете использовать наш бесплатный калькулятор структурных рам. Для типовых форм нестандартных размеров стали калькулятор свободного момента инерции является хорошим ресурсом для получения их геометрических свойств и свойств сечения.

SkyCiv предлагает широкий спектр программного обеспечения для структурного анализа и проектирования облаков для инженеров.Как постоянно развивающаяся технологическая компания, мы стремимся внедрять инновации и улучшать существующие рабочие процессы, чтобы сэкономить время инженеров в их рабочих процессах и проектах.

Напряжение и прогиб балки | Механический калькулятор

ПРИМЕЧАНИЕ. Эта страница использует JavaScript для форматирования уравнений для правильного отображения. Пожалуйста, включите JavaScript.


Многие конструкции можно аппроксимировать прямой балкой или набором прямых балок. По этой причине анализ напряжений и прогибов в балке является важной и полезной темой.

В этом разделе рассматриваются поперечная сила и изгибающий момент в балках, диаграммы сдвига и момента, напряжения в балках, а также таблица общих формул прогиба балки.

Содержимое

Ограничения и граничные условия

Чтобы балка оставалась в статическом равновесии, когда к ней приложены внешние нагрузки, балка должна быть закреплена. Ограничения определяются в отдельных точках вдоль балки, и граничное условие в этой точке определяет характер ограничения.Граничное условие указывает, является ли луч фиксированным (ограниченным от движения) или свободным для перемещения в каждом направлении. Для двумерного луча интересующими направлениями являются направление x (осевое направление), направление y (поперечное направление) и вращение. Чтобы ограничение существовало в точке, граничное условие должно указывать, что хотя бы одно направление зафиксировано в этой точке.

Общие граничные условия показаны в таблице ниже. Для каждого граничного условия в таблице указано, является ли луч фиксированным или свободным в каждом направлении в точке, где определено граничное условие.

Граничное условие Направление
Axial (x) поперечных (y) Rotation
бесплатно бесплатно бесплатно бесплатно
фиксированные фиксированные фиксированные фиксированные
закреплены фиксированные фиксированные бесплатно бесплатно
бесплатно бесплатные фиксированные фиксированные руководствуясь на Y фиксированные бесплатно фиксированные
ролика вдоль x Фиксированный Свободный
Ролик по оси Y Фиксированный Свободный Свободный

Если граничное условие указывает, что луч зафиксирован в определенном направлении, то в месте расположения граничного условия может существовать внешняя реакция в этом направлении.Например, если балка закреплена в направлении y в определенной точке, то в этой точке может возникнуть поперечная (y) внешняя сила реакции. Точно так же, если балку зафиксировать от вращения в определенной точке, то в этой точке может возникнуть внешний реактивный момент.

Основываясь на приведенном выше обсуждении, мы можем видеть, что фиксированное граничное условие может развивать осевые и поперечные силы реакции, а также момент. Точно так же мы видим, что закрепленное граничное условие может развивать осевые и поперечные силы реакции, но не может создавать реактивный момент.

Обратите внимание на условие свободной границы в таблице выше. Это граничное условие указывает, что луч может свободно двигаться в любом направлении в этой точке (т. е. он не зафиксирован и не ограничен ни в каком направлении). Следовательно, на данный момент ограничения не существует. Это подчеркивает тонкую разницу между ограничением и граничным условием. Граничное условие указывает фиксированное/свободное условие в каждом направлении в определенной точке, а ограничение — это граничное условие, в котором зафиксировано хотя бы одно направление.

Сила сдвига и изгибающий момент

Чтобы найти поперечную силу и изгибающий момент по длине балки, сначала решите внешние реакции при каждом ограничении. Например, консольная балка ниже имеет приложенную силу, показанную красной стрелкой, а реакции показаны синими стрелками при фиксированном граничном условии.

Внешние реакции должны уравновешивать приложенные нагрузки таким образом, чтобы балка находилась в статическом равновесии.После того, как внешние реакции определены, сделайте разрезы по длине балки и определите внутренние реакции в каждом разрезе сечения. (Силы реакции и моменты в разрезах сечения называются внутренними реакциями, поскольку они являются внутренними по отношению к балке.) Пример сечения показан на рисунке ниже:

Когда балка разрезается в сечении, при расчете внутренних реакций можно учитывать любую сторону балки. Выбранная сторона не влияет на результаты, поэтому выбирайте ту сторону, которая проще всего.На рисунке выше выбрана сторона балки справа от разреза сечения. Выбранная сторона отображается в виде синего участка луча, а участок, показанный серым цветом, игнорируется. Внутренние реакции на разрезе показаны синими стрелками. Реакции рассчитываются таким образом, чтобы рассматриваемое сечение балки находилось в статическом равновесии.

Соглашение о знаках

Важны знаки сдвига и момента. Знак определяется после разреза сечения и решения реакций для части балки по одну сторону от разреза.Перерезывающая сила в срезе сечения считается положительной, если она вызывает вращение выбранного сечения балки по часовой стрелке, и считается отрицательной, если вызывает вращение против часовой стрелки. Изгибающий момент в разрезе сечения считается положительным, если он сжимает верхнюю часть балки и удлиняет нижнюю часть балки (т. е. заставляет балку «улыбаться»).

На основании этого соглашения о знаках поперечная сила в разрезе сечения консольной балки в качестве примера на рисунке выше положительна, поскольку она вызывает вращение выбранного сечения по часовой стрелке.Момент отрицательный, так как он сжимает нижнюю часть балки и удлиняет верхнюю (т. е. заставляет балку «нахмуриться»).

На рисунке ниже показаны стандартные знаки для поперечной силы и изгибающего момента. Силы и моменты слева положительны, а справа отрицательны.


Ознакомьтесь с нашим калькулятором луча, основанным на методологии, описанной здесь.

  • Расчет напряжений и прогибов в прямых балках
  • Построение диаграмм сдвига и моментов
  • Можно указать любую конфигурацию ограничений, сосредоточенных сил и распределенных сил

Диаграммы сдвига и момента

Перерезывающая сила и изгибающий момент в балке обычно изображаются на диаграммах.Диаграмма сдвига показывает поперечную силу по длине балки, а диаграмма моментов показывает изгибающий момент по длине балки. Эти диаграммы обычно располагаются друг над другом, и комбинация этих двух диаграмм представляет собой диаграмму момента сдвига. Диаграммы поперечного момента для некоторых распространенных конечных условий и конфигураций нагрузки показаны в таблицах прогиба балки в конце этой страницы. Пример диаграммы поперечного момента показан на следующем рисунке:

Общие правила построения диаграмм поперечных моментов приведены в таблице ниже.Все правила этой таблицы показаны на рисунке выше.

Диаграмма сдвига Момент Диаграмма
  • Точечные нагрузки вызывают вертикальный скачок на диаграмме сдвига. Направление скачка совпадает со знаком точечной нагрузки.
  • Равномерно распределенные нагрузки приводят к прямой наклонной линии на диаграмме сдвига. Наклон линии равен величине распределенной нагрузки.
  • Диаграмма сдвига горизонтальна для расстояний вдоль балки без приложенной нагрузки.
  • Сдвиг в любой точке балки равен наклону момента в этой же точке:
  • Диаграмма моментов представляет собой прямую наклонную линию для расстояний вдоль балки без приложенной нагрузки. Наклон линии равен величине сдвига.
  • Равномерно распределенные нагрузки приводят к параболической кривой на диаграмме моментов.
  • Максимальные/минимальные значения момента возникают там, где линия сдвига пересекает ноль.
  • Момент в любой точке балки равен площади под диаграммой сдвига до этой точки:

    М = ∫ V dx

Изгибные напряжения в балках

Изгибающий момент М по длине балки можно определить по диаграмме моментов.Затем изгибающий момент в любом месте балки можно использовать для расчета изгибающего напряжения в поперечном сечении балки в этом месте. Изгибающий момент изменяется по высоте поперечного сечения в соответствии с приведенной ниже формулой изгиба :

где M — изгибающий момент в интересующем месте по длине балки, I c — центральный момент инерции поперечного сечения балки, а y — расстояние от нейтральной оси балки до интересующей точки по высоте. сечения.Отрицательный знак указывает на то, что положительный момент приведет к сжимающему напряжению над нейтральной осью.

Напряжение изгиба равно нулю на нейтральной оси балки, которая совпадает с центром тяжести поперечного сечения балки. Напряжение изгиба увеличивается линейно от нейтральной оси до максимальных значений на крайних волокнах вверху и внизу балки.

Максимальное изгибающее напряжение возникает на крайних волокнах балки и рассчитывается как:

где c — центроидальное расстояние поперечного сечения (расстояние от центроида до крайнего волокна).

Если балка асимметрична относительно нейтральной оси, так что расстояния от нейтральной оси до верха и до низа балки не равны, максимальное напряжение возникнет в самом удаленном месте от нейтральной оси. На рисунке ниже растягивающее напряжение в верхней части балки больше, чем сжимающее напряжение в нижней части.

Модуль поперечного сечения объединяет центральный момент инерции I c и центральное расстояние с:

Преимущество модуля сечения заключается в том, что он характеризует сопротивление поперечного сечения изгибу в одном выражении.Модуль сечения можно подставить в формулу изгиба для расчета максимального напряжения изгиба в поперечном сечении:


Ознакомьтесь с нашим калькулятором луча, основанным на методологии, описанной здесь.

  • Расчет напряжений и прогибов в прямых балках
  • Построение диаграмм сдвига и моментов
  • Можно указать любую конфигурацию ограничений, сосредоточенных сил и распределенных сил

Касательные напряжения в балках

Сила сдвига V по длине балки может быть определена по диаграмме сдвига.Сила сдвига в любом месте балки затем может быть использована для расчета напряжения сдвига по поперечному сечению балки в этом месте. Среднее касательное напряжение по поперечному сечению определяется выражением:

Напряжение сдвига изменяется по высоте поперечного сечения, как показано на рисунке ниже:

Напряжение сдвига равно нулю на свободных поверхностях (вверху и внизу балки) и максимально в центре тяжести. Уравнение для напряжения сдвига в любой точке, расположенной на расстоянии y 1 от центра тяжести поперечного сечения, определяется как:

где V — поперечная сила, действующая в месте поперечного сечения, I c — центральный момент инерции поперечного сечения, а b — ширина поперечного сечения.Все эти термины являются константами. Член Q — это первый момент площади, ограниченной точкой интереса и крайним слоем поперечного сечения:

Напряжения сдвига для нескольких распространенных поперечных сечений обсуждаются в разделах ниже.

Касательные напряжения в прямоугольных сечениях

Распределение касательного напряжения по высоте прямоугольного сечения показано на рисунке ниже:

Первый момент площади в любой заданной точке y 1 по высоте поперечного сечения рассчитывается по формуле:

Максимальное значение Q приходится на нейтральную ось луча (где y 1 = 0):

Напряжение сдвига в любой заданной точке y 1 по высоте поперечного сечения рассчитывается по формуле:

где I c = b·h 3 /12 — центроидальный момент инерции поперечного сечения.Максимальное напряжение сдвига возникает на нейтральной оси балки и рассчитывается по формуле:

где A = b·h – площадь поперечного сечения.

Из предыдущего уравнения видно, что максимальное касательное напряжение в поперечном сечении на 50% выше, чем среднее напряжение V/A.

Касательные напряжения в круглых сечениях

Круглое сечение показано на рисунке ниже:

Уравнения для касательного напряжения в балке были выведены с использованием предположения, что касательное напряжение по ширине балки постоянно.Это предположение справедливо в центре тяжести круглого поперечного сечения, хотя нигде больше оно недействительно. Следовательно, хотя распределение напряжения сдвига по высоте поперечного сечения не может быть легко определено, максимальное напряжение сдвига в сечении (возникающее в центре тяжести) все же можно рассчитать. Максимальное значение первого момента Q, возникающее в центре тяжести, определяется выражением:

Затем максимальное напряжение сдвига рассчитывается по формуле:

где b = 2r — диаметр (ширина) поперечного сечения, I c = πr 4 /4 — центроидальный момент инерции, A = πr 2 — площадь поперечного сечения.

Касательные напряжения в сечениях круглых труб

Поперечное сечение круглой трубы показано на рисунке ниже:

Максимальное значение первого момента Q, возникающее в центре тяжести, определяется выражением:

Затем максимальное напряжение сдвига рассчитывается по формуле:

где b = 2 (r o − r i ) – эффективная ширина поперечного сечения, центральный момент инерции, а A = π (r o 2 − r i 2 ) площадь поперечного сечения.

Касательные напряжения в двутавровых балках

Распределение напряжения сдвига вдоль стенки двутавровой балки показано на рисунке ниже:

Уравнения для касательного напряжения в балке были выведены с использованием предположения, что касательное напряжение по ширине балки постоянно. Это предположение справедливо для стенки двутавровой балки, но неверно для полки (особенно там, где стенка пересекает полки). Тем не менее, стенка двутавровой балки принимает на себя подавляющую часть силы сдвига (примерно 90–98 %, согласно Гиру), и поэтому можно консервативно предположить, что стенка несет всю силу сдвига.

Первый момент площади стенки двутавровой балки определяется по формуле:

Напряжение сдвига вдоль стенки двутавровой балки определяется по формуле:

где t w — толщина стенки, а I c — центральный момент инерции двутавровой балки:

Максимальное значение напряжения сдвига возникает на нейтральной оси ( y 1 = 0 ), а минимальное значение напряжения сдвига в стенке возникает на внешних волокнах стенки, где она пересекает полки y 1 =; ±h w /2 ):


PDH Classroom предлагает курс повышения квалификации на основе этой справочной страницы по анализу луча.Этот курс можно использовать для выполнения кредитных требований PDH для поддержания вашей лицензии PE.

Теперь, когда вы прочитали эту справочную страницу, заработайте за это признание!


Таблицы прогиба балки

В таблицах ниже приведены уравнения для прогиба, наклона, сдвига и момента вдоль прямых балок для различных условий на концах и нагрузок. Вы можете найти исчерпывающие таблицы в таких справочниках, как Gere, Lindeburg и Shigley.Однако приведенные ниже таблицы охватывают большинство распространенных случаев.

Консольные балки

Просто поддерживаемые балки

Фиксированные-фиксированные балки


Подпишитесь, чтобы время от времени получать обновления о последних улучшениях:


Каталожные номера

  1. Будинас-Нисбетт, «Машиностроение Шигли», 8-е изд.
  2. Гир, Джеймс М., «Механика материалов», 6-е изд.
  3. Линдебург, Майкл Р., «Справочное руководство по машиностроению для экзамена PE», 13-е изд.
  4. «Руководство по анализу напряжений», Лаборатория динамики полета ВВС, октябрь 1986 г.

Инженерные онлайн-калькуляторы, формулы и инструменты Бесплатно

Для всех калькуляторов требуется браузер с поддержкой JAVA. Дополнительная информация

Примечание:

  • Многие ссылки сначала открывают веб-страницу с уравнениями.Найдите ссылку «Калькуляторы», чтобы открыть приложение калькулятора.

  • В настоящее время не все веб-страницы открыты для калькулятора, однако в ближайшем будущем соответствующий калькулятор появится.

  • Если у вас есть предложения по инженерному калькулятору, воспользуйтесь формой обратной связи Engineers Edge —> Обратная связь

** Искать ТОЛЬКО на этой СТРАНИЦЕ, нажмите на увеличительное стекло **


Меню структурных деформаций и напряжения

Нагрузка в плоскости упругих рам Уравнения прогиба и реакции и калькуляторы для

Формулы реакции и прогиба и вычислитель для плоскостного нагружения упругих рам

Уравнения и калькуляторы прогиба плиты и напряжений

  • Калькулятор проектирования консольной балки с фиксированным штифтом

Общие инженерные приложения и математические калькуляторы

Формулы для круглых колец, момента, окружной нагрузки, радиального сдвига и деформации

  • Круговой кольцевой момент, кольцевая нагрузка и уравнения радиального сдвига и калькулятор № 21 Per.Формулы Роарка для напряжений и формул деформации для круглых колец Раздел 9, Справочные данные, нагрузка и термины нагрузки. Формулы для моментов, нагрузок и деформаций и некоторые избранные числовые значения. Кольцо вращается с угловой скоростью ω рад/с вокруг оси, перпендикулярной плоскости кольца. Обратите внимание на требование симметрии поперечного сечения.

Свойства сечения Выбранные формы

  • Факторы Марина для скорректированного предела выносливости Усталость Предел выносливости ( S’ e ), определенный с использованием уравнения.2, установленный в результате испытаний на усталость стандартного образца для испытаний, должен быть изменен с учетом факторов, которые обычно отличаются для реального элемента машины.
  • Конструктор цилиндрических зубчатых колес и сборок Конструктор цилиндрических зубчатых колес и сборок рассчитывает и моделирует отдельные цилиндрические зубчатые колеса и узлы зубчатых колес.Загрузка файлов доступна с Премиум-аккаунтом.

Разработка и проектирование зубчатых передач и зубчатых передач

  • Преобразование шага зубчатого колеса На следующих диаграммах размерные данные шага зубчатого колеса преобразуются в следующие: Диаметральный шаг Модуль Круговой шаг
  • Уравнение коэффициента Льюиса Уравнение коэффициента Льюиса получается при рассмотрении зуба как простого кантилевера с контактом зуба на конце, как показано выше.
  • Стандарт шлицевой инженерной формулы ISO 5480 применяется к шлицевым соединениям с эвольвентными шлицами на основе эталонных диаметров для соединения ступиц и валов..
  • Технология теплопередачи

Калькуляторы для проектирования электроники

IEEE 1584-2018 Уравнения и калькуляторы

Производство

Калькуляторы простых механических рычагов

Проектирование и проектирование пружин

Уравнения трения и анализ

Гражданское строительство

Установка болтов и резьбы Расчет напряжения/прочности

Тензодатчик

Анализ допусков с использованием определения геометрических размеров Допуски GD&T и другие принципы

Конструкция управления движением

Сосуды под давлением и конструкции цилиндрической формы Проектирование и инженерные уравнения и расчеты

  • Напряжение и прогиб цилиндра с усеченным конусом при равномерной нагрузке на горизонтальную проекционную площадь; тангенциальная поддержка верхней кромки.Уравнение и калькулятор. пер. Формулы Роарка для напряжения и деформации для мембранных напряжений и деформаций в тонкостенных сосудах высокого давления.

Жидкости

Припуск на изгиб листового металла

Пластиковая защелка

Преобразования, жидкости, крутящий момент, общее

Решения для треугольников/тригонометрии

Финансы и прочее.

Калькуляторы параметров сварки и технических данных Главное меню

Инженерная физика

Калькулятор сечения железобетонной балки

Добро пожаловать в наш бесплатный калькулятор сечения армированной балки. Этот мощный инструмент может рассчитать прочность на сдвиг и изгиб (или грузоподъемность) широкого диапазона секций балки. Это чрезвычайно быстрый и точный способ проверить ваши результаты или, возможно, рассчитать начальные размеры вашего сечения балки путем проб и ошибок в ряде различных комбинаций сечений.Этот калькулятор бетонной балки рассчитает проектную мощность для балки i (lvl), балки t и прямоугольного сечения с армированием.

Калькулятор сечения арматурной балки — это очень простой инструмент, который является небольшой частью нашего полнофункционального программного обеспечения для проектирования железобетонных балок, предлагаемого SkyCiv. Это программное обеспечение будет отображать полный отчет и рабочий пример расчетов конструкции железобетона в соответствии со стандартами проектирования ACI, AS и Eurocode. Эти результаты включают проверки допустимого момента, проверки на сдвиг, детализацию и осевые требования.Полная версия также позволяет пользователям добавлять дополнительные слои арматуры (включая верхние слои), а также хомуты.

Как и другие наши калькуляторы, этот Калькулятор мощности железобетонной балки очень прост в использовании. Начните просто с ввода «Добавить/редактировать секцию», чтобы добавить секцию главной балки. Как только это будет завершено, вам нужно будет добавить стальные арматурные стержни (или аналогичные), нажав «Добавить/редактировать стальную арматуру». Также есть кнопка «Настройки», чтобы вы могли редактировать параметры, используемые калькулятором, такие как арматура и прочность бетона.Используйте приведенную ниже схему в качестве ориентира для определения размеров секции.

Этот калькулятор арматуры (также известный как составной калькулятор) в настоящее время находится на стадии БЕТА-тестирования, поэтому, пожалуйста, оставляйте свои отзывы или сообщения об ошибках в разделе комментариев ниже.

Получите больше возможностей в нашем полном программном обеспечении для проектирования железобетонных конструкций, основанном на кодах проектирования ACI 318, AS 3600 и Еврокоде 2.

Добавить/редактировать сечение
Добавить/редактировать стальную арматуру
Настройки
Результат Значение Блок
Зона
I хх
I гг
Центроид (Y)
Центроид (X)
Q x :
В г :
Z x :
З у :

Нет результатов по емкости.Пожалуйста, введите сечение и/или стальную арматуру для результатов прочности/

Результат Обозначение Значение Блок
Сила растяжения Т
Сила сжатия бетона Копия
Сила сжатия стали цезий
Глубина компрессионного блока γдн
Глубина до нейтральной оси дн
Мощность момента Мю
ПРЕДПОЛОЖЕНИЕ:

Конструкция из железобетона в соответствии со стандартами ACI Concrete, AS 3600 или Eurocode 2 для конструкций из бетона

I xx = Момент инерции относительно оси x
I yy = Момент инерции относительно оси Y
Центроид (X) = Расстояние от крайнего левого участка балки до центра тяжести сечения.
Центроид (Y) = Расстояние от нижней части сечения балки до центра тяжести сечения.
Q x = Статический момент площади относительно оси X
Q y = Статический момент площади относительно оси Y
Z x = Модуль сечения относительно оси X
Z y = Модуль сечения относительно оси Y

Калькулятор прочности и прогиба балки

Балка или стержень – это любой конструктивный элемент, длина которого значительно превышает его ширину или глубину.Однако термин «значительно» означает разные вещи для разных людей. Некоторым достаточно вдвое большей длины, другие сочтут пятикратную длину слишком короткой и поэтому сочтут такой элемент пластиной, рамой или конструкцией. Процедуры расчета балок не налагают таких ограничений или различий.

Балки обычно используются для несущей нагрузки, в то время как опоры перекрываются на большом расстоянии друг от друга, например, пол (см. Калькулятор этажей CalQlata). При указании балки необходимо указать ее максимальную грузоподъемность (т.е. его прочность) и его максимально допустимый прогиб.

Прочность и жесткость балки

Прочность балки зависит от предела текучести материала, из которого изготовлена ​​балка, тем самым определяя максимальную нагрузку, которая может быть приложена до того, как балка окончательно деформируется (или сломается, если она изготовлена ​​из хрупкого материала), и

его жесткость зависит от второго момента площади поперечного сечения балки (например, швеллера, двутавровой балки, двутавровой балки, угла и т. д.) вместе с модулем Юнга его материала, тем самым определяя ожидаемый прогиб балки для любой заданной нагрузки

Обе вышеуказанные характеристики определяют поведение балки под нагрузкой.

Проектирование балки

Предположим, у вас есть равномерно распределенная нагрузка в 4000 Н на балке длиной 4 м (1 Н/мм) и максимально допустимый прогиб, скажем, 1/200 длины балки (20 мм).

Используя Балки, вы вводите известную информацию и изменяете второй момент площади (I), пока не получите желаемое отклонение (20 мм в середине балки, где ее отклонение будет наибольшим), что в данном случае дает вам значение для I около 800000 мм⁴.

Предполагая, что вы планируете использовать секцию швеллера, отсортировав швеллеры в базе данных стальных секций CalQlata, вы обнаружите, что размер вашей балки должен быть секции «3×6», которая является наименьшей секцией балки со значением I выше 800000 мм⁴, и найдите значение для « y’ (расстояние от нейтральной оси луча до внешней стороны его сечения), которое в данном случае составляет 38,1 мм.

Вы возвращаетесь к Балкам, вводите правильное значение I (863 264 мм⁴), а также вводите значение 38,1 мм для d, чтобы установить максимальное напряжение в материале балки, которое в данном случае составляет 88 Н/мм².

Если это значение находится в пределах ваших требований к безопасности, то ваш луч приемлем. Если нет, но приходится работать с данным материалом, то следует изменить (увеличить) сечение балки, тем самым уменьшая допустимый прогиб до тех пор, пока напряжение не станет приемлемым.

Калькулятор отклонения балки — Техническая помощь


Рис. 1. Схема нагрузки на балку

Предполагается, что любая нагрузка в калькуляторе прочности балок действует одинаково через плоскость или сечение балки во всех направлениях, перпендикулярных (другими словами, под углом 90° к) ее продольной оси.

Если нагрузка локализована в поперечном сечении балки (т. е. распределена по ней неравномерно), могут потребоваться дополнительные расчеты для определения местных (сосредоточенных) реакций и напряжений (см. калькуляторы плит и листов CalQlata).

Напряжение изгиба

Изгибающие напряжения в балках применяются к балке на заданном расстоянии (‘d’) от ее нейтральной оси. Эта входная переменная (‘d’) используется только в расчетах напряжения (σx) и деформации (ex). Если вы оставите это поле пустым или установите его равным нулю, Beams не будет рассчитывать напряжение или деформацию в указанном вами месте вдоль балки (рис. 1 «x»).Никакие другие результаты не будут затронуты.

Условия многократной/одновременной загрузки

Если у вас есть балка с более чем одной приложенной нагрузкой, вы просто суммируете результаты вместе в указанном месте.

Пример расчета прочности балки (рис. 2):

Детали балки:
L = 2000 мм
I = 1,2E+08 мм⁴
E = 2,07E+05 Н/мм²
y = 200 мм
Условия нагрузки 1:
wA и wB = 450 Н/мм
l = 0
Условия нагрузки 2:
F = 150000 Н
L = 700 мм
Расстояние вдоль луча до выхода:
x = 1000

Шаг 1:
Введите данные для балки и условия нагрузки 1 (простая фиксированная/распределенная нагрузка), установив wA (/L) и wB (/L) на 450 футов, скопируйте список данных и вставьте в электронную таблицу.

Шаг 2:
Введите условие нагрузки 2 (простая фиксированная / точечная нагрузка), установив F на 150000, скопируйте список данных и вставьте в ту же электронную таблицу.

Шаг 3:
Добавьте результаты обоих калькуляторов, и вы получите условия в нужном месте.


Рис. 2. Процедура расчета составной нагрузки

Ограничения

Эти расчеты действительны только в том случае, если материал по всей длине и толщине сечения подчиняется закону Гука.
Результаты остаются действительными для этого калькулятора, если прогиб таков, что на длину балки условия нагрузки не оказывают существенного влияния.
Калькулятор больших прогибных балок CalQlata (Flexible Beams) следует использовать, если длина балки изменяется более чем на 5% в результате приложенной нагрузки.

Дополнительное чтение

Дополнительную информацию по этому вопросу вы найдете в справочных публикациях (2, 3 и 4)

Бесплатный калькулятор балок — опорные реакции, изгибающий момент, сила сдвига

Бесплатный онлайн-калькулятор балок ASDIP позволяет проектировать балки с опорой на шарнирах, неподвижно поддерживаемые и неразрезные балки с концевыми консолью.С помощью этого калькулятора вы сможете сделать следующее:

  • Рассчитать реакции поддержки
  • Generate
  • Generate Гиглый момент диаграммы
  • 4 полный Версия:  расчет прогибов, расчет бетона, расчет стали, подробные отчеты, прочность конструкции, расчет составных балок, пользовательские комбинации нагрузок, график балок и многое другое!

  • Пробная версия:  То же, что и полная версия, но с небольшими ограничениями, такими как печать и сохранение.Позволяет протестировать все программное обеспечение ASDIP в течение 15 дней.

Нужно больше? Обновите до полной версии или подпишитесь на бесплатную пробную версию, чтобы разблокировать дополнительные функции луча.

ASDIP CONCRETE включает модули для проектирования неразрезных балок в соответствии с последним стандартом ACI 318-19. Вы можете смоделировать до пяти пролетов и двух концевых консолей с несколькими типами нагрузки, такими как равномерная, переменная, сосредоточенная и моментная. Программное обеспечение создает диаграммы сдвига и моментов, наложенные на диаграммы прочности конструкции.В расчеты включаются долговременные прогибы.

ASDIP STEEL включает модули для проектирования неразрезных балок, как составных, так и несоставных, в соответствии с последней версией AISC 360. Для составных балок программа рассчитывает необходимое количество срезных шпилек для частичного или полного составного действия. Программное обеспечение включает строительные нагрузки, а также конечные нагрузки в проекте. Комбинации нагрузок соответствуют ASCE 7-16 или определяются пользователем.

Начните бесплатную пробную версию и испытайте все, что может предложить ASDIP! Вы сможете оценить все программное обеспечение, включая модули балок, в течение 15 дней: включает пакеты для проектирования БЕТОН, СТАЛЬ, УДЕРЖАНИЕ и ФУНДАМЕНТ.Или разместить заказ и перейти на полную версию.  

Как пользоваться калькулятором луча

Добро пожаловать в бесплатный онлайн-калькулятор луча ASDIP. Этот калькулятор балок позволяет моделировать до трех неразрезных пролетов и двух концевых консолей. Используйте вкладку Geometry , чтобы ввести размеры поперечного сечения балки, количество опор, длину пролета и тип опор (штифтовые или фиксированные). Типы балок могут быть прямоугольными, тавровыми, перемычками и L-образными балками.

Можно указать ряд различных типов нагрузки, таких как равномерные нагрузки, переменные нагрузки, сосредоточенные нагрузки и изгибающие моменты. Распределенные нагрузки могут быть приложены частично в любом пролете. Нажмите на вкладку Loads , чтобы ввести информацию о нагрузках на пролет. Выберите диапазон из раскрывающегося списка Segment . Нагрузки могут быть либо предварительно комбинированными нагрузками (без дополнительных коэффициентов нагрузки), либо набором номинальных загружений, которые должны быть объединены внутри. Комбинации нагрузок согласно ASCE 7-16.Собственный вес балки можно легко добавить к внешним нагрузкам.

Калькулятор опорных реакций балки

Этот калькулятор балки может генерировать высоту балки, показывающую приложенные нагрузки на вкладке Graph . Программа рассчитывает опорные реакции для выбранного сочетания нагрузок. Затем эти силы реакции можно использовать для проектирования колонн и фундаментов. Обратите внимание, что в полной версии будут рассчитываться опорные реакции как для сервисных, так и для факторизованных комбинаций нагрузки.

Калькулятор диаграммы поперечной силы

Важной особенностью калькулятора балки является возможность генерировать диаграмму поперечной силы балки на вкладке Graph для указанных нагрузок. Затем программа рассчитает поперечные силы вдоль балки для выбранного сочетания нагрузок. На диаграмме сдвига удобно показано максимальное усилие сдвига в критическом сечении в точке «d» от лица колонны. Обратите внимание, что полная версия также рассчитывает расчетную прочность на сдвиг вдоль балки и рисует эту диаграмму прочности на заднем плане для целей сравнения.

Калькулятор диаграммы изгибающего момента

Бесплатный инструмент расчета балки ASDIP также позволит вам создать диаграмму изгибающего момента балки для указанных нагрузок и для выбранной комбинации нагрузок на вкладке Graph . Чтобы увидеть диаграммы в большем масштабе для конкретного пролета, просто выберите его в раскрывающемся списке Segment . Обратите внимание, что полная версия также рассчитывает расчетную прочность на изгибающий момент вдоль балки и рисует эту диаграмму прочности на заднем плане для целей сравнения.Таким образом, если способность к изгибающему моменту в какой-либо точке превышает допустимую, это может быть немедленно определено.

Калькулятор деревянных балок | Какой размер мне нужен?

Рассчитайте размер, необходимый для балки, балки или стойки из сосны № 2 или LVL. Охватывает любой пролет и любую нагрузку с высокой точностью. Дважды проверьте себя с помощью этих диаграмм размаха. Работает только с равномерно распределенными нагрузками.

Существует два разных типа нагрузок. Это либо внешняя, либо внутренняя нагрузка.Другими словами, он будет либо на внешней стене, либо где-то внутри. Нагрузка на наружную стену с фермами со свободным пролетом составляет ровно половину нагрузки на каждую стену. Например, если размер здания составляет 24 фута на 24 фута и оно имеет фермы, а нагрузка на крышу будет составлять 30 фунтов снеговой нагрузки, а потолок без хранилища будет таким. Это будет вдвое больше нагрузки на наружные стены по сравнению со зданием с центральной стеной. Этот калькулятор учитывает все это.Вам нужно только выбрать все применимые нагрузки.

Большинство внутренних балок должны учитывать нагрузку на крышу. Если есть какие-либо вопросы о чем-либо еще, вам следует обратиться к поставщику или инженеру. Этот калькулятор совпадает с 90% приложений в 2012 International Residential Code Book.

Здравый смысл

По моему опыту, я никогда не использовал балку меньше двухслойной 2 x 8. Независимо от того, что указано в спецификациях. Эти небольшие участки обычно представляют собой дверные проемы внутри, и людей учат, что эти участки являются самым сильным местом в доме, которое может быть в случае чрезвычайной ситуации.

Подшипник

В соответствии с кодами IRC 2012 года любая балка, балка или перемычка никогда не должны иметь опору менее 1 1/2 дюйма.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *