Проверка тиристора на исправность: Как проверять тиристоры исправность не выпаивая

Содержание

Как проверять тиристоры исправность не выпаивая

Тиристоры принадлежат к классу диодов. Но помимо анода и катода, у тиристоров есть третий вывод – управляющий электрод.

Разнообразные тиристоры

Тиристор – это своего рода электронный выключатель, состоящий из четырех слоев, который может быть в двух состояниях:

  1. Высокая проводимость (открытое).
  2. Низкая проводимость (закрытое).

Тиристоры обладают высокой мощностью, благодаря чему они проводят коммутацию цепи при напряжении доходящей до 5 тысяч вольт и с силой тока равняющейся 5 тысячам ампер. Подобные выключатели способны проводить ток лишь в прямом направлении, а в состоянии низкой проводимости они способны выдержать даже обратное напряжение.

Чтобы приключаться между состояниями, используется специальная технология, которая передает сигналы. С помощью сигнала от объекта управления, тиристор станет в положении высокой проводимости (открытое), а для того чтобы его выключить нужно заряженный конденсатор соединить с ключом.

Есть разные тиристоры, которые отличаются друг от друга характеристиками, управлением и т.д.

Самые известные типы данных устройств:

  • Диодный. Переходит в проводящий режим, когда уровень тока повышается.
  • Инверторный. Он переходит в режим низкой проводимости быстрей подобных устройств.
  • Симметричный. Устройство похоже на 2 устройства со встречно-параллельными диодами.
  • Оптотиристор. Работает благодаря потоку света.
  • Запираемые.

Применение тиристоров

Применение тиристоров очень широкое, начиная от устройств зарядки для автомобиля и заканчивая генераторами и трансформаторами.

Общее применение делится на четыре группы:

  • ТимисторЭкспериментальные устройства.
  • Пороговые устройства.
  • Силовые ключи.
  • Подключение постоянного тока.

Цены на устройства бывают разные, всё зависит от марки производителя и технических характеристик. Отечественные производители делают отличные тиристоры, по небольшой стоимости. Одни из самых распространенных отечественных тиристоров, это устройства серии КУ 202е – используются в бытовых приборах.

Вот некоторые характеристики данного тиристора:

  • Обратное напряжение в состоянии высокой проводимости, максимально 100 В.
  • Напряжение в положении низкой проводимости 100 В.
  • Импульс в состоянии высокой проводимости – 30 А.
  • Повторный импульс в этом же положении – 10 А.
  • Постоянное напряжение 7 В.
  • Обратный ток – 4 мА
  • Ток постоянного типа – 200 мА.
  • Среднее напряжение -1,5 В.
  • Время включения – 10мкс.
  • Выключение – 100 мкс.

Иногда возникают ситуации, в которых необходимо проверить тиристор на работоспособность. Есть различные методы проверки, в этой статье будут рассмотрены основные из них.

Тиристоры быстродействующие ТБ333-250

Тиристоры быстродействующие ТБ333-250

Проверка с помощью метода лампочки и батарейки

Для этого метода достаточно иметь под рукой лишь лампочку, батарейку, 3 проводка и паяльник, чтобы припаять провода к электродам. Такой набор найдется в доме у каждого.

При проверке прибора с помощью метода батарейки и лампочки, нужно оценить нагрузку тока сто mA, которую создает лампочка, на внутренней цепи. Применять нагрузку следует кратковременно. При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях.

Проверка методом лампочки и батарейки осуществляется по трём схемам:

  • В первой схеме на управляющий электрод положительный потенциал не подается, благодаря чему не пропускается ток и лампочка не загорается. В случае если лампочка горит, тиристор работает неправильно.
  • Во второй схеме тиристор приводится в состояние высокой проводимости. Для этого нужно подать плюсовой потенциал на управляющий электрод (УЭ). В этом случае, если лампочка не горит, значит с тиристором что-то не так.
  • На третьей схеме с УЭ питание отключается, ток в этом случае проходит через анод и катод. Ток проходит благодаря удержанию внутреннего перехода. Но в этом случае, лампочка может не загореться не только из-за неисправности тиристора, но и из-за протекания тока меньшей величины через цепь, чем крайнее значение удержания.

Так исправность тиристора легко проверить в домашних условиях, не имея под рукой специального оборудования. Если разорвать цепь через анод или катод, у тиристора активируется состояние низкой проводимости.

Проверка тимистроа с помощью лампочки и батарейки

При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях

Проверка мультиметром

Это самый простой вариант для проверки. В этом методе анод и контакты УЭ подключаются к прибору для измерения (мультиметру). Роль постоянного источника тока здесь играют батареи мультиметра. В качестве индикатора – стрелки или цифровые показатели.

Что нужно, чтобы проверить тиристор мультиметром:

  1. Подцепить черный щуп с минусом к катоду.
  2. Подцепить красный щуп с плюсом к аноду.
  3. Один конец выключателя соединить с разъемом красного щупа.
  4. Настроить мультиметр для измерения сопротивления, не превышающего 2 тысячи ОМ.
  5. Быстро включить и отключить выключатель.
  6. Если проход тока удерживается, значит с тиристором всё хорошо. Чтобы его отключить достаточно, отсоединить напряжение от одного из электродов (анод или катод).
  7. В случае если удерживания проводимости нет, нужно поменять щупы местами и проделать всё с самого начала.
  8. Если перекидывание щупов не помогло, то тиристор неисправен.

Чтобы проверить тиристор не выпаивая, нужно отсоединить УЭ от цепной схемы. Далее нужно проделать все пункты, которые описаны выше.

Проверка тимистора мультиметром

Роль постоянного источника тока здесь играют батареи мультиметра, в качестве индикатора – стрелки или цифровые показатели

Другие варианты проверки

Также тиристор можно проверить с помощью тестера. Для этого понадобится тестер, батарейка шести – десяти вольт и проводки.

Чтобы проверить устройство тестером нужно следовать следующей схеме:

  • Проверка тимистора с помощью омметра

    Проверка тимистора с помощью омметра

    Включить тестер между катодом и анодом: должно показать «бесконечность», потому что тиристор в состоянии низкой проводимости.
  • Подключить батарейку между УЭ и катодом. На тестере должно спасть сопротивление, так как появилась проводимость.
  • Если подачи питания совсем нет, то устройство работает неправильно.
  • Если подача питания постоянная, при любом напряжении на электроды, то и в этом случае с тиристором что-то не так.

Еще тиристор можно проверить с помощью омметра. Этот метод похож на проверку мультиметром и тестером. Потребуется:

  • Подключить плюс омметра к аноду, а минус к катоду. На датчике омметра должно быть показано высокое сопротивление.
  • Замкнуть вывод анода и УЭ, сопротивление на датчике омметра должно резко спасть.

Вот в принципе и вся инструкция для проверки. Если после этих действий отсоединить УЭ от анода, но не разрывать связь анода с омметром, датчик устройства должен показывать низкое сопротивление (это возникает, если ток анода, больше тока удержания).

Также существует еще один способ проверки тиристора с помощью омметров, для этого понадобится дополнительный омметр. Нужно плюсовой вывод одного омметра подключить к аноду, сопротивление в этот момент должно показываться высокое. Далее следует, также плюсовой вывод, но уже другого омметра, быстро подключить и отключить от управляющего электрода (УЭ), в этот момент сопротивление первого омметра резко уменьшится.

Блиц-советы

Рекомендации:

  1. Перед тем как проверять тиристор, следует внимательно ознакомиться с техническими характеристиками данного устройства. Эти знание помогут быстрей и эффективней проверить тиристор.
  2. Обычные, стандартные устройства для измерения (омметр, тестер, мультиметр) хорошо зарекомендовали себя для проверки тиристора, но современные приборы, дадут информацию намного точней. К тому же их гораздо легче использовать.
  3. Во избежание неприятных ситуаций все схемы должны собираться в точности.
  4. В работе с любыми диодными устройствами, включая тиристоры, нужно соблюдать технику безопасности.

Защита тиристора:

Тиристоры действуют на скорость увеличение прямого тока. В тиристорах обратный ток восстановления. Если этот ток упадет до низшего значения, может возникнуть перенапряжение. Чтобы предотвратить перенапряжения используются схемы ЦФТП. Также для защиты используют варисторы, их подключают к местам, где выводы индуктивной нагрузки.

Как проверить тиристор мультиметром на примере прозвона ку202н

Тиристор – это полупроводниковый прибор p-n-p-n структуры, который играет роль ключа в цепях с большими токами, при этом управление им осуществляется слаботочным сигналом. Применяется для включения силовых электроприводов, систем возбуждения генераторов. Коммутируемые токи доходят до 10 кА.

Особенность тиристоров заключается в том, что при подаче управляющего сигнала, они открываются и остаются в этом состоянии, даже если сигнал в последующем будет снят. Единственное требование – протекающий через них ток должен превышать определенное значение, который называется током удержания.

Одни тиристоры пропускают ток только в одну сторону. Это динисторы, срабатывающие от превышения значимого напряжения. Есть также тринисторы, управляемые подачей тока на третий вывод прибора.

Тиристоры пропускающие ток в обе стороны называются симисторы или триаки. Кроме этого, бывают фототиристоры управляемые светом.

Основные характеристики

Для проверки тринистора необходимо знать и понимать, что скрывается за основными параметрами и для чего их нужно измерять.

Отпирающее напряжение управления Uy – это постоянный потенциал на управляющем электроде, вызывающий открывание тиристора.

Uобр max – это максимальное обратное напряжение, при котором тиристор еще находится в рабочем состоянии.

Iос ср – это среднее значение протекающего через тиристор тока в прямом направлении с сохранением его работоспособности.

Определение управляющего напряжения

Теперь можно приступать к тестированию тринистора. Для этого возьмем КУ202Н с рабочим током 10 А и напряжением 400 В.

У большинства радиолюбителей имеется мультиметр и неизбежно возникает вопрос, как проверить тиристор мультиметром, возможно ли это и, что дополнительно может понадобиться. Последовательность действий такая:

  • для начала переключаем мультиметр в положение измерения сопротивления с диапазоном 2 кОм. В этом режиме на измерительных щупах будет присутствовать напряжение внутреннего источника питания тестера;
  • подключаем щупы к аноду и катоду тринистора. Мультиметр должен показывать сопротивление близкое к бесконечности;
  • перемычкой замыкаем анод и управляющий электрод. Сопротивление должно упасть, тринистор открылся;
  • убираем перемычку, прибор опять показывает бесконечность. Это произошло из-за того, что удерживающий ток слишком мал.

Так как тиристор управляется как отрицательными, так и положительными сигналами, то его можно открыть, подключая перемычкой управляющий электрод к катоду.

Мультиметр должен находиться в режиме омметра, и щупы подсоединены к аноду и катоду. Так можно определить, каким напряжением управляется тиристор.

Проверка исправности

Второй вариант тестирования заключается в следующем. К блоку питания постоянного тока через тринистор подключается лампа на это же напряжение.

К аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения. Диапазон измерения должен превышать напряжение источника.

Затем на управляющий электрод с помощью батарейки любого номинала и пары проводов подается управляющее напряжение. Тринистор должен открыться, лампочка загореться.

Тестер сначала показывает напряжение источника питания, после воздействия маленького значения, которое соответствует падению потенциалов на тиристоре в открытом состоянии.

После этого можно снять управляющее воздействие, лампа продолжит гореть, так как протекающий через прибор ток больше тока удержания.

Проверка динистора

Для определения работоспособности динистора может потребоваться источник питания с напряжением, превышающим напряжение включения динистора.

Для ограничения тока потребуется резистор на 100-1000 Ом. Теперь можно подключать плюс источника к аноду, а катод к одному из выводов ограничивающего резистора.

Второй конец сопротивления подключается к минусу источника питания. До этого необходимо мультиметр в режиме измерения постоянного напряжения подключить к аноду и катоду.

Значения тестера должны лежать в пределах милливольт. Динистор открылся.

Необычный способ

Есть еще один вариант проверки тиристора мультиметром, без прозвона. Но в этом случае прибор должен быть маломощным, с малым током удержания.

Для проверки используется разъем проверки транзисторов. Обычно он располагается ниже переключателя и представляет собой круглый разъем в диаметре примерно 1 см.

На нем должны быть следующие обозначения: В – означает база транзистора, С – коллектор, Е – эмиттер.

Если тринистор открывается положительным напряжением, то управляющий вывод надо подключить к базе, анод с катодом к коллектору и эмиттеру соответственно.

Так как тестер при проверке транзистора измеряет коэффициент усиления, то и в этом случае он выдаст какие-то значения, которые будут неверные. Но это не важно, главное убедиться в исправности тринистора.

Проверка в схеме

Иногда требуется проверка тиристора, без выпаивания его из схемы. Для этого необходимо отключить управляющий электрод. После этого к аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения.

Вторым тестером подключаются к аноду и управляющему электроду тиристора. Второй прибор должен находиться в режиме омметра.

Если измерительные щупы подсоединены правильно, то показания первого тестера будут лежать в пределах нескольких десятков милливольт.

Если нет, то щупы нужно поменять местами и все повторить. Перед измерениями нужно убедиться, что плата и весь прибор обесточен.

Тестирование высоковольтного тиристора

В случае проверки высоковольтного тиристора потребуется мультиметр с токовыми клещами. И проверка будет производиться при включенном оборудовании, так как сложно создать условия имитирующие рабочие параметры системы.

Все внешние воздействия необходимо делать в соответствии с инструкцией по эксплуатации на оборудование.

Измерения делаются с соблюдением техники безопасности, в остальном все, как и с обычными тиристорами.

Как проверить тиристор | Практическая электроника

Как проверить тиристор, если вы полный чайник? Итак, обо всем по порядку.

Принцип работы тиристора

Принцип работы тиристора основан на принципе работы электромагнитного реле. Реле – это электромеханическое изделие, а тиристор – чисто электрическое. Давайте же рассмотрим принцип работы тиристора, а иначе как мы его тогда сможем проверить? Думаю, все катались на лифте ;-). Нажимая кнопку на какой-нибудь этаж, электродвигатель лифта начинает свое движение, тянет трос с кабиной с вами  и  соседкой тетей Валей килограммов под двести и  вы перемещаетесь с этажа на этаж.  Как  же так с помощью малюсенькой кнопочки мы подняли кабину с тетей Валей на борту?

В этом примере и основан принцип работы тиристора.  Управляя маленьким напряжением кнопочки мы управляем большим напряжением… разве это не чудо? Да еще и в тиристоре нет никаких клацающих контактов, как в реле. Значит, там нечему выгорать и при нормальном режиме работы такой тиристор прослужит вам, можно сказать, бесконечно.

Тиристоры выглядят  как-то вот так:

А вот и  схемотехническое обозначение тиристора

В настоящее время мощные тиристоры используются для переключения (коммутации) больших напряжений в электроприводах, в установках плавки металла с помощью электрической дуги ( короче говоря с помощью короткого замыкания, в результате чего происходит такой мощный нагрев, что даже начинает плавиться металл)

Тиристоры, которые слева, устанавливают на алюминиевые радиаторы, а тиристоры-таблетки даже на радиаторы с водяным охлаждением, потому что через них проходит бешеная сила тока и коммутируют они очень большую мощность.

Маломощные тиристоры используются в радиопромышленности и, конечно же, в радиолюбительстве.

Параметры тиристоров

Давайте разберемся с некоторыми важными параметрами  тиристоров. Не зная эти параметры, мы не догоним принцип проверки тиристора. Итак:

1) Uy отпирающее постоянное напряжение управления  – наименьшее постоянное напряжение на управляющем электроде, вызывающее переключение тиристора из закрытого состояния в открытое. Короче говоря простым языком, минимальное напряжение на управляющем электроде, которое открывает тиристора и электрический ток начинает спокойно себе течь через два оставшихся вывода – анод и катод тиристора. Это и есть минимальное напряжение открытия тиристора.

2) Uобр max –  обратное напряжение, которое может выдержать тиристор, когда, грубо говоря, плюс подают на катод, а минус – на анод.

3) Iос ср среднее значение тока, которое может протекать через тиристор  в прямом направлении без вреда для его здоровья.

Остальные параметры не столь критичны для начинающих радиолюбителей. Познакомиться с ними можете в любом справочнике.

Как проверить тиристор КУ202Н

Ну и наконец-то переходим к самому важному – проверке тиристора. Будем проверять самый ходовый и знаменитый советский тиристор – КУ202Н.

А вот и его цоколевка

Для проверки тиристора нам понадобится лампочка, три проводка и блок питания с постоянным током. На блоке питания выставляем напряжение загорания лампочки. Привязываем и припаиваем проводки к каждому выводу тиристора.

На анод подаем “плюс” от блока питания, на катод через лампочку “минус”.

Теперь же нам надо подать относительно анода напряжение на Управляющий Электрод (УЭ). Для такого вида тиристора Uy отпирающее постоянное напряжение управления  больше чем 0,2 Вольта.  Берем полуторавольтовую батарейку и подаем напряжение на УЭ. Вуаля! Лампочка зажглась!

также можно использовать щупы мультиметра в режиме прозвонки, на щупах напряжение тоже больше 0,2 Вольта

Убираем батарейку или щупы, лампочка должна продолжать гореть.

Мы открыли тиристор с помощью подачи на УЭ импульса напряжения.  Все элементарно и просто! Чтобы тиристор опять закрылся, нам надо или разорвать цепь, ну то есть отключить лампочку или убрать щупы, или же подать на мгновение обратное напряжение.

Как проверить тиристор мультиметром

Можно также проверить тиристор с помощью мультиметра. Для этого собираем его по этой схемке:

Так как на щупах мультиметра в режиме прозвонки имеется напряжение, то подаем его на УЭ. Для этого замыкаем между собой анод и УЭ и сопротивление через Анод-Катод тиристора резко падает.  На мультике мы видим 112 милливольт падение напряжения. Это значит, что он открылся.

После отпускания мультиметр снова показывает бесконечно большое сопротивление.

Почему же тиристор закрылся? Ведь лампочка  в прошлом примере у нас горела? Все дело в том, что тиристор закрывается, когда ток удержания стает очень малым. В мультиметре ток через щупы очень малый, поэтому и тиристор закрылся без напряжения УЭ.

Есть также схема отличного прибора для проверки тиристора, ее можно глянуть в этой статье.

Также советую глянуть видео от ЧипДипа про проверку тиристора и ток удержания:

Как проверить тиристор мультиметром + видео

Тиристоры используются во многих электронных устройствах, начиная от бытовых приборов и заканчивая мощными силовыми установками. Ввиду особенностей этих полупроводниковых элементов проверить их на исправность с помощью только одного мультиметра затруднительно. В крайнем случае, можно определить пробой перехода. Для полноценного тестирования потребуется собрать несложную схему, ее описание будет приведено в статье.

Начнем с подготовительного этапа, а именно с того, что нам потребуется сделать перед проверкой.

Предварительная подготовка

Перед тестированием любого радиокомпонента будь то тиристор, транзистор или диод, нам необходимо ознакомиться с его спецификацией. Для этого находим маркировку на корпусе полупроводникового элемента.

Маркировка обозначена красным оваломМаркировка обозначена красным овалом

Найдя маркировку, начинаем поиск спецификации (достаточно сделать соответствующий запрос в поисковике или в тематических форумах). Даташит на электронный компонент содержит много полезной информации, начиная от технических характеристик и заканчивая расположением выводов и списком аналогов (что особенно полезно при поиске замены).

Даташит на BT151 (аналог КУ202Н)Даташит на BT151 (аналог КУ202Н)

Определившись с типом и цоколевкой, приступаем к первому этапу проверки, для этого нам понадобится только мультиметр. В большинстве случаев проверить элемент на пробой, можно не выпаивая его из платы, поэтому на данном этапе паяльник не нужен.

Тестирование на пробой

Начнем с предварительной проверки, которая будет заключаться в измерении сопротивления между выходами «К» и «УЭ», потом «А» и «К». Алгоритм наших действий будет следующим:

  1. Включаем прибор в режим «прозвонки» и снимаем измерения с перехода между выводами «К» и «УЭ», в соответствии с рисунком 3. Если полупроводник исправен, отобразится сопротивление перехода в диапазоне от 40 Ом до 0,55 кОм. Измеряем сопротивление между УЭ и КРис 3. Измеряем сопротивление между УЭ и К
  2. Меняем щупы местами и повторяем процесс, результат должен быть примерно таким же, как в пункте 1. Заметим, что чем больше сопротивление между выводами «УЭ» и «К», тем меньше ток открытия, а значит — выше чувствительность устройства.
  3. Меряем сопротивление между выводами «А» и «К» (см. рис. 4). На индикаторе мультиметра должно высветиться бесконечно большое сопротивление, причем, вне зависимости от полярности подключенного измерительного устройства. Иное значение указывает на пробой в переходе. Для «чистоты» проверки лучше выпаять подозрительную деталь и повторить тестирование.
Измеряем сопротивление перехода  Анод-КатодРис 4. Измеряем сопротивление перехода  Анод-Катод

Как уже упоминалось выше, такая методика проверки мультиметром не позволяет полностью протестировать работоспособность тиристора, нам потребуется несколько усложнить процесс.

Проверка на открытие-закрытие

Предыдущее тестирование позволяет определить, имеется ли пробой, но не дает возможности проверить отсутствие внутреннего обрыва. Поэтому переводим мультиметр в режим «прозвонки» и подключаем к нему тиристор, в соответствии с рисунком 5 (щуп с черным проводом к выводу «К», красный — к «А»).

Подключение для проверки на открытиеРис. 5. Подключение для проверки на открытие

При таком подключении отобразится бесконечно большое сопротивление. Теперь соединяем на несколько мгновений «УЭ» с выходом «А», прибор покажет падение сопротивления, и после отключения «УЭ», показание опять вырастет до бесконечности. Это связано с тем, что идущего через щупы тока недостаточно для удержания тиристора в открытом состоянии. Поэтому, чтобы убедиться в работоспособности полупроводникового элемента, необходимо собрать несложную схему.

Самодельный пробник для тиристоров

В интернете можно найти более простые схемы, где используется только лампочка и батарейка, но такой вариант не совсем удобен. На рисунке 6 представлена схема, позволяющая протестировать работу устройства, подавая на него постоянное и переменное питание.

Пробник для тиристоровРисунок 6. Пробник для тиристоров

Обозначения:

  • Т1 – трансформатор, в нашем случае использовался ТН2, но подойдет любой другой, если у него имеется вторичная обмотка 6,3 V.
  • L1 – обычная миниатюрная лампочка на 6,3 V и 0,3 А (например, МН6,3-0,3).
  • VD1 – выпрямительный диод любого типа с обратным напряжением более 10 вольт и током от 300 мА и выше (например, Д226).
  • С1 – конденсатор емкостью 1000 мкФ, и рассчитанный на напряжение 16 В.
  • R1 – сопротивление с номиналом 47 Ом.
  • VD2 – тестируемый тиристор.
  • FU1 – предохранитель на 0,5 А, если в схеме для проверки тиристоров используется мощный силовой трансформатор, номинал предохранителя нужно увеличить (узнать потребляемый ток можно воспользовавшись мультиметром).

После того, как пробник собран, приступаем к проверке, выполняется она по следующему алгоритму:

  1. Подключаем к собранному прибору тестируемый полупроводниковый элемент (например, КУ202Н), в соответствии с рисунком 5 (для определения цоколевки следует обратиться к справочной информации).
  2. Переводим переключатель S2 для тестирования в режиме постоянного тока (положение «2»).
  3. Включаем пробник тумблером S1, индикатор L1 не должен засветиться.
  4. Нажимаем S3, в результате на «УЭ» подается напряжение через резистор R1, что переводит тиристор в открытое состояние, на индикаторную лампочку поступает напряжение, и она начинает светиться.
  5. Отпускаем S3, поскольку полупроводниковый элемент остается открытым, лампочка продолжает гореть.
  6. Меняем положение переключателя, переводя его в положение «О», тем самым мы отключаем питание от тиристора, в результате он закрывается и лампа гаснет.
  7. Теперь проверяем работу элемента в режиме переменного напряжения, для этой цели переводим S2 в положение «1». Благодаря такой манипуляции мы берем питание непосредственно со вторичной обмотки трансформатора (до выпрямительного диода). Индикаторная лампа не горит.
  8. Нажимаем S3, лампа начинает светиться в половину своей мощности, это связано с тем, что при открытии через тиристор проходит только одна полуволна переменного напряжения. Отпускаем S3 – индикаторная лампочка гаснет.

Если тестируемый элемент вел себя так, как описывается, то можно констатировать, что он находится в рабочем состоянии. Соответственно, если индикатор горит постоянно, это указывает на пробой, а когда при нажатии S3 он не загорается, можно определить внутренний обрыв (при условии, что лампочка рабочая).

Проверка без выпаивания детали с платы

В большинстве случаев проверить тиристор мультиметром на пробой можно прямо на плате, но чтобы выполнить диагностику самодельным тестером, полупроводник придется выпаять.

Проверка тиристора на работоспособность — Как прозвонить мультиметром?

Любой электронщик должен знать, как проверить тиристор своими силами. Для этого потребуется тестер. Он может быть как аналоговым, так и цифровым. Чаще используется мультиметр, так как у него намного больше режимов работы, широкий выбор настроек, огромный функционал, значительно превосходящий обычный цифровой тестер. Перед началом проверки, нужно вспомнить принцип работы тиристора, его устройство.

Тиристор является управляемым диодом, что означает, что его тестирование имеет много схожих черт с проверкой обычного диода. Эти две радиодетали основываются на полупроводниковом принципе работы. В статье будет описан весь порядок проверки, а также показано наглядно в двух видеороликах.

Проверка тиристора мультиметром.

Проверка тиристора мультиметром.

Как проверить диод и тиристор. 3 простых способа

Среди домашних мастеров и умельцев периодически возникает необходимость определения работоспособности тиристора или симистора, которые широко используются в бытовых приборах для изменения скорости роторов электродвигателей, в регуляторах мощности осветительных приборов и в других устройствах.

Как работает диод и тиристор

Перед описанием способов проверки вспомним устройство тиристора, который не зря называют управляемым диодом. Это обозначает, что оба полупроводниковых элемента имеют почти одинаковое устройство и работают совершенно аналогично, за исключением того, что у тиристора введено ограничение — управление через дополнительный электрод посредством пропускания электрического тока сквозь него.

Тиристор и диод пропускают ток в одну сторону, которая во многих конструкциях советских диодов обозначена направлением угла треугольника на мнемоническом символе, расположенном прямо на корпусе. У современных диодов в керамическом корпусе катод обычно помечают нанесением кольцевой полоски около катода.

Перед тем как проверить тиристор или симистор мультиметром необходимо немного знать о работе этих элементов, чтобы правильно представлять сам процесс проверки. Если диод имеет только один p-n переход и два вывода, то тиристор имеет три p-n перехода и три вывода. Принцип работы тиристора схож с работой электромеханического реле.

Проверить работоспособность диода и тиристора можно пропусканием тока нагрузки через них. Для этого допускается использовать лампочку накаливания от старых карманных фонариков, нить которой светится от тока порядка 100 mА или меньше. При прохождении тока через полупроводник лампочка будет гореть, а в случае отсутствия — нет.

Как проверить тиристор на работоспособность?

Как проверить исправность диода

Обычно для оценки исправности диода пользуются омметром или другими приборами, обладающими функцией измерения активных сопротивлений. Прикладывая к электродам диода напряжение в прямом и обратном направлении, судят о величине сопротивления. При открытом p-n переходе омметр покажет значение равное нулю, а при закрытом — бесконечности.

Если омметр отсутствует, то исправность диода можно проверить, используя батарейку и лампочку. Перед проверкой диода таким способом необходимо учитывать его мощность. Иначе ток нагрузки может разрушить внутреннюю структуру кристалла. Для оценки маломощных полупроводников рекомендуется вместо лампочки использовать светодиод и ток нагрузки снижать до 10-15 mA. Основные характеристики тиристоров представлены в таблице ниже.

Как проверить тиристор на работоспособность?

Как проверить исправность тиристора

Оценить работоспособность тиристора можно несколькими методами. Рассмотрим три, самых распространенных и доступных в домашних условиях.

Метод батарейки и лампочки

При использовании этого метода тоже следует оценивать токовую нагрузку 100 mA, создаваемую лампочкой на внутренние цепи полупроводника и применять ее кратковременно, особенно для цепей управляющего электрода. При сборке схемы по первому варианту полупроводниковый переход прибора не пропускает ток, и лампочка не горит.

Это его основное отличие в работе от обычного диода. Для открытия тиристора достаточно подать положительный потенциал источника на управляющий электрод. Этот вариант показан на второй схеме. У исправного прибора откроется внутренняя цепь и через него потечет ток. Об этом будет свидетельствовать свечение нити накала лампочки.

Проверка тиристора батарейкой

Проверка тиристора батарейкой

В третьей схеме показано отключение питания с управляющего электрода и прохождение тока через анод и катод. Это происходит за счет превышения тока удержания внутреннего перехода. Эффект удержания используется в схемах регулирования мощности, когда для открытия тиристора, управляющего величиной переменного тока, подается кратковременный импульс тока от фазосдвигающего устройства на управляющий электрод.

Загорание лампочки в первом случае или отсутствие ее свечения во втором свидетельствуют о неисправности тиристора. А вот потеря свечения при снятом напряжении с контакта управляющего электрода может быть вызвана величиной тока, протекающей через цепь анод-катод меньшей, чем предельное значение удержания. Разрыв цепи через анод или катод приводит тиристор в закрытое состояние.

Метод проверки с помощью самодельного прибора

Снизить риски повреждения внутренних схем полупроводниковых переходов при проверках маломощных тиристоров можно подбором величин токов через каждую цепочку. Для этого достаточно собрать простую электрическую схему. На рисунке показано устройство, предназначенное для работы от 9-12 вольт. При использовании других напряжений питаний следует сделать перерасчет величин сопротивлений R1-R3.

Через светодиод HL1 достаточно прохождения тока около 10 mA. При частом использовании прибора для подключений электродов тиристора VS желательно сделать контактные гнезда. Кнопка SA позволяет быстро коммутировать цепь управляющего электрода. Загорание светодиода до нажатия кнопки SA или отсутствие его свечения — явный признак повреждения тиристора.

Полезный материал: что такое полупроводниковый диод.

Метод с использованием тестера, мультиметра или омметра

Наличие омметра упрощает процесс проверки тиристора и напоминает предыдущую схему. В ней источником тока служат батареи прибора, а вместо свечения светодиода используется отклонение стрелки у аналоговых моделей или цифровые показания на табло у цифровых устройств. При показаниях большого сопротивления тиристор закрыт, а при малых величинах открыт. Здесь оценивается все те же три этапа проверки с отключенной кнопкой SA, нажатой на короткое время и снова отключенной. В третьем случае тиристор, скорее всего, изменит свое поведение из-за малой величины проверяемого тока: ее не хватит для удержания.

Низкое сопротивление в первом случае и высокое во втором свидетельствуют о нарушениях полупроводникового перехода. Метод омметра позволяет проверять исправность полупроводниковых переходов без выпаивания тиристора из большинства монтажных плат.

Конструкцию симистора можно условно представить состоящей из двух тиристоров, включенных встречно по отношению друг к другу. У него анод и катод не имеют строгой полярности как у тиристора. Они работают с переменным электрическим током. Качество состояния симистора можно оценить описанными выше методами проверки.

Начало тестирования тиристора мультиметром

Сначала потрудитесь расположение электродов определить:

  • катод;
  • анод;
  • управляющий электрод (база).

Для открытия тиристорного ключа катод прибора снабжается минусом (черный щуп мультиметра), на анод присоединяется плюс (красный щуп мультиметра). Тестер выставляется в режим омметра. Сопротивление открытого тиристора невелико. Хватит поставить предел 2000 Ом.

Пришло время напомнить: тиристор способен управляться (открываться) положительными или отрицательными импульсами. В первом случае перемычкой из тонкой булавки замыкаем на базу анод, втором – катод. Тут и там должен тиристор открыться, в результате сопротивление станет меньше бесконечности.

Как проверить тиристор на работоспособность?

Процесс тестирования сводится к пониманию, каким напряжением управляется тиристор. Минусовым или плюсовым. Попробуйте так и сяк (если отсутствует маркировка). Одна попытка точно сработает, если тиристор исправен.

Дальше процесс расходится с проверкой транзистора. При пропадании управляющего сигнала тиристор останется открытым, если ток превышает порог удержания. Ключ может закрыться. Если ток не дотягивает порога удержания.

  1. Ток удержания прописан техническими характеристиками тиристора. Потрудитесь скачать из интернета полную документацию, быть в курсе вещей.
  2. Многое определяет мультиметр. Какое напряжение подает на щупы (традиционно 5 вольт), сколько мощности обеспечит. Проверить можно, заручившись помощью конденсатора большой емкости. Нужно правильно подключить щупы на выводы прибора в режиме измерения сопротивления, подождать, пока цифры на дисплее вырастут от нуля до бесконечности. Конденсатор процесс зарядки прошел.
  3. Теперь перейдем в режим измерения постоянного напряжения посмотреть величину разницы потенциалов на ножках конденсатор (мультиметр подает в режиме измерения сопротивления). По вольт-амперным характеристикам тиристора несложно определить, хватит ли значения создать ток удержания.
Силовой тиристор.

Силовой тиристор.

Динисторы звонятся проще. Попытайтесь открыть ключ. Зависит от того, хватит ли мощности мультиметра преодолеть барьер. Для гарантированной проверки тиристора лучше собрать отдельную схему. Наподобие представленной рисунком. Схеме сформирована следующими элементами:

  1. Три резистора послужат заданию режима тиристора. Один номиналом 300 Ом ограничивает ток. Если параметр нужно изменить, перестараться при наличии питания +5 вольт чрезвычайно сложно. Ничего страшного, если резистор убрать. Старайтесь руководствоваться вольт-амперными характеристиками тиристора. Идеально поставить переменный резистор диапазоном 100 – 1000 Ом. Два резистора правой ветки задают рабочую точку. В схеме на управляющий электрод подано 2,5 вольта. Если не согласуется с вольт-амперными характеристиками тиристора (см. документацию), измените номиналы. Образуют резистивный делитель. Напряжение 5 вольт делится пропорционально номиналам. Поскольку сопротивления равны друг другу, на управляющий электрод приходит ровно половина напряжения питания.
  2. Светодиод послужит нагрузкой. Стоит в «силовой» ветке, рядом находятся эмиттер, коллектор. Здесь после открытия ключа должен течь ток. Светодиод загорится, увидим, работает ли тиристор. Светодиод не инфракрасный. Возьмите видимый диапазон.
  3. Тиристор образует центр схемы. Лучше спаять гнезда, куда можно быстро воткнуть новый испытуемый образец. Иначе пропадает смысл городить огород. Обратите внимание, схема собрана для случая, когда тиристор управляется напряжением положительной полярности. Лучше найти отдельно источник питания. Например, батарейка, системный блок ПК, аккумулятор. Положительным полюсом стыкуются с землей схемы, отрицательный подается на базу. Причем придется убрать резистора из левой ветви.
  4. Кнопка поможет узнать гарантированно: эксперимент начался. Без нее управляющего напряжения не подается. Стоит нажать кнопку, отпустить – пронаблюдаете результат. Светодиод загорится и погаснет – ток удержания не выдержан, тиристор исправен. Иногда светодиод будет продолжать гореть, зависит от его характеристик.

Почему выбрали питание +5 вольт. Напряжение несложно найти на адаптере телефона (зарядное устройство). Присмотритесь: присутствует надпись наподобие 5V– /420 mA. Выходные значения напряжения, тока (сразу посмотрите, хватит ли удержать тиристор). Каждый знаток в курсе: +5 вольт доступно взять на шине USB. Портом снабжается теперь (в разном формате) практически любой гаджет, компьютер. С питанием проблем избегните. На всякий случай рассмотрим момент подробнее.

Тестовая схема проверка тиристора.

Тестовая схема проверка тиристора.

Проверка тиристоров на разъеме мультиметра для транзисторов

Многих интересует, возможно ли прозвонить тиристор мультиметром, используя штатное гнездо проверки транзисторов передней панели, обозначенное pnp/npn. Ответ положительный. Нужно просто подать правильно напряжения. Коэффициент усиления, выданный на дисплей, наверняка будет неверным.

Поэтому руководствоваться цифрами избегайте. Давайте посмотрим, как примерно делается. Если открывается тиристор положительным потенциалом, подключать нужно на пин B (base) полугнезда npn. Анод втыкается на пин C (коллектор), катод – E (emitter). Едва ли удастся проверить мощный тиристор мультиметром, для микроэлектроники методика сгодится.

Интересно по теме: Как проверить стабилитрон.

Где взять питание тестировщику

Адаптер телефона дает ток 100 – 500 мА. Часто бывает мало (если понадобится проверить тиристор КУ202Н мультиметром, отпирающий ток 100 мА). Где взять больше? Посмотрим шину USB: третья версия выдаст 5 А. Чрезвычайно большой ток для микроэлектроники, бросьте сомневаться в мощностных характеристиках интерфейса. Распиновку посмотрим в сети. Приводим рисунок, указывающий раскладку типичных портов USB. Показаны два типа интерфейсов:

  1. Первый USB тип А характерен компьютерам. Максимально распространенный. Найдете на адаптерах (зарядных устройствах) портативных плееров, iPad. Можно использовать в качестве источников питания схемы тестирования тиристора.
  2. Второй тип В характерен больше как концевой. Подключаются периферийные устройства наподобие принтеров, прочей оргтехники. Найти в качестве исходного источника питания сложно, игнорируя факт недоступности, авторы проверили раскладку.

Если кабель USB разрезать – уверены, многие ринутся курочить старую технику, обрывать хвосты мышкам – внутри провод питания +5 вольт традиционно красный, оранжевый. Информация поможет правильно прозвонить схему, добыть нужное напряжение. Присутствует на выключенном системном блоке (к розетке подсоединено). Вот почему огонек мышки продолжает гореть. На время теста компьютер достаточно будет ввести в режим гибернации. Кстати, напрямую не имеется в Windows 10 (полазить по настройкам, найдете в управлении энергопотреблением).

Как проверить тиристор на работоспособность?

Заручившись помощью схемы, проверим тиристор, не выпаивая. Рабочая точка задана относительно земли порта, поэтому внешние устройства будут играть малую роль.

Традиционно заземление персонального компьютера завязано на корпус, куда выходит провод входного фильтра гармоник. Схемные +5 вольт, земля развязаны с шиной. Достаточно тестируемую схему отключить от питания. Для проверки тиристора понадобится напаять усики на каждый вывод. Чтобы подвести питание, управляющий сигнал.

Многие, елозят на стуле, не понимая одной вещи: тут рассказываем, как прозвонить тиристор мультиметром, причем здесь светодиод плюс все навороты? Место светодиода можно – даже лучше – включить щупы тестера, регистрировать ток. Удается использовать малое напряжение питания, всегда безопаснее одновременно. Что касается персонального компьютера, дает широкие возможности тестирования любых элементов, включая тиристоры. Блок питания системника дает набор напряжений:

  1. +5 В идет кулерам, многим другим системам. Фактически стандартное напряжение питания. Провода вольтажа красного цвета.
  2. Напряжение +12 вольт используется для питания многих потребителей. Провод желтого цвета (не путать с оранжевым).
  3. – 12 вольт оставлено обеспечить совместимость с RS. Старый добрый COM-порт, через который сегодня программируются адаптеры промышленных систем. Некоторые источники бесперебойного питания. Провод обычно синий.
  4. Оранжевый провод обычно несет напряжение +3,3 В.

Как проверить тиристор на работоспособность?

Видите, разброс великий, главное – ток. Мощность блоков питания компьютеров колеблется в области 1 кВт. Откроет любой тиристор! Пора пришла заканчивать. Надеемся, теперь читатели знают, как проводится прозвонка тиристора мультиметром. Иногда придется повозиться.

Упомянутый выше тиристор КУ202Н снабжен структурой pnpn, незапираемый. После пропадания управляющего напряжения ключ не закрывается. Нужно убрать питание, чтобы погас светодиод. Отпирающее напряжение положительное. Подходит схеме. Единственно, ток удержания составляет 300 мА.

Заключение

Рейтинг автора

Автор статьи

Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.

Написано статей

Более подробно алгоритм проверки тиристора описан в статье Испытание тиристоров и симисторов. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки статьи:

www.electrik.info

www.vashtehnik.ru

www.electricavdome.ru

www.hardelectronics.ru

Предыдущая

ПрактикаКак проверить полевой транзистор

Следующая

ПрактикаКак сделать регулятор мощности на симисторе своими руками

Как проверять тиристоры и симисторы тестером и мультиметром?

Тиристор представляет собой особую разновидность полупроводникового прибора, изготовленного на основе монокристалла полупроводника и имеющего не менее трех p-n-переходов. Способен находиться в двух различных устойчивых состояниях: закрытый тиристор обладает низкой степенью проводимости, а в открытом состоянии проводимость становится высокой.

тиристор

По своей сути, он является силовым электронным ключом без полного управления.

Инструменты и материалы для проверки

проверка тиристораДля осуществления проверки прибора, могут потребоваться следующие инструменты и материалы, в зависимости от выбранного метода тестирования:

  • блок питания или батарея, которые будут выступать в роли источника постоянного напряжения;
  • лампа накаливания;
  • провода;
  • омметр;
  • мультиметр;
  • тестер;
  • паяльный аппарат;
  • тиристор;
  • паяльный аппарат;

Также, для тестирования правильности работы тиристора может потребоваться наличие пробника, который можно изготовить своими руками.

Для него потребуется наличие следующих материалов и элементов:

  • плата;
  • резисторы, количество 8 штук;
  • конденсаторы, количество 10 штук;
  • диоды, количество 3 штуки;
  • положительный и отрицательный стабилизатор;
  • лампа накаливания;
  • трансформатор;
  • предохранитель;
  • тумблер, количество 2 штуки;

Существует целый ряд возможных схем для изготовления пробника, выбрать можно любую, но необходимо следовать следующим рекомендациям:

  1. Соединение всех элементов производится при помощи специальных проводов с зажимами.
  2. Необходимо последовательно контролировать напряжение между различными контактами. Для осуществления проверки допускается подключение переключателей к разным контактным группам.
  3. После сбора схемы необходимо осуществить подключение тиристора, если он находится в исправном состоянии, то лампа накаливания не будет включаться.
  4. Если лампочка не зажигается даже после нажатия пусковой кнопки, то необходимо при помощи установленного переключателя повысить величину управляющего электрического тока.При разрыве соответствующей цепи, лампочка гаснет.

Способы проверки

простой способ проверки

Существует целый ряд различный способов, позволяющих проверять тиристоры, наиболее простым является тестирование с помощью лампы накаливания и источника, дающего постоянное напряжение.

Реализовать данный процесс можно следующим образом:

  1. Провода необходимо припаять к выводам тиристора таким образом, чтобы на анод подавался плюс от питающего элемента, а минус был подключен к лампочке, а уже через нее к катоду.
  2. На управляющий электрод прибора потребуется подать напряжение, которое будет превышать аналогичный показатель для анода на 0,2В, благодаря этому действию тиристор перейдет в открытое состояние.
  3. Если прибор исправен и находится в рабочем состоянии, то лампочка должна зажечься.
  4. Для того, чтобы окончательно убедиться в исправном функционировании, необходимо перекрыть доступ источнику напряжения, открывшему тиристор, к управляющему электроду, после совершения этих действий лампочка не должна погаснуть.
  5. Чтобы вернуть устройство в закрытое состояние, необходимо полностью устранить питание либо осуществить подачу отрицательного напряжения на электрод.

Ниже приводится пример проверки, которую можно осуществить в цепи переменного тока:

  1. Необходимо заменить напряжение, которое подается от блока питания или иного постоянного источника, на переменное напряжение с показателем 12В, использовать для этих целей можно специальный трансформатор.
  2. После осуществления данной процедуры, в исходном положении лампочка будет находиться в выключенном режиме.
  3. Проверка происходит путем нажатия пусковой кнопки, во время чего лампочка должна включаться, а при отжимании снова гаснуть.
  4. Во время тестирования, лампочка должна загораться только вполовину от своих возможностей накала, это обусловлено тем фактом, что тиристора достигает только положительная волна подаваемого от трансформатора переменного напряжения.
  5. Если в схеме присутствует симистор, одна из основных разновидностей тиристора, то лампочка будет загораться в полную силу, поскольку он одинаково восприимчив к обеим полуволнам переменного напряжения.

тестер

Другим способом является осуществление проверки при помощи тестера, реализуется она следующим образом:

  1. Для осуществления предлагаемого тестирования достаточно энергии, которая будет получена от питания мини-тестера на 1,5В, находящегося в рабочем режиме х1 кОм.
  2. Требуется подключить щуп к аноду и затем произвести кратковременное прикосновение к управляющему электроду.
  3. После совершения названных действий проследить за реакцией стрелки, которая должна была отклониться от исходных показателей.
  4. Если после снятия щупа происходит возвращение стрелки на исходную позицию, то это свидетельствует о том, что тестируемый тиристор неспособен самостоятельно удерживаться в открытом состоянии.
  5. Иногда процесс проверки не получается с самого начала, в такой ситуации рекомендуется поменять щупы местами, поскольку у некоторых устройств переход в режим х1 кОм может вызвать изменение полярностей.

проверка мультиметром

Мультиметр представляет собой многофункциональное устройство, в которое входит, в том числе и омметр, с помощью него также можно осуществить соответствующую проверку:

  1. Первоначально, мультиметр должен быть переведен в режим прозвона.
  2. Щупы устанавливаются таким образом, чтобы плюс быть подключен на анод, а минус соответствовал катоду.
  3. Дисплей мультиметра должен показывать высокое напряжение, поскольку тиристор на данный момент находится в закрытом положении.
  4. На щупах имеется напряжение, поэтому можно подать плюс на управляющий электрод, для этого необходимо совершить кратковременное прикосновение соответствующим проводом от электрода к аноду.
  5. После совершенных действий, дисплей мультиметра должен начать показывать низкое напряжение, поскольку тиристор переходит в открытое состояние.
  6. Закрытие прибора произойдет снова, если убрать провод от электрода, этот процесс происходит из-за недостаточного количества электрического тока, который находится в щупах мультиметра. Исключение составляют отдельные разновидности тиристоров, например, которые задействованы в некоторых импульсных источниках питания ряда старых телевизоров, для них содержание тока будет достаточным, чтобы сохранить открытое состояние.

Использование омметра для проверки происходит по схожей схеме, поскольку современные модели обладают не стрелочным механизмом, а дисплеем, как у мультиметров. Подобная методика позволяет проводить тестирование исправного состояния полупроводниковых переходов без осуществления предварительного выпаивания тиристора из платы.

Устройство и принцип работы

Устройство тиристора выглядит следующим образом:

  1. 4 полупроводниковых элемента имеют последовательное соединение друг с другом, они различаются по типу проводимости.
  2. В конструкции имеется анод – контакт к внешнему слою полупроводника и катод, такой же контакт, но к внешнему n-слою.
  3. Всего имеются не более 2 управляющих электродов, которые подсоединены к внутренним слоям полупроводника.
  4. Если в устройстве полностью отсутствуют управляющие электроды, то такой прибор является особой разновидностью – динистором. При наличии 1 электрода, прибор относится к классу тринисторов. Управление может осуществляться через анод или катод, данный нюанс зависит от того, к какому слою был подключен управляющий электрод, но на сегодняшний день наиболее распространен второй вариант.
  5. Данные приборы могут подразделяться на виды, в зависимости от того, пропускают они электрический ток от анода к катоду или сразу в обоих направлениях. Второй вариант устройства получил название симметричные тиристоры, обычно состоящие из 5 полупроводниковых слоев, по своей сути они являются симисторами.
  6. При наличии в конструкции управляющего электрода, тиристоры могут быть разделены на запираемую и незапираемую разновидность. Отличие второго вида заключается в том, что такой прибор не может быть никаким способом переведен в закрытое состояние.

внешний вид тиристоров

Принцип действия тиристора, подключенного к цепи постоянного тока, заключается в следующем:

  1. Включение прибора происходит благодаря получению цепью импульсов электрического тока. Подача происходит на полярность, которая является положительной относительно катода.
  2. На протяженность процесса перехода оказывает влияние целый ряд различных факторов: вид нагрузки; температура полупроводникового слоя; показатель напряжения; параметры тока нагрузки; скорость, с которой происходит нарастание управляющего тока и его амплитуда.
  3. Несмотря на значительную крутизну управляющего сигнала, скорость нарастания напряжения не должна достигать недопустимых показателей, поскольку это может вызвать внезапное отключение прибора.
  4. Принудительное отключение устройства может быть осуществлено разными способами, наиболее распространен вариант с подключением в схему коммутирующего конденсатора, обладающего обратной полярностью. Такое подключение может происходить благодаря наличию второго (вспомогательного) тиристора, который спровоцирует возникновение разряда на основной прибор. В таком случае, разрядный ток, прошедший через коммутирующий конденсатор, столкнется с прямым током основного прибора, что понизит его значение до нулевого показателя и вызовет отключение.

принцип работы

Немного отличается принцип действия тиристора, подключенного к цепи переменного тока:

  1. В таком положении прибор может осуществлять включение или отключение цепей с разными типами нагрузки, а также изменять значения электрического тока через нагрузку. Это происходит благодаря возможности тиристорного прибора изменять момент, в который осуществляется подача управляющего сигнала.
  2. При подключении тиристора в подобные цепи, применяется исключительно встречно-параллельное включение, поскольку он может проводить ток лишь в одном направлении.
  3. Показатели электрического тока изменяются благодаря внесению изменений в момент, когда происходит передача открывающих сигналов на тиристоры. Этот параметр регулируется при помощи специальной системы управления, относящейся к фазовой либо широтно-импульсной разновидности.
  4. При использовании фазового управления, кривая электрического тока будет обладать несинусоидальной формой, это также вызовет искажение формы и напряжения в электросети, от которой происходит питание внешних потребителей. Если они обладают высокой чувствительностью к высокочастотным помехам, то это может вызвать сбои в процессе функционирования.

Основные параметры тиристора

тиристорДля понимания принципов функционирования данного прибора и последующей работы с ним, необходимо знать его основные параметры, к которым относятся:

  1. Напряжение включения – это минимальный показатель анодного напряжения, при достижении которого тиристорное устройство перейдет в рабочий режим.
  2. Прямое напряжение – это показатель, определяющий падение напряжения при максимальном значении анодного электрического тока.
  3. Обратное напряжение – это показатель максимально допустимого значения напряжения, которое может быть оказано на устройство, когда оно находится в закрытом состоянии.
  4. Максимально допустимый прямой ток, под которым понимается его максимальное возможное значение во время, когда тиристор находится в открытом состоянии.
  5. Обратный ток, который возникает при максимальных показателях обратного напряжения.
  6. Время задержки перед включением или выключением устройства.
  7. Значение, определяющее максимальный показатель электрического тока для управления электродами.
  8. Максимально возможный показатель рассеиваемой мощности.

Советы

тиристоры

В завершение можно дать несколько следующих рекомендаций, которые могут пригодиться при осуществлении проверок тиристровых приборов:

  1. В отдельных ситуациях целесообразно проводить не только проверку исправности, но также и отбор тестируемых приборов по их параметрам. Для этого используется специальное оборудование, но сам процесс усложнен тем, что источник питания обязательно должен обладать напряжением на выходе с показателем не менее 1000В.
  2. Зачастую, проверка выполняется при помощи мультиметров или тестеров, поскольку такое тестирование организовать проще всего, но необходимо знать, что не все модели данных устройств способны осуществить открытие тиристора.
  3. Сопротивление пробитого тиристора чаще всего имеет показатели, близкие к нулю. По этой причине, кратковременное соединение анода исправного прибора с управляющим электродом показывает параметры сопротивления, которые свойственны короткому замыканию, а подобная процедура с неисправным тиристором не вызывает подобной реакции.

Статья была полезна?

0,00 (оценок: 0)

Как проверить тиристор мультиметром на работоспособность не выпаивая

Любое электронное устройство содержит в себе достаточно внушительный перечень электрокомпонентов, которые позволяют ему управлять электрическим током, напряжением и сопротивлением внутри себя. Они нужны в первую очередь для регулирования отдельных электрических параметров, необходимых для нормальной работы того или иного электроприбора. Например, резисторы преобразовывают силу тока в напряжение и наоборот, а транзистор — для увиливания и генерации электроколебаний. Среди таких радиоэлементов есть и тиристор. В этой статье будет рассказано, что такое тиристор и как проверить тринистор мультиметром не выпаивая его из платы или схемы.

Что это такое

Тиристор — это полупроводниковый электрический элемент или прибор. Он нужен для того, чтобы регулировать и коммуницировать токи больших значений. Эти элементы управляют электрической цепью с точки зрения приема электрических токов и их регулирования. С этой точки зрения они напоминают работу транзисторов.

Условные обозначения некоторых элементов на схеме

Как правило, такие элементы обладают тремя выходами: управляющим и двумя, образующими путь для протекания электрических токов. Как известно, транзистор начинает открываться пропорционально величине тока управления цепи. Чем больше ток, тем больше открыт транзистор. Работает это и в обратном направлении. Тиристор же устроен немного иначе: он открывается полностью, но интервалами, задающимися скачками тока. Самое интересное то, что он не закрывается даже тогда, когда не получает управляющего сигнала.

Условные обозначения некоторых элементов на схеме

Характеристики и принцип работы

Согласно схеме, которая будет представлена ниже, можно рассмотреть принцип работу элемента. К аноду этого радиоэлемента подключена лампочка, с которой соединяется вывод плюса источника питания с помощью выключателя K2. Катод же радиоэлемента подключают, соответственно, к минусу питания. Когда цепь включается, на элемент поступает напряжение, но лампочка все равно не горит. Нажав на переключатель K2, электроток пройдет через резистор и направится на электрод управления и лампочка начнет светиться.

Схема подключения тиристора на 1 КОм

Важно! В этом и есть суть тиристора. На схеме его зачастую обозначают латинской буквой G, что означает английское слово Gate (в переводе на русский — ворота или затвор).

Резистор работает таким образом, что ограничивает поступление тока от вывода управления. Минимальный ток срабатывания такого элемента — 1 мА, а допустимый для работы — 15 мА. Именно из-за этого подбирается резистор с сопротивлением 1 кОм. Если нажать на переключатель снова, то ничего не изменится. Закрыть его можно отключением питания. Таким образом, тиристор — это своего рода электронный ключ с фиксацией.

Тиристор с подсоединенными проводами

Что качается технических характеристик, то все зависит от модели конкретного элемента. В общем случае этот элемент характеризуют:

  • Обратное напряжение;
  • Закрытое напряжение;
  • Импульс;
  • Повторяющийся импульс;
  • Среднее напряжение;
  • Обратный ток;
  • Время включения и выключения;
  • Постоянное напряжение;
  • Ток в открытом напряжении.
Подключение лампочки к тиристору

Схема проверки

Чтобы проверить элемент и узнать, рабочий ли он, нужна лампочка, три провода (проводника) и питающий элемент постоянного тока. Если это блок питания, то на нем необходимо выставить напряжение, достаточное для загорания светодиода. Далее необходимо привязать и припаять провода к каждому выводу радиоэлемента.

Важно! На анод подается «плюс» питания, а на катод — «минус», который будет проходить через лампочку.

Подключение питания цепи с помощью обычной пальчиковой батарейки

После этого необходимо подать напряжение на электрод управления. Для обычного тиристора это больше 0.2 Вольт, поэтому хватит и батарейки на полтора Вольта. Когда напряжение будет подано, лампочка зажжется. Для проверки можно использовать щупы мультитестера ( на их концах напряжение также больше 0.2 Вольт), но об этом в следующем разделе. Если убрать питание, то лампочка будет продолжать гореть, так как подан импульс управляющего электрода. Закрыть тиристор можно, отключив лампочку или убрав щупы мультиметра.

Если питания нет, то мультиметр будет показывать бесконечное напряжение, то есть единицу

Чем можно проверить тиристор на исправность

Чтобы проверить тиристор на работоспособность не выпаивая его, можно пользоваться специальными приборами:

  • Мультиметром. На концах щупов прибора имеется напряжение, которое можно подать на электрод. Для этого замыкается анод и электрод. В результате сопротивление резко падает: на мультиметре это видно. Это свидетельствует о том, что тиристор отрылся. Если отпустить мультиметр, то он снова будет показывать бесконечное сопротивление.
  • Тестером. Для проверки понадобится не только тестер, но и источник питания от 6 до 10 Вольт, а также провода. Необходимо включить тестер между катодом и анодом, а после этого подключить батарейку между электродом управления и катодом. Если подача питание не осуществляется, то тиристор работает некорректно. Также если питание постоянное при любом напряжении, то элемент также работает неверно.
Вот как описанная схема тиристорного элемента выглядит на практике

Таким образом, было рассмотрено, как проверить тринистор на работоспособность и основные способы ее проверки. Проверять правильность работы и прозвонить состояние тринистора можно, используя несколько способов: мультиметровый и тестерный. Оба отлично справляются с поставленной задачей.

Переключение тиристоров с использованием демпфирующей цепи

Демпферы — это цепи поглощения энергии, используемые для сглаживания скачков напряжения, вызванных индуктивностью цепи. Иногда из-за перегрузки по току, перенапряжения и перегрева компонент выходит из строя. Итак, для максимальной токовой защиты цепи мы используем предохранители в подходящих местах, а для перегрева мы используем радиаторы или вентиляторы.

Демпферные цепи используются для ограничения скорости изменения напряжения или тока (di / dt или dv / dt) и перенапряжения во время включения и выключения цепи.Демпферная цепь — это комбинация резисторов и конденсаторов, соединенных последовательно через переключатель, например, транзистор или тиристор, для защиты, а также для повышения производительности. В переключателях и реле также используются демпфирующие цепи для предотвращения дугового разряда.

В этом проекте мы покажем вам , как схема демпфера защищает тиристор от перенапряжения или перегрузки по току. Схема состоит из демпфирующей цепи на тиристоре и схемы генератора частоты, использующей микросхему таймера 555.

Необходимые материалы

  • Тиристор-TYN612 (SCR)
  • 555 таймер IC
  • Резистор (47к-2,10к-2,1к-1,150-1)
  • Конденсатор (0,01 мкФ, 0,001 мкФ, 0,1 мкФ-2)
  • Диод-1Н4007
  • Переключатель
  • Осциллограф (для подтверждения вывода)
  • Питание 9В
  • Соединительные провода

Принципиальная схема

Thyristor Switching Circuit diagram using Snubber

Часть 2 этой схемы используется для получения характеристики переключения тиристора со схемой демпфера.

Тиристор — TYN612

Здесь, в названии Thyristor TYN612 , «6» указывает значение повторяющегося пикового напряжения в закрытом состоянии, V DRM и V RRM составляет 600 В, а «12» указывает значение RMS во включенном состоянии. ток, I T (RMS) составляет 12 А. Тиристор TYN612 подходит для всех режимов управления, таких как защита от перенапряжения, цепи управления двигателем, цепи ограничения пускового тока, цепи зажигания емкостного разряда и цепи регулирования напряжения.Диапазон тока затвора срабатывания (I GT ) составляет от 5 мА до 15 мА. Диапазон рабочих температур от -40 до 125 ° C. Узнайте больше о тиристоре здесь.

Распиновка тиристора TYN612

Конфигурация выводов тиристора TYN612

Контакт NO.

Имя контакта

Описание

1

К

Катод тиристора

2

А

Анод тиристора

3

G

Затвор тиристора, используется для запуска

Расчет демпфирующей цепи

Как мы знаем, демпферная цепь представляет собой комбинацию резистора и конденсатора.Конденсатор, используемый в цепи демпфера, может предотвратить нежелательное срабатывание dv / dt тиристора или тиристора. Когда напряжение прикладывается к цепи, внезапное напряжение появляется на переключающем устройстве. Конденсатор Cs ведет себя как короткое замыкание, что приводит к нулевому напряжению на тиристоре. По мере того, как время идет, напряжение на конденсаторе Cs растет с медленной скоростью. Таким образом, значение dv / dt на конденсаторе C2 и тиристоре становится меньше, чем максимальное значение du / dt устройства.

Теперь вопрос в том, какая польза от сопротивления R S ? Когда SCR включен, конденсатор разряжается через SCR и посылает ток, равный Vs / R S . Поскольку сопротивление достаточно НИЗКОЕ, di / dt будет иметь тенденцию быть достаточно высоким, что может повредить SCR. Так, для ограничения величины разрядного тока используется сопротивление R S .

Работа демпферной цепи

Схема разделена на две части.Первый используется в качестве схемы генератора частоты с использованием микросхемы таймера 555, выход которой используется для питания клеммы затвора тиристора. Вторая часть схемы используется для проверки переключения тиристора или тринистора со схемой демпфера и без цепи демпфера.

Вариант I: без демпферной цепи

Когда демпферная цепь отсутствует на SCR, как показано на схеме выше, возникают всплески высокого напряжения, как вы можете видеть на диаграмме ниже.Поэтому для сглаживания скачков напряжения мы используем демпферную схему, которая предотвращает повреждение устройства из-за перенапряжения или ложного срабатывания du / dt.

Вариант II: со схемой демпфера

Thyristor Switching Circuit diagram using Snubber

Когда цепь демпфера присутствует на тиристоре, она снижает или сглаживает скачки напряжения, как показано на диаграмме ниже. Следовательно, устройство не будет повреждено из-за перенапряжения, а также снижает значение du / dt устройства, чем максимальное значение.

.

Проверка прогиба / Проверка работоспособности в SDC Verifier

Для гражданского строительства и многих других отраслей важно обеспечить соответствие конструкции функциональным требованиям — предельному состоянию эксплуатационной пригодности (SLS). Это не влечет за собой обрушение или прочность здания, но снижает его полезность и жесткость.

Что такое проверка прогиба

Прогиб стержней — это одна из проверок, которая должна выполняться при расчете предельного состояния эксплуатационной пригодности.Прогиб — это смещение внутри элемента конструкции под действием нагрузок без учета смещения остальной части конструкции.

The deflection limits

Пределы прогиба стержней балки в целом зависят от пролета балки (длины стержня). Поскольку требования к разным типам элементов балки различаются, проектировщик обязан выбрать соответствующие пределы.

Как проверить прогиб стержня в модели FEM

Выполнение проверки прогиба в общем пакете CAE (например, Ansys, Femap, Simcenter3D и т. Д.) — простая, но трудоемкая задача, потому что:

  • Прогиб балки не такой же, как узловое смещение узлов балки
  • Предел прогиба зависит от типа балки и пролета балки (длины стержня)
  • Прогиб необходимо проверять для каждого сценария нагрузки

Разница между смещением модели и прогибом балки

Первая проблема заключается в том, что анализ методом конечных элементов не предоставляет вам результаты прямого отклонения, а предоставляет только узловые перемещения в глобальной системе координат, что требует дополнительной постобработки.Влияние смещения точек опоры балки следует исключить из смещения узлов балки.

displacement of the nodes of the beam member

Какой допустимый прогиб балки

Пределы отклонения различаются в зависимости от стандарта и могут быть даже разными для разных стран, которые используют один и тот же стандарт, например, серию Еврокодов, где каждая страна может дополнительно указывать пределы в национальных приложениях.

В общем, пределы прогиба основаны на длине (пролете) элементов балки, что приводит к различным допустимым прогибам в каждой точке или узле конструкции.Например, пределы эксплуатационной пригодности, предложенные Национальным приложением Великобритании к Еврокоду 3 (BS EN 1993-1-1) для допустимых вертикальных и горизонтальных прогибов, показаны ниже:

Консоли Длина / 180
Балки несущие штукатурку хрупкой отделки пролет / 360
Балки прочие (кроме прогонов и перил) пролет / 200
Прогон и перила Для соответствия характеристикам облицовки

Это необходимо перенести на все узлы стержня балки в модели:

beam model

Сочетания нагрузок

Поскольку стандарты предписывают проверять большое количество сценариев нагрузки (или загружений, как мы их называем в SDC Verifier), проверку прогиба необходимо повторить также для всех этих загружений.

Для простого анализа (например, 50 балок и 20 сценариев нагрузки) инженер должен выполнить 50 x 20 = 1000 расчетов. Подумайте, сколько времени вам понадобится для сложных моделей с более чем сотней загружений и гораздо большим количеством элементов балки.

Решение SDC Verifier

Как мы справляемся с вышеуказанными трудностями в SDC Verifier?

Распознавание стержня балки

С помощью инструмента поиска элементов балки SDC Verifier автоматически распознает длины стержней балки:

Beam Member Finder

Пересчет узлового расчета на прогиб балки

Прогиб всех узлов балки рассчитывается автоматически.Для всех отдельных нагрузок и всех комбинаций нагрузок общая деформация узлов балки и опорных узлов переносится в результаты прогиба балки. Максимальный прогиб узлов элемента сравнивается с конкретным пределом прогиба. На рисунке ниже для случая одиночной нагрузки показаны как общие глобальные смещения (слева), так и прогиб балки (справа)

.

displacement and deflection

Для балки 7 прогиб для первого сочетания нагрузок показан ниже:

Результаты группы нагрузки (результаты конверта)

Чтобы оценить, находятся ли прогибы ниже предельных значений, достаточно отобразить одну таблицу или график для группы сценариев нагрузки или группы нагрузки в SDC Verifier.

В таблице ниже приведены результаты и показано, какой сценарий нагрузки является определяющим (источник абсолютного максимального прогиба) для каждого элемента балки:

Член Длина Мин. Отклонение Максимальный прогиб Прогиб / Длина Допустимое Коэффициент использования Исходная нагрузка
Член 1 3000 -1,11 1.11 0,000370 0,005 0,07 LC4
Участник 2 3000 -1,11 1.11 0,000370 0,005 0,07 LC4
Участник 3 3000 -0,55 0,55 0,000182 0,005 0,04 LC4
Участник 4 3000 -0.55 0,55 0,000182 0,005 0,04 LC4
Член 5 4000 0,0 0,71 0,000178 0,005 0,04 LC2
Член 6 4000 0,0 0,71 0,000178 0,005 0,04 LC2
Участник 7 4000 -4.82 0,0 0,001200 0,005 0,24 LC2
Участник 8 4000 -4,82 0,0 0,001200 0,005 0,24 LC2
Пучок 9,1 3000 0,0 0,8 0,000266 0,005 0,05 LC4
Пучок 9,2 3000 0.0 1,66 0,000554 0,005 0,11 LC4
Пучок 10,1 3000 0,0 1,66 0,000554 0,005 0,11 LC4
Пучок 10,2 3000 0,0 0,8 0,000266 0,005 0,05 LC4
Пучок 11,1 3000 0.0 1,66 0,000554 0,005 0,11 LC4
Пучок 11,2 3000 0,0 0,8 0,000266 0,005 0,05 LC4
Пучок 12,1 3000 0,0 0,8 0,000266 0,005 0,05 LC4
Пучок 12,2 3000 0.0 1,66 0,000554 0,005 0,11 LC4
Элемент 13 (Y) 5000 0,0 0,0 0,000000 0,005 0,0 LC1
Элемент 14 (Y) 5000 0,0 0,0 0,000000 0,005 0,0 LC1
Элемент 15 (Y) 5000 0.0 0,0 0,000000 0,005 0,0 LC1
Элемент 16 (Y) 5000 0,0 0,0 0,000000 0,005 0,0 LC1

Для каждой группы нагрузок результаты экстремального прогиба (мин. / Макс. / Абс. Макс.) Для всех сочетаний нагрузок из группы нагрузок могут быть показаны на рисунке ниже показаны результаты максимального прогиба для полной модели и всех сценариев нагрузки:

full model and all load scenarios

Заключение

SDC Verifier содержит все необходимые инструменты для быстрого выполнения проверки прогиба прямо в вашей любимой программе FEA.(В настоящее время поддерживаются Ansys, Femap и Simcenter 3D). Автоматическое распознавание стержней балки, преобразование результатов и использование результатов огибающей группы нагрузки значительно сокращают время вычислений и постобработки. Поэтому, если вы ищете инструмент для проверки результатов вашей модели непосредственно в программном обеспечении FEA, SDC Verifier предлагает вам все инструменты для быстрого соответствия стандартам без утомительной ручной постобработки.

Похожие сообщения

.

Руководство по администрированию унифицированного обслуживания Cisco, выпуск 12.5 (1) — Инструменты и отчеты [Cisco Unified Communications Manager (CallManager)]

Отчет о действиях по вызову не поддерживает услуги обмена мгновенными сообщениями и присутствия и Cisco Unity Connection.

Отчет об активности вызовов содержит следующие линейные диаграммы:

  • Активность вызовов Unified Communications Manager для кластера

  • H.Активность вызовов шлюзов 323 для кластера

  • Активность вызовов шлюзов MGCP для кластера

  • Шлюзы MGCP

  • Активность вызовов по внешней линии для кластера

Действия вызова Cisco Unified Communications Manager для кластера

На линейной диаграмме отображается количество выполненных вызовов Unified Communications Manager и вызовов, которые были выполнены.В конфигурации кластера Unified Communications Manager на линейной диаграмме отображается количество попыток и выполненных вызовов. для всего кластера. Диаграмма состоит из двух строк, одна для количества попыток вызова, а другая для количество завершенных звонков. Для конфигурации кластера Unified Communications Manager каждая строка представляет значение кластера, которое представляет собой сумму значений для всех серверов в кластере (для которых доступны данные).Каждые данные Значение на диаграмме представляет собой общее количество попыток вызовов или вызовов, которые были выполнены в течение 15 минут.

Если отсутствуют данные о выполненных вызовах Unified Communications Manager, Reporter не создает строку, представляющую данные о совершенных звонках. Если данные о выполненных вызовах Unified Communications Manager отсутствуют, Reporter не генерирует строку, представляющую данные для выполненных вызовов.В кластере Unified Communications Manager конфигурации, если данные для сервера в кластере отсутствуют, Reporter не создает строку, которая представляет попытки вызовов или завершено на этом сервере. Если данные по вызовам Unified Communications Manager отсутствуют, Reporter не создать диаграмму. Отобразится сообщение «Нет данных для отчета об активности вызовов».

Рисунок 12.Линейная диаграмма, отображающая активность вызовов Cisco Unified Communications Manager для кластера. На следующем рисунке показана линейная диаграмма, представляющая количество предпринятых и выполненных вызовов для унифицированных коммуникаций. Управляющий кластер.

Активность вызовов шлюзов H.323 для кластера

На линейной диаграмме отображается количество попыток и выполненных вызовов для шлюзов H.323. В едином В конфигурации кластера Communications Manager на линейной диаграмме отображается количество попыток и выполненных вызовов для весь кластер.Диаграмма состоит из двух строк, одна для количества совершенных вызовов, а другая — для номера. звонков, которые были выполнены. Для конфигурации кластера Unified Communications Manager каждая строка представляет кластер. значение, равное сумме значений для всех серверов в кластере (для которых доступны данные). Каждое значение данных На диаграмме представлено общее количество попыток вызовов или вызовов, которые были выполнены в течение 15 минут.Если данные о выполненных вызовах шлюзов H.323 отсутствуют, Reporter не создает строку, представляющую данные для звонки, которые были выполнены. Если данные о попытках вызовов шлюзов H.323 отсутствуют, Reporter не создает строка, представляющая данные о попытках вызова. В конфигурации кластера Unified Communications Manager, если нет данные существуют для сервера в кластере, Reporter не генерирует строку, которая представляет попытки или завершенные вызовы на этом сервере.Если данные об активности вызовов шлюзов H.323 отсутствуют, Reporter не создает диаграмму.

Рисунок 13. Линейная диаграмма, отображающая активность вызовов шлюза H.323 для кластера. На следующем рисунке показана линейная диаграмма, представляющая активность вызовов шлюза H.323 для Unified Communications Manager. кластер.

Активность вызовов шлюзов MGCP для кластера

На линейной диаграмме отображается количество вызовов, которые были выполнены за час для шлюзов MGCP FXO, FXS, PRI и T1CAS.В В конфигурации кластера Unified Communications Manager на диаграмме отображается количество вызовов, выполненных за весь период. Кластер Unified Communications Manager. Диаграмма состоит максимум из четырех строк, одна для количества звонков, которые были заполняется для каждого из типов шлюзов (по которым доступны данные). Каждое значение данных в диаграмме представляет собой общее число звонков, которые были выполнены в течение 15 минут.Если данные для шлюза отсутствуют, Reporter не создает строку который представляет данные для вызовов, которые были выполнены для определенного шлюза. Если нет данных для всех шлюзов, Reporter не генерирует диаграмму.

Рисунок 14. Линейная диаграмма, отображающая активность вызовов шлюзов MGCP для кластера. На следующем рисунке показана линейная диаграмма, представляющая активность вызовов шлюзов MGCP для Unified Communications Manager. кластер.

Шлюзы MGCP

На линейной диаграмме отображается количество портов в обслуживании и активных портов для шлюзов MGCP FXO, FXS и количество входных каналов. Служба или каналы активны для шлюзов PRI, T1CAS. Для конфигурации кластера Unified Communications Manager диаграмма отображает данные для всего кластера Unified Communications Manager. График состоит из восьми строк, по две строки в каждой. количество обслуживаемых портов для MGCP FXO и FXS, и две строки каждая для количества активных портов для MGCP FXO и FXS.Существуют еще четыре строки для количества обслуживаемых участков и активных каналов для шлюзов PRI и T1CAS. Для унифицированных коммуникаций Конфигурация кластера диспетчера, каждая строка представляет значение кластера, которое является суммой значений для всех серверов в кластер (по которому есть данные). Каждое значение данных в диаграмме представляет общее количество обслуживаемых портов, количество количества активных портов, обслуживаемых участков или каналов, активных в течение 15 минут.Если нет данных о количестве проходов в Служба или активные каналы для шлюза (MGCP PRI, T1CAS) для всех серверов, Reporter не генерирует строку, представляющую данные для этого конкретного шлюза.

Рисунок 15. Линейная диаграмма, изображающая шлюзы MGCP. На следующем рисунке показана линейная диаграмма, представляющая шлюзы MGCP.

Активность вызовов по внешней линии для кластера

На линейной диаграмме отображается количество выполненных вызовов и попыток вызовов за час для внешней линии SIP и H.323 багажник. Для конфигурации кластера Unified Communications Manager на диаграмме отображается количество выполненных вызовов. и вызовы, которые были предприняты для всего кластера Unified Communications Manager. График состоит из четырех строк, по две для количество вызовов, которые были выполнены для каждой магистрали SIP и H.323 (для которых доступны данные) и два для номера попыток звонков.Для конфигурации кластера Unified Communications Manager каждая строка представляет кластер. значение, которое представляет собой сумму значений для всех узлов в кластере (для которых доступны данные). Каждое значение данных в диаграмме представляет собой общее количество вызовов, которые были выполнены, или количество вызовов, которые были предприняты в течение 15 минут. Если данные для магистрали отсутствуют, Reporter не создает строку, представляющую данные для вызовов, которые были выполнены. или вызовов, которые были предприняты для этой конкретной магистрали.Если данные для обоих типов ствола отсутствуют, Reporter не генерирует график.

Рисунок 16. Линейная диаграмма, отображающая активность вызовов по внешней линии для кластера. На следующем рисунке показана линейная диаграмма, представляющая активность вызовов по соединительным линиям для кластера Unified Communications Manager.

Сервер (или каждый сервер в конфигурации кластера Unified Communications Manager) содержит файлы журнала, соответствующие имени файла шаблон CallLog_mm_dd_yyyy_hh_mm.csv. В файле журнала существует следующая информация:

  • вызовов, которые были предприняты, и вызовов, которые были выполнены для Unified Communications Manager (или для каждого сервера в Unified Кластер Communications Manager)

  • Выполненные вызовы и завершенные вызовы для H.323 шлюза (или для шлюзов на каждом сервере в единой Кластер Communications Manager)

  • вызовов, которые были выполнены для шлюзов MGCP FXO, FXS, PRI и T1CAS (или для шлюзов на каждом сервере в Unified Кластер Communications Manager)

  • Порты в обслуживании, активные порты для шлюзов MGCP FXO и FXS и обслуживаемые участки, каналы, активные для шлюзов PRI и T1CAS (на каждом сервере в кластере Unified Communications Manager)

  • Выполненные вызовы и завершенные вызовы для H.323 соединительных линии и SIP-транков

.

Устройство проверки работоспособности — определение

Примеры предложений с «устройством проверки работоспособности», память переводов

патент-wipoСистемы и методы предоставляют услуги регистрации для мобильных устройств с помощью сети с поддержкой регистрации. Обычное сканированиеВы можете зарегистрироваться непосредственно из большинства мобильные устройства, использующие нашу службу мобильной регистрации на сайте mobile.aircanada.com.support.google Чтобы узнать, можете ли вы использовать RTT с вашим устройством и тарифным планом, обратитесь к своему оператору связи. tmClass Все эти услуги, касающиеся устройств стимуляции, используемых в неврологии и проверке (мониторинг) услуг всех видов, используемых в области неврологии Giga-frenExit polling — хорошее средство для проверки проблем с качеством услуг, потому что опыт еще свеж в памяти клиента.WikiMatrix После обнаружения прерывания ЦП должен проверить все устройства на соответствие требованиям обслуживания. Support.google Примечание. Если вы не уверены, можете ли вы использовать TTY или RTT с вашим устройством и тарифным планом, обратитесь к своему оператору. EURLex-2 Должна быть предусмотрена возможность проверки точности считывания и работоспособности устройств с функцией измерения. eurlex При необходимости должна быть предусмотрена возможность проверки точности считывания и исправности устройств с помощью функции измерения. eurLex-21.5.6.При необходимости должна быть предусмотрена возможность проверки точности считывания и работоспособности устройств с помощью функции измерения. Oj4 В интересах эффективного правоприменения желательно, чтобы все регулярные национальные и международные пассажирские перевозки проверялись с помощью стандартного записывающего устройства EurLex-2It В интересах эффективного правоприменения желательно, чтобы все регулярные национальные и международные пассажирские перевозки проверялись с помощью стандартного записывающего устройства. patents-wipo Мобильное устройство также включает услугу регистрации, которая используется для инициирования сообщения о регистрации на рейс уведомление для других связанных устройств в ответ на выбор пользователя инициировать уведомление о регистрации.Eurlex2019 «Сервисное отключение» означает устройство для отключения электрической цепи при проведении проверок и обслуживания ПЭАС, батареи топливных элементов и т. Д. UN-2 «Сервисное отключение» означает устройство для отключения электрической цепи при проведении проверок и обслуживания. RESS, батареи топливных элементов и т. д. MultiUn «Сервисное отключение» означает устройство для отключения электрической цепи при проведении проверок и обслуживания RESS, батареи топливных элементов и т. д.

Показаны страницы 1. Найдено 380 предложений, соответствующих фразе «пригодность к эксплуатации» проверочное устройство ».Найдено за 35 мс. Найдено за 0 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Они поступают из многих источников и не проверяются. Имейте в виду.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *