Модуль нормальной упругости: Модуль нормальной упругости (модуль Юнга)

Содержание

Модуль нормальной упругости (модуль Юнга)

Сделаем некоторые замечания по поводу терминологии. Мы приняли термин моду,ль продольной упругости как рекомендованный Комитетом по технической терминологии Академии наук. Наряду с ним применяют термины модуль нормальной упругости , модуль Юнга , модуль упругости первого рода . Полагаем, что предпочтителен термин, официально рекомендованный для краткости речи можно говорить просто модуль упругости .  [c.67]
Е—модуль нормальной упругости (модуль Юнга).  [c.5]

Упругие свойства тел характеризуются модулем нормальной упругости (модулем Юнга) и коэффициентом поперечного сжатия V (коэффициентом Пуассона). Сопротивляемость среды поперечной (сдвиговой) деформации связана с модулем сдвига, величина которого для больщинства металлов составляет 0,38…0,4 величины модуля Юнга. Эти физические константы связаны между собой соотношением  

[c.63]

Параметры упругости Е — модуль нормальной упругости (модуль Юнга) в кГ/мм G — модуль касательной упругости (модуль сдвига) в кГ мм р, — постоянная Пуассона.  [c.194]

Модули упругости металлов находятся в указанных ниже пределах для стали разных марок модуль нормальной упругости (модуль Юнга) — = (2,0-4-2,2) МПа модуль сдвига (модуль касательной упругости) G = (8,0 -ь 8,5) 10 МПа. Для алюминиевых сплавов 0 = (7,0 -f- 7,5) 10 МПа G = 2,7-10 МПа. Для титановых сплавов 0 = (1,10-i-1,20) 10 МПа G — = (4,0 4-4,5)-104 МПа. Для меди ю= (1.13 1,32) 10 МПа 0 = = 4,24-10 МПа. Для никеля (чистого) =2,20-10 МПа.  [c.226]

Нормальное и касательное напряжения о, ат, модуль продольной упругости (модуль Юнга) =о/Ео, модуль сдвига О=0т/д, модуль объемного сжатия — все эти величины имеют ту же размерность, что и давление, и выражаются в паскалях (вп — относительное удлинение, 0 — угол сдвига).  

[c.31]

Модуль Е, определяемый при растяжении, называется модулем нормальной упругости, или модулем Юнга, модуль G — модуль сдвига (касательной упругости) и К — модуль объемной упругости (Р — гидростатическое давление, и — уменьщение объема). Модули упругости определяют жесткость материала, т. е. интенсивность увеличения напряжения по мере упругой деформации.  [c.28]

Известно, что отношение напряжения к относительному удлинению образца в упомянутом опыте называется модулем нормальной упругости (или модулем Юнга) и обозначается через Б отношение относительного удлинения в направлении действия нагрузки к относительному укорочению поперечных размеров обозначается через т и называется числом Пуассона часто применяется обратная величина а,  

[c.44]


При упругой деформации растяжение-сжатие модуль нормальной упругости или коэффициент пропорциональности характеризуется отношением напряжения к относительному удлинению и носит название модуля Юнга  [c.14]

Измерение показателей упругих и релаксационных свойств Материалов динамическим методом чаще всего производится на цилиндрических образцах диаметром d = 8… 10 мм и длиной I = 200 мм. Измерив резонансную частоту (Гц) изгибных / и крутильных колебаний, а также массу т (кг) и размеры образца / и с/ (м), рассчитывают модуль нормальной упругости Юнга Е и модуль сдвига G (МПа) по формулам  

[c.463]

Через и V здесь обозначены упругие постоянные материала Е — модуль нормальной упругости или модуль Юнга v — коэффициент Пуассона. В каждом конкретном случае для того или иного нового материала эти параметры определяются экспериментально.  [c.64]

Величина а = F / S называется нормальным напряжением в торцевом сечении стержня. Пропорциональность деформаций е соответствующим напряжениям выражает закон Гука. Коэффициент пропорциональности % называется коэффициентом удлинения и для каждого материала определяется опытным путем. Так как численные значения е гораздо меньше а, то % — весьма малая величина. Поэтому обычно вводят модуль упругости (модуль Юнга) Е = X , и закон Гука окончательно записывают в виде  

[c.11]

Как уже ранее было отмечено, материалы, упругие свойства которых не зависят от направления, называются изотропными. В этом случае будет минимальное количество упругих постоянных, характеризующих упругие свойства такого тела. Таких упругих постоянных будет три— нормальный модуль упругости Е (модуль Юнга), модуль сдвига О и коэффициент Пуассона р. Между этими тремя упругими постоянными имеется следующая зависимость  

[c.40]

Модулем упругости первого рода (модулем Юнга), или модулем нормальной упругости, называют величину, численно равную отношению напряжения к соответствующему относительному упругому удлинению  [c.11]

Обозначения Ляме применяются преимущественно в теоретических работах, в технической литературе их заменяют другими модулями упругости, чаще всего модулем Юнга Е (модуль нормальной упругости) и коэффициентом Пуассона v. Чтобы ввести эти величины, выделим в формуле (3.1.6) для слагаемое Ох из суммы G.  [c.112]

Искажение или деформация некоторого типа, которую мы можем назвать е, создается в теле смеш,ениями. При этом возбуждается напряженное состояние или упругая сила, которую мы можем назвать s. Соотношение между напряжением и деформацией может быть записано так =ее, где е есть коэффициент упругости для конкретного вида деформирования. Этот коэффициент есть модуль Юнга Е, если S и е являются нормальными напряжениями, и модуль сдвига, если они являются касательными напряжениями и деформациями . В твердом теле, свободном от релаксации, S будет оставаться равным е е, и  [c.152]

Последние три соотношения в (2.4.1) показывают, что нормальные напряжения не вызывают сдвиговых деформаций подобно тому, как первые три из этих соотношений показывают, что касательные деформации не вызывают нормальных деформаций. Более того, все касательные напряжения (и сдвиговые деформации) независимы и каждая компонента сдвиговой деформации связана с соответствующей компонентой касательного напряжения модулем сдвига G. Модуль сдвига не является независимой упругой постоянной он связан с модулем Юнга и коэффициентом Пуассона следующим образом [53, стр. 29]  

[c.24]

Ортотропный материал имеет девять независимых упругих постоянных. Три из этих постоянных связывают нормальные деформации вхх, Syy и с нормальными напряжениями о х, (Ууу и Огг- постоянные называют модулями Юнга. Три другие независимые упругие постоянные называются коэффициентами Пуассона. Они связывают нормальные деформации в одном направлении, скажем вхх, с нормальными деформациями в другом направлении, например Три упругие постоянные для ортотропного материала связывают деформации сдвига вху, вхг и ву с вызывающими их касательными напряжениями Оху, a z и Оу . Эти постоянные называют модулями сдвига.  

[c.188]


МПа и ударную вязкость а >250 Дж/см . Упругие характеристики иодидного титана таковы модуль объемной упругости /С=123-10 МПа модуль нормальной упругости, или модуль Юнга, = 10,6-10 МПа модуль сдвига 0=40-10 МПа коэффициент Пуассона [х=0,34 [4].  
[c.7]

По мнению зарубежных специалистов материал прочных корпусов подводных лодок должен обладать высокой уделыной прочностью (отношение предела текучести к удельному весу) высоким модулем нормальной упругости (модулем Юнга) высокой пластичностью основного материала и соединительных элементов (например, сварных швов) высокой усталостной и динамической прочностью коррозионной стойкостью и устойчивостью физических свойств в диапазоне температур, встречающихся при эксплуатации подводной лодки (от —35 до +50°С) технологичностью и возможностью соединения отдельных элементов конструкции по возможности немагнитностью приемлемой стоимостью.  

[c.143]

Модуль продольной упругости (модуль Юнга) Е—величина, равная отношению нормального напряжения о к относител П1эму удлинению (или укорочению) е==А///  [c.67]

Все сплавы направленной кристаллизации обладают преимущественной кристаллографической ориентировкой по крайней мере в одном направлении. Модуль нормальной упругости (Юнга) Е анизотропен его значение будет различным в зависимости от того, по какой из ориентировок нагружен суперсплав направленной кристаллизации. Для монокристалли-ческих суперсплавов модуль нормальной упругости в пределах стандартного стереографического треугольника можно выразить как  [c.263]

Для обоснования того, что эта интерпретация является законной в некотором вполне определенном смысле, а также для получения оценок толщин слоев концентрации напряжений Эверстайн и Пипкин [12] проанализировали некоторые точные решения теории упругих трансверсально изотропных материалов. Предполагалось, что модуль Юнга Е вдоль волокон много больше модуля сдвига G. Коэффициент Пуассона v, определяющий уменьшение поперечных размеров в направлении, перпендикулярном волокнам, при приложении растягивающей нагрузки, также перпендикулярной волокнам, выбирался близким к единице. Оказалось, что теория упругости действительно предсказывает существование тонких слоев с высокой концентрацией напряжений там, где они должны быть согласно идеализированной теории. Было найдено, что толщина слоев концентрации напряжений вдоль волокон имеет порядок (G/ ) / L, где L — характерная длина слоя. Было установлено также, что толщина слоев концентрации напряжений вдоль нормальных линий, существование которых обусловлено малой сжимаемостью материала, имеет порядок (1—v) i L. В обоих случаях было показано, что максимум растягивающих напряжений с удовлетворительной точностью определяется делением результирующей силы, найденной по идеализированной теории, на, приближенное значение толщины.  

[c.298]

МОДУЛЬ [продольной упругости определяется отношением нормального напряжения в поперечном сечении цилиндрического образца к относительному удлинению при его растяжении сдвига измеряется отношением касательного напряжения в поперечном сечении трубчатого тонкостенного образца к деформации сдвига при его кручении Юнга равен нормальному напряжению, при котором линейный размер тела изменяется в два раза] МОДУЛЯЦИЯ [есть изменение по заданному во времени величин, характеризующих какой-либо регулярный физический процесс колебаний определенному закону какого-либо из параметров периодических колебаний, осуществляемое за время, значительно большее, чем период колебаний амплитудная выражается в изменении амплитуды фазовая указывает на изменение их фазы частотная состоит в изменении их частоты) пространственная заключается в изменении в пространстве характеристик постоянного во времени колебательного процесса] МОЛЕКУЛА [есть наименьшая устойчивая частица данного вещества, обладающая его химическими свойствами атомная (гомеополярная) возникает в результате взаимного притяжения нейтральных атомов ионная (гетерополярная) образуется в результате превращения взаимодействующих атомов в противоположно электрически заряженные и взаимно притягивающиеся ионы эксимерная является корот-коживущим соединением атомов инертных газов друг с другом, с галогенами или кислородом, существующим только в возбужденном состоянии и входящим в состав активной среды лазеров некоторых типов МОЛНИЯ электрический разряд между облаками или между облаками и землей линейная является гигантским электрическим искровым разрядом в атмосфере с диаметром канала от 10 до 25 см и длиной до нескольких километров при максимальной силе тока до ЮОкА)  [c.250]

Определение остаточных напряжений. Ревтгеногра-фич. определение механич. напряжений в простейшем случае сводится к измерению смещения дебаевской линии Ад. При нормальных напряжениях о смещение Дв связано с о выражением а = i tgd-Дв/р, где Е — модуль Юнга, р — коэф. Пуассона (см. Модули упругости). Микронапряжения, как и измельчение блоков мозаики, приводят к уширению дебаевских линий.  [c.377]

Начальной стадией деформации металла является упругая деформация (участок АВ рис. 2.8). С точки зрения кристаллического строения, упругая деформация проявляется в некотором увеличении расстояния между атомами в кристаллической решетке. После снятия нафузки атомы возвращаются в прежнее положение и деформация исчезает. Другими словами, упругая деформация не вызывает никаких последствий в металле. Чем меньшую деформацию вызывают напряжения, тем более жесткий и более упругий металл. Характеристикой упругости металла являются дна вида модуля упругости модуль нормальной упругости (модуль Юкга) — характеризует силы, стремящиеся оторвать атомы друг от друга, и модуль касательной упругости (модуль Гука) — характеризует силы, стремящиеся сдвинуть атомы относительно друг друга. Значения модулей упругости являются константами материала и зависят от сил межатомного взаимодействия. Все конструкции и изделия из металлов эксплуатируются, как правило, в упругой области. Таким образом, упругость — это свойство твердого тела восстанавливать свою первоначальнуто фор.му и объем после прекращения действия внешней нагрузки. Модуль упругости практически не зависит от структуры металла и определяется, в основном, типом кристаллической решетки. Так, например, модуль Юнга для магния (кристаллическая решетка ГП% ) равен 45-10 Па, для меди (ГКЦ) — 105-10 Па, для железа (ОЦК) — 21010 Па.  [c.28]


Соотношения (5-12) и (5-13) являются обобщенной формой закона Гука для упругого твердого тела. Они содержат два модуля упругости модуль упругости при сдвиге и модуль унр угости при растяжении (модуль Юнга). Так как эти величины связаны между собой, то можно преобразовать формулы (5-12) так, чтобы выразить соотношение между нормальными напряжениями и деформациями через модуль сдвига.  [c.107]

В состоянии простого растяжения, при котором обычно определяют модуль Юнга путем вытягивания упругой полосы, напряжение поверхностной силы нормально к одной из плоскостей и равно по величине Т. В то же время напряжения на площадках, перпендикулярных к отмеченной плоскости, будут равны нулю. Декартовы компоненты напряжения по отношению к ортонормаль-иому базису, где вектор е служит нормалью к площад-  [c.80]

Коэффициент пропорциональности Е называют модулем продольной упругости (другие названия модуль нормальной упругости модуль упругости модуль упругости 1-го рода модуль Юнга). Очевидно, Е имеет ty же размерность, что и напряжение, т. е. измеряется в н м , или Мн1м , или н мм , или кПсм , или кПмм и т. п.,  [c.38]

Коэффициент пропорциональности Е, связывающ.и нормальное напряжение и продольную деформацию, на зывается модулем упругости при растяжении—сжатий материала. Этот коэффициент имеет и другие названия модуль упругости 1-го рода, модуль Юнга. Модуль упругости Е является одной из важнейших физических постоянных, характеризующих способность материала сопротивляться упругому деформированию. Чем больше эта величина, тем менее растягивается или сжимается брус при приложении одной и той же силы Р.  [c.69]


Модуль упругости алюминия – aluminium-guide.com

Модуль упругости = Модуль Юнга

На рисунке можно видеть, что на начальном этапе кривой напряжение-деформация увеличение деформации на единицу увеличения напряжения у алюминия и алюминиевых сплавов происходит намного быстрее, чем у стали – в три раза. Наклон этой части кривой определяет характеристику материала – модуль упругости (модуль Юнга). Поскольку единица измерения деформации – безразмерная величина, то размерность модуля Юнга совпадает с размерностью напряжения.

Модуль Юнга алюминия составляет примерно одну треть от модуля Юнга стали и для большинства алюминиевых сплавов находится между 65500 и 72400 МПа.
См. Модуль упругости различных алюминиевых сплавов

Рисунок

Ясно, что если стальную балку заменить на идентичную по форме балку из алюминиевого сплава, то вес ее будет в три раза меньше, но и ее упругий прогиб под той же нагрузкой будет приблизительно в три раза больше. Можно отметить, что при этом алюминиевая балка тех же размеров, что и стальная балка поглощает в три раза больше энергии, но только до тех пор, пока напряжения в алюминиевом сплаве остаются ниже предела упругости.

В таблице ниже представлены величины модулей упругости алюминия и различных металлов.

Жесткость алюминиевых профилей

Стоит отметить, что жесткость конструкционного элемента определяется как произведение модуля упругости материала и момента инерции сечения элемента (E × I) и именно от жесткости зависит прогиб элемента под воздействием изгибающей нагрузки. Это дает алюминию шанс в соревновании со сталью: прессованные алюминиевые профили могут иметь намного более сложные поперечные сечения и тем самым компенсировать малость модуля упругости алюминия увеличением момента инерции их поперечных сечений.

Кроме жесткости на изгиб необходимо учитывать и другие факторы, например, жесткость на кручение. В результате всего этого сложность поперечного сечения профиля возрастает и часто «съедает» часть ожидаемого выигрыша в весе, который обычно составляет около 50 % вместо возможных 33 %.

Модуль упругости Юнга и сдвига, коэффициент Пуассона значения (Таблица)

Упругие свойства тел 

Ниже приводятся справочные таблицы общеупотребительных констант; если известны две их них, то этого вполне достаточно для определения упругих свойств однородного изотропного твердого тела.

Модуль Юнга или модуль продольной упругости в дин/см2.

Модуль сдвига или модуль кручения G в дин/см2.

Модуль всестороннего сжатия или модуль объемной упругости К в дин/см2.

Объем сжимаемости k=1/K/.

Коэффициент Пуассона µ равен отношению поперечного относительного сжатия к продольному относительному растяжению.

Для однородного изотропного твердого материала имеют место следующие соотношения между этими константами:

G = E / 2(1 + μ)  —  (α)

μ = (E / 2G) — 1   —  (b) 

K = E / 3(1 — 2μ)  —  (c) 

Коэффициент Пуассона имеет положительный знак, и его значение обычно заключено в пределах от 0,25 до 0,5, но в некоторых случаях он может выходить за указанные пределы. Степень совпадения наблюдаемых значений µ и вычисленных по формуле (b) является показателем изотропности материала.

Таблицы значений Модуля упругости Юнга, Модуля сдвига и коэффициента Пуассона

Курсивом даны значения, вычисленные из соотношений (a), (b), (c).

Материал при 18°С

Модуль Юнга E, 1011 дин/см2.

Модуль сдвига G, 1011 дин/см2.

Коэффициент Пуассона µ

Модуль объемной упругости К, 1011 дин/см2.

Алюминий

7,05

2,62

0,345

7,58

Висмут

3,19

1,20

0,330

3,13

Железо

21,2

8,2

0,29

16,9

Золото

7,8

2,7

0,44

21,7

Кадмий

4,99

1,92

0,300

4,16

Медь

12,98

4,833

0,343

13,76

Никель

20,4

7,9

0,280

16,1

Платина

16,8

6,1

0,377

22,8

Свинец

1,62

0,562

0,441

4,6

Серебро

8,27

3,03

0,367

10,4

Титан

11,6

4,38

0,32

10,7

Цинк

9,0

3,6

0,25

6,0

Сталь (1% С) 1)

21,0

8,10

0,293

16,88

(мягкая)

21,0

8,12

0,291

16,78

Константан 2)

16,3

6,11

0,327

15,7

Манганин

12,4

4,65

0,334

12,4

 

1) Для стали, содержащий около 1% С, упругие константы, как известно , меняются при термообработке.

2) 60% Cu, 40% Ni.

Экспериментальные результаты, приводимые ниже, относятся к обычным лабораторным материалам, главным образом проволокам. 

Вещество

Модуль Юнга E, 1011 дин/см2.

Модуль сдвига G, 1011 дин/см2.

Коэффициент Пуассона µ

Модуль объемной упругости К, 1011 дин/см2.

Бронза (66% Cu)

-9,7-10,2

3,3-3,7

0,34-0,40

11,2

Медь

10,5-13,0

3,5-4,9

0,34

13,8

Нейзильбер1)

11,6

4,3-4,7

0,37

Стекло

5,1-7,1

3,1

0,17-0,32

3,75

Стекло иенское крон

6,5-7,8

2,6-3,2

0,20-0,27

4,0-5,9

Стекло иенское флинт

5,0-6,0

2,0-2,5

0,22-0,26

3,6-3,8

Железо сварочное

19-20

7,7-8,3

0,29

16,9

Чугун

10-13

3,5-5,3

0,23-0,31

9,6

Магний

4,25

1,63

0,30

Бронза фосфористая2)

12,0

4,36

0,38

Платиноид3)

13,6

3,6

0,37

Кварцевые нити (плав.)

7,3

3,1

0,17

3,7

Резина мягкая вулканизированная

0,00015-0,0005

0,00005-0,00015

0,46-0,49

Сталь

20-21

7,9-8,9

0,25-0,33

16,8

Цинк

8,7

3,8

0,21

 

1) 60% Cu, 15% Ni, 25% Zn

2) 92,5% Cu, 7% Sn, 0,5% P

3) Нейзильбер с небольшим количеством вольфрама.

 

Вещество

Модуль Юнга E, 1011 дин/см2.

Вещество

Модуль Юнга E, 1011 дин/см2.

Цинк (чистый)

9,0

Дуб

1,3

Иридий

52,0

Сосна

0,9

Родий

29,0

Красное дерево

0,88

Тантал

18,6

Цирконий

7,4

Инвар

17,6

Титан

10,5-11,0

Сплав 90% Pt, 10% Ir

21,0

Кальций

2,0-2,5

Дюралюминий

7,1

Свинец

0,7-1,6

Шелковые нити1

0,65

Тиковое дерево

1,66

Паутина2

0,3

Серебро

7,1-8,3

Кетгут

0,32

Пластмассы:

 

Лед (-20С)

0,28

Термопластичные

0,14-0,28

Кварц

7,3

Термореактивные

0,35-1,1

Мрамор

3,0-4,0

Вольфрам

41,1

1) Быстро уменьшается с увеличением нагрузки

2) Обнаруживает заметную упругую усталость

 

Температурный коэффициент (при 150С)

Et=E11 (1-ɑ (t-15)), Gt=G11 (1-ɑ (t-15))

Сжимаемость k, бар-1
(при 7-110С)

 

ɑ, для Е

ɑ, для G

 

 

Алюминий

4,8*10-4

5,2*10-4

Алюминий

1,36*10-6

Латунь

3,7*10-4

4,6*10-4

Медь

0,73*10-6

Золото

4,8*10-4

3,3*10-4

Золото

0,61*10-6

Железо

2,3*10-4

2,8*10-4

Свинец

2,1*10-6

Сталь

2,4*10-4

2,6*10-4

Магний

2,8*10-6

Платина

0,98*10-4

1,0*10-4

Платина

0,36*10-6

Серебро

7,5*10-4

4,5*10-4

Стекло флинт

3,0*10-6

Олово

5,9*10-4

Стекло немецкое

2,57*10-6

Медь

3,0*10-4

3,1*10-4

Сталь

0,59*10-6

Нейзильбер

6,5*10-4

 

 

Фосфористая бронза

3,0*10-4

 

 

Кварцевые нити

-1,5*10-4

-1,1*10-4

 

 



Модуль упругости алюминия и алюминиевых сплавов

Модуль упругости = Модуль Юнга

На рисунке можно видеть, что на начальном этапе кривой напряжение-деформация увеличение деформации на единицу увеличения напряжения у алюминия и алюминиевых сплавов происходит намного быстрее, чем у стали – в три раза. Наклон этой части кривой определяет характеристику материала — модуль упругости (модуль Юнга). Поскольку единица измерения деформации – безразмерная величина, то размерность модуля Юнга совпадает с размерностью напряжения.

Модуль Юнга алюминия составляет примерно одну треть от модуля Юнга стали и для большинства алюминиевых сплавов находится между 65500 и 72400 МПа.
См.  Модуль упругости различных алюминиевых сплавов

Ясно, что если стальную балку заменить на идентичную по форме балку из алюминиевого сплава, то вес ее будет в три раза меньше, но и ее упругий прогиб под той же нагрузкой будет приблизительно в три раза больше. Можно отметить, что при этом алюминиевая балка тех же размеров, что и стальная балка поглощает в три раза больше энергии, но только до тех пор, пока напряжения в алюминиевом сплаве остаются ниже предела упругости.

Жесткость алюминиевых профилей

Стоит отметить, что жесткость конструкционного элемента определяется как произведение модуля упругости материала и момента инерции сечения элемента (E × I) и именно от жесткости зависит прогиб элемента под воздействием изгибающей нагрузки. Это дает алюминию шанс в соревновании со сталью: прессованные алюминиевые профили могут иметь намного более сложные поперечные сечения и тем самым компенсировать малость модуля упругости алюминия увеличением момента инерции их поперечных сечений. Кроме жесткости на изгиб необходимо учитывать и другие факторы, например, жесткость на кручение. В результате всего этого сложность поперечного сечения профиля возрастает и часто «съедает» часть ожидаемого выигрыша в весе, который обычно составляет около 50 % вместо возможных 33 %.

В таблицах представлены типичные прочностные характеристики популярных деформируемыхалюминиевых сплавов: предел прочности, предел текучести и удлинение при испытаниях на растяжение, а также усталостная прочность, твердость и модуль упругости – отдельно для сплавов, упрочняемых нагартовкой, и сплавов, упрочняемые термической обработкой. Как типичные свойства они годятся только для сравнительных целей, а не для инженерных расчетов. В большинстве случаев они являются средними значениями для различных размеров изделий, их форм и методов изготовления.

Источник: Aluminium and Aluminium Alloys. — ASM International, 1993.

Упругость

УПРУГОСТЬ горных пород (а. rock elasticity; н. Gesteinselastizitat; ф. elasticite des roches; и. elasticidad de rocas, flexibilidad de rocas) — свойство горных пород восстанавливать исходную форму и размеры после снятия механической нагрузки. Полное восстановление возможно только в случае, если не превышен предел упругой деформации. Им называется минимальное напряжение, при котором начинаются необратимые пластические деформации. Упругость оценивается параметрами упругости — коэффициентом пропорциональности между напряжениями и соответствующими им упругими деформациями. Для случая изотропных горных пород связь между напряжениями и деформациями выражается системой уравнений, куда входят три параметра упругости: модуль Юнга (Е), модуль сдвига (G) и коэффициент Пуассона (n), связанные между собой уравнением G = Е/2(1-2n).

Если горная порода находится в условиях равномерного всестороннего сжатия, то связь между напряжениями и относительным изменением её объёма оценивается модулем объёмного сжатия К: К=Е/3(1-2n). Наиболее вероятные значения модуля Юнга для горных пород 104-3•105 МПа. Коэффициент Пуассона — величина безразмерная, характеризующая прямую пропорциональную зависимость между поперечными и продольными деформациями горных пород (0,15-0,45). При уменьшении содержания кварца наблюдается возрастание модулей упругости. В слоистых горных породах существенна анизотропия упругости: вдоль слоистости, например, модуль Юнга в 1,2-2 раза выше, чем поперёк слоистости. Увеличение пористости горных пород снижает упругость, она уменьшается также при повышении температуры и влажности горных пород, увеличивается с повышением горного давления.

Упругость определяют физическими методами: статическим (нагружением под прессом и измерением упругих деформаций образца горных пород) и динамическим (измерением скоростей распространения упругих колебаний в горных породах). Существуют экспрессные методы определения упругости, например, по высоте отскока от породы алмазного бойка или шарика (метод А. Ф. Шора), и др. Упругость предопределяет эффективность разрушения горных пород механическими, а также термическими и электрическими методами. Она предопределяет также величину напряжённого состояния массивов горных пород. Массивы, обладающие высокими значениями параметров упругости, как правило, более опасны по горным ударам. Поэтому параметры упругости используются в расчётах по разрушению горных пород и массивов.

Часть 2: получаем данные по материалам для механики конструкций исходя из результатов измерений

В первой части мы обсудили некоторые факторы, которые следует учитывать при преобразовании ваших результатов измерений характеристик материалов в модель состояния. Мы достаточно подробно рассмотрели гиперупругие материалы. Сегодня мы обсудим способы применения нелинейных упругих и упругопластических материалов, а также изучим метод, позволяющий использовать результаты измерений непосредственно в COMSOL Multiphysics.

Нелинейные упругие материалы

Некоторые материалы проявляют существенную нелинейность уже при малых деформациях. Примерами являются чугун и некоторые керамические материалы. Однако при снятии нагрузки, ведущей к умеренной деформации, они возвращаются в исходное состояние по той же диаграмме деформации, то есть их отклик является упругим. Для описания таких материалов необходима нелинейная упругая модель.

В предыдущей публикации блога мы обсудили гиперупругие материалы. Почему бы не воспользоваться одной из таких моделей, чтобы обеспечить соответствие с диаграммой деформации, построенной на основе результатов измерений, для, например, мелкозернистого чугуна? Проблема в том, что модели гиперупругих материалов рассчитаны на большие деформации. Для эластомеров растяжение может достигать сотен процентов от исходной длины, тогда как область упругих деформаций для металлов и более хрупких материалов составляет обычно менее 1%.

Например, крайне популярная модель Муни — Ривлина является существенно линейной при малых деформациях. Поэтому для нашей задачи она не подходит. В модели Огдена напряжение вычисляется как сумма значений растяжения, возведенных в определенные степени. Однако для малых деформаций растяжение может быть ограничено значениями порядка 0.999 — 1.001. Чтобы модель отражала существенную нелинейность материала, показатель степени в формуле должен быть чрезвычайно большим. Данные измерений вряд ли будут хорошо соответствовать такому закону. Для хрупких материалов более естественной характеристикой деформации является техническая деформация. О различных величинах, используемых для измерения напряжений и деформаций, можно прочитать в публикации «Why All These Stresses and Strains?»

Для решения этой задачи COMSOL предлагает набор нелинейных упругих моделей, рассчитанных на малые деформации. Для работы этих моделей материалов необходим модуль Nonlinear Structural Materials (Нелинейные конструкционные материалы) или Geomechanics (Геомеханика). Эти модели доступны в интерфейсах Solid Mechanics (Механика твердого тела) и Membrane (Мембрана). Рассмотрим способы применения этих материалов.


Выбор модели нелинейного упругого материала в COMSOL Multiphysics.

Всего доступно девять моделей нелинейных упругих материалов. Некоторые из них представляются в виде простой математической формулы с небольшим количеством параметров. Одна из этих моделей материалов является особенно полезной при обработке экспериментальных данных о зависимости деформации от напряжения: Uniaxial data (Однонаправленные данные). Эта модель предназначена именно для анализа на основе результатов измерений. Рассмотрим настройки этой модели:


Настройки нелинейной упругой модели Однонаправленные данные.

Основная часть данных передается в модель в виде функции, которая описывает зависимость однонаправленной деформации от однонаправленного напряжения. В этом примере результаты измерений представлены в виде функции интерполяции, которая называется stress_strain_curve, однако их можно задать и аналитическим выражением. Функцию интерполяции можно задать в явном виде, как набор результатов измерений, или же выбрать файл, из которого будут считаны эти данные. В нашем примере данные импортируются непосредственно из файла Excel®. Для этого необходим модуль расширения LiveLink™ для Excel®. Однако данные также можно импортировать из текстовых файлов с разделителем-табуляцией.


Импортированная диаграмма зависимости однонаправленной деформации от однонаправленного напряжения.

Однако эта кривая для однонаправленных характеристик не содержит достаточной информации для того, чтобы полностью определить многонаправленный основной закон. Необходимо сделать еще одно предположение. Вам требуется задать либо постоянную величину коэффициента Пуассона, либо модуль объемной упругости. Для многих материалов хорошим приближением является постоянный коэффициент Пуассона в диапазоне от 0,2 до 0,3. Это все, что нужно для построения полной модели материала.

Обратите внимание на диаграмму деформации выше: кривые для растяжения и сжатия не совпадают. Однако при многонаправленном напряжении определенная точка материала может испытывать натяжение в одном направлении и сжатие в другом. Какую ветвь кривой для материала следует применять в таком случае? Модель материала является изотропной: она обладает одинаковой жесткостью во всех направлениях. Однако определяющей характеристикой является изменение объема. Если локальное изменение объема отрицательно, то применяется ветвь, характеризующая сжатие.

Примечания: теория

Существование изотропного нелинейного упругого материала теоретически возможно только при соблюдении следующих условий:

  • Среднее напряжение («давление») или модуль объемной упругости является функцией только объемной деформации.
  • Напряжение сдвига или модуль сдвига является функцией только относительной деформации сдвига.

Если эти условия не выполняются, то можно создать нагрузочный цикл, который будет прэнергию, то естьвечный двигатель.

Все встроенные материалы разрабатывались так, чтобы соответствовать этим условиям. Рассмотрим, например, настройки для Двухлинейного упругого материала (Bilinear elastic material). В них вам необходимо указать модули объемной упругости для растяжения и сжатия — не модули Юнга, как можно было ожидать.

Чаще всего специалисты по расчету строительных конструкций имеют дело с модулем Юнга и коэффициентом Пуассона. Это основные характеристики упругого материала. Однако, в соответствии с требованиями выше, если модуль Юнга зависит от деформации, то…

  • Функция, описывающая эту зависимость, может принимать только очень специфичные формы.
  • Коэффициент Пуассона также должен быть функцией деформации. В результате получается функция, которую очень сложно выразить.

Как тогда можно задать однонаправленные данные при постоянном коэффициенте Пуассона? Для решения этой задачи мы разработали скрытые от пользователя допустимые функции для модуля объемной упругости и модуля поперечной упругости. Модуль Юнга при этом не используется, хотя при взгляде на график этого можно было ожидать.

При этом я видел несколько успешных моделей, в которых аналитик добавил зависимости деформации в модулях Юнга для изотропных или ортотропных материалов в модели упругого материала. Для решения прикладных задач такой метод может подойти. Учебное приложение Modeling Stress-Dependent Elasticity является примером определения зависимого от напряжения модуля Юнга. Чтобы такой подход работал, необходимо, чтобы структура подвергалась преимущественно пропорциональному нагружению (т. е. без поворота направлений главных деформаций).


Консольная балка с различными значениями модуля Юнга для растяжения и сжатия. Свободный конец балки подвергается изгибному моменту. На верхнем графике показано напряжение по Мизесу, на нижнем — текущее значение модуля Юнга.

Когда вы задаете для модели свойство нелинейной упругости при помощи встроенных моделей или собственных выражений, важно сохранять строгое разделение между тангенциальной жесткостью и секущей жесткостью. Выражение для нелинейной упругой модели часто похоже на формулу для линейной модели, но с зависимостью коэффициента упругости (который уже не является константой!) от напряжения или деформации. Предположим, что напряжение сдвига \tau связано с деформацией сдвига \gamma как

\tau = G_S(\gamma) \cdot \gamma

В таком случае модуль сдвига G_S(\gamma) является секущим модулем сдвига. Произведение полной деформации на секущий модуль дает полное напряжение. С другой стороны, тангенциальным модулем сдвига G_T(\gamma) называется жесткость, проявляемая при малых изменениях деформации, как показано на рисунке ниже.

Математическая зависимость между двумя модулями:

G_T(\gamma) = \frac{d \tau}{d \gamma} = G_S(\gamma) + \frac{d G_S(\gamma)}{d \gamma} \gamma

Обычно результаты измерений представляются в форме

\tau = f(\gamma)

Это означает, что секущая жесткость представляется в виде

G_S(\gamma) = \frac{f(\gamma)}{\gamma}

При преобразовании диаграммы деформации в форму секущей с помощью этого выражения необходимо избегать возможного деления на ноль при нулевой деформации.

Кроме того, иногда вы можете столкнуться с утверждением, что свойства определенного материала описываются степенной зависимостью при определенном показателе степени
n.n

Модель Степенная зависимость (Power law) в COMSOL Multiphysics основана на первом, более распространенном определении, в котором показатель степени для деформации n связан с наклоном кривой на диаграмме деформации, построенной в полулогарифмических координатах.

Аппроксимация пластичности с помощью нелинейной упругости

Эксперимент на чистое растяжение не позволяет определить, обусловлена ли нелинейность определенных результатов измерений пластичностью. Необходимо также проанализировать кривую разгрузки. Иллюстрацией к этому утверждению служит анимация ниже из предыдущей публикации в блоге.

Применение нелинейной модели упругости для моделирования пластичности рассматривалось в предыдущей публикации в блоге.

Нелинейная модель упругого материала Рамберга— Осгуда, как и модель однонаправленных данных, создавалась в качестве простой замены полной упругопластической модели. Применение нелинейного упругого материала значительно менее требовательно к компьютерным ресурсом. Но каковы ограничения такого подхода?

  • Очевидно, она допускает только непрерывное возрастание нагрузки.
  • Если в системе действует несколько внешних нагрузок одновременно, например, сжимающая нагрузка и тепловое расширение, то обычно они не связаны между собой пропорционально. Это может обусловить непропорциональную зависимость локальных напряжений.
  • Трехмерные отклики обычно не будут совпадать даже в том случае, если диаграммы однонаправленных деформаций для нелинейной упругой модели и для полной эластопластической модели идентичны. Для пластичности металлов, например, при условии текучести Мизеса, пластическая деформация сохраняет объем. В случае соответствующей нелинейной упругой модели объем не сохраняется.

Заключение

При выборе подходящей модели материала необходимо учитывать общую точность анализа. При решении инженерных задач часто приходится пользоваться неполной информацией: данным о нагрузках, однородности материалов и размерам структуры обычна присуща некоторая неопределенность. Выбор граничных условий также является аппроксимацией. В этой цепочке качество результатов определяется самым слабым звеном, и таким звеном не всегда является точный математический фундамент модели материала.

В предыдущей публикации в блоге я писал, что не стоит просто вводить диаграмму деформаций напрямую.

Почему же сегодня я поступил иначе? Дело в том, что при работе с моделью однонаправленных данных используются фактические результаты измерений. Для всех гиперупругих моделей, а также большей части других нелинейных упругих моделей, под результаты измерений необходимо подогнать математическую модель с малым количеством параметров. Безопасно выполнить такую подгонку возможно только при участии человека.

Упругие деформации. Модуль Юнга и коэффициент Пуассона. Энергия упругой деформации.

Деформации — это изменения, вызванные действиями приложенных сил, при которых тела меняют форму и объем.

Упругие деформации – деформации, которые исчезают, после прекращения действия приложенных сил.

Пластические деформации (или остаточные деформации) – деформации, которые сохраняются в теле (частично или полностью) после прекращения действия приложенной силы.

Механическим напряжением назовем отношение силы, которая возникает в деформируемом теле, к площади сечения построенной через точку деформированного тела.

Если механическое напряжение не превышает некоторой величины называемой пределом упругости, то деформация будет называться упругой деформацией.

Идеально упругие тела – тела, которые могут претерпевать только упругие деформации. Для таких тел существует однозначная зависимость между силами и вызываемыми ими деформациями.

Малые деформации – деформации, которые подчиняются закону Гука, согласно которому деформации пропорциональны силам, их вызывающим.

Все тела делятся на изотропные, свойства которых по всем направлениям одинаковы, и анизотропные, свойства которых в разных направлениях неодинаковы (различны).

Пусть есть два стержня. Один растягиваем, а другой сдавливаем с силой (как на рисунке выше). Перпендикулярно к оси стержня проведем сечение .  Для того, чтобы стержень оставался в состоянии равновесия, в плоскости сечения должна возникать сила противодействующая силе растяжения или сдавливания и равная ей ().

В случае растяжения стержня, возникает механическое напряжение называемое натяжением ():

   

При сжатии возникает механическое напряжение называемое давлением ():

   

Где площадь поперечного сечения .

Если силы сжатия и растяжения равны, то

Пусть – длина недеформированного стержня, а – приращение длины, после приложения силы. Тогда полная длина стержня после приложения силы :

   

.

Относительное удлинение стержня :

   

.

Очевидно, что при растяжении , а при сжатии .

Закон Гука и модуль Юнга

Для малых упругих деформаций, натяжение и давление пропорциональны относительному удлинению и могут быть выражены следующими выражениями:

   

   

Где  – модуль Юнга (постоянная, зависящая только от материала стержня и его физического состояния).

Модуль Юнга – натяжение, которое необходимо приложить к стержню, чтобы его длина увеличилась в два раза. А две формулы выше – закон Гука.

Вычислим упругую энергию растянутого стержня. Приложим к стержню растягивающую силу и будем постепенно (непрерывно и медленно) увеличивать ее от до . Удлинение будет меняться от до . По закону Гука

,

где — коэффициент упругости.

Вся работа по растяжению стержня пойдет на увеличение его упругой энергии:

.

Т.к. в конечном состоянии () сила , то для энергии получим следующее выражение:

Под действием растягивающей или сжимающей силы  изменяются не только продольные, но и поперечные размеры стержня. Если сила ­ растягивающая, то поперечные размеры стержня уменьшаются. Если она сжимающая, то они увеличиваются.   – толщина стержня до деформации (диаметр, если стержень круглый или одна из сторон, если он прямоугольный). – толщина стержня после деформации. Если растягиваем стержень, то  – относительное поперечное сжатие, где .

коэффициент Пуассона.

Он зависит только от материала рассматриваемого тела. Модуль Юнга и коэффициент Пуассона полностью характеризуют упругие свойства изотропного материала. Все остальные упругие деформации можно выразить через эти коэффициенты.

Post Views: 7 177

Похожее

Модуль упругости — обзор

9.5.4 Модуль упругости

На модуль упругости влияют характеристики цементного теста и заполнителя в бетоне, относительные количества, присутствующие в бетоне, и их реакция на приложение нагрузки. Что касается прочности на разрыв, подробные сведения о свойствах для проектирования включены в стандарты. 315

Бетон, содержащий природный пуццолан, более крупный, чем у поликарбоната, используемый с 20% цемента при соотношении веса и веса 0,57. Бетон 324 , как было обнаружено, имел модуль упругости, аналогичный эталонному бетону из поликарбоната через 60 дней.Включение пемзы или диатомита в цемент в небольших количествах (1%, 2% и 4%) 325 снизило как прочность на сжатие, так и модуль упругости при испытаниях до 28 дней (с меньшим эффектом на более высоких уровнях). В другой работе, упомянутой выше, модуль упругости снижается на 2,5 ГПа для каждых 15% натурального пуццолана, используемого для замены цемента в бетонах с равным соотношением в / ц, 316 при примерно равной прочности (с 19% и 29% естественной прочности). pozzolana) были получены вариации значений модуля в узком диапазоне. 317

Исследование, учитывающее относительно высокие уровни (40% –50%) летучей золы с низким содержанием извести в цементе (в бетоне с почти равным соотношением в / ц) 326 показало, что в соответствии с прочностью на сжатие модуль упругости постепенно снижается с увеличением уровня летучей золы, и это происходило при испытательном возрасте до 365 дней. В другой работе 327 с учетом мелкой и крупной летучей золы были получены аналогичные значения модуля упругости для бетонов, рассчитанных на одинаковую прочность на сжатие (28 дней).Результаты испытаний бетона, содержащего различные комбинации цемента 320 и дозированного различными способами, показаны на рис. 9.51 и согласуются с прочностью на сжатие.

Рис. 9.51. Влияние метода дозирования смеси (, серия A, ) и типа цемента (, серия B, ) на модуль упругости бетона.

(Воспроизведено с разрешения: Dhir RK, McCarthy MJ, Paine KA. Инженерные свойства и взаимосвязь структурного проектирования для новых и разрабатываемых бетонов. Mater Struct 2005; 38 (1): 1–9.)

Исследование, посвященное изучению микрокремнезема в бетоне с соотношением вод / цемент 0,6 316 показывает, что при 5% включении микрокремнезема в цемент модуль упругости увеличился с 30 до 33 ГПа. (прочность на сжатие увеличена с 41,0 до 46,5 МПа). Дальнейшее увеличение содержания микрокремнезема до 20% привело к увеличению прочности на сжатие на 7,5 МПа, при этом модуль упругости изменился только на 1,0 ГПа. В том же исследовании было обнаружено, что метакаолин демонстрирует аналогичное поведение при уровнях содержания в цементе до 25%.Другая работа 322 , охватывающая ряд заполнителей, показала, что модуль упругости увеличился в среднем на 16% и 32% при включении 10% и 15% микрокремнезема в бетон с соотношением масс 0,35%. В бетонах с относительно высокой прочностью и равным соотношением массы и воды 328 было обнаружено небольшое увеличение свойств при содержании метакаолина до 15%, при этом было получено заметное увеличение прочности на сжатие.

Модуль упругости бетона? [3 различных стандарта]

Модуль упругости бетона

Бетон представляет собой композитную смесь материалов (крупнозернистые, мелкие заполнители, цемент с водой).Обладает высокой прочностью на сжатие и низкой прочностью на разрыв. Модуль упругости бетона разный для разных смесей. Бетон разрушается под действием растягивающих напряжений. При низких напряжениях эластичность бетона постоянна, а при высоких напряжениях начинает развиваться растрескивание.

Бетон имеет очень низкий коэффициент теплового расширения. Под действием растягивающих и усадочных напряжений все бетонные конструкции в той или иной степени растрескиваются. Поскольку сейчас бетон демонстрирует разные свойства при разных соотношениях воды и цемента и имеет другую бетонную смесь ( M15, M20 и т. Д. ).

Определение

Определяется как отношение нормального напряжения к нормальной деформации ниже пропорционального предела материала, называемого модулем упругости Ec .

Модуль упругости = удельное напряжение / единичная деформация

При испытании на прочность на сжатие образца бетона (цилиндр диаметром 15 см и длиной 30 см, имеющий объем 15 см куб ) вычисляется модуль упругости бетона. с помощью графика напряжений и деформаций.

Согласно кодам ACI, модуль упругости бетона можно измерить по формуле

А при нормальной плотности или весе бетона эти два соотношения можно упростить следующим образом:

# Где

Ec = Модуль эластичности бетона.

f’c = Прочность бетона на сжатие.

Согласно

  • ACI 318–08, (бетон нормального веса) модуль упругости бетона составляет, Ec = 4700 √f’c МПа и
  • IS: 456 модуль упругости бетона составляет 5000√f’c, МПа.

Основными факторами, которые могут повлиять на определение значений модуля упругости, являются:

  • Прочность бетона
  • Состояние влажности бетона:

Эта таблица показала, что мы получаем разную эластичность в разных смесях,

#Where

ГПа = Гигапаскаль

МПа = Мегапаскаль

Значение модуля упругости бетона может варьироваться и зависит от следующих факторов:

  • Состав смеси.
  • Свойства крупного заполнителя.
  • Скорость загрузки.
  • Условия отверждения.
  • Минеральные добавки.
  • Химические добавки.

Плотность бетона составляет около 150 фунтов / куб. Фут или ( 2400 кг на кубический метр ).

Эластичность

Она определяется как способность материала возвращаться в исходное положение (размер и форму) после приложения сил.

  • Эластичность различается для разных материалов.
  • При приложении силы решетка материала меняет свою форму и размер и возвращается в исходное положение после ослабления силы.
  • Подразделяется на линейной или конечной упругости.

Единицы

Единицы модуля упругости следующие:

  • В единицах СИ МПа или Н / мм 2 или кН / м 2 .
  • В единицах FPS psi или ksi, psf или ksf.

Связанная тема:

  1. Преобразователи для гражданского строительства

Модуль упругости высокоэффективного бетона

Модуль упругости высокопроизводительного бетона Бетон с высокими эксплуатационными характеристиками — Бетон с высоким модулем упругости

Разработка бетона с высокими эксплуатационными характеристиками года.Много десятилетий назад бетон с прочностью на сжатие 5000 psi считался высокой прочностью. В настоящее время прочность на сжатие составляет приближается к 20 000 фунтов на квадратный дюйм. Высокопрочный бетон преимущественно используется в колонны многоэтажных домов. Он также используется в мостовых балках, морские буровые конструкции и плотины.

Модуль упругости — очень важное механическое свойство конкретный. Чем выше значение модуля, тем жестче материал. является.Таким образом, сравнивая бетон с высокими эксплуатационными характеристиками с бетоном нормальной прочности, видно, что модуль упругости для бетона с высокими эксплуатационными характеристиками будет быть выше, тем самым делая бетон более жестким. Жесткость — это желаемое свойство для бетона, потому что прогиб конструкции может стаж уменьшится. Однако деформации, такие как ползучесть, повышение прочности бетона (Невилл 608).

Модуль упругости бетона обычно рассчитывается из испытание бетонного образца на прочность при сжатии.Из этих испытаний на прочность, напряжения и деформации измеряются и наносятся на график. Соотношение стрессов в зависимости от деформации на этих диаграммах называется модулем упругости, E. Поскольку бетон обычно не действует линейно упруго, на диаграмме зависимости напряжения от деформации нет участка, где крюки закон может применяться для определения модуля упругости.

s = Ee Hookes Закон

(где s = напряжение, e = напряжение)

Следовательно, несколько методов используются для определения значения модуля упругости по напряжению по сравнению с диаграмма деформации.Также есть несколько уравнений которые были разработаны для вычисления значения модуля упругости после определения прочности на сжатие испытательного цилиндра.

Следующие параметры могут повлиять на значение, полученное для модуля упругости. эластичности:

Хотя все эти свойства влияют на модуль упругости, не все из эти свойства являются решающими факторами. Поэтому при работе с высокими бетон с высокими характеристиками и желаемым модулем упругости, это наиболее Важно использовать высокопрочный крупнозернистый заполнитель.

Информация собрана Деборой Сипикс.

Список литературы





Модуль упругости бетона

Что такое модуль упругости?

Модуль упругости (также известный как модуль упругости , коэффициент упругости ) материала — это число, которое определяется отношением приложенного напряжения к соответствующей деформации в пределах упругости.Физически это указывает на сопротивление материала деформации при приложении к нему напряжения. Модуль упругости также указывает на жесткость материала. Значение модуля упругости выше для более жестких материалов.

\ [\ text {Модуль упругости,} \; E = \ frac {f} {s} \]

Здесь f = приложенное напряжение к телу
s = деформация, соответствующая приложенному напряжению

Определение модуля упругости бетона. Источник: http://civilarc.com

Единицы модуля упругости

Единицы модуля упругости следующие:

  • В единицах СИ МПа или Н / мм 2 или КН / м 2 .
  • В единицах FPS psi или ksi, psf или ksf.

Модуль упругости бетона

Модуль упругости бетона можно определить как наклон линии, проведенной от нулевого напряжения до сжимающего напряжения 0,45 f ’ c . Ведь бетон — это неоднородный материал. Прочность бетона зависит от относительной пропорции и модуля упругости заполнителя.

Чтобы узнать точное значение модуля упругости бетонной смеси, можно провести лабораторные испытания.Кроме того, существует несколько эмпирических формул, предоставленных другим кодом для получения модуля упругости бетона. Эти формулы основаны на соотношении между модулем упругости и прочностью бетона на сжатие. Можно легко получить приблизительное значение модуля упругости бетона, используя 28-дневную прочность бетона ( f ’ c ) по этим формулам.

Модуль упругости бетона по коду ACI

Различные нормы предписывают некоторые эмпирические соотношения для определения модуля упругости бетона. {1.2
\]

Испытание для определения модуля упругости бетона

Следующее видео (источник: youtube.com) поможет вам получить хорошее представление об экспериментальной процедуре определения модуля упругости бетона. В этом видео проиллюстрирована процедура испытания для определения модуля упругости бетона в соответствии с нормами EN 12390-13.

Модуль упругости — американский бетон

Статический модуль упругости

Немногие темы могут вызвать больше споров среди специалистов по высокопрочному бетону, чем модуль упругости.Хотя принято рассматривать модуль упругости бетона как отдельное свойство бетона, на самом деле бетон имеет два модуля упругости — модуль упругости пасты и модуль упругости заполнителя. На границе между двумя материалами находится межфазная переходная зона паста-заполнитель, возможно, самый важный фактор, влияющий на механические свойства высокопрочного бетона.

Рисунок 4.1 Типичное соотношение напряжения и деформации для бетона высокой, средней и обычной прочности.

Хотя бетон не считается абсолютно линейно-упругим материалом, закон упругости Гука применим к конструкционным бетонам для диапазона деформаций, обычно используемых в расчетах конструкции. Модуль упругости (модуль Юнга) — одно из важнейших механических свойств бетона. Модуль упругости определяется как отношение нормального напряжения к соответствующей деформации для растягивающих или сжимающих напряжений ниже пропорционального предела материала. Это ключевой фактор, влияющий на структурные характеристики железобетонных конструкций, и особенно важный параметр проектирования при прогнозировании деформации высотных зданий.

Модуль упругости бетона в значительной степени определяется свойствами крупного заполнителя. Увеличение размера крупных заполнителей или использование более жестких крупных заполнителей с более высоким модулем упругости увеличивает модуль упругости бетона. Поскольку это композитный материал, состоящий из пасты и заполнителя, модуль упругости бетона при сжатии тесно связан с механическими свойствами пасты по сравнению с

Рис. 4.2 По мере увеличения прочности на сжатие разрушение принимает все более взрывоопасный характер. Любезно предоставлено CTLGroup.

частиц заполнителя. Следует отметить, что, хотя более жесткие или более плотные заполнители улучшают модуль упругости бетона, они также способны создавать концентрации напряжений в переходной зоне и последующие микротрещины на стыках стыков, тем самым снижая предельную прочность бетона на сжатие.

По мере приближения модулей упругости частиц пасты и заполнителя друг к другу получаемый бетон имеет тенденцию демонстрировать более линейную зависимость напряжения от деформации и повышенную хрупкость (Neville, 1997).Обсуждаются две модели, представляющие две границы поведения композитных материалов (Hansen, 1958). Первая модель, идеальный композитный твердый материал, имеет частицы наполнителя с низким модулем упругости, связанные вместе упругой фазовой матрицей, имеющей высокий модуль упругости. Вторая модель, идеальный композитный мягкий материал, имеет частицы наполнителя с высоким модулем упругости, связанные вместе упругой фазовой матрицей, имеющей низкий модуль упругости. Из двух идеализированных моделей высокопрочные бетоны больше подошли бы к первой модели, тогда как бетоны с обычной прочностью больше подошли бы ко второй.

Существенная разница в поведении высокопрочных бетонов по отношению к начальной прочности заключается в соотношении прочности на сжатие и других механических свойств. Обычно прочность на сжатие увеличивается быстрее, чем прочность связи в межфазной переходной зоне. Это приведет к пропорциональным различиям в модуле упругости и прочности на разрыв в раннем и более позднем возрасте. Следовательно, нельзя ожидать, что пропорциональность механических свойств прочности на сжатие в более позднем возрасте (28 дней или позже) высокопрочного бетона будет применяться, как это происходит с бетоном с обычной прочностью.

Майерс (1999) исследовал различные методы увеличения модуля упругости. Более высокие значения модуля упругости обычно достигаются при использовании крупнозернистых заполнителей, размер которых превышает размер, обеспечивающий оптимальную прочность на сжатие. Заполнитель большего размера позволяет использовать более крупные объемы крупного заполнителя, ключевой параметр модуля упругости, без ущерба для удобоукладываемости, которая может пострадать при использовании аналогичных объемов заполнителя небольшого размера. В таких случаях становится необходимым компромисс для достижения приемлемых механических характеристик.Заполнитель большего размера, хотя и дает более низкую прочность на сжатие, может обеспечить более высокий модуль упругости. Бетоны с чрезвычайно высоким модулем упругости были произведены с использованием больших объемов жесткого грубого заполнителя, связанного с плотной пастой с низким соотношением W / B.

Модуль упругости бетона обычной прочности обычно увеличивается пропорционально квадратному корню из прочности на сжатие. Хотя было предложено множество эмпирических уравнений для прогнозирования модуля упругости, немногие уравнения позволяют прогнозировать модуль упругости высокопрочного бетона так же точно, как и для бетона обычной прочности.Комитет 363 ACI сообщает, что следующее уравнение в целом оказалось надежным выражением нижней границы для высокопрочного бетона нормальной плотности на основе большинства собранных данных о высокопрочном бетоне:

Ec = 40000 (fc ‘) 0-5 + 1000000 (для 3000 psi

Однако, основываясь на недавних исследованиях (Gross and Burns, 1999; Myers and Carrasquillo, 1999), Комитет предупреждает, что при использовании этого выражения могут иметь место значительные недооценки.Измеренный модуль упругости очень чувствителен к влажности испытуемого образца. Считается, что это связано с эффектом высыхания в межфазной переходной зоне. Для данного бетона модуль упругости образцов, испытанных во влажном состоянии, примерно на 15 процентов выше, чем у образцов, испытанных в сухом состоянии.

Исследователи из Исследовательского комитета по высокопрочному бетону Архитектурного института Японии (AIJ) выполнили множественный регрессионный анализ более 3000 данных, где прочность на сжатие и удельный вес

(плотность) были взяты в качестве независимых переменных, а модуль упругости — в качестве целевой переменной (Tomosawa and Noguchi, 1995).Прочность на сжатие исследованных бетонов нормальной плотности составляла от 20 до 160 МПа (от 3000 до 23000 фунтов на квадратный дюйм). По результатам было предложено следующее уравнение:

E = k1 * k2 * 3,35 * 104 * (7 / 2,4) 2 * (aB / 60) 1/3

где, k1 = поправочный коэффициент для крупного заполнителя, k2 = поправочный коэффициент для минеральной примеси 7 = удельный вес (плотность), кг / м3 ctb = измеренная прочность на сжатие, МПа.

На рисунках 4.3a и 4.3b представлены измеренные модули упругости для шести коммерчески доступных высокопрочных бетонов, исследованных Бургом и Остом (1992).В целом, измеренный модуль упругости находится между значениями, предсказанными уравнениями ACI 318 и ACI 363. На рис. 4.4 показаны 91-дневные результаты для цилиндрических образцов, отвержденных в различных условиях.

Рис. 4.3a (единицы СИ) Измеренный модуль упругости через 28, 91 и 426 дней из Burg and Ost (1992) для цилиндров влажного отверждения 150 х 300 мм.
Рис. 4.3b (единицы дюйм-фунт) Измеренный модуль упругости на 28, 91 и 426 днях от Burg and Ost (1992) для влажного отверждения 6 X 12 в цилиндрах.’i’i lily mcncutie

Рис. 4.4. Измеренный модуль упругости через 91 день от Burg and Ost (1992) для цилиндрических образцов разного размера, отвержденных в различных условиях.

Номинальный максимальный размер заполнителя, используемый в смесях. 1-5 составляли 12 мм (% дюйма) и 25 мм (1 дюйм) в смеси № 6. Смеси 1-5 содержали 1068 кг / м3 (1800 фунтов / ярд3) измельченного доломитового известняка. Смесь 6 содержала 1121 кг / м3 (1890 фунтов / ярд3).

В настоящее время нет единого мнения относительно применимости одной универсальной методологии, которая могла бы точно предсказать модуль упругости высокопрочного бетона.Для конструкций, требующих точного знания модуля упругости, прямое измерение с использованием местных материалов и смесей по-прежнему является лучшим подходом. Модуль упругости следует определять как можно раньше на этапе проектирования; либо через программу оценки полевых испытаний, либо на основе ранее задокументированных данных о производительности.

Динамический модуль упругости

О динамическом модуле высокопрочного бетона информации мало.Как отмечает Zia et al. (1997), измерение динамического модуля соответствует очень небольшой мгновенной деформации. Разница между статическим и динамическим модулями частично объясняется тем, что неоднородность бетона влияет на каждый по-разному. Для бетонов с низкой, средней и высокой прочностью динамический модуль обычно на 40 процентов, 30 процентов и 20 процентов соответственно выше, чем статический модуль упругости (Mehta, 1986). Nilsen и Ai’tcin (1992) использовали тест скорости импульса для прогнозирования статического модуля упругости высокопрочного бетона.

Читать здесь: Коэффициент Пуассона

Была ли эта статья полезной?

Модуль упругости (от 84 до 110 ГПа) и нормальное напряжение (от -1,5 …

Контекст 1

… Распределение модуля упругости в площади поперечного сечения нанопроволок Ag, как показано на рис. 3, измеряются для того, чтобы понять, как каждая область внутри нанопроволок влияет на MTN в целом.Модуль упругости каждого атома был рассчитан из вириальной зависимости напряжения от деформации, как указано в разд.II. На шкале в верхнем левом углу рис. 3 шкала от 84 до 110 ГПа соответствует модулю упругости и шкале …

Контекст 2

… распределения в площади поперечного сечения Нанопроволоки Ag, как показано на рис. 3, измеряются, чтобы понять, как каждая область внутри нанопроволоки влияет на MTN в целом. Модуль упругости каждого атома был рассчитан из вириальной зависимости напряжения от деформации, как указано в разд. II. На шкале масштаба в верхнем левом углу на рис.3 шкала от 84 до 110 ГПа соответствует модулю упругости, а шкала от 1,5 до 1,5 ГПа — нормальному напряжению в осевом направлении. Как показано на фиг. 3a-3d, все MTN состоят из серебра и разного размера; это результаты, использующие потенциал EAM. Нанопроволоки, показанные на рис. Все 3e-3g имеют диаметр 21,40 нм. …

Контекст 3

… влияет на MTN в целом. Модуль упругости каждого атома был рассчитан из вириальной зависимости напряжения от деформации, как указано в разд.II. На шкале масштаба в верхней левой части рис. 3 шкала от 84 до 110 ГПа соответствует модулю упругости, а шкала от 1,5 до 1,5 ГПа — нормальному напряжению в осевом направлении. Как показано на фиг. 3a-3d, все MTN состоят из серебра и разного размера; это результаты, использующие потенциал EAM. Нанопроволоки, показанные на рис. Все 3e-3g имеют диаметр 21,40 нм. Модуль упругости увеличился ближе к центральной части, где встречаются пять двойниковых плоскостей во всех четырех MTN разного размера, как показано на рис.3а-3d. Модуль упругости …

Контекст 4

… в осевом направлении. Как показано на фиг. 3a-3d, все MTN состоят из серебра и разного размера; это результаты, использующие потенциал EAM. Нанопроволоки, показанные на рис. Все 3e-3g имеют диаметр 21,40 нм. Модуль упругости увеличился ближе к центральной части, где встречаются пять двойниковых плоскостей во всех четырех MTN разного размера, как показано на рис. 3а-3d. Распределение модулей упругости каждой из пяти субъединиц было почти одинаковым, а модули упругости атомов вблизи боковой поверхности составляли около 84 ГПа, что аналогично тому, как у объемного материала.Сердцевина MTN содержала жесткую область с модулем упругости более 110 ГПа. С другой стороны, модуль упругости был …

Context 5

… был почти таким же, а модули упругости атомов вблизи боковой поверхности составляли около 84 ГПа, что аналогично тому, как у объемного материала. Сердцевина MTN содержала жесткую область с модулем упругости более 110 ГПа. С другой стороны, модуль упругости распределялся равномерно по всей площади поперечного сечения ТФН (рис.3e. Более жесткое упругое поведение MTN объясняется наличием области с высоким модулем упругости в центральной части поперечного сечения. На рисунке 3f показано распределение нормальных напряжений в осевом направлении MTN, рассчитанное по потенциалу EAM, а на вставке в правом нижнем углу показано распределение TFN. На …

Context 6

… более жесткое упругое поведение MTN было связано с существованием области с высоким модулем упругости в центральной части поперечного сечения.На рисунке 3f показано распределение нормальных напряжений в осевом направлении MTN, рассчитанное по потенциалу EAM, а на вставке в правом нижнем углу показано распределение TFN. На боковых поверхностях было приложено растягивающее поверхностное напряжение более 1,5 МПа, и сжимающее напряжение было распределено внутри как MTN, так и TFN. …

Контекст 7

… Распределение модуля упругости по площади поперечного сечения, рассчитанное по потенциалу FS, показало ту же тенденцию, при которой модуль упругости увеличивался вблизи области сердцевины Рис.3г. Атомы на пяти двойных плоскостях имели разные модули упругости — более низкий EAM или более высокий FS, но разница была небольшой. Следовательно, трудно сказать, что собственное упругое свойство двойных плоскостей является основным фактором жесткости всей …

Контекст 8

… Наблюдались распределения модулей упругости MTN, как показано на Рис. 3. Чтобы понять взаимосвязь между уникальной геометрией и распределением модулей упругости, мы измерили упругую деформацию в радиальном направлении и модуль упругости как функцию нормированного радиуса r / R, как показано на рисунке. на рис.5. Упругая деформация была определена как ноль, когда расстояние между атомами такое же, как …

12.3 Напряжение, деформация и модуль упругости — University Physics Volume 1

Learning Objectives

К концу этого раздела вы будете уметь:

  • Объяснить концепции напряжения и деформации при описании упругих деформаций материалов
  • Описать виды упругого деформирования предметов и материалов

Модель твердого тела — это идеализированный пример объекта, который не деформируется под действием внешних сил.Это очень полезно при анализе механических систем, а многие физические объекты действительно в значительной степени жесткие. Степень, в которой объект может быть восприниматься как жесткий, зависит от физических свойств материала, из которого он сделан. Например, мяч для пинг-понга, сделанный из пластика, является хрупким, а теннисный мяч, сделанный из резины, эластичным, когда на него воздействуют сжимающие силы. Однако при других обстоятельствах и мяч для пинг-понга, и теннисный мяч могут хорошо отскакивать как твердые тела.Точно так же тот, кто проектирует протезы конечностей, может приблизиться к механике человеческих конечностей, моделируя их как твердые тела; однако фактическая комбинация костей и тканей представляет собой эластичную среду.

В оставшейся части этой главы мы переходим от рассмотрения сил, влияющих на движение объекта, к тем, которые влияют на форму объекта. Изменение формы из-за приложения силы называется деформацией. Известно, что даже очень небольшие силы вызывают некоторую деформацию.Деформация испытывается объектами или физическими средами под действием внешних сил — например, это может быть сжатие, сжатие, разрыв, скручивание, срезание или растяжение объектов. На языке физики два термина описывают силы, действующие на объекты, подвергающиеся деформации: напряжение и деформация .

Напряжение — это величина, которая описывает величину сил, вызывающих деформацию. Напряжение обычно определяется как сил на единицу площади .Когда силы притягивают объект и вызывают его удлинение, например, при растяжении эластичной ленты, мы называем такое напряжение растягивающим напряжением. Когда силы вызывают сжатие объекта, мы называем это напряжением сжатия. Когда объект сжимается со всех сторон, как подводная лодка в глубинах океана, мы называем этот вид напряжения объемным напряжением (или объемным напряжением). В других ситуациях действующие силы могут быть ни растягивающими, ни сжимающими, и все же вызывать заметную деформацию. Например, предположим, что вы держите книгу в ладонях, затем одной рукой вы нажимаете и тянете переднюю обложку от себя, а другой рукой вы нажимаете и тянете заднюю обложку в направлении ты.В таком случае, когда деформирующие силы действуют по касательной к поверхности объекта, мы называем их «поперечными» силами, а вызываемое ими напряжение — поперечным напряжением.

Единицей измерения напряжения в системе СИ является паскаль (Па). Когда сила в один ньютон воздействует на единицу площади квадратного метра, результирующее напряжение составляет один паскаль:

один паскаль = 1.0Па = 1.0N1.0м2. один паскаль = 1.0Па = 1.0N1.0м2.

В британской системе единиц единицей измерения напряжения является «фунт / кв. Дюйм», что означает «фунт на квадратный дюйм» (фунт / дюйм2).(фунт / дюйм2). Другой единицей измерения объемного напряжения является атм (атмосфера). Коэффициенты пересчета:

. 1 фунт / кв. Дюйм = 6895 Па и 1 Па = 1,450 × 10–4 фунт / кв. Дюйм · атм = 1,013 × 105 Па = 14,7 фунт / кв. Дюйм. 1 фунт / кв. Дюйм = 6895 Па и 1 Па = 1,450 × 10–4 фунт / кв.

Объект или среда под напряжением деформируются. Величина, описывающая эту деформацию, называется деформацией. Деформация задается как частичное изменение длины (при растягивающем напряжении), объема (при объемном напряжении) или геометрии (при напряжении сдвига). Следовательно, деформация — это безразмерное число.Деформация под действием растягивающего напряжения называется деформацией растяжения, деформация под действием объемного напряжения называется объемной деформацией (или объемной деформацией), а деформация, вызванная напряжением сдвига, называется деформацией сдвига.

Чем больше напряжение, тем больше напряжение; однако связь между деформацией и напряжением не обязательно должна быть линейной. Только когда напряжение достаточно низкое, деформация, которую оно вызывает, прямо пропорциональна величине напряжения. Константа пропорциональности в этом отношении называется модулем упругости.В линейном пределе низких значений напряжения общее соотношение между напряжением и деформацией составляет

. напряжение = (модуль упругости) × деформация. напряжение = (модуль упругости) × деформация.

12,33

Как видно из анализа размеров этого соотношения, модуль упругости имеет ту же физическую единицу, что и напряжение, поскольку деформация безразмерна.

Из уравнения 12.33 также видно, что, когда объект характеризуется большим значением модуля упругости, влияние напряжения невелико. С другой стороны, небольшой модуль упругости означает, что напряжение вызывает большую деформацию и заметную деформацию.Например, напряжение на резиновой ленте вызывает большую деформацию (деформацию), чем такое же напряжение на стальной ленте тех же размеров, потому что модуль упругости резины на два порядка меньше модуля упругости стали.

Модуль упругости при растяжении называется модулем Юнга; то, что для объемного напряжения называется объемным модулем упругости; а напряжение сдвига называется модулем сдвига. Обратите внимание, что соотношение между напряжением и деформацией — это соотношение , наблюдаемое и , измеренное в лаборатории.Модули упругости для различных материалов измеряются при различных физических условиях, таких как изменяющаяся температура, и собираются в таблицах технических данных для справки (таблица 12.1). Эти таблицы являются ценными справочными материалами для промышленности и для всех, кто занимается проектированием или строительством. В следующем разделе мы обсудим отношения между деформацией и напряжением за пределами линейного предела, представленного уравнением 12.33, в полном диапазоне значений напряжения до точки разрушения. В оставшейся части этого раздела мы изучаем линейный предел, выражаемый уравнением 12.33.

Материал Модуль Юнга
× 1010 Па × 1010 Па
Объемный модуль
× 1010 Па × 1010 Па
Модуль сдвига
× 1010 Па × 1010 Па
Алюминий 7,0 7,5 2,5
Кость (напряжение) 1,6 0,8 8,0
Кость (компрессия) 0,9
Латунь 9.0 6,0 3,5
Кирпич 1,5
Бетон 2,0
Медь 11,0 14,0 4,4
Коронное стекло 6,0 5,0 2,5
Гранит 4,5 4,5 2,0
Волосы (человеческие) 1.0
Твердая древесина 1,5 1,0
Утюг 21,0 16,0 7,7
Свинец 1,6 4,1 0,6
Мрамор 6,0 7,0 2,0
Никель 21,0 17,0 7,8
Полистирол 3.0
Шелк 6,0
Паутинка 3,0
Сталь 20,0 16,0 7,5
Ацетон 0,07
Этанол 0,09
Глицерин 0.45
Меркурий 2,5
Вода 0,22

Таблица 12.1 Приблизительные модули упругости для выбранных материалов

Напряжение при растяжении или сжатии, деформация и модуль Юнга

Напряжение или сжатие возникает, когда две антипараллельные силы равной величины действуют на объект только в одном из его измерений таким образом, что объект не перемещается.Один из способов представить себе такую ​​ситуацию показан на рисунке 12.18. Сегмент стержня либо растягивается, либо сжимается парой сил, действующих по его длине и перпендикулярно его поперечному сечению. Чистый эффект таких сил состоит в том, что стержень изменяет свою длину с исходной длины L0L0, которая была у него до появления сил, на новую длину L , которую он имеет под действием сил. Это изменение длины ΔL = L-L0ΔL = L-L0 может быть либо удлинением (когда L больше исходной длины L0) L0), либо сжатием (когда L меньше исходной длины L0).L0). Напряжение растяжения и деформация возникают, когда силы растягивают объект, вызывая его удлинение, и изменение длины ΔLΔL является положительным. Напряжение сжатия и деформация возникают, когда силы сжимают объект, вызывая его сокращение, а изменение длины ΔLΔL отрицательно.

В любой из этих ситуаций мы определяем напряжение как отношение деформирующей силы F⊥F⊥ к площади A поперечного сечения деформируемого объекта. Символ F⊥F⊥, который мы оставляем для деформирующей силы, означает, что эта сила действует перпендикулярно поперечному сечению объекта.Силы, действующие параллельно поперечному сечению, не изменяют длину объекта. Определение растягивающего напряжения —

. растягивающее напряжение = F⊥A. растягивающее напряжение = F⊥A.

12,34

Деформация растяжения — это мера деформации объекта при растягивающем напряжении и определяется как частичное изменение длины объекта, когда объект испытывает растягивающее напряжение.

деформация растяжения = ΔLL0. деформация растяжения = ΔLL0.

12,35

Напряжение сжатия и деформация определяются по той же формуле, уравнение 12.34 и уравнение 12.35 соответственно. Единственное отличие от ситуации с растяжением состоит в том, что для сжимающего напряжения и деформации мы берем абсолютные значения правых частей в уравнениях 12.34 и 12.35.

Рис. 12.18. Когда объект находится в состоянии растяжения или сжатия, результирующая сила, действующая на него, равна нулю, но объект деформируется, изменяя свою исходную длину L0.L0. (a) Натяжение: стержень удлинен на ΔL.ΔL. (b) Сжатие: стержень сжимается на ΔL.ΔL. В обоих случаях деформирующая сила действует по длине стержня и перпендикулярно его поперечному сечению.В линейном диапазоне малых напряжений площадь поперечного сечения стержня не изменяется.

Модуль Юнга Y — это модуль упругости, когда деформация вызвана либо растягивающим, либо сжимающим напряжением, и определяется уравнением 12.33. Разделив это уравнение на деформацию растяжения, мы получим выражение для модуля Юнга:

Y = растягивающая деформация растяжения = F⊥ / AΔL / L0 = F⊥AL0ΔL.Y = растягивающая деформация растяжения = F⊥ / AΔL / L0 = F⊥AL0ΔL.

12,36

Пример 12.7

Напряжение сжатия в опоре
Скульптура весом 10 000 Н стоит на горизонтальной поверхности на вершине 6.Вертикальный столб высотой 0 м Рис. 12.19. Площадь поперечного сечения столба 0,20 м 20,20 м 2, он выполнен из гранита с удельной массой 2700 кг / м3. 2700 кг / м3. Найдите сжимающее напряжение в поперечном сечении, расположенном на 3,0 м ниже вершины столба, и значение сжимающей деформации верхнего 3,0-метрового сегмента столба.

Рисунок 12.19 Колонна Нельсона на Трафальгарской площади, Лондон, Англия. (кредит: модификация работы Кристиана Бортеса)

Стратегия
Сначала мы находим вес 3.Верхняя часть столба длиной 0 м. Нормальная сила, действующая на поперечное сечение, расположенное на 3,0 м ниже вершины, складывается из веса столба и веса скульптуры. Когда у нас есть нормальная сила, мы используем уравнение 12.34, чтобы найти напряжение. Чтобы найти деформацию сжатия, мы находим значение модуля Юнга для гранита в таблице 12.1 и инвертируем уравнение 12.36.
Решение
Объем сегмента колонны высотой h = 3,0мh = 3,0м и площадью поперечного сечения A = 0,20м2A = 0,20м2 составляет V = Ah = (0.20м2) (3,0м) = 0,60м3. V = Ah = (0,20м2) (3,0м) = 0,60м3.

При плотности гранита ρ = 2,7 × 103 кг / м3, ρ = 2,7 × 103 кг / м3 масса сегмента столба составляет

m = ρV = (2,7 × 103 кг / м3) (0,60 м3) = 1,60 × 103 кг. m = ρV = (2,7 × 103 кг / м3) (0,60 м3) = 1,60 × 103 кг.

Вес сегмента стойки

wp = mg = (1,60 × 103 кг) (9,80 м / с2) = 1,568 × 104 Н. wp = mg = (1,60 × 103 кг) (9,80 м / с2) = 1,568 × 104 Н.

Вес скульптуры составляет ws = 1,0 × 104 Н, ws = 1,0 × 104 Н, поэтому нормальная сила на поверхности поперечного сечения, расположенной на 3,0 м ниже скульптуры, составляет

F⊥ = wp + ws = (1.568 + 1.0) × 104N = 2.568 × 104N. F⊥ = wp + ws = (1.568 + 1.0) × 104N = 2.568 × 104N.

Следовательно, напряжение

напряжение = F⊥A = 2,568 × 104N0,20м2 = 1,284 × 105Па = 128,4 кПа. напряжение = F⊥A = 2,568 × 104N0,20м2 = 1,284 × 105Па = 128,4 кПа.

Модуль Юнга для гранита составляет Y = 4,5 × 1010 Па = 4,5 × 107 кПа. Y = 4,5 × 1010 Па = 4,5 × 107 кПа. Следовательно, деформация сжатия в этом положении равна

. деформация = напряжение Y = 128,4 кПа 4,5 × 107 кПа = 2,85 × 10-6. деформация = напряжение Y = 128,4 кПа 4,5 × 107 кПа = 2,85 × 10-6.
Значение
Обратите внимание, что нормальная сила, действующая на площадь поперечного сечения колонны, не является постоянной по всей ее длине, а изменяется от наименьшего значения наверху до наибольшего значения внизу колонны.Таким образом, если опора имеет равномерную площадь поперечного сечения по всей длине, наибольшее напряжение у ее основания.

Проверьте свое понимание 12.9

Найдите сжимающее напряжение и деформацию в основании колонны Нельсона.

Пример 12,8

Растяжка стержня
Стальной стержень длиной 2,0 м имеет площадь поперечного сечения 0,30 см2 0,30 см2. Штанга является частью вертикальной опоры, которая удерживает тяжелую 550-килограммовую платформу, прикрепленную к нижнему концу штанги. Пренебрегая весом стержня, каково растягивающее напряжение стержня и удлинение стержня под действием напряжения?
Стратегия
Сначала мы вычисляем растягивающее напряжение в стержне под весом платформы в соответствии с уравнением 12.34. Затем мы инвертируем уравнение 12.36, чтобы найти удлинение стержня, используя L0 = 2,0 м. L0 = 2,0 м. Из таблицы 12.1 модуль Юнга для стали составляет Y = 2,0 × 1011 Па. Y = 2,0 × 1011 Па.
Решение
Подстановка числовых значений в уравнения дает нам F⊥A = (550 кг) (9,8 м / с2) 3,0 × 10–5 м2 = 1,8 × 108 Па ΔL = F⊥AL0Y = (1,8 × 108 Па) 2,0 м2,0 × 1011 Па = 1,8 × 10–3 м = 1,8 мм.F⊥ A = (550 кг) (9,8 м / с2) 3,0 × 10–5 м2 = 1,8 × 108 Па ΔL = F⊥AL0Y = (1,8 × 108 Па) 2,0 м2,0 × 1011 Па = 1,8 × 10–3 м = 1,8 мм.
Значение
Как и в примере с колонной, растягивающее напряжение в этом примере неоднородно по длине стержня.Однако, в отличие от предыдущего примера, если принять во внимание вес штанги, напряжение в штанге будет наибольшим в верхней части и наименьшим в нижней части штанги, к которой прикреплено оборудование.

Проверьте свое понимание 12.10

Проволока длиной 2,0 м растягивается на 1,0 мм под действием нагрузки. Какова деформация растяжения в проволоке?

Объекты часто могут одновременно испытывать напряжение сжатия и растяжения. Рис. 12.20. Один из примеров — длинная полка, загруженная тяжелыми книгами, которая провисает между концевыми опорами под весом книг.Верхняя поверхность полки испытывает напряжение сжатия, а нижняя поверхность полки — растягивающее напряжение. Точно так же длинные и тяжелые балки провисают под собственным весом. В современном строительстве такие деформации изгиба можно практически исключить с помощью двутавровых балок. Рисунок 12.21.

Рис. 12.20 (a) Объект, изгибающийся вниз, испытывает растягивающее напряжение (растяжение) в верхней части и сжимающее напряжение (сжатие) в нижней части. (б) Элитные тяжелоатлеты часто временно сгибают железные прутья во время подъема, как на Олимпийских играх 2012 года.(кредит б: модификация работы Александра Кочерженко)

Рисунок 12.21 Стальные двутавровые балки используются в строительстве для уменьшения деформаций изгиба. (Источник: модификация работы «Инженерный корпус армии США в Европе» / Flickr)

Объемное напряжение, деформация и модуль

Когда вы ныряете в воду, вы чувствуете силу, давящую на каждую часть вашего тела со всех сторон. Тогда вы испытываете объемный стресс или, другими словами, давление. Объемное напряжение всегда имеет тенденцию к уменьшению объема, заключенного на поверхности погружаемого объекта.Силы этого «сжатия» всегда перпендикулярны погружаемой поверхности. Рис. 12.22. Эффект этих сил заключается в уменьшении объема погруженного объекта на величину ΔVΔV по сравнению с объемом V0V0 объекта при отсутствии объемного напряжения. Этот вид деформации называется объемной деформацией и описывается изменением объема относительно исходного объема:

объемная деформация = ΔVV0. объемная деформация = ΔVV0.

12,37

Рис. 12.22. Объект при увеличении объемного напряжения всегда испытывает уменьшение своего объема.Равные силы, перпендикулярные поверхности, действуют со всех сторон. Эффект этих сил заключается в уменьшении объема на величину ΔVΔV по сравнению с исходным объемом V0.V0.

Объемная деформация возникает в результате объемного напряжения, которое представляет собой силу F⊥F⊥, нормальную к поверхности, которая давит на единицу площади A погруженного объекта. Такая физическая величина, или давление p , определяется как

. давление = p≡F⊥A. давление = p≡F⊥A.

12,38

Мы будем изучать давление в жидкостях более подробно в Гидромеханике.Важной характеристикой давления является то, что это скалярная величина, не имеющая определенного направления; то есть давление действует одинаково во всех возможных направлениях. Когда вы погружаете руку в воду, вы чувствуете такое же давление, действующее на верхнюю поверхность руки, как на нижнюю, или на боковую, так и на поверхность кожи между пальцами. В этом случае вы ощущаете увеличение давления ΔpΔp по сравнению с тем, что вы привыкли ощущать, когда ваша рука не погружена в воду.Когда ваша рука не погружена в воду, вы чувствуете нормальное давление p0p0 в одну атмосферу, которое служит точкой отсчета. Объемное напряжение — это увеличение давления, или Δp, Δp, по сравнению с нормальным уровнем, p0.p0.

Когда объемное напряжение увеличивается, объемная деформация увеличивается в соответствии с уравнением 12.33. Константа пропорциональности в этом соотношении называется объемным модулем упругости, B или

. B = объемное напряжение, объемная деформация = −ΔpΔV / V0 = −ΔpV0ΔV. B = объемное напряжение, объемная деформация = −ΔpΔV / V0 = −ΔpV0ΔV.

12,39

Знак минус, который появляется в уравнении 12.39, предназначен для согласованности, чтобы гарантировать, что B является положительной величиной. Обратите внимание, что знак минус (-) (-) необходим, потому что увеличение ΔpΔp давления (положительная величина) всегда вызывает уменьшение ΔVΔV в объеме, а уменьшение объема является отрицательной величиной. Величина, обратная модулю объемного сжатия, называется сжимаемостью k, k или

. k = 1B = −ΔV / V0Δp.k = 1B = −ΔV / V0Δp.

12,40

Термин «сжимаемость» используется в отношении жидкостей (газов и жидкостей).Сжимаемость описывает изменение объема жидкости на единицу увеличения давления. Жидкости, характеризующиеся большой сжимаемостью, относительно легко сжимаются. Например, сжимаемость воды составляет 4,64 × 10–5 / атм. 4,64 × 10–5 / атм, а сжимаемость ацетона составляет 1,45 × 10–4 / атм. 1,45 × 10–4 / атм. Это означает, что при повышении давления на 1,0 атм относительное уменьшение объема для ацетона примерно в три раза больше, чем для воды.

Пример 12.9

Гидравлический пресс
В гидравлическом прессе Рисунок 12.23, 250-литровый объем масла подвергается повышению давления на 2300 фунтов на квадратный дюйм. Если сжимаемость масла составляет 2,0 × 10–5 / атм, 2,0 × 10–5 / атм, найдите объемную деформацию и абсолютное уменьшение объема масла при работе пресса.

Рис. 12.23 В гидравлическом прессе, когда маленький поршень смещается вниз, давление в масле передается через масло на большой поршень, заставляя большой поршень двигаться вверх. Небольшая сила, приложенная к маленькому поршню, вызывает большую прижимающую силу, которую большой поршень оказывает на объект, который либо поднимается, либо сжимается.Устройство действует как механический рычаг.

Стратегия
Мы должны перевернуть уравнение 12.40, чтобы найти объемную деформацию. Во-первых, мы преобразуем увеличение давления из фунтов на квадратный дюйм в атм, Δp = 2300psi = 2300 / 14,7atm≈160atm, Δp = 2300psi = 2300 / 14.7atm≈160atm, и определяем V0 = 250L.V0 = 250L.
Решение
Подставляя значения в уравнение, имеем объемная деформация = ΔVV0 = ΔpB = kΔp = (2,0 × 10-5 / атм) (160 атм) = 0,0032 ответ: ΔV = 0,0032V0 = 0,0032 (250L) = 0,78L. объемная деформация = ΔVV0 = ΔpB = kΔp = (2,0 × 10-5 / атм) (160атм) = 0,0032 ответ: ΔV = 0.0032V0 = 0,0032 (250 л) = 0,78 л.
Значение
Обратите внимание, что, поскольку сжимаемость воды в 2,32 раза больше, чем сжимаемость масла, если бы рабочее вещество в гидравлическом прессе этой задачи было заменено на воду, объемная деформация, а также изменение объема были бы в 2,32 раза больше.

Проверьте свое понимание 12.11

Если нормальная сила, действующая на каждую грань кубического стального куска 1,0 м31,0 м3, изменится на 1,0 × 107 Н, 1,0 × 107 Н, найдите результирующее изменение объема стального куска.

Напряжение сдвига, деформация и модуль

Понятия напряжения сдвига и деформации относятся только к твердым объектам или материалам. Здания и тектонические плиты являются примерами объектов, которые могут подвергаться сдвиговым напряжениям. В общем, эти концепции не применимы к жидкостям.

Деформация сдвига возникает, когда две антипараллельные силы равной величины прикладываются по касательной к противоположным поверхностям твердого объекта, не вызывая деформации в поперечном направлении к силовой линии, как в типичном примере напряжения сдвига, показанном на рисунке 12.24. Сдвиговая деформация характеризуется постепенным сдвигом ΔxΔx слоев в направлении, касательном к действующим силам. Эта градация ΔxΔx происходит в поперечном направлении на некотором расстоянии L0.L0. Деформация сдвига определяется отношением наибольшего смещения ΔxΔx к поперечному расстоянию L0L0

деформация сдвига = ΔxL0. деформация сдвига = ΔxL0.

12,41

Деформация сдвига вызвана напряжением сдвига. Напряжение сдвига возникает из-за сил, действующих под углом параллельно к поверхности. Для таких сил мы используем символ F∥F forces.Величина F∥F∥ на площадь поверхности A , где применяется сила сдвига, является мерой напряжения сдвига

напряжение сдвига = F∥A. напряжение сдвига = F∥A.

12,42

Модуль сдвига является константой пропорциональности в уравнении 12.33 и определяется отношением напряжения к деформации. Модуль сдвига обычно обозначается S :

. S = напряжение сдвига деформация сдвига = F∥ / AΔx / L0 = F∥AL0Δx.S = напряжение сдвига деформация сдвига = F∥ / AΔx / L0 = F∥AL0Δx.

12,43

Рис. 12.24. Объект, находящийся под напряжением сдвига: две антипараллельные силы равной величины действуют по касательной к противоположным параллельным поверхностям объекта.Контур пунктирной линией показывает результирующую деформацию. Направление, перпендикулярное действующим силам, не изменяется, и поперечная длина L0L0 не изменяется. Сдвиговая деформация характеризуется постепенным сдвигом ΔxΔx слоев в направлении, касательном к силам.

Пример 12.10

Старая книжная полка
Уборщик пытается переместить тяжелый старый книжный шкаф по ковровому покрытию, тангенциально толкая поверхность самой верхней полки. Однако единственный заметный эффект от этих усилий аналогичен эффекту, показанному на рисунке 12.24, и он исчезает, когда человек перестает толкать. Книжный шкаф высотой 180 см и шириной 90 см с четырьмя полками глубиной 30 см, частично заполненными книгами. Общий вес книжного шкафа и книг составляет 600,0 Н. Если человек толкает верхнюю полку с силой 50,0 Н, которая смещает верхнюю полку по горизонтали на 15,0 см относительно неподвижной нижней полки, найдите модуль сдвига книжного шкафа.
Стратегия
Единственная важная информация — это физические размеры книжного шкафа, величина тангенциальной силы и смещение, вызываемое этой силой.Мы определяем F∥ = 50.0N, Δx = 15.0cm, F∥ = 50.0N, Δx = 15.0cm, L0 = 180.0cm, L0 = 180.0cm и A = (30.0 cm) (90.0 cm) = 2700.0 cm2, A = (30,0 см) (90,0 см) = 2700,0 см2, и мы используем уравнение 12.43 для вычисления модуля сдвига.
Решение
Подставляя числа в уравнения, получаем для модуля сдвига S = F∥AL0Δx = 50.0N2700.0cm2180.0cm.15.0cm. = 29Ncm2 = 29 × 104Nm2 = 209 × 103Pa = 2.222 кПа S = F∥AL0Δx = 50.0N2700.0cm2180.0cm.15.0cm. = 29Ncm2 = 29 × 104Нм2 = 209 × 103Па = 2,222 кПа.

Мы также можем найти напряжение сдвига и деформацию соответственно:

F∥A = 50.0N2700,0 см2 = 527 кПа = 185,2 Па ΔxL0 = 15,0 см 180,0 см = 112 = 0,083.F∥A = 50,0N2700,0 см2 = 527 кПа = 185,2 Па ΔxL0 = 15,0 см 180,0 см = 112 = 0,083.
Значение
Если человек в этом примере толкнет полку здоровым движением, может случиться так, что индуцированный сдвиг превратит ее в груду мусора. Примерно тот же механизм сдвига ответственен за разрушения засыпанных землей дамб и дамб; и в целом по оползням.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *