Проверка транзистора pnp мультиметром: Страница не найдена — Электрознаток

Содержание

Проверка npn транзистора мультиметром — Яхт клуб Ост-Вест

Проверку транзисторов приходится делать достаточно часто. Даже если у Вас в руках заведомо новый, не паяный ни разу транзистор, то перед установкой в схему лучше все-таки его проверить. Нередки случаи, когда купленные на радиорынке транзисторы, оказывались негодными, и даже не один единственный экземпляр, а целая партия штук на 50 – 100. Чаще всего это происходит с мощными транзисторами отечественного производства, реже с импортными.

Иногда в описаниях конструкции приводятся некоторые требования к транзисторам, например, рекомендуемый коэффициент передачи. Для этих целей существуют различные испытатели транзисторов, достаточно сложной конструкции и измеряющие почти все параметры, которые приводятся в справочниках. Но чаще приходится проверять транзисторы по принципу «годен, не годен». Именно о таких методах проверки и пойдет речь в данной статье.

Часто в домашней лаборатории под рукой оказываются транзисторы, бывшие в употреблении, добытые когда-то из каких-то старых плат. В этом случае необходим стопроцентный «входной контроль»: намного проще сразу определить негодный транзистор, чем потом искать его в неработающей конструкции.

Хотя многие авторы современных книг и статей настоятельно не рекомендуют использовать детали неизвестного происхождения, достаточно часто эту рекомендацию приходится нарушать. Ведь не всегда же есть возможность пойти в магазин и купить нужную деталь. В связи с подобными обстоятельствами и приходится проверять каждый транзистор, резистор, конденсатор или диод. Далее речь пойдет в основном о проверке транзисторов.

Проверку транзисторов в любительских условиях обычно проводят цифровым мультиметром или старым аналоговым авометром.

Проверка транзисторов мультиметром

Большинству современных радиолюбителей знаком универсальный прибор под названием мультиметр. С его помощью возможно измерение постоянных и переменных напряжений и токов, а также сопротивления проводников постоянному току. Один из пределов измерения сопротивлений предназначен для «прозвонки» полупроводников.

Как правило, около переключателя в этом положении нарисован символ диода и звучащего динамика.

Перед тем, как производить проверку транзисторов или диодов, следует убедиться в исправности самого прибора. Прежде всего, посмотреть на индикатор заряда батареи, если требуется, то батарею сразу заменить. При включении мультиметра в режим «прозвонки» полупроводников на экране индикатора должна появиться единица в старшем разряде.

Затем проверить исправность щупов прибора, для чего соединить их вместе: на индикаторе высветятся нули, и раздастся звуковой сигнал. Это не напрасное предупреждение, поскольку обрыв проводов в китайских щупах явление довольно распространенное, и об этом забывать не следует.

У радиолюбителей и профессиональных инженеров – электронщиков старшего поколения такой жест (проверка щупов) выполняется машинально, ведь при пользовании стрелочным тестером при каждом переключении в режим измерения сопротивлений приходилось устанавливать стрелку на нулевое деление шкалы.

После того, как указанные проверки произведены, можно приступить к проверке полупроводников, – диодов и транзисторов. Следует обратить внимание на полярность напряжения на щупах. Отрицательный полюс находится на гнезде с надписью «COM» (общий), на гнезде с надписью VΩmA положительный. Чтобы в процессе измерения об этом не забывать, в это гнездо следует вставить щуп красного цвета.

Рисунок 1. Мультиметр

Это замечание не настолько праздное, как может показаться на первый взгляд. Дело в том, что у стрелочных авометров (АмперВольтОмметр) в режиме измерения сопротивлений положительный полюс измерительного напряжения находится на гнезде с маркировкой «минус» или «общий», ну с точностью до наоборот, по сравнению с цифровым мультиметром. Хотя в настоящее время больше используются цифровые мультиметры, стрелочные тестеры применяются до сих пор и в ряде случаев позволяют получить более достоверные результаты. Об этом будет рассказано чуть ниже.

Рисунок 2. Стрелочный авометр

Что показывает мультиметр в режиме «прозвонки»

Проверка диодов

Наиболее простым полупроводниковым элементом является диод, который содержит всего один P-N переход. Основным свойством диода является односторонняя проводимость. Поэтому если положительный полюс мультиметра (красный щуп) подключить к аноду диода, то на индикаторе появятся цифры, показывающие прямое напряжение на P-N переходе в милливольтах.

Для кремниевых диодов это будет порядка 650 – 800 мВ, а для германиевых порядка 180 – 300, как показано на рисунках 4 и 5. Таким образом, по показаниям прибора можно определить полупроводниковый материал, из которого сделан диод. Следует заметить, что эти цифры зависят не только от конкретного диода или транзистора, но еще от температуры, при увеличении которой на 1 градус прямое напряжение падает приблизительно на 2 милливольта. Этот параметр называется температурным коэффициентом напряжения.

Если после этой проверки щупы мультиметра подключить в обратной полярности, то на индикаторе прибора покажется единица в старшем разряде.

Такие результаты будут в том случае, если диод оказался исправный. Вот собственно и вся методика проверки полупроводников: в прямом направлении сопротивление незначительно, а в обратном практически бесконечно.

Если же диод «пробит» (анод и катод замкнуты накоротко), то скорей всего раздастся звуковой сигнал, причем в обоих направлениях. В случае, если диод «в обрыве», как ни меняй полярность подключения щупов, на индикаторе, так и будет светиться единица.

Проверка транзисторов

В отличие от диодов транзисторы имеют два P-N перехода, и имеют структуры P-N-P и N-P-N, причем последние встречаются гораздо чаще. В плане проверки с помощью мультиметра транзистор можно рассматривать, как два диода включенных встречно – последовательно, как показано на рисунке 6. Поэтому проверка транзисторов сводится к «прозвонке» переходов база – коллектор и база – эмиттер в прямом и обратном направлении.

Следовательно, все что было сказано чуть выше о проверке диода, полностью справедливо и для исследования переходов транзистора. Даже показания мультиметра будут такие же, как и для диода.

На рисунке 7 показана полярность включения прибора в прямом направлении для «прозвонки» перехода база – эмиттер транзисторов структуры N-P-N: плюсовой щуп мультиметра подключен к выводу базы. Для измерения перехода база – коллектор минусовой вывод прибора следует подключить к выводу коллектора. В данном случае цифра на табло получена при прозвонке перехода база – эмиттер транзистора КТ3102А.

Если транзистор окажется структуры P-N-P, то к базе транзистора следует подключить минусовой (черный) щуп прибора.

Попутно с этим следует «прозвонить» участок коллектор – эмиттер. У исправного транзистора его сопротивление практически бесконечно, что символизирует единица в старшем разряде индикатора.

Иногда бывает, что переход коллектор – эмиттер пробит, о чем свидетельствует звуковой сигнал мультиметра, хотя переходы база – эмиттер и база – коллектор «звонятся» как будто нормально!

Проверка транзисторов авометром

Производится также, как и цифровым мультиметром, при этом не следует забывать, что полярность в режиме омметра обратная по сравнению с режимом измерения постоянного напряжения. Чтобы это не забывать в процессе измерений следует красный щуп прибора включать в гнездо со знаком «-», как было показано на рисунке 2.

Авометры, в отличие от цифровых мультиметров, не имеют режима «прозвонки» полупроводников, поэтому в этом плане их показания заметно различаются в зависимости от конкретной модели. Тут уже приходится ориентироваться на собственный опыт, накопленный в процессе работы с прибором. На рисунке 8 показаны результаты измерений с помощью тестера ТЛ4-М.

На рисунке показано, что измерения проводятся на пределе *1Ω. В этом случае лучше ориентироваться на показания не по шкале для измерения сопротивлений, а по верхней равномерной шкале. Видно, что стрелка находится в районе цифры 4. Если измерения производить на пределе *1000Ω, то стрелка окажется между цифрами 8 и 9.

По сравнению с цифровым мультиметром авометр позволяет более точно определить сопротивление участка база – эмиттер, если этот участок зашунтирован низкоомным резистором (R2_32), как показано на рисунке 9.

Это фрагмент схемы выходного каскада усилителя фирмы ALTO.

Все попытки измерить сопротивление участка база – эмиттер с помощью мультиметра приводят к звучанию динамика (короткое замыкание), поскольку сопротивление 22Ω воспринимается мультиметром как КЗ. Аналоговый же тестер на пределе измерений *1Ω показывает некоторую разницу при измерении перехода база – эмиттер в обратном направлении.

Еще один приятный нюанс при пользовании стрелочным тестером можно обнаружить, если проводить измерения на пределе *1000Ω. При подключении щупов, естественно с соблюдением полярности (для транзистора структуры N-P-N плюсовой вывод прибора на коллекторе, минус на эмиттере), стрелка прибора с места не двинется, оставаясь на отметке шкалы бесконечность.

Если теперь послюнить указательный палец, как будто для проверки нагрева утюга, и замкнуть этим пальцем выводы базы и коллектора, то стрелка прибора сдвинется с места, указывая на уменьшение сопротивления участка эмиттер – коллектор (транзистор чуть приоткроется).

В ряде случаев этот прием позволяет проверить транзистор без выпаивания его из схемы.

Наиболее эффективен указанный метод при проверке составных транзисторов, например КТ 972, КТ973 и т.п. Не следует только забывать, что составные транзисторы часто имеют защитные диоды, включенные параллельно переходу коллектор – эмиттер, причем в обратной полярности. Если транзистор структуры N-P-N, то к его коллектору подключен катод защитного диода. К таким транзисторам можно подключать индуктивную нагрузку, например, обмотки реле. Внутреннее устройство составного транзистора показано на рисунке 10.

Но более достоверные результаты об исправности транзистора можно получить с использованием специального пробника для проверки транзисторов, про который смотрите здесь: Пробник для проверки транзисторов.

Ни одна современная схема не обходится без полупроводниковых приборов. Самый распространённый из них — транзистор и именно он часто выходит из строя. Тому причиной — перепады напряжения, которые есть в наших сетях, нагрузки и т. д. Рассмотрим два способа позволяющие проверить исправность транзистора при помощи мультиметра.

Необходимый минимум сведений

Чтобы понять исправен биполярный транзистор или нет, нам необходимо знать хотя бы в самых общих чертах, как он устроен и работает. Это активный электронный компонент, который является полупроводниковым прибором. Есть два основных вида — NPN и PNP. Каждый из них имеет три электрода: база, эмиттер и коллектор.

Виды транзисторов и принцип работы

Коротко сформулировать принцип работы транзисторов можно таким образом, это управляемый электронный ключ. Он пропускает ток по направлению от коллектора к эмиттеру в случае NPN типа и от эмиттера к коллектору у PNP, при наличии напряжения на базе. Причём изменяя потенциал на базе, меняем степень «открытости» перехода, регулируя величину пропускаемого тока. То есть, если на базу подавать больший ток, имеем больший ток коллектор-эмиттер, уменьшим потенциал на базе, снизим ток, протекающий через транзистор.

Ещё важно знать, это то, что в обратном направлении ток течь не может. И неважно, есть потенциал на базе или нет. Он всегда течёт в направлении, на схеме указанном стрелкой. Собственно, это вся информация, которая нам нужна, чтобы знать как работает транзистор.

Цоколевка

У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять. Это важно, так как при определении работоспособности, эта информация нам понадобится.

Внешний вид биполярного транзистора средней мощности и его цоколевка

То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку. Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.

Как проверить транзистор мультиметром со встроенной функцией

Начнём с того, что есть мультиметры с функцией проверки работоспособности транзистора и определения коэффициента усиления. Их можно опознать по наличию характерного блока на лицевой панели. В ней есть гнездо под установку транзистора, круглая цветная пластиковая вставка с отверстиями под ножки полупроводникового прибора. Цвет вставки может быть любым, но обычно, он выделяется.

Первым делом переводим переключатель диапазонов (большую ручку) в соответствующее положение. Опознать режим можно по надписи — hFE. Перед тем как проверить транзистор мультиметром, определяемся с типом NPN или PNP.

Мультиметр с функцией проверки транзисторов

Далее рассматриваем разъёмы, в которые надо вставлять электроды. Они подписаны латинскими буквами: E — эмиттер, B — база, C — коллектор. В соответствии с надписями, ставим выводы полупроводникового элемента в гнёзда. Через несколько мгновений на экране высвечивается результат измерений, это коэффициент усиления транзистора. Если прибор неисправен, показаний не будет, транзистор неисправен.

Как видите, проверить рабочий транзистор или нет мультиметром со встроенной функцией проверки просто. Вот только в гнёзда нормально вставляются далеко не все электроды. Удобно устанавливать транзисторы с тонкими выводами S9014, S8550, КТ3107, КТ3102. У больших, надо пинцетом или плоскогубцами менять форму выводов, ну а транзистор на плате так не проверишь. В некоторых случаях проще проверить переходы транзистора в режиме прозвонки и определить его исправность.

Проверка на плате

Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).

Как проверить транзистор мультиметром не выпаивая

Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.

Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять

Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.

Проверка биполярного транзистора PNP типа

Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:

  • Если подать на базу плюс (красный щуп), на эмиттер или коллектор — минус (чёрный щуп), должно быть бесконечно большое сопротивление. В этом случае диоды закрыты (смотрим на эквивалентной схеме).
  • Если подаём на базу минус (чёрный щуп), а на эмиттер или коллектор плюс (красный щуп), видим ток от 600 до 800 мВ. В этом случае получается, что переход открыт.

Проверка биполярного PNP транзистора мультиметром

Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.

Тестируем исправность NPN транзистор

Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:

  • Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
  • Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
  • При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.

Проверка работоспособности биполярного NPN транзистора мультиметром

Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.

И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов. Так проще запомнить, и понимать показания на экране мультиметра.

Как определить базу, коллектор и эмиттер

Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.

Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять

Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.

Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.

Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов,…

Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов, которые будут устанавливаться. Если используются новые детали, необходимо убедиться в их работоспособности. Транзистор является одним из главных составляющих элементов многих электросхем, поэтому его следует прозвонить в первую очередь. Как проверить мультиметром транзистор подробно расскажет данная статья.

Проверка транзисторов — обязательный шаг при диагностике и ремонте микросхем

Что такое транзистор

Главным компонентом в любой электросхеме является транзистор, который под влиянием внешнего сигнала управляет током в электрической цепи. Транзисторы делятся на два вида: полевые и биполярные.

Транзистор один из основных компонентов микросхем и электрических схем

Биполярный транзистор имеет три вывода: база, эмиттер и коллектор. На базу подается ток небольшой величины, который вызывает изменение в зоне эмиттер-коллектор сопротивления, что приводит к изменению протекающего тока. Ток протекает в одном направлении, которое определяется типом перехода и соответствует полярности подключения.

Транзистор данного типа оснащен двумя p-n переходами. Когда в крайней области прибора преобладает электронная проводимость (n), а в средней — дырочная (p), то транзистор называется n-p-n (обратная проводимость). Если наоборот, тогда прибор именуется транзистором типа p-n-p (прямая проводимость).

Полевые транзисторы имеют характерные отличия от биполярных. Они оснащены двумя рабочими выводами — истоком и стоком и одним управляющим (затвором). В данном случае на затвор воздействует напряжение, а не ток, что характерно для биполярного типа. Электрический ток проходит между истоком и стоком с определенной интенсивностью, которая зависит от сигнала. Этот сигнал формируется между затвором и истоком или затвором и стоком. Транзистор такого типа может быть с управляющим p-n переходом или с изолированным затвором. В первом случае рабочие выводы подключаются к полупроводниковой пластине, которая может быть p- или n-типа.

Принцип работы полевого транзистора

Главной особенностью полевых транзисторов является то, что их управление обеспечивается не при помощи тока, а напряжения. Минимальное использование электроэнергии позволяет его применять в радиодеталях с тихими и компактными источниками питания. Такие устройства могут иметь разную полярность.

Как проверить мультиметром транзистор

Многие современные тестеры оснащены специализированными коннекторами, которые используются для проверки работоспособности радиодеталей, в том числе и транзисторов.

Чтобы определить рабочее состояние полупроводникового прибора, необходимо протестировать каждый его элемент. Биполярный транзистор имеет два р-n перехода в виде диодов (полупроводников), которые встречно подключены к базе. Отсюда один полупроводник образовывается выводами коллектора и базы, а другой эмиттера и базы.

Используя транзистор для сборки монтажной платы необходимо четко знать назначение каждого вывода. Неправильное размещение элемента может привести к его перегоранию. При помощи тестера можно узнать назначение каждого вывода.

Чтобы определить состояние транзистора, необходимо протестировать каждый его элемент

Важно! Данная процедура возможна лишь для исправного транзистора.

Для этого прибор переводится в режим измерения сопротивления на максимальный предел. Красным щупом следует коснуться левого контакта и измерить сопротивление на правом и среднем выводах. Например, на дисплее отобразились значения 1 и 817 Ом.

Затем красный щуп следует перенести на середину, и с помощью черного измерить сопротивления на правом и левом выводах. Здесь результат может быть: бесконечность и 806 Ом. Красный щуп перевести на правый контакт и произвести замеры оставшейся комбинации. Здесь в обоих случаях на дисплее отобразится значение 1 Ом.

Делая вывод из всех замеров, база располагается на правом выводе. Теперь для определения других выводов необходимо черный щуп установить на базу. На одном выводе показалось значение 817 Ом – это эмиттерный переход, другой соответствует 806 Ом, коллекторный переход.

Схема проверки транзисторов с помощью мультиметра

Важно! Сопротивление эмиттерного перехода всегда будет больше, чем коллекторного.

Как прозвонить мультиметром транзистор

Чтобы убедиться в исправном состоянии устройства достаточно узнать прямое и обратное сопротивление его полупроводников. Для этого тестер переводится в режим измерения сопротивления и устанавливается на предел 2000. Далее следует прозвонить каждую пару контактов в обоих направлениях. Так выполняется шесть измерений:

  • соединение «база-коллектор» должно проводить электрический ток в одном направлении;
  • соединение «база-эмиттер» проводит электрический ток в одном направлении;
  • соединение «эмиттер-коллектор» не проводит электрический ток в любом направлении.

Как прозванивать мультиметром транзисторы, проводимость которых p-n-p (стрелка эмиттерного перехода направлена к базе)? Для этого необходимо черным щупом прикоснуться к базе, а красным поочередно касаться эмиттерного и коллекторного переходов. Если они исправны, то на экране тестера будет отображаться прямое сопротивление 500-1200 Ом.

Точки проверки транзистора p-n-p

Для проверки обратного сопротивления красным щупом следует прикоснуться к базе, а черным поочередно к выводам эмиттера и коллектора. Теперь прибор должен показать на обоих переходах большое значение сопротивления, отобразив на экране «1». Значит, оба перехода исправны, а транзистор не поврежден.

Такая методика позволяет решить вопрос: как проверить мультиметром транзистор, не выпаивая его из платы. Это возможно благодаря тому, что переходы устройства не зашунтированы низкоомными резисторами. Однако, если в ходе замеров тестер будет показывать слишком маленькие значения прямого и обратного сопротивления эммитерного и коллекторного переходов, транзистор придется выпаять из схемы.

Перед тем как проверить мультиметром n-p-n транзистор (стрелка эмиттерного перехода направлена от базы), красный щуп тестера для определения прямого сопротивления подключается к базе. Работоспособность устройства проверяется таким же методом, что и транзистор с проводимостью p-n-p.

О неисправности транзистора свидетельствует обрыв одного из переходов, где обнаружено большое значение прямого или обратного сопротивления. Если это значение равно 0, переход находится в обрыве и транзистор неисправен.

Принцип работы биполярного транзистора

Такая методика подходит исключительно для биполярных транзисторов. Поэтому перед проверкой необходимо убедиться, не относиться ли он к составному или полевому устройству. Далее необходимо проверить между эмиттером и коллектором сопротивление. Замыканий здесь быть не должно.

Если для сборки электрической схемы необходимо использовать транзистор, имеющий приближенный по величине тока коэффициент усиления, с помощью тестера можно определить необходимый элемент. Для этого тестер переводится в режим hFE. Транзистор подключается в соответствующий для конкретного типа устройства разъем, расположенный на приборе. На экране мультиметра должна отобразиться величина параметра h31.

Как проверить мультиметром тиристор? Он оснащен тремя p-n переходами, чем отличается от биполярного транзистора. Здесь структуры чередуются между собой на манер зебры. Главных отличием его от транзистора является то, что режим после попадания управляющего импульса остается неизменным. Тиристор будет оставаться открытым до того момента, пока ток в нем не упадет до определенного значения, которое называется током удержания. Использование тиристора позволяет собирать более экономичные электросхемы.

Схема проверки тиристора мультиметром

Мультиметр выставляется на шкалу измерения сопротивления в диапазон 2000 Ом. Для открытия тиристора черный щуп присоединяется к катоду, а красный к аноду. Следует помнить, что тиристор может открываться положительным и отрицательным импульсом. Поэтому в обоих случаях сопротивление устройства будет меньше 1. Тиристор остается открытым, если ток управляющего сигнала превышает порог удержания. Если ток меньше, то ключ закроется.

Как проверить мультиметром транзистор IGBT

Биполярный транзистор с изолированным затвором (IGBT) является трехэлектродным силовым полупроводниковым прибором, в котором по принципу каскадного включения соединены два транзистора в одной структуре: полевой и биполярный. Первый образует канал управления, а второй – силовой канал.

Чтобы проверить транзистор, мультиметр необходимо перевести в режим проверки полупроводников. После этого при помощи щупов измерить сопротивление между эмиттером и затвором в прямом и обратном направлении для выявления замыкания.

IGBT-транзисторы с напряжением коллектор-эмиттер

Теперь красный провод прибора соединить с эмиттером, а черным коснуться кратковременно затвора. Произойдет заряд затвора отрицательным напряжением, что позволит транзистору оставаться закрытым.

Важно! Если транзистор оснащен встроенным встречно-параллельным диодом, который анодом подключен к эмиттеру транзистора, а катодом к коллектору, то его необходимо прозвонить соответствующим образом.

Теперь необходимо убедиться в функциональности транзистора. Сначала стоит зарядить положительным напряжением входную емкость затвор-эмиттер. С этой целью одновременно и кратковременно красным щупом следует прикоснуться к затвору, а черным к эмиттеру. Теперь необходимо проверить переход коллектор-эмиттер, подключив черный щуп к эмиттеру, а красный к коллектору. На экране мультиметра должно отобразиться незначительное падение напряжения в 0,5-1,5 В. Эта величина на протяжении нескольких секунд должна оставаться стабильной. Это свидетельствует о том, что во входной емкости транзистора утечки нет.

Проверка транзистора мультиметром без выпаивания из микросхемы

Полезный совет! Если напряжения мультиметра недостаточно для открытия IGBT транзистора, тогда для заряда его входной емкости можно использовать источник постоянного напряжения в 9-15 В.

Как проверить мультиметром полевой транзистор

Полевые транзисторы проявляют высокую чувствительность к статическому электричеству, поэтому предварительно требуется организация заземления.

Перед тем как приступить к проверке полевого транзистора, следует определить его цоколевку. На импортных приборах обычно наносятся метки, которые определяют выводы устройства. Буквой S обозначается исток прибора, буква D соответствует стоку, а буква G – затвор. Если цоколевка отсутствует, тогда необходимо воспользоваться документацией к прибору.

Перед проверкой исправного состояния транзистора, стоит учесть, что современные радиодетали типа MOSFET имеют дополнительный диод, расположенный между истоком и стоком, который обязательно нанесен на схему прибора. Полярность диода полностью зависит от вида транзистора.

Полезный совет! Обезопасить себя от накопления статических зарядов можно при помощи антистатического заземляющего браслета, который надевается на руку, или прикоснуться рукой к батарее.

Устройство полевого транзистора с N-каналом

Основная задача, как проверить мультиметром полевой транзистор, не выпаивая его из платы, состоит из следующих действий:

  1. Необходимо снять с транзистора статическое электричество.
  2. Переключить измерительный прибор в режим проверки полупроводников.
  3. Подключить красный щуп к разъему прибора «+», а черный «-».
  4. Коснуться красным проводом истока, а черным стока транзистора. Если устройство находится в рабочем состоянии на дисплее измерительного прибора отобразиться напряжение 0,5-0,7 В.
  5. Черный щуп подключить к истоку транзистора, а красный к стоку. На экране должна отобразиться бесконечность, что свидетельствует об исправном состоянии прибора.
  6. Открыть транзистор, подключив красный щуп к затвору, а черный – к истоку.
  7. Не меняя положение черного провода, присоединить красный щуп к стоку. Если транзистор исправен, тогда тестер покажет напряжение в диапазоне 0-800 мВ.
  8. Изменив полярность проводов, показания напряжения должны остаться неизменными.
  9. Выполнить закрытие транзистора, подключив черный щуп к затвору, а красный – к истоку транзистора.

Пошаговая проверка полевого транзистора мультиметром

Говорить об исправном состоянии транзистора можно исходя из того, как он при помощи постоянного напряжения с тестера имеет возможность открываться и закрываться. В связи с тем, что полевой транзистор обладает большой входной емкостью, для ее разрядки потребуется некоторое время. Эта характеристика имеет значение, когда транзистор вначале открывается с помощью создаваемого тестером напряжения (см. п. 6), и на протяжении небольшого количества времени проводятся измерения (см. п.7 и 8).

Проверка мультиметром рабочего состояния р-канального полевого транзистора осуществляется таким же методом, как и n-канального. Только начинать измерения следует, подключив красный щуп к минусу, а черный – к плюсу, т. е. изменить полярность присоединения проводов тестера на обратную.

Исправность любого транзистора, независимо от типа устройства, можно проверить с помощью простого мультиметра. Для этого следует четко знать тип элемента и определить маркировку его выводов. Далее, в режиме прозвонки диодов или измерения сопротивления узнать прямое и обратное сопротивление его переходов. Исходя из полученных результатов, судить об исправном состоянии транзистора.

Как проверить мультиметром транзистор: видео инструкция

Проверка диода — биполярного транзистора и диодного моста


Проверка диода осуществляется мультиметром с фунцией прозвонки полупроводников «Diode». Подключаем плюсовой вывод мультиметра к аноду, а минусовый к катоду — при исправном диоде на дисплее прибора отобразится величина падения напряжения. Чаще всего показания мультиметра будут находится в диапазоне 0.200-0.700. После такой проверки меняем полярность подключения выводов диода и повторяем считывание показаний. Значение падения напряжения должно быть больше верхнего предела измерения мультиметра, т. е. близким к бесконечности. При неисправном «пробитом» диоде значение на дисплее будет 0.00 в обоих случаях.

 

Состояние транзистора, как правило, проверяют при помощи мультиметра, включенного по схеме омметра, или с помощью специального тестера с индикацией усиления транзистора(коэффициент передачи по току). В первом случае прежде всего необходимо определить расположение выводов и тип транзистора. Если они неизвестны, нужно сравнить транзистор с другими моделями, описанными в многочисленных специализированных изданиях и справочниках. В наиболее трудных случаях приходится действовать на ощупь (при этом нет никакого риска повредить прибор), пока не обнаружится подходящая конфигурация. Если определить ничего не удалось, скорее всего, транзистор неисправен.

Сначала необходимо сопоставить цвета измерительных щупов с полярностью напряжения на гнездах мультиметра. Если проверяют транзистор n-p-n типа, то положительный щуп подключают к базе и тестируют оба перехода: база-коллектор (В-С) и база-эмиттер (В-Е), которые должны пропускать ток (индикация в диапазоне между 0.600 и 0.800).


Аналогичная операция, на этот раз с отрицательным щупом, дает индикацию бесконечного сопротивления (переход не пропускает ток). С транзистором p-n-p типа производят те же действия, но тут они должны привести к противоположным результатам. Остается проверить переход коллектор-эмиттер, который не должен пропускать ток. Следует иметь в виду, что транзисторы Дарлингтона иногда имеют защитный диод. Переход, замкнутый накоротко, дает на индикаторе показание 0.00. Транзистор, не отпаянный от схемы, может выдать ошибочные показания из-за соединенных с ним компонентов. Если есть сомнения, лучше отпаять его полностью. Такую процедуру тестирования можно использовать для всех компонентов с полупроводниковыми переходами, например для диодов, светодиодов или оптопар (с обеих сторон).
Наконец, есть четырехэлектродные транзисторы, обычно имеющие два вывода базы. В этом случае применяется такая же процедура тестирования.

 

 


Диодный мост иногда нелегко протестировать из-за соединения с вторичной обмоткой трансформатора. В таком случае его необходимо предварительно демонтировать. При проверке диодных мостов надо присоединить один из измерительных щупов к отрицательному или положительному выходу моста и протестировать подключенные к этому выводу диоды.


Для проведения полной проверки необходимо выполнить восемь тестов. При этом полезно иметь под рукой эквивалентную схему, которая отражает внутреннее строение диодного моста.


Примеры работ
Услуги
Контакты

Время выполнения запроса: 0,0123410224915 секунд.

Как проверить биполярный транзистор на пригодность обычным мультиметром. Измерение полупроводимости и коэффициента усиления транзистора электронным тестером.

 

 

 

Тема: тестируем переходы база-эмиттер и база коллектро на транзисторе.

 

Иногда возникает необходимость в проверке биполярного транзистора на его пригодность. Это легко можно сделать с помощью обычного мультиметра, электронного тестера даже самой простой модели типа DT830. Как известно, биполярный транзистор представляет собой полупроводник, имеющий три вывода – эмиттер, коллектор и база.

 

Электротехнически биполярный транзистор можно представить как два диода. Причем, при одной проводимости (n-p-n) эти диоды как бы соединены одними своими полярностями (плюсами, и это база), а при другой проводимости (p-n-p), противоположными полярностями (минусами, это также база). И по сути вся проверка биполярного транзистора сводится к двум типам измерения – это наличие нормальной полупроводимости у переходов база-эмиттер и база-коллектор, и наличие нужного коэффициента усиления данного транзистора.

 

 

Для тех кто не знает напомню, что основная функциональная задача транзистора является усиление тока. То есть, пропускание небольших токов через база-эмиттерный переход приводит к тому, что на переходе эмиттер-коллектор можно получить токи в десятки-тысячи раз больше. Причем имеется прямая зависимость, чем больше ток будет проходит через базу, тем больше тока мы получим на коллекторе. Но это усиление тоже не бесконечное. У маломощных биполярных транзисторов коэффициент усиления может быть от десятков до тысяч раз. Чем мощнее транзистор, тем больший ток он может через себя пропустить, но при этом обычно жертвуя этим самым коэффициентом усиления. У мощных транзисторов этот коэффициент усиления обычно не превышает десятков, реже сотен раз.

 

 

 

 

Теперь вернемся к проверке биполярного транзистора обычным мультиметром. Первым вариантом будет просто проверить на транзисторе два полупроводящих перехода. Это переход база-эмиттер и база коллектор. Берем мультиметр, колесо выбора измерения переводим на диод и измеряем. Если Вы не знаете где какой вывод у транзистора, то без справочника тут не обойтись. Просто через поиск картинок в интернете набираете «цоколевка транзистора (пишем его название)» и смотрите результаты.

 

Когда вы знаете где, какие выводы, то еще нужно знать тип проводимости транзистора (n-p-n или p-n-p). Для тех кто не вкурсе – это, проще говоря, либо два диода направлены в одну сторону или же в противоположную. Опять же, через поиск в интернете набираем «проводимость транзистора (пишем его название)». Хотя можно просто, зная где у биполярного транзистор база, сначала одним щупом мультиметра прикоснутся к базе, а вторым к эмиттеру и коллектору. Если мультиметр ничего не показывает, то просто поменять местами щупы измерителя. Если транзистор работоспособен, то на экране мультиметра должно отобразится падение напряжения перехода, которое равно около 600-700 милливольт. На переходах база-эмиттер и база коллектор эти значения падения напряжения могут немного отличаться, это нормально.

 

Теперь, что мы увидем на мультиметре в случае если транзистор неисправен. Возможен полный или частичный пробой. При полном пробое переходы либо вовсе перегорают (один или сразу два) или наоборот, становятся полными проводниками. То есть, в одном случае полупроводниковый переход разрывается, контакта нет, мультиметр ничего не покажет. Во втором случае переход начинает проводит в обе стороны, превращаясь из полупроводника в полный проводник (хотя имеющее уже свое какое-то сопротивление). Тут мультиметр должен показать нули, или около того. Если же биполярный транзистор пробивается частично, то в этом случае мы на экране мультиметра можем увидеть не нормальное падение напряжения на переходах (значительно больше или меньше нормальных значений). Этот транзистор будет работать, но уже не так как нужно изначально. Его необходимо заменить на заведомо работоспособный.

 

Мультиметр также позволяет измерить коэффициент усиления биполярного транзистора. И это второй способ проверки биполярного транзистора на пригодность.  Для этого на мультиметре предусмотрен специальный разъем. Для проверки нужно свой транзистор вставить в нужные гнезда (соблюдая цоколевку и тип проводимости). Переводим колесо выбора измерения мультиметра в положение hFE. Если биполярный транзистор рабочий, то на экране тестера мы увидим реальный коэффициент усиления данного элемента. Если же транзистор неисправен, то мультиметр ничего не покажет.

 

И еще одно замечание, которое следует учесть. Новичек может вначале подумать, что проверить транзисторные переходы база-эмиттер и база-коллектор можно через измерение по сопротивлению. По идее это логично. Но технически это сделать не получится (по крайней мере на тех мультиметрах, у которых измерение диода вынесенно на отдельный селектор). Дело в том, что в самом мультиметре при измерении малых сопротивлений на щупы подается всего лишь 0,5 вольта. Для открытия кремниевых полупроводников (которым и является транзистор, диод и т.д.) нужно не менее 0,6 вольта. И получается что измеряя даже рабочий полупроводник через сопротивление тестер нам ничего не покажет. Когда же мы проверяем полупроводники через диоды, то на щупы измерителя подается уже 2,5 вольта, что вполне хватает для проведения измерения. Так что учтите этот момент.

 

Видео по этой теме:

 

 

P.S. Как видно проверить биполярный транзистор не составляет большого труда. Хотя в высокоточных схемах даже работоспособный транзистор, который имеет значительные отклонения в своих параметра, может работать некорректно. И тут уж такая проверка мультиметром не выявит неисправность. В этом случае нужно искать дефективный элемент на самой схеме при ее работе или просто заменять подозрительные компоненты на запасные, заведомо исправные.

 

У транзистора звонятся только 2 крайние ноги. Как проверить различные типы транзисторов мультиметром? Как проверить мультиметром полевой транзистор

Приветствую всех любителей электроники, и сегодня в продолжение темы применение цифрового мультиметра мне хотелось бы рассказать, как проверить биполярный транзистор с помощью мультиметра.

Биполярный транзистор представляет собой полупроводниковый прибор, который предназначен для усиления сигналов. Так же транзистор может работать в ключевом режиме.

Транзистор состоит из двух p-n переходов, причем одна из областей проводимости является общей. Средняя общая область проводимости называется базой, крайние эмиттером и коллектором. Вследствие этого разделяют n-p-n и p-n-p транзисторы.

Итак, схематически биполярный транзистор можно представить следующим образом.

Рисунок 1. Схематическое представление транзистора а) n-p-n структуры; б) p-n-p структуры.

Для упрощения понимания вопроса p-n переходы можно представить в виде двух диодов, подключенных друг к другу одноименными электродами (в зависимости от типа транзистора).

Рисунок 2. Представление транзистора n-p-n структуры в виде эквивалента из двух диодов, включенных анодами друг к другу.

Рисунок 3. Представление транзистора p-n-p структуры в виде эквивалента из двух диодов, включенных катодами друг к другу.

Конечно же для лучшего понимания желательно изучить как работает p-n переход, а лучше как работает транзистор в целом. Здесь лишь скажу, что чтобы через p-n переход тек ток его необходимо включить в прямом направлении, то есть на n – область (для диода это катод) подать минус, а на p-область (анод).

Это я вам показывал в видео для статьи «Как пользоваться мультиметром » при проверке полупроводникового диода.

Так как мы представили транзистор в виде двух диодов, то, следовательно, для его проверки необходимо просто проверить исправность этих самых «виртуальных» диодов.

Итак, приступим к проверке транзистора структуры n-p-n. Таким образом, база транзистора соответствует p- области, коллектор и эмиттер — n-областям. Для начала переведем мультиметр в режим проверки диодов.

В этом режиме мультиметр будет показывать падение напряжения на p-n переходе в милливольтах. Падение напряжения на p-n переходе для кремниевых элементов должно быть 0,6 вольта, а для германиевых – 0,2-0,3 вольта.

Сначала включим p-n переходы транзистора в прямом направлении, для этого на базу транзистора подключим красный (плюс) щуп мультиметра, а на эмиттер черный (минус) щуп мультиметра. При этом на индикаторе должно высветиться значение падения напряжения на переходе база-эмиттер.

Здесь необходимо отметить, что падение напряжения на переходе Б-К всегда будет меньше падения напряжения на переходе Б-Э . Это можно объяснить меньшим сопротивлением перехода Б-К по сравнению с переходом Б-Э , что является следствием того, что область проводимости коллектора имеет большую площадь по сравнению с эмиттером.

По этому признаку можно самостоятельно определить цоколевку транзистора, при отсутствии справочника.

Так, половина дела сделана, если переходы исправны, то вы увидите значения падения напряжения на них.

Теперь необходимо включить p-n переходы в обратном направлении, при этом мультиметр должен показать «1», что соответствует бесконечности.

Подключаем черный щуп на базу транзистора, красный на эмиттер, при этом мультиметр должен показать «1».

Теперь включаем в обратном направлении переход Б-К , результат должен быть аналогичным.

Осталось последняя проверка – переход эмиттер-коллектор. Подключаем красный щуп мультиметра к эмиттеру, черный к коллектору, если переходы не пробитые, то тестер должен показать «1».

Меняем полярность (красный -коллектор, черный — эмиттер) результат – «1».

Если в результате проверки вы обнаружите не соответствие данной методике, то это значит, что транзистор неисправен .

Эта методика подходит для проверки только биполярных транзисторов. Перед проверкой убедитесь, что транзистор не является полевым или составным. Многие изложенным выше способом пытаются проверить именно составные транзисторы, путая их с биполярными (ведь по маркировки можно не правильно идентифицировать тип транзистора), что не является правильным решением. Правильно узнать тип транзистора можно только по справочнику.

При отсутствии режима проверки диодов в вашем мультиметра, осуществить проверку транзистора можно переключив мультиметр в режим измерения сопротивления на диапазон «2000». При этом методика проверки остается неизменной, за исключением того, что мультиметр будет показывать сопротивление p-n переходов.

А теперь по традиции поясняющий и дополняющий видеоролик по проверке транзистора:

Представляют собой трехслойную структуру своего рода сендвич, в зависимости от того как чередуются эти слои мы получаем два типа npn или pnp . Эти зоны можно представить в виде диодов подключенными одинаковыми концами друг к другу, общий конец которых представляет собой базу транзистора, а два других называются коллектором и эмиттером. Получается что для того чтобы проверить транзистор нужно проверить эти два диода.

Проводимость npn и pnp транзисторов

Для проверки транзистора в основном используют тестеры настроенные как Омметры. А весь способ проверки заключается в проверки сопротивления переходов. В некоторых мультиметрах есть функция проверки диодов, в этом случае мильтиметр показывает величину пробивного напряжения. Некоторые имеют специальные разъемы для подключения транзистора, которые показывают коэффициент усиления в случае его исправности.

Допустим, что у нас транзистор с проводимостью npn . Для проверки этого транзистора нам нужно выставить мультиметр, выставить его в режим омметра, далее взять плюсовой провод и подключить его к базе. Минусовой провод сначала подключаем к эмиттеру и смотрим на показания тестера. В данном случае мы подключили переход база-коллектор в прямом направлении. А как известно сопротивление диода в прямом направлении минимально, в результате мы увидим какие либо показания на экране тестера. А если мы этот переход подключим в обратном направлении, к базе минусом а к коллектору плюсом, то тестер покажет бесконечное сопротивление.

Аналогичным образом, не отключая плюсовой провод от базы мы подключаем минусовой провод на коллектору по аналогии описанной выше мы получаем схожий результат. Измеряем сопротивление в перехода база-коллектор в прямом и обратном напрявлении.

Если бы у нас был транзистора вида pnp то для проверки нужно было к базе подключить минусовой провод, а плюсовой последовательно подключать сначала к эмиттеру а затем к коллектору. Проверка транзистора pnp проводимости при помощи тестера представлена на рисунке ниже.

Схема проверки транзистора

Все эти показания мультиметра означают только одно, что наш транзистор исправен и мы можем смело брать его и использовать в своих целях.

Если замерить сопротивление закрытого транзистора между коллектором и эмиттером то тестер покажет бесконечное сопротивление. Сопротивление «закрытого» транзистора равно бесконечности или очень велико, причем не зависимо от того как вы подключаете тестер.

Так же транзистор можно проверить, собрав не большую схемку. В коллекторную цепь включить какую нибудь нагрузку, а в цепь базы подать небольшой ток. В случае исправности транзистора в цепи коллектора появиться небольшой ток. Но собирать схему для того чтобы просто проверить транзистор мне кажется мало кто будет. Проще взять тестер и за пару минут узнать работает он или нет.

Схема включения транзистора для проверки его работоспособности

Некоторые тестеры имеют, как я уже говорил, специальные разъёмы под ножки транзистора, все что нужно это вставить ножки транзистора в эти отверстия и смотреть на показания дисплея. Но прежде чем это делать нужно знать расположение выводов транзистора и тип его проводимости npn или pnp . На рисунке видно два разъема для проверки транзистора разных проводимостей. Перед тем как проверять транзистор переключатель тестера нужно выставить в положение Hfe.

Печать

Самый быстрый и действенный способ проверки исправности транзисторов — это проверка (прозвонка) его переходов мультиметром, хотя 100% гарантии в некоторых случаях это не дает, но об этом ниже.

Итак, как проверить транзистор мультиметром.

Транзистор можно представить в виде двух диодов включенных навстречу (p-n-p — прямой) и в обратном (n-p-n — обратный) направлении. На принципиальных схемах структура транзисторов обозначается стрелкой эмиттерного перехода. Если стрелка направлена к базе, значит это структура p-n-p, а если от базы, значит это транзистор структуры n-p-n. Смотрите рисунки

Чтобы проверить P-N-P транзистор мультиметром , минусовым щупом (черного цвета) касаемся вывода базы, а плюсовым (красного цвета) поочередно касаемся выводов коллектора и эмиттера. Если транзистор цел, то падение напряжения в режиме проверки (прозвонки) в милливольтах, будет находиться в пределах 500 – 1200 Ом и при этом разница этих значений должна быть невелика. После этого меняем местами щупы, мультиметр не должен показывать никакого падения. Далее проверяем коллектор — эмиттер в обе стороны (меняем местами щупы), здесь также не должно быть никаких значений.

Проверка N-P-N транзисторов мультиметром идентична, с той лишь разницей, что мультиметр должен показать падение напряжения на переходах при касании плюсовым щупом базы транзистора, а черным поочерёдно коллектора и эмиттера.

Посмотрите небольшое видео проверки транзистора мультиметром.

В начале я упоминал, что в некоторых случаях, такая проверка может дать ложный вывод. Бывает в ходе ремонта телевизора, при проверке выпаянного транзистора мультиметром, все переходы показывают нормальные значения, но в схеме он не работает. Выявить это можно только заменой.

Составной транзистор проверяется вставляя в отверстия на панели мультиметра или другого прибора. Для этого нужно знать какой проводимости он является и после этого уже вставлять, не забыв переключить в соответствующее положение тестер.

Проверить силовой транзистор, а так же строчный можно по этой же методике исследуя переходы Б-К, Б-Э, К-Э, но так как в этих транзисторах в большинстве случаев имеются встроенные диоды (К-Е) и сопротивления (Б-Э) все это нужно учитывать. При незнакомом элементе лучше посмотреть его даташит.

Как проверить на плате

Проверить транзистор на плате можно аналогичным способом, но в некоторых случаях установленные рядом в обвязке резисторы с малым сопротивлением, дроссели или трансформаторы могут вносить ложные значения. Поэтому лучше иметь специальные приборы предназначенные для таких проверок, типа ESR-mikro v4.0.

Проверить биполярный транзистор не выпаивая может ESR-mikro v4.0

Проверка полевого

Оценить исправность полевого транзистора сложно и если с мощными это вполне безопасно, то с маломощными — труднее. Дело в том что эти элементы управляются по затвору напряжением и легко пробиваются статическим напряжением.

Работоспособность полевых транзисторов проверяется с осторожностью, желательно на антистатическом столе с антистатическим браслетом на руке (хотя по большей части это касается маломощных элементов).

Сами по себе переходы покажут бесконечное сопротивление, но как видно из предложенных выше сильноточный полевой транзистор имеет диод, его можно проверить. Показатель того, что нет короткого замыкания, это уже хороший знак.

Переводим прибор в режим «прозвонки» диодов и вводим полевой тр-тор в режим насыщения. Если он N-типа, то минусом касаемся стока, а плюсом — затвора. Исправный транзистор должен открыться. Далее плюсовой, не отрывая минусового, переводим на исток, мультиметр покажет какое-то сопротивление. Далее нужно запереть радиодеталь. Не отрывая «плюса» от истока, минусовым нужно коснуться затвора и возвратить на сток. Транзистор будет заперт.

Для элементов P- типа щупы меняем местами.

Современные электронные мультиметры имеют специализированные коннекторы для проверки различных радиодеталей, включая транзисторы.

Это удобно, однако, проверка не совсем корректная. Радиолюбители со стажем помнят, как проверить транзистор тестером со стрелочной индикацией. Техника проверки на цифровых приборах не изменилась. Для точного определения состояния полупроводникового прибора, каждые его элемент тестируется отдельно.

Классика вопроса: как проверить биполярный транзистор мультиметром

Этот популярный проводник выполняет две задачи:

  • Режим усиления сигнала. Получая команду на управляющие выводы, прибор дублирует форму сигнала на рабочих контактах, только с большей амплитудой;
  • режим ключа. Подобно водопроводному крану, полупроводник открывает или закрывает путь электрическому току по команде управляющего сигнала.

Полупроводниковые кристаллы соединены в корпусе, образуя p-n переходы . Такая же технология применяется в диодах. По сути – биполярный транзистор состоит из двух диодов, соединенных в одной точке одноименными выводами.
Чтобы понять, как проверить транзистор мультиметром, рассмотрим отличие pnp и npn структуры.

Так называемый «прямой» (см. фото)


С обратным переходом, как изображено на фото


Разумеется, если вы спаяете диоды так, как показано на условной схеме – транзистор не получится. Но с точки зрения проверки исправности – можно представить, что у вас обычные диоды в одном корпусе.

То есть, положив перед собой схему полупроводниковых переходов, вы легко определите не только исправность детали в целом, но и локализуете конкретный неисправный p-n переход. Это поможет понять причину поломки, ведь полупроводник работает не автономно, а в составе электросхемы.

Как проверить биполярный транзистор мультиметром – видео.

Возникает резонный вопрос: Как определить маркировку выводов транзистора, не имея каталога? Такая практика пригодится не только для проверки радиодеталей. При сборке монтажной платы, незнание конструкции транзистора приведет к его перегоранию.

Такие полупроводниковые элементы, как транзисторы, являются неотъемлемой частью практически всех электронных схем — от радиоприемников до системных плат сверхсложных вычислительных центров. Проверка этого элемента на работоспособность — операция, которую обязан уметь выполнять любой человек, так или иначе занимающийся ремонтом электронных плат, будь он профессиональный ремонтник или любитель.

Для осуществления этой операции можно применять специальный тестер транзисторов, но если его нет под рукой, или в его надежности есть сомнения, можно воспользоваться самым обыкновенным мультиметром. Даже те модели, которые не имеют специального гнезда для проверки биполярных или полевых транзисторов, могут быть использованы для точной проверки. Для этого мультиметр выставляется в режим максимального сопротивления, либо «прозвонки», если таковой есть.

Общий алгоритм проверки

Как проверить транзистор мультиметром? В общем и целом алгоритм выглядит так:

Дальнейшие действия по проверке будут зависеть от того, какого типа элемент требуется проверить. В основном в электронике применяются полупроводниковые элементы двух видов — биполярный и полевой.

Биполярный

Как проверить биполярный транзистор мультиметром? В первую очередь нужно выяснить, к какому из двух подтипов — npn или pnp он относится. Для этого вспомним, что же вообще такое биполярный транзистор.

Это полупроводниковый элемент, в котором реализован так называемый npn или pnp переход. N-p-n — это переход «электрон — дырка — электрон», p-n-p, соответственно, наоборот, «дырка — электрон — дырка». Конструктивно он состоит из трех частей — эмиттера, коллектора и базы. Фактически биполярник — это два сопряженных обыкновенных диода, у которых база является общей точкой соединения.

На схеме pnp транзистор отличается от своего npn-собрата направлением стрелки в круге — стрелки эмиттерного перехода. У схемы p-n-p она направлена к базе, у n-p-n — наоборот.

Эту разницу нужно знать для проверки биполярного транзистора. Pnp-схема открывается приложением к базе отрицательного напряжения, npn — положительного. Но перед этим необходимо выяснить, какой из контактов проверяемого транзистора является базой, какой эмиттером, а какой коллектором.

Обратите внимание, что определить описанным ниже способом, какой из контактов — база, а какие — эмиттер и коллектор, можно только у исправного элемента. Сам по себе факт прохождения транзистором этой проверки говорит о том, что он, скорее всего, исправен.

Инструкция здесь может быть следующая:

  1. красный (плюсовой) щуп подключается к первому попавшемуся выводу, например левому, черным (минусовым) поочередно касаются центрального и правого. Фиксируют значение «1» на центральном, и 816 Ом, например, на правом;
  2. красный щуп мультиметра закорачивают с центральным контактом, черный — поочередно с боковыми. Прибор выдает «1» на левом и какое-либо значение, допустим, 807 — на правом;
  3. при контакте красного щупа мультиметра с правым выводом, а черного — с левым и центральным получаем в обоих случаях «1». Это означает, что база определена — это и есть правый контакт транзистора. А сам транзистор — pnp-типа.

В принципе, этого достаточно, чтобы сказать, что транзистор исправен. Теперь, чтобы проверить его структуру и конкретное расположение эмиттера и коллектора, закорачиваем черный (минусовой) щуп мультиметра с базой, а красный — по очереди с левым и центральным контактом.

Тот контакт, что дает меньшую величину сопротивления, будет коллекторным (в нашем случае 807 Ом). Тот, что большую — 816 Ом — является эмиттерным.

Проверка транзистора npn типа происходит так же, только к базе прикладывается плюсовой контакт.

Это способ проверки p-n переходов между базой и коллектором и базой и эмиттером. Показания мультиметра могут быть разными, в зависимости от типа транзистора, но всегда будут лежать в пределах 500-1200 Ом. Для завершения испытания коснитесь щупами эмиттера и коллектора. Исправный элемент при этом будет выдавать бесконечно большое сопротивление вне зависимости от своего типа, как бы вы ни меняли полярность. Если значение на экране отличается от «1» — один из переходов пробит, деталь непригодна к работе.

Проверка без выпаивания

Если у вас нет уверенности, что проверять нужно именно этот транзистор, измерить его параметры можно и на плате, не выпаивая. Но при этом мультиметр должен показывать значения в пределах 500-1200 Ом. Если они измеряются единицами или даже десятками Ом — схема зашунтирована низкоомными резисторами. Для точной проверки транзистор придется выпаять.

Полевой

Полевой, он же — mosfet транзистор отличается от биполярного тем, что в нем может протекать либо только положительный заряд, либо только отрицательный («дырка» или электрон). Его контакты имеют иное значение — затвор, сток, исток.

Как проверить полевой транзистор мультиметром? Методика проверки почти та же, что и в предыдущем случае, но предварительно, во избежание выхода элемента из строя, необходимо снять с себя заряд статического электричества, так как полевик очень чувствителен к статике. Используйте антистатический браслет либо просто коснитесь рукой заземленного металлического элемента, например корпуса приборного шкафа.

Полевики всегда имеют небольшую проводимость между стоком и истоком, которая выявляется на экране мультиметра как сопротивление порядка 400-700 Ом. Если поменять полярность, сопротивление незначительно изменится, возрастет или упадет на 40-60 Ом. Перед этим необходимо закоротить исток и сток между собой, чтобы «обнулить» емкости переходов.

Если при проверке с помощью мультиметра между истоком и стоком обнаруживается бесконечно большое сопротивление, полевой транзистор неисправен.
Между истоком и затвором либо стоком и затвором также будет обнаруживаться проводимость, но только в одну сторону. Плюс, приложенный к затвору, а минус — к истоку, вызовет открытие перехода и, соответственно, значение на экране в границах 400-700 Ом. Обратная схема — плюс к истоку, минус к затвору — у исправного полевика даст «1», то есть. очень большое сопротивление.

Проверка линии сток-затвор проходит аналогично. Если же линия исток-затвор или сток-затвор имеет проводимость в обе стороны, это значит, что полевой транзистор пробит.

В заключение надо сказать несколько слов о составном типе. Составной транзистор — это элемент, соединяющий в себе два обычных биполярных транзистора (иногда три и более). Проверка мультиметром производится аналогично методологии для простого «биполярника».

Проверка исправности биполярных тразисторов — презентация онлайн

1. Проверка исправности биполярных тразисторов

2. Виды транзисторов и их применение

В технике используются различные виды
транзисторов – биполярные, полевые,
составные, многоэмиттерные, фототранзисторы
и тому подобные. В данном случае будут
рассматриваться наиболее распространенные и
простые — биполярные транзисторы. Такой
транзистор имеет 2 р-n перехода. Его можно
представить как пластину с чередующимися
слоями с разными типами проводимости. Если в
крайних областях полупроводникового прибора
преобладает дырочная проводимость (p), а в
средней – электронная проводимость (n), то
прибор называется транзистор р-n-p. Если
наоборот, то прибор называется транзистором
типа n-p-n. Для разных видов биполярных
транзисторов меняется полярность источников
питания, которые подключаются к нему в
схемах. Наличие в транзисторе двух переходов
позволяет представить в упрощенном виде его
эквивалентную схему как последовательное
соединение двух диодов.

3. Порядок проверки устройства — следуем по инструкции

Процесс измерений состоит из
следующих этапов:
проверка работы измерительного
прибора;
определение типа транзистора;
измерение прямых сопротивлений
эмиттерного и коллекторного
переходов;
измерение обратных
сопротивлений эмиттерного и
коллекторного переходов;
оценка исправности транзистора.

4. Проверка транзисторов

При проверке исправности биполярного транзистора можно упрощённо считать, что каждый из
переходов биполярного транзистора является аналогом диода (Рис.1)
Рис.1
Поэтому для проверки исправности транзистора необходимо проверить исправность переходов
база — коллектор, база – эмиттер по методике проверки исправности полупроводникового
диода.
После этого необходимо проверить отсутствие пробоя между коллектором и эмиттером
транзистора. Сопротивление между коллектором и эмиттером транзистора при любой
полярности приложения щупов мультиметра должно быть близко к бесконечности.
Некоторые типы мощных транзисторов могут иметь встроенный демпферный диод между
коллектором и эмиттером, а так же защитный резистор 30-50 Ом между эмиттером и базой
(Рис.2)
Рис.2
То есть между базой и эмиттером такого транзистора мультиметр будет показывать сопротивление 30-50 Ом
при любой полярности приложения щупов, а между коллектором и эмиттером прозваниваться как диод. И это
нормально. Это нужно учитывать при определении исправности такого транзистора, что бы не отправить в
мусор абсолютно исправную деталь.

5. Перед проверкой

Перед тем, как проверить биполярный
транзистор мультиметром, необходимо
убедиться в исправности
измерительного прибора. Для этого
вначале надо проверить индикатор
заряда батареи мультиметра и, при
необходимости, заменить батарею. При
проверке транзисторов важна будет
полярность подключения. Надо
учитывать, что у мультиметра на выводе
«COM» имеется отрицательный полюс,
а на выводе «VΩmA» – плюсовой. Для
определенности к выводу «COM»
желательно подключить щуп черного
цвета, а к выводу «VΩmA» -красного.

6. Проверка транзистора мультиметром

На следующем этапе проверки переключатель операций
мультиметра устанавливается в положение измерения
сопротивлений. Выбирается предел измерения в «2к».
Перед тем, как проверить pnp транзистор мультиметром,
надо минусовой щуп подключить к базе устройства. Это
позволит измерить прямые сопротивления переходов
радиоэлемента типа p-n-p. Плюсовой щуп подключается по
очереди к эмиттеру и коллектору. Если сопротивления
переходов равны 500-1200 Ом, то эти переходы исправны.
При проверке обратных сопротивлений переходов к базе
транзистора подключается плюсовой щуп, а минусовой по
очереди подключается к эмиттеру и коллектору
Проверка npn транзистора мультиметром происходит по
такой же методике, но при этом полярность подключаемых
щупов меняется на противоположную. По результатам
измерений определяется исправность транзистора:
если измеренные прямое и обратное сопротивления перехода
большие, то это значит, что в приборе имеется обрыв;
если измеренные прямое и обратное сопротивления
перехода малы, то это означает, что в приборе имеется
пробой. В обоих случаях транзистор является неисправным.

7. Оценка коэффициента усиления

Характеристики транзисторов
обычно имеют большой разброс
по величине. Иногда при сборке
схемы требуется использовать
транзисторы, у которых имеется
близкий по величине
коэффициент усиления по току.
Мультиметр позволяет подобрать
такие транзисторы. Для этого в
нем имеется режим переключения
«hFE» и специальный разъем для
подключения выводов
транзисторов 2 типов. Подключив
в разъем выводы транзистора
соответствующего типа можно
увидеть на экране величину
параметра h31.

8. Вывод

Вывод: С помощью мультиметра
можно определить исправность
биполярных транзисторов. Для
проведения правильных
измерений прямого и обратного
сопротивлений переходов
транзистора необходимо знать
тип транзистора и маркировку
его выводов. С помощью
мультиметра можно подобрать
транзисторы с желаемым
коэффициентом усиления.

Как проверить транзистор мультиметром не выпаивая, проверка исправности

Принцип работы и виды транзисторов

Транзисторы — это полупроводниковые приборы, служащий для преобразования электрических величин. Основное их применение заключается в усилении сигнала и способность работать в режиме ключа. Они выпускаются с тремя и более выводами. Существует три вида приборов:

  • биполярные;
  • полевые;
  • биполярные транзисторы с изолированным затвором.

Бывает ещё составной транзистор. Он подразумевает электрическое объединение в одном корпусе нескольких приборов одного типа. Такие сборки называются парой Дарлингтона и Шиклаи, также имеют три вывода.

Биполярное устройство

Разделяются по своему типу. Выпускаются как электронного, так и дырочного типа проводимости. В своей конструкции используют n-p или p-n переход. Дырочного типа транзисторы состоят из двух крайних областей p проводимости, и средней n проводимости. Электронного типа наоборот. Средняя зона называется базой, а примыкающие к ней области коллектором и эмиттером. Каждая зона имеет свой вывод.

Промежуток между граничащими переходами очень мал, не превышает микрометры. При этом содержание примесей в базе меньше, чем их количество в других зонах прибора. Графически биполярный прибор обозначается для PNP стрелкой внутрь, а NPN стрелкой наружу, что показывает направление тока.

Перед тем как проверить биполярный транзистор мультиметром, нужно понимать, какие физические процессы происходят в приборе. Основа работы устройства лежит в способности p-n перехода пропускать ток в одном направлении. При подаче питания на одном переходе возникает прямое напряжение, а на другом обратное. Область перехода с прямым напряжением имеет малое сопротивление, а с обратным — большое.

Принцип работы заключается в том, что прямой сигнал влияет на токи эмиттера и коллектора. При увеличении величины прямого сигнала возрастает ток в области прямого подключения. Носители заряда перемещаются в зону базы, что приводит к увеличению тока и в обратной области подключения. Возникает объёмный заряд и электрическое поле, способствующее втягиванию в зону обратного подключения заряда другого знака. В базе происходит частичное уничтожение зарядов противоположного знака, процесс рекомбинации. Благодаря чему и возникает ток базы.

Эмиттером называется область прибора, служащая для передачи носителей заряда в базу. Коллектором называют зону, предназначенную для извлечения носителей заряда из базы. А база — это область для передачи эмиттером противоположной величины заряда. Основной характеристикой прибора является вольт-амперная характеристика. На схеме элемент обозначается латинскими буквами VT или Q.

Полевой прибор

Полевые транзисторы были изобретены в 1952 году. Основное их достоинство в высоком входном сопротивлении по сравнению с биполярными приборами. Такие элементы часто называются униполярными или мосфетами. Разделяют их по способу управления, на транзисторы с управляющим p-n переходом и с изолированным затвором.

Полевой транзистор выпускается с тремя выводами, один из них управляющий, называемый затвор. Другой исток, соответствующий эмиттерному выводу в биполярном приборе, и третий сток, вывод с которого снимается сигнал. В каждом типе устройства есть транзисторы с n-каналом и p-каналом.

Работа прибора с управляющим каналом, например, n-типа, основана на следующем принципе. Источник питания, подключённый к прибору, создаёт на его переходе обратное напряжение. Если уровень входного сигнала изменяется, то изменяется и обратное напряжение. Это приводит к тому, что меняется площадь, через которую протекают основные носители заряда. Такая площадь называется каналом. Полевые транзисторы изготавливаются методом сплавления или диффузией.

Мосфет с изолированным затвором представляет собой металлический канал, отделённый от полупроводникового слоя диэлектриком. Общепринятое название прибора — MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).

Основанием элемента служит пластинка из кремния с дырочной электропроводностью. В ней создаются области с электронной проводимостью, соответственно образующие исток и сток. Такой мосфет работает в режиме обеднения или обогащения. В первом случае на затвор подаётся напряжение относительно истока отрицательного значения, из канала выдавливаются электроны, и ток истока уменьшается. Во втором режиме, наоборот, ток увеличивается из-за втягивания новых носителей заряда.

Транзистор с индуцированным каналом, открывается при возникновении разности потенциалов между затвором и истоком. Для полевика с p-каналом к затвору прикладывается отрицательное напряжение, а с n-каналом положительное. Особенность мощных транзисторов состоит в том, что вывод истока соединяется с корпусом прибора. При этом соединяется база с эмиттером. Такое соединение образует диод, который в закрытом состоянии не влияет на работу прибора.

Биполярный тип с изолированным затвором

Устройства такого типа называются IGBT (Insulated Gate Bipolar Transistor). Это сложный прибор, в котором, например, полевой n-канальный транзистор управляется биполярным устройством типа PNP.

К эмиттеру биполярного транзистора подключается коллектор мосфета. Если на затвор подаётся напряжение положительной величины, то между эмиттером и базой транзистора возникает проводящий канал. В результате транзистор IGBT отпирается, падение напряжения на PN переходе уменьшается. Когда значение напряжения увеличивается, то пропорционально увеличивается и ток канала в базе биполярного прибора, а падение напряжения на IGBT транзисторе уменьшается. Если полевой транзистор заперт, то и ток биполярного прибора будет почти нулевым.

Проверка биполярного прибора тестером

Проверку прибора можно осуществить двумя способами. Для этого в тестере используется режим прозвонки или специально предназначенный режим проверки биполярных транзисторов.

На начальном этапе выясняется тип проводимости элемента. Для этого можно воспользоваться справочником или вычислить путём прозвонки. База вычисляется методом перебора. Щуп с общего вывода тестера подключается к одному из выводов транзистора, а щуп со второго вывода по очереди прикасается к двум оставшимся ножкам радиоэлемента. При этом смотрится какую величину сопротивления показывает тестер.

Необходимо найти такое положение, чтоб величина значения сопротивления между выводами составляла бесконечность. На цифровом тестере в режиме прозвонки будет гореть единица. Если такое положение не найдено, следует зафиксировать щуп второго вывода, а щупом с общего выхода осуществлять перебор.

Когда требуемая комбинация будет достигнута, то вывод, по отношению которого измеряется сопротивление, будет базой. Для вычисления выводов коллектора и эмиттера понадобится: в случае pnp транзистора на вывод базы — подать отрицательное напряжение, а для npn — положительное. Сопротивление перехода эмиттер — база будет немного больше, чем база-коллектор.

Например, исследуя биполярный низкочастотный транзистор NPN типа MJE13003, который имеет последовательность выводов база, коллектор, эмиттер, понадобится:

  1. Переключить мультиметр в режим прозвонки.
  2. Стать положительным щупом на базу прибора.
  3. Вторым концом прикоснуться к коллектору прибора, сопротивление должно быть около 800 Ом.
  4. Второй конец переставить на эмиттер прибора, сопротивление должно составить 820 Ом.
  5. Поменять полярность. На базу стать отрицательным щупом, а к коллектору и эмиттеру прикоснуться поочерёдно вторым концом. Сопротивление должно быть бесконечным.

Если во время проверки все пункты выполняются верно, то транзистор исправен. В ином случае, при возникновении короткого замыкания между любыми переходами, или обрыва в обратном включении, делается вывод о неисправности транзистора. Проверка прибора обратной проводимости проводится аналогичным образом, лишь меняется полярность приложенных щупов. Таким способом можно проверить транзистор мультиметром, не выпаивая его, так и сняв с платы.

Второй способ измерения при использовании современного мультиметра, позволит не только проверить исправность полупроводникового прибора, но и определить коэффициент усиления h31. В зависимости от типа и вида, ножки транзистора совмещаются с соответствующими надписями на гнезде, обозначенном также hFE. При включении прибора на экране появится цифра, обозначающая коэффициент усиления транзистора. Если цифра определяется равной нулю, то такой транзистор работать не будет, или же неправильно определена его проводимость.

Определение целостности полевого радиоэлемента

Такой тип электронного прибора не получится проверить без выпайки из схемы. Способ проверки как для n-канального, так и для p-канального, а также IGBT вида, одинакова. Разница лишь в полярности, прикладываемой к выводам. Например, исправность F3NK80Z n-канального прибора выясняется по следующему алгоритму:

  1. Мультиметр переключается в режим прозвонки.
  2. Щуп общего провода прикасается к стоку прибора, а положительный — к истоку.
  3. Щуп переставляется с истока на затвор. Переход в транзисторе откроется.
  4. Возвращаем щуп на исток. Значение сопротивления должно быть маленьким, прибор, если у него есть звуковая прозвонка, запищит.
  5. Для закрытия прибора щуп общего провода соединяется с затвором, при этом положительный щуп с истока не снимается.
  6. Устанавливается положения щупов согласно первому пункту.

Для проверки p-типа проводимости последовательность операций остаётся такой же, за исключением полярности щупов, которая меняется на обратную.

Для мощных полевых приборов может случиться так, что напряжения тестера не хватит для его открытия. Так как прозвонить такой полевой транзистор мультиметром не удастся, понадобиться применить дополнительное питание. В таком случае в разрыв через сопротивление 1–2 кОм подаётся постоянное напряжение равное 12 вольт.

Существуют такие радиоэлементы, например, КТ117а, имеющие две базы. Их относят к однопереходным приборам. В современных устройствах они не получил широкого применения, но порой встречаются. У них нет коллектора.

Такие транзисторы тестером проверяются только на отсутствие короткого замыкания между выводами. Убедиться в его работе можно воспользовавшись схемой генератора.

Как проверить транзистор на пробой

Как проверить транзистор мультиметром не выпаивая

Как проверить биполярный транзистор мультиметром

Существует множество приборов для проверки любых типов транзисторов. Ими можно проверить не только исправность транзистора, но и подобрать необходимый коэффициент усиления h31э.

Однако для ремонта бытовой техники и электроники вполне достаточно одного мультиметра. Чтобы понять сам процесс проверки транзистора, нелишне будет знать, что такое транзистор и как он работает. Транзистор можно представить как два встречно включенных диода имеющих p-n переходы. Для p-n-p транзисторов эквивалентная схема выглядит как два диода включенных катодами друг к другу, а для n-p-n структуры диоды включены анодами друг к другу.

Эквивалентные схемы транзисторов

Так можно представить себе упрощенный эквивалентный вариант транзистора. В двух словах о принципе работы транзистора. При подаче переменного сигнала на базу транзистора (общий конец соединения диодов) меняется сопротивление переходов коллектор — база и эмиттер – база. Соответственно и общее сопротивление переходов меняется по закону входного сигнала. Постоянное напряжение источника питания, приложенное к коллектору и эмиттеру, будет также меняться по закону входного сигнала.

Но напряжение источника питания, приложенное к переходу эмиттер — коллектор транзистора значительно больше сигнала поступающего на базу. Выходной сигнал снимается с выводов эмиттера и коллектора. Так работает транзистор в режиме усиления. В ключевом режиме на базу подаётся минимальный сигнал, при котором транзистор закрыт и максимальный сигнал, который полностью открывает транзистор.

Как проверить p-n-p транзистор мультиметром

Биполярные транзисторы могут быть с прямой проводимости p-n-p и обратной проводимостью n-p-n. На схеме проводимость p-n-p переходов обозначается стрелкой по направлению к базе, а n-p-n переходы отражаются стрелкой указывающей направление от базы. Для проверки транзистора на мультиметре выбирают предел измерения сопротивления 2000 Ом или “прозвонку”.

Находим обратное сопротивление переходов

Минус мультиметра прикладывают к базе транзистора, а плюс поочередно к выводам коллектора и эмиттера. Нормальное сопротивление перехода будет в пределах 400 — 1200 Ом. Чтобы проверить переходы коллектор — база и эмиттер — база на обратное сопротивление, плюс мультиметра прикладывают к базе, а минусы к эмиттеру и коллектору по очереди.

Обратное сопротивление коллектора и эмиттера должно быть большим, и мультиметр будет показывать “1”. Чтобы проверить транзистор с обратной полярностью n-p-n, к базе прикладывают плюс мультиметра, а в остальном методика такая же, как и при проверке полярности p-n-p. Этим же методом можно проверить работоспособность транзисторов, не выпаивая с платы.

Иногда переходы транзистора в схеме могут быть шунтированы небольшим сопротивлением. Тогда лучше отпаять базу или весь транзистор, так как показания мультиметра при проверке на целостность элемента будут неверными. Если переходы транзистора в обоих направлениях показывают ноль или близкое к нему, то это указывает на пробой переходов, а показания “1” на мультиметре говорят об обрыве переходов.

Как найти цоколевку транзистора мультиметром

Расположение выводов (цоколевка) транзистора можно найти по справочнику или по типу транзистора в интернете. Определить расположение выводов можно и мультиметром. Для этого плюс мультиметра прикладывают к правому выводу транзистора, а минус к среднему и левому контакту.

Как найти эмиттер и коллектор

Допустим, что сопротивление в обоих измерениях составило бесконечность. Получается, что мы нашли обратное сопротивление двух переходов n-p-n. Таким образом, мы попали на базу. Для нахождения коллектора и эмиттера минусом становятся на базу, а плюсом касаемся двух оставшихся выводов по очереди.

На дисплее отобразились значения сопротивлений переходов 816 Ом и 807 Ом. Вывод с сопротивлением 807 Ом будет коллектором, потому что переход база — коллектор имеет меньше значение сопротивления, чем переход база — эмиттер. Существуют так же транзисторы средней и большой мощности, у них коллектор соединен с корпусом или с металлической пластиной, предназначенной для рассеивания тепла.

Как проверить мощный биполярный транзистор и его цоколевку.

Проверку транзисторов приходится делать достаточно часто. Даже если у Вас в руках заведомо новый, не паяный ни разу транзистор, то перед установкой в схему лучше все-таки его проверить. Нередки случаи, когда купленные на радиорынке транзисторы, оказывались негодными, и даже не один единственный экземпляр, а целая партия штук на 50 – 100. Чаще всего это происходит с мощными транзисторами отечественного производства, реже с импортными.

Иногда в описаниях конструкции приводятся некоторые требования к транзисторам, например, рекомендуемый коэффициент передачи. Для этих целей существуют различные испытатели транзисторов, достаточно сложной конструкции и измеряющие почти все параметры, которые приводятся в справочниках. Но чаще приходится проверять транзисторы по принципу «годен, не годен». Именно о таких методах проверки и пойдет речь в данной статье.

Часто в домашней лаборатории под рукой оказываются транзисторы, бывшие в употреблении, добытые когда-то из каких-то старых плат. В этом случае необходим стопроцентный «входной контроль»: намного проще сразу определить негодный транзистор, чем потом искать его в неработающей конструкции.

Хотя многие авторы современных книг и статей настоятельно не рекомендуют использовать детали неизвестного происхождения, достаточно часто эту рекомендацию приходится нарушать. Ведь не всегда же есть возможность пойти в магазин и купить нужную деталь. В связи с подобными обстоятельствами и приходится проверять каждый транзистор, резистор, конденсатор или диод. Далее речь пойдет в основном о проверке транзисторов.

Проверку транзисторов в любительских условиях обычно проводят цифровым мультиметром или старым аналоговым авометром.

Проверка транзисторов мультиметром

Большинству современных радиолюбителей знаком универсальный прибор под названием мультиметр. С его помощью возможно измерение постоянных и переменных напряжений и токов, а также сопротивления проводников постоянному току. Один из пределов измерения сопротивлений предназначен для «прозвонки» полупроводников. Как правило, около переключателя в этом положении нарисован символ диода и звучащего динамика.

Перед тем, как производить проверку транзисторов или диодов, следует убедиться в исправности самого прибора. Прежде всего, посмотреть на индикатор заряда батареи, если требуется, то батарею сразу заменить. При включении мультиметра в режим «прозвонки» полупроводников на экране индикатора должна появиться единица в старшем разряде.

Затем проверить исправность щупов прибора, для чего соединить их вместе: на индикаторе высветятся нули, и раздастся звуковой сигнал. Это не напрасное предупреждение, поскольку обрыв проводов в китайских щупах явление довольно распространенное, и об этом забывать не следует.

У радиолюбителей и профессиональных инженеров – электронщиков старшего поколения такой жест (проверка щупов) выполняется машинально, ведь при пользовании стрелочным тестером при каждом переключении в режим измерения сопротивлений приходилось устанавливать стрелку на нулевое деление шкалы.

После того, как указанные проверки произведены, можно приступить к проверке полупроводников, – диодов и транзисторов. Следует обратить внимание на полярность напряжения на щупах. Отрицательный полюс находится на гнезде с надписью «COM» (общий), на гнезде с надписью VΩmA положительный. Чтобы в процессе измерения об этом не забывать, в это гнездо следует вставить щуп красного цвета.

Рисунок 1. Мультиметр

Это замечание не настолько праздное, как может показаться на первый взгляд. Дело в том, что у стрелочных авометров (АмперВольтОмметр) в режиме измерения сопротивлений положительный полюс измерительного напряжения находится на гнезде с маркировкой «минус» или «общий», ну с точностью до наоборот, по сравнению с цифровым мультиметром. Хотя в настоящее время больше используются цифровые мультиметры, стрелочные тестеры применяются до сих пор и в ряде случаев позволяют получить более достоверные результаты. Об этом будет рассказано чуть ниже.

Рисунок 2. Стрелочный авометр

Что показывает мультиметр в режиме «прозвонки»

Проверка диодов

Наиболее простым полупроводниковым элементом является диод, который содержит всего один P-N переход. Основным свойством диода является односторонняя проводимость. Поэтому если положительный полюс мультиметра (красный щуп) подключить к аноду диода, то на индикаторе появятся цифры, показывающие прямое напряжение на P-N переходе в милливольтах.

Для кремниевых диодов это будет порядка 650 – 800 мВ, а для германиевых порядка 180 – 300, как показано на рисунках 4 и 5. Таким образом, по показаниям прибора можно определить полупроводниковый материал, из которого сделан диод. Следует заметить, что эти цифры зависят не только от конкретного диода или транзистора, но еще от температуры, при увеличении которой на 1 градус прямое напряжение падает приблизительно на 2 милливольта. Этот параметр называется температурным коэффициентом напряжения.

Если после этой проверки щупы мультиметра подключить в обратной полярности, то на индикаторе прибора покажется единица в старшем разряде. Такие результаты будут в том случае, если диод оказался исправный. Вот собственно и вся методика проверки полупроводников: в прямом направлении сопротивление незначительно, а в обратном практически бесконечно.

Если же диод «пробит» (анод и катод замкнуты накоротко), то скорей всего раздастся звуковой сигнал, причем в обоих направлениях. В случае, если диод «в обрыве», как ни меняй полярность подключения щупов, на индикаторе, так и будет светиться единица.

Проверка транзисторов

В отличие от диодов транзисторы имеют два P-N перехода, и имеют структуры P-N-P и N-P-N, причем последние встречаются гораздо чаще. В плане проверки с помощью мультиметра транзистор можно рассматривать, как два диода включенных встречно – последовательно, как показано на рисунке 6. Поэтому проверка транзисторов сводится к «прозвонке» переходов база – коллектор и база – эмиттер в прямом и обратном направлении.

Следовательно, все что было сказано чуть выше о проверке диода, полностью справедливо и для исследования переходов транзистора. Даже показания мультиметра будут такие же, как и для диода.

На рисунке 7 показана полярность включения прибора в прямом направлении для «прозвонки» перехода база – эмиттер транзисторов структуры N-P-N: плюсовой щуп мультиметра подключен к выводу базы. Для измерения перехода база – коллектор минусовой вывод прибора следует подключить к выводу коллектора. В данном случае цифра на табло получена при прозвонке перехода база – эмиттер транзистора КТ3102А.

Если транзистор окажется структуры P-N-P, то к базе транзистора следует подключить минусовой (черный) щуп прибора.

Попутно с этим следует «прозвонить» участок коллектор – эмиттер. У исправного транзистора его сопротивление практически бесконечно, что символизирует единица в старшем разряде индикатора.

Иногда бывает, что переход коллектор – эмиттер пробит, о чем свидетельствует звуковой сигнал мультиметра, хотя переходы база – эмиттер и база – коллектор «звонятся» как будто нормально!

Проверка транзисторов авометром

Производится также, как и цифровым мультиметром, при этом не следует забывать, что полярность в режиме омметра обратная по сравнению с режимом измерения постоянного напряжения. Чтобы это не забывать в процессе измерений следует красный щуп прибора включать в гнездо со знаком «-», как было показано на рисунке 2.

Авометры, в отличие от цифровых мультиметров, не имеют режима «прозвонки» полупроводников, поэтому в этом плане их показания заметно различаются в зависимости от конкретной модели. Тут уже приходится ориентироваться на собственный опыт, накопленный в процессе работы с прибором. На рисунке 8 показаны результаты измерений с помощью тестера ТЛ4-М.

На рисунке показано, что измерения проводятся на пределе *1Ω. В этом случае лучше ориентироваться на показания не по шкале для измерения сопротивлений, а по верхней равномерной шкале. Видно, что стрелка находится в районе цифры 4. Если измерения производить на пределе *1000Ω, то стрелка окажется между цифрами 8 и 9.

По сравнению с цифровым мультиметром авометр позволяет более точно определить сопротивление участка база – эмиттер, если этот участок зашунтирован низкоомным резистором (R2_32), как показано на рисунке 9. Это фрагмент схемы выходного каскада усилителя фирмы ALTO.

Все попытки измерить сопротивление участка база – эмиттер с помощью мультиметра приводят к звучанию динамика (короткое замыкание), поскольку сопротивление 22Ω воспринимается мультиметром как КЗ. Аналоговый же тестер на пределе измерений *1Ω показывает некоторую разницу при измерении перехода база – эмиттер в обратном направлении.

Еще один приятный нюанс при пользовании стрелочным тестером можно обнаружить, если проводить измерения на пределе *1000Ω. При подключении щупов, естественно с соблюдением полярности (для транзистора структуры N-P-N плюсовой вывод прибора на коллекторе, минус на эмиттере), стрелка прибора с места не двинется, оставаясь на отметке шкалы бесконечность.

Если теперь послюнить указательный палец, как будто для проверки нагрева утюга, и замкнуть этим пальцем выводы базы и коллектора, то стрелка прибора сдвинется с места, указывая на уменьшение сопротивления участка эмиттер – коллектор (транзистор чуть приоткроется). В ряде случаев этот прием позволяет проверить транзистор без выпаивания его из схемы.

Наиболее эффективен указанный метод при проверке составных транзисторов, например КТ 972, КТ973 и т.п. Не следует только забывать, что составные транзисторы часто имеют защитные диоды, включенные параллельно переходу коллектор – эмиттер, причем в обратной полярности. Если транзистор структуры N-P-N, то к его коллектору подключен катод защитного диода. К таким транзисторам можно подключать индуктивную нагрузку, например, обмотки реле. Внутреннее устройство составного транзистора показано на рисунке 10.

Но более достоверные результаты об исправности транзистора можно получить с использованием специального пробника для проверки транзисторов, про который смотрите здесь: Пробник для проверки транзисторов.

Как проверить транзистор мультиметром

Если под рукой нет документации на биполярный транзистор, то мультиметр позволяет определить некоторые параметры и выводы транзистора. Поэтому рассмотрим, как проверить транзистор мультиметром.

Принципиально различают два вида биполярных транзисторов: npn и pnp структуры. Принцип работы их аналогичен. Отличие заключается лишь в полярности подключения источника питания и других полярных радиодеталей: электролитических конденсаторов, диодов, светодиодов и т.п.

Упрощенно любой биполярный транзистор можно представить в виде двух последовательно и встречно соединенных диодов, поэтому рекомендую изначально ознакомиться с тем, как проверить диод. Однако следует понимать, что если взять и соединить таким образом два диода, то транзистор не получится. Но в данном случае мы можем допустить такое упрощение.

Место соединения двух условных диодов называется базой. А два оставшихся вывода, соответственно будут эмиттер и коллектор. Теперь рассмотрим, как проверить транзистор мультиметром и определить его выводы.

Проще всего определить базу. С нее и начнем. Если относительно одного вывода ток будет протекать в сторону других выводов, то это и есть база. Когда на базе находится положительный щуп, то значит, то биполярный транзистор имеет npn структуру. В противоположном случае – pnp структуру.

Когда база определена, осталось узнать, какой из выводов является эмиттером, а какой коллектором. Для этого следует выполнить «прозвонку» выводов между базой и другими выводами и сравнить показания двух падений напряжений. Большее значение соответствует эмиттеру, а меньшее – коллектору.

Как проверить транзистор мультиметром наверняка

У современных биполярных транзисторов эта разница выражена не очень явно и бывает, что мультиметр показывает одинаковые значения. Поэтому с целью однозначного определения выводов можно воспользоваться функцией измерения коэффициента усиления биполярного транзистора по току. Для этого переключатель устанавливается на отметке hFE. Этому режиму соответствует специальный режим на передней части корпуса. Он имеет 8 отверстий: 4 для pnp структуры и 4 для npn структуры. Отверстия для эмиттера дублируются, поскольку транзисторы могут иметь разное расположение выводов относительно корпуса. Поэтому такой подход позволяет определить коэффициент усиления по току транзистора с любой распиновкой.

Структуру транзистора ранее мы уже научились определять «прозвонкой». С базой тоже проблем нет. Осталось убедиться в правильности соответствия коллектора и эмиттера. Вставляем полупроводниковый прибор в нужные отверстия. Если на дисплее отображается число в среднем от 30 и выше, то коллектор с эмиттером определены верно, а данное число показывает коэффициент усиления по току. В противном случае нужно поменять местами два вывода.

Я надеюсь статья стала полезной и Вы нашли ответ на вопрос, как проверить транзистор мультиметром. Более подробно с работой мультиметра можно ознакомиться, перейдя по ссылке.

Как проверить биполярный транзистор

NPN и PNP транзисторы

Биполярный транзистор состоит из двух PN-переходов. Существуют два вида биполярных транзисторов: PNP-транзистор и NPN-транзистор.

На рисунке ниже структурная схема PNP-транзистора:

Схематическое обозначение PNP-транзистора в схеме выглядит так:

где Э – это эмиттер, Б – база, К – коллектор.

Существует также другая разновидность биполярного транзистора: NPN транзистор. Здесь уже материал P заключен между двумя материалами N.

Вот его схематическое изображение на схемах

Так как диод состоит из одного PN-перехода, а транзистор из двух, то значит можно представить транзистор, как два диода! Эврика!

Теперь же мы с вами можем проверить транзистор, проверяя эти два диода, из которых, грубо говоря, состоит транзистор. Как проверить диод мультиметром, можно прочитать в этой статье.

Проверяем исправный транзистор

Ну что же, давайте на практике определим работоспособность нашего транзистора. А вот и наш пациент:

Внимательно читаем, что написано на транзисторе: С4106. Теперь открываем поисковик и ищем документ-описание на этот транзистор. По-английски он называется “datasheet”. Прямо так и забиваем в поисковике “C4106 datasheet”. Имейте ввиду, что импортные транзисторы пишутся английскими буквами.

Нас больше всего интересует распиновка выводов транзистора, а также его вид: NPN или PNP. То есть нам надо узнать, какой вывод что из себя представляет. Для данного транзистора нам надо узнать, где у него база, где эмиттер, а где коллектор.

А вот и схемка распиновки из даташита:

Теперь нам понятно, что первый вывод – это база, второй вывод – это коллектор, ну а третий – эмиттер

Возвращаемся к нашему рисунку

Мы узнали из даташита, что наш транзистор NPN проводимости.

Ставим мультиметр на прозвонку и начинаем проверять “диоды” транзистора. Для начала ставим “плюс” к базе, а “минус” к коллектору

Все ОК, прямой PN-переход должен обладать небольшим падением напряжения. Для кремниевых транзисторов это значение 0,5-0,7 Вольт, а для германиевых 0,3-0,4 Вольта. На фото 543 милливольта или 0,54 Вольта.

Проверяем переход база-эмиттер, поставив на базу “плюс” , а на эмиттер – “минус”.

Видим снова падение напряжения прямого PN перехода. Все ОК.

Меняем щупы местами. Ставим “минус” на базу, а “плюс” на коллектор. Сейчас мы замеряем обратное падение напряжения на PN переходе.

Все ОК, так как видим единичку.

Проверяем теперь обратное падение напряжения перехода база-эмиттер.

Здесь у нас мультиметр также показывает единичку. Значит можно дать диагноз транзистору – здоров.

Проверяем неисправный транзистор

Давайте проверим еще один транзистор. Он подобен транзистору, который мы с вами рассмотрели выше. Его распиновка (то есть положение и значение выводов) такая же, как у нашего первого героя. Также ставим мультиметр на прозвонку и цепляемся к нашему подопечному.

Нолики… Это не есть хорошо. Это говорит о том, что PN-переход пробит. Можно смело выкидывать такой транзистор в мусор.

Проверка транзистора с помощью транзисторметра

Очень удобно проверять транзисторы, имея прибор RLC-транзисторметр

Заключение

В заключении статьи, хотелось бы добавить, что лучше всегда находить даташит на проверяемый транзистор. Бывают так называемые составные транзисторы. Это значит, что в одном конструктивном корпусе транзистора могут быть вмонтированы два и более транзисторов. Имейте также ввиду, что некоторые радиоэлементы имеют такой же корпус, как и транзисторы. Это могут быть тиристоры, стабилизаторы, преобразователи напряжения или даже какая-нибудь иностранная микросхема.

Как определить транзисторы NPN и PNP с помощью мультиметра

Как определить транзисторы NPN и PNP (BJT) с помощью мультиметра?



Представьте себе, что из коробки с компонентами вы выбрали пару биполярных переходных транзисторов (BJT) и не знаете, являются ли они транзисторами типа NPN или PNP … (Почти каждый столкнется с этой проблемой)

В этом посте мы обсудим, как определить транзисторы NPN и PNP с помощью мультиметра …

Прежде, чем продолжить, давайте обновим информацию о том, как идентифицировать выводы транзистора.

Идентификация клемм BJT:

Мы знаем, что биполярный переходной транзистор имеет три вывода, а именно

.
  1. Излучатель (E)
  2. База (B)
  3. Коллектор (C)

Транзисторы доступны на рынке в различных упаковках. Поговорим о пакете ТО-92.

Держите транзистор так, чтобы плоская поверхность была обращена к вам, как показано на рисунке ниже:
Теперь, начиная слева, отметьте 1,2 и 3.Их соответственно

  1. Излучатель (E)
  2. База (B)
  3. Коллектор (C)

Условное обозначение BJT приведено ниже:

Определение типов BJT:

Оба транзистора NPN и PNP внешне похожи. Мы не можем различить их, увидев их. Нам понадобится мультиметр для определения типа БЮТ.

Запомните следующие моменты:

  1. Транзистор внутри имеет два диода (NPN ≡ N — P — N ≡ NP Junction + PN Junction и PNP ≡ P — N — P ≡ PN Junction + NP Junction).
    то есть, эмиттер-база — это один PN переход (диод), а база-коллектор — другой PN-переход (диод).
  2. В диодном режиме мультиметр покажет напряжение, когда мы поднесем положительный щуп мультиметра к аноду диода, а отрицательный щуп к катоду.
  3. Если положительный щуп мультиметра подключен к катоду диода, а отрицательный — к аноду, то он не будет давать никакого напряжения (показывает ноль).
Шаги по идентификации транзистора типа NPN:
  1. Держите мультиметр в диодном режиме.
  2. Держите положительный щуп на центральном штыре (основании) транзистора.
  3. Поднесите отрицательный щуп к контакту 1 (эмиттер). Вы увидите напряжение на мультиметре.
  4. Аналогичным образом прикоснитесь отрицательным щупом к контакту 3 (коллектор) по отношению к контакту 2. Вы увидите напряжение на мультиметре.
  5. Это гарантирует, что это транзистор NPN. Логика, лежащая в основе этого, в NPN-транзисторе
    Эмиттер (E) — Материал типа N — Эквивалент катоду диода
    База (B) — Материал типа P — Эквивалент аноду диода
    Коллектор (C) — Материал типа N — Эквивалент катодному диоду
  6. Если положительный зонд мультиметра подключен к аноду, а отрицательный — к катоду, то он покажет напряжение.Если соединения поменять местами, значение не будет отображаться.
Шаги по идентификации транзистора типа PNP:
  1. Держите мультиметр в диодном режиме.
  2. Держите положительный щуп на контакте 1 (эмиттер) транзистора.
  3. Коснитесь отрицательным датчиком центрального штифта (основания). Вы увидите напряжение на мультиметре.
  4. Аналогичным образом прикоснитесь отрицательным щупом к центральному штифту (основанию) относительно штифта 3 (коллектора). Вы увидите напряжение на мультиметре.
  5. Это гарантирует, что это транзистор PNP. Логика, лежащая в основе этого, в PNP-транзисторе
    Эмиттер (E) — Материал типа P — Эквивалентен аноду диода
    База (B) — Материал типа N — Эквивалент катоду диода
    Коллектор (C) — Материал типа P — Аналог анода диода
  6. Если положительный зонд мультиметра подключен к аноду, а отрицательный — к катоду, то он покажет напряжение. Если соединения поменять местами, значение не будет отображаться.


С помощью вышеупомянутых шагов мы можем идентифицировать транзисторы NPN и PNP с помощью мультиметра. Как мы можем гарантировать, что транзисторы находятся в хорошем состоянии и вышли из строя? Прочтите, пожалуйста, пост Как проверить транзистор с помощью мультиметра?

Возможно, вы прочитаете:

Как работает люминесцентная лампа?
Как контролировать скорость параллельных двигателей постоянного тока?
Сравнение электрических и магнитных цепей
MOSFET и JFET Сравнение

Пожалуйста, оставьте свои комментарии ниже…

Как проверить транзистор BJT с помощью цифрового мультиметра

Биполярные транзисторы состоят из трехслойного полупроводникового «сэндвича», PNP или NPN. Таким образом, транзисторы регистрируются как два диода, подключенных друг к другу при тестировании с помощью функции «сопротивление» или «проверка диода» мультиметра, как показано на рисунке ниже. Показания низкого сопротивления на базе с черными отрицательными (-) выводами соответствуют материалу N-типа в базе транзистора PNP.На символе на материал N-типа «указывает» стрелка перехода база-эмиттер, которая является базой для этого примера. Эмиттер P-типа соответствует другому концу стрелки перехода база-эмиттер, эмиттеру. Коллектор очень похож на эмиттер, а также является материалом P-типа PN перехода.

Проверка счетчика транзисторов PNP: (a) прямые B-E, B-C, сопротивление низкое; (б) обратные B-E, B-C, сопротивление ∞.

Здесь я предполагаю использовать мультиметр с функцией только одного диапазона (сопротивления) для проверки PN-переходов.Некоторые мультиметры оснащены двумя отдельными функциями проверки целостности цепи: сопротивлением и «проверкой диодов», каждая из которых имеет собственное назначение. Если ваш измеритель имеет назначенную функцию «проверки диодов», используйте ее, а не диапазон «сопротивления», и измеритель будет отображать фактическое прямое напряжение PN-перехода, а не только то, проводит ли он ток.

Показания счетчика

, конечно, будут прямо противоположными для NPN-транзистора, с обоими PN-переходами, обращенными в другую сторону. Показания низкого сопротивления с красным (+) проводом на базе — это «противоположное» состояние для NPN-транзистора.

Если в этом тесте используется мультиметр с функцией «проверки диодов», будет обнаружено, что переход эмиттер-база имеет немного большее прямое падение напряжения, чем переход коллектор-база. Эта прямая разница напряжений возникает из-за несоответствия в концентрации легирования между эмиттерной и коллекторной областями транзистора: эмиттер представляет собой гораздо более легированный кусок полупроводникового материала, чем коллектор, в результате чего его соединение с базой создает более высокое прямое напряжение. уронить.

Зная это, становится возможным определить, какой провод какой на немаркированном транзисторе. Это важно, потому что упаковка транзисторов, к сожалению, не стандартизирована. Конечно, все биполярные транзисторы имеют три провода, но расположение трех проводов на физическом корпусе не организовано в каком-либо универсальном стандартизированном порядке.

Предположим, технический специалист находит биполярный транзистор и приступает к измерению целостности цепи с помощью мультиметра, установленного в режиме «проверки диодов».Измеряя между парами проводов и записывая значения, отображаемые измерителем, технический специалист получает данные, показанные на рисунке ниже.

Неизвестный биполярный транзистор. Какие терминалы являются эмиттерным, базовым и коллекторным? Показания омметра между клеммами.
  • Контактный провод счетчика 1 (+) и 2 (-): «OL»
  • Контактный провод счетчика 1 (-) и 2 (+): «OL»
  • Контактный провод счетчика 1 (+) и 3 (-) : 0,655 В
  • Касательный провод счетчика 1 (-) и 3 (+): «OL»
  • Касательный провод счетчика 2 (+) и 3 (-): 0.621 В
  • Касательный провод счетчика 2 (-) и 3 (+): “OL

Единственными комбинациями контрольных точек, дающими проводящие показания счетчика, являются провода 1 и 3 (красный измерительный провод на 1 и черный измерительный провод на 3) , и провода 2 и 3 (красный измерительный провод на 2 и черный измерительный провод на 3). Эти два показания должны указывать на прямое смещение перехода эмиттер-база (0,655 В) и перехода коллектор-база (0,621 В).

Теперь мы ищем один провод, общий для обоих наборов показаний проводимости.Это должно быть базовое соединение транзистора, потому что база является единственным слоем трехслойного устройства, общим для обоих наборов PN-переходов (эмиттер-база и коллектор-база). В этом примере этот провод имеет номер 3 и является общим для комбинаций контрольных точек 1-3 и 2-3. В обоих этих наборах показаний измерителя тестовый провод черный (-) касался провода 3, что говорит нам о том, что база этого транзистора сделана из полупроводникового материала N-типа (черный = отрицательный). Таким образом, транзистор представляет собой PNP с базой на проводе 3, эмиттером на проводе 1 и коллектором на проводе 2, как показано на рисунке ниже.

Клеммы BJT, идентифицируемые омметром
  • E и C высокий R: 1 (+) и 2 (-): «OL»
  • C и E высокий R: 1 (-) и 2 (+): «OL»
  • E и B вперед: 1 (+) и 3 (-): 0,655 В
  • E и B назад: 1 (-) и 3 (+): «OL»
  • C и B вперед: 2 (+) и 3 (-): 0,621 В
  • C и B в обратном направлении: 2 (-) и 3 (+): «OL»

Обратите внимание, что базовый провод в этом примере — , а не — средний вывод транзистора, как можно было бы ожидать от трех -слойная «сэндвич» модель биполярного транзистора.Это довольно частый случай, и он сбивает с толку новичков, изучающих электронику. Единственный способ узнать, какой именно провод — это проверить счетчик или обратиться к документации производителя на этот конкретный номер детали транзистора.

Знание того, что биполярный транзистор ведет себя как два встречных диода при тестировании с помощью измерителя проводимости, полезно для идентификации неизвестного транзистора исключительно по показаниям измерителя. Это также полезно для быстрой функциональной проверки транзистора.Если бы техник измерил целостность цепи более чем в двух или менее чем в двух из шести комбинаций измерительных выводов, он или она немедленно узнал бы, что транзистор неисправен (или что это не биполярный транзистор, а скорее что-то еще — отличная возможность, если для точной идентификации нельзя сослаться на номера деталей!). Однако модель транзистора с «двумя диодами» не может объяснить, как и почему он действует как усилительное устройство.

Чтобы лучше проиллюстрировать этот парадокс, давайте рассмотрим одну из схем транзисторного переключателя, используя физическую схему на рисунке ниже, а не схематический символ, представляющий транзистор.Таким образом будет легче увидеть два PN-перехода.

Небольшой ток базы, протекающий в переходе база-эмиттер с прямым смещением, позволяет протекать большому току через переход база-коллектор с обратным смещением.

Диагональная стрелка серого цвета показывает направление потока электронов через переход эмиттер-база. Эта часть имеет смысл, поскольку электроны текут от эмиттера N-типа к базе P-типа: переход явно смещен в прямом направлении. А вот переход база-коллектор — совсем другое дело.Обратите внимание, как толстая стрелка серого цвета указывает в направлении потока электронов (вверх) от базы к коллектору. Поскольку основание выполнено из материала P-типа, а коллектор из материала N-типа, это направление электронного потока явно противоположно направлению, обычно ассоциируемому с PN-переходом! Обычное PN-соединение не допустит этого «обратного» направления потока, по крайней мере, без существенного сопротивления. Однако насыщенный транзистор оказывает очень слабое сопротивление электронам на всем пути от эмиттера до коллектора, о чем свидетельствует освещение лампы!

Очевидно, что здесь происходит что-то, что противоречит простой объяснительной модели «двух диодов» биполярного транзистора.Когда я впервые узнал о работе транзисторов, я попытался построить свой собственный транзистор из двух последовательно включенных диодов, как показано на рисунке ниже.

Пара встречных диодов не работает как транзистор!

Моя схема не работала, и я был озадачен. Каким бы полезным ни было описание транзистора «два диода» для целей тестирования, оно не объясняет, как транзистор ведет себя как управляемый переключатель.

В транзисторе происходит следующее: обратное смещение перехода база-коллектор предотвращает ток коллектора, когда транзистор находится в режиме отсечки (то есть, когда ток базы отсутствует).Если переход база-эмиттер смещен в прямом направлении управляющим сигналом, обычно блокирующее действие перехода база-коллектор отменяется, и через коллектор разрешается ток, несмотря на то, что электроны проходят «неправильным путем» через этот PN соединение. Это действие зависит от квантовой физики полупроводниковых переходов и может иметь место только тогда, когда два перехода должным образом разнесены и концентрации легирования трех слоев правильно пропорциональны. Два диода, соединенные последовательно, не соответствуют этим критериям; верхний диод никогда не может «включиться» при обратном смещении, независимо от того, сколько тока проходит через нижний диод в контуре базового провода.См. Биполярные переходные транзисторы, Раздел 2, для получения более подробной информации.

То, что концентрации легирования играют решающую роль в особых возможностях транзистора, также подтверждается тем фактом, что коллектор и эмиттер не являются взаимозаменяемыми. Если рассматривать транзистор просто как два соединенных друг с другом PN перехода или просто как простой сэндвич из материалов N-P-N или P-N-P, может показаться, что любой конец транзистора может служить коллектором или эмиттером. Однако это не так. При подключении «в обратном направлении» в цепи ток база-коллектор не сможет управлять током между коллектором и эмиттером.Несмотря на то, что эмиттерный и коллекторный слои биполярного транзистора имеют одно и то же легирование типа (N или P), коллектор и эмиттер определенно не идентичны!

Ток через переход эмиттер-база пропускает ток через переход база-коллектор с обратным смещением. Действие базового тока можно представить как «открытие затвора» для тока через коллектор. Более конкретно, любая заданная величина тока эмиттер-база допускает ограниченную величину тока базы-коллектор.На каждый электрон, который проходит через переход эмиттер-база и далее через базовый провод, через переход база-коллектор проходит определенное количество электронов, и не более того.

В следующем разделе это ограничение тока транзистора будет исследовано более подробно.

Сводка

  • При тестировании мультиметром в режимах «сопротивление» или «проверка диодов» транзистор ведет себя как два встречных PN (диодных) перехода.
  • PN-переход эмиттер-база имеет немного большее прямое падение напряжения, чем PN-переход коллектор-база, из-за более сильного легирования полупроводникового слоя эмиттера.
  • Переход база-коллектор с обратным смещением обычно блокирует прохождение любого тока через транзистор между эмиттером и коллектором. Однако этот переход начинает проводить, если ток проходит через базовый провод. Базовый ток можно рассматривать как «открытие затвора» для определенного ограниченного количества тока через коллектор.

Статья извлечена из Урока Тони Купхальда по электрическим схемам Том III Полупроводники в соответствии с условиями Лицензии на научное проектирование.

Как проверить транзистор с помощью мультиметра (DMM + AVO) — NPN и PNP

Как найти базу, коллектор, эмиттер, направление и положение транзистора с помощью мультиметра

ПНП И НПН. Как запомнить направление транзистора и идентификацию контактов, проверьте, хорошо это или плохо.

Если вы предпочитаете эту простую тему с использованием цифровых (DMM) или аналоговых (AVO) мультиметров, вы можете:

  • Запомните направление транзисторов NPN и PNP.
  • Определите базу, коллектор и эмиттер транзистора.
  • Проверьте транзистор, если он хороший или плохой.

PNP = предложено
NPN = не окрашено.
Если вам кажется, что это немного сложно, попробуйте… это проще.

PNP NPN
P = Баллы N = Никогда
N = IN P = Баллы
P = Постоянно N = iN

Проверить транзистор с диодом или цифровой мультиметр в режиме непрерывности

Для этого следуйте приведенным ниже инструкциям.

  • Удалите транзистор из цепи, т. Е. Отключите питание от транзистора, который необходимо проверить.Освободите все конденсаторы (укорачивающие выводы конденсатора) в цепи (если есть).
  • Установите измеритель в режим «Проверка диодов», повернув поворотный переключатель мультиметра.
  • Подсоедините черный (нормальный или -v) измерительный провод мультиметра к 1-й клемме транзистора и красный (+ V) измерительный провод ко 2-й клемме (на рисунке ниже). Вам нужно будет провести 6 тестов, объединив черный (-v) и красный (+ v) измерительные провода, соответственно, от 1 до 2, от 1 до 3, от 2 до 1, от 2 до 3, от 3 до 1, 3. к 2.Просто замените измерительные провода мультиметра или клеммы обратного транзистора (показаны ниже), чтобы подключить, проверить, измерить и записать показания в таблице. Цифры в красном цвете — это красный измерительный провод, а цифры в черном цвете подключены к измерительному проводу черного (двустороннего) мультиметра.
  • Проверьте, измерьте и запишите показания дисплея мультиметра в таблице ниже.

У нас есть следующие данные из таблицы ниже.

Из 6 тестов мы получили данные только по двум тестам и получили результаты, такие как пункты 2–1 и 2–3.Где мы добрались до точек 2–1, 0,733 В постоянного тока и 2–3 0,728 В постоянного тока. Теперь мы можем легко найти типы транзисторов, а также их коллектор, базу и эмиттер.

  • Точка 2 транзистора BC55 имеет базу транзистора.
  • BC557 — это PNP-транзистор, у которого 2G (средняя клеммная база) подключена к красному (+ V) измерительному проводу мультиметра.
  • Конечно, клемма 1 = эмиттер, клемма 2 = база и клемма 3 = коллектор (транзисторы BC557 PNP), потому что для 2-1 = 0.733 В постоянного тока и 2-3 = 0,728 В постоянного тока, результат теста 2-1> 2 -. 3.

Очки Измерение результатов
1-2 ол.
1-3 пр.
2-1 0,733 В постоянного тока
2-3 0,728 В постоянного тока
3-1 OL.

3-2 пр.

Найдите базу транзистора:
Как упоминалось в руководстве выше, обычное число, найденное в приведенных выше тестах, является базовым.В нашем случае 2-й терминал является базовым, а 2 1-2 и 2-3 — нормальными.

Другой метод использования цифрового мультиметра для поиска базы транзистора.

Если вы будете следовать тому же методу и способу подключения проводов мультиметра и клемм транзисторов на рисунке, показанном выше, на рисунках «C» и «D», красный (+ контактный) измерительный провод подключается к середине, то есть 2-му. Вывод провода и черный (-V) тест подключаются к 1-му выводу свинцового транзистора.

Опять же, провод красного (+ V) теста подключен к среднему, 2-му контакту провода, а черный (-V) тест подключен к 3-му контакту ведущего транзистора, и мультиметр показывает некоторые чтение i.е. 0,717 В постоянного тока и 0,711 В постоянного тока соответственно. В случае BC 547 NPN.

Нормальный провод — это второй провод, подключенный к красному (+ Ve) измерительному проводу (то есть P и да, два других провода — N), который является базой. В случае транзистора BC557 PNP дело обстоит наоборот.

NPN или PNP?
Это просто. Если черный (-проводной) измерительный провод мультиметра подключен к базе транзистора (2-й вывод в нашем случае), это PNP-транзистор, а когда красный (+ V) вывод измерительного вывода подключен к базе, NPN — транзистор.

Эмиттер или коллектор?
Прямое смещение EB (эмиттер — база) выше, чем CB (коллектор — база), т.е. EB> CB в транзисторе PBP, например. BC 557 NPN. Следовательно, это PNP. Резистор типа. В NPN-транзисторах смещение на BE (база-эмиттер) выше, чем BC (база-коллектор), то есть BE> BC, например ВС 547 PNP

Вот вывод.

  • Точка 2 — это база транзистора в BC 547. Транзистор
  • BC547 — это транзистор NPN, где 2G (средняя контактная база) подключена к красному (+ V) измерительному проводу мультиметра.
  • Конечно, клемма 1 = эмиттер, клемма 2 = база и клемма 3 = коллектор (транзисторы BC547NPN), потому что для 1-2 = 0,717 В постоянного тока и 2-3 = 0,711 В постоянного тока результат теста, т. Е. 1- 2> 2 -3.

точек Измерение результатов
1-2 0,717 В постоянного тока
1-2 ол.
1-3 пр.
1-3 пр.
2-3 ол.
2-3 0.711 В постоянного тока

Ом (1) Проверьте транзистор с помощью аналогового или цифрового мультиметра в режиме измерения диапазона.
ступеней:

  • Отключите питание в цепи и удалите транзистор из цепи.
  • Поверните селекторный переключатель и поместите ручку мультиметра в диапазон Ом (Ом)
  • Подключите черный (нормальный или -V) измерительный провод мультиметра к 1-й клемме транзистора и подключите красный (+ V) ) измерительный провод ко 2-му зажиму (рис.1 (а)). 1–2, 1–3, 2–1, 2–3, 3–1, 3–2 соответственно в таблице для замены только измерительного провода мультиметра или для подключения, проверки, измерения и записи клемм транзисторов. (Цифры в красном цвете) обозначают вывод транзистора, подключенный к красному (+ Ve) измерительному выводу мультиметра, а цифры черным цветом показывают вывод транзистора, подключенный к черному (-проводному) измерительному выводу (в таблице и на рисунках ниже). ). Лучшее объяснение)
  • Если показано на рис. 1 (a) и (b), изменение полярности транзистора или мультиметра показывает более высокое сопротивление как в первом, так и во втором тестах.(Обратите внимание, что результат будет показан только для 2 из 6 тестов, упомянутых выше). То есть, в нашем случае транзистор имеет 2-ю клеммную базу, так как он показывает высокое сопротивление как в тестах 2-3, так и в тестах 3-5, где красный (+ V) тест мультиметра подключен ко 2-му контакту свинцовый транзистор. Другими словами, нормальное количество тестов — это база, которая составляет 1, 2 и 2 из 3.

PNP или NPN
Теперь, поскольку это транзистор NPN, он отображается только для чтения, когда КРАСНЫЙ (+ V) измерительный провод (т. Е. Клемма P, где P = положительный) подключен к базе транзистора (см. Рис. ниже).Если вы (1–2 и 2–3) мультиметра подключены к клемме транзистора, например, черным (двусторонним) измерительным проводом (например, N =, где N = отрицательный), и оба теста показывают показания, указанные выше, 2-й Клемма все еще базовая, но транзистор — PNP (см. Рис. Ниже).

Транзистор или контрольный транзистор в цифровом мультиметре с HFE или бета-режимом

HFE, также известный как бета, используется для измерения усиления по постоянному току, т. Е. HFE перехода, который может быть обнаружен по следующей формуле: «Текущее усиление, гибридный эмиттер, рядом с гибридным параметром».

HFE = β DC = IC / IB

Его также можно использовать для проверки транзистора и его выводов, как показано на рис. 1.

Для проверки транзисторов в режиме HFE мультиметр, предлагаемый PNP и NPN, имеет 8-контактный разъем, а также ECB (эмиттер, коллектор и база). Просто поместите три контакта транзистора в слот мультиметра, то есть ECB или CBE (поворотная ручка должна быть в режиме HFE).

Если они отображают показания (это будет показание HFE транзистора), в нашем примере мы использовали транзистор BC548, который показывает бета-значение текущей позиции 368 (положение CBE) на слотах C, B, E, что есть, точные терминалы.Транзистор (коллектор, база и эмиттер) и транзистор в хорошем состоянии, в противном случае замените на новый.

Как проводить непрерывные испытания электрических компонентов мультиметра-EET-2021

Как рассчитать номинал резистора светодиода (с разными типами схем светодиодов) .EET-2021

Что такое трансформатор? Его конструкция, работа, типы и применение-EET-2021

New Hindi Shayari 2021, Love Shayari, Sad Shayari, Funny Shayari, Shayari на хинди, Статус хинди для WhatsApp, СМС с пожеланиями, Статус в Facebook, Подробнее

vingepost Media Inc.(vingepostnowstarted.com) — это независимая новостная организация, которая снабжает своих читателей новостями из мира развлечений в Интернете… подробнее нажмите услышать-vingepost

Научитесь вести блог. Пошаговое руководство, чтобы узнать, как создать блог, выбрать лучшую платформу для ведения блога и избежать распространенных ошибок ведения блога… подробнее читать нажмите услышать-blogging.nowstarted

Умная работа из дома

Цифровой тестер транзисторов, Тестер конденсаторов транзисторов Mosfet с мини-измерительными проводами для автоматической проверки NPN PNP Транзистор Диод Триод Конденсатор Резистор MOS SCR ESR LCR Meter —

Я купил этот тестер в основном для того, чтобы иметь недорогой тестер ESR для электролитических конденсаторов.Я часто ремонтирую старую электронику, многие из которых страдают от высыхания электролитов в источниках питания. Обзоры данного тестера есть на форумах по электронике. Большинство пользователей согласны с тем, что это хороший вариант для некритического тестирования, поэтому я решил рискнуть.

Тестер включает съемное гнездо ZIF (нулевое усилие вставки), которое принимает выводы компонента, который вы хотите протестировать. Он также включает в себя набор зажимов, которые подключаются к разъему ZIF.Это упрощает тестирование типичных сквозных компонентов. Я еще не пробовал использовать его для поверхностного монтажа, но если у вас получится хорошее соединение, я думаю, что все должно работать.

Я сначала проверил его с небольшим количеством электролитов из моего хранилища ненужных деталей. Тестер показал разумные значения как для емкости, так и для ESR, и последовательные испытания показали, что они также были воспроизводимыми. Я не перепроверил какие-либо значения с помощью специального тестера емкости, но предполагаю, что они достаточно близки.Несколько утечек электролитов из старого оборудования вернули высокое значение ESR, что также кажется разумным.

В моем запасе деталей было несколько загадочных устройств TO-220 и TO-92, и я смог их идентифицировать (в основном полевые транзисторы и транзисторы). Мне удалось найти индуктивность катушки реле, и несколько протестированных резисторов были довольно близки к их номинальным значениям. Опять же, я не пытался проверить результаты тестера, но все возвращенные значения казались разумными.

Сам тестер выглядит довольно солидно, да и цветной дисплей выглядит неплохо.Когда он загружается, он отображает символ автобота-трансформера, что, на мой взгляд, было интересным, но сюрреалистичным. Разъем ZIF тоже кажется довольно прочным, но тестовые провода — абсолютный мусор. Провода тонкие, но негибкие, а тестовые зажимы дешевы и практически не работают. Однако их достаточно легко заменить, и я не ожидаю большего за 20 долларов. Хотелось бы, чтобы тестер не отключался автоматически через 30 секунд, но я могу с этим жить.

В общем, это отличный тестер для любителя или кого-то, у кого нет большого бюджета на тестовое оборудование.Он маленький, удивительно мощный и недорогой.

Схема простого тестера транзисторов

Наиболее часто используемый компонент в электронике — это транзистор, и он постоянно выходит из строя. Приходится проверять работу транзистора с помощью мультиметра. Путем тестирования одного терминала за другим, что может занять много времени. Эти мультиметры и тестеры транзисторов сложны для понимания и проектирования. Но в этом уроке мы собираемся создать простую схему тестера транзисторов, которая может тестировать как транзисторы PNP, так и NPN.

Эта схема проста в изготовлении и очень удобна для тестирования транзисторов. Он показывает работу транзисторов двумя разными светодиодами. Один для транзистора NPN, а другой для транзистора PNP.

Компоненты оборудования

9040 , ЗЕЛЕНЫЙ
S.no. Компонент Значение Количество
1 Понижающий трансформатор 230V / 6V AC 1
2 Switch Rotary 1
2.2 кОм, 22 кОм, 68 кОм, 270 кОм, 2,2 МОм, 680 Ом 1, 1, 1, 1, 1, 2
4 Диод 1N4001 2
5 LED 1, 1
Схема

Принципиальная схема

Схема соединений

Как вы знаете, у транзистора есть три вывода: база, эмиттер и коллектор. Чтобы соединить транзистор с этой схемой, мы отметили три точки на принципиальной схеме, как вы можете видеть.Важно правильно направить выводы транзистора. Транзисторный эмиттер со схемой эмиттера, где обозначено (E). База транзистора с базой схемы, обозначенной буквой (B), и коллектор транзистора с коллектором схемы, обозначенной как C. Если вы не соедините их соответствующими точками, эта схема не даст точных результатов.

Рабочее объяснение

Напряжение 230 В переменного тока, поступающее от сети, понижается до необходимого рабочего напряжения (6 вольт) через трансформатор.В этой схеме используются разные резисторы, которые используются в качестве ограничителя тока для проверяемых транзисторов. Поворотный переключатель S1 используется для выбора подходящего базового резистора для транзистора. В этой схеме мы используем два светодиода. Зеленый светодиод для транзисторов NPN и красный светодиод для транзисторов PNP.

Резистор подключен к каждому светодиоду для ограничения тока базы. Зеленый светодиод загорается, когда транзистор NPN работает правильно, а красный светодиод загорается, когда транзистор PNP работает правильно.

Как определить клеммы и тип транзистора с помощью цифрового мультиметра?

Требование для определения клемм (база, эмиттер и коллектор) и типа (PNP или NPN)

с использованием измерителя AVO, мультиметра или цифрового мультиметра, если мультитестер должен иметь функцию проверки диодов. Функция тестирования диодов обычно обозначается символом диода, как показано на рисунке мультитестера ниже.



Мы возьмем для измерения пример транзистора типа C945, который довольно широко используется.Мы научились определять клеммы и тип транзистора C945, а также следующие шаги:

1. Измерение и создание таблиц измерений

  • Set Multitester поворотная ручка мультитестера на элементе тестирования диода
  • Представьте или опишите положение клеммы транзистора с порядковыми номерами 1, 2 и 3
  • Создайте таблицу с 6 единицами измерения точки измерения, то есть 1-2, 1-3, 2-3, 2-1, 3-1 и 3-2
  • Укажите черный датчик или отрицательный тестовый датчик для первого числа и красный датчик или положительный тестовый датчик для второго числа, т.е. точка измерения 1-2, черный датчик в точке 1 и красный датчик в точке 2
  • Запись результаты каждого измерения

2.Определите клеммы и тип транзистора.
В таблице измерений есть две точки измерения, по которым можно получить результаты: точка 1-3 при 0,720 В постоянного тока и точка 2-3 при 0,716 В постоянного тока (см. Рисунок выше). Пришло время определить клеммы и тип транзистора, между прочим:

  • База — это тот же номер, что и на двух точках измерения
  • Тип NPN или тип PNP, мы можем установить его, чтобы увидеть, какой датчик подключен к базе. Если базовая точка подключена к черному щупу, то это транзистор типа PNP, а когда базовая точка подключена к красному щупу, тогда прямое смещение эмиттер-база типа NPN
  • больше, чем коллектор-база, или EB> CB, то есть транзистор типа PNP.Прямое смещение база-эмиттер больше, чем база-коллектор, или BE> BC, то есть транзистор типа NPN

Итак, мы получаем вывод:

  1. В точке 3 база транзистора C945
  2. C945 является транзистором NPN, основание на красном щупе
  3. В точке 1 клеммы эмиттера и в точке 2 клеммы коллектора C945, потому что точка 1-3> 2-3
  4. Клеммы и тип транзистора C945, как показано на рисунке ниже


Как для тестирования транзистора

В этом руководстве подробно описывается тестирование транзисторов с конфигурацией PNP и NPN с помощью мультиметра.Прочитав это, вы сможете узнать конфигурацию устройства, а также узнать его коллектор, эмиттер и базу.

Рис.1: Изображение транзистора

Шаг 1: Функция транзистора на мультиметре.

Рис. 2: Изображение, показывающее область функции транзистора в мультиметре

Если номер модели неизвестен, невозможно определить тип транзистора, просто взглянув на него.Чтобы упростить этот процесс, мультиметры оснащены функцией, позволяющей рассчитать коэффициент усиления прямого тока биполярного транзистора по высокочастотному или слабому сигналу.

Помимо детализации значения прямого усиления, функция Hfe решает две проблемы.

{C} {C} {C} {C} {C} 1. {C} {C} {C} {C} {C} Тип транзистора можно узнать.

{C} {C} {C} {C} {C} 2. {C} {C} {C} {C} {C} Терминалы коллектора, базы, эмиттера также могут быть известны.

Шаг 2: Проверка транзистора

а) Тестирование транзистора NPN.

· Поместите три ножки транзистора первыми в форму E-B-C. Мультиметр покажет показания, если это построение правильное, иначе он покажет выход за пределы диапазона.

Рис. 3: Изображение, показывающее транзистор, помещенный в транзистор область мультиметра

· Если предыдущий метод не работает, поместите три ножки транзистора в форму B-C-E. Если мультиметр показывает показания, значит, это правильно.Чтение — это не что иное, как HFE этого транзистора.

Рис. 4: Изображение, показывающее, что транзистор правильно установлен в транзистор область мультиметра

б) Проверка транзистора PNP.

· Установите три ножки транзистора так же, как описано выше.

Рис. 5: Изображение, показывающее транзистор PNP, помещенный в транзистор область мультиметра

· После правильного размещения транзистора мультиметр покажет значение Hfe транзистора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *