Чем отличается баллон кислородный от углекислотного: Есть разница между углекислотным и кислородным балоном?

Содержание

Чем отличается кислородный редуктор от углекислотного, и можно ли использовать кислородный на углекислоту

Добрый вечер! У меня есть несколько старых рабочих кислородных редукторов, а сейчас возникла надобность работать с углекислотой. Можно ли использовать кислородный редуктор на углекислоту? И чем они вообще отличаются?

С уважением, Иван Сергеевич.

Здравствуйте, Иван Сергеевич.

Действительно, на первый взгляд оба редуктора похожи – присоединительные размеры, есть 2  манометра, и отличаются цветом только их корпуса. Но это только на первый взгляд.

Кислород – это взрывоопасный газ. В сочетании с парами масла он образует взрывоопасную смесь. При производстве к кислородным редукторам предъявляется много требований.

Итак, чем отличается редуктор кислородный от углекислотного:

    • Кислородный редуктор рассчитан на большее давление на входе (в баллоне), чем углекислотный. Кислород хранится в сжатом виде в баллонах с давлением до 200-225 атмосфер. Для углекислоты достаточно баллона на 100 атмосфер, так как она сжижается уже при 70-80 атмосферах.
    • На кислородных редукторах установлены манометры на входе 25,0 МПа, на выходе на 2,5 МПа.
    • На углекислотном редукторе на входе стоит манометр на 16,0 МПа и на выходе на 1,0 МПА.
    • В кислородных редукторах должно полностью исключаться нахождение паров масла внутри корпуса. Для углекислотных редукторов  такие требования не предъявляются.
    • Предохранительные клапаны редукторов настроены на разное давление. У углекислотных обычно на 9-10 атмосфер, у кислородных на 16,5-18 атмосфер.

Можно ли использовать кислородный редуктор для углекислоты?

Эксплуатация газосварочного оборудования связана с повышенными рисками в связи с высокими давлениями и опасностью химического взрыва. Мы рекомендуем использовать редукторы только по их прямому назначению.

Приводим сравнительную таблицу редукторов кислородных и углекислотных

 

БКО 50-4

УР 6-6

Давление газа на входе, МПа (кгс/см2)

20 (200)

10 (100)

Наибольшее рабочее давление , МПа (кгс/см2)

1,25 (12,5)

0,6 (6,0)

Наибольшая пропускная способность  м3/час

50

8

 

Если вы еще сомневаетесь, подойдет ли ваш кислородный редуктор на углекислоту – лучше проконсультируйтесь у наших специалистов по телефону +7 (812) 642-32-52. Или оставьте заявку на обратный звонок, с помощью специальной формы «получить консультацию».

 

Чем отличается углекислотный баллон от кислородного

Углекислотный баллон предназначен для хранения и транспортировки углекислого газа, кислородный – для хранения и транспортировки кислорода.

Разница между баллонами – в окраске корпуса. Баллон СО2 окрашивается в черный цвет эмалевой краской, имеет надпись «УГЛЕКИСЛОТА» желтого цвета. Кислородный баллон окрашивается эмалевой краской в голубой цвет, имеет надпись «КИСЛОРОД» черного цвета.

Технические характеристики баллонов (объем, рабочее давление, размеры, масса) и комплектация совершенно одинаковы.

Сжиженные и сжатые газы сегодня повсеместно применяются в промышленности и в быту. У всех газовых баллонов есть свои достоинства и недостатки. Любые газовые баллоны – источники повышенной опасности. Умение правильно эксплуатировать баллон позволит предотвратить возникновение чрезвычайных ситуаций и получить максимальную выгоду от его использования.

Особенности хранения и транспортировки

Для хранения и перевозки газов, находящихся под давлением, применяются стальные баллоны. Для удовлетворения нужд широкого круга потребителей осуществляется продажа газовых баллонов, имеющих различную вместительность. Внешне баллоны представляют собой стальные сосуды с запорным вентилем на конце. Исходя из того, каким типом газа будет заполнен сосуд, подбирается конструкция запорного вентиля. Вентили – унифицированные изделия, которые могут быть установлены на любой однотипный сосуд. Например, кислородные вентили устанавливают только на кислородные баллоны. Замена кислородных вентилей на пропановые или ацетиленовые вентили запрещена.

Для защиты баллонов во время транспортировки их горловину закрывают предохранительными колпаками. При сдаче на обмен газовых баллонов в Московской области, бывших в использовании, их горловину также закрывают колпаками.

Конструктивные различия баллонов

Разница в конструкции сосудов, эксплуатируемых под давлением, обуславливается свойствами хранимого газа. В продаже представлены баллоны для хранения природного газа (метана) и сжиженного пропана-бутана. Хранение метана осуществляется в цилиндрических сосудах в сжатом состоянии под давлением 250-300 атмосфер. Сосуды окрашивают в красный цвет и маркируют надписью, выполненной белой краской, «МЕТАН».

В качестве сжиженных газов для газификации жилых домов применяют бутан или пропан, которые при сжатии существенно уменьшаются в объеме и превращаются в жидкость. При превышении температуры газы имеют свойство расширяться, увеличиваясь в объеме. Поэтому сосуды заполняют не полностью, а где-то на 85%. Давление в баллонах достигает 16 атмосфер.

Рекомендованные сообщения

Создайте аккаунт или войдите в него для комментирования

Вы должны быть пользователем, чтобы оставить комментарий

Создать аккаунт

Зарегистрируйтесь для получения аккаунта. Это просто!

Войти

Уже зарегистрированы? Войдите здесь.

Сейчас на странице 0 пользователей

Нет пользователей, просматривающих эту страницу.

Чем отличаются баллоны для сжиженных и сжатых газов?

Сжиженные и сжатые газы сегодня повсеместно применяются в промышленности и в быту. У всех газовых баллонов есть свои достоинства и недостатки. Любые газовые баллоны – источники повышенной опасности. Умение правильно эксплуатировать баллон позволит предотвратить возникновение чрезвычайных ситуаций и получить максимальную выгоду от его использования.

Особенности хранения и транспортировки

Для хранения и перевозки газов, находящихся под давлением, применяются стальные баллоны. Для удовлетворения нужд широкого круга потребителей осуществляется продажа газовых баллонов, имеющих различную вместительность. Внешне баллоны представляют собой стальные сосуды с запорным вентилем на конце. Исходя из того, каким типом газа будет заполнен сосуд, подбирается конструкция запорного вентиля. Вентили – унифицированные изделия, которые могут быть установлены на любой однотипный сосуд. Например, кислородные вентили устанавливают только на кислородные баллоны. Замена кислородных вентилей на пропановые или ацетиленовые вентили запрещена.

Для защиты баллонов во время транспортировки их горловину закрывают предохранительными колпаками. При сдаче на обмен газовых баллонов в Московской области, бывших в использовании, их горловину также закрывают колпаками.

Конструктивные различия баллонов

Разница в конструкции сосудов, эксплуатируемых под давлением, обуславливается свойствами хранимого газа. В продаже представлены баллоны для хранения природного газа (метана) и сжиженного пропана-бутана. Хранение метана осуществляется в цилиндрических сосудах в сжатом состоянии под давлением 250-300 атмосфер. Сосуды окрашивают в красный цвет и маркируют надписью, выполненной белой краской, «МЕТАН».

В качестве сжиженных газов для газификации жилых домов применяют бутан или пропан, которые при сжатии существенно уменьшаются в объеме и превращаются в жидкость. При превышении температуры газы имеют свойство расширяться, увеличиваясь в объеме. Поэтому сосуды заполняют не полностью, а где-то на 85%. Давление в баллонах достигает 16 атмосфер.

Похожие статьи

Углекислота: сорта и безопасное использование

Для использования в сварочном процессе можно купить углекислотуи второго сорта, но тогда потребуется использование осушителей газа, поскольку в отличие от углекислоты высшего и первого сортов, в газе второго сорта содержатся вода и водяные пары.

Каждый сорт углекислоты отличается по своему составу. Объёмная доля углекислого газа в высшем сорте составляет 99,8 процента. Воды в нём не содержится, а доля водяных паров составляет 0,037 грамма на кубометр.

Продукт первого сорта на 99,5 процента состоит из углекислого газа. В нём так же, как и в высшем сорте, нет воды. Содержание водяных паров не выше 0,184 грамма на кубометр. Поскольку в углекислоте первого сорта содержится больше паров, то потребуется использовать осушитель, но, в отличие от газа второго сорта, осушитель можно использовать многократно, до полного истощения силикагеля или другого вещества, которое поглощает воду.

Во втором сорте содержится 98,8 процента углекислого газа. В нём присутствует 0,1 процента воды, а объём водяных паров не нормируется.

Углекислота всех сортов — один из самых безопасных газов. Она не взрывается и не обладает высокой токсичностью. Тем не менее её повышенная концентрация приводит к сокращению кислорода, содержащегося в воздухе, что становится причиной удушья и кислородной недостаточности. Поэтому во время работы с углекислотой необходимо соблюдать меры предосторожности.

Чтобы не допустить высокой концентрации газа, показатель которой превышает пять процентов или 92 грамма на кубометр, работать с углекислотой нужно в хорошо вентилируемых помещениях. Для оценки уровня концентрации газа используются специальные анализаторы переносного или стационарного типа.

Если давление в баллоне с углекислотой уменьшится и станет равным атмосферному, то жидкость может превратиться в снег и газ с очень низкой температурой (-78,6 градусов Цельсия). В результате можно обморозить кожу и повредить слизистые оболочки глаз. Чтобы этого не произошло, работать с углекислотой необходимо в защитных перчатках и очках.

При проведении осмотра цистерны, в которой провозилась углекислота, изнутри используется противогаз. Перед началом работ цистерну проветривают, продувая или вентилируя, и нагревают до температуры окружающей среды. Противогаз можно снять только при объёмной доле углекислоты менее 0,5 процента.

Чем отличается кислородный редуктор от углекислотного

Газобаллонное оборудование-относится к классу повышенной опасности. Выполняя работы с применением подобных устройств,необходимо знать правила и соблюдать необходимые предписания безопасности. В противном случае, существует реальная опасность для здоровья и жизни.

Существует различное газобаллонное оборудование,которое оказывает защитную и вспомогательную функцию при эксплуатации, к ним относятся и редукторы. В зависимости от сферы применения и конструкционных особенностей они могут быть кислородными и углекислотными.

Кислородный редуктор, его особенности

Устройство, которое предназначено для регулировки или снижения газа, который поступает из определенной емкости, например баллона, до необходимого регламентированного уровня называется редуктор. Также он должен обеспечивать стабильный рабочий процесс, если имеет место нахождения на газопроводе или рампе.

Кислородный редуктор - устройство

Кислородный редуктор — устройство

Кислородный редуктор используется для поддержания рабочего давления в баллоне, газопроводе, невзирая на перепады давления в меньшую и большую сторону. Этот агрегат играет огромную роль и имеет значительную ценность для сохранности газобаллонного оборудования. Его конструкция позволяет давать оценку правильной работе всей системы. Если данный узел не устанавливать, вполне реально получить «эффект запирания».

Редуктор кислородный

Данное состояние означает, что газ начнет выходить очень быстрым потоком и скорость его перемещения может достигнуть скорости звука, и баллон начнет вибрировать и двигаться по поверхности.

Кислородный редуктор имеет достаточно простую конструкцию, состоит из:

  • Камеры с высоким давлением.
  • Камеры с рабочим давлением.
  • Соединительного клапана.
  • Манометры для каждой из камер.

Технические параметры указываются в маркировке и обозначают:

  1. «С»- сетевой агрегат.
  2. «Р»- рамповое устройство.
  3. «Б»-баллонное устройство.

Сфера применения кислородных редукторов достаточно широкая:

  • При произведении сварочных работ с применением баллонов, во избежание прерывания подачи газа, качество которого отвечает за результат работы.
  • В медицинских заведениях устройство обеспечивает бесперебойную подачу кислорода пациентам которым введен наркоз и подключена ИВЛ.
  • В авиации редуктор кислородный обеспечивает подачу кислорода пассажирам.

Углекислотный редуктор, особенности

Устройство, которое автоматическим методом понижает давление находящегося внутри углекислого газа и регулирует правильную подачу и стабильное давление на выходе, имеет название углекислотного редуктора. Подобное устройство предназначено для установки на газовые баллоны. Редуктор может осуществлять закрытие затвора выпускающего клапана, в случае прекращения проведения работ.

Редуктор углекислотный

Редуктор углекислотный

Углекислотный редуктор конструктивно состоит из:

  • Клапан и седло с уплотняющими элементами.
  • Мембрана с твердым центром в специальной камере.
  • Пружинный элемент действующий на впускающий и выпускающий клапан.

Новый углекислотный редуктор

Углекислотные редукторы имеют множество сфер применения:

  1. Сварочные процессы производятся при наличии углекислого редуктора, если баллоны наполнены углекислым газом.
  2. Производственное направление синтетических продуктов.
  3. Химические производства.
  4. В пищевой индустрий, при производстве шипучих(газированных) напитков.
  5. В медицинской сфере, при проведении некоторых видов оперативных вмешательств.
  6. В системе водоснабжения,углекислый газ очищает от щелочных отложений.
  7. В сельскохозяйственной практике для обеспечения дополнительного тепла в тепличных структурах.
  8. При производстве бумаги и целлюлозы, где необходимо заменить серную кислоту в качестве связующего компонента.

Редукторы необходимы практически везде,где используется баллонное оборудование с углекислым газом. Цель редуктора контролировать процесс подачи газа и стабилизировать возможные перепады давления.

Отличие кислородного редуктора от углекислотного

Объединяет эти два типа редукторов-одно, они предназначены для регулирования давления при подаче газа. Отличия есть в целевом предназначении, в популярности и в конструкции. Так, редукторы отличаются диаметром форсунки выпускающего клапана, масштабами накопительной камеры.Также кислородные редукторы используются чаще,поскольку кислород,как газ более востребован в промышленности.

Кислородный редуктор имеет 2 монометрических устройства, в то время как углекислотный-одно. Помимо этого отличие есть в металле, и материалах из которого устроены редуктора. Для того, прибор служил долго, обязательно необходимо подбирать правильно редуктор под вид используемого газа, несоблюдение этого правила может быть опасным.

Заправка углекислоты в баллон из под азота — Технологии сварки

Нашол 40 л. баллон из под азота. С виду как углекислотный, вентиль, черный цвет, желтым цветом написано АЗОТ…Можно в него заправить углекислоту?

0

Спам!

 

Да, можно. При правильной заводской заправке, естественно. Тогда, при 20 градусах Цельсия, в баллоне давление будет 60 атмосфер, при 31,5 С (критическая точка — Ткр = 304,5 град К) примерно Ркр = 72 атмосферы. При дальнейшем росте температуры рост давления в баллоне будет близким к линейному: р1 = 72 х Т1/ 305. Здесь Р1 искомое давление при температуре Т1 (в Келвинах). То есть рост достаточно медленный и, например, при 100 градусах С ( = 373 К) имеем около 90 атмосфер. Коль скоро кислородные, аргонные , азотные и углекислотные баллоны суть одно и то же и рабочее давление у них 150 атмосфер, то и делайте выводы.

Но картина здесь такая же, как и при заправке пропановых баллонов: объем жидкой фазы при заправке не должен превысить некоторого, того, который при тепловом расширении именно жидкой углекислоты превысил бы объем баллона. Вот в этом случае газовая фаза исчезнет раньше достижения критической точки, давление будет расти вследствие расширения чисто жидкой фазы, т.е. горазда быстрее и это может привести к разрыву баллона. В случае заправки углекислотного баллона, как и пропанового, мы имеем дело с двухфазной системой газ — жидкость и все закономерности и опасности сходны. Все это коротенько и без учета нелинейности соответствующих закономерностей, но тем не менее достаточно близко к истине.

А вот что баллоны изготавливаются одинаковые и только потом окрашиваются и подписываются по разному — это факт.

Изменено пользователем дед20

Углекислотные баллоны для сварки: какой выбрать?

Начинающие или кустарные сварщики, выбирая комфортные10-ти или 20-литровые углекислотные баллоны, сталкиваются с проблемой заправки, так как оборудование большинства заправочных станций рассчитано на 40-литровые емкости.

Вы об этом знали? Мы тоже «нет», значит, будем разбираться вместе.

 

 

Качественные сертифицированные баллоны, предлагаемые https://safegas.com.ua/ru/gazovye-ballony/ballony-uglekislotnye-co2/, выпускаются в различных объемах (от 5 до 40 литров) и востребованы как для бытовых нужд, так и в промышленном производстве.

 

Баллоны для сварки: критерии выбора

 

1. Если при производстве сварочных работ вы используете сварочную смесь или аргон, то выбор у вас небольшой — только 40-литровые баллоны, а вот о наличии возможности заправки малых емкостей углекислотой вы всегда можете поинтересоваться у пожарников — по долгу службы им часто приходится заправлять огнетушители.

 

2. Корпус баллона обязательно должен окрашивается в черный цвет и маркируется ярко-желтой надписью с наименованием газа. При приобретении не забывайте проверить наличие «паспорта» — он выдавливается на верхней части емкости и содержит данные о массе, объеме, максимальном рабочем давлении, производителе, клейма технического контроля и пр.

 

 

3. Большое значение для качества сварки и экономии углекислоты играет редуктор (регулятор). По мнению профессионалов, наиболее стабильно поддерживает давление и экономит газ стрелочный регулятор с калиброванным жиклером, а регуляторы с ротаметром только снижают давление газа до нужной величины.

 

 

Эксплуатационные характеристики баллонов

 

1. Масса пустого 40-литровой емкости из углеродистой стали составляет 65 кг, баллон из легированной стали легче — около 55 кг.

2. Срок службы баллона составляет 20 лет (если иное не установлено производителем), но в целях безопасности один раз в пять лет баллон отвозят на обязательную проверку и сертификацию, по результатам которых выдается акт испытаний. 3. При перевозке баллон должен находится в горизонтальном положении, перед началом работы период покоя — не менее 30 минут. 4. В процессе работы углекислотные баллоны не должны находиться рядом с нагревательными приборами и под прямыми солнечными лучами.

 

 

При работе с углекислотными баллонами, прежде всего, важна безопасность, поэтому не стесняйтесь требовать сертификаты соответствия и акты испытаний, проверяйте паспорта и качество изготовления баллонов.

И обязательно обращайтесь к надежным поставщикам — их опыт и знания всегда к вашим услугам!

 

 

Оксиды углерода, кремния, германия, олова и свинца

Оксиды элементов в верхней части группы 4 являются кислыми, но кислотность оксидов падает по мере того, как вы спускаетесь по группе. Ближе к нижней части группы оксиды становятся более основными, хотя и без полной потери кислотного характера.

Оксид, который может проявлять как кислотные, так и основные свойства, называется амфотерным .

Таким образом, наблюдается тенденция от кислых оксидов в верхней части группы к амфотерным в нижней части.


 

Оксиды углерода и кремния

Окись углерода

Окись углерода обычно рассматривается как нейтральный оксид, но на самом деле он очень и очень слабокислый. Он не реагирует с водой, но будет реагировать с горячим концентрированным раствором гидроксида натрия с образованием раствора метаноата натрия.

Тот факт, что окись углерода реагирует с основным гидроксид-ионом, показывает, что он должен быть кислым.


 

Диоксиды углерода и кремния

Оба они слабокислые.

С водой

Диоксид кремния не реагирует с водой из-за сложности разрушения гигантской ковалентной структуры.

Двуокись углерода в некоторой степени реагирует с водой с образованием ионов водорода (строго говоря, ионы гидроксония) и ионов гидрокарбоната.

Всего эта реакция:

Раствор диоксида углерода в воде иногда называют угольной кислотой, но на самом деле только около 0.Фактически прореагировал 1% углекислого газа. Положение равновесия находится намного левее.

С основаниями

Двуокись углерода реагирует с раствором гидроксида натрия на холоде с образованием карбоната натрия или раствора гидрокарбоната натрия — в зависимости от пропорций реакции.

Диоксид кремния также реагирует с раствором гидроксида натрия, но только если он горячий и концентрированный. Образуется раствор силиката натрия.

Вы также можете быть знакомы с одной из реакций, происходящих при извлечении железа в доменной печи — в которой оксид кальция (из известняка, который является одним из сырьевых материалов) реагирует с диоксидом кремния с образованием жидкого шлака, силиката кальция. Это также пример реакции кислого диоксида кремния с основанием.


 

Оксиды германия, олова и свинца

Окиси

Все эти оксиды амфотерные — они проявляют как основные, так и кислотные свойства.

Основная природа оксидов

Все эти оксиды реагируют с кислотами с образованием солей.

Например, все они реагируют с концентрированной соляной кислотой. Кратко это можно представить как:

. . . где X может быть Ge и Sn, но, к сожалению, требует небольшой модификации для свинца.

Хлорид свинца (II) практически нерастворим в воде, и вместо получения раствора он образует нерастворимый слой над оксидом свинца (II), если вы будете использовать разбавленную соляную кислоту , что остановит реакцию.

Однако в этом примере мы говорим об использовании концентрированной соляной кислоты .

Большой избыток хлорид-ионов в концентрированной кислоте реагирует с хлоридом свинца (II) с образованием растворимых комплексов, таких как PbCl 4 2- . Эти ионные комплексы растворимы в воде, и проблема исчезает.

К сожалению, это означает, что вам нужно больше помнить!

.

Кислород и углекислый газ: газообмен и перенос в животных

Цели обучения

  1. Применение закона парциальных давлений для прогнозирования направления движения газа в растворе
  2. Объясните функциональную адаптацию поверхностей газообмена у животных, используя закон Фика (площадь поверхности, расстояние, градиенты концентрации и перфузия).
  3. Сравните и сопоставьте структуру / функцию жабр, трахей и легких
  4. Опишите обратимое связывание O2 с гемоглобином (кривые диссоциации)
  5. Предсказать влияние pH, температуры и концентрации CO2 на сродство гемоглобина к O2

Приведенная ниже информация была адаптирована из OpenStax Biology 39.0

Приведенная ниже информация была адаптирована из OpenStax Biology 39.2

Структура любой респираторной поверхности (легкие, жабры, трахеи) максимально увеличивает ее площадь для увеличения диффузии газа. Из-за огромного количества альвеол (примерно 300 миллионов в каждом легком человека) площадь поверхности легкого очень велика (75 м 2 ). Такая большая площадь поверхности увеличивает количество газа, который может диффундировать в легкие и из них. Респираторные поверхности также чрезвычайно тонкие (обычно толщиной всего в одну клетку), что сводит к минимуму расстояние, на которое газ должен диффундировать по поверхности.

Газообмен при дыхании происходит преимущественно за счет диффузии. Диффузия — это процесс, в котором перенос осуществляется за счет градиента концентрации. Молекулы газа перемещаются из области высокой концентрации в область низкой концентрации. Кровь с низким содержанием кислорода и высоким содержанием углекислого газа в легких подвергается газообмену с воздухом. Воздух в легких имеет более высокую концентрацию кислорода, чем в крови с низким содержанием кислорода, и более низкую концентрацию углекислого газа.Этот градиент концентрации обеспечивает газообмен во время дыхания.

Парциальное давление — это мера концентрации отдельных компонентов в смеси газов. Общее давление, оказываемое смесью, представляет собой сумму парциальных давлений компонентов в смеси. Скорость диффузии газа пропорциональна его парциальному давлению в общей газовой смеси.

Дыхательный процесс можно лучше понять, изучив свойства газов.Газы движутся свободно, но частицы газа постоянно ударяются о стенки своего сосуда, создавая давление газа.

Воздух представляет собой смесь газов, в основном азота (N 2 ; 78,6%), кислорода (O 2 ; 20,9%), водяного пара (H 2 O; 0,5%) и диоксида углерода (CO 2 ; 0,04 процента). Каждый газовый компонент этой смеси оказывает давление. Давление отдельного газа в смеси — это парциальное давление этого газа. Примерно 21 процент атмосферного газа составляет кислород.Однако диоксид углерода содержится в относительно небольших количествах, 0,04 процента. Парциальное давление кислорода намного больше, чем у углекислого газа. Парциальное давление любого газа можно рассчитать по:

P = (Patm) — (процентное содержание в смеси).

P атм , атмосферное давление, представляет собой сумму всех парциальных давлений атмосферных газов, сложенных вместе,

Патм = PN2 + PO2 + Ph3O + PCO2 = 760 мм рт. Ст.

Давление атмосферы на уровне моря 760 мм рт.Следовательно, парциальное давление кислорода составляет:

PO2 = (760 мм рт. Ст.) (0,21) = 160 мм рт. Ст.

и для двуокиси углерода:

PCO2 = (760 мм рт. Ст.) (0,0004) = 0,3 мм рт. Ст.

На больших высотах P атм. уменьшается, но концентрация не меняется; снижение парциального давления связано с уменьшением P атм. .

Когда воздушная смесь достигает легких, они увлажнены. Давление водяного пара в легких не влияет на давление воздуха, но оно должно быть включено в уравнение парциального давления.Для этого расчета давление воды (47 мм рт. Ст.) Вычитается из атмосферного давления:

760 мм рт. Ст. — 47 мм рт. Ст. = 713 мм рт. Ст.

и парциальное давление кислорода:

(760 мм рт. Ст. — 47 мм рт. Ст.) —0,21 = 150 мм рт.

Эти давления определяют газообмен или расход газа в системе. Кислород и углекислый газ будут течь в соответствии с их градиентом давления от высокого к низкому. Следовательно, понимание парциального давления каждого газа поможет понять, как газы движутся в дыхательной системе.

Закон диффузии Фика: правила газового обмена

Скорость диффузии газа по поверхности регулируется следующим образом:

  • k, постоянная диффузии газа
  • А, площадка для газообмена
  • P2-P1, разница парциального давления газа по обе стороны от диффузионного барьера
  • D, расстояние, на которое газ должен диффундировать (толщина диффузионного барьера)

Эти члены связаны следующим уравнением:

Скорость диффузии = k x A x (P2-P1) / D

Газы движутся «вниз» по своему градиенту парциального давления (из областей с высокой концентрацией в области с низкой концентрацией.

Подводя итог обсуждению парциальных давлений выше:

Парциальное давление =

  • Давление определенного газа в смеси газов
  • Дробная составляющая газа x общее давление воздуха в мм рт. Ст.
  • Газ движется вниз по градиенту парциального давления (от высокой до низкой)
  • Атмосфера всегда на 21% состоит из кислорода. Парциальное давление — это давление определенного газа в смеси газов, которое рассчитывается путем умножения фракционного состава конкретного газа на общее давление воздуха в мм рт. Ст.

Парциальное давление кислорода и углекислого газа изменяется по мере движения крови по телу.

Короче говоря, изменение парциального давления от альвеол к капиллярам направляет кислород в ткани, а углекислый газ — в кровь из тканей. Затем кровь транспортируется в легкие, где разница в давлении в альвеолах приводит к перемещению углекислого газа из крови в легкие и кислорода в кровь.

Приведенная ниже информация была адаптирована из OpenStax Biology 39.1

Для небольших многоклеточных организмов диффузии через внешнюю мембрану достаточно для удовлетворения их потребности в кислороде.Газообмен путем прямой диффузии через поверхностные мембраны эффективен для организмов диаметром менее 1 мм. У простых организмов, таких как книдарии и плоские черви, каждая клетка тела находится рядом с внешней средой. Их клетки остаются влажными, а газы быстро диффундируют за счет прямой диффузии. Плоские черви — это маленькие, буквально плоские черви, которые «дышат» путем диффузии через внешнюю мембрану. Плоская форма этих организмов увеличивает площадь поверхности для диффузии, гарантируя, что каждая клетка в теле находится близко к поверхности внешней мембраны и имеет доступ к кислороду.Если бы плоский червь имел цилиндрическое тело, то клетки в центре не могли бы получать кислород.

Процесс дыхания этого плоского червя осуществляется путем диффузии через внешнюю мембрану. (кредит: Стивен Чайлдс)

Дождевые черви и земноводные используют кожу (покровы) как орган дыхания. Плотная сеть капилляров находится чуть ниже кожи и способствует газообмену между внешней средой и кровеносной системой. Поверхность дыхательных путей должна быть влажной, чтобы газы растворялись и распространялись через клеточные мембраны.

Организмы, живущие в воде, должны получать кислород из воды. Кислород растворяется в воде, но в меньшей концентрации, чем в атмосфере. В атмосфере примерно 21 процент кислорода. В воде концентрация кислорода намного меньше. Рыбы и многие другие водные организмы развили жабры (отростки тела, используемые для газообмена), чтобы принимать растворенный кислород из воды. Жабры состоят из тонких тканевых нитей, сильно разветвленных и складчатых. Когда вода проходит через жабры, растворенный в воде кислород быстро распространяется через жабры в кровоток.Затем кровеносная система может переносить насыщенную кислородом кровь к другим частям тела. Благодаря постоянному потоку газа через газообменную мембрану и постоянной разнице парциального давления жабры являются наиболее эффективной дыхательной системой в обмене газов. У животных, которые содержат целомическую жидкость вместо крови, кислород диффундирует через жаберные поверхности в целомическую жидкость. Жабры встречаются у моллюсков, кольчатых червей и ракообразных.

У этого карпа, как и у многих других водных организмов, есть жабры, которые позволяют ему получать кислород из воды.(кредит: «Guitardude012» / Wikimedia Commons)

Складчатые поверхности жабр обеспечивают большую площадь поверхности, чтобы рыба получала достаточно кислорода. Диффузия — это процесс, при котором материал перемещается из областей с высокой концентрацией в области низкой концентрации, пока не будет достигнуто равновесие. В этом случае кровь с низкой концентрацией молекул кислорода циркулирует по жабрам. Концентрация молекул кислорода в воде выше, чем концентрация молекул кислорода в жабрах.В результате молекулы кислорода диффундируют из воды (высокая концентрация) в кровь (низкая концентрация). Точно так же молекулы углекислого газа в крови диффундируют из крови (высокая концентрация) в воду (низкая концентрация).

Когда вода течет по жабрам, кислород по венам переносится в кровь. (кредит «рыба»: модификация работы Дуэйна Равера, NOAA)

Дыхание насекомого не зависит от его кровеносной системы; следовательно, кровь не играет прямой роли в транспорте кислорода.У насекомых есть узкоспециализированная дыхательная система, называемая трахеальной системой, которая состоит из сети небольших трубок, по которым кислород поступает ко всему телу. Поскольку кровеносная система не используется в первую очередь для перемещения газов, а вместо этого газ проходит непосредственно к необходимым тканям, трахеальная система является наиболее прямой и эффективной дыхательной системой для доставки кислорода в респираторные органы. Трубки в трахеальной системе сделаны из полимерного материала, называемого хитином.

Тела насекомых имеют отверстия, называемые дыхальцами, вдоль грудной клетки и брюшка.Эти отверстия соединяются с трубчатой ​​сетью, позволяя кислороду проходить в тело и регулируя диффузию CO 2 и водяного пара. Воздух попадает в трахейную систему и выходит через дыхательные пути. Некоторые насекомые могут вентилировать трахею с помощью движений тела.

Насекомые дышат через трахею.

У млекопитающих легочная вентиляция осуществляется путем вдыхания (дыхания), чтобы воздух попадал в легкие (вздутие горла или поверхности тела, окружающее респираторные поверхности).Во время вдоха воздух попадает в тело через носовую полость, расположенную внутри носа. Когда воздух проходит через носовую полость, он нагревается до температуры тела и увлажняется. Дыхательные пути покрыты слизью, защищающей ткани от прямого контакта с воздухом. Слизь с высоким содержанием воды. Когда воздух проходит через эти поверхности слизистых оболочек, он впитывает воду. Эти процессы помогают уравновесить воздух в соответствии с условиями тела, уменьшая любой ущерб, который может причинить холодный сухой воздух. Твердые частицы, которые плавают в воздухе, удаляются через носовые ходы через слизь и реснички.Процессы нагревания, увлажнения и удаления частиц являются важными защитными механизмами, предотвращающими повреждение трахеи и легких. Таким образом, вдыхание служит нескольким целям в дополнение к доставке кислорода в дыхательную систему.

Воздух попадает в дыхательную систему через носовую полость и глотку, а затем проходит через трахею в бронхи, которые переносят воздух в легкие. (кредит: модификация работы NCI)

Из носовой полости воздух проходит через глотку (горло) и гортань (голосовой ящик), попадая в трахею.Основная функция трахеи — направлять вдыхаемый воздух в легкие, а выдыхаемый — обратно из тела. Человеческая трахея представляет собой цилиндр длиной от 10 до 12 см и диаметром 2 см, который находится перед пищеводом и простирается от гортани в грудную полость, где он разделяется на два основных бронха в средней части грудной клетки. Он состоит из неполных колец гиалинового хряща и гладких мышц. Трахея выстлана слизистыми бокаловидными клетками и мерцательным эпителием. Реснички продвигают инородные частицы, попавшие в слизь, к глотке.Хрящ обеспечивает силу и поддержку трахеи, чтобы проход оставался открытым. Гладкая мышца может сокращаться, уменьшая диаметр трахеи, в результате чего выдыхаемый воздух с огромной силой устремляется вверх из легких. Форсированный выдох помогает избавиться от слизи при кашле. Гладкие мышцы могут сокращаться или расслабляться в зависимости от стимулов внешней среды или нервной системы тела.

Трахея и бронхи состоят из неполных хрящевых колец. (кредит: модификация работы Gray’s Anatomy)

Легкие: бронхи и альвеолы ​​

Конец трахеи разветвляется (делится) на правое и левое легкие.Легкие не идентичны. Правое легкое больше и содержит три доли, тогда как левое легкое меньшего размера содержит две доли. Мышечная диафрагма, облегчающая дыхание, находится ниже (ниже) легких и отмечает конец грудной полости.

В легких трахея разветвляется на правый и левый бронхи. Правое легкое состоит из трех долей и больше. Для размещения сердца левое легкое меньше и имеет только две доли.

В легких воздух попадает в все меньшие и меньшие проходы, или бронхи.Воздух поступает в легкие через два основных (главных) бронха (единственное число: бронх). Каждый бронх делится на вторичные бронхи, а затем на третичные бронхи, которые, в свою очередь, делятся, образуя бронхиолы все меньшего и меньшего диаметра, когда они разделяются и распространяются по легкому. Как и трахея, бронхи состоят из хрящей и гладких мышц. В бронхиолах хрящ заменяется эластичными волокнами. Бронхи иннервируются нервами парасимпатической и симпатической нервных систем, которые контролируют сокращение (парасимпатическая) или расслабление (симпатическая) мышц в бронхах и бронхиолах, в зависимости от сигналов нервной системы.У человека бронхиолы диаметром менее 0,5 мм являются респираторными бронхиолами. У них нет хрящей, и поэтому они полагаются на вдыхаемый воздух, чтобы поддерживать их форму. По мере уменьшения диаметра проходов относительное количество гладких мышц увеличивается.

Терминальные бронхиолы подразделяются на микроскопические ветви, называемые респираторными бронхиолами. Дыхательные бронхиолы подразделяются на несколько альвеолярных протоков. Многочисленные альвеолы ​​и альвеолярные мешки окружают альвеолярные протоки. Альвеолярные мешочки напоминают грозди винограда, привязанные к концам бронхиол.В ацинарной области альвеолярные протоки прикрепляются к концу каждой бронхиолы. В конце каждого протока находится примерно 100 альвеолярных мешочков, каждый из которых содержит от 20 до 30 альвеол диаметром от 200 до 300 микрон. Газообмен происходит только в альвеолах. Альвеолы ​​состоят из тонкостенных паренхимных клеток, обычно толщиной в одну клетку, которые выглядят как крошечные пузырьки внутри мешочков. Альвеолы ​​находятся в непосредственном контакте с капиллярами (толщиной в одну клетку) кровеносной системы. Такой тесный контакт гарантирует, что кислород будет диффундировать из альвеол в кровь и распределяться по клеткам тела.Кроме того, углекислый газ, который вырабатывается клетками в качестве побочного продукта, будет диффундировать из крови в альвеолы ​​для выдоха. Анатомическое расположение капилляров и альвеол подчеркивает структурную и функциональную взаимосвязь дыхательной и кровеносной систем. Поскольку в каждом альвеолярном мешочке так много альвеол (~ 300 миллионов на легкое) и так много мешочков в конце каждого альвеолярного протока, легкие имеют губчатую консистенцию. Эта организация производит очень большую площадь поверхности, доступную для газообмена.Площадь поверхности альвеол в легких составляет примерно 75 м 2 2 . Эта большая площадь поверхности в сочетании с тонкостенным характером альвеолярных паренхиматозных клеток позволяет газам легко диффундировать через клетки.

Терминальные бронхиолы соединяются респираторными бронхиолами с альвеолярными протоками и альвеолярными мешочками. Каждый альвеолярный мешок содержит от 20 до 30 сферических альвеол и имеет вид грозди винограда. Воздух поступает в предсердие альвеолярного мешка, затем циркулирует в альвеолах, где происходит газообмен с капиллярами.Слизистые железы выделяют слизь в дыхательные пути, сохраняя их влажными и гибкими. (кредит: модификация работы Марианы Руис Вильярреаль)

Птичьи легкие

Информация ниже была адаптирована из OpenStax Biology 39.3

Птицы сталкиваются с уникальной проблемой в отношении дыхания: они летают. Полет потребляет много энергии; Таким образом, птицам требуется много кислорода для улучшения метаболических процессов. Птицы развили дыхательную систему, которая снабжает их кислородом, необходимым для полета.Как и у млекопитающих, у птиц есть легкие — органы, специализирующиеся на газообмене. Кислородный воздух, вдыхаемый во время вдоха, диффундирует по поверхности легких в кровоток, а углекислый газ диффундирует из крови в легкие и выводится во время выдоха. Детали дыхания птиц и млекопитающих существенно различаются.

Помимо легких, у птиц внутри тела есть воздушные мешки. Воздух течет в одном направлении от задних воздушных мешков к легким и из передних воздушных мешков.Поток воздуха противоположен потоку крови, и газообмен происходит гораздо эффективнее. Этот тип дыхания позволяет птицам получать необходимый кислород даже на больших высотах, где концентрация кислорода низкая. Эта направленность воздушного потока требует двух циклов впуска и выдоха, чтобы полностью удалить воздух из легких.

Десятилетия исследований палеонтологов показали, что птицы произошли от тераподов, мясоедов. Фактически, ископаемые свидетельства показывают, что динозавры-мясоеды, которые жили более 100 миллионов лет назад, имели аналогичную проточную дыхательную систему с легкими и воздушными мешками.Например, Archeopteryx и Xiaotingia были летающими динозаврами и считаются ранними предшественниками птиц.

(a) Птицы имеют проточную дыхательную систему, в которой воздух течет в одном направлении из задних мешочков в легкие, а затем в передние воздушные мешочки. Воздушные мешочки соединяются с отверстиями в полых костях. (б) Динозавры, от которых произошли птицы, имеют похожие полые кости и, как полагают, имели аналогичную дыхательную систему. (кредит b: модификация работы Зины Дерецкой, Национальный научный фонд)

Большинство из нас считает, что динозавры вымерли.Однако современные птицы являются потомками птичьих динозавров. Дыхательная система современных птиц эволюционировала на протяжении сотен миллионов лет.

На видео ниже представлен обзор дыхательной системы человека:

Информация ниже была адаптирована из OpenStax Biology 39.4

Как только кислород диффундирует через альвеолы, он попадает в кровоток и транспортируется к тканям, где он разгружается, а углекислый газ диффундирует из крови в альвеолы ​​для вывода из организма.Хотя газообмен — это непрерывный процесс, кислород и углекислый газ переносятся разными механизмами.

Хотя кислород растворяется в крови, таким образом транспортируется лишь небольшое количество кислорода. Только 1,5 процента кислорода в крови растворяется непосредственно в самой крови. Большая часть кислорода, около 98,5%, связана с белком, называемым гемоглобином, и переносится в ткани.

Гемоглобин

Гемоглобин или Hb — это белковая молекула, обнаруженная в красных кровяных тельцах (эритроцитах), состоящая из четырех субъединиц: двух альфа-субъединиц и двух бета-субъединиц.Каждая субъединица окружает центральную группу гема, которая содержит железо и связывает одну молекулу кислорода, позволяя каждой молекуле гемоглобина связывать четыре молекулы кислорода. Молекулы с большим количеством кислорода, связанного с гемовыми группами, имеют ярко-красный цвет. В результате насыщенная кислородом артериальная кровь, в которой гемоглобин переносит четыре молекулы кислорода, становится ярко-красной, а деоксигенированная венозная кровь — более темно-красной.

Белок внутри (а) красных кровяных телец, который переносит кислород к клеткам и углекислый газ в легкие, — (б) гемоглобин.Гемоглобин состоит из четырех симметричных субъединиц и четырех гемовых групп. Железо, связанное с гемом, связывает кислород. Именно железо в гемоглобине придает крови красный цвет.

Вторую и третью молекулу кислорода связать с Hb легче, чем первую молекулу. Это связано с тем, что молекула гемоглобина меняет свою форму или конформацию при связывании кислорода. ** Из-за некоторых изменений конформации можно сказать, что четвертый кислород немного сложнее связать, но в целом совместное связывание увеличивает способность кислорода связываться с гемоглобином и достигать большего насыщения.**

Связывание кислорода с гемоглобином можно изобразить как функцию парциального давления кислорода в крови (ось x) в зависимости от относительного насыщения Hb-кислородом (ось y). Полученный график, кривая диссоциации кислорода, имеет сигмоидальную или S-образную форму. По мере увеличения парциального давления кислорода гемоглобин становится все более насыщенным кислородом.

Кривая диссоциации кислорода показывает, что по мере увеличения парциального давления кислорода большее количество кислорода связывает гемоглобин.Однако сродство гемоглобина к кислороду может сдвигаться влево или вправо в зависимости от условий окружающей среды.

Почки отвечают за удаление лишних ионов H + из крови. Если почки откажутся, что произойдет с pH крови и сродством гемоглобина к кислороду?

Факторы, влияющие на связывание кислорода

Переносимость кислорода гемоглобином определяет, сколько кислорода переносится кровью. Помимо PO2, другие факторы окружающей среды и заболевания могут влиять на пропускную способность и доставку кислорода.

Уровни углекислого газа, pH крови и температура тела влияют на способность переносить кислород. Когда диоксид углерода находится в крови, он реагирует с водой с образованием бикарбоната (HCO3-)

и ионы водорода (H + ). По мере увеличения уровня углекислого газа в крови вырабатывается больше H + и снижается pH. Это увеличение углекислого газа и последующее снижение pH снижает сродство гемоглобина к кислороду. Кислород диссоциирует от молекулы Hb, сдвигая кривую диссоциации кислорода вправо.Следовательно, для достижения такого же уровня насыщения гемоглобина, как при более высоком pH, требуется больше кислорода. Подобный сдвиг кривой также является следствием повышения температуры тела. Повышенная температура, например, из-за повышенной активности скелетных мышц, вызывает снижение сродства гемоглобина к кислороду.

Молекулы углекислого газа переносятся в крови из тканей организма в легкие одним из трех способов: растворением непосредственно в крови, связыванием с гемоглобином или переносом в виде бикарбонат-иона.Некоторые свойства углекислого газа в крови влияют на его транспорт. Во-первых, углекислый газ более растворим в крови, чем кислород. В плазме растворяется от 5 до 7 процентов всего углекислого газа. Во-вторых, углекислый газ может связываться с белками плазмы или может проникать в эритроциты и связываться с гемоглобином. Эта форма переносит около 10 процентов углекислого газа. Когда диоксид углерода связывается с гемоглобином, образуется молекула, называемая карбаминогемоглобином. Связывание диоксида углерода с гемоглобином обратимо.Следовательно, когда он достигает легких, углекислый газ может свободно отделяться от гемоглобина и выводиться из организма.

В-третьих, большая часть молекул углекислого газа (85 процентов) переносится как часть бикарбонатной буферной системы. В этой системе углекислый газ диффундирует в эритроциты. Карбоангидраза (КА) в красных кровяных тельцах быстро превращает углекислый газ в угольную кислоту (H 2 CO 3 ). Угольная кислота — это нестабильная промежуточная молекула, которая немедленно диссоциирует на ионы бикарбоната (HCO-3) и ионы водорода (H + ).Поскольку углекислый газ быстро превращается в ионы бикарбоната, эта реакция позволяет продолжать поглощение углекислого газа кровью при понижении градиента его концентрации. Это также приводит к образованию ионов H + . Если вырабатывается слишком много H + , это может изменить pH крови.

Когда кровь достигает легких, ион бикарбоната переносится обратно в эритроцит в обмен на ион хлорида. Ион H + отделяется от гемоглобина и связывается с ионом бикарбоната.При этом образуется промежуточная углекислота, которая снова превращается в диоксид углерода за счет ферментативного действия СА. Производимый углекислый газ выводится через легкие во время выдоха.

Преимущество бикарбонатной буферной системы состоит в том, что углекислый газ «всасывается» в кровь с незначительным изменением pH системы. Это важно, потому что требуется лишь небольшое изменение общего pH тела, чтобы наступила серьезная травма или смерть. Наличие этой бикарбонатной буферной системы также позволяет людям путешествовать и жить на больших высотах: когда парциальное давление кислорода и углекислого газа изменяется на большой высоте, бикарбонатная буферная система регулирует регулирование содержания углекислого газа при поддержании правильного pH в организме. .

На видео ниже представлен обзор переноса кислорода и углекислого газа в кровотоке человека:

Автор: Шана Керр, 16 ноября 2016 г., 22 марта 2020 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *