Примеры металлов теплопроводность: Теплопроводность металлов и сплавов, коэффициент теплопроводности

Содержание

Теплопроводность металлов и сплавов таблица


Пояснения сравнительных величин приборов отопления

Из представленных выше данных, видно, что наиболее высоким показателем теплоотдачи обладает биметаллическое отопительное устройство. Конструктивно такой прибор представлен компанией RIFAR в ребристом алюминиевом корпусе. в котором располагаются металлические трубки, вся конструкция крепится сварным каркасом. Этот вид батарей ставится в домах с большой этажностью, а также в коттеджах и частных домах. К недостатку этого вида отопительного устройства относится его дороговизна.

Важно! Когда этот вид батарей ставится в домах с большим количеством этажей, рекомендуется иметь собственную котельную станцию, в которой есть узел водоподготовки. Это условие предварительной подготовки теплоносителя связано со свойствами алюминиевых батарей

они могут подвергаться электрохимической коррозии, когда он поступает в некачественном виде через центральную сеть отопления. По этой причине отопительные приборы из алюминия рекомендуется ставить в отдельных системах отопления.

Чугунные батареи в этой сравнительной системе параметров значительно проигрывают, у них низкая теплоотдача, большой вес отопительного прибора. Но, несмотря на эти показатели, радиаторы МС-140 пользуются спросом населения, причиной которого являются такие факторы:

Длительность безаварийной эксплуатации, что важно в отопительных системах. Стойкость к негативному воздействию (коррозии) теплового носителя. Тепловая инерционность чугуна.

Данный вид устройств отопления работает более 50 лет, для него нет разницы в качестве подготовки теплового носителя. Нельзя их ставить в домах, где, возможно, высокое рабочее давление сети отопления, чугун не относится к прочным материалам.

Сравнение по другим характеристикам

Об одной особенности работы батарей – инертности – уже было упомянуто выше. Но для того чтобы сравнение радиаторов отопления было корректным, его надо производить не только по теплоотдаче, но и по другим важным параметрам:

  • рабочему и максимальному давлению;
  • количеству вмещаемой воды;
  • массе.

Ограничение по величине рабочего давления определяет, можно ли устанавливать отопительный прибор в многоэтажных зданиях, где высота столба воды может достичь сотни метров. Кстати сказать, это ограничение не касается частных домов, где давление в сети не бывает высоким по определению. Сравнение по вместительности радиаторов может дать представление об общем количестве воды в системе, которое придется нагревать. Ну а масса изделия важна при определении места и способа его крепления.

В качестве примера ниже показана сравнительная таблица характеристик различных радиаторов отопления одинакового размера:

Примечание. В таблице за 1 единицу принят отопительный прибор из 5 секций, кроме стального, представляющего собой единую панель.

Конвекция

Конвекция

— это процесс теплопередачи, осуществляемый путем переноса энергии потоками жидкости или газа.

Пример явления конвекции
: небольшая бумажная вертушка, поставленная над пламенем свечи или электрической лампочкой, под действием поднимающегося нагретого воздуха начинает вращаться. Это явление можно объяснить таким образом. Воздух, соприкасаясь с теплой лампой, нагревается, расширяется и становится менее плотным, чем окружающий его холодный воздух. Сила Архимеда, действующая на теплый воздух со стороны холодного снизу вверх, больше, чем сила тяжести, которая действует на теплый воздух. В результате нагретый воздух «всплывает», поднимается вверх, а его место занимает холодный воздух.
При конвекции энергия переносится самими струями газа или жидкости.Различают два вида конвекции:

  • естественная (или свободная)

Читать также: Уличное освещение для частного дома

Возникает в веществе самопроизвольно при его неравномерном нагревании. При такой конвекции нижние слои вещества нагреваются, становятся легче и всплывают, а верхние слои, наоборот, остывают, становятся тяжелее и опускаются вниз, после чего процесс повторяется.

Наблюдается при перемешивании жидкости мешалкой, ложкой, насосом и т. д. Для того, чтобы в жидкостях и газах происходила конвекция, необходимо их нагревать снизу.
Конвекция в твердых телах происходить не может.

Теплопроводность и плотность алюминия

В таблице представлены теплофизические свойства алюминия Al в зависимости от температуры. Свойства алюминия даны в широком диапазоне температуры — от минус 223 до 1527°С (от 50 до 1800 К).

Как видно из таблицы, теплопроводность алюминия при комнатной температуре равна около 236 Вт/(м·град), что позволяет применять этот материал для изготовления радиаторов и различных теплоотводов.

Кроме алюминия, высокой теплопроводностью обладает также медь. У какого металла теплопроводность больше? Известно, что теплопроводность алюминия при средних и высоких температурах все-таки меньше, чем у меди, однако, при охлаждении до 50К, теплопроводность алюминия существенно возрастает и достигает значения 1350 Вт/(м·град). У меди же при такой низкой температуре значение теплопроводности становится ниже, чем у алюминия и составляет 1250 Вт/(м·град).

Алюминий начинает плавиться при температуре 933,61 К (около 660°С), при этом некоторые его свойства претерпевают значительные изменения. Значения таких свойств, как температуропроводность, плотность алюминия и его теплопроводность значительно уменьшаются.

Плотность алюминия в основном определяется его температурой и имеет зависимость от агрегатного состояния этого металла. Например, при температуре 27°С плотность алюминия равна 2697 кг/м 3 , а при нагревании этого металла до температуры плавления (660°С), его плотность становится равной 2368 кг/м 3 . Снижение плотности алюминия с ростом температуры обусловлено его расширением при нагревании.

Можно ли повысить теплопроводность меди?

Медь широко используется при создании микросхем электронных устройств и призвана отводить тепло от нагреваемых электрическим током деталей. При попытке увеличить быстродействие современных компьютеров разработчики столкнулись с проблемой охлаждения процессоров и других деталей. В качестве одного из решений применялся вариант разбиения процессора на несколько ядер. Однако данный способ борьбы с перегревом себя исчерпал, и сейчас требуется искать новые проводники с более высокой теплопроводностью и электропроводимостью.

Одним из решений этой проблемы является недавно открытый элемент графен. Благодаря напылению из графена теплопроводность медного элемента увеличивается на 25%. Однако пока изобретение находится на уровне разработки.

отсюда

В таблице представлены значения теплопроводности металлов (цветных), а также химический состав металлов и технических сплавов в интервале температуры от 0 до 600°С.

Цветные металлы и сплавы: никель Ni, монель, нихром; сплавы никеля (по ГОСТ 492-58): мельхиор НМ81, НМ70, константан НММц 58,5-1,54, копель НМ 56,5, монель НМЖМц и К-монель, алюмель, хромель, манганин НММц 85-12, инвар; магниевые сплавы (по ГОСТ 2856-68), электрон, платинородий; мягкие припои (по ГОСТ 1499-70): олово чистое, свинец, ПОС-90, ПОС-40, ПОС-30, сплав Розе, сплав Вуда. Читать далее →

Какой же все таки поставить радиатор? Я думаю каждый из нас задавался таким же вопросом придя на рынок или в магазин запчастей, осматривая огромный выбор радиаторов на любой вкус, удовлетворяющий даже самого извращенного привереды. Хочешь двух рядный, трех рядный, побольше, поменьше, с крупной секцией с мелкой, алюминиевый, медный. Вот именно из какого металла изготовлен радиатор и пойдет речь.

Одни считают, что медь. Это своеобразные староверы, так бы назвали их в XVII веке. Да, если взять не новые автомобили XX века, то тогда повсеместно устанавливались медные радиаторы. Не зависимо от марки и модели, была ли это бюджетная микролитражка или тяжеловесный многотонный грузовик. Но есть и другая армия автовладельцев утверждая что радиаторы изготовленные из алюминия лучше медных. Потому как их устанавливают на новые современные автомобили, на сверхмощные двигатели требующие качественного охлаждения.

И что самое интересное они все правы. И у тех и у других есть свои плюсы и естественно минусы. А теперь небольшой урок физики. Самым отличным показателем, на мой взгляд, являются цифры, а именно коэффициент теплопроводности. Если сказать по простому то это способность вещества передавать тепловую энергию от одного вещества другому. Т.е. у нас имеется ОЖ, радиатор из N-ного металла и окружающая среда. Теоретически чем выше коэффициент тем быстрее радиатор будет забирать тепловую энергию у ОЖ и быстрее отдавать в окружающую среду.

Итак, теплопроводность меди составляет 401 Вт/(м*К), а алюминия — от 202 до 236 Вт/(м*К). Но это в идеальных условиях. Казалось бы медь выиграла в данном споре, да это «+1» за медные радиаторы. Теперь кроме всего необходимо рассмотреть собственно конструкцию самих радиаторов.

Медные трубки в основе радиатора, так же медные ленты воздушного радиатора для передачи полученного тепла в окружающую среду. Крупные ячейки сот радиатора позволяют снизить потери скорости воздушного потока и позволяют прокачать большой объем воздуха за единицу времени. Слишком малая концентрация ленточной части радиатора снижает эффективность теплопередачи и увеличивает концентрацию и силу локального нагрева радиатора.

Я нашел два вида радиаторов в основе которых лежат алюминиевые и стальные трубки. Вот еще не маловажная часть, т.к. коэффициент теплопроводности стали очень мал по сравнению с алюминием, всего лишь 47 Вт/(м*К). И собственно только из-за высокой разности показателей, уже не стоит устанавливать алюминиевые радиаторы со стальными трубками. Хотя они прочнее чистокровных алюмишек и снижают риски протечки от высокого давления, например при заклинившем клапане в крышке расширительного бачка. Высокая концентрация алюминиевых пластин на трубках увеличивает площадь радиатора обдуваемого воздухом тем самым увеличивая его эффективность, но при этом увеличивается сопротивление воздушного потока и снижается объем прокачиваемого воздуха.

Ценовая политика же на рынке сложилась таким образом что медные радиаторы значительно дороже алюминиевых. Из общей картины можно сделать вывод что и те и другие радиаторы по своему хороши. Какой же все таки выбрать? Этот вопрос остается за вами.

От чего зависит показатель теплопроводности

Изучая способность передачи тепла металлическими изделиями выявлено, что теплопроводность зависит от:

  • вида металла;
  • химического состава;
  • пористости;
  • размеров.

Рекомендуем: Лайфхаки при уборке квартиры
Металлы имеют различное строение кристаллической решетки, а это может изменить теплопроводность материала. Так, например, у стали и алюминия, особенности строения микрочастиц влияют по-разному на скорость передачи тепловой энергии через них.

Коэффициент теплопроводности может иметь различные значения для одного и того же металла при изменении температуры воздействия. Это связано с тем, что у разных металлов градус плавления отличается, а значит, при других параметрах окружающей среды, свойства материалов также будут отличаться, а это отразится на теплопроводности.

Как правильно сделать расчет тепловой мощности

Грамотное обустройство системы отопления в доме не может обойтись без теплового расчета мощности отопительных устройств необходимых для обогрева помещений. Существуют простые проверенные способы расчета тепловой отдачи отопительного прибора. необходимой для обогрева комнаты. Здесь также учитывается расположение помещения в доме по сторонам света.

  • Южная сторона дома обогревается на метр кубический помещения 35 Вт. тепловой мощности.
  • Северные комнаты дома на метр кубический обогреваются 40 Вт. тепловой мощности.

Для получения общей тепловой мощности необходимой для обогрева помещений дома надо реальный объем комнаты умножить на представленные величины и сложить их по количеству комнат.

Важно! Представленный вид расчета не может быть точным, это укрупненные величины, ими пользуются для общего представления необходимого количества отопительных приборов. Расчет биметаллических устройств отопления, а также алюминиевых батарей проводится исходя из параметров указанных в паспортных данных изделия

По нормативам секция такой батареи равняется 70 единицам мощности (DT)

Расчет биметаллических устройств отопления, а также алюминиевых батарей проводится исходя из параметров указанных в паспортных данных изделия. По нормативам секция такой батареи равняется 70 единицам мощности (DT).

Что это такое, как понимать? Паспортный тепловой поток секции батареи может быть получен при соблюдении условия подачи теплового носителя с температурой 105 градусов. Для получения в обратной системе отопления дома температуры 70 градусов. Начальная температура в комнате принимается за 18 градусов тепла.

теплоноситель нагрет до 105 градусов

DT= (температура носителя подачи + температура носителя обратки)/2, минус комнатная температура. Затем данные в паспорте изделия умножить на коэффициент поправочный, которые для разных значений DT приводятся в специальных справочниках. На практике это выглядит так:

  • Система отопительная работает в прямой подаче 90 градусов в обработке 70 градусов, комнатная температура 20 градусов.
  • По формуле получается (90+70)/2-20=60, DT= 60

По справочнику ищем коэффициент для этой величины, он равен 0,82. В нашем случае тепловой поток 204 умножаем на коэффициент 0,82, получаем реальный поток мощности = 167 Вт.

Сравнение по тепловой мощности

Если вы внимательно изучили предыдущий раздел, то должны понимать, что на теплоотдачу очень влияют температуры воздуха и теплоносителя, а эти характеристики мало зависят от самого радиатора. Но есть и третий фактор — площадь поверхности теплообмена, а тут конструкция и форма изделия играет большую роль. Поэтому идеально сравнить стальной панельный обогреватель с чугунным затруднительно, их поверхности слишком разные.

Четвертый фактор, влияющий на теплоотдачу, — это материал, из коего изготовлен отопительный прибор. Сравните сами: 5 секций алюминиевого радиатора GLOBAL VOX высотой 600 мм отдаст 635 Вт при DT = 50 °С. Чугунная ретро батарея DIANA (GURATEC) такой же высоты и таким же числом секций сможет выдать только 530 Вт при тех же условиях (Δt = 50 °С). Эти данные опубликованы на официальных сайтах производителей.

Примечание. Характеристики алюминиевых и биметаллических продуктов с точки зрения тепловой мощности практически идентичны, сравнивать их нет смысла.

Можно попытаться провести сравнение алюминия со стальным панельным радиатором, взяв ближайший типоразмер, подходящий по габаритам. Упомянутые 5 алюминиевых секций GLOBAL высотой 600 мм имеют общую длину около 400 мм, что соответствует стальной панели KERMI 600х400. Выходит, что даже трехрядный стальной прибор (тип 30) выдаст лишь 572 Вт при Δt = 50 °С. Но надо учитывать, что глубина радиатора GLOBAL VOX составляет всего 95 мм, а панели KERMI – почти 160 мм. То есть, высокая теплоотдача алюминия дает о себе знать, что отражается на габаритах.

В условиях индивидуальной системы отопления частного дома батареи одинаковой мощности, но из различных металлов, работать будут по-разному. Поэтому и сравнение довольно предсказуемо:

  1. Биметаллические и алюминиевые изделия быстро прогреваются и остывают. Отдавая больше теплоты за промежуток времени, они возвращают более холодную воду в систему.
  2. Стальные панельные радиаторы занимают среднюю позицию, так как передают тепло не настолько интенсивно. Зато они дешевле и проще в монтаже.
  3. Самые инертные и дорогие – это обогреватели из чугуна, им присущ долгий разогрев и остывание, из-за чего появляется небольшое запаздывание при автоматическом регулировании расхода теплоносителя термостатическими головками.

Из всего вышесказанного напрашивается простой вывод

Не суть важно, из какого материала изготовлен радиатор, главное, чтобы он был верно подобран по мощности и подходил пользователю во всех отношениях. А вообще, для сравнения не помешает ознакомиться со всеми нюансами работы того или иного прибора, а также где какой можно устанавливать

Методы изучения параметров теплопроводности

При проведении изучения параметров теплопроводности надо помнить о том, что характеристики конкретного металла или его сплавов от метода его выработки. Например, параметры металла полученного с помощью литья могут существенно отличаться от характеристик материала изготовленного по методам порошковой металлургии. Свойства сырого металла коренным образом отличаются от того, который прошел через термическую обработку.

Термическая нестабильность, то есть преобразование отдельных свойств металла после воздействия высоких температур является общим для практически всех материалов. Как пример можно привести то, что металлы после длительного воздействия разных температур способны достичь разных уровней рекристаллизации, а это отражается на параметрах теплопроводности.

Структура стали после термической обработки

Можно сказать следующее – при проведении исследований параметров теплопроводности необходимо использовать образцы металлов и их сплавов в стандартном и определенном технологическом состоянии, например, после термической обработки.

Например, существуют требования по измельчению металла для проведения его исследований с применением способов термического анализа. Действительно, такое требование существует при проведении ряда исследований. Бывает и такое требование – как изготовление специальных пластин и многие другие.

Нетермостабильность металлов ставит ряд ограничений использование теплофизических способов исследования. Дело в том, что этот способ проведения исследований требует нагревать образцы не менее двух раз, в определенном температурном интервале.

Один из методов называют релакционно-динамическим. Он предназначен для выполнения массовых измерений теплоемкости у металлов. В этом методе фиксируется переходная кривая температуры образца между его двумя стационарными состояниями. Этот процесс является следствием скачка тепловой мощности вводимой в испытуемый образец.

Такой метод можно назвать относительным. В нем используются испытуемый и сравнительный образцы. Главное заключается в том, что бы у образцов была одинаковая излучающая поверхность. При проведении исследований температура, воздействующая на образцы должна изменяться ступенчато, при этом по достижении заданных параметров необходимо выдержать определенное количество времени. Направление изменения температуры и ее шаг должен быть подобран таким образом, что бы образец, предназначенный для испытаний, прогревался равномерно.

В эти моменты тепловые потоки сравняются и отношение теплопередачи будет определяться как разность скоростей колебаний температуры. Иногда в процессе этих исследований источник косвенного подогрева исследуемого и сравнительного образца. На один из образцов могут быть созданы дополнительные тепловые нагрузки в сравнении со вторым образцом.

Расчет тепловой мощности

Для организации обогрева помещений необходимо знать требуемую мощность на каждое из них, после чего произвести расчет теплоотдачи радиатора. Расход тепла на обогрев комнаты определяется достаточно простым способом. В зависимости от расположения принимается величина теплоты на обогрев 1 м3 комнаты, она составляет 35 Вт/ м3 для южной стороны здания и 40 Вт/ м3 – для северной. Реальный объем помещения умножается на эту величину и получаем требуемую мощность.

Внимание! Приведенный метод подсчета необходимой мощности является укрупненным, его результаты учитываются только в качестве ориентира. Для того чтобы рассчитать алюминиевые или биметаллические батареи, надо отталкиваться от характеристик, указанных в документации производителя

В соответствии с нормативами там дается мощность 1 секции радиатора при DT = 70. Это означает, что 1 секция даст указанный тепловой поток при температуре теплоносителя на подаче 105 ºС, а в обратке – 70 ºС. При этом расчетная температура внутренней среды принимается 18 ºС

Для того чтобы рассчитать алюминиевые или биметаллические батареи, надо отталкиваться от характеристик, указанных в документации производителя. В соответствии с нормативами там дается мощность 1 секции радиатора при DT = 70. Это означает, что 1 секция даст указанный тепловой поток при температуре теплоносителя на подаче 105 ºС, а в обратке – 70 ºС. При этом расчетная температура внутренней среды принимается 18 ºС.

Исходя из нашей таблицы, теплоотдача одной секции биметаллического радиатора с межосевым размером 500 мм составляет 204 Вт, но только при температуре в подающем трубопроводе 105 ºС. В современных системах, особенно индивидуальных, настолько высокой температуры не бывает, соответственно, и отдаваемая мощность уменьшится. Чтобы узнать реальный тепловой поток, нужно вначале просчитать параметр DT для существующих условий по формуле:

DT = (tпод + tобр) / 2 – tкомн, где:

  • tпод – температура воды в подающем трубопроводе;
  • tобр – то же, в обратке;
  • tкомн – температура внутри комнаты.

После этого паспортная теплоотдача радиатора отопления умножается на поправочный коэффициент, принимаемый в зависимости от значения DT по таблице:

Например, при графике теплоносителя 80 / 60 ºС и комнатной температуре 21 ºС параметр DT будет равен (80 + 60) / 2 – 21 = 49, а поправочный коэффициент – 0.63. Тогда тепловой поток 1 секции того же биметаллического радиатора составит 204 х 0.63 = 128.5 Вт. Исходя из этого результата и подбирается количество секций.

https://youtube.com/watch?v=nSewFwPhHhM

Факторы, влияющие на физическую величину

Способность проводить тепло зависит от ряда факторов, включая температуру, структуру и электрические свойства вещества.

Температура материала

Влияние температуры на способность проводить тепло различается для металлов и неметаллов. В металлах проводимость главным образом связана со свободными электронами. Согласно закону Видемана—Франца теплопроводность металла пропорциональна произведению абсолютной температуры, выраженной в Кельвинах, на его электропроводность. В чистых металлах с увеличением температуры уменьшается электропроводность, поэтому теплопроводность остается приблизительно постоянной величиной. В случае сплавов электропроводность мало изменяется с ростом температуры, поэтому теплопроводность сплавов растет пропорционально температуре.

С другой стороны, передача тепла в неметаллах главным образом связана с колебаниями решетки и обмене решеточными фононами. За исключением кристаллов высокого качества и низких температур, путь пробега фононов в решетке значительно не уменьшается при высоких температурах, поэтому и теплопроводность остается постоянной величиной во всем температурном диапазоне, то есть является незначительной. При температурах ниже температуры Дебая способность неметаллов проводить тепло, наряду с их теплоемкостью, значительно уменьшается.

Фазовые переходы и структура

Когда материал испытывает фазовый переход первого рода, например, из твердого состояния в жидкое или из жидкого в газ, то его теплопроводность может измениться. Ярким примером такого изменения является разница этой физической величины для льда (2,18 Вт/(м*К) и воды (0,90 Вт/(м*К).

Изменения кристаллической структуры материалов также влияют на теплопроводность, что объясняется анизотропными свойствами различных аллотропных модификаций вещества одного и того же состава. Анизотропия влияет на различную интенсивность рассеивания решеточных фононов, основных переносчиков тепла в неметаллах, и в различных направлениях в кристалле. Здесь ярким примером является сапфир, проводимость которого изменяется от 32 до 35 Вт/(м*К) в зависимости от направления.

Электрическая проводимость

Теплопроводность в металлах изменяется вместе с электропроводностью согласно закону Видемана—Франца. Это связано с тем, что валентные электроны, свободно перемещаясь по кристаллической решетке металла, переносят не только электрическую, но и тепловую энергию. Для других материалов корреляция между этими типами проводимости не является ярко выраженной, ввиду незначительного вклада электронной составляющей в теплопроводность (в неметаллах основную роль в механизме передачи тепла играют решеточные фононы).

Процесс конвекции

Воздух и другие газы являются, как правило, хорошими теплоизоляторами при отсутствии процесса конвекции. На этом принципе основана работа многих теплоизолирующих материалов, содержащих большое количество небольших пустот и пор. Такая структура не позволяет конвекции распространяться на большие расстояния. Примерами таких материалов, полученных человеком, являются полистирен и силицидный аэрогель. В природе на том же принципе работают такие теплоизоляторы, как шкура животных и оперение птиц.

Читать также: Как сделать уличное освещение на даче

Легкие газы, например, водород и гель, имеют высокие значения теплопроводности, а тяжелые газы, например, аргон, ксенон и радон, являются плохими проводниками тепла. Например, аргон, инертный газ, который тяжелее воздуха, часто используется в качестве теплоизолирующего газового наполнителя в двойных окнах и в электрических лампочках. Исключением является гексафторид серы (элегаз), который является тяжелым газом и обладает относительно высокой теплопроводностью, ввиду его большой теплоемкости.

17. Теплоемкость и теплопроводность металлов и сплавов

Теплоемкость – это способность вещества поглощать теплоту при нагреве. Ее характеристикой является удельная теплоемкость – количество энергии, поглощаемой единицей массы при нагреве на один градус. От величины теплопроводности зависит возможность появления трещин в металле. Если теплопроводность низкая, то риск возникновения трещин увеличивается. Так, легированные стали имеют теплопроводность, которая в пять раз меньше, чем теплопроводность меди и алюминия. Размер теплоемкости влияет на уровень расходуемого топлива на нагрев заготовки до определенной температуры.

У металлических сплавов удельная теплоемкость находится в пределах 100-2000 Дж/(кг*К). У большинства металлов теплоемкость составляет 300–400 Дж/(кг*К). Теплоемкость металлических материалов растет с повышением температуры. Полимерные материалы, как правило, имеют удельную теплоемкость 1000 Дж/(кг?К) и более.

Электрические свойства материалов характеризуются наличием носителей зарядов электронов или ионов и свободой их передвижения под действием электрического поля.

Высокие энергии ковалентной и ионной связи сообщают материалам с этими типами связи свойства диэлектрика. Их слабая электрическая проводимость обусловлена влиянием примесей, причем под влиянием влаги, образующей с примесями проводящие растворы, электропроводность таких материалов возрастает.

Материалы с разными типами связи имеют различные температурные коэффициенты электросопротивления: у металлов он положителен, у материалов с ковалентным и ионным типом связи – отрицателен. При нагреве металлов концентрация носителей зарядов – электронов не увеличивается, а сопротивление их движению возрастает из-за увеличения амплитуд колебаний атомов. В материалах с ковалентной или ионной связью при нагреве концентрация носителей зарядов повышается настолько, что нейтрализуется влияние помех от увеличения колебаний атомов.

Теплопроводностью называется перенос тепловой энергии в твердых телах, жидкостях и газах при макроскопической неподвижности частиц. Перенос теплоты происходит от более горячих частиц к холодным и подчиняется закону Фурье.

Теплопроводность зависит от типа межатомной связи, температуры, химического состава и структуры материала. Теплота в твердых телах переносится электронами и фононами.

Механизм передачи теплоты, в первую очередь, определяется типом связи: в металлах теплоту переносят электроны; в материалах с ковалентным или ионным типом связи – фононы. Самым теплопроводным является алмаз. В полупроводниках при весьма незначительной концентрации носителей заряда теплопроводность17б осуществляется в основном фононами. Чем совершеннее кристаллы, тем выше их теплопроводность. Монокристаллы лучше проводят теплоту, чем поликристаллы, так как границы зерен и другие дефекты кристаллической структуры рассеивают фононы и увеличивают электросопротивление. Кристаллическая решетка создает периодическое энергетическое пространство, в котором передача теплоты электронами или фононами облегчена по сравнению с аморфным состоянием.

Чем больше примесей содержит металл, мельче зерна и больше искажена кристаллическая решетка, тем меньше теплопроводность. Чем больше размеры зерен, тем выше теплопроводность. Легирование вносит искажение в кристаллические решетки твердых растворов и понижает теплопроводность по сравнению с чистым металлом – основой сплава. Структурные составляющие, представляющие дисперсные смеси нескольких фаз (эвтектики, эвтектоиды), снижают теплопроводность. Структуры с равномерным распределением частиц фаз имеют меньшую теплопроводность, чем основа сплава. Предельным видом подобной структуры является пористый материал. По сравнению с твердыми телами газы являются теплоизоляторами.

Графит имеет высокую теплопроводность. При передаче теплоты параллельно слоям атомов углерода базисной плоскости теплопроводность графита превышает теплопроводность меди более чем в 2 раза

Разветвленные пластины графита в сером чугуне имеют структуру монокристалла, и поэтому он имеет высокую теплопроводность. Высокопрочный чугун с шаровидным графитом при той же объемной доле графита имеет теплопроводность 25…40 Вт/м*К, что почти вдвое меньше по сравнению с серым чугуном.

При нагреве теплопроводности сталей разных классов сближаются. Стекло имеет низкую теплопроводность. Полимерные материалы плохо проводят теплоту, теплопроводность большинства термопластов не превышает 1,5 Вт/(мОК).

Теплопроводность может меняться также, как и электропроводность в случае, если электронная теплопроводность металла составляет l e. Тогда любые изменения, происходящие в химическом и фазовом составе и структуре сплава влияют на теплопроводность также, как и на электропроводность (по правилу Видемана-Франца).

При отдалении состава сплава от чистых компонентов происходит понижение теплопроводности. Исключение составляют, например, медно-никелевые сплавы, в которых происходят обратные явления.

Теплопроводность. Просто о сложном. | Isobud

При выборе качественного теплоизоляционного материала потребитель должен принимать во внимание целый ряд параметров, среди которых неизменно присутствует показатель теплопроводности. Высокой или низкой должна быть теплопроводность, что такое «лямбда», на какие показатели теплопроводности ориентироваться – ответы на эти и другие самые распространенные вопросы, возникающие при покупке утеплителя, вы найдете в данной статье.

Слово «теплопроводность» или еще более запутанное «лямбда» знакомо каждому школьнику из курса физики за восьмой класс. Однако со временем информация, которой мы не пользуемся, забывается. Попробуем освежить в памяти эти несложные и очень полезные знания.

Теплопроводность, как уже было сказано выше — одно из ключевых понятий в современном строительстве, особенно когда речь заходит о теплоизоляционных материалах. От теплопроводности зависит толщина вашей стены или кровли, вес всего дома, а следовательно, и прочность (несущая способность) фундамента, долговечность конструкций и многое другое.

Современное определение теплопроводности – понятие комплексное. И состоит из нескольких составных частей, отвечающих за перенос тепла (теплообмен).

На первый взгляд формула кажется пугающей, но на самом деле все просто.

Суммарная или итоговая теплопроводность состоит из теплопроводности за счет конвекции, теплопроводности твердой и газообразной фазы, а также теплопроводности, учитывающей теплообмен за счет излучения.

Запутались еще сильнее? Тогда по порядку.

Разберем каждый элемент этой формулы более подробно.

Теплообмен (или теплопередача) – это способ изменения внутренней энергии без совершения работы над телом или самим телом.

Теплопередача всегда происходит в определенном направлении: от тел с более высокой температурой к телам с более низкой.

Из курса физики нам известно, что теплообмен включает в себя три вида передачи тепла: теплопроводность, конвекцию и излучение.

Теплопроводность — явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их
непосредственном контакте.

Если вы опустите ложку в стакан с горячим напитком, нагреется не только та часть ложки, которая погружена в жидкость, но и та ее часть, которая находится над водой.

Теплопроводность различных веществ неодинакова, она может быть плохой (низкой) и хорошей (высокой). Хорошая теплопроводность у металлов. Плохая — у шерсти, дерева и пластиков. Самым плохим проводником тепла является вакуум.

Для примера вспомните кухонную посуду: кастрюли и сковородки. Вы вряд ли станете снимать металлическую кастрюлю, полную вкусного супа, с горячей плиты голыми руками, потому что существует реальная опасность обжечь руки. Вместо этого вы используете кухонное полотенце, силиконовые или тряпичные прихватки, то есть те материалы, которые плохо проводят тепло.

Именно поэтому «правильные» кастрюли и сковородки снабжены пластмассовыми или деревянными ручками, плохо проводящими тепло. Вспомнить хотя бы старую бабушкину сковородку с деревянной ручкой: сковородка горячая, а за ручку схватиться можно безо всяких прихваток.

Как объясняется это явление? Рассмотрим на примере нагревания металлического стержня (или ложки из примера со стаканом).

В металле, как и во всех твердых телах, молекулы совершают колебательные движения около некоторых положений равновесия. Скорость колебательного движения молекул металла при нагревании увеличивается в той части, которая ближе расположена к пламени или источнику тепла. Эти молекулы, взаимодействуя с соседними молекулами, передают им часть своей энергии. В результате чего повышается температура отрезка стержня. Затем увеличивается скорость колебательного движения молекул в следующих отрезках стержня и так далее, до тех пор, пока не прогреется весь стержень. Именно поэтому вакуум обладает самой плохой теплопроводностью: в нем практически отсутствуют молекулы, которые бы передавали энергию друг другу. Важно отметить, что сами молекулы, передавая кинетическую энергию, не меняют свое местоположение, то есть само вещество не перемещается.

С первым понятием разобрались, посмотрим, что же дальше.

Следующая составляющая теплопроводности – это конвекция. У многих из вас на слуху такой прибор, как «конвектор». А вот почему он так называется, наверное, знает далеко не каждый. Хотя логично предположить, что название свое он получил за принцип работы – конвекцию.

Из курса физики следует, что конвекция — это перенос энергии струями жидкости или газа. Если в случае с теплопроводностью при теплообмене происходит перенос энергии, то при конвекции происходит перенос именно вещества.

Конвекторы (как и любые другие отопительные приборы) нагревают окружающий воздух, вследствие чего температура в комнате повышается и вам становится тепло. При этом струи теплого воздуха поднимаются вверх, а струи холодного опускаются вниз. Аналогично происходит процесс нагревания воды в чайнике: горячая вода поднимается, а холодная опускается на ее место. Этот же принцип заложен в отопительной системе для обогрева домов.

Различают два вида конвекции: естественная и вынужденная.

Нагревание воздуха в комнате солнечными лучами – это пример естественной конвекции. А вот если воздух нагревается тепловым вентилятором, то это уже вынужденная конвекция. Вентилятор заставляет воздух в комнате двигаться, при этом нагревая его до необходимой температуры. В качестве других примеров конвекции можно привести холодные и теплые морские течения, а также образование и движение облаков и ветров.

Переходим к следующей составляющей: излучение (лучистый теплообмен).

Излучение – это способ переноса энергии от одного тела к другому в виде электромагнитных волн. Как правило, это инфракрасное (IR) излучение. Этот принцип заложен еще в одном уникальном приборе – инфракрасном обогревателе.

Принцип его работы построен на том, что любое нагретое тело является источником излучения. Самый впечатляющий пример – Солнце. Пример поменьше – костер, распространяющий тепло на достаточно большое расстояние. В случае с обогревателем окружающие предметы нагреваются за счет электромагнитного излучения и в комнате становится тепло.

Этот вид теплообмена отличается тем, что может происходить и в вакууме. Ведь солнечная энергия как-то доходит до Земли.

Примечательно, что темные тела лучше поглощают и отдают энергию. Если необходимо максимально нагреть материал, его окрашивают в черный цвет. В качестве примера можно привести солнечные коллекторы (водонагреватели), которые устанавливаются на крышах домов. Эти устройства позволяют собирать тепло от солнца и нагревать теплоноситель, который затем передает тепло внутрь дома для обогрева помещений или нагрева воды.

Хуже всего поглощают энергию светлые материалы или материалы с отражающей способностью. Способность светлых тел хорошо отражать лучистую энергию учитывают в самых разных сферах: при строительстве самолетов, при возведении высотных зданий в жарких странах, даже при выборе цвета одежды в теплое время года. На окнах часто применяют металлизированные пленки, которые частично отражают солнечное тепло и спасают помещение от перегрева.

С базовыми принципами разобрались. Пришло время вернуться к нашей формуле.

Итак, вернемся к теплопроводности.

Структурная и газовая теплопроводность – это теплопроводность компонентов, из которых состоит материал, а именно:

  • твердой фазы – теплопроводности полимерного каркаса с множеством ячеек с очень тонкими, но прочными стенками;
  • газообразной фазы – теплопроводность газа, который находится в ячейках.           

Если сравнивать теплоизоляцию PIR с пеностеклом или пенобетоном, то по структуре эти материалы схожи. Все они ячеистые и наполнены газом. Однако теплопроводности этих материалов будут отличаться.

Стекло и бетон, в отличие от пластиков, проводят тепло интенсивнее, соответственно, пеностекло и пенобетон обладают большей теплопроводностью и их показатели в качестве теплоизоляторов несколько хуже. Даже полимеры отличаются друг от друга теплопроводностью.

Как было сказано ранее, представленные материалы ячеистые и в каждом находятся какие-то газы. В пеностекле и пенобетоне это, как правило, окружающий воздух, в PIR – инертные газы. Хуже всего тепло проводят инертные газы, содержание молекул в 1 м3 очень маленькое, расстояние между молекулами очень большое, поэтому передать энергию между молекулами довольно сложно. Намного лучше тепло проводит воздух, поскольку он состоит из смеси разных газов, молекул очень много и все они друг с другом взаимодействуют.

Конвекционную составляющую у мелкоячеистой теплоизоляции обычно не рассматривают, поскольку размер ячеек теплоизоляции PIR ничтожно мал (меньше 1мм) и газ в этих ячейках неподвижен.

Последняя составляющая – излучение. Снизить ее влияние можно за счет применения дополнительных материалов, способных отражать тепловой поток. Для этого можно окрасить материал, скажем, в белый цвет. В случае с теплоизоляционными плитами PIR за отражение тепла отвечает фольга, которая покрывает материал с обеих сторон. Помимо функции отражения тепла фольга также несет защитную функцию с точки зрения утечки вспенивающего газа. По своим свойствам фольга является практически идеальным пароизоляционным материалом, а значит, способна задерживать миграции газов во внешнюю среду из ячеек теплоизоляции.

В процессе эксплуатации легкие инертные газы замещаются на более тяжелый окружающий воздух с хорошей теплопроводностью. Это происходит у всех пористых материалов за счет диффузных процессов.

Рассмотрим в качестве примера обычный воздушный шарик, наполненный гелием, который можно сравнить с одной ячейкой вспененной теплоизоляции. Новый шарик все время стремится улететь высоко в небо. Если утром он еще висел под потолком, то со временем он постепенно опустится и будет висеть в центре комнаты, а еще через несколько часов лежать на полу. Т.е. все это время газ за счет диффузии медленно выходит из шарика, и тот теряет свою «летучесть».

Так же и с теплоизоляцией. «Шарики» (ячейки), которые ближе всего расположены к границе с окружающим воздухом постепенно изменяют свой газовый состав. Однако те «шарики», которые находятся глубоко в материале, делают это очень медленно или не делают вовсе, поскольку инертному газу очень сложно пройти огромное количество стенок соседних «шариков» и вырваться наружу.

Кроме того, поверхность теплоизоляции покрыта фольгой, препятствующей выходу газа, соответственно, теплопроводность материала (ее газовая составляющая) сохраняется.

Итоговую формулу теплопроводности PIR можно записать в виде:

Подведем итог.

Теплоизоляция – это очень важный показатель. От нее зависит, насколько теплым будет ваш дом. У наиболее эффективной теплоизоляции все ее составляющие () должны быть как можно ниже. У современной изоляции на примере LOGICPIR это достигается за счет применения инертных газов, полимеров и специальных покрытий, отражающих тепловой поток. Уверены, что теперь вы не только сможете безошибочно выбрать теплоизоляционный материал, отвечающий самым высоким требованиям, но и поможете своим детям сдать физику на высший балл.

Источник: http://www.nappan.ru/press/news/Teploprovodnost_Prosto_o_slozhnom/

Ртуть теплопроводность — Справочник химика 21

    Простые вещества по свойствам составляющих их элементов делятся на металлы и неметаллы. Металлы имеют ряд общих свойств. Это — металлический блеск, высокая теплопроводность и электропроводность. Бее металлы, кроме ртути, при нормальных условиях (температура 0°С, давление 1 атм.) являются твердыми веществами, прочными и пластичными. Металлы обладают более высокими восстановительными свойствами, чем неметаллы. Подробнее о металлах и неметаллах разговор пойдет в главе 2 и в главе 7, В приведенной на форзаце Периодической системе элементов разными цветами выделены типичные металлы и неметаллы. [c.10]
    Металлы — хорошие проводники тепла и электричества. При прохождении электрического тока через металлические проводники не происходит переноса частиц металла (электронная проводимость, или проводимость первого рода). По способности проводить тепло и электричество металлы располагаются приблизительно в одном и том же порядке лучшие проводники —серебро и медь, затем золото, алюминий, железо и худшие —свинец и ртуть. Следовательно, между теплопроводностью металлов и их электропроводностью наблюдается почти постоянное соотношение. [c.297]

    Существенные сведения относительно природы химической связи в металлах можно получить на основании двух характерных особенностей по сравнению с ковалентными и ионными соединениями. Металлы, во-первых, отличаются от других веществ высокой электропроводностью и теплопроводностью, во-вторых, в обычных условиях являются кристаллическими веществами (за исключением ртути), структуры которых характеризуются высокими координационными числами. [c.104]

    Слабые металлические связи сообщают графиту его металлические свойства электропроводность, в некоторых чистых образцах в два раза превышающую электропроводность ртути, теплопроводность, почти равную теплопроводности меди, и т. п. [c.287]

    Теплопроводность. Теплопроводность воды относительно велика по сравнению с теплопроводностью других жидкостей (кроме ртути). В этом отношении к ней близки глицерин и некоторые соляные растворы. Относительно большая теплопроводность воды является важным фактором для теплоотдачи, так как коэффициент теплоотдачи прямо пропорционален теплопроводности. [c.290]

    По теплопроводности твердые тела делят на три группы. Первая группа — металлы с теплопро- гоо водностью от 6,8 ккал (м-ч-град) для ртути или 40 ккал (м-ч-град) для стали до 394 ккал] (м-ч-град) для серебра. Однако эти величины в сильной степени зависят от примесей и загрязнений материала. Вторую группу составляют строительные материалы с теплопроводностью от 0,2—0,25 ккал (м-ч- град) для обыкновенного строительного кирпича до 16 ккал (м ч — град) для карборундового кирпича. Третья группа представляет собой теплоизоляционные материалы с теплопроводностью от 0,033 ккал  [c.279]


    Нагревание ртутью и жидкими металлами. Для нагрева до температур 400—800 С и выше в качестве высокотемпературных теплоносителей могут быть эффективно использованы ртуть, а также натрий, калий, свинец и другие легкоплавкие металлы и их сплавы. Эти теплоносители отличаются больщой плотностью, термической стойкостью, хорошей теплопроводностью и высокими коэффициентами теплоотдачи. Однако жидкие металлы и их сплавы характеризуются очень малыми значениями критерия Прандтля (Рг =s 0,07). В связи с этим коэффициенты теплоотдачи от жидких металлов следует рассчитывать по специальным формулам .  [c.320]

    Металлы отличаются характерным металлическим блеском, ковкостью, тягучестью, могут прокатываться в листы или вытягиваться в проволоку, обладают хорошей теплопроводностью и электрической проводимостью. При комнатной температуре все металлы (кроме ртути) находятся в твердом состоянии. [c.29]

    По физическим свойствам все металлы — твердые вещества (кроме ртути, которая при обычных условиях жидкая), они отличаются от неметаллов особым видом связи (металлическая связь). Валентные электроны слабо связаны с конкретным атомом и внутри каждого металла существует так называемый электронный газ. Поэтому все металлы обладают высокой электропроводностью (т. е. они — проводники в отличие от неметаллов-диэлектриков), особенно медь, серебро, золото, ртуть и алюминий высока и теплопроводность металлов. Отличительным свойством многих металлов является их пластичность (ковкость), вследствие чего они могут быть прокатаны в тонкие листы (фольгу) и вытянуты в проволоку (олово, алюминий и др.), однако встречаются и достаточно хрупкие металлы (цинк, сурьма, висмут). [c.157]

    Графит хорошо проводит тепло (в 3 раза лучше ртути) и обладает близкой к металлам электропроводностью (0,1 от электропроводности ртути). И электро- и теплопроводность больше параллельно слоям, чем перпендикулярно им. Максимум теплопроводности графита наблюдается около 0°С, а электропроводности — около 600 °С. Механическая прочность графита при переходе от обычных температур к 2500 °С возрастает почти вдвое. Его сжимаемость примерно в 20 раз больше сжимаемости алмаза. Заметное окисление графита при нагревании на воздухе наступает лишь выше 700 С. [c.502]

    Обычно установки термической регенерации работают периодически. Используется как огневой обогрев через стены реторты, так и электрический с помощью наружных или внутренних нагревательных элементов сопротивления или нагревателей индукционного типа. Производительность установок термической регенерации ртути обычно лимитируется низкой теплопроводностью шламов после отгонки из них влаги. Вследствие этого прогрев всей массы шлама в реторте до температуры не ниже 600 °С происходит медленно и вся операция отгонки в реторте емкостью около 0,5 т обычно занимает 24—36 ч. [c.273]

    В приборе Свентославского (рис. V. 54, а) раствор, подлежащий исследованию, наливают в нижний резервуар 1 прибора через боковой отросток сосуда так, чтобы жидкость находилась в узкой трубке 2. При кипении пар вместе с капельками жидкости устремляется по трубке 2 в отверстие сосуда 3, расположенное вблизи нижней части внутренней запаянной трубки 4, которая содержит ртуть или силиконовое масло (последние увеличивают теплопроводность системы). Сюда же погружают шарик термометра. Нагреватель представляет собою жестяное полукольцо, покрытое асбестом, на который намотаны электроспираль. Это полукольцо охватывает нижнюю трубку 5 в месте соединения ее с резервуаром 1. В ходе опыта нагревание регулируют так, чтобы нижняя часть трубки с термометром [c.330]

    Связи между атомами углерода одной и той же плоскости в решетке графита имеют типичный ковалентный характер. Отдельные плоскости связаны друг с другом в основном межмолекулярными силами, но отчасти между ними действуют и металлические связи (примерно один свободный электрон на 18 тыс. атомов углерода). Наличием последних обусловлена высокая электропроводность графита (0,1 от электропроводности ртути) и его хорошая теплопроводность (в три раза больше, чем у ртути). [c.300]

    Для решеток с металлической структурой характерно наличие в узлах кроме атомов также и ионов, которые образуются за счет отрыва электронов. Атомы и ионы находятся в состоянии непрерывного обмена электронами, причем процесс этот происходит без затраты или освобождения энергии (в единицу времени число атомов, потерявших электроны, и присоединивших их ионов равно). В процессе такого непрерывного обмена электронами часть их стационарно остается в свободном состоянии, образуя так называемый электронный газ . Наличие свободно перемещающихся электронов и динамически обменивающихся ими нонов и атомов сообщает металлическим кристаллам специфические свойства пластичность, электронную проводимость, высокую теплопроводность, металлический блеск, непрозрачность. Специфика структуры металлических кристаллов создает условия для большого разнообразия их свойств. Так, например, температура затвердевания ртути —38,9° С, в то время как вольфрам плавится лишь при 3380° С натрий мягок, как воск, а рений с трудом можно обработать инструментом, изготовленным из специальных сортов стали. [c.321]

    Пример 4-1. При измерении переменной температуры термометром важно знать, насколько быстро термометр реагирует на изменение температуры. Полупериодом называют интервал времени, в пределах которого начальная разность между истинной температурой и показанием термометра сокращается наполовину после внезапного изменения истинной температуры. Необходимо определить этот полупериод для ртутного термометра, находящегося в потоке воздуха. Пусть ртутный шарик имеет форму цилиндра радиусом 3 мм. Коэффициент теплопроводности ртути к = 7,А5 ккал/м-ч-град (см. приложение). Коэффициент температуропроводности а = 0,0166 л /ч, термическим сопротивлением тонкой стеклянной стенки пренебрегаем. Коэффициент теплообмена для потока воздуха а = 50 ккал/м -ч-град. [c.106]

    Вторая операция называется закалкой. Образец после выдержки при заданной температуре резко охлаждается. Это достигается сбрасыванием образца из печи в холодную инертную жидкость с хорошей теплопроводностью (например, в воду, ртуть). При резком охлаждении происходит фиксация того состояния, в котором образец находился при температуре выдержки, т. е. кристаллические фазы, если они есть, фиксируются ( замораживаются ) в таком виде и количестве, в каком они находились при температуре выдержки, а жидкая фаза застывает в стеклообразном состоянии. [c.284]

    Медь обладает высокой электро- и теплопроводностью, коррозионной стойкостью и отлично переносит горячую и холодную обработку давлением. Она устойчива к атмосферной коррозии. Чистая пресная >ода почти не действует на медь. Скорость коррозии меди в морской воде 0,05 мм/год. В растворах неокислительных солей она стойка. Примеси олова и ртути увеличивают скорость коррозии меди. [c.23]

    Для большого количества жидкостей составляющая коэффициента затухания обусловленная теплопроводностью, много меньше составляющей а , вызванной вязкостью жидкости. В некоторых жидкостях, например, ртути, наоборот, величина в несколько раз больше [c.79]

    К металлам относят вещества, которые обладают рядом характерных свойств хорошей электро- и теплопроводностью и отражательной способностью к световому излучению (блеск и непрозрачность), отрицательным температурным коэффициентом электропроводности, повышенной пластичностью (ковкость). Данные свойства металлов обусловлены наличием подвижных электронов, которые постоянно перемещаются от одного атома к другому. Вследствие такого обмена в металлической структуре всегда имеется некоторое количество свободных электронов, т. е. не принадлежащих в данный момент каким-либо определенным атомам. Чрезвычайно малые размеры электронов позволяют им свободно перемещаться по всему металлическому кристаллу и придавать металлам характерные свойства. Слабой связью валентных электронов с ядром атома объясняются и многие свойства металлов, проявляющиеся при химических реакциях образование положительно заряженных ионов-катионов, образование основных окислов и др. Металлы с хорошей электропроводностью одновременно обладают высокой теплопроводностью (рис. 105). Наибольшей электропроводностью обладают металлы серебро, медь, золото, алюминий. Медь и алюминий широко используются для изготовления электрических проводов. По твердости металлы располагаются в ряд, приведенный на рис. 106. По плотности все металлы условно делят на две группы легкие, плотность которых не более 5 г см , и тяжелые. Плотность, температуры плавления и кипения некоторых металлов указаны в табл. 18. Наиболее тугоплавким металлом является осмий, наиболее легкоплавким — ртуть. [c.266]

    Для выяснения зависимости значений коэффициента / от температуры Одноатомных газов Зайцевой, [Л.2-26] было проведено экспериментальное исследование теплопроводности шести одноатомных газов. Ею экспериментально была определена теплопроводность гелия, неона, аргона, криптона, сенона и паров ртути при давлениях от 50 до 500 мм рт. ст. и температурах от О до 500° С. Установка Зайцевой исключала необходимость больших поправок к экспериментальным значениям в отличие от данных Каннулика и Кармана [Л. 2-27], уже при 300 С вводивших по правки до 20% к экспериментальным значениям. Обработка экспериментальных данных теплопроводности Зайцевой показала, что зависимость теплопроводности указанных шести одноатомных газов от температуры описывается уравнением [c.134]

    Это означает, что условия протекания процесса внутри рассматриваемой системы зависят не только от входных, но и от выходных потоков. Чтобы лучше это представить, предположим, что рассматриваются потоки ртути в этом случае вследствие условий теплопроводности в ртутной колонне диффузионный член увеличится и может стать очень большим. Если ртуть, после того как выйдет из системы, снова попадет в теплый поток, это вызовет в колонне поток тепла в обратном направлении. [c.192]

    Об автоматическом регулировании остаточного давления в областях среднего и высокого вакуума в литературе имеется сравнительно мало сведений. При использовании вакуумметров, основанных на принципе измерения теплопроводности газа, Лапорт [49] рекомендует подключить к мостовой схеме Пирани сигнальное устройство, которое дает звуковой сигнал при увеличении давления выше заданного предела. Нисбет [54 ] описал прибор, позволяющий поддерживать в сосуде, продуваемом воздухом, постоянное давление 10″ мм рт. ст. Мельпольдер [55] описал регулятор давления, обеспечивающий в интервале от 10″ до 10″ мм рт. ст. точность регулирования, равную 10″ мм рт. ст. Схема данного регулятора приведена на рис. 384. Принцип его работы заключается во введении в манометр Мак-Леода четырех впаянных контактов 9—12. С помощью устройства 13 в манометре Мак-Леода каждую минуту поднимают уровень ртути. Регулирование давления осуществляется с помощью контактов 9 и При уменьшешш-давления в системе ниже заданного контакт 10 замыкается, при этом он через реле 5 и 2 закрывает электромагнитный клапан 5. Этот клапан размещен на штуцере 4, соединяющем систему с ваку-умным насосом. Вакуумированный аппарат подсоединяют к шту- [c.451]

    В большинстве случаев при обычных условиях в такой же последовательности, как и электрическая проводимость, изменяется теплопроводность металлов. Последняя обусловливается высокой подвижностью свободных электронов и колебательным движением атомов, благодаря чему происходит быстрое выравии-вание температуры в массе металла. Наибольшая теплопроводность у серебра и меди, наименьшая — у висмута и ртути. [c.152]

    Рассматриваемый прибор был создан Л. П. Филипповым для измерения теплопроводности электролитов, в том числе и электропроводящих, относительным методом цилиндрического слоя [Л. 1-48]. Схематическое изображение этого прибора дано на рис. 1-12. Исследуемая жидкость заполняет цилиндрический слой 1 между внешней 2 и внутренней 3 стеклянными трубками. Во внутренней трубке диаметром около 2 мм и длиной 8 см помещен нагревательный элемент 8 из константановой проволоки диаметром 0,1 мм, намотанной бифилярно на фарфоровую соломку толщиной 1 мм. В конце трубки 3 имеется спай медно-константановой термопары, провода которой выводятся сквозь каналы в фарфоровой соломке. Весь прибор погружен в ртуть 5, термостатируемую потоком жидкости в стеклянной рубашке б. В ртути находится второй спай 7, вместе со спаем 4 образующий дифференциальную термопару, [c.67]

    Пленочное К. возникает на несмачиваемых пов-стях нагрева (напр., К. ртути в стеклянной трубке) на смачиваемых пов-стях пузырьковое К. переходит в пленочное (первый кризис К.) при достижении первой критич. плотности теплового потока 9,р.1. Интенсивность теплоотдачи при пленочном К. значительно меньше, чем при пузьфьковом, что обусловлено малыми значениями коэф. теплопроводности ).[Вт/(м К)] и плотности пара по сравнению с их значениями для жидкости. При ламинарном движении пара в пленке а при турбулентном движении интенсивность [c.385]

    Способ I [1—3]. Необходимое для получения препарата олово вводяг в реакцию в виде реакционноспособной амальгамы. Последнюю готовят путем слабого нагревания 6,5 частей ртути в фарфоровой чашке на песчаной бане (работать под тягой ), постепенно прибавляя к ней оловянные стружки (14 частей). По окончании реакции смеси дают охладиться. Амальгаму разбивают стеклянной палочкой в момент затвердевания на сравнительно крупные зерна, которые затем подвергают дальнейшему измельчению. Полученный препарат хорошо перемешивают с 8 ч. порошкообразной серы и 6,8 ч. тонкоизмельченного хлорида аммония и переносят в керамический тигель, неплотно закрытый глиняной или фарфоровой крышкой. Реакционную массу умеренно нагревают (до 400°С) под сильной тягой или лучше на воздухе (ртуть ) на песчаной бане в течение длительного времени, пока не прекратится выделение паров. Затем температуру быстро повышают до начала красного каления. Как только закончится выделение паров серы нли бурая реакционная масса в отдельных местах начнет приобретать черный цвет, на-грер.ание прекращают и медленно охлаждают содержимое тигля без сильного притока воздуха. В зависимости от количества исходных компонентов реакция продолжается 3—4 ч. После охлаждения тигель осторожно разбивают и отделяют поверхностный слой, состоящий из хорошо образованных с золотистым блеском кристаллов. Под ними также находится SnSa, однако в виде хуже образованных кристаллов. На дне часто остается небольшое количество чистой серы. При слишком большой загрузке иногда происходит разложение (почернение) продукта на дне и на стенках тигля вследствие перегрева, обусловленного плохой теплопроводностью реакционной массы. При этом внутри тигля компоненты часто даже не успевают прореагировать полностью. Часть продукта, представляющую собой хорошо образованные кристаллы, очищают путем возгонки на песчаной бане, причем SnSa получается в виде великолепных прозрачных чешуек с золотистым блеском. Выход около 50%. [c.830]

    Металлы имеют плотноупакованную кристаллическую структуру и характеризуются металлическим типом связи электроны, осуществляющие эту связь, принадлежат не двум отдельным атомам, а свободно перемещаются по всему кристаллу. Металлы характеризуются высокой электрической проводимостью и теплопроводностью. При нормальных усповиях ртуть находится в жидком состоянии, остальные металлы — твердые вещества обладают сравнительно низкими значениями энергии ионизации и сродства к электрону. [c.192]

    Вскоре после этого вопрос с большей тщательностью был изучен М. Кпудсепом [30]. Исследуемым веществом была ртуть, которая особенно пригодна по ряду причин. Давление пара ртути хорошо известно в широкой области, так что можно выбрать такие температуры опыта, при которых длина свободного пробега атомов ртути была столь велика, что при данном расстоянии поверхности жидкости от сильно охлаждаемой стенки на последней удерживались все испаренные атомы и обратного их возвращения не происходило. К тому же при достаточно медленном испарении хорошая теплопроводность ртути гарантировала правильное определение температуры поверхности. [c.33]

    Пример XVIII. 1. Вычислить теплопроводность ртути (М = 200,6) при 293 К, зная р = 13 500 кг/м Ср — 138,2 Дж/(кг-К) г = 0,95-10- 0м м. [c.342]


Коэффициент теплопроводности металлов — Энциклопедия по машиностроению XXL

Пример 4. По поверхности массивного тела движется точечный источник теплоты мощностью 6000 Вт. Определить расстояние от источника теплоты до конца изотермы 47″ = 700 К. Коэффициент теплопроводности металла к = = 0,4 Вт/(см-К).  [c.171]

Коэффициенты теплопроводности металлов и сплавов имеют значения от 490 до 7 вт1 м град). G увеличением температуры X большинства металлов уменьшается.  [c.270]

Коэффициент теплопроводности металлов может резко изменяться из-за наличия примесей. Так, следы мышьяка в меди уменьшают ее коэффициент теплопроводности до 142 вт м град).  [c.270]


Коэффициент теплопроводности смеси материалов обычно не изменяется пропорционально количеству входящих в смесь компонентов. Кроме того, он зависит от вида термической и механической обработки металла. Все это затрудняет оценку коэффициентов теплопроводности сплавов. Надежным способом оценки коэффициентов теплопроводности металлов и их сплавов является непосредственный эксперимент.  [c.271]

Коэффициент теплопроводности металлов и сплавов изменяется от 2 до 420 Вт/ (м-К). Для большей части чистых металлов он понижается с возрастанием температуры (рис. 14.8).  [c.204]

Рас. 14.8. Зависимость коэффициента теплопроводности металлов и сплавов от температуры  [c.207]

Теплопроводность металлов. За передачу теплоты через металл в основном ответственны те же свободные электроны, которые определяют и электропроводность металлов ti число которых в единице объема металла весьма велико. Поэтому, как правило, коэффициент теплопроводности металлов намного больше, чем коэффициент теплопроводности диэлектриков (см. табл. 5-1). Очевидно, что при прочих равных условиях, чем больше удельная электрическая проводимость у металла, тем больше должен быть н его коэффициент теплопроводности. Легко также видеть, что при повышении температуры, когда подвижность электронов в металле и соответственно его удельная проводимость v уменьшаются, отношение коэффициента теплопроводности металла к его удельной проводимости y Jy должно возрастать. Математически это выражается законом Видемана —Франца —Лоренца  [c.195]

При наличии разного рода примесей коэффициент теплопроводности металлов резко убывает. Последнее можно Объяснить увеличением структурных неоднородностей, кото-,рые приводят к рассеиванию электронов. Так, например, для чистой меди Я=396 Вт/(мХ ХК), для той же меди со Следами мышьяка = 142 Вт/(м-К).  [c.15]

Температуры цилиндрических экранов при стационарном режиме можно определить путем последовательного решения относительно температур уравнений теплообмена системы двух тел, между которыми установлено п экранов с различной степенью черноты. При этом термическое сопротивление экранов принимаем равным нулю вследствие их малой толщины и больших коэффициентов теплопроводности металлов, из которых они изготовлены. Если известны температуры на поверхностях ограничивающих тел, т. е. Т и Гс, как это имеет место в рассматриваемом случае, то температуру i-ro экрана, считая от нагревателя, можно определить по формуле  [c.14]

Любопытно, что наличие примесей резко снижает коэффициент теплопроводности металлов. Так, для чистой меди Я,=396 Вт/(м-К), но даже следы мышьяка делают его равным всего лишь 142 Вт/(м К).  [c.119]


Так как слой фторопласта в ленте имеет незначительную толщину, коэффициент теплопроводности этого комбинированного материала близок по значению к коэффициенту теплопроводности металлов. Так, в процессе износа коэффициент теплопроводности ленты изменялся от 14,7 до 33,8 Вт/(м-°С), поэтому для рас-  [c.18]

X—коэффициент теплопроводности металла трубы, ккал/м ч град,  [c.379]

Коэффициент теплопроводности металлов изм ерен методом последовательных стационарных состояний [7].  [c.14]

Как известно, коэффициент теплопроводности металлов связан с удельным электрическим сопротивлением г следующим уравнением  [c.26]

Ям, Яот — коэффициенты теплопроводности металла и слоя отложений, ккал/м град ч а пар — коэффициент теплоотдачи от стенки к пару, ккал м град ч  [c.251]

Обозначим (к, i r, ср —температуры на конце плавника, в основании плавника у стенки трубы и среды, протекающей в трубе, °С Si, Sj, s — толщины плавника на конце, в основании и в произвольном сечении, jh К — коэффициент теплопроводности металла плавника при его средней температуре, ккал/ м ч град).  [c.100]

В формуле (4-1) д .о — тепловой поток на лобовой образующей изм — температура металла, измеренная на глубине 1,5 мм X — коэффициент теплопроводности металла трубы.  [c.100]

В формуле (4-5) — тепловая нагрузка в месте установки термопары Хм — коэффициент теплопроводности металла трубы, Вт/(м-К), определяется по средней температуре стенки трубы (j,— коэффициент растечки тепла, для данных условий можно принять равным 0,95 вн — внутренний диаметр трубы (м) йк — диаметр окружности в месте установки термопары (м) Ог — внутренний коэффициент теплоотдачи, Вт/(м -К) — температура металла в месте установки термопары t — средняя расходная температуры среды.  [c.120]

В формуле (4-14) /ср — температуры среды (°С) qi — удельная тепловая нагрузка, подсчитанная на 1 м длины трубы (Вт/м) Оз — коэффициент теплоотдачи от внутренней среды к стенке, Вт/(м -К) rfs, da — внутренний и наружный диаметры трубы (м) -м — коэффициент теплопроводности металла трубы, Вт/(м-К).  [c.128]

По этой причине выполненные до сих пор экспериментальные исследования, в том числе и очень обширная и фундаментальная работа В. М. Антуфьева и Г. С. Белецкого [Л. 47]. дали расчетные формулы, применимые для ограниченной области геометрических характеристик труб с определенным значением коэффициента теплопроводности металла.  [c.85]

Хм — коэффициент теплопроводности металла, ккал/(м-ч-°С), находится по рис. 3-4 температуру трубы при определении Лм следует предварительно принимать на БО С выше температуры среды при отклонении действительной температуры от принятой более чем на ЮО С следует производить пересчет  [c.27]

X — коэффициент теплопроводности металла трубы, ккал/м час° С  [c.514]

Эти положения, дополненные экспериментами, позволяют выяснить общие качественные закономерности и обратить внимание на некоторые особенности поведения коэффициента теплопроводности металлов и сплавов 2.  [c.115]

А, — коэффициент теплопроводности металла тру-бы, к.кал1коэффициент теплоотдачи от стенки к пару, ад ккал м -ч- град) ц—коэффициент растечки теп-ла р — отношение наруж- него и внутреннего диаметров трубы  [c.193]

В формулах (4-9), (4-10), (4-11), (4-12) di, ёва, — наружный и внутренний диаметры вставки и диаметр окружности в точке установки внутренней термопары (м) ip, 2=di/d2 Pi-BB=rfi/rfBH 2-вн = = d2jdna — отношение соответствующих диаметров i, вн — температура лобовой образующей на наружной и внутренней поверхности вставки, ( С) (узф, q n — тепловые нагрузки лобовой образующей на наружной и внутренней поверхности вставки (кВт/м ) X — коэффициент теплопроводности металла вставки [Вт/(м-К)], принимается но средней температуре рассчитываемого участка Ц1-2 fti-BH Цвн Р г-ср—коэффициенты уменьщения температурного перепада на расчетном участке вставки с прорезями вследствие растечки тепла.  [c.123]

Лобовую, образующуюся в pa 4efH0M сечении труби (Вт/м ) А.м— коэффициент теплопроводности металла трубы, Вт/(м-К) аг —коэффициент теплоотдачи от стенки к обогреваемой среде, Вт/(м Х  [c.274]

Коэффициент теплопроводности металла трубок греющей батареи = 330 ккалЦм ч-град) (по таблицам).  [c.280]

В настоящем сообщении излагается метод и описывается установка, разработанные в Физико-техническом институте АН УССР и позволяющие проводить измерения коэффициента теплопроводности металлов и сплавов в широкой температурной области (вплоть до температур плавления).  [c.94]

Коэффициент теплопроводности показывает, какое количество тепла передается за единицу времени терез единичную площадь стеики единичной толшяны при разности температур между поверхностями стеикн в один градус. Коэффициент теплопроводности металлов изменяется в широких пределах. Наиболее теплопроводными металлами являются (в порядке ее убывания) серебро, медь, золото, алюминий (422,8 385,85 311,53 226,69 Вт/м-К). при 20 С. Теплопроводность других металлов- приведена в табл. 73.  [c.199]


Теплопередача. Теплопроводность металлов

Всем известно, что теплота может «путешествовать» с одного места на другое. Однако нам пока что неизвестно, каким же образом это происходит? Одинаково ли протекают теплообменные процессы в твёрдых телах, жидкостях и газах? И какова природа передачи теплоты? Чтобы ответить на эти вопросы, проведём эксперимент.

Возьмём железный гвоздь и стеклянную палочку и будем нагревать их концы в пламени спиртовки.

Через некоторое время мы почувствуем тепло. К пальцам, которые держат железный гвоздь, оно дойдёт гораздо быстрее, и вскоре мы не сможем удержать гвоздь, поскольку его температура значительно повысится. Стеклянную же палочку мы ещё долго сможем держать, хотя со временем и её температура повысится до такой степени, что будет печь пальцы.

В рассмотренном нами эксперименте происходит перенос теплоты от более нагретых частей тела к менее нагретым. Вы сами можете привести множество примеров такого переноса теплоты.

Такая передача энергии происходит в результате столкновения частиц. Она передаётся как бы по цепочке, последовательно слой за слоем, и со временем температура всех частей тела выравнивается.

Проведём ещё один опыт. К металлическому стержню, закрепленному в штативе, с помощью воска или пластилина прикрепим несколько кнопок. Свободный конец стержня будем нагревать на пламени спиртовки.

Через некоторое время мы увидим, что кнопки начнут отпадать от стержня: сначала отпадёт та кнопка, которая находится ближе к пламени, а затем поочерёдно все остальные.

Поскольку кнопки отпадали не одновременно, то можно сделать вывод о том, что температура стержня повышалась постепенно.

Почему это происходит? Попробуем разобраться, используя знания, полученные нами на предыдущих уроках.

Мы знаем, что в твёрдом теле (например, в металле) частицы взаимодействуют между собой, потенциальная энергия их велика, и они могут совершать колебательные движения около определенных положений. Модель структуры твердого тела (металла) можно представить в виде кристаллической решётки.

Модель кристаллической решётки

Частицы металла ближнего к пламени конца стержня получают от него энергию. А это значит, что увеличивается средняя кинетическая энергия колебательного движения его частиц. Так как частицы взаимодействуют друг с другом, то они передают часть своей энергии соседним частицам, заставляя их колебаться быстрее. Те, в свою очередь, передают энергию своим соседям, и так далее по всему стержню.

Это можно уподобить передаче энергии колебательного движения от одного человека к другому в цепочке стоящих рядом, взявшихся за руки людей. Если один человек будет смещаться, то в одну, то в другую сторону, то он вызовет смещение по очереди и всех остальных.

Обращаем внимание на то, что перемещение вещества от одного тела к другому или от одной части тела к другой, не происходит, но при этом передаётся энергия.

Процесс переноса теплоты от более нагретых тел или частей тела к менее нагретым в результате теплового движения и взаимодействия частиц без переноса вещества называется теплопроводностью.

Так как взаимодействие молекул и тепловое движение у разных веществ неодинаковы, то и теплопроводность веществ разная.

Чтобы в этом убедиться, проделаем следующий опыт. Возьмём сосуд с горячей водой и стержни одинакового размера из различных материалов, например, из серебра, латуни, стали, стекла и дерева. Верхние концы стержней погрузим в сосуд так, чтобы они прогревались водой. А к свободным нижним концам этих стержней прикрепим воском или пластилином кнопки.

Через некоторое время мы заметим, что первым отпадает кнопка от серебряного стержня. Значит серебро — это очень хороший проводник тепла. Затем отпадает гвоздик от стержня из латуни, а потом и от стального.

Ждать же, пока прогреются стеклянный и деревянный стержни, приходится очень долго. Значит,  дерево и стекло имеют очень малую теплопроводность.

Так теплопроводность дерева примерно в три тысячи раз меньше теплопроводности серебра. Убедиться в этом можно на опыте. Деревянную или стеклянную палочку можно безопасно держать рукой, в то время как другой ее конец, находящийся в пламени спиртовки, уже горит или плавится.

Становится понятным, почему деревянные дома лучше сохраняют тепло, чем кирпичные, почему ручки паяльников, кастрюль и сковородок делают из пластмассы или дерева.

Материалы, которые очень плохо проводят тепло, называют теплоизоляторами.

Теперь зададимся вопросом, а могут ли проводить теплоту газы? Что бы на него ответить, проделаем такой опыт: поместим в открытый конец пробирки термометр и будем нагревать пробирку в пламени спиртовки донышком вверх. Можно заметить, что нагревание воздуха идёт, но очень медленно, что подтверждается незначительным повышением показания термометра.

Приведём ещё несколько примеров. И так, все вы знаете, что фен выдувает горячий воздух за счёт электрической энергии, которую он потребляет из сети.

Однако, если встать чуть-чуть в стороне от потока воздуха, то тепло едва ли можно будет ощутить.

Кроме того, мы знаем, что двойные окна значительно лучше сохраняют тепло, чем одинарные. Это происходит за счёт небольшого слоя воздуха между ними.

Двойные стёкла в оконной раме

Так чем объясняется столь плохая теплопроводность газов? Вспомните, что силы взаимодействия между молекулами газов при нормальном давлении практически равны нулю. Значит, энергия переносится только за счёт хаотического движения молекул и столкновений их друг с другом. Поэтому, например, сильно разреженные газы практически не проводят теплоту. Это их свойство применяют, в частности, в термосах, чтобы продолжительное время сохранять в них жидкости при постоянной температуре.

Такими образом, теплопроводность газов очень малая, особенно по сравнению с теплопроводностью твёрдых тел. Так, например, теплопроводность обычного воздуха, которым мы с вами дышим, почти в 10 000 раз меньше, чем теплопроводность меди.

А теперь давайте выясним, какова же теплопроводность жидкостей? Так как взаимодействие молекул у жидкостей значительное, то перенос энергии молекулами у них лучше, чем у газов, но хуже, чем у твёрдых тел. Чтобы в этом убедиться, проведём такой опыт. Возьмём пробирку с водой, на дно которой поместим кусочек льда. Чтобы лёд не всплывал, прикрепим к нему какой-либо металлический предмет. Будем нагревать верхнюю часть пробирки в спиртовке.

Через некоторое время вода в верхней части пробирки закипит, но лёд на дне при этом не растает. Это говорит о том, что теплопроводность воды малая, хотя и больше чем у воздуха. Следует помнить, что металлы, находящиеся в жидком состоянии (это, например, медь, олово и так далее) обладают хорошей теплопроводностью.

Таким образом, теплопроводность жидкости действительно занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

И так, из всех рассмотренных нами примеров мы можем сделать вывод о том, что теплопроводность — это свойство тел, и у каждого тела она разная. Например, шерсть, перья и волосы имеют плохую теплопроводность. Это объясняется тем, что между их волокнами содержатся частички воздуха.

Мы постоянно сталкиваемся с явлением теплопроводности в повседневной жизни. Например, посуду, в которой готовят пищу, делают из материалов, обладающих хорошей теплопроводностью, чтобы передавать энергию от источника к пище. А вот посуду из которой едят, наоборот, делают из материалов с плохой теплопроводностью.

Самой низкой теплопроводностью обладает вакуум (то есть пространство, свободное от вещества). И это неудивительно, ведь явление теплопроводности возникает при взаимодействии молекул или других частиц, которых в вакууме попросту нет в вакууме. Этим и объясняется тот факт, что в открытом космосе самая низкая температура в природе.

Конечно же у вас может возникнуть вопрос: как же тогда нам передаётся тепло от Солнца? Это происходит посредством ещё одного вида теплопередачи — излучения. Но нём мы поговорим с вами в следующий раз.

Теплопроводность. Примеры вокруг нас

Способы передачи тепла

В самой обычной квартире находится множество объектов и устройств, которые помогут продемонстрировать некоторые физические явления и законы, причем из самых разных разделов этой науки — от классической механики до квантовой физики и начал теории относительности.

Например, почему окно в квартире, отделяющее ее от морозного воздуха всего двумя тонкими стеклами, сохраняет тепло? Причина заключается в особом свойстве вещества — теплопроводности.

Теплообмен, или теплопередача, — это физический процесс, при котором тепло переносится от теплого объекта к холодному (или от теплой части одного объекта к холодной). Теплопередача может происходить при непосредственном контакте двух объектов (теплопроводность), перемешивании газов или жидкостей (конвекция) и излучении тепла.

Теплопроводность — способность материала передавать через свой объем тепловой поток, возникающий вследствие разности температур на противоположных поверхностях предмета. Данное явление объясняется тем, что кинетическая энергия атомов и молекул, которая определяет температуру тела, переносится из более нагретых частей предмета к его менее нагретым частям.

Различные материалы проводят теплоту по-разному: одни быстрее (например, металлы), другие медленнее (теплоизоляционные материалы). Воздух — очень плохой проводник тепла, если только он не движется. А вот перемещение воздуха помогает теплу переходить от одного тела к другому, в чем легко убедиться, подержав руку над пламенем (только не следует подносить ее близко к огню!). Поэтому такие вещества или устройства, внутри которых удерживается воздух, превосходно останавливают утечку тепла. Про них можно сказать, что они хорошие тепло-изоляторы. Именно таковы наши окна.

Отдаваемое нашим телом тепло нагревает верхние слои холодного предмета. Но если он обладает высокой теплопроводностью (как металл), то энергия быстро растекается по всему его объему, рост температуры оказывается незначительным, и перетекание тепла продолжается — мы чувствуем, что предмет остается холодным.

Высокая теплопроводность металлов объясняется наличием в них свободных электронов — тех самых, что обеспечивают электропроводность металлов. Электроны в металлах, в отличие от атомов, не остаются на месте, а быстро перемещаются по всему объему тела, перенося при этом тепло.

Что произойдет, если обычный чайник или кастрюлю с водой поставить на плиту (неважно какую — газовую или электрическую)? Молекулы горящего газа или раскаленной электрической спирали станут двигаться намного быстрее, чем до включения плиты. Потому-то они и горячие — газ и спираль. Эти быстрые молекулы ударяются о молекулы металла на внешней стороне донышка чайника, и те, в свою очередь, начинают двигаться быстрее. Затем уже они соударяются с молекулами, находящимися повыше, которые тоже начинают бегать интенсивнее. Вот так, от молекулы к молекуле, это быстрое тепловое движение передается через металл к жидкости в чайнике.

ОТ ЧЕГО ЗАВИСИТ ТЕПЛОПРОВОДНОСТЬ?

Теплопроводность зависит от плотности материала, его строения, пористости, а также от того, как упорядочены атомы в веществе. С увеличением средней плотности теплопроводность возрастает, а чем выше пористость (меньше плотность) материала, тем ниже теплопроводность. У металлов атомы упакованы плотно и упорядоченно, поэтому теплопроводность металлов очень высока — они быстро отдают и получают тепло. В газах основную часть объема составляет пустота, молекулы в газе встречаются редко и пробегают большие расстояния, пока не столкнутся друг с другом, поэтому газы плохо передают тепло и являются хорошими теплоизоляторами. Чем менее плотный газ, тем медленнее он передает тепло. К примеру, в космосе, где царит почти абсолютная пустота (вакуум), тепло передается только путем излучения.

Поделиться ссылкой

Страница не найдена | Кафедра физики твердого тела ПетрГУ

หน้าหลัก
http://rtlabs.nitk.ac.in/ http://www.ei.ksue.edu.ua/ http://www.unajma.edu.pe/ http://www.drbrambedkarcollege.ac.in/ https://esperanza.eastern.edu/ https://www.hsri.or.th/ https://www.agrft.uni-lj.si/ http://www4.fe.usp.br/ https://www.cnba.uba.ar/
Home
bak hocam 2yildir kullandigim siteye gelip kod ekliyorsun not yazip kodlarini siliyorum (insan olan utanir kusura bakma hocam diyip giderdi) kendine dusmanmi ariyorsun? belliki sen disli birine denk gelmemissin hayatin boyunca ama ben cok ugrastim cokta denk geldim bu sekilde tanimadigin birini tehtit etmen ya deli oldugunu gosterir yada tecrubesizligini sen bana isimi ogretecegine once baskalarina ait olan sitelere girmemeyi ogren ondan sonra bana isimi ogretirsin ben cok takintili bir adamim beni kotu bir insan olmaya zorlama rica ediyorum bak lutfen birbirimizi uzmeyelim emin ol bu site felan umrumdami saniyorsun? olay tamamen prensip meselesi sen benim yatakodama gelip beraber yatacagiz diyorsun oyle bir olay yok isine bak oldu 10 kisi daha cagir 500 kod eklesin herkes yorumbacklink isimi yapiyorsun? sacmalamissin daha fazla beni muatap etme kendinle yaptigin terbiyesizligin farkina var illa darbe yiyincemi aklin basina gelecek anlamiyorum ki o kadar yaziyorum ki birbirimize kotuluk yapmayalim kalp kirmayalim birbirimizi uzmeyelim sana daha once boyle notlar yazan bir linkci gordun mu Allah askina ben bazen goruyorum ana baci duymadigim kufurler yaziyor adamlar birbirine sen benim gibi bir insani uzuyorsun ama lutfen.. 8yildir ben kimseyle ortak site kullanmadim babam gelse onunlada kullanmam en hassas oldugum konudur bu bir daha kod eklememeni siddetle tavsiye ediyorum yoksa farkli seyler olur ve kendine nur topu gibi manyak bir dusman edinirsin bos yere bu polemigi uzatiyorsun haksiz olan sensin kod disinde birsey yazmak istersen yazabilirsin ama rica ediyorum isi inada bindirme senden ERDEMLİ DÜRÜST VE OLGUN bir davranis bekliyorum beni anladigini umuyorum ve tekrar inşAllah kod eklemeyecegini umuyorum olumlu olumsuz notunu buraya yazablirsin bende bir daha bu siteyi kullanmiyacagim sanada kullandirmam tabiki is site isi degil prensip isi.. ihtiyacin olabilir site sayin azdir bunlar dogal seyler ben gerekirse kendim eklerim senin kodlarini oyle bir durumda kendi kodlarimida silerim sadece senin olur ama o son not garip bir insan oldugunu dusunduruyor bana ve inan ugrasacak vaktim de kafamda yok kendine sardirma hepimiz ekmek davasindayiz senle isim yok benden sana kotulukte gelmez ama beni zorlama lutfen.. zaten kafamda bir dunya sorun var hayat acimasiz hayat zor benim derdim bana yetiyor butun ictenligim ve iyi niyetim ile sana bu notu yaziyorum bu kadar sozden sonra kod ekleyecegini sanmiyorum birde seninle ugrasmayayim guzel kardesim arkadasim lutfen rica ediyorum LUTFEN barış her zaman erdemli insanlarin isidir lutfen ayni olgunluk ile senden olumlu donusunu bekliyorum eger yazdiklarimda kalp kirici yada incitici birsey varsa lutfen kusura bakma 1-2defa kontrol ettim ama belki gozumden kacmis olabilir hakkini helal et ve en iyisi ikimiz icinde helallesip bu isi noktalamaktir inan kotu biri degilim selam ve sevgiyle..

10 лучших теплопроводящих материалов

Теплопроводность — это мера способности материала пропускать через себя тепло. Материалы с высокой теплопроводностью могут эффективно передавать тепло и легко забирать тепло из окружающей среды. Плохие теплопроводники сопротивляются тепловому потоку и медленно извлекают тепло из окружающей среды. Теплопроводность материала измеряется в ваттах на метр на градус Кельвина (Вт / м • К) в соответствии с рекомендациями S.I (Международная система).

10 лучших измеренных теплопроводных материалов и их значения приведены ниже.Эти значения проводимости являются средними из-за разницы в теплопроводности в зависимости от используемого оборудования и среды, в которой были получены измерения.

Материалы теплопроводящие

  1. Diamond — 2000 — 2200 Вт / м • K

    Алмаз является ведущим теплопроводным материалом и имеет измеренные значения проводимости в 5 раз выше, чем у меди, наиболее производимого металла в Соединенных Штатах. Атомы алмаза состоят из простой углеродной основы, которая представляет собой идеальную молекулярную структуру для эффективной теплопередачи.Часто материалы с простейшим химическим составом и молекулярной структурой имеют самые высокие значения теплопроводности.

    Diamond — важный компонент многих современных портативных электронных устройств. Их роль в электронике — способствовать рассеиванию тепла и защищать чувствительные части компьютера. Высокая теплопроводность алмазов также оказывается полезной при определении подлинности камней в ювелирных изделиях. Добавление небольшого количества алмаза в инструменты и технологии может сильно повлиять на свойства теплопроводности.

  2. Серебро — 429 Вт / м • K

    Серебро — относительно недорогой и распространенный теплопроводник. Серебро входит в состав многих бытовых приборов и является одним из самых универсальных металлов из-за его ковкости. 35% серебра, производимого в США, используется для производства электрических инструментов и электроники (US Geological Survey Mineral Community 2013). Вспомогательный продукт серебра, серебряная паста, пользуется все большим спросом из-за его использования в экологически чистых источниках энергии. Серебряная паста используется в производстве фотоэлементов, которые являются основным компонентом солнечных батарей.

  3. Медь — 398 Вт / м • K

    Медь — наиболее часто используемый металл для производства токопроводящих приборов в США. Медь имеет высокую температуру плавления и умеренную скорость коррозии. Это также очень эффективный металл для минимизации потерь энергии при передаче тепла. Металлические кастрюли, трубы для горячей воды и автомобильные радиаторы — все это приборы, в которых используются проводящие свойства меди.

  4. Золото — 315 Вт / м • K

    Золото — редкий и дорогой металл, который используется для специальных проводящих применений.В отличие от серебра и меди, золото редко тускнеет и может выдерживать большие количества коррозии.

  5. Нитрид алюминия — 310 Вт / м • K

    Нитрид алюминия часто используется в качестве замены оксида бериллия. В отличие от оксида бериллия, нитрид алюминия не представляет опасности для здоровья при производстве, но по-прежнему демонстрирует химические и физические свойства, аналогичные оксиду бериллия. Нитрид алюминия — один из немногих известных материалов, предлагающих электрическую изоляцию наряду с высокой теплопроводностью.Он обладает исключительной стойкостью к тепловому удару и действует как электрический изолятор в механической стружке.

  6. Карбид кремния — 270 Вт / м • K

    Карбид кремния — это полупроводник, состоящий из сбалансированной смеси атомов кремния и углерода. При изготовлении и сплаве кремний и углерод соединяются, образуя чрезвычайно твердый и прочный материал. Эта смесь часто используется в качестве компонента автомобильных тормозов, турбинных машин и стальных смесей.

  7. Алюминий — 247 Вт / м • K

    Алюминий обычно используется в качестве экономичной замены меди.Хотя алюминий не такой проводящий, как медь, его много, и с ним легко работать из-за его низкой температуры плавления. Алюминий является важным компонентом светильников L.E.D (светоизлучающих диодов). Медно-алюминиевые смеси набирают популярность, поскольку они могут использовать свойства как меди, так и алюминия и могут производиться с меньшими затратами.

  8. Вольфрам — 173 Вт / м • K

    Вольфрам имеет высокую температуру плавления и низкое давление пара, что делает его идеальным материалом для приборов, которые подвергаются воздействию высоких уровней электричества.Химическая инертность вольфрама позволяет использовать его в электродах, являющихся частью электронных микроскопов, без изменения электрических токов. Он также часто используется в лампах и как компонент электронно-лучевых трубок.

  9. Графит 168 Вт / м • K

    Графит — это распространенная, недорогая и легкая альтернатива другим углеродным аллотропам. Его часто используют в качестве добавки к полимерным смесям для улучшения их теплопроводных свойств. Батареи — знакомый пример устройства, использующего высокую теплопроводность графита.

  10. Цинк 116 Вт / м • K

    Цинк — один из немногих металлов, которые можно легко комбинировать с другими металлами для создания металлических сплавов (смеси двух или более металлов). 20% цинковых приборов в США состоят из цинковых сплавов. При цинковании используется 40% производимого чистого цинка. Цинкование — это процесс нанесения цинкового покрытия на сталь или железо, которое предназначено для защиты металла от атмосферных воздействий и ржавчины.

Список литературы

Мохена, Т.К., Мочане, М. Дж., Сефади, Дж. С., Мотлунг, С. В., и Андала, Д. М. (2018). Теплопроводность полимерных композитов на основе графита. Влияние теплопроводности на энергетические технологии. doi: 10,5772 / intechopen.75676
Нитрид алюминия. (нет данных). Получено с https://precision-ceramics.com/materials/aluminium-nitride/

.

База данных материалов Thermtest. https://thermtest.com/materials-database

Автор: Каллиста Уилсон, младший технический писатель Thermtest

Теплопроводность металлов — объяснение физики

Теплопроводность измеряет способность материалов пропускать тепло через проводимость.Теплопроводность такого материала, как металл, сильно зависит от состава и структуры.

Известно, что металлы являются высокоэффективными проводниками тепла.

В этой статье будут изучены механизмы теплопередачи, что делает металлы идеальными проводниками тепла, а также способы использования обычных металлов и сплавов.

Важность теплопроводности в повседневной жизни

Изображение 1. A

Изображение 1. B

Изображение 1. A и B показывают визуальные иллюстрации людей на кухне, использующих кухонные принадлежности.

Кулинария — часть повседневной жизни большинства людей. Следовательно, кухонное оборудование разработано с целью обеспечения максимальной безопасности и эффективности. Это требует понимания теплофизики. Есть причина, по которой нагревательный элемент тостера обычно изготавливается из нихромовой проволоки, ложки для смешивания обычно бывают деревянными, а материал, из которого изготовлены рукавицы, никогда не включает металлический состав.

Определение температуры и теплопроводности

Необходимо вспомнить определение температуры , чтобы понять теплопроводность математически.

Оперативное определение Т:

Операционное определение температуры — это значение, измеренное с помощью термометра, который просто измеряет расширение объема Меркурия.

Изображение 2. Изображение двух термометров в единицах Цельсия и Фаренгейта

Физическое определение Т:

В теплофизике температура и теплопроводность понимаются путем изучения движения молекул.

Шредер, автор « Introduction to Thermal Physics » математически описывает температуру как:

\ [\ frac {1} {T} = \ Bigg (\ frac {dS} {dU} \ Bigg) \ scriptscriptstyle N, V ​​\]

где:
S = энтропия,
U = энергия,
N = количество частиц,
V = объем системы (Schroeder, 2007).

Следовательно, температура системы зависит от энтропии и энергии , когда количество частиц и объем системы поддерживаются постоянными.

Шредер заявляет словами: «Температура — это мера тенденции объекта спонтанно отдавать энергию своему окружению. Когда два объекта находятся в тепловом контакте, тот, который имеет тенденцию спонтанно терять энергию, имеет более высокую температуру »(Schroeder, 2007). Это потому, что два соприкасающихся объекта будут пытаться достичь теплового равновесия ; становятся той же температуры.

Для визуализации температуры и теплопроводности на микроскопическом уровне Ниже показаны рисунки 1 A и B. Представьте, что неизвестные объекты A и B находятся в физическом контакте друг с другом. Объект A имеет более высокую температуру, чем объект B. Что произойдет с температурой с течением времени?

Рисунок 1. A

Рисунок 1.B

На рисунке 1.A показаны два неизвестных объекта, находящихся в физическом контакте друг с другом, а на рисунке 1.B отображает молекулы объектов.

При t 0, T A > T B

При t 1, T A > T B

.

.

При t n, T A = T B

При t 0, ŝ A > ŝ B

При t 1, ŝ A > ŝ B

.

.

При t n, ŝ A > ŝ B

Учитывая, что t n : момент времени, T A : температура объекта A, T B : температура объекта B, ŝ A : средняя скорость частицы A, ŝ B : средняя скорость частицы B.

В t 0 атомы объекта A движутся с большей скоростью, а атомы объекта B движутся с меньшей скоростью (T A > T B ). Со временем объект A отдает энергию, а объект B получает энергию, пока они не достигнут одинаковой температуры (T A = T B ) и не достигнут теплового равновесия.Это теплопроводность , описанная на молекулярном уровне. Ближайшие атомы объекта A сталкиваются с атомами объекта B. Атомы объекта B, которые первоначально взаимодействовали с атомами объекта A, сталкиваются с другими атомами объекта B, пока энергия не передается через все атомы объекта B.

Шредер определяет теплопроводность как «перенос тепла посредством молекулярного контакта: быстро движущиеся молекулы сталкиваются с медленно движущимися молекулами, отдавая при этом часть своей энергии» (Schroeder, 2007).

Режимы теплопередачи металлов

Полезно вспомнить три режима теплопередачи; конвекция для газов / жидкостей, излучение для объектов, разделенных пустым пространством и проводимость для объектов, находящихся в прямом контакте.

Теплопроводность также разделена на три категории: столкновения молекул, для газовой / жидкой форм, колебания решетки, для твердых тел и электронов проводимости, для металлов, как показано на рисунке 2.ниже.

Рисунок 2. Режимы теплопередачи.

Теплопроводность металлов будет включать столкновения молекул + электронов проводимости для металлов в газообразном состоянии и колебания решетки + проводящие электроны для металлов в твердом состоянии. Электроны проводимости — это, по сути, то, что делает металл невероятным проводником. . Прежде чем объяснять, что на самом деле представляет собой электрон проводимости, необходимо вспомнить определение металла.

Определение металлов

Все элементы могут быть найдены в периодической таблице, включая металлы, неметаллы и металлоиды.Металлы определяются как «элементы, которые образуют положительные ионы, теряя электроны во время химических реакций» (Blaber, 2015).

Рисунок 3. Периодическая таблица, показывающая все элементы, разделенные на металлы, неметаллы и металлоиды.

Таблица 1. Список типичных физических свойств металлов.

Физические свойства большинства металлов
Твердое при комнатной температуре
Жесткий
Высокая плотность
Высокая температура плавления
Высокая точка кипения
Гибкий
Пластичный
Блестящий

Что делает металлы хорошими проводниками тепла?

Что делает металл хорошим проводником тепла, так это свободно текущих электронов проводимости .

Рис. 4. Металлический блок, который нагревается, показывая атомы и свободно текущие электроны.

Атомы металлов выделяют валентные электроны при химической реакции с атомами неметаллов, например образуя оксиды и соли. Таким образом, ионы металлов являются катионами в водном растворе. Что делает металлы и их сплавы хорошими проводниками, так это особая металлическая связь. В металлических твердых телах связанные атомы разделяют свои валентные электроны, образуя море свободно движущихся электронов проводимости, которые несут как тепло, так и электрический заряд.Итак, в отличие от, например, электронов в ковалентных связях, валентные электроны в металле могут свободно течь через металлические латексы, эффективно неся тепло, не будучи привязанными к отдельному атомному ядру.

Математическое моделирование значения теплопроводности (k)

Теплопроводность (k) измеряет способность объекта проводить тепло (Q).

Высокое значение k: Высокая теплопроводность

Рис. 4. Лист материала с уравнением теплопроводности.

Дано:

k = теплопроводность (Вт / м • K),

ΔQ = передача энергии (Джоуль / сек),

Δt = изменение во времени (секунды),

ΔT = температурный градиент (K),

A = площадь теплопроводности (м 2 ),

Δx = толщина материала.

Значения теплопроводности металлов и сплавов

В следующих таблицах показана теплопроводность некоторых металлов и сплавов при комнатной температуре.

Таблица 2. Список типичных физических свойств металлов.

Металлы Теплопроводность
при комнатной температуре (Вт / м • К)
Алюминий 226
Алюминиевый сплав (Al Mg 2,5-5,0) 125
Углеродистая сталь 71
Магний 151
Латунь (желтый) 117
Бронза (алюминий) 71
Медь 397
Утюг 72
Нержавеющая сталь (446) 23
Стальной сплав 8620 (литье) 46
Сталь углеродистая тип 1020 (0.2 — 0,6 в) 71
Вольфрам 197
Свинец 34
Никель 88
Сталь углеродистая тип 1020 (0,2 — 0,6 с) 71
цинк 112
Титан 21
Олово 62

Примечание. Медь и алюминий имеют наивысшее значение теплопроводности (k).Проверьте нашу базу данных материалов.

Использование обычных металлов и сплавов в таблице выше

Металлы и сплавы (материалы, состоящие из комбинации металлов) используются в качестве строительных материалов в различных отраслях промышленности, таких как электроника, машиностроение, лабораторное оборудование, медицинские приборы, товары для дома и строительство.

Наивысшие значения теплопроводности металлов имеют серебро (-429 Вт / м • К), медь (-398 Вт / м • К) и золото (-315 Вт / м • К).

Металлы очень важны в производстве электроники, так как они хорошо проводят электричество.Медь, алюминий, олово, свинец, магний и пластик часто используются для изготовления деталей телефонов, ноутбуков, компьютеров и автомобильной электроники. Медь экономична и используется для электропроводки. Свинец используется для оболочки кабеля и изготовления аккумуляторов. Олово используется для изготовления припоев. Магниевые сплавы используются в производстве по новой технологии, так как они легкие. Пластик используется для изготовления деталей электроники, которые не должны проводить электричество, а титан используется для производства пластика.

Металлы также важны в машиностроении.Алюминий часто используется в производстве деталей автомобилей и самолетов, а также используется в качестве сплава, поскольку его чистая форма непрочна. Автомобильное литье изготавливается из цинка. Железо, сталь и никель — обычные металлы, используемые в строительстве и инфраструктуре. Сталь — это сплав железа и углерода (и часто других элементов). Увеличение содержания углерода в стали создает углеродистую сталь, которая делает материал более прочным, но менее пластичным. Углеродистая сталь часто используется в строительных материалах. Латунь и бронза (медь, легированная цинком и оловом, соответственно) обладают полезными свойствами поверхностного трения и используются для замков, петель и рам дверей и окон соответственно.

Наконец, традиционно нити накала ламп дневного света изготавливаются из вольфрама. Однако они постепенно сокращаются, поскольку только около 5% мощности преобразуется в свет в таком источнике света, а остальная часть энергии преобразуется в тепло. Современные источники света часто основаны на светодиодной технологии и полупроводниках.

В заключение, теплопроводность металла очень важна для проектирования любой конструкции. Это неотъемлемая часть безопасности, эффективности и новых инноваций в отраслях.Электроны проводника являются механизмом высокой проводимости металлов по сравнению с неметаллическими материалами. Однако значение теплопроводности (k) также может сильно различаться для разных металлов.

Список литературы

Шредер, Д. В. (2018). Введение в теплофизику. Индия: Служба образования Pearson India.

База данных материалов — Термические свойства. (нет данных). Получено с https://thermtest.com/materials-database

.

Алюминиевые сплавы 101. (9 марта 2020 г.).Получено с https://www.aluminium.org/resources/industry-standards/aluminium-alloys-101

.

Элерт, Г. (нет данных). Проведение. Получено с https://physics.info/conduction/

.

Блабер, М. (3 июня 2019 г.). 9.2: Металлы и неметаллы и их ионы. Получено с https://chem.libretexts.org/Bookshelves/General_Chemistry/Map:_General_Chemistry_(Petrucci_et_al.)/09:_The_Periodic_Table_and_Some_Atomic_Properties/9.2:_Metals_and_Nonmetals_Ions_and_the

Теплопроводность.(нет данных). Получено с http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thercond.html

.

Диоксид титана для пластмасс. (нет данных). Получено с https://polymer-additives.specialchem.com/centers/titanium-dioxide-for-plastics-center

.

Сандхана, Л., и Джозеф, А. (6 марта 2020 г.). Что такое углеродистая сталь? Получено с https://www.wisegeek.com/what-is-carbon-steel.html

.

(нет данных). Получено с http://www.elementalmatter.info/element-aluminium.html

.
Изображения

Изображение 1.A: Мохамед, М. (2019). Кулинария [Иллюстрация]. Получено с https://pxhere.com/en/photo/1584957.

Изображение 1.B: Mohamed, M. (2019). Шеф-повар Кулинария [Иллюстрация]. Получено с https://pxhere.com/en/photo/1587003.

Изображение 2: Википедия. Термометр [Иллюстрация]. Получено с https://upload.wikimedia.org/wikipedia/commons/7/70/Thermometer_CF.svg

.

Автор: Селен Йылдыр | Младший технический писатель | Thermtest

SMART и токопроводящие ткани, пряжа или ткани

Bonne année 2021! … Салон JEC WORLD в стиле модерн; il aura lieu du 8 au 10 mars 2022! …….. Rendez vos gants tactiles! Utiisez Notre Fil à Coudre Conducteur SILVERPAM

Металлические нагревательные или токопроводящие нити и гибкие конструкции для технического текстиля или композитов функционализация:

Мы проектируем и производим гибкую, металлическую, токопроводящую или нагревательную пряжу для передачи энергии или функциональности материалов.
Вы можете разместить их в тканях или встроить в гибкие конструкции или композиты.

Что мы подразумеваем под

передачей энергии :

  • Электроэнергия
  • Оптическая энергия
  • Тепловая энергия (передача, контролируемая материалами или жидкостями)

Что мы подразумеваем под

проводящими или резистивными волокнами :

  • ультратонкие волокна или мультифиламенты из сплавов металлов или нержавеющей стали;
  • Волокна металлические, привитые или с покрытием
  • Многокомпонентная пряжа с добавками термопластов или смол
  • Оптоволокно
  • Капилляры или микротрубки для теплоносителей

Что мы подразумеваем под

гибкими конструкциями :

  • Металл или нержавеющая сталь Устойчивые к высоким температурам микроволокна, ленты или пряжа:
  • В виде токопроводящих жил:
  • На основе гибких функциональных тканей:

Металлические нагревательные или токопроводящие волокна, пряжа и гибкие конструкции


для функционализации тканей или композитов SMART

Сосредоточьтесь на нескольких проводящих сырьевых материалах

Мы работаем с рядом ультратонких металлических или проводящих волокон, выбранных с учетом их особых свойств.

Трансверсальность: мы используем много технологий преобразования текстиля

Благодаря собственным производственным мощностям или известным партнерам мы оптимизируем свойства наших функциональных материалов для удовлетворения потребностей наших клиентов.

Работаем на трех основных рынках

    Нагревательные нити или ткани для функциональности многослойных или композитных деталей

    Гибкие элементы для электроники: смарт-текстиль, антенны RFID, связанная одежда, подключение

    Высокотемпературная фильтрация и катализ горячих газов

Во что мы верим:

«Самый большой инновационный потенциал лежит на перекрестке материалов, технологий и человека»

«Прошлые или будущие инновации очень часто вдохновляются тем, что уже существует в Природе!»

Теплопроводность — Energy Education

Теплопроводность , часто обозначаемая как [math] \ kappa [/ math], — это свойство, которое связывает скорость потери тепла на единицу площади материала со скоростью его изменения температуры.{\ circ} F} \ right) [/ math]. [3] Материалы с более высокой теплопроводностью являются хорошими проводниками тепловой энергии.

Поскольку теплопроводность включает передачу энергии без движения материала, логично, что скорость передачи тепла будет зависеть только от разницы температур между двумя точками и теплопроводности материала.

Для получения дополнительной информации о теплопроводности см. Гиперфизика.

Значения для общих материалов

Теплопроводность, [математика] \ каппа [/ математика] [4]
Материал Электропроводность при 25 o C
Акрил 0.2
Воздух 0,024
Алюминий 205
Битум 0,17
Латунь 109
Цемент 1,73
Медь 401
Алмаз 1000
Войлок 0,04
Стекло 1,05
Утюг 80
Кислород 0.024
Бумага 0,05
Кремнеземный аэрогель 0,02
Вакуум 0
Вода 0,58


Из таблицы справа видно, что большинство материалов, которые обычно считаются хорошими проводниками, обладают высокой теплопроводностью. В основном металлы обладают очень высокой теплопроводностью, которая хорошо сопоставима с тем, что известно о металлах.Кроме того, изоляционные материалы, такие как аэрогель и изоляция, используемые в домах, имеют низкую теплопроводность, что указывает на то, что они не пропускают тепло через себя. Таким образом, низкая теплопроводность свидетельствует о хорошем изоляционном материале.

Промежуточные материалы не обладают значительными изолирующими или проводящими свойствами. Цемент и стекло не проводят слишком большое количество тепла и не обладают хорошей изоляцией.

Идея о том, что теплопроводность определенных материалов связана с тем, насколько хорошо они изолируют, обеспечивает связь между теплопроводностью и R-значениями / U-значениями.Поскольку значения U и R отражают, насколько хорошо определенный материал сопротивляется потоку тепла, теплопроводность играет роль в формировании этих значений. Однако значения U и R также зависят от толщины материала, тогда как теплопроводность этого не учитывает.

Для дальнейшего чтения

Список литературы

  1. ↑ HyperPhysics. (12 мая 2015 г.). Теплопроводность [Онлайн]. Доступно: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thercond.html
  2. ↑ Р. Чабай, Б. Шервуд. (12 мая 2015 г.). Материя и взаимодействия , 3-е изд., Хобокен, Нью-Джерси, США: John Wiley & Sons, 2011
  3. ↑ Д. Грин, Р. Перри. (12 мая 2015 г.). Справочник инженеров-химиков Перри , 7-е изд., McGraw-Hill, 1997.
  4. ↑ The Engineering Toolbox. (12 мая 2015 г.). Теплопроводность обычных материалов и газов [Онлайн]. Доступно: http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html

Теплопроводность — Энциклопедия Нового Света

Испытание на огнестойкость, используемое для проверки передачи тепла через противопожарные заглушки и пенетранты, используемые в строительных списках и одобрении использования и соответствия.

В физике теплопроводность , k {\ displaystyle k} — это свойство материала, которое указывает на его способность проводить тепло. Он появляется прежде всего в законе Фурье для теплопроводности.

Проводимость — наиболее важное средство передачи тепла в твердом теле. Зная значения теплопроводности различных материалов, можно сравнить, насколько хорошо они проводят тепло. Чем выше значение теплопроводности, тем лучше материал проводит тепло.В микроскопическом масштабе проводимость возникает, когда горячие, быстро движущиеся или колеблющиеся атомы и молекулы взаимодействуют с соседними атомами и молекулами, передавая часть своей энергии (тепла) этим соседним атомам. В изоляторах тепловой поток почти полностью переносится фононными колебаниями.

Математический фон

Во-первых, теплопроводность можно определить по формуле:

H = ΔQΔt = k × A × ΔTx {\ displaystyle H = {\ frac {\ Delta Q} {\ Delta t}} = k \ times A \ times {\ frac {\ Delta T} {x} }}

, где ΔQΔt {\ displaystyle {\ frac {\ Delta Q} {\ Delta t}}} — скорость теплового потока, k — теплопроводность, A — общая площадь поверхности Δ T — разность температур, а x — толщина проводящей поверхности, разделяющей две температуры.

Таким образом, преобразование уравнения дает теплопроводность,

k = ΔQΔt × 1A × xΔT {\ displaystyle k = {\ frac {\ Delta Q} {\ Delta t}} \ times {\ frac {1} {A}} \ times {\ frac {x} {\ Delta T}}}

(Примечание: ΔTx {\ displaystyle {\ frac {\ Delta T} {x}}} — это градиент температуры)

Другими словами, он определяется как количество тепла Δ Q , передаваемое за время Δ t через толщину x в направлении, перпендикулярном поверхности площадью A , из-за разность температур Δ T в установившемся режиме и когда теплопередача зависит только от температурного градиента.

С другой стороны, это можно представить как поток тепла (энергия на единицу площади в единицу времени), деленный на градиент температуры (разность температур на единицу длины).

k = ΔQA × Δt × xΔT {\ displaystyle k = {\ frac {\ Delta Q} {A \ times {} \ Delta t}} \ times {\ frac {x} {\ Delta T}}}


Типичными единицами являются СИ: Вт / (м · К) и английские единицы: БТЕ · фут / (ч · фут² · ° F). Для преобразования между двумя значениями используйте соотношение 1 британских тепловых единиц · фут / (ч · фут² · ° F) = 1,730735 Вт / (м · К). [1]

Примеры

В металлах теплопроводность приблизительно соответствует электропроводности в соответствии с законом Видемана-Франца, поскольку свободно движущиеся валентные электроны переносят не только электрический ток, но и тепловую энергию. Однако общая корреляция между электрической и теплопроводностью не выполняется для других материалов из-за повышенного значения фононных носителей для тепла в неметаллах. Как показано в таблице ниже, серебро с высокой электропроводностью менее теплопроводно, чем алмаз, который является электрическим изолятором.

Теплопроводность зависит от многих свойств материала, особенно от его структуры и температуры. Например, чистые кристаллические вещества демонстрируют очень разную теплопроводность вдоль разных осей кристалла из-за различий в фононной связи вдоль данной оси кристалла. Сапфир является ярким примером переменной теплопроводности в зависимости от ориентации и температуры, для которой в справочнике CRC указана теплопроводность 2,6 Вт / (м · К) перпендикулярно оси c при 373 K, но 6000 Вт / ( м · К) при 36 градусах от оси c и 35 К (возможна опечатка?).

Воздух и другие газы, как правило, являются хорошими изоляторами при отсутствии конвекции. Следовательно, многие изоляционные материалы функционируют просто за счет наличия большого количества заполненных газом карманов, которые предотвращают крупномасштабную конвекцию. Их примеры включают вспененный и экструдированный полистирол (обычно называемый «пенополистиролом») и аэрогель кремнезема. Природные биологические изоляторы, такие как мех и перья, достигают аналогичного эффекта, резко подавляя конвекцию воздуха или воды возле кожи животного.

Теплопроводность играет важную роль в теплоизоляции зданий и в смежных областях. Однако материалы, используемые в таких отраслях, редко подвергаются стандартам химической чистоты. Ниже перечислены значения k для некоторых строительных материалов. Их следует считать приблизительными из-за неопределенностей, связанных с определениями материалов.

Следующая таблица предназначена в качестве небольшой выборки данных для иллюстрации теплопроводности различных типов веществ. Более полные списки измеренных значений k см. В справочных материалах.

Список коэффициентов теплопроводности

Это список приблизительных значений теплопроводности, k , для некоторых распространенных материалов. Пожалуйста, обратитесь к списку значений теплопроводности для получения более точных значений, справочных материалов и подробной информации.

Измерение

Вообще говоря, существует ряд возможностей для измерения теплопроводности, каждая из которых подходит для ограниченного диапазона материалов, в зависимости от тепловых свойств и температуры среды.Можно провести различие между установившимся и переходным режимами.

Обычно методы установившегося режима выполняют измерения, когда температура измеряемого материала не изменяется со временем. Это упрощает анализ сигналов (устойчивое состояние подразумевает постоянные сигналы). Обычно недостатком является то, что для этого требуется хорошо спроектированная экспериментальная установка. Разделенный стержень (различных типов) — это наиболее распространенное устройство, используемое для консолидированных проб горных пород.

Переходные методы выполняют измерения в процессе нагрева.Преимущество в том, что измерения можно проводить относительно быстро. Переходные методы обычно выполняются с помощью игольчатых зондов (вставленных в образцы или погруженных на дно океана).

Для хороших проводников тепла можно использовать метод стержня Серла. Для плохих проводников тепла можно использовать дисковый метод Лиза. Также можно использовать альтернативный традиционный метод с использованием настоящих термометров. Тестер теплопроводности, один из инструментов геммологии, определяет, являются ли драгоценные камни настоящими алмазами, используя уникально высокую теплопроводность алмаза.

Стандартные методы измерения

  • Стандарт IEEE 442-1981, «Руководство IEEE по измерениям теплового сопротивления грунта», см. Также gradient_thermal_properties. [4]
  • Стандарт IEEE 98-2002, «Стандарт подготовки процедур испытаний для термической оценки твердых электроизоляционных материалов» [5]
  • Стандарт ASTM D5470-06, Стандарт Метод испытаний теплопроводных свойств теплопроводных электроизоляционных материалов » [6]
  • Стандарт ASTM E1225-04,« Стандартный метод испытаний теплопроводности твердых тел с помощью метода контролируемого сравнительного продольного теплового потока » [7]
  • Стандарт ASTM D5930-01, «Стандартный метод испытания теплопроводности пластмасс с помощью метода нестационарного линейного источника» [8]
  • Стандарт ASTM D2717-95, » Стандартный метод испытаний теплопроводности жидкостей » [9]

Разница между американскими и европейскими обозначениями

В Европе коэффициент k строительных материалов (например,грамм. оконное стекло) называется λ-значением.

U-значение раньше называлось k-значением в Европе, но теперь его также называют U-значением.

Значение К (с большой буквы) относится в Европе к общей стоимости изоляции здания. K-значение получается путем умножения форм-фактора здания (= общая внутренняя поверхность внешних стен здания, деленная на общий объем здания) на среднее значение U внешних стен здания. . Таким образом, значение K выражается как (m 2 -3 ). (W.K -1 . м -2 ) = W.K -1 . м -3 . Таким образом, для дома объемом 400 м³ и коэффициентом К 0,45 (новая европейская норма. Его обычно называют K45) теоретически потребуется 180 Вт для поддержания внутренней температуры на 1 градус К выше наружной температуры. Итак, для поддержания температуры в доме при 20 ° C при морозах на улице (0 ° C) требуется 3600 Вт постоянного обогрева.

Связанные термины

Обратная величина теплопроводности равна , удельное тепловое сопротивление измеряется в кельвин-метрах на ватт (К · м · Вт −1 ).

При работе с известным количеством материала можно описать его теплопроводность и взаимное свойство тепловое сопротивление . К сожалению, эти термины имеют разные определения.

Первое определение (общее)

Для общего научного использования, теплопроводность — это количество тепла, которое проходит за единицу времени через пластину с определенной площадью и толщиной , когда ее противоположные грани различаются по температуре на один градус.Для пластины с теплопроводностью k , площадью A и толщиной L это составляет кА / л , измеренное в Вт · К -1 (эквивалент: Вт / ° C). Теплопроводность и проводимость аналогичны электрической проводимости (А · м -1 · В -1 ) и электрической проводимости (А · В -1 ).

Существует также мера, известная как коэффициент теплопередачи: количество тепла, которое проходит за единицу времени через единиц площади пластины определенной толщины, когда ее противоположные стороны различаются по температуре на один градус.Ответная — по теплоизоляции . В итоге:

  • теплопроводность = кА / L , измеренная в Вт · К −1
    • тепловое сопротивление = L / кА , измеренное в К · Вт −1 (эквивалент до: ° C / Вт)
  • коэффициент теплопередачи = k / L , измеряется в Вт · K −1 · м −2
    • теплоизоляция = L / k , измеряется в K · м² · W -1 .

Коэффициент теплопередачи также известен как теплопроводность

Термическое сопротивление

Когда термические сопротивления возникают последовательно, они складываются. Таким образом, когда тепло проходит через два компонента, каждый с сопротивлением 1 ° C / Вт, общее сопротивление составляет 2 ° C / Вт.

Общая проблема инженерного проектирования включает выбор радиатора подходящего размера для данного источника тепла. Работа в единицах теплового сопротивления значительно упрощает расчет конструкции.Для оценки производительности можно использовать следующую формулу:

Rhs = ΔTPth − Rs {\ displaystyle R_ {hs} = {\ frac {\ Delta T} {P_ {th}}} — R_ {s}}

где:

  • R hs — максимальное тепловое сопротивление радиатора окружающей среде, ° C / Вт
  • ΔT {\ displaystyle \ Delta T} — разница температур (падение температуры), ° C.
  • P th — тепловая мощность (тепловой поток), в ваттах
  • R s — тепловое сопротивление источника тепла в ° C / Вт

Например, если компонент выделяет 100 Вт тепла и имеет тепловое сопротивление 0.5 ° C / Вт, какое максимальное тепловое сопротивление радиатора? Допустим, максимальная температура составляет 125 ° C, а температура окружающей среды — 25 ° C; тогда ΔT {\ displaystyle \ Delta T} равно 100 ° C. Тепловое сопротивление радиатора окружающей среде должно быть не более 0,5 ° C / Вт.

Второе определение (здания)

Когда речь идет о зданиях, термическое сопротивление или R-value означает то, что описано выше как теплоизоляция, а теплопроводность , означает обратное.Для материалов, соединенных последовательно, эти тепловые сопротивления (в отличие от проводимости) можно просто добавить, чтобы получить тепловое сопротивление для всего.

Третий член, коэффициент теплопередачи , включает теплопроводность конструкции наряду с теплопередачей за счет конвекции и излучения. Он измеряется в тех же единицах, что и теплопроводность, и иногда известен как композитный коэффициент теплопроводности . Еще одним синонимом является термин , значение U .

Таким образом, для пластины с теплопроводностью k (значение k [10] ), площадь A и толщина L :

  • теплопроводность = k / L , измеренная в Вт · K −1 · м −2 ;
  • термическое сопротивление (значение R) = L / k , измеряется в К · м² · Вт −1 ;
  • Коэффициент теплопередачи (значение U) = 1 / (Σ ( L / k )) + конвекция + излучение, измеряется в Вт · К −1 · м −2 .

Текстильная промышленность

В текстильных изделиях значение tog может указываться как мера теплового сопротивления вместо меры в единицах СИ.

Истоки

Теплопроводность системы определяется тем, как взаимодействуют атомы, составляющие систему. Нет простых и правильных выражений для теплопроводности. Существует два разных подхода к расчету теплопроводности системы.

Первый подход использует отношения Грина-Кубо.Хотя здесь используются аналитические выражения, которые в принципе могут быть решены, для расчета теплопроводности плотной жидкости или твердого тела с использованием этого соотношения требуется использование компьютерного моделирования молекулярной динамики.

Второй подход основан на подходе времени релаксации. Известно, что из-за ангармонизма внутри кристаллического потенциала фононы в системе рассеиваются. Существует три основных механизма рассеяния (Шривастава, 1990):

  • Граничное рассеяние, попадание фонона на границу системы;
  • Рассеяние на дефекте массы, удары фонона о примесь внутри системы и рассеяние;
  • Фонон-фононное рассеяние, фонон распадается на два фонона с более низкой энергией или фонон сталкивается с другим фононом и сливается с одним фононом с более высокой энергией.

См. Также

Банкноты

  1. ↑ Perry’s Chemical Engineers ‘Handbook, 7-е изд., Таблица 1-4.
  2. 2,0 2,1 Теплопроводность некоторых распространенных материалов Проверено 26 мая 2008 г.
  3. ↑ Теплопроводность металлов Проверено 26 мая 2008 г.
  4. ↑ Руководство IEEE по измерениям теплового сопротивления грунта Проверено 26 мая 2008 г.
  5. ↑ Стандарт подготовки процедур испытаний для термической оценки твердых электроизоляционных материалов, последнее обращение 26 мая 2008 г.
  6. ↑ Стандартный метод испытаний теплопроводных свойств теплопроводных электроизоляционных материалов, последнее обращение 26 мая 2008 г.
  7. ↑ Стандартный метод испытаний теплопроводности твердых тел с помощью метода охраняемого сравнительного продольного теплового потока Проверено 26 мая 2008 г.
  8. ↑ Стандартный метод испытаний теплопроводности пластмасс с помощью метода нестационарного линейного источника Проверено 26 мая 2008 г.
  9. ↑ Стандартный метод испытаний теплопроводности жидкостей, получено 26 мая 2008 г.
  10. ↑ Определение значения k из Plastics New Zealand Получено 26 мая 2008 г.

Список литературы

  • Байерлейн, Ральф. 2003. Теплофизика . Кембридж: Издательство Кембриджского университета. ISBN 0521658381
  • Холлидей, Дэвид, Роберт Резник и Джерл Уокер. 1997. Основы физики , 5-е изд. Нью-Йорк: Вили. ISBN 0471105589
  • Serway, Raymond A. и John W. Jewett. 2004. Физика для ученых и инженеров. Бельмонт, Калифорния: Томсон-Брукс / Коул. ISBN 0534408427
  • Шривастава Г. П. 1990. Физика фононов. Бристоль: А. Хильгер. ISBN 0852741537
  • Янг, Хью Д. и Роджер А. Фридман. 2003. Физика для ученых и инженеров . Сан-Франциско, Калифорния: Пирсон. ISBN 080538684X

Внешние ссылки

Все ссылки получены 6 февраля 2020 г.

кредитов

New World Encyclopedia Писатели и редакторы переписали и дополнили статью Wikipedia в соответствии со стандартами New World Encyclopedia .Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с указанием авторства. Кредит предоставляется в соответствии с условиями этой лицензии, которая может ссылаться как на участников Энциклопедии Нового Света, и на самоотверженных добровольцев Фонда Викимедиа. Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних публикаций википедистов доступна исследователям здесь:

История этой статьи с момента ее импорта в Энциклопедия Нового Света :

Примечание. Некоторые ограничения могут применяться к использованию отдельных изображений, на которые распространяется отдельная лицензия.

Что такое проводимость металлов?

Электропроводность металла — это мера способности материала передавать тепло или электричество (или звук). Обратной величиной проводимости является сопротивление или способность уменьшать их поток.

Понимание тенденции материала к поведению может быть решающим фактором при выборе этого материала для конкретного применения. Очевидно, что некоторые материалы выбраны потому, что они легко проводят электричество (например, проволока) или тепло (например, ребра или трубы в радиаторе или теплообменнике).Для других применений (например, изоляции) выбираются материалы, потому что они не очень хорошо проводят.

Чистые металлы обычно обеспечивают лучшую проводимость. В большинстве металлов наличие примесей ограничивает поток электронов. Таким образом, по сравнению с чистыми металлами элементы, добавленные в качестве легирующих добавок, можно рассматривать как «примеси». Таким образом, сплавы обладают меньшей электропроводностью, чем чистый металл. Если требуются другие свойства, обеспечиваемые легированием (например, для дополнительной твердости или прочности), важно выбрать добавки в сплав, которые не оказывают существенного влияния на проводимость, если это также важно.

Металлы проводят электричество, позволяя свободным электронам перемещаться между атомами. Эти электроны не связаны ни с одним атомом, ни с ковалентной связью. Поскольку одинаковые заряды отталкиваются друг от друга, движение одного свободного электрона внутри решетки вытесняет электроны в следующем атоме, и процесс повторяется — двигаясь в направлении тока к положительно заряженному концу.

Теплопроводность аналогична электрической в ​​том, что возбуждение атомов в одной секции приводит к возбуждению и вибрации соседних атомов.Это движение или кинетическая энергия — как если бы вы потирали руки друг о друга, чтобы согреться — позволяет теплу проходить через металл. Сплавы, которые представляют собой комбинацию различных металлических элементов, имеют более низкий уровень теплопроводности, чем чистые металлы. Атомы разного размера или атомного веса будут колебаться с разной скоростью, что изменит характер теплопроводности. Чем меньше передача энергии между атомами, тем меньше проводимость.

Чистое серебро и медь обеспечивают самую высокую теплопроводность, а алюминий — меньше.Нержавеющие стали обладают низкой теплопроводностью. Некоторые материалы, в том числе медь, легко проводят как тепло, так и электричество. В то время как другие, например стекло, проводят тепло, но не проводят электричество.

Как мы уже отмечали ранее, выбор металла для любого применения, вероятно, требует компромиссов. Например, подумайте о выборе металла в посуде. В то время как алюминий является достойным проводником тепла, медь проводит лучше и обеспечивает более быстрое и равномерное приготовление пищи — если вы ищете эту быструю еду.Но медь намного дороже. Вот почему вся посуда, кроме самой высококачественной, сделана из алюминия или алюминия с покрытием или оболочкой (алюминий реагирует на соленые и кислые продукты), а не из более дорогой меди. Еще один вариант — медь с покрытием из нержавеющей стали.

Как и в большинстве подобных случаев, ближайший к вам металлург может помочь принять экономически эффективное решение по выбору сплава — по проводимости или почти по любым другим желаемым характеристикам.

Что такое теплопроводность? — Matmatch

Теплопроводность — это мера способности определенного материала передавать или проводить тепло.Электропроводность возникает, когда в материале присутствует температурный градиент. Его единицы равны (Вт / мК) и обозначаются либо λ, либо k.

Второй закон термодинамики определяет, что тепло всегда будет течь от более высокой температуры к более низкой температуре.

Уравнение теплопроводности рассчитывается по следующей формуле:

представляет собой тепловую энергию, передаваемую материалом в единицу времени. Это выражается в джоулях в секунду или в ваттах.

    • k — константа теплопроводности.
    • A — площадь поверхности, через которую проходит тепловая энергия, измеряется в м2.
    • ∆T — разница температур, измеренная в градусах Кельвина.
    • L означает толщину материала, через который передается тепло, и измеряется в м.
    • Для расчета постоянной теплопроводности можно использовать следующее уравнение:

Теплопроводность конкретного материала зависит от его плотности, влажности, структуры, температуры и давления.

Как это измеряется?

Некоторые распространенные методы измерения теплопроводности:

Метод охраняемой горячей плиты:

Метод защищенной горячей пластины — широко используемый метод установившегося состояния для измерения теплопроводности. Материал, который необходимо испытать, помещают между горячей и холодной пластинами. Параметры, используемые для расчета теплопроводности, — это установившаяся температура, тепло, используемое для более теплой пластины, и толщина материала.Его можно использовать для температурных диапазонов 80-1500 К и для таких материалов, как пластик, стекло и образцы изоляции. Это очень точно, но на проведение теста уходит много времени.

Метод горячей проволоки:

Метод горячей проволоки — это переходный метод, который может использоваться для определения теплопроводности жидкостей, твердых тел и газов. Стандартный метод горячей проволоки, используемый для жидкостей, включает в себя нагретую проволоку, помещаемую в образец. Теплопроводность определяется путем сравнения графика температуры проволоки с логарифмом времени, когда указаны плотность и емкость.

В случае твердых тел требуется небольшая модификация этого метода, при которой горячая проволока опирается на основу так, чтобы твердое тело не проникало внутрь. Он работает в диапазоне температур 298 — 1800 K и является быстрым и точным методом, но имеет ключевое ограничение в том, что он работает только с материалами с низкой проводимостью.

Сравнительный метод резки:

Сравнительный метод отрезного стержня — это метод устойчивого состояния, который может использоваться для испытания металлов, керамики и пластмасс.Тепловой поток проходит через образцы, теплопроводность которых известна и неизвестна, следовательно, можно проводить сравнение температурных градиентов. Он работает в диапазоне температур 293 — 1573 К, но измерения относительно неточны.

Метод лазерной вспышки:

Метод лазерной вспышки — это переходный метод, при котором лазерный импульс доставляет короткий тепловой импульс к переднему концу образца, а изменение температуры измеряется на заднем конце образца.Он работает в диапазоне температур 373 — 3273 К и может использоваться как для твердых, так и для жидкостей. Он имеет преимущество в скорости и высокой точности, но стоит довольно дорого.

Метод счетчика теплового потока:

Метод измерителя теплового потока является методом стационарного режима и аналогичен методу с защищенной горячей пластиной, за исключением того, что для измерения теплового потока через образец используются преобразователи теплового потока, а не основной нагреватель. Тепловой поток определяется на основе падения температуры внутри терморезистора.Измерители теплового потока используются в диапазоне температур 373–573 K и могут применяться для пластмасс, керамики, изоляционных материалов и стекла. Основное преимущество расходомеров тепла заключается в том, что они относительно просты в настройке, однако измерения не особенно точны.

Какие материалы имеют самую высокую / самую низкую теплопроводность?

Как и ожидалось, материалы, которые хорошо проводят тепло, такие как металлы, имеют более высокую константу теплопроводности, чем материалы, которые не проводят тепло так эффективно, как полимеры и дерево.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *