Мост выпрямительный диодный: Страница не найдена

Содержание

принцип работы, сфера применения. Выпрямительный мост своими руками

В подавляющем большинстве блоков питания для выпрямления переменного электрического тока используются диодные мосты. Рассмотрим диодный мост, схема включает в себя только 4 диода. На принципиальной схеме, диодный мост обозначают как квадрат повернутый на 45 градусов в центре квадрата на одной из диагоналей чертят диод, катод ближе к положительному выходу моста, анод ближе к отрицательному выходу моста. Оставшиеся две вершины квадрата являются входами переменного напряжения.

Рисуя схему моста достаточно помнить, что от каждого входа приходят к «+» выходу два диода, прием анод подключается на вход, а катод на выход. Тоже и с отрицательным выходом, только к выходу подключаются аноды диодов.

Представим, что на вход диодного моста подается переменное напряжение и в текущий момент на верхнем по рисунку входе присутствует положительный потенциал, то диоды VD2 и VD3 откроются так как к к ним приложено положительное напряжение (на рисунке путь тока показан линией красного цвета), а VD1 и VD4 будут заперты обратным напряжением.

При обратной полярности входного напряжения ток потечет от нижнего входа через VD4, нагрузку и VD1 (на рисунке путь тока показан синим цветом), а VD2 и VD3 будут заперты обратным напряжением.

Получается положительный выход будет соединен с тем входом диодного моста, на котором в данный момент присутствует положительный потенциал, а отрицательный выход с тем входом на котором отрицательный потенциал.


Трехфазный диодный мост схема

Рассмотренный нами диодный мост используется для однофазного выпрямления, его и называют однофазным мостом. Для выпрямления переменного электрического тока в трехфазных сетях используют трехфазный диодный мост.

Он состоит из 6 диодов, по паре диодов на каждую фазу. В данной схеме, ток протекает от фазы с наибольшим потенциалом, через нагрузку к фазе с наименьшем потенциалом. Оставшаяся фаза ни к чему не подключена. Если в однофазном мосте проводили ток два диода из четырех, то тут тоже проводят ток 2 диода, а 4 при этом заперты.

Диодный мосты выпускаются как законченные компоненты, но если нет в наличии такой детальки, то можно использовать 4 отдельных диода включенных по схеме диодного моста.

Для плат с поверхностным монтажом удобно использовать сдвоенные диоды. Например из двух диодных сборок BAT54S или BAV99 получается полноценный диодный мост.


Зачастую использование двух сборок из двух диодов оказывается дешевле, чем использование диодного моста из четырех диодов в одном корпусе или четырех диодов по отдельности.

Большинство электростанций вырабатывает переменный ток. Это связано с особенностью конструкции генераторов. Исключение составляют лишь солнечные панели, с которых снимается постоянный ток.

Вообще, выбор между постоянным и переменным током с точки зрения производства, транспортировки и потребления – это борьба противоречий.

Производить (вырабатывать на электростанциях) удобнее и проще переменный ток.

Транспортировать экономически выгодно постоянный ток. Смена полупериодов переменного напряжения приводит к потерям.

С точки зрения трансформации (уменьшение величины напряжения) удобнее работать с переменным током. Принцип работы трансформаторы построен на пульсирующем или переменном напряжении.

Большинство потребителей электроэнергии (речь идет об устройствах) работают на постоянном токе. Электросхемы не могут работать с переменным напряжением.

В результате мы имеем следующую картину:
До розетки доходит переменный ток с напряжением 220 вольт. А все домашние электроприборы (за исключением тех, которые содержат мощные электродвигатели и нагревательные элементы) питаются постоянным током.

Внутри большинства домашнего оборудования есть блоки питания. После понижения (трансформации) величины напряжения, необходимо преобразовать ток из переменного в постоянный. Основой такой схемы является диодный мост.

Для чего нужен диодный мост?

Исходя из определения, переменный ток с определенной частотой (в бытовой электросети 50Гц) меняет свое направление, при неизменной величине.

Важно! Поскольку мы знаем, что для питания большинства электросхем нужно полярное напряжение – в блоках питания приборов происходит замена переменного тока на постоянный.

Происходит это в два или три этапа:
С помощью диодной сборки переменный ток превращается в пульсирующий. Это уже выпрямленный график, однако, для нормального функционирования схемы такого качества питания недостаточно.

Для сглаживания пульсаций, после моста устанавливается фильтр. В простейшем случае – это обычный полярный конденсатор. При необходимости увеличить качество – добавляется дроссель.

После преобразования и сглаживания, необходимо обеспечить постоянную величину рабочего напряжения.

Для этого, на третьем этапе устанавливаются стабилизаторы напряжения.

И все же, первым элементом любого блока питания является диодный мост.

Он может быть выполнен как из отдельных деталей, так и в моно корпусе.


Первый вариант занимает много места и сложнее в монтаже.

Есть и преимущества:
такая конструкция стоит недорого, легче диагностируется, и в случае выхода из строя одного элемента – меняется только он.

Вторая конструкция компактна, исключены ошибки в монтаже. Однако стоимость несколько выше, чем у отдельных диодов и невозможно отремонтировать один элемент, приходится менять весь модуль.

Принцип работы диодного моста

Вспомним характеристики и назначение диода. Если не вдаваться в технические детали – он пропускает электрический ток в одном направлении, и закрывает ему путь в противоположном.

Этого свойства уже достаточно для того, чтобы собрать простейший выпрямитель на одном диоде.

Элемент просто включается в цепь последовательно, и каждый второй импульс тока, идущий в противоположном направлении – отрезается.

Такой способ называется однополупериодным, и у него есть множество недостатков:

Очень сильная пульсация, между полупериодами возникает пауза в подаче тока, равная длине половины синусоиды.

В результате отрезания нижних волн синусоиды, напряжение уменьшается вдвое. При точном измерении уменьшение оказывается больше, поскольку потери есть и в диодах.

Способность снижать напряжение вдвое при его выпрямлении, нашла применение в ЖКХ.

Жильцы многоквартирных подъездов, устав менять постоянно перегорающие лампочки – оснащают их диодами.

При включении последовательно, снижается яркость свечения и лампа «живет» гораздо дольше.

Правда сильное мерцание утомляет глаза, и такой светильник годится лишь для дежурного освещения.

Для уменьшения потерь, применяется соединение четырех элементов.

Двухполупериодный диодный мост, схема работы:

В каком бы направлении не протекал переменный ток на вводных контактах, выход диодного моста обеспечивает неизменную полярность на его выходных контактах.

Частота пульсаций такого соединения ровно в два раза выше частоты переменного тока на входе.

Поскольку плечи моста не могут одновременно пропускать ток в обоих направлениях – обеспечивается стабильная защита схемы.

Даже если у вас в устройстве перегорел диодный мост – короткого замыкания или скачка напряжения не будет.

Надежность мостовой схемы проверена десятилетиями. Защита от перенапряжения на входе гарантируется трансформатором.

От перегрузки спасает стабилизатор на выходе. Пробивает диодный мост лишь в случае использования бракованных деталей, или в автомобиле, где схема подвергается постоянным нагрузкам.

Как работает диодный мост при минимальном напряжении?

Падение напряжения в диодном мосту составляет до 0,7 вольт. При использовании обычной элементной базы в низковольтных схемах, иногда падение напряжения составляет до 50% от номинала блока питания. Такая погрешность недопустима .

Для обеспечения работы блоков питания с напряжением от 1,5 вольт до 12 вольт – используются диоды Шоттки.

При прямом протекании тока, падение напряжения на одном кристалле составляет не более 0,3 вольта. Умножаем на четыре элемента в мосту – получается вполне приемлемое значение потерь.

Кроме того, если диодный мост Шоттки на уровень помех – вы получите значение, недостижимое для кремниевых p-n диодов.

Еще одно достоинство, обусловленное отсутствием p-n перехода – способность работать на высокой частоте.

Поэтому выпрямители сверх высокочастотного напряжения делают исключительно на диодах этого типа.

Однако у диодов Шоттки есть и недостатки
. При воздействии обратного напряжения, пусть даже кратковременном – элемент выходит из строя.

Проверка диодного моста мультиметром показывает, что именно эта причина имеет необратимые последствия.

Обычный германиевый или кремниевый элемент с p-n переходом самостоятельно восстанавливаются после переполюсовки.

Поэтому мосты на диодах Шоттки применяются только в низковольтных блоках питания и при наличии защиты от обратного напряжения.

Что делать, если есть подозрения на поломку моста?

Выпрямитель собран на обычной элементной базе, поэтому мы расскажем, как в домашних условиях проверить диодный мост мультиметром.

На иллюстрации видно, как протекает ток по мосту. Принцип тестирования такой же, как при проверке одиночных диодов.

Смотрим по справочнику, какие выводы модуля соответствуют переменному входу или полярному выходу – и выполняем прозвонку.

Как прозвонить диодный мост без выпаивания из схемы?

Поскольку ток в обратном направлении через диод не течет, неправильные результаты проверки говорят о пробое моста.

Извлекать мост нет необходимости, остальные элементы блока питания не оказывают влияния на измерение.

Итог: Любой из вас сможет как самостоятельно собрать диодный мост, так и отремонтировать его в случае поломки. Достаточно иметь элементарные навыки в электротехнике.

Смотрите видео: как мультиметром проверить диодный мост генератора вашего автомобиля.

Подробный рассказ о том как проверить диодный мост мультиметром в этом видео сюжете

Это зарядное устройство я сделал для зарядки автомобильных аккумуляторов, выходное напряжение 14. 5 вольт, максимальный ток заряда 6 А. Но им можно заряжать и другие аккумуляторы, например литий-ионные, так как выходное напряжение и выходной ток можно регулировать в широких пределах. Основные компоненты зарядного устройства были куплены на сайте АлиЭкспресс.

Вот эти компоненты:

Еще потребуется электролитический конденсатор 2200 мкФ на 50 В, трансформатор для зарядного устройства ТС-180-2 (как распаивать трансформатор ТС-180-2 посмотрите в ), провода, сетевая вилка, предохранители, радиатор для диодного моста, крокодилы. Трансформатор можно использовать другой, мощностью не менее 150 Вт (для зарядного тока 6 А), вторичная обмотка должна быть рассчитана на ток 10 А и выдавать напряжение 15 – 20 вольт. Диодный мост можно набрать из отдельных диодов, рассчитанных на ток не менее 10А, например Д242А.

Провода в зарядном устройстве должны быть толстые и короткие. Диодный мост нужно закрепить на большой радиатор. Необходимо нарастить радиаторы DC-DC преобразователя, или использовать для охлаждения вентилятор.




Сборка зарядного устройства

Подсоедините шнур с сетевой вилкой и предохранителем к первичной обмотке трансформатора ТС-180-2, установите диодный мост на радиатор, соедините диодный мост и вторичную обмотку трансформатора. Припаяйте конденсатор к плюсовому и минусовому выводам диодного моста.


Подключите трансформатор к сети 220 вольт и произведите замеры напряжений мультиметром. У меня получились такие результаты:

  1. Переменное напряжение на выводах вторичной обмотки 14.3 вольта (напряжение в сети 228 вольт).
  2. Постоянное напряжение после диодного моста и конденсатора 18.4 вольта (без нагрузки).

Руководствуясь схемой, соедините с диодным мостом DC-DC понижающий преобразователь и вольтамперметр.

Настройка выходного напряжения и зарядного тока

На плате DC-DC преобразователя установлены два подстроечных резистора, один позволяет установить максимальное выходное напряжение, другим можно выставить максимальный зарядный ток.

Включите зарядное устройство в сеть (к выходным проводам ничего не подсоединено), индикатор будет показывать напряжение на выходе устройства, и ток равный нулю. Потенциометром напряжения установите на выходе 5 вольт. Замкните между собой выходные провода, потенциометром тока установите ток короткого замыкания 6 А. Затем устраните короткое замыкание, разъединив выходные провода и потенциометром напряжения, установите на выходе 14.5 вольт.

Данное зарядное устройство не боится короткого замыкания на выходе, но при переполюсовке может выйти из строя. Для защиты от переполюсовки, в разрыв плюсового провода идущего к аккумулятору можно установить мощный диод Шоттки. Такие диоды имеют малое падение напряжения при прямом включении. С такой защитой, если перепутать полярность при подключении аккумулятора, ток протекать не будет. Правда этот диод нужно будет установить на радиатор, так как через него при заряде будет протекать большой ток.


Подходящие диодные сборки применяются в компьютерных блоках питания. В такой сборке находятся два диода Шоттки с общим катодом, их нужно будет запараллелить. Для нашего зарядного устройства подойдут диоды с током не менее 15 А.


Нужно учитывать, что в таких сборках катод соединен с корпусом, поэтому эти диоды нужно устанавливать на радиатор через изолирующую прокладку.

Необходимо еще раз отрегулировать верхний предел напряжения, с учетом падения напряжения на диодах защиты. Для этого, потенциометром напряжения на плате DC-DC преобразователя нужно выставить 14.5 вольт измеряемых мультиметром непосредственно на выходных клеммах зарядного устройства.

Как заряжать аккумулятор

Протрите аккумулятор тряпицей смоченной в растворе соды, затем насухо. Выверните пробки и проконтролируйте уровень электролита, если необходимо, долейте дистиллированную воду. Пробки во время заряда должны быть вывернуты. Внутрь аккумулятора не должны попадать мусор и грязь. Помещение, в котором происходит заряд аккумулятора должно хорошо проветриваться.

Подключите аккумулятор к зарядному устройству и включите устройство в сеть. Во время заряда напряжение будет постепенно расти до 14.5 вольт, ток будет со временем уменьшаться. Аккумулятор можно условно считать заряженным, когда зарядный ток упадет до 0.6 – 0.7 А.

Диод представляет собой полупроводниковый агрегат с разной проводимостью, определяемой прикладываемым напряжением. Он имеет два вывода: катод и анод. Если подается прямое напряжение, то есть на аноде в сравнении с катодом потенциал положителен, агрегат открыт.

Если напряжение отрицательно, он закрывается. Такая особенность нашла применение в электротехнике: диодный мост активно используется в сварочном деле для выпрямления переменного тока и улучшения качества сварных операций.

Как сделать выпрямитель своими руками?

Если в наличии мастера имеются комплектующие детали, вполне реально изготовить самодельный сварочный выпрямитель. При условии соблюдения всех рекомендаций специалистов он гарантировано обеспечит процесс ручной дуговой сварки постоянным током, но потребуется применить электрод с обмазкой.

Использовать проволоку без обмазки также допустимо, но только при условии большого опыта в сварных вопросах. Для неопытного сварщика справиться с ней будет практически нереально.

Диодный мост для сварочного аппарата.

Обмазка при расплавлении электрода препятствует проникновению составляющих воздуха в расплавленный металл сварного соединения. Без нее контакт металла в расплавленном виде с азотом и кислородом снизят прочностные свойства шва, сделав его хрупким и пористым.

Сначала потребуется выбрать или смотать своими руками понижающий трансформатор с требуемыми параметрами. Собирают трансформатор до подключения диодного моста.

Если выбран путь самостоятельного изготовления аппарата, важно правильно рассчитать его элементы, в том числе:

  • параметры магнитопровода;
  • актуальное количество витков;
  • размеры сечения шин, проводов.

На заметку! Расчеты для изготовления трансформаторов осуществляются по единой методике, поэтому данная задача не представляет трудностей даже для малоопытного сварщика со школьными знаниями электричества.

В работе не обойтись без светодиодов: нужны они в качестве проводников тока в одном единственном направлении. Простейший диодный , созданный по мостиковой схеме, монтируют на радиатор с целью теплообмена и охлаждения.

Мощные диоды для сварочного аппарата, по типу ВД-200, выделяют при работе довольно большой объем тепловой энергии. Чтобы обеспечить падающую характеристику тока, в цепь потребуется включить дроссель последовательно.

Активное переменное сопротивление в такой схеме обеспечит сварщику возможность плавно регулировать сварочный ток. Далее, один полюс нужно подключить к сварной проволоке, а второй ‒ к рабочему объекту.

Электролитический конденсатор в составе схемы необходим в качестве сглаживающего фильтра для снижения пульсаций.

Выполнить намотку реостата несложно своими силами, но для такой задачи потребуется керамический сердечник и проволока из никелина или нихрома. Актуальный диаметр проволоки определит величина регулируемого тока сварной операции.

Расчет сопротивления реостата нужно проводиться учетом удельного сопротивления электрода, его сечения и общей длины.

Электрическая схема сварки с диодным мостом.

Шаг регулировки тока для сварки зависит от диаметра витков. Если правильно собрать перечисленные детали в единый агрегат, процесс сварки будет сопровождаться постоянным током. Не лишним будет и монтаж резистора, препятствующего короткому замыканию при работе.

Оно может происходить при касании проволоки о металл без зажигания дуги. Если в это время на конденсаторе нет сопротивления, он мгновенно разрядится, произойдет щелчок, электрод разрушится или прилипнет к металлу.

При наличии резистора можно сгладить разряды на конденсаторе, сделать поджога электрода более простым и мягким. Изготовление аппарата для выпрямления сварного тока своими руками позволит создавать максимально аккуратные и долговечные сварные швы.

Итоги

Диодный мост для сварочного аппарата преобразует переменный ток в постоянный, что позволяет повысить качества сварных соединений. Такое приспособление можно приобрести в готовом виде или создать своими руками, следуя советам, озвученным в статье.

Словосочетание “диодный мост” образуется от слова “диод”. Следовательно, диодный мост должен состоять из диодов, но они должны соединятся с друг другом в определенной последовательности. Почему это имеет важное значение мы как раз и поговорим в этой статье.

Обозначение на схеме

Диодный мост на схемах выглядит подобным образом:

Иногда в схемах его обозначают еще так:


Как мы с вами видим, схема состоит из четырех диодов. Для того, чтобы она работала корректно, мы должны правильно соединить диоды и правильно подать на них переменное напряжение. Слева мы видим два значка “~”. На эти два вывода мы подаем переменное напряжение, а снимаем постоянное напряжение с других двух выводов обозначенных значками “+” и “-“. Диодный мост также называют диодным выпрямителем.

Принцип работы

Для выпрямления переменного напряжения в постоянное можно использовать один диод для выпрямления, но не желательно. Давайте рассмотрим рисунок, как все это будет выглядеть:

Диод срезает отрицательную полуволну переменного напряжения, оставляя только положительную, что мы и видим на рисунке выше. Вся прелесть этой немудреной схемы состоит в том, что мы получаем постоянное напряжение из переменного. Проблема кроется в том, что мы теряем половину мощности переменного напряжения. Ее срезает диод.

Чтобы исправить эту ситуацию, была придумана великими умами схема диодного моста. Диодный мост “переворачивает” отрицательную полуволну, превращая ее в положительную полуволну, тем самым у нас сохраняется мощность.

На выходе диодного моста появляется постоянное пульсирующее напряжение с частой в 100 Герц. Это в два раза больше, чем частота сети.

Практические опыты

Для начала возьмем простой диод.


Катод можно легко узнать по серебристой полоске. Почти все производители показывают катод полоской или точкой.

Чтобы наши опыты были безопасными, я взял понижающий , который из 220В делает 12В.


На первичную обмотку цепляем 220 Вольт, со вторичной обмотки снимаем 12 Вольт. показал чуть больше, так как на вторичной обмотке нет никакой нагрузки. Трансформатор работает на так называемом “холостом ходу”.


3,3х5=16.5В – это максимальное значение напряжения. А если разделить максимальное амплитудное значение на корень из двух, то получим где то 11,8 Вольт. Это и есть . Осциллограф не врет, все ОК.


Еще раз повторюсь, можно было использовать и 220 Вольт, но 220 Вольт – это не шутки, поэтому я и понизил переменное напряжение.

Припаяем к одному концу вторичной обмотки трансформатора наш диод.


Цепляемся снова осциллографа


Смотрим на осциллограмму


А где же нижняя часть изображения? Ее срезал диод. Он оставил только верхнюю часть, то есть ту, которая положительная.

Находим еще три таких диода и спаиваем диодный мост .


Цепляемся ко вторичной обмотке трансформатора по схеме диодного моста.


С двух других концов снимаем постоянное пульсирующее напряжение щупом осциллографа и смотрим на осциллограмму


Вот, теперь порядок.

Виды диодных мостов

Чтобы не заморачиваться с диодами, разработчики все четыре диода вместили в один корпус. В результате, получился очень компактный и удобный радиоэлемент – диодный мост. Думаю, вы догадаетесь, где импортный, а где советский))).


Например, на советском диодном мосте показаны контакты, на которые нужно подавать переменное напряжение значком ” ~ “, а контакты, с которых надо снимать постоянное пульсирующее напряжение значком “+” и “-“.


Существует множество видов диодных мостов в разных корпусах


Есть даже автомобильный диодный мост


Существует также диодный мост для трехфазного напряжения. Он собирается по так называемой схеме Ларионова и состоит из 6 диодов:


В основном трехфазные диодные мосты используются в силовой электронике.


Как вы могли заметить, такой трехфазный выпрямитель имеет пять выводов. Три вывода на фазы и с двух других выводов мы будем снимать постоянное пульсирующее напряжение.

Как проверить диодный мост

1) Первый способ самый простой. Диодный мост проверяется целостностью всех его диодов. Для этого прозваниваем каждый диод мультиметром и смотрим целостность каждого диода. Как это сделать, читаем

2) Второй способ 100%-ый. Но для этого потребуется осциллограф, или понижающий трансформатор. Давайте проверим импортный диодный мост. Для этого цепляем два его контакта к переменному напряжению со значками “~”, а с двух других контактов, с “+” и “-” снимаем показания с помощью осциллографа.


Смотрим осциллограмму


Значит, импортный диодный мост исправен.

Резюме

Диодный мост (выпрямитель) используется для преобразования переменного тока в постоянный.

Диодный мост используется почти во всей радиоаппаратуре, которая “кушает” напряжение из переменной сети, будь то простой телевизор или даже зарядка от сотового телефона.

Технические характеристики выпрямительных диодных столбов и мостов

Выпрямительные диодные мосты и столбы применяются в различных электротехнических приборах, радиоэлектронных приборах и устройствах, предназначенных для выпрямления переменного тока с промышленной и звуковой частотой при высоких напряжениях до 15000 В.
Давайте выясним, что такое диодный столб и что такое диодный мост и в чём их отличия.

Выпрямительные диодные столбы — это полупроводниковые приборы, схема которых имеет несколько последовательно соединённых выпрямительных диодов, собранных в единую конструкцию и имеющую два внешних вывода.
Последовательное соединение полупроводников в диодном столбе позволяет увеличить максимально допустимое обратное напряжение на приборе (пропорционально количеству диодов внутри столба), однако в такое же количество раз увеличивается и параметр падения прямого напряжения на диоде при заданном прямом токе через него. Поэтому, главной областью применения диодных столбов являются высоковольтные выпрямители, предназначенные для преобразования напряжений, превышающих значения в несколько киловольт.
Несколько выпрямительных столбов, соединённых в соответствии с той или иной схемой включения и помещённых в один корпус, представляют собой выпрямительный блок, осуществляющий преобразование переменного тока в постоянный.

Выпрямительные диодные мосты – устройства, которые осуществляют двухполупериодное преобразование переменного тока в пульсирующий постоянный ток и имеют в одном корпусе по четыре, или восемь диодов, соединённых между собой по мостовой схеме включения.

На приведённой схеме диоды VD1-VD4, соединённые по мостовой схеме, подключены к источнику переменного напряжения. В качестве нагрузки выступает резистор Rн.
При прохождении положительной полуволны (синий цвет на диаграмме) к аноду диода VD2 приложено положительное напряжение, к катоду VD4 — отрицательное, что вызывает их открытие и прохождение тока через данные диоды в нагрузку. В этот момент диоды VD1 и VD3 заперты и не пропускают ток, так как напряжение положительной полуволны для них является обратным.
При прохождении отрицательной полуволны начинают пропускать ток диоды VD1 и VD3, так как к их анодам приложено положительное напряжение относительно катодов, а диоды VD2 и VD4 оказываются запертыми. При этом ток Iн протекающий через нагрузку Rн, что в случае положительной полуволны, что в случае отрицательной является постоянным по направлению.

Выпрямительные диодные мосты являются основными компонентами в блоках питания и других электронных устройствах широкого назначения.

Частотный диапазон выпрямительных мостов невелик, предельная частота в большинстве случаев не превышает 50 кГц (хотя есть и исключения — диодные мосты 2Ц301 позволяют работать с частотами до 500кгЦ), а мощность определяется в соответствии с максимально допустимым прямым током.
В соответствии с этой характеристикой принята следующая классификация:
— Слаботочные диодные столбы и мосты, они используются в цепях с током не более 0,3 А.
Такие устройства, как правило, выполнены в пластмассовом корпусе и имеют малый вес и небольшие габариты.
— Устройства, рассчитанные на среднюю мощность, могут работать с током в диапазоне 0,3-10 А.

Условные обозначения электрических параметров, характеризующих свойства
выпрямительных диодных столбов и мостов:

Диод  Uоб/Uимп
  кВ/кВ
 Iпр
 мА
 Uпр/Iпр
  В /мА
 Io/Iом
мкA/мкА
Tвос(Uо/Iпр)
мкс( В/мА)
Fмах
 КГц
Кор-
пус
2Ц101А  0.7/   10  8.3/50  10/100    20  15
2Ц102А
2Ц102Б
2Ц102В
 0. 8/
 1.0/
 1.2/
 100
 100
 100
 1.5/100
 1.5/100
 1.5/100
 50/150
 50/150
 50/150
    1
  1
  1
 16
 16
 16
КЦ103А   2.0/   10   10/50  10/80 2  (500/20) 100  15
1Ц104АИ  1.0/2.0   10    8/50 150/5000    10   2
КЦ105А
КЦ105Б
КЦ105В
КЦ105Г
КЦ105Д
    /2
    /4
    /6
    /7
    /8. 5
 100
 100
 100
  75
  50
 3.5/100
 3.5/100
 7.0/100
 7.0/75
 7.0/50
100/200
100/200
100/200
100/200
100/200
3  ( 30/1000
3  ( 30/1000
3  ( 30/1000
3  ( 30/1000
3  ( 30/1000
  1
  1
  1
  1
  1
 79
 79
 79
 79
 79
КЦ106А
КЦ106Б
КЦ106В
КЦ106Г
КЦ106Д
   4/
   6/
   8/
  10/
   2/
  10
  10
  10
  10
  10
  25/10
  25/10
  25/10
  25/10
  25/10
 10/30
 10/30
 10/30
 10/30
 10/30
3.5(500/20 )
3.5(500/20 )
3. 5(500/20 )
3.5(500/20 )
3.5(500/20 )
 20
 20
 20
 20
 20
 15
 15
 15
 15
 15
2Ц108А
2Ц108Б
2Ц108В
    /2
    /4
    /6
 100
 100
 100
   6/180
   6/180
   6/180
150/1000
150/1000
150/1000
0.9( 30/1000
0.9( 30/1000
0.9( 30/1000
 50
 50
 50
 17
 17
 17
КЦ109А     /6  300    7/300  10/ 1.5(300/6000    80
2Ц110А
2Ц110Б
    /10
    /15
 100
 100
  10/100
  12/100
100/500
100/500
    1
  1
 17
 17
КЦ111А    3/    1   12/1 0. 1/0.5    20  59
2Ц112А    2/   10   10/10  10/50 0.3( 50/20)    49
2Ц113А1  1.6/  0.5    8/0.5 0.05/1.5    20  50
КЦ114А
2Ц114Б
   4/
   6/
  50
  50
  22/50
  22/50
 10/100
 10/100
2. 5(500/20)
2.5(500/20)
 10
 10
 15
 15
2Ц116А    5/5  100   24/100   5/100 2  ( 50/20)    51
КЦ117А
КЦ117Б
    /10
    /12
1300?
3000?
  35/10
  35/10
  1/10
  1/10
0.3( 50/20)
0.3( 50/20)
   15
 15
КЦ118А
КЦ118Б
   7/
  10/
   2
   2
  24/100
  24/100
 35/10
 35/10
0. 3( )
0.3( )
   15
 15
2Ц119А
2Ц119Б
  10/10
  10/10
 100
 100
  22/100
  25/100
  1/50
  1/50
2.5(50 /20)
1.5(50 /20)
 20
 20
 51
 51
КЦ122А
КЦ122Б
КЦ122В
  14/14
  12/12
  10/10
   3
   3
   3
  21/5
  21/5
  21/5
0.5/
  1/
  1/
   16
 16
 16
 97
 97
 97
КЦ123А1
КЦ123Б1
КЦ123В1
КЦ123Г1
КЦ123Д1
КЦ123Е1
КЦ123Ж1
КЦ123И1
КЦ123К1
КЦ123Л1
КЦ123С1
КЦ123Т1
КЦ123У1
    /12
    /12
    /12
    /10
    /8
    /6
    /4
    /2
    /8
    /8
    /8
    /8
    /8
   5
   2
   2
   2
   2
   2
   2
   2
   2
   2
   2
   2
   5
  30/5
  30/5
  30/5
  30/5
  30/5
  30/5
  30/5
  30/5
  30/5
  30/5
  30/5
  30/5
  30/5
0. 1/10
0.2/12
0.4/12
0.4/10
0.4/8
0.4/6
0.4/4
0.4/2
0.1/8
0.2/8
0.1/10
0.2/10
0.4/10
0.25(50/20)
0.25(50/20)
0.40(50/20)
0.40(50/20)
0.40(50/20)
0.40(50/20)
0.40(50/20)
0.40(50/20)
0.25(50/20)
0.25(50/20)
0.15(50/20)
0.15(50/20)
0.15(50/20)
   
КЦ124А
КЦ124Б
   6/6.3
   4/4.2
 300
 300
  10/
  10/
 50/
 50/
1.5( )
1.5( )
 20
 20
 
КЦ125А
КЦ125Б
КЦ125В
  10/10.5
   8/8.4
   6/6.3
 100
 100
 100
  15/
  15/
  15/
 50/
 50/
 50/
1. 5( )
1.5( )
1.5( )
 20
 20
 20
 
КЦ126А
КЦ126Б
КЦ126В
   6/6.3
   4/4.2
   2/2.1
 100
 100
 100
  10/
  10/
  10/
 50/
 50/
 50/
1.5( )
1.5( )
1.5( )
 20
 20
 20
 
КЦ127А
КЦ127Б
КЦ127В
КЦ127Г
КЦ127Д
  10/10.5
   8/8.4
   6/6.3
   4/4.2
   2/2.1
  30
  30
  30
  30
  30
  15/
  15/
  15/
  15/
  15/
 50/
 50/
 50/
 50/
 50/
1. 5( )
1.5( )
1.5( )
1.5( )
1.5( )
 20
 20
 20
 20
 20
 
КЦ128А
КЦ128Б
КЦ128В
   6/6.3
   4/4.2
   2/2.1
  30
  30
  30
   5/
   5/
   5/
 50/
 50/
 50/
1.5( )
1.5( )
1.5( )
 20
 20
 20
 
КЦ129А
КЦ129Б
  15/15.7
  10/10.5
  30
  30
  15/
  15/
 50/
 50/
1.5( )
1.5( )
 20
 20
 
КЦ201А
КЦ201Б
КЦ201В
КЦ201Г
КЦ201Д
КЦ201Е
    /2
    /4
    /6
    /8
    /10
    /15
 500
 500
 500
 500
 500
 500
   3/500
   3/500
   6/500
   6/500
   6/500
  10/500
100/250
100/250
100/250
100/250
100/250
100/250
    1
  1
  1
  1
  1
  1
 18
 18
 18
 18
 18
 18
КЦ202А
КЦ202Б
КЦ202В
КЦ202Г
КЦ202Д
КЦ202Е
    /2
    /4
    /6
    /8
    /10
    /15
 500
 500
 500
 500
 500
 500
   3/500
   3/500
   6/500
   6/500
   6/500
  10/500
100/250
100/250
100/250
100/250
100/250
100/250
    1
  1
  1
  1
  1
  1
 18
 18
 18
 18
 18
 18
2Ц203А
2Ц203Б
2Ц203В
    /6
    /8
    /10
1000
1000
1000
   8/1000
   8/1000
   8/1000
100/500
100/500
100/500
    1
  1
  1
 18
 18
 18
2Ц204А     /6  1000   11/1000  10/ 0. 22(/1000)  50  
2Ц301А
2Ц301Б
2Ц301В
0.075/.075
0.050/.075
0.030/.075
 200
 200
 200
   1/50
   1/50
   1/50
0.002/
0.002/
0.002/
0.4 (20/5 )
0.4 (20/5 )
0.4 (20/5 )
500
500
500
 14
 14
 14
КЦ303А
КЦ303Б
КЦ303В
КЦ303Г
КЦ303Д
КЦ303Е
КЦ303Ж
КЦ303И
КЦ303К
КЦ303Л
КЦ303М
КЦ303Н
    /0.1
    /0.2
    /0.3
    /0.4
    /0.5
    /0.6
    /0.1
    /0.2
    /0.3
    /0.4
    /0.5
    /0.6
1000
1000
1000
1000
1000
1000
2000
2000
2000
2000
2000
2000
2. 5/1000
2.5/1000
2.5/1000
2.5/1000
2.5/1000
2.5/1000
3.0/2000
3.0/2000
3.0/2000
3.0/2000
3.0/2000
3.0/2000
500/
500/
500/
500/
500/
500/
500/
500/
500/
500/
500/
500/
     
КЦ401А
КЦ401Б
КЦ401В
КЦ401Г
КЦ401Д
 0.5/
 0.5/
 0.5/
 0.5/
 0.5/
 400
 250
 200
 500
 400
        1
  1
  1
  1
  1
 
КЦ402А
КЦ402Б
КЦ402В
КЦ402Г
КЦ402Д
КЦ402Е
КЦ402Ж
КЦ402И
 0. 6/
 0.5/
 0.4/
 0.3/
 0.2/
 0.1/
 0.6/
 0.5/
1000
1000
1000
1000
1000
1000
 600
 600
        5
  5
  5
  5
  5
  5
  5
  5
 
КЦ403А
КЦ403Б
КЦ403В
КЦ403Г
КЦ403Д
КЦ403Е
КЦ403Ж
КЦ403И
 0.6/
 0.5/
 0.4/
 0.3/
 0.2/
 0.1/
 0.6/
 0.5/
1000
1000
1000
1000
1000
1000
 600
 600
        5
  5
  5
  5
  5
  5
  5
  5
 
КЦ404А
КЦ404Б
КЦ404В
КЦ404Г
КЦ404Д
КЦ404Е
КЦ404Ж
КЦ404И
 0. 6/
 0.5/
 0.4/
 0.3/
 0.2/
 0.1/
 0.6/
 0.5/
1000
1000
1000
1000
1000
1000
 600
 600
        5
  5
  5
  5
  5
  5
  5
  5
 
КЦ405А
КЦ405Б
КЦ405В
КЦ405Г
КЦ405Д
КЦ405Е
КЦ405Ж
КЦ405И
 0.6/
 0.5/
 0.4/
 0.3/
 0.2/
 0.1/
 0.6/
 0.5/
1000
1000
1000
1000
1000
1000
 600
 600
        5
  5
  5
  5
  5
  5
  5
  5
 
КЦ407А  0. 3/0.4  500     5.0(200/50)  20  60
КЦ409А
КЦ409Б
КЦ409В
КЦ409Г
КЦ409Д
КЦ409Е
КЦ409Ж
КЦ409И
 0.6/
 0.5/
 0.4/
 0.3/
 0.2/
 0.1/
 0.2/
 0.1/
3000
3000
3000
3000
3000
3000
6000
6000
        1
  1
  1
  1
  1
  1
  1
  1
 
КЦ410А
КЦ410Б
КЦ410Б
КЦ412А
КЦ412Б
КЦ412Б
0.05/
 0.1/
 0.2/
0.05/
 0.1/
 0.2/
3000
3000
3000
1000
1000
1000
         61
 61
 61
 61
 61
 61

Диодный мост, принцип работы и схема

Диодный мост – это мостовая схема соединения диодов, для выпрямления переменного тока в постоянный.

Диодные мосты являются простейшими и самыми распространенными выпрямителями, их используют в радиотехнике, электронике, автомобилях и в других сферах, там, где требуется получение пульсирующего постоянного напряжения.

Для лучшего понимания принципа работы диодного моста, рассмотрим работу одного диода:

Диод как полупроводниковый элемент, имеет один p-n переход, что дает ему возможность проводить ток только в одном направлении. Ток через диод начинает проходить при подключении анода к положительному, а катода к отрицательному полюсу источника. В обратной ситуации диод запирается, и ток через него не протекает.

Схема и принцип работы диодного моста

На данной схеме 4 диода соединенных по мостовой схеме подключены к источнику переменного напряжения 220В. В качестве нагрузки подключен резистор Rн.

Переменное напряжение на входе меняется не только по мгновенному значению, но и по знаку. При прохождении положительной полуволны (от 0 до π) к анодам диодов VD2 и VD4 приложено положительное напряжение относительно их катодов, что вызывает прохождение тока Iн через диоды и нагрузку Rн. В этот момент диоды VD1 и VD3 заперты и не пропускают ток, так как напряжение положительной полуволны для них является обратным.

В момент, когда входное напряжение пересекает точку π, оно меняет свой знак. В этом случае диоды VD1 и VD3 начинают пропускать ток, так как к их анодам приложено положительное напряжение относительно катодов, а диоды VD2 и VD4 оказываются запертыми. Это продолжается до точки 2π, где переменное входное напряжение снова меняет свой знак и весь процесс повторяется заново.

Важно отметить, что ток Iн протекающий через нагрузку Rн, не изменяется по направлению, т.е. является постоянным.

Но если обратить внимание на график, то можно заметить, что напряжение на выходе является не постоянным, а пульсирующим. Соответственно, выходной ток, появляющийся от такого напряжения и протекающий через активную нагрузку, будет также – пульсирующим. Данную пульсацию можно немного уменьшить с помощью параллельно включенного конденсатора к выходу диодного моста. Напряжение на конденсаторе, согласно закону коммутации, не может измениться мгновенно, а значит в данном случае, выходное напряжение примет более сглаженную форму.

  • Просмотров: 15417
  • Импортные выпрямительные диоды и диодные мосты

    В данной статье покажем характеристики импортных выпрямительных диодов, однофазных и трёхфазных выпрямителей, диодных мостов, наиболее часто применяемых в современной бытовой аппаратуре.

    Характеристики диодов выпрямительных малой мощности

    P/N

     

    Корпус

     

    Импульсное обратное напряжение

     

    Средний ток прямой макс

     

    Ударный прямой ток

     

    Напряжение прямое

     

    Ток утечки

     

    VRRM В

     

    IFAV А

     

    IFSM А

     

    VF В

     

    IF А

     

    IR мкА

     

    VR В

    1N4001DO-41

    50

    1

    50

    1,1

    1

    5

    50

    1N4002DO-41

    100

    1

    50

    1,1

    1

    5

    100

    1N4003DO-41

    200

    1

    50

    1,1

    1

    5

    200

    1N4004DO-41

    400

    1

    50

    1,1

    1

    5

    400

    1N4005DO-41

    600

    1

    50

    1,1

    1

    5

    600

    1N4006DO-41

    800

    1

    50

    1,1

    1

    5

    800

    1N4007DO-41

    1000

    1

    50

    1,1

    1

    5

    1000

    1N4007-13DO-41

    1300

    1

    50

    1,1

    1

    5

    1300

    EM513DO-41

    1600

    1

    50

    1,1

    1

    5

    1600

    EM516DO-41

    1800

    1

    50

    1,1

    1

    5

    1800

    EM518DO-41

    2000

    1

    50

    1,1

    1

    5

    2000

    S1ASMA

    50

    1

    30

    1,1

    1

    5

    50

    S1BSMA

    100

    1

    30

    1,1

    1

    5

    100

    S1DSMA

    200

    1

    30

    1,1

    1

    5

    200

    S1GSMA

    400

    1

    30

    1,1

    1

    5

    400

    S1JSMA

    600

    1

    30

    1,1

    1

    5

    600

    S1KSMA

    800

    1

    30

    1,1

    1

    5

    800

    S1MSMA

    1000

    1

    30

    1,1

    1

    5

    1000

    S1TSMA

    1300

    1

    30

    1,1

    1

    5

    1300

    S1WSMA

    1600

    1

    30

    1,1

    1

    5

    1600

    S1XSMA

    1800

    1

    30

    1,1

    1

    5

    1800

    S1YSMA

    2000

    1

    30

    1,1

    1

    5

    2000

    S2ASMB

    50

    2

    50

    1,1

    1,15

    5

    50

    S2BSMB

    100

    2

    50

    1,1

    1,15

    5

    100

    S2DSMB

    200

    2

    50

    1,1

    1,15

    5

    200

    S2GSMB

    400

    2

    50

    1,1

    1,15

    5

    400

    S2JSMB

    600

    2

    50

    1,1

    1,15

    5

    600

    S2KSMB

    800

    2

    50

    1,1

    1,15

    5

    800

    S2MSMB

    1000

    2

    50

    1,1

    1,15

    5

    1000

    S2TSMB

    1300

    2

    50

    1,1

    1,15

    5

    1300

    S2WSMB

    1600

    2

    50

    1,1

    1,15

    5

    1600

    S2XSMB

    1800

    2

    50

    1,1

    1,15

    5

    1800

    S2YSMB

    2000

    2

    50

    1,1

    1,15

    5

    2000

    S3ASMC

    50

    3

    110

    1,15

    3

    5

    50

    S3BSMC

    100

    3

    110

    1,15

    3

    5

    100

    S3DSMC

    200

    3

    110

    1,15

    3

    5

    200

    S3GSMC

    400

    3

    110

    1,15

    3

    5

    400

    S3JSMC

    600

    3

    110

    1,15

    3

    5

    600

    S3KSMC

    800

    3

    110

    1,15

    3

    5

    800

    S3MSMC

    1000

    3

    110

    1,15

    3

    5

    1000

    S3TSMC

    1300

    3

    110

    1,15

    3

    5

    1300

    S3WSMC

    1600

    3

    110

    1,15

    3

    5

    1600

    S3XSMC

    1800

    3

    110

    1,15

    3

    5

    1800

    S3YSMC

    2000

    3

    110

    1,15

    3

    5

    2000

    Характеристики мостов выпрямительных малой мощности

    P/N

     

    Корпус

     

    Импульсное обратное напряжение

     

    Средний ток прямой макс

     

    Ударный прямой ток

     

    Напряжение прямое

     

    Ток утечки

     

    VRRM В

     

    IFAV А

     

    IFSM А

     

    VF В

     

    IF А

     

    IR мкА

     

    VR В

    MS40Micro-DIL

    80

    0,5

    20

    1,2

    0,5

    10

    80

    MS80Micro-DIL

    160

    0,5

    20

    1,2

    0,5

    10

    160

    MS125Micro-DIL

    250

    0,5

    20

    1,2

    0,5

    10

    250

    MS250Micro-DIL

    600

    0,5

    20

    1,2

    0,5

    10

    600

    MS380Micro-DIL

    800

    0,5

    20

    1,2

    0,5

    10

    800

    MS50Micro-DIL

    1000

    0,5

    20

    1,2

    0,5

    10

    1000

    B40S2ASO-DIL

    80

    2,3

    65

    0,95

    2

    10

    80

    B80S2ASO-DIL

    160

    2,3

    65

    0,95

    2

    10

    160

    B125S2ASO-DIL

    250

    2,3

    65

    0,95

    2

    10

    250

    B250S2ASO-DIL

    600

    2,3

    65

    0,95

    2

    10

    600

    B380S2ASO-DIL

    800

    2,3

    65

    0,95

    2

    10

    800

    B40SSO-DIL

    80

    1

    40

    1,1

    1

    10

    80

    B80SSO-DIL

    160

    1

    40

    1,1

    1

    10

    160

    B125SSO-DIL

    250

    1

    40

    1,1

    1

    10

    250

    B250SSO-DIL

    600

    1

    40

    1,1

    1

    10

    600

    B380SSO-DIL

    800

    1

    40

    1,1

    1

    10

    800

    B500SSO-DIL

    1000

    1

    40

    1,1

    1

    10

    1000

    Характеристики однофазных выпрямительных мостов средней мощности

    Тип

    Корпус

    мм

     

    Импульсное обратное напряжение

     

    Средний ток прямой макс

     

    Ударный прямой ток 50/60 Гц

     

    Напряжение прямое

     

    Ток утечки

     

    VRRM В

     

    IFAV А

     

    IFSM А

     

    VF В

     

    IF А

     

    IR мкА

     

    VR В

    B125C1500A/B19х3,5х10

    250

    1,8

    50

    10

    250

    B125DDIL

    250

    1

    40

    1,1

    1

    10

    250

    B250C1500A/B19х3,5х10

    600

    1,8

    50

    10

    600

    B250SDIL

    600

    1

    40

    1,1

    1

    10

    600

    B380C1500A/B19х3,5х10

    800

    1,8

    50

    10

    800

    B380DDIL

    800

    1

    40

    1,1

    1

    10

    800

    B40C1500A/B19х3,5х10

    80

    1,8

    50

    10

    80

    B40DDIL

    80

    1

    40

    1,1

    1

    10

    80

    B500C1500A/B19х3,5х10

    1000

    1,8

    50

    10

    1000

    B500SDIL

    1000

    1

    40

    1,1

    1

    10

    1000

    B80C1500A/B19х3,5х10

    160

    1,8

    50

    10

    160

    B80DDIL

    160

    1

    40

    1,1

    1

    10

    160

    CS10DDIL

    20

    1

    40

    0,5

    1

    500

    20

    GBI10M32х5,6х17

    1000

    3

    220

    10

    1000

    GBU10M20,8х3,3х18

    1000

    8,4

    300

    1

    12

    10

    1000

    KBPC60115,2х15,2х6,3

    100

    3,8

    125

    1,2

    3

    10

    100

    KBU12M23,5х5,7х19,3

    1000

    8,4

    300

    1

    12

    10

    1000

    KBU8M23,5х5,7х19,3

    1000

    5,6

    300

    1

    8

    10

    1000

    MS500SuperMicroDIL

    1000

    0,5

    20

    1,2

    0,5

    10

    1000

    MYS250MicroDIL

    600

    0,5

    20

    1,2

    0,5

    10

    600

    PB100119х19х6,8

    70

    10

    150

    1,2

    5

    10

    35

    S80MiniDIL
    (TO-269AA)

    160

    0,8

    44

    1,2

    0,8

    10

    160

    Характеристики мощных трехфазных диодных выпрямителей

    Тип

    Корпус

    мм

     

    Импульсное обратное напряжение

     

    Средний ток прямой макс

     

    Ударный прямой ток 50/60 Гц

     

    Напряжение прямое

     

    Ток утечки

     

    VRRM В

     

    IFAV А

     

    IFSM А

     

    VF В

     

    IF А

     

    IR мкА

     

    VR В

    DB15/25-00528,5х28,5х10

    50

    15/25

    275/385

    1,05

    7,5

    10

    50

    DB15/25-0128,5х28,5х10

    100

    15/25

    275/385

    1,05

    7,5

    10

    100

    DB15/25-0228,5х28,5х10

    200

    15/25

    275/385

    1,05

    7,5

    10

    200

    DB15/25-0428,5х28,5х10

    400

    15/25

    275/385

    1,05

    7,5

    10

    400

    DB15/25-0628,5х28,5х10

    600

    15/25

    275/385

    1,05

    7,5

    10

    600

    DB15/25-0828,5х28,5х10

    800

    15/25

    275/385

    1,05

    7,5

    10

    800

    DB15/25-1028,5х28,5х10

    1000

    15/25

    275/385

    1,05

    7,5

    10

    1000

    DB15/25-1228,5х28,5х10

    1200

    15/25

    275/385

    1,05

    7,5

    10

    1200

    DB15/25-1428,5х28,5х10

    1400

    15/25

    275/385

    1,05

    7,5

    10

    1400

    DB15/25-1628,5х28,5х10

    1600

    15/25

    275/385

    1,05

    7,5

    10

    1600

    DB35-00528,5х28,5х10

    50

    35

    500

    1,05

    17,5

    10

    50

    DB35-0128,5х28,5х10

    100

    35

    500

    1,05

    17,5

    10

    100

    DB35-0228,5х28,5х10

    200

    35

    500

    1,05

    17,5

    10

    200

    DB35-0428,5х28,5х10

    400

    35

    500

    1,05

    17,5

    10

    400

    DB35-0628,5х28,5х10

    600

    35

    500

    1,05

    17,5

    10

    600

    DB35-0828,5х28,5х10

    800

    35

    500

    1,05

    17,5

    10

    800

    DB35-1028,5х28,5х10

    1000

    35

    500

    1,05

    17,5

    10

    1000

    DB35-1228,5х28,5х10

    1200

    35

    500

    1,05

    17,5

    10

    1200

    DB35-1428,5х28,5х10

    1400

    35

    500

    1,05

    17,5

    10

    1400

    DB35-1628,5х28,5х10

    1600

    35

    500

    1,05

    17,5

    10

    1600

    DBI15/25-00540х20х10

    200

    15/25

    275/385

    1,05

    7,5/12,5

    10

    50

    DBI15/25-0140х20х10

    400

    15/25

    275/385

    1,05

    7,5/12,5

    10

    100

    DBI15/25-0240х20х10

    600

    15/25

    275/385

    1,05

    7,5/12,5

    10

    200

    DBI15/25-0440х20х10

    800

    15/25

    275/385

    1,05

    7,5/12,5

    10

    400

    DBI15/25-0640х20х10

    1000

    15/25

    275/385

    1,05

    7,5/12,5

    10

    600

    DBI15/25-0840х20х10

    1200

    15/25

    275/385

    1,05

    7,5/12,5

    10

    800

    DBI15/25-1040х20х10

    1400

    15/25

    275/385

    1,05

    7,5/12,5

    10

    1000

    DBI15/25-1240х20х10

    1600

    15/25

    275/385

    1,05

    7,5/12,5

    10

    1200

    DBI15/25-1440х20х10

    50

    15/25

    275/385

    1,05

    7,5/12,5

    10

    1400

    DBI15/25-1640х20х10

    100

    15/25

    275/385

    1,05

    7,5/12,5

    10

    1600

    DBI25-005A35х25х4

    50

    25

    390

    1,05

    12,5

    10

    50

    DBI25-04A35х25х4

    400

    25

    390

    1,05

    12,5

    10

    400

    DBI25-08A35х25х4

    800

    25

    390

    1,05

    12,5

    10

    800

    DBI25-12A35х25х4

    1200

    25

    390

    1,05

    12,5

    10

    1200

    DBI25-16A35х25х4

    1600

    25

    390

    1,05

    12,5

    10

    1600

     

    МД13-400-4УХЛ2 Диодный мост (Выпрямительный блок), цена

    Выпрямительный блок (диодные мосты) используется для замены на выпрямителях типа ВД-301, ВД-306, ВДМ-6303, ВДМ-1202, ВДУ-506

    Подробное описание

    ДИОДНЫЙ МОСТ (Выпрямительный блок) МД13-400-4УХЛ2 МД-13-400,МД-13-200

    Выпрямительный блок (диодные мосты) используется для замены  блоков на выпрямителях типа ВД-301, ВД-306, ВДМ-6303, ВДМ-1202, ВДУ-506

    Можно использовать несколько диодных мостов, для получения желаемой мощности, в зависимости от требуемого тока.

    Для правильного определения какой блок используется в вашем сварочном аппарате, лучше всего посмотреть в паспорте сварочного оборудования. Если паспорт потерян то можно подобрать по названию сварочного аппарата у наших инженеров.

    Широкий выбор диодных мостов, для различных выпрямителей

    Диодный мост ( выпрямительный блок) МД 13-400

    Диодный мост ( выпрямительный блок) МД 13-200

    Диодный мост ( выпрямительный блок) МД 13-320

    Диодный мост ( выпрямительный блок) М 13-400

    Диодный мост ( выпрямительный блок) МД 16-400

    МД13-400 УХЛ4-2 обозначение на заводе производителя

    Вместе с этим изделием часто заказывают:

    ВД-313 | Выпрямитель сварочный

    КГ 1х35 | Кабель силовой в резиновой изоляции гибкий сечение 35 квадрат

    КГхл 1х70 | Кабель силовой в резиновой изоляции хладостойкий гибкий сечение 70 квадрат

    ТМЛ 35, ТМЛ 70 | Наконечник медный луженый под опрессовку кабельный

    Приобрести Диодный мост МД-13-400 УХЛ-2 в наличии в Екатеринбурге

    Алексей Бессараб, (343) 344-65-05, 3446505@bk. ru

    Купить в: Астрахань, Барнаул, Белгород, Великий Новгород, Владимир,Волгоград, Волгодонск, Волжский, Вологда, Воронеж, Екатеринбург, Ессентуки, Ижевск,Казань, Калуга, Каменск-Шахтинский, Когалым, Курган, Краснодар, Красноярск, Курск, Кемерово, Липецк, Магнитогорск, Москва, Мурманск, Н.Челны, Нижневартовске, Новый-Уренгой, Нижний Новгород,Нижний Тагил, Новгород, Новокузнецк, Новороссийск, Новосибирск, Новочеркасск, Омск, Орел, Оренбург, Орск, Пенза, Пермь, Петрозаводск, Пятигорск, Ростов, Рязань, Самара, Санкт-Петербург, Саранск, Сургут, Саратов, Ангарск, Иркутск, Казахстан, Атырау, Астана, Алмата, Караганда, Кокшетау, Актобе, Талдыкорган, Усть-Каменогорск, Тараз, Уральск, Костанай, Кызылорда, Павлодар, Петропавловск,СОЧИ, СТ. Оскол, Ставрополь, Стерлитамак, Тамбов, Тверь, Тюмень, Тольятти, Томск, Тула, Ульяновск, Уфа, Чебоксары, Челябинск, Череповец, Чехов, Шахты, Ярославль, ЯНАО доставляем транспортными компаниями из г. Екатеринбурга

    ДИОДНЫЙ МОСТ

     Функция Модель Напряжение,В Ток,А
     диодный мост BR610 1000 6
     диодный мост KBPC2510 1000 25
     диодный мост GBJ25M 1000 25
     диодный мост RS2510 1000 25
     диодный мост BR2510 1000 25
     диодный мост 2W10M 1000 2
     диодный мост KBPC35-10 1000 35
     диодный мост RS407 1000 4
     диодный мост RS407-1 1000 4
     диодный мост KBPC1510 1000 15
     диодный мост KBPC50A-10 1000 50
     диодный мост QL100A 1000 100
     диодный мост KBU6M 1000 6
     диодный мост KBU6M-1 1000 6
     диодный мост KBU6M-2 1000 6
     диодный мост RS407-2 1000 4
     диодный мост KBU10M 1000 
     диодный мост BR1010 1000 
     диодный мост RS1010 1000 10
     диодный мост KBU10M 1000 
     диодный мост GBU15M 1000 15
     диодный мост BR1010-1 1000 10
     диодный мост KBU10M-1 1000 
     диодный мост КЦ402Е 100 1
     диодный мост КЦ405Е 100 1
     диодный мост KBPC5012 1200 50
     диодный мост КЦ405Д 200 1
     диодный мост КЦ405Г 300 1
     диодный мост КЦ405В 400 1
     диодный мост KBP210 500 2
     диодный мост КЦ405И 500 0. 6
     диодный мост D4SB80 600 4
     диодный мост D2SBA60 600 2
     диодный мост B6S 600 0.5
     диодный мост B6S-1 600 0.5
     диодный мост RS207 700 2
     диодный мост RS207-1 700 2
     диодный мост RB157 700 1.5
     диодный мост КД906А 75 0.2
     диодный мост КД906Б 75 0.2
     диодный мост RS206 800 2
     диодный мост RS206-1 800 2
     диодный мост MS40 80 0.5
     диодный мост MS80 160 0.5
     диодный мост MS125 250 0.5
     диодный мост MS250 600 0,5
     диодный мост MS380 800 0,5
     диодный мост MS50 1000 0,5
     диодный мост B40S2A 80 2. 3
     диодный мост B80S2A 160 2,3
     диодный мост B125S2A 250 2,3
     диодный мост B250S2A 600 2,3
     диодный мост B250S2A 800 2,3
     диодный мост B40S 80 1
     диодный мост B80S 160 1
     диодный мост B125S 250 1
     диодный мост B250S 600 1
     диодный мост B380S 800 1
     диодный мост B500S 1000 1
     диодный мост KBPC601 100 4
     диодный мост KBU12M 1000 8
     диодный мост KBU8M 1000 5.5

    Выпрямительные диодные мосты корпусные

    Выпрямительные сборки и блоки представляют собой собранные в монолитных корпусах в соответствии с мостовыми схемами электронные компоненты. Основным их предназначением является обеспечение более удобного монтажа выпрямителей, а также уменьшение их габаритов.

    Диодные мосты представляют собой электронные схемы, которые состоят из некоторого количества выпрямительных диодов. Чаще всего в состав моста входит четыре, шесть или двенадцать этих полупроводниковых приборов. С помощью диодных мостов производится так называемое «выпрямление» переменного тока, а если говорить точнее, то его преобразование в пульсирующий постоянный.

    Конструктивно диодные мосты могут выполняться как из отдельных полупроводниковых приборов, так и представлять собой единые монолитные конструкции, называемые диодными сборками. Поскольку последние занимают существенно меньше места и обходятся дешевле, то они являются более предпочтительными. Кроме того, изготавливаются они в заводских условиях, причем параметры отдельных диодов подбираются таким образом, чтобы они наилучшим образом подходили друг к другу. Следует также заметить, что в диодных сборках тепловые режимы функционирования их отдельных компонентов практически одинаковы, и поэтому вероятность того, что какой-либо из них перегреется, очень невелика. Однако у монолитных диодных сборок есть и один существенный недостаток: они являются неразборными конструкциями, и поэтому заменить в них вышедший из строя диод на другой невозможно. Впрочем, такие неприятности на практике случаются совсем нечасто.

    Диодные мосты находят очень широкое применение в различных электротехнических и радиоэлектронных устройствах. Их можно встретить в блоках питания различной бытовой техники и промышленного оборудования, в системах автоматического управления различными процессами, в преобразователях электрического тока, силовой аппаратуре и т.п.

    Выпрямительные блоки и сборки представляют собой весьма универсальные электронные полупроводниковые конструкции. В зависимости от конкретных характеристик, их можно использовать в самых различных устройствах. Они производятся большим количеством отечественных и особенно зарубежных компаний, так что приобрести наиболее подходящий по тем или иным параметрам прибор сейчас не составляет никакого труда.

    Схема мостового выпрямителя

    — Детали конструкции и советы »Электроника

    Мостовой выпрямитель, состоящий из четырех диодов, обеспечивает двухполупериодное выпрямление без использования трансформатора с отводом от средней точки.


    Цепи диодного выпрямителя Включают: Цепи диодного выпрямителя
    Полуволновой выпрямитель Двухполупериодный выпрямитель Двухдиодный двухполупериодный выпрямитель Двухполупериодный мостовой выпрямитель Синхронный выпрямитель


    Мостовой выпрямитель — это электронный компонент, который широко используется для обеспечения двухполупериодного выпрямления и, возможно, является наиболее широко используемой схемой для этого приложения.

    Используя четыре диода в мостовом выпрямителе, схема имеет характерный формат, принципиальная схема которого основана на квадрате с одним диодом на каждой ножке.

    Благодаря своим характеристикам и возможностям, двухполупериодный мостовой выпрямитель используется во многих линейных источниках питания, импульсных источниках питания и других электронных схемах, где требуется выпрямление.

    Типовой мостовой выпрямитель для монтажа на печатной плате

    Цепи мостового выпрямителя

    Схема основной схемы мостового выпрямителя имеет блок мостового выпрямителя в центре.Он состоит из мостовой схемы с четырьмя диодами. Это могут быть отдельные диоды или мостовые выпрямители в виде единого электронного компонента.

    Двухполупериодный выпрямитель с использованием мостового выпрямителя

    Мостовой выпрямитель обеспечивает двухполупериодное выпрямление и имеет преимущество перед двухполупериодным выпрямителем, использующим два диода, в том, что в трансформаторе не требуется центральный отвод. Это означает, что для обеих половин цикла используется одна обмотка.

    Электронные компоненты

    с обмоткой дороги, а наличие центрального отвода означает, что для обеспечения двухполупериодного выпрямления необходимы две идентичные обмотки, каждая из которых обеспечивает полное напряжение. Это удваивает количество витков и увеличивает стоимость трансформатора. Это может быть особенно важно при разработке линейных источников питания или других электронных устройств.

    Чтобы увидеть, как работает двухполупериодный выпрямитель на мостовых диодах, полезно увидеть ток, протекающий в течение полного цикла входящей формы волны.

    Двухполупериодный мостовой выпрямитель, показывающий протекание тока

    В большинстве приложений источников питания, будь то линейные регуляторы напряжения или импульсные источники питания, выход мостового выпрямителя будет подключен к сглаживающему конденсатору как часть нагрузки.

    Эти электронные компоненты принимают заряд во время высоковольтных частей формы волны, а затем отдают заряд на нагрузку при падении напряжения. Таким образом, они обеспечивают более постоянное напряжение, чем прямой выход мостового выпрямителя. Это позволяет другим схемам, таким как линейные регуляторы напряжения и импульсные источники питания, работать правильно.

    Примечание по сглаживанию конденсатора источника питания:
    Конденсаторы

    используются во многих источниках питания как для линейных регуляторов напряжения, так и для импульсных источников питания, чтобы сгладить выпрямленную форму волны, которая в противном случае варьировалась бы от пикового напряжения формы волны до нуля.Сглаживая форму волны, можно запускать из нее электронные схемы.

    Подробнее о Конденсаторное сглаживание.

    Что касается мостового выпрямителя и его диодов, включение конденсатора означает, что ток, проходящий через диоды, будет иметь значительные пики по мере заряда конденсатора.

    Период, в течение которого конденсатор источника питания заряжается

    При выборе электронных компонентов для мостового выпрямителя необходимо убедиться, что они могут выдерживать пиковые уровни тока.

    Мостовые выпрямители

    Компоненты мостового выпрямителя могут быть разных форм. Их можно сделать с помощью дискретных диодов. Кольцо из четырех диодов можно легко изготовить как на бирке, так и в составе печатной платы. Необходимо обеспечить достаточную вентиляцию диодов, поскольку они могут рассеивать тепло под нагрузкой.

    Схема мостового выпрямителя и маркировка

    В качестве альтернативы мостовые выпрямители поставляются в виде отдельных электронных компонентов, содержащих четыре диода в едином блоке или корпусе.Четыре соединения выведены и отмечены «+», «-» и «~». Соединение «~» используется для подключения к переменному входу. Соединения + и — очевидны.

    Некоторые из этих мостовых выпрямителей предназначены для монтажа на печатной плате и могут иметь провода для монтажа в сквозные отверстия. Другие могут быть устройствами для поверхностного монтажа.

    Некоторые мостовые выпрямители заключены в корпуса большего размера и предназначены для установки на радиаторе. Поскольку эти выпрямители рассчитаны на пропускание значительных уровней тока, они могут рассеивать значительный уровень тепла в результате падения напряжения на диодах, а также внутреннего сопротивления объемного кремния, используемого для диодов.

    Рекомендации по проектированию мостового выпрямителя

    Есть несколько моментов, которые необходимо учитывать при использовании мостового выпрямителя для обеспечения выхода постоянного тока от входа переменного тока:

    • Падения напряжения: Не следует забывать, что ток, протекающий в мостовом выпрямителе, будет проходить через два диода. В результате выходное напряжение упадет на эту величину. Поскольку в большинстве мостовых выпрямителей используются кремниевые диоды, это падение будет минимум 1.2 вольта и будет увеличиваться с увеличением тока. Соответственно, максимальное выходное напряжение, которое может быть достигнуто, составляет минимум 1,2 вольт от пикового напряжения на входе переменного тока.
    • Рассчитайте количество тепла, рассеиваемого выпрямителем: Напряжение на диодах будет падать минимум на 1,2 В (при использовании стандартного кремниевого диода), которое будет расти по мере увеличения тока. Это результат стандартного падения напряжения на диоде, а также сопротивления внутри диода.Обратите внимание, что ток проходит через два диода внутри моста в течение любого полупериода. Сначала один комплект из двух диодов, затем другой.

      Чтобы увидеть падение напряжения для предполагаемого уровня тока, стоит обратиться к паспорту диодов мостового выпрямителя или всего электронного компонента мостового выпрямителя.

      Падение напряжения и ток, протекающий через выпрямитель, вызывают нагрев, который необходимо отводить. В некоторых случаях его можно легко рассеять за счет воздушного охлаждения, но в других случаях мостовой выпрямитель может потребоваться прикрутить болтами к радиатору.Многие мостовые выпрямители для этой цели крепятся болтами к радиатору.

    • Пиковое обратное напряжение: Очень важно следить за тем, чтобы максимальное обратное напряжение мостового выпрямителя или отдельных диодов не превышалось, в противном случае диоды могут выйти из строя.

      Рейтинг PIV диодов в мостовом выпрямителе меньше, чем требуется для конфигурации с двумя диодами, используемой с трансформатором с центральным ответвлением. Если пренебречь падением напряжения на диодах, для мостового выпрямителя требуются диоды с половиной PIV-рейтинга выпрямителя с центральным отводом для того же выходного напряжения.Это может быть еще одним преимуществом использования данной конфигурации.

      Пиковое обратное напряжение на диодах равно пиковому вторичному напряжению V сек , потому что в течение одного полупериода диоды D1 и D4 являются проводящими, а диоды D2 и D3 имеют обратное смещение.

      Двухполупериодный мостовой выпрямитель, показывающий обратное пиковое напряжение

      Предполагая идеальные диоды, на которых нет падения напряжения — хорошее предположение для этого объяснения. Используя это, можно увидеть, что точки A и B будут иметь такой же потенциал, как и точки C и D.Это означает, что пиковое напряжение трансформатора появится на нагрузке. Такое же напряжение появляется на каждом непроводящем диоде.

    Мостовые выпрямители — идеальный способ обеспечить выпрямленный выход на переменном входе. Мостовой выпрямитель обеспечивает двухполупериодный выпрямленный выход, что во многих случаях позволяет достичь лучшей производительности.

    Мостовой выпрямитель с разделенным питанием

    Для многих схем, таких как операционные усилители, могут потребоваться разделенные источники питания от линейного источника питания.Можно очень легко создать разделенное питание для этих и других приложений, используя двухполупериодный мостовой выпрямитель. Хотя он возвращается к использованию разделенного трансформатора, то есть с центральным отводом, может быть стоит получить импульсный или линейный источник питания с комбинацией как отрицательного, так и положительного источников питания с использованием мостового выпрямителя.

    Двухполупериодный мостовой выпрямитель с двойным питанием

    Схема работает эффективно и рационально, поскольку обе половины входной волны используются в каждой секции вторичной обмотки трансформатора.

    Мостовой выпрямитель с двойным питанием требует использования трансформатора с центральным ответвлением, но в любом случае часто требуется вторая обмотка для обеспечения двойного питания.

    Схема двухполупериодного выпрямителя на основе диодного моста работает хорошо и используется в большинстве приложений двухполупериодного выпрямителя. Он использует обе половины формы волны в обмотке трансформатора и, как результат, снижает тепловые потери для данного уровня выходного тока по сравнению с другими решениями.Кроме того, это решение не требует трансформатора с центральным ответвлением (за исключением версии с двумя источниками питания), и в результате снижаются затраты.

    Мостовой выпрямитель, вероятно, наиболее известен своим использованием в импульсных источниках питания и линейных источниках питания, но он также используется во многих других схемах.

    Другие схемы и схемотехника:
    Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
    Возврат в меню проектирования схем. . .

    Как устранить неполадки выпрямителя диодного моста

    В этой статье будут рассмотрены различные неисправности выпрямителя с диодным мостом, чтобы дать некоторое представление об устранении неисправностей источника питания переменного / постоянного тока.

    Источники питания переменного / постоянного тока широко используются в различных типах электронного оборудования. Когда кто-то терпит неудачу, как мы можем определить причину?

    В этой статье мы рассмотрим пример блока питания и расскажем о некоторых возможных причинах его выхода из строя.

    Пример источника переменного / постоянного тока

    Для эффективного поиска и устранения неисправностей вам необходимо разбираться в своей схеме. Мы будем работать с примером источника переменного / постоянного тока, который преобразует 230 В переменного тока в 5 В постоянного тока. Его блок-схема показана на рисунке 1 ниже.

    Рис. 1. Изображение любезно предоставлено NUS.

    Во-первых, давайте сначала кратко рассмотрим каждый из этих блоков.

    Трансформатор

    Трансформатор преобразует электрическую сеть высокого напряжения в более низкое переменное напряжение.Например, если мы хотим генерировать 12 В постоянного тока, трансформатор может быть спроектирован так, чтобы генерировать переменное напряжение амплитудой 22 В, как показано на рисунке 2.

    Рисунок 2
    Выпрямитель

    Выпрямитель преобразует переменное напряжение в постоянное, как показано на рисунке 3. Это делается путем инвертирования отрицательной части переменного напряжения для создания положительного напряжения. Результатом является постоянное напряжение, потому что ток теперь может течь только в одном направлении через гипотетическую нагрузку (не показано на рисунке).Однако по-прежнему существуют большие колебания напряжения и тока, и его нельзя использовать в качестве источника постоянного тока для питания электронных схем. На рисунке 3 показано очень важное свойство выхода выпрямителя: поскольку отрицательная часть перевернута на положительные значения, выход выпрямителя представляет собой периодический сигнал с периодом, который составляет половину периода входа. Следовательно, если на входе сигнал 50 Гц, выходная частота будет 100 Гц. Это наблюдение может быть полезно при поиске и устранении неисправностей источника питания переменного / постоянного тока.

    Рисунок 3
    Фильтр

    Чтобы избавиться от больших колебаний, мы применяем фильтр нижних частот к выходу выпрямителя. Фильтр будет давать формы сигналов, похожие на красные кривые на рисунке 4.

    Рис. 4
    Регулятор

    Поскольку все еще есть рябь, мы можем применить выходной сигнал фильтра к регулятору, который использует концепции обратной связи для дальнейшего подавления колебаний и генерирования желаемого напряжения постоянного тока.

    Давайте рассмотрим неисправности, связанные с диодным мостом выпрямителя и фильтром нижних частот, как показано на рисунке 5.

    Рисунок 5

    Теперь, когда мы знакомы с нашим примером, мы можем начать обсуждение некоторых общих проблем, которые могут потребоваться для устранения неполадок.

    Проблема: отказал открытый диод

    В каждом полупериоде входа $$ V_ {AC1} $$ горят два из четырех диодов. Например, когда $$ V_ {AC1} $$ положительный, D1 и D2 будут проводить ток, в то время как D3 и D4 блокируют (обратный) ток.В следующем полупериоде D3 и D4 будут проводить. Если какой-либо из этих четырех диодов имеет разрыв цепи, соответствующий полупериод будет пропущен, и схема будет действовать как полуволновой выпрямитель. На рисунке 6 показано влияние неисправного открытого диода на выходное напряжение.

    Рисунок 6

    Как видите, величина ряби увеличилась примерно в два раза. Кроме того, кривая, относящаяся к вышедшему из строя диоду, имеет период, в два раза превышающий период синей кривой, поскольку вышедшая из строя схема действует как полуволновой выпрямитель.Следовательно, при отказе открытого диода частота $$ V_ {DC1} $$ будет такой же, как VAC1. В исправной цепи пульсации возникают с частотой, вдвое превышающей входную частоту. С помощью осциллографа легко проверить работу выпрямителя на диодном мосту. Если частота электросети 50 Гц, частота колебаний должна быть 100 Гц. Это пример случаев, когда осциллограф намного полезнее мультиметра.

    Проблема: закороченный диод

    В предыдущем разделе мы предположили, что диод имеет разрыв цепи.Однако неисправный диод тоже может закоротить. В этом случае диод будет иметь небольшое сопротивление в обоих направлениях. Распространенными причинами выхода из строя диода являются чрезмерный прямой ток и большое обратное напряжение. Обычно большое обратное напряжение приводит к короткому замыканию диода, в то время как перегрузка по току приводит к его размыканию при отказе.

    Давайте посмотрим, как закороченный диод повлияет на двухполупериодный выпрямитель. Предположим, что D1 на рисунке 5 закорочен, и теперь схема имеет вид, показанный на рисунке 7.

    Рисунок 7

    Предположим, что $$ V_ {AC1} $$ положительный.В этом случае D2 будет включен, а D3 и D4 будут иметь обратное смещение. Ток будет течь через нагрузку и диод D2 обратно во вторичную обмотку трансформатора, как показано на рисунке 5. Следовательно, если предположить, что диоды идеальны и имеют нулевое прямое падение напряжения, положительный полупериод не будет влияет закороченный диод. Но как насчет отрицательного полупериода? Когда значение $$ V_ {AC1} $$ становится отрицательным, включается D3. Ток будет течь обратно к трансформатору через закороченный диод, а не через нагрузку.Следовательно, $$ V_ {DC1} $$ будет равен нулю, и большое напряжение будет непосредственно приложено к D3. Чрезмерный прямой ток может привести к отказу D3 при открытии. Трансформатор и закороченный диод (D1) — это два других компонента, которые могут перегореть.

    Проблема: Старение конденсатора фильтра

    В источниках питания переменного / постоянного тока обычно используются электролитические конденсаторы для подавления пульсаций. Эти конденсаторы обладают высокой емкостью для данного рабочего напряжения (у них почти самая высокая доступная емкость, помноженная на напряжение или CV).Кроме того, такое высокое резюме достигается за доступную цену.

    Несмотря на эти преимущества, у электролитических конденсаторов есть свои ограничения. Одним из основных недостатков является то, что они имеют гораздо более короткий срок службы, чем другие конденсаторы. Это связано с тем, что электролит внутри конденсатора со временем испаряется, и емкость уменьшается. К концу срока службы конденсатора емкость уменьшится примерно на 20%.

    Также стоит отметить, что эквивалентное последовательное сопротивление конденсатора (ESR) увеличивается с использованием. Чем больше СОЭ, тем больше тепла выделяется, и тепло является основным фактором, который может ускорить испарение электролита. Это приведет к ситуации теплового разгона.

    Дело в том, что электролитические конденсаторы, вероятно, являются первыми компонентами, которые выйдут из строя в правильно спроектированной электронной системе. Разработчик игнорирует эту проблему надежности, чтобы просто снизить затраты. По мере старения емкость будет уменьшаться, и на $$ V_ {DC1} $$ будут появляться более сильные колебания. Мы использовали $$ C_L = 220 мкФ $$ и $$ R_L = 1 k \ Omega $$ для создания графики этой статьи.Давайте уменьшим $$ C_L $$ на 20%, чтобы визуализировать эффект старения конденсатора (мы игнорируем увеличение ESR, чтобы упростить задачу). При $$ C_L = 176 мкФ $$ получаем красную кривую на рисунке 8.

    Рисунок 8

    Как и ожидалось, меньший конденсатор приводит к большим колебаниям. Следовательно, когда пульсации больше, чем ожидалось, мы должны проверить частоту пульсаций: если частота вдвое превышает входную частоту, диоды работают правильно и, вероятно, что-то не так с конденсатором.

    Проблема: Закороченный конденсатор фильтра

    Электролитические конденсаторы обычно выходят из строя. Фактически, слой оксида алюминия, который образует диэлектрик конденсатора, обладает свойством самовосстановления и обычно может немедленно исправить крошечное короткое замыкание. Тем не менее, все еще есть вероятность появления дырявого конденсатора, когда относительно небольшой резистор появляется параллельно конденсатору. Если это сопротивление утечки настолько мало, конденсатор будет казаться закороченным. Приложение обратного напряжения к конденсатору может привести к утечке компонента.Что-то, что может случиться при первом производстве платы. В этом случае схему можно смоделировать, как показано на рисунке 9.

    Рисунок 9

    Резистор утечки ускорит разрядку конденсатора, поэтому пульсации будут больше, как на красных кривых на Рисунке 8. Если резистор утечки настолько мал, выход будет закорочен на землю. Следовательно, закороченный конденсатор может привести к отказу диодов или трансформатора.

    Заключение

    В этой статье мы рассмотрели различные неисправности выпрямителя с диодным мостом, чтобы дать некоторое представление об устранении неисправностей источника питания переменного / постоянного тока. Мы увидели, что частоту пульсаций на выходе можно проверить, чтобы проверить, правильно ли работает диодный мост. Кроме того, величина пульсации может дать нам некоторое представление о проблемах конденсатора фильтра.

    Какие еще темы по устранению неполадок вы хотели бы обсудить? Дайте нам знать в комментариях ниже.

    Цепи выпрямителя

    | Диоды и выпрямители

    Что такое исправление?

    Теперь мы подошли к самому популярному применению диода: выпрямительный . Проще говоря, выпрямление — это преобразование переменного тока (AC) в постоянный (DC). Это связано с устройством, которое допускает только односторонний поток электрического заряда. Как мы видели, именно это и делает полупроводниковый диод. Самым простым видом выпрямительной схемы является полуволновой выпрямитель .Он позволяет только половине сигнала переменного тока проходить через нагрузку. (Рисунок ниже)

    Схема однополупериодного выпрямителя.

    Полуволновое выпрямление

    Для большинства силовых приложений однополупериодного выпрямления недостаточно. Гармонический состав выходного сигнала выпрямителя очень велик, и, следовательно, его трудно фильтровать. Кроме того, источник питания переменного тока подает питание на нагрузку только половину каждого полного цикла, что означает, что половина его мощности не используется.Однако однополупериодное выпрямление — очень простой способ снизить мощность резистивной нагрузки. Некоторые двухпозиционные переключатели яркости лампы подают полную мощность переменного тока на нить накаливания лампы для «полной» яркости, а затем полуволновое выпрямление для уменьшения светоотдачи. (рисунок ниже)

    Применение однополупериодного выпрямителя: двухуровневый диммер лампы.

    В положении переключателя «Dim» лампа накаливания получает примерно половину мощности, которую она обычно получает при работе от двухполупериодного переменного тока.Поскольку полуволновая выпрямленная мощность пульсирует намного быстрее, чем нить накала успевает нагреться и остыть, лампа не мигает. Вместо этого его нить накаливания просто работает при более низкой температуре, чем обычно, обеспечивая меньшую светоотдачу.

    Этот принцип быстрой «пульсации» мощности на медленно реагирующее нагрузочное устройство для управления поданной на него электрической мощностью является распространенным в мире промышленной электроники. Поскольку управляющее устройство (в данном случае диод) является либо полностью проводящим, либо полностью непроводящим в любой момент времени, оно рассеивает мало тепловой энергии при управлении мощностью нагрузки, что делает этот метод управления мощностью очень энергоэффективным. Эта схема, возможно, является самым грубым из возможных методов подачи импульсной мощности на нагрузку, но ее достаточно для проверки правильности концепции.

    Полноволновые выпрямители

    Если нам необходимо выпрямить переменный ток, чтобы полностью использовать и полупериода синусоидальной волны, необходимо использовать другую конфигурацию схемы выпрямителя. Такая схема называется двухполупериодным выпрямителем . Один из видов двухполупериодного выпрямителя, называемый конструкцией с центральным отводом , использует трансформатор с вторичной обмоткой с центральным отводом и двумя диодами, как показано на рисунке ниже.

    Двухполупериодный выпрямитель, исполнение с центральным отводом.

    Положительный полупериод

    Работа этой схемы легко понять по одному полупериоду за раз. Рассмотрим первый полупериод, когда полярность напряжения источника положительная (+) вверху и отрицательная (-) внизу. В это время проводит только верхний диод; нижний диод блокирует ток, а нагрузка «видит» первую половину синусоидальной волны, положительную вверху и отрицательную внизу. Только верхняя половина вторичной обмотки трансформатора проводит ток в течение этого полупериода, как показано на рисунке ниже.

    Двухполупериодный выпрямитель с центральным ответвлением: Верхняя половина вторичной обмотки проводит ток в течение положительного полупериода входного сигнала, обеспечивая положительный полупериод на нагрузку.

    Отрицательный полупериод

    В течение следующего полупериода полярность переменного тока меняется на противоположную. Теперь другой диод и другая половина вторичной обмотки трансформатора пропускают ток, в то время как части схемы, которые ранее пропускали ток в течение последнего полупериода, остаются в режиме ожидания. Нагрузка по-прежнему «видит» половину синусоидальной волны той же полярности, что и раньше: положительная вверху и отрицательная внизу.(Рисунок ниже)

    Двухполупериодный выпрямитель с центральным ответвлением: во время отрицательного полупериода на входе нижняя половина вторичной обмотки проводит ток, передавая положительный полупериод на нагрузку.

    Недостатки конструкции двухполупериодного выпрямителя

    Одним из недостатков этой конструкции двухполупериодного выпрямителя является необходимость трансформатора с вторичной обмоткой с центральным отводом. Если рассматриваемая схема является схемой большой мощности, размер и стоимость подходящего трансформатора значительны.Следовательно, выпрямитель с центральным отводом встречается только в маломощных приложениях.

    Другие конфигурации

    Полярность двухполупериодного выпрямителя с центральным отводом на нагрузке может быть изменена путем изменения направления диодов. Кроме того, перевернутые диоды можно подключать параллельно к существующему выпрямителю с положительным выходом. Результатом является двухполюсный двухполупериодный выпрямитель с центральным ответвлением, показанный на рисунке ниже. Обратите внимание, что подключение самих диодов такое же, как у моста.

    Двухполюсный двухполупериодный выпрямитель с центральным ответвлением

    Полноволновые мостовые выпрямители

    Существует еще одна, более популярная конструкция двухполупериодного выпрямителя, построенная на основе конфигурации четырехдиодного моста. По понятным причинам эта конструкция называется двухполупериодным мостом . (Рисунок ниже)

    Двухполупериодный мостовой выпрямитель.

    Направления тока для двухполупериодной схемы мостового выпрямителя показаны на рисунке ниже для положительного полупериода и на рисунке ниже для отрицательного полупериода сигнала источника переменного тока.Обратите внимание, что независимо от полярности входа ток течет через нагрузку в одном и том же направлении. То есть отрицательный полупериод источника является положительным полупериодом при нагрузке.

    Ток проходит через два последовательно включенных диода для обеих полярностей. Таким образом, в диодах теряются два диодных падения напряжения источника (0,7 · 2 = 1,4 В для Si). Это недостаток по сравнению с двухполупериодной конструкцией с центральным отводом. Этот недостаток является проблемой только для источников питания с очень низким напряжением.

    Двухполупериодный мостовой выпрямитель: протекание тока для положительных полупериодов.

    Двухполупериодный мостовой выпрямитель: протекание тока для отрицательных полупериодов.

    Схема альтернативного двухполупериодного мостового выпрямителя

    Вспоминание о правильном расположении диодов в двухполупериодной схеме мостового выпрямителя часто может быть неприятным для новичка в электронике. Я обнаружил, что альтернативное представление этой схемы легче запомнить и понять.Это точно такая же схема, за исключением того, что все диоды нарисованы горизонтально и все «указывают» в одном направлении. (Рисунок ниже)

    Альтернативный стиль компоновки двухполупериодного мостового выпрямителя.

    Полифазная версия с альтернативной компоновкой

    Одним из преимуществ запоминания этой схемы для схемы мостового выпрямителя является то, что она легко расширяется до многофазной версии, показанной на рисунке ниже.

    Трехфазная двухполупериодная мостовая схема выпрямителя.

    Каждая трехфазная линия подключается между парой диодов: один для подачи питания на положительную (+) сторону нагрузки, а другой для подачи питания на отрицательную (-) сторону нагрузки.

    Полифазные системы с более чем тремя фазами легко встраиваются в схему мостового выпрямителя. Возьмем, к примеру, схему шестифазного мостового выпрямителя, показанную на рисунке ниже.

    Схема двухполупериодного шестифазного мостового выпрямителя.

    Когда выпрямляется многофазный переменный ток, сдвинутые по фазе импульсы накладываются друг на друга, создавая более «плавный» выход постоянного тока (с меньшим содержанием переменного тока), чем полученный при выпрямлении однофазного переменного тока.Это явное преимущество в схемах выпрямителя большой мощности, где чисто физический размер фильтрующих компонентов был бы недопустимым, но при этом необходимо получать мощность постоянного тока с низким уровнем шума. Схема на рисунке ниже показывает двухполупериодное выпрямление трехфазного переменного тока.

    Трехфазный переменный ток и трехфазный двухполупериодный выход выпрямителя.

    Напряжение пульсации

    В любом случае выпрямления — однофазном или многофазном — величина переменного напряжения, смешанного с выходным напряжением постоянного тока выпрямителя, называется напряжением пульсаций . В большинстве случаев, поскольку желаемой целью является «чистый» постоянный ток, пульсации напряжения нежелательны. Если уровни мощности не слишком велики, можно использовать сети фильтрации для уменьшения пульсаций выходного напряжения.

    1-импульсные, 2-импульсные и 6-пульсные устройства

    Иногда метод выпрямления упоминается путем подсчета количества выходных «импульсов» постоянного тока на каждые 360 o электрического «вращения». Таким образом, однофазная полуволновая выпрямительная схема будет называться одноимпульсным выпрямителем , потому что она вырабатывает одиночный импульс в течение одного полного цикла (360 o ) формы волны переменного тока.Однофазный двухполупериодный выпрямитель (независимо от конструкции, отводной или мостовой) будет называться 2-импульсным выпрямителем , потому что он выдает два импульса постоянного тока в течение одного цикла переменного тока. Трехфазный двухполупериодный выпрямитель будет называться 6-импульсным блоком .

    Фазы цепи выпрямителя

    Современная электротехническая конвенция дополнительно описывает функцию схемы выпрямителя, используя трехполевую нотацию: фаз , путей и количество импульсов .Однофазная однополупериодная схема выпрямителя получила несколько загадочное обозначение 1Ph2W1P (1 фаза, 1 путь, 1 импульс), что означает, что напряжение питания переменного тока является однофазным, то есть ток на каждой фазе линий питания переменного тока. движется только в одном направлении (пути), и что на каждые 360 o электрического вращения образуется один импульс постоянного тока.

    Однофазная двухполупериодная схема выпрямителя с центральным отводом будет обозначена в этой системе обозначений как 1Ph2W2P: 1 фаза, 1 путь или направление тока в каждой половине обмотки и 2 импульса или выходного напряжения за цикл.

    Однофазный двухполупериодный мостовой выпрямитель будет обозначен как 1Ph3W2P: то же самое, что и для конструкции с центральным ответвлением, за исключением тока, может проходить обоими путями через линии переменного тока, а не только одним путем.

    Схема трехфазного мостового выпрямителя, показанная ранее, будет называться выпрямителем 3Ph3W6P.

    Можно ли получить больше импульсов, чем в два раза больше числа фаз в цепи выпрямителя?

    Ответ на этот вопрос: да, особенно в многофазных цепях.Благодаря творческому использованию трансформаторов, наборы двухполупериодных выпрямителей могут быть объединены таким образом, чтобы генерировать более шести импульсов постоянного тока для трех фаз переменного тока. Сдвиг фазы 30, вводится от первичной к вторичной трехфазного трансформатора, когда конфигурации обмоток не одного типа.

    Другими словами, трансформатор, подключенный по схеме Y-Δ или Δ-Y, будет демонстрировать этот сдвиг фазы на 30 o , в то время как трансформатор, подключенный по схеме Y-Y или Δ-Δ, не будет.Это явление можно использовать, подключив один трансформатор по схеме Y-Y к мостовому выпрямителю, а другой трансформатор по схеме Y-Δ питает второй мостовой выпрямитель, а затем параллельно выходам постоянного тока обоих выпрямителей. (Рисунок ниже)

    Поскольку формы волны пульсаций напряжения на выходах двух выпрямителей сдвинуты по фазе на 30 o , их наложение приводит к меньшей пульсации, чем любой выход выпрямителя, рассматриваемый отдельно: 12 импульсов на 360 o вместо шести:

    Схема многофазного выпрямителя: 3-фазный, 2-канальный, 12-пульсный (3Ph3W12P)

    ОБЗОР:

    • Выпрямление — это преобразование переменного тока (AC) в постоянный (DC).
    • Полупериодный выпрямитель — это схема, которая позволяет приложить к нагрузке только один полупериод формы волны переменного напряжения, что приводит к одной не меняющейся полярности на ней. Результирующий постоянный ток, подаваемый на нагрузку, значительно «пульсирует».
    • Двухполупериодный выпрямитель — это схема, которая преобразует оба полупериода формы волны переменного напряжения в непрерывную серию импульсов напряжения одинаковой полярности. Результирующий постоянный ток, подаваемый на нагрузку, не так сильно «пульсирует».
    • Многофазный переменный ток после выпрямления дает гораздо более «гладкую» форму волны постоянного тока (менее пульсаций напряжения ), чем выпрямленный однофазный переменный ток.

    СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

    Принципиальная схема

    , типы, работа и применение

    Схема выпрямителя используется для преобразования переменного (переменного тока) в постоянный (постоянный ток). Выпрямители в основном подразделяются на три типа: полуволновые, двухполупериодные и мостовые выпрямители. Основная функция всех этих выпрямителей такая же, как преобразование тока, но они неэффективно преобразовывают ток из переменного в постоянный.Двухполупериодный выпрямитель с центральным ответвлением и мостовой выпрямитель эффективно преобразуют. Схема мостового выпрямителя — обычная часть электронных источников питания. Для многих электронных схем требуется выпрямленный источник питания постоянного тока для питания различных основных электронных компонентов от доступной сети переменного тока. Мы можем найти этот выпрямитель в большом количестве электронных устройств питания переменного тока, таких как бытовая техника, контроллеры двигателей, процесс модуляции, сварочные приложения и т. Д. В этой статье обсуждается обзор мостового выпрямителя и его работы.

    Что такое мостовой выпрямитель?

    A Мостовой выпрямитель — это преобразователь переменного тока в постоянный (DC), который выпрямляет входной переменный ток сети в выход постоянного тока. Мостовые выпрямители широко используются в источниках питания, которые обеспечивают необходимое постоянное напряжение для электронных компонентов или устройств. Они могут быть сконструированы с четырьмя или более диодами или любыми другими управляемыми твердотельными переключателями.


    Мостовой выпрямитель

    В зависимости от требований тока нагрузки выбирается соответствующий мостовой выпрямитель.Номинальные характеристики и характеристики компонентов, напряжение пробоя, диапазоны температур, номинальный переходный ток, номинальный прямой ток, требования к установке и другие соображения принимаются во внимание при выборе источника питания выпрямителя для соответствующей области применения электронной схемы.

    Конструкция

    Конструкция мостового выпрямителя показана ниже. Эта схема может быть спроектирована с четырьмя диодами, а именно D1, D2, D3 и D4, а также с нагрузочным резистором (RL). Подключение этих диодов может быть выполнено по схеме с обратной связью для эффективного преобразования переменного (переменного тока) в постоянный (постоянный ток).Основное преимущество такой конструкции — отсутствие эксклюзивного трансформатора с центральным отводом. Таким образом, размер, как и стоимость, уменьшится.

    Как только входной сигнал подается на два терминала, такие как A и B, сигнал постоянного тока o / p может быть получен через RL. Здесь нагрузочный резистор подключен между двумя выводами, такими как C и D. Расположение двух диодов может быть выполнено таким образом, что электричество будет проводиться двумя диодами в течение каждого полупериода. Пары диодов, такие как D1 и D3, будут проводить электрический ток в течение положительного полупериода.Точно так же диоды D2 и D4 будут проводить электрический ток в течение отрицательного полупериода.

    Схема мостового выпрямителя

    Основным преимуществом мостового выпрямителя является то, что он выдает почти вдвое большее выходное напряжение, чем в случае двухполупериодного выпрямителя, использующего трансформатор с центральным отводом. Но этой схеме не нужен трансформатор с центральным отводом, поэтому она напоминает недорогой выпрямитель.

    Схема мостового выпрямителя состоит из различных каскадов устройств, таких как трансформатор, диодный мост, фильтрация и регуляторы.Как правило, комбинация всех этих блоков называется регулируемым источником постоянного тока, питающим различные электронные устройства.

    Первым каскадом схемы является трансформатор понижающего типа, который изменяет амплитуду входного напряжения. В большинстве электронных проектов используется трансформатор 230/12 В для понижения напряжения сети переменного тока с 230 В до 12 В переменного тока. Схема мостового выпрямителя

    Следующим этапом является диодно-мостовой выпрямитель, в котором используются четыре или более диодов в зависимости от типа мостового выпрямителя. При выборе конкретного диода или любого другого переключающего устройства для соответствующего выпрямителя необходимо учитывать некоторые особенности устройства, такие как пиковое обратное напряжение (PIV), прямой ток If, номинальное напряжение и т. Д. Оно отвечает за создание однонаправленного или постоянного тока на нагрузке путем проведения набор диодов для каждого полупериода входного сигнала.

    Так как выход после диодных мостовых выпрямителей имеет пульсирующий характер, и для его создания как чистого постоянного тока необходима фильтрация. Фильтрация обычно выполняется с одним или несколькими конденсаторами, подключенными к нагрузке, как вы можете видеть на рисунке ниже, где выполняется сглаживание волны.Этот номинал конденсатора также зависит от выходного напряжения.

    Последней ступенью этого стабилизированного источника постоянного тока является регулятор напряжения, который поддерживает выходное напряжение на постоянном уровне. Предположим, микроконтроллер работает при 5 В постоянного тока, но выход после мостового выпрямителя составляет около 16 В, поэтому для снижения этого напряжения и поддержания постоянного уровня — независимо от изменений напряжения на входе — необходим регулятор напряжения.

    Работа мостового выпрямителя

    Как мы обсуждали выше, однофазный мостовой выпрямитель состоит из четырех диодов, и эта конфигурация подключается через нагрузку.Чтобы понять принцип работы мостового выпрямителя, мы должны рассмотреть приведенную ниже схему в демонстрационных целях.

    Во время положительного полупериода входных диодов переменного тока D1 и D2 смещены в прямом направлении, а D3 и D4 — в обратном. Когда напряжение, превышающее пороговый уровень диодов D1 и D2, начинает проводить — через него начинает течь ток нагрузки, как показано на пути красной линии на диаграмме ниже.

    Работа схемы

    Во время отрицательного полупериода входного сигнала переменного тока диоды D3 и D4 смещены в прямом направлении, а D1 и D2 — в обратном направлении.Ток нагрузки начинает течь через диоды D3 и D4, когда эти диоды начинают проводить, как показано на рисунке.

    Мы можем заметить, что в обоих случаях направление тока нагрузки одинаковое, то есть вверх-вниз, как показано на рисунке — так однонаправлено, что означает постоянный ток. Таким образом, с помощью мостового выпрямителя входной переменный ток преобразуется в постоянный. Выход на нагрузке с этим мостовым выпрямителем имеет пульсирующий характер, но для получения чистого постоянного тока требуется дополнительный фильтр, такой как конденсатор.Такая же операция применима для разных мостовых выпрямителей, но в случае управляемых выпрямителей срабатывание тиристоров необходимо для подачи тока на нагрузку.

    Типы мостовых выпрямителей

    Двухфазные выпрямители подразделяются на несколько типов в зависимости от следующих факторов: типа источника питания, возможностей управления, конфигурации схемы промежуточного звена и т. Д. Мостовые выпрямители в основном подразделяются на однофазные и трехфазные. Оба эти типа далее подразделяются на неуправляемые, полууправляемые и полностью управляемые выпрямители.Некоторые из этих типов выпрямителей описаны ниже.

    Однофазные и трехфазные выпрямители

    Выбор этих выпрямителей зависит от характера питания, то есть однофазного или трехфазного питания. Однофазный мостовой выпрямитель состоит из четырех диодов для преобразования переменного тока в постоянный, тогда как трехфазный выпрямитель использует шесть диодов, как показано на рисунке. Это могут быть неуправляемые или управляемые выпрямители, в зависимости от компонентов схемы, таких как диоды, тиристоры и т. Д.

    Однофазные и трехфазные выпрямители

    Неуправляемые мостовые выпрямители

    В этом мостовом выпрямителе используются диоды для выпрямления входа, как показано на рисунке. Поскольку диод — это однонаправленное устройство, которое позволяет току течь только в одном направлении. Такая конфигурация диодов в выпрямителе не позволяет мощности изменяться в зависимости от требований к нагрузке. Таким образом, этот тип выпрямителя используется в постоянных или фиксированных источниках питания.

    Неуправляемые мостовые выпрямители

    Управляемые мостовые выпрямители

    В выпрямителях этого типа, преобразователях переменного / постоянного тока или выпрямителях вместо неуправляемых диодов используются управляемые твердотельные устройства, такие как тиристоры, полевые МОП-транзисторы, БТИЗ и т. Д.используются для изменения выходной мощности при разных напряжениях. Посредством срабатывания этих устройств в различные моменты времени выходная мощность на нагрузке изменяется соответствующим образом.

    Управляемый мостовой выпрямитель

    Мостовой выпрямитель IC

    Мостовой выпрямитель, такой как конфигурация выводов IC RB-156, обсуждается ниже.

    Контакт-1 (фаза / линия): Это входной контакт переменного тока, где можно подключить фазный провод от источника переменного тока к этому фазовому контакту.

    Контакт 2 (нейтраль): Это контакт входа переменного тока, на котором можно подключить нейтральный провод от источника переменного тока к этому нейтральному контакту.

    Контакт 3 (положительный): Это выходной контакт постоянного тока, где положительное напряжение постоянного тока выпрямителя получается с этого положительного контакта.

    Контакт 4 (отрицательный / заземляющий): Это выходной контакт постоянного тока где напряжение земли выпрямителя получается с этого отрицательного вывода.

    Технические характеристики

    Подкатегории этого мостового выпрямителя RB-15 варьируются от RB15 до RB158. Из этих выпрямителей наиболее часто используется RB156.Технические характеристики мостового выпрямителя РБ-156 включают следующее.

    • Выходной постоянный ток составляет 1,5 А
    • Максимальное пиковое обратное напряжение составляет 800 В
    • Выходное напряжение: (√2 × VRMS) — 2 В
    • Максимальное входное напряжение составляет 560 В
    • Падение напряжения для каждого моста составляет 1 В при 1 А
    • Импульсный ток составляет 50 А

    Этот RB-156 является наиболее часто используемым компактным, недорогим однофазным мостовым выпрямителем. Эта ИС имеет самое высокое напряжение переменного тока i / p, например 560 В, поэтому ее можно использовать для однофазной сети питания во всех странах.Максимальный постоянный ток этого выпрямителя — 1,5 А. Эта микросхема — лучший выбор в проектах для преобразования переменного тока в постоянный и обеспечивает до 1,5 А.

    Характеристики мостового выпрямителя

    Характеристики мостового выпрямителя включают следующие:

    • Коэффициент пульсаций
    • Пиковое обратное напряжение (PIV)
    • КПД
    Коэффициент пульсаций

    Измерение плавности выходного сигнала постоянного тока с использованием коэффициента: называется фактором пульсации.Здесь сглаженный сигнал постоянного тока можно рассматривать как сигнал постоянного тока o / p, включающий небольшое количество пульсаций, тогда как сигнал постоянного тока с высокой пульсацией можно рассматривать как сигнал постоянного тока с высокой частотой, включающий высокие пульсации. Математически его можно определить как долю пульсационного напряжения и чистого постоянного напряжения.

    Для мостового выпрямителя коэффициент пульсаций может быть задан как

    Γ = √ (Vrms2 / VDC) -1

    Значение коэффициента пульсаций мостового выпрямителя составляет 0,48

    PIV (пиковое обратное напряжение)

    Пиковое обратное напряжение или PIV может быть определено как максимальное значение напряжения, которое исходит от диода, когда он подключен в состоянии обратного смещения в течение отрицательного полупериода. Мостовая схема включает четыре диода типа D1, D2, D3 и D4.

    В положительном полупериоде два диода, такие как D1 и D3, находятся в проводящем положении, тогда как оба диода D2 и D4 находятся в непроводящем положении. Аналогично, в отрицательном полупериоде диоды, подобные D2 и D4, находятся в проводящем положении, тогда как диоды, подобные D1 и D3, находятся в непроводящем положении.

    КПД

    КПД выпрямителя в основном определяет, насколько эффективно выпрямитель преобразует переменный ток (переменный ток) в постоянный (постоянный ток).КПД выпрямителя можно определить как; это соотношение мощности постоянного тока и мощности переменного тока. Максимальный КПД мостового выпрямителя составляет 81,2%.

    η = DC o / p Power / AC i / p Power

    Форма волны мостового выпрямителя

    Из принципиальной схемы мостового выпрямителя мы можем сделать вывод, что ток через нагрузочный резистор одинаков на всем положительном и отрицательном полюсах. отрицательные полупериоды. Полярность сигнала постоянного тока o / p может быть либо полностью положительной, либо отрицательной.В данном случае это абсолютно положительно. Когда направление диода меняется на противоположное, может быть достигнуто полное отрицательное напряжение постоянного тока.

    Таким образом, этот выпрямитель позволяет протекать току в течение как положительных, так и отрицательных циклов сигнала переменного тока i / p. Формы выходных сигналов мостового выпрямителя показаны ниже.

    Почему он называется мостовым выпрямителем?

    По сравнению с другими выпрямителями, это наиболее эффективный тип выпрямительной схемы. Это тип двухполупериодного выпрямителя, как следует из названия, в этом выпрямителе используются четыре диода, которые соединены в виде моста.Поэтому такой выпрямитель называется мостовым выпрямителем.

    Почему мы используем 4 диода в мостовом выпрямителе?

    В мостовом выпрямителе четыре диода используются для создания схемы, которая обеспечивает двухполупериодное выпрямление без использования трансформатора с центральным отводом. Этот выпрямитель в основном используется для обеспечения двухполупериодного выпрямления в большинстве приложений.

    Расположение четырех диодов может быть выполнено в замкнутом контуре для эффективного преобразования переменного тока в постоянный. Основным преимуществом такой схемы является отсутствие трансформатора с центральным отводом, поэтому размер и стоимость будут уменьшены.

    Преимущества

    К преимуществам мостового выпрямителя можно отнести следующее.

    • Эффективность выпрямления двухполупериодного выпрямителя вдвое выше, чем у однополупериодного выпрямителя.
    • Более высокое выходное напряжение, более высокая выходная мощность и более высокий коэффициент использования трансформатора в случае двухполупериодного выпрямителя.
    • Пульсации напряжения низкие и более высокие частоты, в случае двухполупериодного выпрямителя требуется простая схема фильтрации
    • Во вторичной обмотке трансформатора не требуется центральный отвод, поэтому в случае мостового выпрямителя требуется более простой трансформатор . Если повышение или понижение напряжения не требуется, можно даже отказаться от трансформатора.
    • Для заданной выходной мощности в случае мостового выпрямителя можно использовать силовой трансформатор меньшего размера, поскольку ток как в первичной, так и во вторичной обмотке трансформатора питания протекает в течение всего цикла переменного тока.
    • Эффективность выпрямления вдвое больше по сравнению с однополупериодным выпрямителем
    • Использует простые схемы фильтрации для высокой частоты и низкого напряжения пульсаций
    • TUF выше по сравнению с выпрямителем с центральным отводом
    • Трансформатор с центральным ответвлением не требуется

    Недостатки

    К недостаткам мостового выпрямителя можно отнести следующее.

    • Требуется четыре диода.
    • Использование двух дополнительных диодов вызывает дополнительное падение напряжения, тем самым уменьшая выходное напряжение.
    • Для этого выпрямителя требуется четыре диода, поэтому стоимость выпрямителя будет высокой.
    • Схема не подходит, если необходимо выпрямить небольшое напряжение, потому что соединение двух диодов может быть выполнено последовательно и обеспечивает двойное падение напряжения из-за их внутреннего сопротивления.
    • Эти схемы очень сложные.
    • По сравнению с выпрямителем с центральным отводом, мостовой выпрямитель имеет большие потери мощности.

    Приложение — преобразование переменного тока в постоянный с помощью мостового выпрямителя

    Регулируемый источник постоянного тока часто требуется для многих электронных приложений. Один из самых надежных и удобных способов — преобразовать имеющийся источник питания переменного тока в источник постоянного тока. Это преобразование сигнала переменного тока в сигнал постоянного тока выполняется с помощью выпрямителя, который представляет собой систему диодов. Это может быть однополупериодный выпрямитель, который выпрямляет только половину сигнала переменного тока, или двухполупериодный выпрямитель, выпрямляющий оба цикла сигнала переменного тока. Двухполупериодный выпрямитель может быть выпрямителем с центральным отводом, состоящим из двух диодов, или мостовым выпрямителем, состоящим из 4 диодов.

    Здесь демонстрируется мостовой выпрямитель. Устройство состоит из 4 диодов, расположенных таким образом, что аноды двух соседних диодов соединены для обеспечения положительного питания на выходе, а катоды двух других соседних диодов соединены для подачи отрицательного питания на выход. Анод и катод двух других соседних диодов подключены к плюсу источника переменного тока, тогда как анод и катод двух других соседних диодов подключены к минусу источника переменного тока.Таким образом, 4 диода расположены в виде моста, так что в каждом полупериоде два чередующихся диода проводят ток, создавая постоянное напряжение с отталкиванием.

    Данная схема состоит из мостового выпрямителя, нерегулируемый выход постоянного тока которого подается на электролитический конденсатор через токоограничивающий резистор. Напряжение на конденсаторе контролируется с помощью вольтметра и продолжает увеличиваться по мере заряда конденсатора, пока не будет достигнут предел напряжения. Когда к конденсатору подключается нагрузка, конденсатор разряжается, обеспечивая необходимый входной ток для нагрузки.В этом случае в качестве нагрузки подключается лампа.

    A Регулируемый источник питания постоянного тока

    Регулируемый источник питания постоянного тока состоит из следующих компонентов:

    • Понижающий трансформатор для преобразования переменного тока высокого напряжения в переменный ток низкого напряжения.
    • Мостовой выпрямитель для преобразования переменного тока в пульсирующий постоянный ток.
    • Схема фильтра, состоящая из конденсатора для удаления пульсаций переменного тока.
    • Регулятор IC 7805 для получения регулируемого постоянного напряжения 5 В.

    Понижающий трансформатор преобразует сеть переменного тока 230 В в 12 В переменного тока.Это 12 В переменного тока подается на схему мостового выпрямителя, так что чередующиеся диоды проводят каждый полупериод, создавая пульсирующее напряжение постоянного тока, состоящее из пульсаций переменного тока. Конденсатор, подключенный к выходу, позволяет сигналу переменного тока проходить через него и блокирует сигнал постоянного тока, тем самым действуя как фильтр верхних частот. Таким образом, выходной сигнал через конденсатор представляет собой нерегулируемый фильтрованный сигнал постоянного тока. Этот выход может использоваться для управления электрическими компонентами, такими как реле, двигатели и т. Д. Регулятор IC 7805 подключен к выходу фильтра.Он дает постоянный регулируемый выход 5 В, который можно использовать для ввода многих электронных схем и устройств, таких как транзисторы, микроконтроллеры и т. Д. Здесь 5 В используется для смещения светодиода через резистор.

    Это все о теории мостовых выпрямителей, их типах, схемах и принципах работы. Мы надеемся, что этот полезный материал по этой теме будет полезен при создании студентами электронных или электрических проектов, а также при наблюдении за различными электронными устройствами или приборами.Благодарим вас за внимание и сосредоточенность на этой статье. И поэтому, пожалуйста, напишите нам для выбора требуемых характеристик компонентов в этом мостовом выпрямителе для вашего приложения и для любых других технических рекомендаций.

    Теперь мы надеемся, что вы получили представление о концепции мостового выпрямителя и его применениях, если какие-либо дополнительные вопросы по этой теме или концепции электрических и электронных проектов оставьте комментарии в разделе ниже.

    Кредиты на фото:

    Мостовые выпрямители: Что это такое? (Принципиальная электрическая схема и принцип работы)

    Что такое мостовой выпрямитель?

    Мостовые выпрямители — это схемы, которые преобразуют переменный ток (AC) в постоянный (DC) с помощью диодов, расположенных в конфигурации мостовой схемы.Мостовые выпрямители обычно состоят из четырех или более диодов. Генерируемая выходная волна имеет одинаковую полярность независимо от полярности на входе. Мостовые выпрямители

    относятся к тому же классу электроники, что и однополупериодные и двухполупериодные выпрямители. На рисунке 1 показан такой мостовой выпрямитель, состоящий из четырех диодов D 1 , D 2 , D 3, и D 4 , в котором вход подается на две клеммы A и B на рисунке, а выход — собранный на нагрузочном резисторе R L , подключенном между выводами C и D.

    Теперь рассмотрим случай, когда положительный импульс появляется на входе переменного тока, то есть клемма A является положительной, а клемма B — отрицательной. Это заставляет диоды D 1 и D 3 смещаться в прямом направлении, и в то же время диоды D 2 и D 4 будут смещены в обратном направлении.

    В результате ток течет по короткозамкнутому пути, создаваемому диодами D 1 и D 3 (считая диоды идеальными), как показано на рисунке 2a.Таким образом, напряжение, развиваемое на нагрузочном резисторе R L , будет положительным на конце, подключенном к клемме D, и отрицательным на конце, подключенном к клемме C.

    Далее, если отрицательный импульс появляется на входе переменного тока, тогда клеммы A и B отрицательны и положительны соответственно. Это прямое смещение смещает диоды D 2 и D 4 , а обратное смещение D 1 и D 3 , что заставляет ток течь в направлении, показанном на рисунке 2b.

    В этот момент следует отметить, что полярность напряжения, развиваемого на R L , идентична полярности, возникающей, когда входящий импульс переменного тока был положительным по своей природе. Это означает, что как для положительного, так и для отрицательного импульса выход мостового выпрямителя будет идентичным по полярности, как показано формами волны на Рисунке 3.


    Однако следует отметить, что постоянный ток мостового выпрямителя будет пульсирующим по своей природе. . Чтобы получить постоянный ток в чистом виде, необходимо использовать конденсатор в сочетании с мостовой схемой (рис. 4).

    В этой конструкции положительный импульс на входе заставляет конденсатор заряжаться через диоды D 1 и D 3 . Однако, когда отрицательный импульс поступает на вход, заряд конденсатора прекращается, и он начинает разряжаться через R L .

    Это приводит к генерации выходного сигнала постоянного тока, который будет иметь пульсации, как показано на рисунке. Этот коэффициент пульсаций определяется как отношение составляющей переменного тока к составляющей постоянного тока в выходном напряжении.Кроме того, математическое выражение для напряжения пульсаций дается уравнением

    , где
    В r представляет напряжение пульсаций.
    I l представляет собой ток нагрузки.
    f представляет частоту пульсации, которая будет вдвое больше входной частоты.
    C — емкость.

    Кроме того, мостовые выпрямители в основном бывают двух типов, а именно: однофазные выпрямители и трехфазные выпрямители. Кроме того, каждый из них может быть либо неконтролируемым, либо полууправляемым, либо полностью управляемым.

    Мостовые выпрямители для конкретного применения выбираются с учетом требований тока нагрузки. Эти мостовые выпрямители весьма выгодны, поскольку они могут быть сконструированы с трансформатором или без него и подходят для приложений высокого напряжения.

    Однако здесь два диода будут проводить каждый полупериод, и, следовательно, падение напряжения на диодах будет выше. Наконец, следует отметить, что помимо преобразования переменного тока в постоянный, мостовые выпрямители также используются для определения амплитуды модулированных радиосигналов и подачи поляризованного напряжения для сварочных работ.

    Идеальный диодный мост | Analog Devices

    Некоторые файлы cookie необходимы для безопасного входа в систему, а другие необязательны для функциональной деятельности. Сбор наших данных используется для улучшения наших продуктов и услуг. Мы рекомендуем вам принять наши файлы cookie, чтобы обеспечить максимальную производительность и функциональность нашего сайта. Для получения дополнительной информации вы можете просмотреть сведения о файлах cookie. Узнайте больше о нашей политике конфиденциальности.

    Принять и продолжить Принять и продолжить

    Файлы cookie, которые мы используем, можно разделить на следующие категории:

    Строго необходимые файлы cookie:
    Это файлы cookie, которые необходимы для работы аналога.com или предлагаемые конкретные функции. Они либо служат единственной цели передачи данных по сети, либо строго необходимы для предоставления онлайн-услуг, явно запрошенных вами.
    Аналитические / рабочие файлы cookie:
    Эти файлы cookie позволяют нам выполнять веб-аналитику или другие формы измерения аудитории, такие как распознавание и подсчет количества посетителей и наблюдение за тем, как посетители перемещаются по нашему веб-сайту. Это помогает нам улучшить работу веб-сайта, например, за счет того, что пользователи легко находят то, что ищут.
    Функциональные файлы cookie:
    Эти файлы cookie используются для распознавания вас, когда вы возвращаетесь на наш веб-сайт. Это позволяет нам персонализировать наш контент для вас, приветствовать вас по имени и запоминать ваши предпочтения (например, ваш выбор языка или региона). Потеря информации в этих файлах cookie может сделать наши службы менее функциональными, но не помешает работе веб-сайта.
    Целевые / профилирующие файлы cookie:
    Эти файлы cookie записывают ваше посещение нашего веб-сайта и / или использование вами услуг, страницы, которые вы посетили, и ссылки, по которым вы переходили.Мы будем использовать эту информацию, чтобы сделать веб-сайт и отображаемую на нем рекламу более соответствующими вашим интересам. С этой целью мы также можем передавать эту информацию третьим лицам.
    Отказ от печенья

    Выпрямитель с диодным мостом, трехфазный выпрямитель

    Компания C&H Technology специализируется на сильноточных диодных мостовых выпрямителях, однофазных и трехфазных диодных мостовых выпрямителях. Типичные области применения этих входных выпрямительных мостов: сварка, генератор, зарядное устройство, привод двигателей переменного тока и тяга. Мостовые выпрямители в сборе с воздушным и водяным охлаждением до 20 000 ампер.

    Диодный мост или мостовой выпрямитель — это система из четырех диодов в мостовой конфигурации, которая обеспечивает одинаковую полярность выходного напряжения для любой полярности входного напряжения. При использовании в наиболее распространенном применении для преобразования входного переменного тока (AC) в выход постоянного тока (DC) он известен как мостовой выпрямитель. Мостовой выпрямитель обеспечивает двухполупериодное выпрямление от двухпроводного входа переменного тока, что приводит к снижению стоимости и веса по сравнению с конструкцией трансформатора с центральным отводом.

    Однофазный диодный мостовой выпрямитель

    • Ток: от 1А до 50А
    • Изолированное основание для прямого монтажа на радиаторе
    • Клеммы: быстроразъемные, винтовые, под пайку для печатной платы
    • 100% не содержит свинца и соответствует требованиям RoHS
    • Сертификат UL для промышленного оборудования E78996

    Трехфазный диодный мостовой выпрямитель

    • Ток: от 25А до 200А
    • Изолированное основание для прямого монтажа на радиаторе
    • Клеммы: быстроразъемные, винтовые, под пайку для печатной платы
    • 100% не содержит свинца и соответствует требованиям RoHS
    • Сертификат UL для промышленного оборудования E78996

    Трехфазный тиристор

    • Цепи тиристорного моста и переключателя переменного тока
    • Ток: от 55А до 110А
    • Изолированное основание для прямого монтажа на радиаторе
    • Клеммы: быстроразъемные, винтовые, под пайку для печатной платы
    • 100% не содержит свинца и соответствует требованиям RoHS
    • Сертификат UL для промышленного оборудования E78996

    Для получения дополнительной информации о нашем опыте и решениях в области диодных мостовых выпрямителей свяжитесь с нами сегодня.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *