Как трехфазный двигатель подключить в однофазную сеть: Подключение трехфазного двигателя к однофазной сети

Содержание

Подключение трехфазного двигателя к однофазной сети



В разных любительских электромеханических станках и устройствах в большинстве случаев используются трехфазные асинхронные двигатели с короткозамкнутым ротором. Увы, трехфазная сеть в обиходу — явление очень редкое, потому для их питания от обыкновенной электрической сети любители используют фазосдвигающий конденсатор, чтоне разрешает в полном объеме воплотить мощность и пусковые свойства мотора.

Асинхронные трехфазные электродвигатели, а конкретно именно их, в следствии широкого распространения, нередко приходится применять, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку.

Подключение «треугольник» (для 220 вольт)






Подключение «звезда» (для 380 вольт)

Распределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме звезда

 При включении трехфазного мотора к трехфазной сети по его обмоткам в различный момент времени по очереди начинает идти ток, создающий крутящееся магнитное поле, которое ведетвзаимодействие с ротором, принуждая его крутиться. При подключении мотора в однофазовую сеть, крутящий момент, способный двинуть ротор, не создается.

В случае если вы можете подсоединить движок на стороне к трехфазной сети то опредилить мощьность не тяжело. В разрыв одной из фаз ставим амперметр. Запускаем. Показания амперметра умнажаем на фазовое напряжение.

В хорошей сети оно 380. Получаем мощьность P=I*U. Отнимаем % 10-12 на КПД. Получаете фактически верный результат. 

Для измерения оборотов есть мех-ские приборы. Хотя на слух также возможно определить. 

 Посреди различных методов включения трехфазных электродвигателей в однофазную сеть наиболее обычный — включение третьего контакта через фазосдвигающий конденсатор.

Подключение трехфазного двигателя к однофазной сети

 Частота вращения трехфазного мотора, работающего от однофазовой сети, остается практически той же, как и при его подключении в трехфазную сеть. Увы, этого невозможно заявить о мощности, потери которой достигают значимых величин.

Четкие значения потери силы находятся в зависимости от схемы включения, условий работы мотора, величины емкости фазосдвигающего конденсатора. Приблизительно, трехфазный движок в однофазовой сети утрачивает в пределах 30-50% собственной силы. 

 Не многие трехфазные электродвигатели готовы хорошо действовать в однофазовых сетях, но большая часть из них справляются с данной задачей полностью удовлетворительно — в случае если не считать потери мощности. В главном для работы в однофазовых сетях используются асинхронные движки с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).

 Асинхронные трехфазные движки рассчитаны на 2 номинальных напряжения сети — 220/127, 380/220 и так далее Более всераспространены электродвигатели с рабочим напряжением обмоток 380/220В (380В — для «звезды», 220  — для «треугольника»). Наибольшее напряжение для «звезды», наименьшее — для «треугольника». В паспорте и на табличке движков не считая прочих характеристик указывается рабочее напряжение обмоток, схема их соединения и вероятность ее изменения.  

Таблички трехфазных электродвигателей

 Обозначение на табличке А гласит о том, что обмотки мотора имеют все шансы быть подключены как «треугольником» (на 220В), так и «звездой» (на 380В). При подключении трехфазного мотора в однофазовую сеть лучше применять схему «треугольник», так как в данном случае движок растеряет меньше силы, нежели при включении «звездой».

 Табличка Б информирует, что обмотки мотора подсоединены по схеме «звезда», и в разветвительной коробке не учтена вероятность переключить их на «треугольник» (имеется не более чем 3 вывода). В данном случае остается либо смириться с большой утратой мощности, подключив движок по схеме «звезда», либо, внедрившись в обмотку электродвигателя, попробовать вывести отсутствующие концы, чтоб соединить обмотки по схеме «треугольник».

В случае если рабочее напряжение мотора составляет 220/127В, то к однофазной сети на 220В движок возможно подключить лишь по схеме «звезда». При включении 220В по схеме «треугольник», двигатель сгорит.

Начала и концы обмоток (различные варианты)

 Наверное, главная сложность включения трехфазного мотора в однофазовую сеть состоит в том, чтоб разобраться в электропроводах, выходящих в распределительную коробку либо, при неимении последней, просто выведенных наружу мотора. 

 Самый обычный вариант, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме «треугольник». В данном случае необходимо просто подсоединить токоподводящие электропровода и рабочий и пусковой конденсаторы к клеммам мотора согласно схеме подключения.

 В случае если в двигателе обмотки соединены «звездой», и имеется вероятность поменять ее на «треугольник», то такой случай также нельзя отнести к трудоемким. Необходимо просто поменять схему включения обмоток на «треугольник», использовав для этого перемычки.

Определение начал и концов обмоток. Дело обстоит труднее, в случае если в распределительную коробку выведено 6 проводов без указания про их принадлежности к конкретной обмотке и обозначения начал и концов.

В данном случае дело сводится к решению 2-ух задач  (Хотя до того как этим заниматься, необходимо попробовать поискать в сети некоторую документацию к электродвигателю. В ней быть может описано к чему относятся электропровода различных расцветок. ):

определению пар проводов, имеющих отношение к одной обмотке;

нахождению начала и конца обмоток.

 1-ая задачка решается «прозваниванием» всех проводов тестером (замером сопротивления). Когда прибора нет, возможно решить её при помощи лампочки от фонарика и батареек, подсоединяя имеющиеся электропровода в цепь поочередно с лампочкой. В случае если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Этим методом определяются 3 пары проводов (A, B и C на рисунке ниже) имеющих отношение к 3 обмоткам.

Определение пар проводов относящихся к одной обмотке

 Вторая задача, нужно определить начала и концы обмоток, здесь будет несколько сложнее и будет необходимо наличие батарейки и стрелочного вольтметра. Цифровой для этой задачи не подойдет из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1и 2.

Нахождение начала и конца обмоток

К концам одной обмотки (к примеру, A) подключается батарейка, к концам иной (к примеру, B) — стрелочный вольтметр. Сейчас, когда порвать контакт проводов А с батарейкой, стрелка вольтметра качнется в какую-нибудь сторону. Потом нужно подключить вольтметр к обмотке С и сделать такую же операцию с разрывом контактов батарейки. По мере надобности меняя полярность обмотки С (меняя местами концы С1 и С2) необходимо добиться того, чтоб стрелка вольтметра качнулась в такую же сторону, как и в случае с обмоткой В. Точно так же проверяется и обмотка А — с батарейкой, подсоединенной к обмотке C либо B.

 В конечном итоге всех манипуляций должно выйти следующее: при разрыве контактов батарейки с хоть какой из обмоток на 2-х других должен появляться электрический потенциал одинаковой полярности (стрелка устройства качается в одну сторону).

Сейчас остается пометить выводы 1-го пучка как начала (А1, В1, С1), а выводы другого — как концы (А2, В2, С2) и соединить их по нужной схеме — «треугольник» либо «звезда» (когда напряжение мотора 220/127В).

Извлечение отсутствующих концов. Наверное, самый непростой вариант — когда движок имеет слияние обмоток по схеме «звезда», и нет способности переключить ее на «треугольник» (в распределительную коробку выведено не более чем 3 электропровода — начала обмоток С1, С2, С3) .

 В данном случае для включения мотора по схеме «треугольник» нужно вывести в коробку отсутствующие концы обмоток С4, С5, С6.

Схемы включения трехфазного мотора в однофазную сеть

Включение по схеме «треугольник». В случае домашней сети, исходя из убеждений получения большей выходной мощности более подходящим считается однофазное включение трехфазных двигателей по схеме «треугольник». При всем этом их мощность имеет возможность достигать 70% от номинальной. 2 контакта в разветвительной коробке подсоединяются непосредственно к электропроводам однофазной сети (220В), а 3-ий — через рабочий конденсатор Ср к хоть какому из 2-ух первых контактов либо электропроводам сети.

Обеспечивание запуска. Запуск трехфазного мотора без нагрузки возможно производить и от рабочего конденсатора (подробнее ниже), но в случае если эл-двигатель имеет какую-то нагрузку, он либо не запустится, либо станет набирать обороты чрезвычайно медлительно. Тогда уже для быстрого запуска нужен вспомогательный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже). Пусковые конденсаторы врубаются лишь на время запуска мотора (2-3 сек, покуда обороты не достигнут приблизительно 70% от номинальных), потом пусковой конденсатор необходимо отключить и разрядить.

Комфортен пуск трехфазного мотора при помощи особенного выключателя, одна пара контактов которого замыкается при нажатой кнопке. При ее отпускании одни контакты размыкаются, а другие остаются включенными — пока же не будет нажата кнопка «стоп».

Выключатель для запуска электродвигателей

Реверс. Направление вращения двигателя зависит от того, к какому контакту («фазе») подсоединена третья фазная обмотка.

Направлением вращения возможно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному переключателю, соединенному двумя своими контактами с первой и 2-ой обмотками. Зависимо от положения переключателя движок станет крутиться в одну либо другую сторону.

 На рисунке ниже представлена схема с пусковым и рабочим конденсатором и клавишей реверса, дозволяющая производить комфортное управление трехфазным двигателем. 

Схема подключения трехфазного двигателя к однофазной сети, с реверсом и кнопкой для подключения пускового конденсатора

Подключение по схеме «звезда». Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.


Конденсаторы. Нужная емкость рабочих конденсаторов для работы трехфазного мотора в однофазной сети находится в зависимости от схемы включения обмоток мотора и прочих характеристик. Для соединения «звездой» емкость рассчитывается по формуле:

 Cр = 2800•I/U

 Для соединения «треугольником»:

 Cр = 4800•I/U

 Где Ср — емкость рабочего конденсатора в мкФ, I — ток в А, U — напряжение сети в В. Ток рассчитывается по формуле:

 I = P/(1.73•U•n•cosф)

 Где Р — мощность электродвигателя кВт; n — КПД двигателя; cosф — коэффициент мощности, 1.73 — коэффициент, определяющий соответствие меж линейным и фазным токами. КПД и коэффициент мощности указаны в паспорте и на табличке мотора. Традиционно их значение располагается в спектре 0,8-0,9.

 На практике значение емкости рабочего конденсатора при подсоединении «треугольником» возможно счесть по облегченной формуле C = 70•Pн, где Pн — номинальная мощность электродвигателя в кВт. Согласно данной формуле на каждые 100 Вт мощности электродвигателя нужно около 7 мкФ емкости рабочего конденсатора.

 Корректность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. В случае если её значение оказывается больше, нежели потребуется при этих условиях работы, движок станет перенагреваться. Ежели емкость оказалась менее требуемой, выходная мощность электродвигателя станет очень низкой. Имеет резон подыскивать конденсатор для трехфазного мотора, начиная с небольшой емкости и равномерно повышая её значение до рационального. В случае если есть возможность, гораздо лучше выбрать емкость измерением тока в электропроводах присоединенных к сети и к рабочему конденсатору, к примеру токоизмерительными клещами. Значение тока должно быть более близким. Замеры следует производить при том режиме, в каком движок будет действовать.

 При определении пусковой емкости исходят, сначала, из требований создания нужного пускового момента. Не перепутывать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.

 В случае если по условиям работы запуск электродвигателя случается без нагрузки, то пусковая емкость традиционно принимается одинаковой рабочей, другими словами пусковой конденсатор не нужен. В данном случае схема подключения упрощается и удешевляется. Для такового упрощения и основное удешевления схемы, возможно организовать вероятность отключения нагрузки, к примеру, сделав возможность быстро и комфортно изменять положение мотора для падения ременной передачи, либо сделав для ременной передачи прижимающей ролик, к примеру, как у ременного сцепления мотоблоков.

Запуск под нагрузкой требует присутствия доборной емкости (Сп) подключаемой временно пуска двигателя. Повышение отключаемой емкости приводит к возрастанию пускового момента, и при неком конкретном ее значении момент достигает собственного наибольшего значения. Дальнейшее повышение емкости приводит к обратному эффекту: пусковой момент начинает убавляться. 

 Отталкиваясь от условия пуска двигателя под нагрузкой ближайшей к номинальной, пусковая емкость обязана быть в 2-3 раза более рабочей, то есть, в случае если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора обязана быть 80-160 мкФ, что обеспечит пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Хотя в случае если двигатель имеет маленькую нагрузку при запуске, емкость пускового конденсатора быть может меньше либо ее может и небыть вообще.

 Пусковые конденсаторы действуют недолговременное время (всего несколько секунд за весь период подключения). Это дает возможность использовать при запуске двигателя более дешевые пусковые электролитические конденсаторы, специально созданные для данной цели.

 Заметим, что у двигателя присоединенного к однофазной сети через конденсатор, работающего в отсутствии нагрузки, по обмотке, питаемой через конденсатор, следует ток на 20-30% превосходящий номинальный. Потому, в случае если движок используется в недогруженном режиме, то емкость рабочего конденсатора надлежит минимизировать. Но тогда уже, в случае если движок запускался без пускового конденсатора, последний имеет возможность потребоваться.

 Гораздо лучше применять не 1 великий конденсатор, а несколько гораздо меньше, частично из-за способности подбора хорошей емкости, подсоединяя добавочные либо отключая ненадобные, последние применяют в качестве пусковых. Нужное число микрофарад набирается параллельным соединением нескольких конденсаторов, отталкиваясь от того, что суммарная емкость при параллельном соединении подсчитывается по формуле:

 Cобщ = C1   C1   …   Сn.

Параллельное соединение конденсаторов

Вариант схемы устройства запуска трехфазного электродвигателя без потери мощности :

обмотки электродвигателя 220/380 В соединяем треугольником, а конденсатор С1 включаем, как обычно, параллельно одной из них. Конденсатору будет «помогать» дроссель L1, включенный параллельно другой обмотке.

 В качестве рабочих используются обычно металлизированные бумажные или пленочные конденсаторы (МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60). Допустимое напряжение должно не менее чем в 1,5 раза превышать напряжение сети.

Быстрое подключение маломощного трехфазного электродвигателя







Определение начала и конца фазных обмоток асинхронного электродвигателя









Трёхфазный двигатель — в однофазную сеть

Автор Светозар Тюменский На чтение 3 мин. Просмотров 18.2k. Опубликовано Обновлено

Пожалуй, наиболее распространённый и простой способ подключения трехфазного электродвигателя в однофазную сеть при отсутствии питающего напряжения ~ 380 в – это способ с применением фазосдвигающего конденсатора, через который запитывается третья обмотка электродвигателя. Перед тем, как подключать трехфазный электродвигатель в однофазную сеть убедитесь, что его обмотки соединены “треугольником” (см. рис. ниже, вариант 2), т. к. именно это соединение даст минимальные потери мощности 3х-фазного двигателя при включении его в сеть ~ 220 в.

Мощность, развиваемая трехфазным электродвигателем, включенным в однофазную сеть с такой схемой соединения обмоток может составлять до 75% его номинальной мощности. При этом частота вращения двигателя практически не отличается от его частоты при работе в трёхфазном режиме.

На рисунке показаны клеммные колодки электродвигателей и соответствующие им схемы соединения обмоток. Однако, исполнение клеммной коробки электродвигателя может отличаться от показанного ниже –  вместо клеммных колодок, в коробке может располагаться два разделённых  пучка проводов (по три в каждом).

Эти пучки проводов представляют собой “начала” и “концы” обмоток двигателя. Их необходимо «прозвонить», чтобы разделить обмотки друг от друга и соединить по нужной нам схеме “треугольник” – последовательно, когда конец одной обмотки соединяется с началом другой т. д (С1-С6, С2-С4, С3-С5).

При включении трёхфазного электродвигателя в однофазную сеть, в схему “треугольник” добавляются пусковой конденсатор Сп, который используется кратковременно (только для запуска) и рабочий конденсатор Ср.

В качестве кнопки SB для запуска эл. двигателя небольшой мощности (до 1,5 кВт) можно использовать обычную кнопку “ПУСК”, применяемую в цепях управления магнитных пускателей.

Для двигателей большей мощности стоит заменить её на коммутационный аппарат помощнее – напр, автомат. Единственным неудобством в этом случае будет необходимость ручного отключения конденсатора Сп автоматом после того как электродвигатель наберёт обороты.

Таким образом, в схеме реализована возможность двухступенчатого управления электродвигателем, уменьшая общую ёмкость конденсаторов при “разгоне” двигателя.

Если мощность двигателя невелика (до 1 кВт), то запустить его можно будет и без пускового конденсатора, оставив в схеме лишь рабочий конденсатор Ср.

Рассчитать ёмкость рабочего конденсатора можно формулой:

  • С раб = 4800 • I / U, мкФ – для двигателей, включенных в однофазную сеть с соединением обмоток “треугольник”.
  • С раб = 2800 • I / U, мкФ – для двигателей, включенных в однофазную сеть с соединением обмоток “звезда”.

Это наиболее точный способ, требующий, однако, измерения тока в цепи электродвигателя. Зная номинальную мощность двигателя, для определения ёмкости рабочего конденсатора лучше воспользоваться следующей формулой:

С раб = 66·Р ном, мкФ, где Р ном – номинальная мощность двигателя.

Упростив формулу, можно сказать, что для работы трёхфазного электродвигателя в однофазной сети, ёмкость конденсатора на каждые 0,1 кВт его мощности должна составлять около 7 мкФ.

Так, для двигателя мощностью 1,1 кВт ёмкость конденсатора должна составлять 77 мкФ. Такую ёмкость можно набрать несколькими конденсаторами, соединёнными друг с другом параллельно (общая ёмкость в этом случае будет равна суммарной), используя следующие типы: МБГЧ, БГТ, КГБ с рабочим напряжением, превышающим напряжение в сети в 1,5 раза.

Рассчитав ёмкость рабочего конденсатора можно определить ёмкость пускового – она должна превышать ёмкость рабочего в 2-3 раза. Применять конденсаторы для запуска следует тех-же типов, что и рабочие, в крайнем случае и при условии очень кратковременного запуска можно применить электролитические – типов К50-3, КЭ-2, ЭГЦ-М, рассчитанных на напряжение не менее 450 в.

Как подключить трёхфазный двигатель к однофазной сети.


подключение двигателя 380 на 220 вольт


правильный подбор конденсаторов для электродвигателя


Включение трехфазного двигателя в однофазную сеть — советы электрика

Подсоединение трехфазного двигателя в однофазную сеть

  1. Подключение трехфазного двигателя к однофазной сети через конденсатор
  2. Как подобрать конденсатор для трехфазного двигателя
  3. Расчёт конденсатора для трёхфазного двигателя

Довольно часто возникает необходимость в нестандартном подключении какого-либо электроприбора, применительно к конкретным условиям. Среди возможных вариантов следует выделить подключение трехфазного двигателя к однофазной сети, широко применяемое в бытовых условиях. Данная схема вполне оправдывает себя, несмотря на некоторое снижение мощности подключаемого оборудования.

Подключение трехфазного двигателя к однофазной сети через конденсатор

Подключить трехфазный двигатель к сети с напряжением 220 вольт довольно просто. В стандартной ситуации, в каждой фазе имеется собственная синусоида. Между ними существует фазовый сдвиг, составляющий 120 градусов. За счет этого обеспечивается плавное вращение в статоре электромагнитного поля.

Каждая волна обладает амплитудой 220 вольт, что и дает возможность подключения трехфазного двигателя к обычной сети.

Получение трех синусоид из одной фазы происходит с помощью обычного конденсатора, при условии соединения обмоток двигателя треугольником.

Обратите внимание

Объединенные в единое кольцо, они позволяют получать сдвиг по фазе в 45 и 90 градусов, вполне достаточный для не слишком активной работы вала.

Применение конденсатора позволяет достичь мощности двигателя при одной фазе примерно 50-60% от этого же показателя для трех фаз. Однако данная схема подходит не ко всем электродвигателям, поэтому следует выбирать наиболее подходящую модель, например, серии АПН, АО, А, АО2 и другие.

Одним из условий использования конденсатора является необходимость изменения его емкости в соответствии с количеством оборотов.

Практическое выполнение этого условия представляет серьезную проблему, поэтому управление двигателем выполняется в двухступенчатом варианте.

Во время запуска подключается сразу два конденсатора, один из которых отключается после разгона. Остается только рабочий, продолжающий функционировать.

Как подобрать конденсатор для трехфазного двигателя

Пусковой конденсатор должен примерно в 2-2,5 раза превышать емкость рабочего конденсатора. Расчетное напряжение этих устройств обычно в 1,5 раза превышает напряжение сети.

Для сетей 220 вольт наилучшим вариантом будут конденсаторы МБПГ, МБГО, МБГЧ, рабочее напряжение которых составляет 500 вольт и более.

Важно

Если конденсаторы включаются лишь на короткое время, возможно применение в схеме электролитических устройств, таких как КЭ-2, К50-3, ЭГЦ-М с минимальным напряжением 450 вольт.

Между собой конденсаторы соединяются последовательно, через минусовые выводы. Далее в схему добавляется резистор, сопротивлением 200-300 Ом, убирающий оставшийся электрический заряд с конденсаторов.

Расчёт конденсатора для трёхфазного двигателя

Нормальная работа трехфазного электродвигателя с пуском через конденсатор зависит от ряда условий. Одним из них является изменение емкости устройства в соответствии с числом оборотов двигателя. Это достигается за счет двухступенчатого управления, состоящего из двух конденсаторов – пускового и рабочего.

Во время пуска происходит замыкание контактов, после чего нажимается кнопка разгона. После того как набрано достаточное количество оборотов, кнопку следует отпустить. Рассчитать емкость рабочего конденсатора можно по следующей формуле: Ср = 4800х I/U.

где Ср является емкостью устройства в мкФ, I – сила тока, потребляемого двигателем в амперах, U – напряжение электрической сети в вольтах. Данная формула подходит при соединении обмоток двигателя методом треугольника.

Если же обмотки двигателя соединены звездой, применяется формула Ср = 2800х I/U .

Таким образом, подключение трехфазного двигателя к однофазной сети имеет свои особенности. Например, емкость пускового и рабочего конденсатора должна соответствовать мощности подключаемого двигателя.

Подключение трёхфазного двигателя к однофазной сети

Собираемся рассмотреть, как производится подключение трехфазного двигателя к однофазной сети, дать рекомендации по управлению агрегатом. Чаще люди хотят варьировать скорость вращения или направление. Как это сделать? Описывали размыто ранее, как подключить трехфазный двигатель на 230 вольт, теперь озаботимся деталями.

Стандартная схема включения трехфазного двигателя в однофазную сеть

Процесс подключения трехфазного двигателя к напряжению 230 вольт прост. Обычно ветка несет синусоиду, разница составляет 120 градусов.

Формируется фазовый сдвиг, равномерный, обеспечивает плавность вращения электромагнитного поля статора. Действующее значение каждой волны составляет 230 вольт. Это позволит подключить трехфазный двигатель к домашней розетке.

Фокус цирковой: получить три синусоиды, используя одну. Сдвиг фаз равен 120 градусов.

На практике означенное сделать можно, заручившись помощью специальных приборов фазовращателей.

Не тех, что используются высокочастотными трактами волноводов, а специальных фильтров, сформированных пассивными, реже активными элементами. Любители заморочкам предпочитают применение заправского конденсатора.

Если обмотки двигателя соединить треугольником, сформировав единое кольцо, получим сдвиги фаз 45 и 90 градусов, хватает худо-бедно для неуверенной работы вала:

Схема подключения трехфазного двигателя коммутацией обмоток треугольником

  1. На одну обмотку подается фаза розетки. Провода цепляют разницу потенциалов.
  2. Вторая обмотка запитывается конденсатором. Формируется сдвиг фаз 90 градусов относительно первой.
  3. На третьей за счет приложенных напряжений образуется слабо похожее на синусоиду колебание со сдвигом еще на 90 градусов.

Итого, третья обмотка отстоит от первой по фазе на 180 градусов. Показывает практика, расклада хватает нормально работать. Разумеется, двигатель иногда «залипает», сильно греется, мощность падает, хромает КПД. Пользователи мирятся, когда подключение асинхронного двигателя к трехфазной сети исключено.

Из чисто технических нюансов добавим: схема правильной раскладки проводов приводится на корпусе прибора. Чаще украшает внутреннюю сторону кожуха, скрывающего колодку, либо вычерчена неподалеку на шильдике.

Руководствуясь схемой, поймем, как подключить электродвигатель с 6 проводами (по паре на каждую обмотку). Когда сеть трёхфазная (часто называют 380 вольт), обмотки соединяются звездой.

Совет

Образуется одна общая катушкам точка, куда стыкуется нейтраль (условный схемный электрический нуль). На прочие концы подаются фазы. Получается три — по числу обмоток.

Как обращаться с треугольником для подключения трехфазного двигателя на 230 вольт, понятно. Дополнительно приводим рисунок, изображающий:

  • Схему электрического соединения обмоток.
  • Рабочий конденсатор, служащий цели создания правильного распределения фаз.
  • Пусковой конденсатор, облегчающий раскрутку вала на начальных оборотах. В последующем отключается от схемы кнопкой, разряжается шунтирующим резистором (для безопасности и пребывания в готовности к новому циклу пуска).

Подключение трехфазного двигателя 230 вольт треугольником

Картинка показывает: обмотка А находится под напряжением 230 вольт. На С подается со сдвигом фаз 90 градусов. Благодаря разности потенциалов, концы обмотки В формируют напряжение, сдвинутое на 90 градусов. Очертания далеки привычной школьным физикам синусоиде.

Опущены в целях упрощения пусковой конденсатор, шунтирующий резистор. Считаем, расположение очевидно из сказанного выше. Подобная методика худо-бедно позволит добиться от двигателя нормальной работы.

Клавишей пусковой конденсатор замыкается, осуществляя пуск, отключается от фазы, разряжается шунтом.

Источник: http://electricremont.ru/podsoedinenie-trehfaznogo-dvigatelya-v-odnofaznuyu-set.html

Подключение трёхфазного двигателя в однофазную сеть

В статье пойдет речь о подключении трёхфазного асинхронного двигателя в однофазную сеть 220 вольт.

Двигатели бывают синхронные и асинхронные. Тип и прочие параметры двигателя указываются на шильдике. Основное техническое отличие синхронного от асинхронного заключается в следующем.

Синхронный двигатель сохраняет свои обороты до последнего. То есть, когда он не справляется с нагрузкой он просто встает.

У асинхронного двигателя до какого-то критического момента обороты будут снижаться постепенно, затем лавинообразно и только потом произойдет полная остановка.

Подключение трёхфазного двигателя в трёхфазную сеть

Подключение трёхфазного двигателя к однофазной сети

Давайте разберемся, когда это возможно. Асинхронные трёхфазные двигатели чаще всего выпускаются на два напряжения — 220/380 вольт. Реже встречаются двигатели 220/127 и 380/660. Двигатели, которые изготовлены только на одно напряжение, теоретически могут быть переделаны посредством несложных манипуляций, но об этом речь пойдет в отдельной статье.

Здесь мы рассмотрим непосредственно подключение и теорию, почему это возможно.

Схема обмоток двигателя. Соединение обмоток двигателя

Наиболее распространенными схемами соединения обмоток трёхфазного асинхронного двигателя являются звезда и треугольник.

Звезда треугольник — что мощнее?

Этот вопрос довольно часто можно встретить в сети. На самом деле мощность одинаковая, если схема соответствует своему напряжению, но есть один нюанс. Помните, я говорил, что асинхронные двигатели теряют обороты, если перестают справляться с нагрузкой? Так вот схема соединения «звезда» подвержена этому эффекту сильнее.

Отсюда есть еще один вывод. У такой схемы меньший пусковой ток, следовательно, сниженный пусковой момент, и как вывод, такое соединение можно использовать, чтобы снизить пусковой ток и перегрузки во время запуска. В другой статье я рассмотрю ещё несколько вариантов плавного пуска. Здесь на этом останавливаться не будем.

Начало и конец обмотки

Рано или поздно, если вы работаете или собираетесь работать с двигателями, вы столкнетесь с таким понятием, как начало и конец обмотки. Открою вам маленький секрет, это абсолютно условное понятие. То есть начало может быть концом и наоборот. Запутал?  Ничего, сейчас распутаю.

Если совсем просто, то ток должен протекать по обмоткам двигателя в определенном направлении. Если одна из обмоток включена задом наперед, то возникает своеобразное магнитное короткое замыкание, то есть одна обмотка работает в обратном направлении по отношению к двум другим.

Несложно понять, что мощность такого двигателя мало того, что упадет в три раза (ведь две обмотки будут взаимоисключающими), так если такой двигатель ещё каким-то образом раскрутить, то токи магнитного короткого замыкания будут нагревать двигатель до недопустимой температуры, и он вскоре сгорит.

Обратите внимание

Таким образом получается, что выводы обмоток от которых ток протекает или к которым возвращается можно назвать хоть концами, хоть началами, главное, чтобы они были одноименными. И если мы назовем вывод с ЛЮБОЙ стороны обмотки началом, то другая сторона автоматически будет называться концом.

Абсолютно без разницы (для переменного тока), какой из выводов обмотки будет концом, а какой началом. И теперь любые обмотки в которых магнитный поток будет совпадать, должны будут маркироваться согласно нашему принятому условно направлению.

Поэтому дальше, когда я буду говорить начало обмотки или её конец, понимайте, что это лишь одноимённые концы трёх обмоток и совершенно неважно, будут это концы или начало, главное сам принцип. Начало это один вывод обмотки, а конец — другой.

Схема соединения обмоток звезда

В этом случае начала обмоток соединяются в одну точку, а на свободные концы подается напряжение.  Особенность такой схемы заключается в том, что напряжение подается как-бы на две обмотки. Посмотрите на схему.

Другими словами, возможность соединения звезда-треугольник были придуманы для того, чтобы можно было питать двигатель двумя напряжениями линейным (380 вольт) и фазным (220 вольт). Во втором случае, имеется возможность разогнать двигатель на низком значении тока, а затем переключить его в нормальный режим.

А из этого можно сделать вывод, что схема соединения выбирается не с бухты-барахты, а с того, какое напряжение мы подведем к двигателю.

Схема соединения обмоток треугольник

В такой схеме «начало» одной обмотки подключается к концу второй обмотки, следом включается третья, которая подключается к первой. Графически это похоже на треугольник. В этой схеме напряжение прикладывается непосредственно к обмотке. На рисунке показано, как будет протекать ток по обмоткам, если мы подключим только одну фазу. Теперь мы можем вернуться к главному вопросу:

Подключение трёхфазного двигателя к однофазной сети

Конденсаторное включение двигателя

Если вы еще не знаете, то ток в индуктивности отстает от напряжения, а в конденсаторе наоборот опережает. Именно на этом свойстве и было придумано подключение трёхфазного двигателя к однофазной сети. Задача заключается в том, чтобы создать в двигателе круговое магнитное поле.

За счёт правильного подбора ёмкости конденсатора и имеющейся индуктивности двигателя задается смещение тока относительно напряжения. А магнитный поток создает именно ток.

 Поэтому для подключения трехфазного асинхронного двигателя чаще всего используется метод конденсаторного включения, который полностью рассмотрен здесь.

Включение двигателя через частотный преобразователь

Очень хороший метод, но дорогостоящий. Частотный преобразователь позволит получить полную мощность от двигателя, поскольку может получать из одной фазы все три.

В этом способе есть одна особенность: вы получаете трёхфазную сеть 220 вольт. Таким образом, если у вас двигатель 220/380 Δ/Y, то вам надо будет его соединить по схеме «треугольник».

Приятным бонусом будет то, что вы сможете регулировать обороты в широких пределах.

Что ещё надо знать про подключение трёхфазного двигателя к однофазной сети

Конденсаторный метод, хоть и хорош, но имеет один недостаток. Поскольку напряжение мы получаем достигая баланса между ёмкостным и индуктивным током, это влечёт за собой определённые потери. Таким образом, теряется около 30% мощности двигателя.

Хотя можно получить и 100% и даже больше, вызвав перегрузку и добавив рабочие конденсаторы, но тогда надо будет контролировать температуру двигателя и вовремя его отключить, или сделать термореле, которое автоматически будет отключать двигатель при достижении какой-то заданной критической температуры.

Ну вот наверное и всё. На этом откланиваюсь.

С наилучшими пожеланиями, Я!

Источник: http://potomstvennyjmaster.100ms.ru/rubrik-site/sovetyi/podklyuchenie-tryokhfaznogo-dvigatelya-220v.html

Как включить трехфазный электродвигатель в однофазную сеть 2

Часто, в работе электрика необходимо включить трехфазный двигатель в однофазную сеть.

Как правильно переключить асинхронный двигатель без потери мощности

Трехфазный асинхронный двигатель может работать от однофазной сети как однофазный с пусковым элементом или как однофазный конденсаторный с постоянно включенной рабочей емкостью. Применение двигателя в качестве конденсаторного предпочтительнее.

Рис. 1.

Схемы включения в однофазную сеть трехфазных двигателей с тремя выводами:
а — схема с пусковым сопротивлением, б, в — схемы с рабочей емкостью

Если принять за 100 % мощность трехфазного двигателя, обозначенную на его щитке, то при однофазном включении двигатель может развить 50-70 % этой мощности, а при использовании в качестве конденсаторного — 70-85 % и более. Еще одно преимущество конденсаторного двигателя заключается в том, что отсутствует специальное пусковое устройство, которое необходимо при однофазной схеме для отключения пусковой обмотки после разгона двигателя.

Рис. 2.

Схемы включения в однофазную сеть трехфазных двигателей с шестью выводами:
а — схема с пусковым сопротивлением, б, в — схемы с рабочей емкостью

Схему включения на рисунках надо выбирать с учетом напряжения сети и номинального напряжения двигателя. Например, при трех выведенных концах обмотки статора (рис. 1) двигатель может быть использован в сети, напряжение которой равно номинальному напряжению двигателя.

При шести выводных концах обмотки двигатель имеет два номинальных напряжения: 127/220 В, 220/380 В. Если напряжение сети равно большему номинальному напряжению двигателя, т.е. Uc = 220 В при номинальном напряжении 127/220 В или UC = 380 В при номинальном напряжении 220/380 В и т.д.

, то надо пользоваться схемами, приведенными на рис. 1, а, б. При напряжении сети, равном меньшему номинальному напряжению двигателя, следует применять схему, показанную на рис. 1, в.

В этом случае при однофазном включении значительно уменьшается мощность двигателя, поэтому целесообразно применять схемы с рабочей емкостью.

Расчет конденсатора для включения трехфазный электродвигатель в однофазную сеть

Рабочая емкость СР(мкФ) для каждой схемы должна иметь определенное значение и может быть подсчитана, исходя из напряжения однофазной сети Uc и номинального тока Iф в фазе трехфазного двигателя: Ср=kIф/Uc где k — коэффициент, зависящий от схемы включения. При частоте 50 Гц для схем по рис. 1, б и 2, б можно принять k=2800; для схемы по рис. 1, в — k=4800; для схемы по рис. 2, в — k=1600.

Напряжение на конденсаторе Uk также зависит от схемы включения и напряжения сети. Для схем по рис. 1, б, в оно может быть принято равным напряжению сети; для схемы по рис. 2, б — Uk = 1,15Uc; для схемы по рис. 2, e-Uk=2Uc.

Номинальное напряжение конденсатора должно быть равно или несколько больше расчетного значения.

Важно

Необходимо помнить, что конденсаторы после отключения длительное время сохраняют напряжение на своих зажимах и создают при прикосновении к ним опасность поражения человека электрическим током.

Опасность поражения тем выше, чем больше емкость и выше напряжение на включенном в схему конденсаторе. При ремонте или отладке двигателя необходимо после каждого отключения конденсатор разрядить.

Для защиты от случайного прикосновения в процессе эксплуатации двигателя конденсаторы должны быть жестко закреплены и ограждены.

Пусковое сопротивление Rn определяют опытным путем, используя регулируемое сопротивление (реостат).

Если необходимо получить увеличенный момент при пуске двигателя, то параллельно рабочему конденсатору включают пусковой. Его емкость обычно подсчитывают по формуле Сп=(от 2,5 до 3) Ср, где Ср — емкость рабочего конденсатора. Пусковой момент при этом получается близким к номинальному моменту трехфазного двигателя.

Источник: https://100uslug.com/kak-vklyuchit-trexfaznyj-elektrodvigatel-v-odnofaznuyu-set/

Как включить трехфазный двигатель в однофазную сеть 220 в. Использование электродвигателей. | ДелайСам.Ру

Иногда в распоряжении домашнего мастера оказывается трехфазный двигатель той или иной мощности. В зависимости от его мощности можно сделать точильный станок, привод для гаражных ворот, привод для самодельной бетономешалки, и так далее.

Одной из задач при использовании такого двигателя является его подключение к сети, как правило — однофазной, 220 вольт. Напомним, что трехфазный двигатель как правило рассчитан на 380 вольт и подключение к 3-х фазной сети, поскольку имеет 3 обмотки.

Поэтому что бы заставить его крутиться, приходится прибегать к дополнительным ухищрениям.

Среди различных способов запуска трехфазных электродвигателей в однофазную сеть, наиболее простой базируется на подключении третьей обмотки через фазосдвигающий конденсатор. Полезная мощность развиваемая двигателем в этом случае составляет 50…60% от его мощности в трехфазном включении.

Не все трехфазные электродвигатели, однако, хорошо работают при подключении к однофазной сети. Среди таких электродвигателей можно выделить, например, с двойной клеткой короткозамкнутого ротора серии МА.

В связи с этим при выборе трехфазных электродвигателей для работы в однофазной сети следует отдать предпочтение двигателям серий А, АО, АО2, АПН, УАД и др.

Совет

Для нормальной работы электродвигателя с конденсаторным пуском необходимо, чтобы емкость используемого конденсатора менялась в зависимости от числа оборотов.

На практике это условие выполнить довольно сложно, поэтому используют двухступенчатое управление двигателем.

При пуске двигателя подключают два конденсатора, а после разгона один конденсатор отключают и оставляют только рабочий конденсатор.

Если, например, в паспорте электродвигателя указано напряжение его питания 220/380, то двигатель включают в однофазную сеть по схеме, представленной на рис. 1

Рис. 1 Принципиальная схема включения трехфазного электродвигателя в сеть 220 в., где

С р — рабочий конденсатор;

С п — пусковой конденсатор;

П1 — пакетный выключатель

После включения пакетного выключателя П1 замыкаются контакты П1.1 и П1.2, после этого необходимо сразу же нажать кнопку \»Разгон\». После набора оборотов кнопка отпускается. Реверсирование электродвигателя осуществляется путем переключения фазы на его обмотке тумблером SA1.

Емкость пускового конденсатора Сп выбирают в 2..2,5 раза больше емкости рабочего конденсатора. Эти конденсаторы должны быть рассчитаны на напряжение в 1,5 раза больше напряжения сети.

Для сети 220 В лучше использовать конденсаторы типа МБГО, МБПГ, МБГЧ с рабочим напряжением 500 В и выше.

Обратите внимание

При условии кратковременного включения в качестве пусковых конденсаторов можно использовать и электролитические конденсаторы типа К50-3, ЭГЦ-М, КЭ-2 с рабочим напряжением не менее 450 В.

Для большей надежности электролитические конденсаторы соединяют последовательно, соединяя между собой их минусовые выводы, и шунтируют резистором R1 с сопротивлением 200…300 Ом

Резистор R1 необходим для \»стекания\» оставшегося электрического заряда на конденсаторах. Общая емкость соединенных конденсаторов составит (С1+С2)/2.

На практике величину емкостей рабочих и пусковых конденсаторов выбирают в зависимости от мощности двигателя по табл. 1

Мощность трехфазного

двигателя, кВт 0,4 0,6 0,8 1,1 1,5 2,2

Минимальная емкость

рабочего конденсатора

Ср, мкФ 40 60 80 100 150 230

Минимальная емкость

пускового конденсатора

Ср, мкФ 80 120 160 200 250 300

Следует отметить, что у электродвигателя с конденсаторным пуском в режиме холостого хода по обмотке, питаемой через конденсатор, протекает ток на 20…30 % превышающий номинальный.

В связи с этим, если двигатель часто используется в недогруженном режиме или вхолостую, то в этом случае емкость конденсатора Ср следует уменьшить.

Может случиться, что во время перегрузки электродвигатель остановился, тогда для его запуска снова подключают пусковой конденсатор, сняв нагрузку вообще или снизив ее до минимума.

Емкость пускового конденсатора Сп можно уменьшить при пуске электродвигателей на холостом ходу или с небольшой нагрузкой. Для включения, например, электродвигателя АО2 мощностью 2,2 кВт на 1420 об/мин можно использовать рабочий конденсатор емкостью 230 мкФ, а пусковой — 150 мкФ. В этом случае электродвигатель уверенно запускается при небольшой нагрузке на валу.

Использование электролитических конденсаторов в схемах запуска электродвигателей

При включении трехфазных асинхронных электродвигателей в однофазную сеть, как правило, используют обычные бумажные конденсаторы. Практика показала, что вместо громоздких бумажных конденсаторов можно использовать оксидные (электролитические) конденсаторы, которые имеют меньшие габариты и более доступны в плане покупки. Схема эквивалентной замены обычного бумажного дана на рисунке.

Положительная полуволна переменного тока проходит через цепочку VD1, С1, а отрицательная VD2, С2. Исходя из этого можно использовать оксидные конденсаторы с допустимым напряжением в два раза меньшим, чем для обычных конденсаторов той же емкости.

Например, если в схеме для однофазно сети напряжением 220 В используется бумажный конденсатор на напряжение 400 В, то при его замене, по вышеприведенной схеме, можно использовать электролитический конденсатор на напряжение 200 В.

Важно

В приведенной схеме емкости обоих конденсаторов одинаковы и выбираются аналогично методике выбора бумажных конденсаторов для пускового устройства.

Принципиальная схема включения трехфазного двигателя в однофазную сеть при помощи электролитических конденсаторов.

В приведенной схеме, SA1 — переключатель направления вращения двигателя, SB1 — кнопка разгона двигателя, электролитические конденсаторы С1 и С3 используются длч пуска двигателя, С2 и С4 — во время работы.

Подбор электролитических конденсаторов в схеме рис. 7 лучше производить с помощью токоизмерительных клещей. Измеряют токи в точках А, В, С и добивается равенства токов в этих точках путем ступенчатого подбора емкостей конденсаторов.

Замеры проводят при нагруженном двигателе в том режиме, в котором предполагается его эксплуатация. Диоды VD1 и VD2 для сети 220 В выбираются с обратным максимально допустимым напряжением не менее 300 В. Максимальный прямой ток диода зависит от мощности двигателя.

Для электродвигателей мощностью до 1 кВт подойдут диоды Д245, Д245А, Д246, Д246А, Д247 с прямым током 10 А.

При большей мощности двигателя от 1 кВт до 2 кВт нужно взять более мощные диоды с соответствующим прямым током, или поставить несколько менее мощных диодов параллельно, установив их на радиаторы.

Следует обратить ВНИМАНИЕ на то, что при перегрузке диода может произойти его пробой и через электролитический конденсатор потечет переменный ток, что может привести к его нагреву и взрыву.

Включение мощных трехфазных двигателей в однофазную сеть

Конденсаторная схема включения трехфазных двигателей в однофазную сеть позволяет получить от двигателя не более 60% от номинальной мощности, в то время как предел мощности эликтрифицированного устройства ограничивается 1,2 кВт. Этого явно недостаточно для работы электрорубанка или электропилы, которые должны иметь мощность 1,5…2 кВт.

Проблема в данном случае может быть решена использованием электродвигателя большей мощности, например, с мощностью 3…4 кВт. Такого типа двигатели рассчитаны на напряжение 380 В, их обмотки соединены \»звездой\» и в клеммной коробке содержится всего 3 вывода.

Включение такого двигателя в сеть 220 В приводит к снижению номинальной мощности двигателя в 3 раза и на 40 % при работе в однофазной сети. Такое снижение мощности делает двигатель непригодным для работы, но может быть использовано для раскрутки ротора вхолостую или с минимальной нагрузкой.

Совет

Практика показывает, что большая часть электродвигателей уверенно разгоняется до номинальных оборотов, и в этом случае пусковые токи не превышают 20 А.

Наиболее просто можно осуществить перевод мощного трехфазного двигателя в рабочий режим, если переделать его на однофазный режим работы, получая при этом 50 % номинальной мощности. Переключение двигателя в однофазный режим требует небольшой его доработки. Вскрывают клеммную коробку и определяют, с какой стороны крышки корпуса двигателя подходят выводы обмоток.

Отворачивают болты крепления крышки и вынимают ее из корпуса двигателя. Находят место соединения трех обмоток в общую точку и подпаивают к общей точке дополнительный проводник с сечением, соответствующим сечению провода обмотки. Скрутку с подпаянным проводником изолируют изолентой или поливинилхлоридной трубкой, а дополнительный вывод протягивают в клеммную коробку.

После этого крышку корпуса устанавливают на место.

Во время разгона двигателя используется соединение обмоток \»звездой\» с подключением фазосдвигающего конденсатора Сп. В рабочем режиме в сеть остается включенной только одна обмотка, и вращение ротора поддерживается пульсирующим магнитным полем.

После переключения обмоток конденсатор Сп разряжается через резистор Rр.

Работа представленной схемы была опробована с двигателем типа АИР-100S2Y3 (4 кВт, 2800 об/мин), установленном на самодельном деревообрабатывающем станке и показала свою эффективность.

Недостатком предложенной схемы включения мощного трехфазного электродвигателя в однофазную сеть можно считать чувствительность двигателя к перегрузкам.

Если нагрузка на валу достигнет половины мощности двигателя, то может произойти снижение скорости вращения вала врлоть до полной его остановки. В этом случае снимается нагрузка с вала двигателя.

Переключатель переводится сначала в положение \»Разгон\», а потом в положение \»Работа\» и продолжают дальнейшую работу.

По материалам статьи с http://www.elremont.ru/electrik/trifaz220.php

Публикуется с разрешения автора.

Источник: https://www.delaysam.ru/poleznoe/poleznoe6.html

Бесконденсаторный пуск трехфазных электродвигателей от однофазной сети

электроника для дома

Как известно, для запуска трехфазного электродвигателя (ЭД) с короткозамкнутым ротором от однофазной сети наиболее часто в качестве фазосдвигающего элемента применяют конденсатор.

При этом емкость пускового конденсатора должна быть в несколько раз больше емкости рабочей конденсатора. Для ЭД чаще всего применяемых в домашнем хозяйства (0,5…3 кВт), стоимость пусковых конденсаторов соизмерима со стоимость к электродвигателя.

Поэтому желательно избежать применения дорогостоящих пусковых конденсаторов, работающих лишь кратковременно.

Обратите внимание

В тожe время применение рабочих, постоянно включенных фазосдвигающих конденсоторов можно считать целесообразным, так как они позволяют загрузить двигатель на75…85% его мощности при 3-фазном включении (безконденсаторов его мощность снижается примерно на 50%).

Вращающий момент, вполне достаточный для запуска указанных ЭД от однофазной сети 220 В/50 Гц, можно получить за счет сдвига токов по фазе в фазных обмотках ЭД, применив для этого двунаправленные электронные ключи, включение которых осуществляется в определенное время.

Исходя из этого, для пуска 3-фазных ЭД от однофазной сети автором были разработаны и отлажены две простые схемы. Обе схемы опробованы на ЭД мощностью 0,5…

2,2 кВт и показали очень хорошие результаты (время пуска не намного больше, чем в трехфазном режиме).

В схемах применяются симисторы, управляемые импульсами разной полярности, и симметричный динистор, который формирует управляющие сигналы в течение каждого полупериода питающего напряжения.

Первая схема (рис.1) предназначена для пуска ЭД с номинальной частотой вращения, равной или меньше 1500 об/мин, обмотки которых соединены в треугольник. За основу этой схемы была взята схема [1], которая упрощена до предела. В этой схеме электронный ключ (симистор VS1) обеспечивает сдвиг тока в обмотке «С» на некоторый угол (50…70°), что обеспечивает достаточный вращающий момент.

Фазосдвигающим устройством является RC-цепочка. Изменяя сопротивление R2, получают на конденсаторе С напряжение, сдвинутое относительно питающего напряжения на некоторый угол.

В качестве ключевого элемента в схеме применен симметричный динистор VS2.

В момент, когда напряжение на конденсаторе достигнет напряжения переключения динистора, он подключит заряженный конденсатор к управляющему выводу симистора VS1 i включит этот двунаправленный силовой ключ.

Вторая схема (рис.2) предназначена для пускс ЭД с номинальной частотой вращения равной 3000 об/мин, а также для электродвигателей, работающих на механизмы с большим моментом сопротивле ния при пуске. В этих случаях требуется значительно больший пусковой момент.

Важно

Поэтому была применена схема соединения обмоток ЭД «разомкнутая звезда ([2], рис. 14,в), которая обеспечивает максимальный пусковой момент.

В указанной схеме фазосдвигающие конденсаторы заменены двумя электронными ключами Один ключ включен последовательно с обмоткой фазы «А» и создает в ней «индуктивный» (отстающий)

сдвиг тока, второй – включен параллельно обмотке фазы «В» и создает в ней «емкостной» (опережающий) сдвиг тока. Здесь учитывается то, что сами обмотки ЭД смещены в пространстве на 120 электрических градусов одна относительно другой.

Наладка заключается в подборе оптимального угла сдвига токов в фазных обмотках, при котором происходит надежный запуск ЭД. Это можно сделать без применения специальных приборов. Выполняется она следующим образом.

Подача напряжения на ЭД осуществляется пускателем нажимного «ручного» типа ПНВС-10, через средний полюс которого подключается фазосдвигающая цепочка. Контакты среднего полюса замкнуты только при нажатой кнопке «Пуск».

Нажав кнопку «Пуск», путем вращения движка подстроечного  сопротивления R2 подбирают необходимый пусковой момент. Так поступают при наладке схемы, показанной на рис.2.

При наладке схемы рис.1 из-за прохождения больших пусковых токов некоторое время (до разворота) ЭД сильно гудит и вибрирует.

В этом случае лучше изменять величину R2 ступенями при снятом напряжении, а затем, путем кратковременной подачи напряжения, проверять, как происходит запуск ЭД. Если при этом угол сдвига напряжения далек от оптимального, то ЭД гудит и вибрирует очень сильно.

Совет

По мере приближения к оптимальному углу двигатель «пытается» вращаться в ту или другую сторону, а при оптимальном запускается достаточно хорошо.

Автор производил отладку схемы, показанной на рис.1, на ЭД 0,75 кВт 1500 об/мин и 2,2 кВт 1500 об/мин, а схемы, показанной на рис.2, на ЭД 2,2 кВт 3000 об/мин.

При этом опытным путем установлено, что подобрать значения R и С фазовращающей цепочки, соответствующие оптимальному углу, можно предварительно.

Для этого нужно последовательно с ключом (симистором) соединить лампу накаливания 60 Вт и включить их в сеть ~220 В. Изменяя величину R, надо установить напряжение на лампе 170 В (для схемы рис.1) и 100 В (для схемы рис.2).

Эти напряжения замерялись стрелочным прибором магнитоэлектрической системы, хотя форма напряжения на нагрузке не синусоидальная.

Необходимо отметить, что добиться оптимальных углов сдвига токов можно при различных сочетаниях значений R и С фазосдвигающей цепочки, т.е. изменив номинал емкости конденсатора, придется подобрать и соответствующее ему значение сопротивления.

Детали

Эксперименты проводились с симисторами ТС-2-10 и ТС-2-25 без радиаторов. В этой схеме они работали очень хорошо. Можно применить и другие симисторы с двухполярным управлением на соответствующие рабочие токи и класса напряжения не ниже 7. При использовании импортных симисторов в пластмассовом корпусе их следует установить на радиаторы.

Симметричный динистор DB3 можно заменить отечественным КР1125. У него немного меньше напряжение переключения. Возможно, это и лучше, но этот динистор очень сложно найти в продаже.

Обратите внимание

Конденсаторы С любые неполярные, рассчитанные на рабочее напряжение не менее 50 В (лучше – 100 В). Можно применить также два полярных конденсатора, включенных последовательно-встречно (в схеме рис.2 их номинал должен быть 3,3 мкФ каждый).

Внешний вид электропривода измельчителя травы с описанной схемой запуска и ЭД 2,2 кВт 3000 об/мин показан на фото 1.

В. В. Бурлоко, г. Мориуполь

Литература

1.    // Сигнал. – 1999. – №4.

2.    С.П. Фурсов Использование трехфазных

электродвигателей в быту. — Кишинев: Картя

молдовенскэ, 1976.

Источник: http://radiopolyus.ru/elektronika-dlya-doma/38-prochee/106-beskondensatornyj-pusk-trexfaznyx-elektrodvigatelej-ot-odnofaznoj-seti

Включение трехфазного электродвигателя в однофазную сеть

Много уже писано-переписано в различных изданиях о включении трехфазного электродвигателя в однофазную сеть. И, тем не менее, иногда проблемы при решении такой задачи возникают у многих. Так как я за свою жизнь решил такую задачу не один десяток раз, думаю, что имею право поделится своим опытом и уверен, что многие найдут что-то новое и неожиданное в этом набившем оскомину вопросе.

Итак, в однофазную сеть напряжением 220 В электро двигатели 660/380 В я никогда не включал и вообще не знаю, возможно ли такое включение.

С решением такой же задачи для электродвигателя 380/220 В проблем не существует. Обычно, применяемые в промышленности и сельском хозяйстве электродвигатели соединены в «звезду».

Необходимо открыть борно электродвигателя. Если есть в наличии все 6 проводов (выводов обмоток), надо рассоединить 3 провода, соединенны вместе, и принять их, например, за «начала» обмоток.

Три других провода будут «концами».

Если в борне находятся отдельные 3 провода, а соединенных вместе 3-х проводов нет, значит — стопроцентная гарантия того, что электродвигатель подвергался перемотке.

В этом случае необходимо вскрыть переднюю и заднюю крышки электродвигателя, снять ротор, найти соединение 3-х проводов на статоре, рассоединить их, припаять к ним удлиняющие провода, заизолировать места пайки и вывести эти провода в борно, приняв их, например, за «начала».

Далее необходимо вызвонить все 3 обмотки, не забывая, где «начало», а где «конец» обмотки (лучше их промаркировать). Потом надо соединить в борне обмотки в «треугольник» и вывести провода из борна электродвигателя. Вышеперечисленные операции изображены на рис.1.

Важно

Особенно важно не ошибаться с «началами» и «концами» обмоток (иначе электродвигатель работать не будет).

Рис 2:  Схема с пускателем ПНВС

На рис.2 изображена всем известная схема с пускателем ПНВС, применяемым в стиральных машинах. Остановимся лишь на «мелочах». При неимении ПНВС, можно легко обойтись и без него, применив автомат, рубильник… и обычную кнопку с нормально разомкнутыми контактами.

При включении электродвигателя в работу сначала необходимо нажать кнопку и, не отпуская ее, включить автомат (рубильник). Когда вал электродвигателя наберет обороты, кнопку надо отпустить. Можно обойтись и без автомата (рубильника).

В этом случае сначала нажать кнопку, а затем включить в сетевую розетку вилку со шнуром, идущим к электродвигателю.

А теперь о самом интересном — о пусковом и рабочем конденсаторах. Сразу отмечу, что всем известный расчет номиналов емкости пускового и рабочего конденсаторов, указанный и в [1], я давно воспринимаю, как очень и очень ориентировочный. Не согласен я и с тем.

что конденсаторы, используемые в качестве фазосдвигающих элементов при включении 3-фазных электродвигателей в однофазную сеть, — слабое звено в пусковом устройстве.

Я включил десятки 3-фазных электродвигателей в однофазную сеть, причем в качестве пусковых практически всегда использовал электролитические конденсаторы без каких-либо «прибамбасов» на рабочее напряжение 350…450 В. Работают они как миленькие, многие годы.

Электролитов у каждого валом со старых телевизоров, их габариты сравнительно небольшие.
Не согласен я и с «литературной фразой» [1] о том, что предельной мощностью конденсаторного электродвигателя общего назначения принимается номинальная мощность 1,5 кВт. Не так давно я включил в однофазную сеть 3-фазный электродвигатель мощностью более 4кВт/1500 об./мин.

(шильдик на электродвигателе отсутствовал, но габариты электродвигателя 4 кВт/1500 об./ мин. я прекрасно себе представляю, ведь включал я такие электродвигатели в однофазную сеть не единожды и, кстати, без проблем). Данный электродвигатель установлен на пилораме.

Совет

Так вот, без нагрузки данный электродвигатель легко запускался при применении пускового электролитического конденсатора (вернее, батареи конденсаторов) емкостью 600 мкФ. Но когда на шкив электродвигателя был надет ремень, электродвигатель разгоняться не захотел.

Когда я добавил батарею конденсаторов емкостью еще 600 мкФ (общая емкость пускового конденсатора стала равняться 1200 мкФ), электродвигатель стал нормально включаться и набирать обороты при накинутом на шкив ремне.

Здесь следует немного остановиться. Очень часто бывает, что применение рабочего конденсатора совсем не обязательно, так как мощности на валу переделанного электродвигателя вполне хватает. Если это не так. без рабочего конденсатора не обойтись.

Хорошо, если есть под рукой неполярные конденсаторы требуемой емкости и на нужное рабочее напряжение. Но очень часто их нет. Вот здесь и поможет схема включения двух электролитических конденсаторов, как одного неполярного, изображенная на рис. 1 в статье [1] или на рис.

1 в моей статье [2] (в данной статье такое включение показано на рис.3). Не стоит сомневаться в работоспособности и надежности этой схемы. Проверено на практике неоднократно.

Кстати, повышение мощности электродвигателя при применении рабочего конденсатора видно «на глаз» при работе на все той же пилораме.

Рис 3: Схема включения двух электролитических конденсаторов.

Дам еще один очень простой и эффективный совет, позволяющий максимально точно подобрать емкость рабочего конденсатора, о котором я нигде не читал в литературе. Вот здесь уже точно репутация всем известной формулы Ср=66хРном пострадает.

Итак, способ подбора емкости рабочего конденсатора следующий. При работе электродвигателя, который включен по схеме, изображенной на рис.1, необходимо измерить напряжение на обмотке, к которой подключен рабочий конденсатор, а затем на двух других обмотках.

Если напряжение на рабочем конденсаторе будет больше, чем на обмотках, необходимо уменьшить емкость рабочего конденсатора, если будет меньше — увеличить.
Асинхронный электродвигатель 220/127 В в однофазную сеть 220 В можно включить на «звезду» (рис.3).

Обратите внимание

Если понадобится изменить направление вращения вала электродвигателя, необходимо поменять местами два любых провода, идущих к «треугольнику» (рис.2) или на «звезду» (рис.3).
Если необходим реверсивный электродвигатель, необходимо применить переключатель, как это, например, показано на рис.4.

Рис 4: Схема реверсивного подключение трехфазного двигателя к однофазной цепи.

Хочу отметить, что высокооборотистые 3-фазные электродвигатели включить в однофазной сети сложнее, чем низкооборотистые. Электродвигатель 2,2 кВт/3000 об./мин. я включал легко, а вот электродвигатель 3 кВт/3000 об./мин., фазосдвигающими конденсаторами мне включить не удалось Правда, это было давно. Сейчас, когда на голове довольно много седых волос, может быть и включил бы.

И, наконец, последнее. Когда я был совсем молодым и красивым, увидел старинную книгу «Справочник сельского электрика». В данном справочнике предлагалось вместо пускового конденсатора использовать активное сопротивление (отрезок высокоомно-го нихрома со спирали электрической печки).

Предоставлялся даже расчет сопротивления данного резистора в зависимости от мощности электродвигателя. Я попробовал и «О, чудо!», включил в однофазную сеть напряжением 220 В 3-фазный электродвигатель 380/ 220 В мощностью 3 кВт на 3000 об./мин., который не мог включить фазосдвигающими конденсаторами.

Буквально через 2 года после армии все мои попытки повторить это чудо закончились безрезультатно.

Литература 1 Коломойцев К.В. Еще раз о надежном запуске асинхронного электродвигателя. — Электрик, №9-10, 2006 г.

2. Маньковский А Н. О включении электродвигателей в однофазную сеть. — Электрик, №1, 2004 г.

Источник: http://mainstro.ru/vklyuchenie-trexfaznogo-elektrodvigatelya-v-odnofaznuyu-set/

ТРЁХФАЗНЫЙ ДВИГАТЕЛЬ В ОДНОФАЗНОЙ СЕТИ

Источник: http://el-shema.ru/publ/skhemy_podkljuchenija/trjokhfaznyj_dvigatel_v_odnofaznoj_seti/13-1-0-34

Радио Схемы

Это простейшая светомузыка имеет всего один элемент. Да, абсолютно один и ничего кроме: ни резисторов, ни транзисторов… Собрать такую светомузыкальную установку вполне реально за 30 минут. Все что вам понадобится это одно твердотельное реле.

Я без сомнения могу сказать, что это самый простой металлоискатель из всех что я видел. В основе которого лежит всего одна микросхема TDA0161. Вам не нужно будет ничего программировать – просто собрать и все.

Еще, его огромное отличие в том, что он при работе не издает никаких звуков, в отличии от металлоискателя на микросхеме NE555, который изначально неприятно пищит и о найденном металле нужно догадываться по тональности.

Наверное, каждый, даже начинающий радиолюбитель знает, что для того чтобы подключить обычный светодиод к источнику питания нужен всего один резистор. А как быть если светодиод мощный? Ватт так на 10. Как быть тогда?

Нет желания покупать антенну для эфирного стандарта DVB-T2? Мы расскажем, как быстро смастерить самодельную из подручных материалов.

Мы расскажем, как узнать частотный диапазон вашего региона и рассчитать параметры нужной антенны. Также, наша пошаговая инструкция поможет быстро сделать из подручных материалов качественную антенну для приема эфирных каналов нового цифрового стандарта DVB-T2.

  • антена
  • антена для цифрового телевиденья

Детектор переменного напряжения – это устройство, которое определяет наличие переменного тока, на небольшом расстоянии без каких-либо электрических подключений к линии.

  • скрытая проводка
  • детектор скрытой проводки
  • детектор

Довольно часто у жителей многоквартирных домов возникает необходимость закрепить на стене квартиры картину, вешалку, полку или ещё какой-нибудь предмет интерьера. Для этого необходимо отметить точку на стене и пробурить небольшое отверстие перфоратором. Однако всегда есть вероятность попасть в проводку, спрятанную в стене под обоями – в этом случае

Принцип сумеречного выключателя предельно прост: пока на улице светло, искусственное освещение выключено, а с наступлением темноты – оно включается. Сумеречный выключатель можно делать как на тиристоре, так и на симисторе. Т.к. симисторов с нужными характеристиками у меня не оказалось, собрал сумеречный выключатель на тиристоре MCR 100-8.

  • Сумеречный выключатель
  • выключатель

Для питания различных электронных устройств и схем, сделанных своими руками нужен такой источник питания, напряжение на выходе которого можно регулировать в широких пределах. С его помощью можно наблюдать, как ведёт себя схема при том или ином напряжении питания.

При этом он должен иметь возможность выдавать большой ток, чтобы питать мощную нагрузку, и минимальные пульсации на выходе. На роль такого источника питания отлично подойдёт линейный стабилизатор напряжения – микросхема LM338, она обеспечивает ток до 5 А, имеет защиту от перегрева и короткого замыкания на выходе.

Схема её включения достаточно проста, она представлена ниже.

  • стабилизатор
  • стабилизатор напряжения

По статистике, большая половина аккумуляторов выходит из строя по причине – сульфатации пластин. По каким причинам происходит это явление я особо вдаваться не буду, но в небольшой части это связано с неправильной эксплуатацией аккумулятора. А в большей – с длительным периодом эксплуатации батареи.

  • аккумулятор
  • восстановление
  • восстановление аккумулятор
  • десульфатация

Одним из самых простых способов изготовления импульсного блока питания своими руками из «подручных средств» является переделка энергосберегающей лампы под такой блок питания. Так как основной причиной выхода из строя компактных люминесцентных ламп является перегорание одной из нитей накала колбы, то практически их все можно переделать под импульсный блок питания с нужным напряжением.

Сегодня у нас новая полезная самоделка для авто: автомобильный пробник своими руками.

  • Автомобильный тестер-пробник
  • тестер
  • пробник
  • автомобиль

В этой статье будет рассмотрена схема и пошаговая инструкция по изготовлению индикатора разряда аккумулятора. Схема индикатора разряда аккумулятора достаточно проста и повторить её не составит труда.

Если всё собрано согласно схеме, то устройство должно заработать сразу без каких либо настроек.

Индикатор разряда будет полезен для различных приборов, что бы можно было следить за состоянием аккумулятора, тем более что схема универсальная!

  • индикатор
  • аккумулятор
  • разряд аккумуляторф

В этой статье вы узнаете как сделать индукционный нагреватель своими руками на транзисторе IRF3205. Этот индукционный нагреватель питается от напряжения 12 вольт, имеет в своей конструкции минимум деталей, поэтому прост в изготовлении. С помощью данного индукционного нагревателя вы легко сможете раскалить небольшой предмет с считанные секунды. Найти

Исторически так получилось, что в Российской Федерации, как и в приграничных государствах, используется заземляющий принцип, когда нулевой проводник соединяется с заземляющим контуром.

У многих людей может возникнуть «законный» вопрос: если они контактируют между собой, то для чего тянуть столько проводов – достаточно провести повсюду двойную жилу (фазу и нулевую линию) и будет возможность заземляться посредством нулевой жилы! Однако в такой постановке вопроса скрывается один технический нюанс, который превращает данное решение не только в бесполезную игрушку, но в некоторых случаях и в довольно опасную затею.

Главная ← Старые записи

Источник: http://radiolabs.ru/index.php?controller=post&action=view&id_post=76

   При всем современном многообразии выбора бытового электроинструмента, по прежнему существует потребность в применении более мощных асинхронных электродвигателей.

Предпосылок к этому немало – применяемые в качестве двигателей электроинструмента коллекторные машины не превосходят по мощности потолок в 1 – 1,5 кВт (дальнейшее увеличение по мощности приводит к увеличению по массагабаритным показателям), а ведь иногда требуется привод более мощный (самодельные циркулярные или ленточные пилы, электрофуганки с шириной прохода 50 и более сантиметров и т.д). Все эти инструменты приводятся в движение как правило при помощи трехфазных электродвигателей. К сожалению, трехфазная сеть в быту – явление крайне редкое, поэтому для их питания от обычной электрической сети самодельщики применяют: фазосдвигающий конденсатор; тринисторные фазосдвигающие устройства; другие емкостные и индукционно-емкостные фазосдвигающие схемы. Среди различных способов запуска асинхронных электродвигателей с короткозамкнутым ротором, наиболее простым является способ подключения одной из обмоток двигателя через фазосдвигающий конденсатор.

   Для работы двигателя с конденсаторным пуском необходимо, чтобы емкость конденсатора менялась в зависимости от числа оборотов. На практике это условие практически невыполнимо, поэтому при пуске двигателя подключают два конденсатора (Ср – рабочий конденсатор; Сп – пусковой конденсатор). 

Важно

   Такую схему подключения выбирают только втом случае, если на маркировке двигателя указано напряжение питания 220/380v.

   Работает схема так: после включения пакетного выключателя П1, необходимо сразу нажать пусковую кнопку »Разгон». После того как двигатель наберет обороты кнопку отпускают.

   Реверсирование двигателя осуществляется путем переключения фаз на его обмотке посредством тумблера SA1. Для разряда конденсаторов используется сопротивление R1. Емкость рабочего конденсатора можно расчитать по следующим формулам.

Для схемы подключения »треугольник»: Ср=4800*(I/U) где Ср – емкость конденсатора в микрофарадах, I – ток потребления электродвигателя в амперах, U – напряжение питающей сети.

Для схемы подключения »звезда»: Ср=2800*(I/U) где Ср – емкость конденсатора в микрофарадах, I – ток потребления двигателя в амперах, U – напряжение питающей сети. Емкость пускового конденсатора Сп выбирают в 2-2,5 раза большей емкости рабочего конденсатора.

Конденсаторы должны быть расчитаны на напряжение в 1,5 раза большее чем напряжение питающей сети. Для пуска двигателей применяют конденсаторы типа МБГО, МБГЧ, МБГП или специализированные пусковые (высокая цена).

   Для подбора необходимых конденсаторов можно воспользоваться таблицей. Но как же поступить, если не удалось достать конденсаторов нужной емкости?

   Не волнуйтесь, выход есть. Практика применения бумажных конденсаторов для подключения трехфазных двигателей показала, что вместо этих громоздких монстров можно применить и электролитические конденсаторы.

   Посмотрите на эквивалентные схемы замены бумажных конденсаторов электролитами. 

Совет

   Диоды для сети переменного тока 220V выбираются с максимально допустимым обратным напряжением не ниже 300V. Максимальный прямой ток диода зависит от мощности двигателя. Для двигателя мощностью до 1 кВт подойдут диоды типа Д242 – Д247 с прямым током 10 А. 

   При большей мощности можно взять диоды типа ДЛ 200 или поставить несколько менее мощных параллельно и на радиаторах.

   Принципиальную схему включения электродвигателя с применением электролитических конденсаторов смотрите на рисунке. Принцип действия данной схемы и все производимые при пуске манипуляции такие же как и для схемы описанной выше.

   Но что если вам требуется подключить к сети двигатель мощностью 3 – 4 кВт? Двигатели такого типа расчитаны на применение только в сетяз 380V, их обмотки соединены »звездой» и в клеммной коробке имеется всего три вывода. Включение такого двигателя в сеть 220v приводит к снижению его номинальной мощности в з раза.

Схема подключения трехфазного двигателя к однофазной сети

Как подключить трехфазный двигатель к сети 220 вольт

Содержание:

Многие хозяева, особенно владельцы частных домов или дач, используют оборудование с двигателями на 380 В, работающими от трехфазной сети. Если к участку подведена соответствующая схема питания, то никаких сложностей с их подключением не возникает.

Однако довольно часто возникает ситуация, когда питание участка осуществляется только одной фазой, то есть подведено лишь два провода – фазный и нулевой. В таких случаях приходится решать вопрос, как подключить трехфазный двигатель к сети 220 вольт.

Это можно сделать различными способами, однако следует помнить, что подобное вмешательство и попытки изменить параметры, приведет к падению мощности и снижению общей эффективности работы электродвигателя.

Подключение 3х фазного двигателя на 220 без конденсаторов

Как правило, схемы без конденсаторов применяются для запуска в однофазной сети трехфазных двигателей малой мощности – от 0,5 до 2,2 киловатта. Времени на запуск тратится примерно столько же, как и при работе в трехфазном режиме.

В этих схемах применяются симисторы, под управлением импульсов с различной полярностью. Здесь же присутствуют симметричные динисторы, подающие сигналы управления в поток всех полупериодов, имеющихся в питающем напряжении.

Существует два варианта подключения и запуска. Первый вариант используется для электродвигателей, с частотой оборотов менее чем 1500 в минуту. Соединение обмоток выполнено треугольником. В качестве фазосдвигающего устройства используется специальная цепочка.

Путем изменения сопротивления, на конденсаторе образуется напряжение, сдвинутое на определенный угол относительно основного напряжения.

При достижении в конденсаторе уровня напряжения необходимого для переключения, происходит срабатывание динистора и симистора, вызывающее активацию силового двунаправленного ключа.

Второй вариант используется при запуске двигателей, частота вращения которых составляет 3000 об/мин. В эту же категорию входят устройства, установленные на механизмах, требующих большого момента сопротивления во время запуска. В этом случае необходимо обеспечение большого пускового момента.

С этой целью в предыдущую схему были внесены изменения, и конденсаторы, необходимые для сдвига фаз, были заменены двумя электронными ключами. Первый ключ последовательно соединяется с фазной обмоткой, приводя к индуктивному сдвигу тока в ней.

Подключение второго ключа – параллельное фазной обмотке, что способствует образованию в ней опережающего емкостного сдвига тока.

Данная схема подключения учитывает обмотки двигателя, смещенные в пространстве между собой на 1200С. При настройке определяется оптимальный угол сдвига тока в обмотках фаз, обеспечивающий надежный пуск устройства. При выполнении этого действия вполне возможно обойтись без каких-либо специальных приборов.

Подключение электродвигателя 380в на 220в через конденсатор

Для нормального подключения следует знать принцип действия трехфазного двигателя. При включении в трехфазную сеть, по его обмоткам в разные моменты времени поочередно начинает идти ток.

То есть в определенный отрезок времени ток проходит через полюса каждой фазы, создавая так же поочередно магнитное поле вращения.

Он оказывает влияние на обмотку ротора, вызывая вращение путем подталкивания в разных плоскостях в определенные моменты времени.

При включении такого двигателя в однофазную сеть, в создании вращающегося момента будет участвовать только одна обмотка и воздействие на ротор в этом случае происходит только в одной плоскости.

Такого усилия совершенно недостаточно для сдвига и вращения ротора. Поэтому для того чтобы сдвинуть фазу полюсного тока, необходимо воспользоваться фазосдвигающими конденсаторами.

Нормальная работа трехфазного электродвигателя во многом зависит от правильного выбора конденсатора.

Расчет конденсатора для трехфазного двигателя в однофазной сети:

  • При мощности электродвигателя не более 1,5 кВт в схеме будет достаточно одного рабочего конденсатора.
  • Если же мощность двигателя свыше 1,5 кВт или он испытывает большие нагрузки во время запуска, в этом случае выполняется установка сразу двух конденсаторов – рабочего и пускового. Их подключение осуществляется параллельно, причем пусковой конденсатор нужен только для запуска, после чего происходит его автоматическое отключение.
  • Управление работой схемы производится кнопкой ПУСК и тумблером отключения питания. Для запуска двигателя нажимается пусковая кнопка и удерживается до тех пор, пока не произойдет полное включение.

В случае необходимости обеспечить вращение в разные стороны, выполняется установка дополнительного тумблера, переключающего направление вращения ротора.

Первый основной выход тумблера подключается к конденсатору, второй – к нулевому, а третий – к фазному проводу.

Если подобная схема способствует падению мощности или слабому набору оборотов, в этом случае может потребоваться установка дополнительного пускового конденсатора.

Подключение 3х фазного двигателя на 220 без потери мощности

Наиболее простым и эффективным способом считается подключение трехфазного двигателя в однофазную сеть путем подключения третьего контакта, соединенного с фазосдвигающим конденсатором.

Наибольшая выходная мощность, которую возможно получить в бытовых условиях, составляет до 70% от номинальной. Такие результаты получаются в случае использования схемы «треугольник». Два контакта в распределительной коробке напрямую соединяются с проводами однофазной сети. Соединение третьего контакта выполняется через рабочий конденсатор с любым из первых двух контактов или проводов сети.

При отсутствии нагрузок, трехфазный двигатель возможно запускать с помощью только рабочего конденсатора. Однако при наличии даже небольшой нагрузки, обороты будут набираться очень медленно, или двигатель вообще не запустится.

В этом случае потребуется дополнительное подключение пускового конденсатора. Он включается буквально на 2-3 секунды, чтобы обороты двигателя могли достигнуть 70% от номинальных.

После этого конденсатор сразу же отключается и разряжается.

Таким образом, при решении вопроса как подключить трехфазный двигатель к сети 220 вольт, необходимо учитывать все факторы. Особое внимание следует уделить конденсаторам, поскольку от их действия зависит работа всей системы.

Подключение трехфазного двигателя

Работа трехфазных электродвигателей считается гораздо более эффективной и производительной, чем однофазных двигателей, рассчитанных на 220 В. Поэтому при наличии трех фаз, рекомендуется подключать соответствующее трехфазное оборудование.

В результате, подключение трехфазного двигателя к трехфазной сети обеспечивает не только экономичную, но и стабильную работу устройства. В схему подключения не требуется добавление каких-либо пусковых устройств, поскольку сразу же после запуска двигателя, в обмотках его статора образуется магнитное поле.

Основным условием нормальной эксплуатации таких устройств является правильное выполнение подключения и соблюдение всех рекомендаций.

Схемы подключения

Магнитное поле, создаваемое тремя обмотками, обеспечивает вращение ротора электродвигателя. Таким образом, электрическая энергия преобразуется в механическую.

Подключение может выполняться двумя основными способами – звездой или треугольником. Каждый из них имеет свои достоинства и недостатки. Схема звезды обеспечивает более плавный пуск агрегата, однако мощность двигателя падает примерно на 30% от номинальной.

В этом случае подключение треугольником имеет определенные преимущества, поскольку потеря мощности отсутствует. Тем не менее, здесь тоже есть своя особенность, связанная с токовой нагрузкой, которая резко возрастает во время пуска. Подобное состояние оказывает негативное влияние на изоляцию проводов.

Изоляция может быть пробита, а двигатель полностью выходит из строя.

Особое внимание следует уделить европейскому оборудованию, укомплектованному электродвигателями, рассчитанными на напряжения 400/690 В. Они рекомендованы к подключению в наши сети 380 вольт только методом треугольника. В случае подключения звездой, такие двигатели сразу же сгорают под нагрузкой. Данный метод применим только к отечественным трехфазным электрическим двигателям.

В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток. Их количество может составлять три или шесть. В первом случае схема подключения изначально предполагается методом звезды. Во втором случае электродвигатель может включаться в трехфазную сеть обоими способами.

То есть, при схеме звезда три конца, расположенные в начале обмоток соединяются в общую скрутку. Противоположные концы подключаются к фазам сети 380 В, от которой поступает питание. При варианте треугольник все концы обмоток последовательно соединяются между собой.

Подключение фаз осуществляется к трем точкам, в которых концы обмоток соединяются между собой.

Использование схемы «звезда-треугольник»

Сравнительно редко используется комбинированная схема подключения, известная как «звезда-треугольник». Она позволяет производить плавный пуск при схеме звезда, а в процессе основной работы включается треугольник, обеспечивающий максимальную мощность агрегата.

Данная схема подключения довольно сложная, требующая использования сразу трех магнитных пускателей, устанавливаемых в соединения обмоток. Первый МП включается в сеть и с концами обмоток. МП-2 и МП-3 соединяются с противоположными концами обмоток.

Подключение треугольником выполняется ко второму пускателю, а подключение звездой – к третьему. Категорически запрещается одновременное включение второго и третьего пускателей. Это приведет к короткому замыканию между фазами, подключенными к ним.

Для предотвращения подобных ситуаций между этими пускателями устанавливается блокировка. Когда включается один МП, у другого происходит размыкание контактов.

Работа всей системы происходит по следующему принципу: одновременно с включением МП-1, включается МП-3, подключенный звездой. После плавного пуска двигателя, через определенный промежуток времени, задаваемый реле, происходит переход в обычный рабочий режим. Далее происходит отключение МП-3 и включение МП-2 по схеме треугольника.

Трехфазный двигатель с магнитным пускателем

Подключение трехфазного двигателя с помощью магнитного пускателя, осуществляется также, как и через автоматический выключатель. Просто эта схема дополняется блоком включения и выключения с соответствующими кнопками ПУСК и СТОП.

Одна нормально замкнутая фаза, подключенная к двигателю, соединяется с кнопкой ПУСК. Во время нажатия происходит смыкание контактов, после чего ток поступает к двигателю. Однако, следует учесть, что в случае отпускания кнопки ПУСК, контакты окажутся разомкнутыми и питание поступать не будет.

Чтобы не допустить этого, магнитный пускатель оборудуется еще одним дополнительным контактным разъемом, так называемым контактом самоподхвата. Он выполняет функцию блокировочного элемента и препятствует разрыву цепи при выключенной кнопке ПУСК.

Окончательно разъединить цепь можно только с помощью кнопки СТОП.

Таким образом, подключение трехфазного двигателя к трехфазной сети может быть выполнено различными способами. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации.

Подключение трехфазного двигателя к однофазной сети

Довольно часто возникает необходимость в нестандартном подключении какого-либо электроприбора, применительно к конкретным условиям. Среди возможных вариантов следует выделить подключение трехфазного двигателя к однофазной сети, широко применяемое в бытовых условиях. Данная схема вполне оправдывает себя, несмотря на некоторое снижение мощности подключаемого оборудования.

Подключение трехфазного двигателя к однофазной сети через конденсатор

Подключить трехфазный двигатель к сети с напряжением 220 вольт довольно просто. В стандартной ситуации, в каждой фазе имеется собственная синусоида. Между ними существует фазовый сдвиг, составляющий 120 градусов. За счет этого обеспечивается плавное вращение в статоре электромагнитного поля.

Каждая волна обладает амплитудой 220 вольт, что и дает возможность подключения трехфазного двигателя к обычной сети.

Получение трех синусоид из одной фазы происходит с помощью обычного конденсатора, при условии соединения обмоток двигателя треугольником.

Объединенные в единое кольцо, они позволяют получать сдвиг по фазе в 45 и 90 градусов, вполне достаточный для не слишком активной работы вала.

Применение конденсатора позволяет достичь мощности двигателя при одной фазе примерно 50-60% от этого же показателя для трех фаз. Однако данная схема подходит не ко всем электродвигателям, поэтому следует выбирать наиболее подходящую модель, например, серии АПН, АО, А, АО2 и другие.

Одним из условий использования конденсатора является необходимость изменения его емкости в соответствии с количеством оборотов.

Практическое выполнение этого условия представляет серьезную проблему, поэтому управление двигателем выполняется в двухступенчатом варианте.

Во время запуска подключается сразу два конденсатора, один из которых отключается после разгона. Остается только рабочий, продолжающий функционировать.

Как подобрать конденсатор для трехфазного двигателя

Пусковой конденсатор должен примерно в 2-2,5 раза превышать емкость рабочего конденсатора. Расчетное напряжение этих устройств обычно в 1,5 раза превышает напряжение сети.

Для сетей 220 вольт наилучшим вариантом будут конденсаторы МБПГ, МБГО, МБГЧ, рабочее напряжение которых составляет 500 вольт и более.

Если конденсаторы включаются лишь на короткое время, возможно применение в схеме электролитических устройств, таких как КЭ-2, К50-3, ЭГЦ-М с минимальным напряжением 450 вольт.

Между собой конденсаторы соединяются последовательно, через минусовые выводы. Далее в схему добавляется резистор, сопротивлением 200-300 Ом, убирающий оставшийся электрический заряд с конденсаторов.

Расчёт конденсатора для трёхфазного двигателя

Нормальная работа трехфазного электродвигателя с пуском через конденсатор зависит от ряда условий. Одним из них является изменение емкости устройства в соответствии с числом оборотов двигателя. Это достигается за счет двухступенчатого управления, состоящего из двух конденсаторов – пускового и рабочего.

Во время пуска происходит замыкание контактов, после чего нажимается кнопка разгона. После того как набрано достаточное количество оборотов, кнопку следует отпустить.

Рассчитать емкость рабочего конденсатора можно по следующей формуле: Ср = 4800х I/U, где Ср является емкостью устройства в мкФ, I – сила тока, потребляемого двигателем в амперах, U – напряжение электрической сети в вольтах.

Данная формула подходит при соединении обмоток двигателя методом треугольника. Если же обмотки двигателя соединены звездой, применяется формула Ср = 2800х I/U.

Таким образом, подключение трехфазного двигателя к однофазной сети имеет свои особенности. Например, емкость пускового и рабочего конденсатора должна соответствовать мощности подключаемого двигателя.

Конструкция трехфазного электродвигателя представляет собой электрическую машину, для нормальной работы которой необходимы трехфазные сети переменного тока. Основными частями такого устройства являются статор и ротор.

Статор оборудован тремя обмотками, сдвинутыми между собой на 120 градусов. Когда в обмотках появляется трехфазное напряжение, на их полюсах происходит образование магнитных потоков.

За счет этих потоков, ротор двигателя начинает вращаться.

Соединение звездой и треугольником обмоток электродвигателя

В промышленном производстве и в быту практикуется широкое применение трехфазных асинхронных двигателей. Они могут быть односкоростными, когда производится соединение звездой и треугольником обмоток электродвигателя или многоскоростными, с возможностью переключения с одной схемы на другую.

Соединение обмоток звездой и треугольником

У всех трехфазных электродвигателей обмотки соединяются по схеме звезды или треугольника.

При подключении обмоток по схема звезда, их концы соединяются в одной точке в нулевом узле. Поэтому, получается еще один дополнительный нулевой вывод. Другие концы обмоток соединяются с фазами сети 380 В.

Соединение треугольником заключается в последовательном соединении обмоток. Конец первой обмотки соединяется с начальным концом второй обмотки и так далее. В конечном итоге, конец третьей обмотки, соединится с началом первой обмотки. Подача трехфазного напряжения осуществляется в каждый узел соединения. Подключение по схеме треугольник отличается отсутствием нулевого провода.

Оба вида соединений получили примерно одинаковое распространение и не имеют между собой значительных отличительных особенностей.

Существует и комбинированное подключение, когда используются оба варианта. Такой способ применяется достаточно часто, его целью является плавный запуск электродвигателя, которого не всегда можно добиться при обычных подключениях. В момент непосредственного пуска, обмотки находятся в положении звезда.

Далее, используется реле, которое обеспечивает переключение в положение треугольника. За счет этого происходит уменьшение пускового тока. Комбинированная схема, чаще всего, применяется во время пуска электродвигателей, обладающих большой мощностью.

Для таких двигателей требуется и значительно больший пусковой ток, превышающий номинальное значение примерно в семь раз.

Электродвигатели могут подключаться и другими способами, когда применяется двойная или тройная звезда. Такие подключения используются для двигателей с двумя и более регулируемыми скоростями.

Запуск трехфазного электродвигателя с переключением со звезды на треугольник

Данный способ применяется для того, чтобы снизить пусковой ток, который может примерно в 5-7 раз превышать номинальный ток электродвигателя.

Агрегаты со слишком большой мощностью имеют такой пусковой ток, при котором легко перегорают предохранители, отключаются автоматы и, целом, значительно понижается напряжение.

При таком уменьшении напряжения снижается накаливание ламп, происходит снижение вращающего момента других электродвигателей, самопроизвольно отключаются магнитные пускатели и контакторы. Поэтому, применяются разные способы, с целью уменьшения пускового тока.

Общим для всех способов является необходимость снижения напряжения в обмотках статора на время непосредственного пуска. Чтобы уменьшить пусковой ток, цепь статора на время пуска может дополняться дросселем, реостатом или автоматическим трансформатором.

Наибольшее распространение получило переключение обмотки из звезды в положение треугольника. В положении звезды напряжение становится в 1,73 раза меньше, чем номинальное, поэтому и ток будет меньше, чем при полном напряжении. Во время пуска частота вращения электродвигателя увеличивается, происходит снижение тока и обмотки переключаются в положение треугольника.

Такое переключение допускается в электродвигателях, имеющих облегченный режим пуска, так как происходит снижение пускового момента, примерно в два раза. Данным способом переключаются те двигатели, которые конструктивно могут соединяться в треугольник. У них должны быть обмотки, способные работать при линейном напряжении сети.

Когда нужно переключаться с треугольника в звезду

Когда необходимо выполнить соединение звездой и треугольником обмоток электродвигателя, следует помнить о возможности переключения с одного вида на другой. Основным вариантом является схема переключения звезда треугольник. Однако, при необходимости, возможен и обратный вариант.

Всем известно, что у электродвигателей, загруженных не полностью, происходит снижение коэффициента мощности. Поэтому, такие двигатели желательно заменять устройствами с меньшей мощностью. Однако, при невозможности замены и большом запасе мощности, производится переключение треугольник-звезда. Ток в цепи статора не должен превышать номинала, иначе произойдет перегрев электродвигателя.

Схемы подключения трехфазного двигателя. К 3-х и 1-о фазной сети

Схемы подключения трехфазного двигателя — двигатели, рассчитанные на работу от трехфазной сети, имеют производительность гораздо выше, чем однофазные моторы на 220 вольт.

Поэтому, если в рабочем помещении проведены три фазы переменного тока, то оборудование необходимо монтировать с учетом подключения к трем фазам. В итоге, трехфазный двигатель, подключенный к сети, дает экономию энергии, стабильную эксплуатацию устройства.

Не нужно подключать дополнительные элементы для запуска. Единственным условием хорошей работы устройства является безошибочное подключение и монтаж схемы, с соблюдением правил.

Схемы подключения трехфазного двигателя

Из множества созданных схем специалистами для монтажа асинхронного двигателя практически используют два метода.

1. Схема звезды.
2. Схема треугольника.

Названия схем даны по методу подключения обмоток в питающую сеть. Чтобы на электродвигателе определить, по какой схеме он подключен, необходимо посмотреть указанные данные на металлической табличке, которая установлена на корпусе двигателя.

Даже на старых образцах моторов можно определить метод соединения статорных обмоток, а также напряжение сети. Эта информация будет верна, если двигатель уже был в эксплуатации, и никаких проблем в работе нет. Но иногда нужно произвести электрические измерения.

Схемы подключения трехфазного двигателя звездой дают возможность плавного запуска мотора, но мощность оказывается меньше номинального значения на 30%. Поэтому по мощности схема треугольника остается в выигрыше.

Существует особенность по нагрузке тока. Сила тока резко увеличивается при запуске, это отрицательно сказывается на обмотке статора. Возрастает выделяемое тепло, которое губительно воздействует на изоляцию обмотки.

Это приводит к нарушению изоляции, и поломке электродвигателя.

Много европейских устройств, поставленных на отечественный рынок, имеют в комплекте европейские электродвигатели, действующие с напряжением от 400 до 690 В.

Такие 3-фазные моторы необходимо монтировать в сеть 380 вольт отечественного напряжения только по треугольной схеме обмоток статора. В противном случае моторы сразу будут выходить из строя. Российские моторы на три фазы подключаются по звезде.

Изредка производится монтаж схемы треугольника для получения от двигателя наибольшей мощности, применяемой в специальных видах промышленного оборудования.

Изготовители сегодня дают возможность подключать трехфазные электромоторы по любой схеме. Если в монтажной коробке три конца, то произведена заводская схема звезды. А если есть шесть выводов, то мотор можно подключать по любой схеме.

При монтаже по звезде нужно три вывода начал обмоток объединить в один узел. Остальные три вывода подать на фазное питание напряжением 380 вольт. В схеме треугольника концы обмоток соединяют последовательно по порядку между собой.

Фазное питание подсоединяется к точкам узлов концов обмоток.

Проверка схемы подключения мотора

Представим худший вариант выполненного подключения обмоток, когда на заводе не обозначены выводы проводов, сборка схемы проведена во внутренней части корпуса мотора, и наружу выведен один кабель. В этом случае необходимо разобрать электродвигатель, снять крышки, разобрать внутреннюю часть, разобраться с проводами.

Метод определения фаз статора

После разъединения выводных концов проводов применяют мультиметр для измерения сопротивления. Один щуп подключают к любому проводу, другой подносят по очереди ко всем выводам проводов, пока не найдется вывод, принадлежащий к обмотке первого провода. Аналогично поступают на остальных выводах.  Нужно помнить, что обязательна маркировка проводов, любым способом.

Если в наличии нет мультиметра или другого прибора, то используют самодельные пробники, сделанные из лампочки, проводов и батарейки.

Полярность обмоток

Чтобы найти и определить полярность обмоток, необходимо применить некоторые приемы:

• Подключить импульсный постоянный ток.
• Подключить переменный источник тока.

Оба способа действуют по принципу подачи напряжения на одну катушку и его трансформации по магнитопроводу сердечника.

Как проверить полярность обмоток батарейкой и тестером

На контакты одной обмотки подключают вольтметр с повышенной чувствительностью, который может отреагировать на импульс. К другой катушке быстро присоединяют напряжение одним полюсом.

В момент подключения контролируют отклонение стрелки вольтметра. Если стрелка двигается к плюсу, то полярность совпала с другой обмоткой. При размыкании контакта стрелка пойдет к минусу.

Для 3-й обмотки опыт повторяют.

Путем изменения выводов на другую обмотку при включении батарейки определяют, насколько правильно сделана маркировка концов обмоток статора.

Проверка переменным током

Две любые обмотки включают параллельно концами к мультиметру. На третью обмотку включают напряжение. Смотрят, что показывает вольтметр: если полярность обеих обмоток совпадает, то вольтметр покажет величину напряжения, если полярности разные, то покажет ноль.

Полярность 3-й фазы определяют путем переключения вольтметра, изменения положения трансформатора на другую обмотку. Далее, производят контрольные измерения.

Схема звезды

Этот тип схемы подключения двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы.

Такую схему создают после того, как проверена полярность обмоток статора в электромоторе. Однофазное напряжение на 220В через автомат подают фазу на начала 2-х обмоток. К одной врезают в разрыв конденсаторы: рабочие и пусковые. На третий конец звезды подводят нулевой провод питания.

Величину емкости конденсаторов (рабочих) определяют по эмпирической формуле:

С = (2800 · I) / U

Для схемы запуска емкость повышают в 3 раза. В работе мотора при нагрузке нужно контролировать величину токов обмоток измерениями, корректировать емкость конденсаторов по средней нагрузке привода механизма. В противном случае произойдет, перегрев устройства, пробой изоляции.

https://www.youtube.com/watch?v=ukl8nctMpTI

Подключение мотора в работу хорошо делать через выключатель ПНВС, как показано на рисунке.

В нем уже сделана пара контактов замыкания, которые вместе подают напряжение на 2 схемы путем кнопки «Пуск». Во время отпускания кнопки цепь разрывается. Такой контакт применяют для запуска цепи. Полное отключение питания делают, нажав на «Стоп».

Схема треугольника

Схемы подключения трехфазного двигателя треугольником является повтором прошлого варианта в запуске, но имеет отличие методом включения обмоток статора.

Токи, проходящие в них, больше значений цепи звезды. Рабочие емкости конденсаторов нуждаются в повышенных номинальных емкостях. Они рассчитываются по формуле:

С = (4800 · I) / U

Правильность выбора емкостей также вычисляют по отношению токов в катушках статора путем измерения с нагрузкой.

Двигатель с магнитным пускателем

Трехфазный электродвигатель работает через магнитный пускатель по аналогичной схеме с автоматическим выключателем. Такая схема имеет дополнительно блок включения и выключения, с кнопками Пуск и Стоп.

Одна фаза, нормально замкнутая, соединенная с мотором, подключается к кнопке Пуск. При ее нажатии контакты замыкаются, ток идет к электромотору. Необходимо учитывать, что при отпускании кнопки Пуск, клеммы разомкнутся, питание отключится.

Чтобы такой ситуации не произошло, магнитный пускатель дополнительно оборудуют вспомогательными контактами, которые называют самоподхватом. Они блокируют цепь, не дают ей разорваться при отпущенной кнопке Пуск.

Выключить питание можно кнопкой Стоп.

В результате, 3-фазный электромотор можно подключать к сети трехфазного напряжения совершенно разными методами, которые выбираются по модели и типу устройства, условиям эксплуатации.

Подключение мотора от автомата

Общий вариант такой схемы подключения выглядит как на рисунке:

Здесь показан автомат защиты, который выключает напряжение питания электромотора при чрезмерной нагрузке по току, и по короткому замыканию. Автоматический защитный выключатель – это простой 3-полюсный выключатель с тепловой автоматической характеристикой нагруженности.

Для примерного расчета и оценки нужного тока тепловой защиты, необходимо мощность по номиналу двигателя, рассчитанного на работу от трех фаз, увеличить в два раза. Номинальная мощность указывается на металлической табличке на корпусе мотора.

Такие схемы подключения трехфазного двигателя вполне могут работать, если нет других вариантов подключения. Длительность работы нельзя прогнозировать. Это тоже самое, если скрутить алюминиевый провод с медным. Никогда не знаешь, через какое время скрутка сгорит.

При применении такой схемы нужно аккуратно выбрать ток для автомата, который должен быть на 20% больше тока работы мотора. Свойства тепловой защиты выбрать с запасом, чтобы при запуске не сработала блокировка.

Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера. Преимуществом этой схемы соединения мотора является низкая стоимость, простое исполнение и техобслуживание. Если электродвигатель в одном числе, и работает полную смену, то есть следующие недостатки:

  • Нельзя отрегулировать тепловой ток сработки автоматического выключателя. Чтобы защитить электромотор, ток защитного отключения автомата устанавливают на 20% больше рабочего тока по номиналу мотора. Ток электродвигателя нужно через определенное время замерять клещами, настраивать ток тепловой защиты. Но у простого автоматического выключателя нет возможности настроить ток.
  • Нельзя дистанционно выключить и включить электродвигатель.
  • Похожие темы:

    Подключение трехфазного двигателя к сети 220 и 380

    Для работы разнообразных электрических устройств используются асинхронные двигатели, которые просты и надежны в работе и монтаже – их легко можно установить своими руками. Подключение трехфазного двигателя к однофазной и трехфазной сети осуществляется звездой и треугольником.

    Общая информация

    Асинхронный трехфазный двигатель состоит из следующих основных частей: обмоток, подвижного ротора и неподвижного статора. Обмотки могут быть соединены межу собой, а к их открытым контактам подключается основное питание сети или последовательно, т. е. конец одной обмотки соединен с началом следующей.

    Фото – схема звезда наглядно

    Подключение может осуществляться к однофазной, двухфазной и трехфазной сети, при этом двигатели в основном рассчитаны на два напряжения – 220/380 В. Переключение типа соединения обмоток позволяет менять номинальное напряжение.

    Несмотря на то, что в принципе подключение двигателя возможно и к однофазной сети, оно редко используется, т. к. конденсатор снижает эффективность устройства. И от номинальной мощности потребитель получает приблизительно 60 %.

    Но если иного варианта нет, то нужно подключать схемой “треугольник”, тогда перегрузка мотора будет меньшей, чем при звезде.

    https://www.youtube.com/watch?v=ucV9ejoR-Bk

    Перед подсоединением обмоток в однофазной сети нужно обязательно проверить емкость конденсатора, который будет использоваться. Для этого нужна формула:

    C мкф = P Вт /10

    Если исходные параметры конденсатора неизвестны, то рекомендуется использовать пусковую модель, которая может «подстроиться» под работу двигателя и контролировать его обороты.

    Также часто для работы устройства с короткозамкнутым ротором используют реле тока или стандартный магнитный пускатель. Эта деталь схемы позволяет обеспечить полную автоматизацию рабочего процесса.

    Причем для бытовых моделей (с мощностью от 500 в до 1 кВт) можно использовать пускатель от стиралки или холодильника, в дальнейшем увеличивая емкость конденсатора или изменяя обмотку реле.

    Видео: как подключать трехфазный двигатель в 220В

    Способы подключения

    При однофазной сети необходимо сдвигать фазу при помощи специальных деталей, чаще всего это конденсатор. Но в некоторых условиях его заменят тиристор.

    Если установить тиристорный ключ в корпус электродвигателя, то при закрытом положении он не только сдвигает фазы, но и значительно увеличивает пусковой момент. Это способствует повышению КПД до 70 %, что является прекрасным показателем для такого подсоединения.

    Используя только эту деталь можно отказаться от применения вентилятора и основных типов конденсаторов – пускового и рабочего.

    Но и это подключение не является идеальным. При работе ЭД с тиристором потребляется на 30 % больше электрического тока, чем с конденсаторами. Поэтому такой вариант применяется только на производстве или при отсутствии выбора.

    Рассмотрим, как производится подключение трехфазного асинхронного двигателя к трехфазной сети, если используется схема треугольник.

    Фото – простой треугольник

    На чертеже указаны два конденсатора – пусковой и рабочий, кнопка пуска, диод, сигнализирующий о начале работы и резисторная система торможения и полной остановки. Также в данном случае применяется переключатель, который имеет три позиции: «удержание», «старт», «стоп».

    При установке рукоятки в первом положении к контактам начинает поступать электрический ток. Здесь важно сразу же после того, как двигатель заведется перейти в режим «старт», иначе обмотки могут загореться из-за перегрузки. Во время окончания рабочего процесса рукоятка фиксируется в точке «стоп».

    Фото – подключение при помощи конденсаторов электролитов

    Иногда при подключении в фазу удобнее останавливать трехфазный двигатель за счет энергии, которая запасена в конденсаторе. Иногда вместо них используются электролиты, но это более сложный вариант установки устройства.

    В этом случае очень важны параметры конденсатора, в частности, его емкость – от неё зависит торможение и время полной остановки движущихся частей. Также в этой схеме используются выпрямляющие диоды и резисторы. Они помогут при необходимости ускорить остановку двигателя.

    Но их технические характеристики должны иметь следующий вид:

  • У резистора сопротивление не должно превышать 7 кОм;
  • Конденсатор должен выдерживать напряжение 350 вольт и выше (в зависимости от напряжения сети).
  • Имея под рукой схему с остановки мотора, при помощи конденсатора можно осуществить подключение с реверсом.

    Главным отличием от предыдущего чертежа является модернизация трехфазного двухскоростного двигателя за счет двойного переключателя и магнитного пускового реле.

    Переключатель также как и в предыдущих вариантах имеет несколько основных позиций, но фиксируется только на «старт» и «стоп» – это очень важно.

    Фото – реверс при помощи пускателя

    Реверсивное подключение двигателя возможно также через магнитный пускатель. В таком случае нужно изменить порядок очередности фаз статора, тогда можно будет обеспечить перемену направления вращения.

    Чтобы это сделать, нужно сразу после нажатия на кнопку пускателя «Вперед», нажать кнопку «Назад». После этого блокировочный контакт отключит катушку переднего хода и переведет питание на задний – направление вращения изменится.

    Но нужно быть внимательным при подключении пускателя – если перепутать местами контакты, то при переходе произойдет не реверсирование, а короткое замыкание.

    Еще одним необычным способом, как можно подключить трехфазный двигатель, является вариант с использованием четырехполюсного УЗО. Её особенностью является возможность использования без нуля сети.

  • В большинстве случаев, ЭД требуется только 3 фазы и 1 провод заземления, ноль необязателен, т. к. нагрузка симметрична;
  • Принцип подключения таков: фазы питания отводим к автоматическому выключателю, а ноль соединяем прямо с клеммой УЗО – N, после этого её ни к чему не подключаем;
  • От автомата кабели также аналогично подсоединяются к УЗО. Заземляем двигатель и все.
  • Как подключить трехфазный электродвигатель в сеть 220в

    Промышленность выпускает электродвигатели, предназначенные для работы в различных условиях, в том числе для сети 220 вольт.

    Однако у многих людей сохранились трёхфазные асинхронные электродвигатели 380В (люди старшего поколения помнят такое явление, как «принёс домой с работы»). Такие аппараты нельзя включать в розетку.

    Для использования таких приборов в домашних условиях и подключении вместо 380 220 вольт схема сборки и подключения электромашины нуждаются в доработке – переключении обмоток и подключении конденсаторов.

    Подключение промышленного двигателя к однофазной сети

    Принцип действия трёхфазного асинхронного электродвигателя

    Обмотки в статоре такой машины намотаны со сдвигом в 120°. При подаче на них трёхфазного напряжения появляется вращающееся магнитное поле, приводящее в движение ротор электромашины.

    При подключении к трёхфазной электромашине к сети однофазного напряжения 220 вольт вместо вращающегося поля появляется пульсирующее. Для приведения в движение электромотора в однофазной сети пульсирующее поле преобразовывается во вращающееся.

    Справка. В аппаратах, изготовленных для работы в сети 220 вольт, для этого служат пусковые обмотки или особенности конструкции статора.

    При включении в сеть двигателя 380 на 220 к нему подключаются фазосдвигающие ёмкости. Запуск трехфазного двигателя с 220 без конденсаторов возможен приведением во вращение ротора. Это создаст сдвиг магнитного поля, и электромашина, потеряв в мощности, продолжит работать. Так включают циркулярки и другие подобные механизмы с низким пусковым моментом.

    Начала и концы обмоток

    В каждой обмотке электромашины есть начало и конец. Они выбираются условно, независимо от направления намотки, однако должны соответствовать направлению намотки остальных катушек.

    Соединение катушек при подключении трехфазного двигателя к сети 220В

    Большинство электродвигателей предназначены для работы с линейным напряжением 0,4кВ. В этих машинах обмотки включены «звездой». Это значит, что концы обмоток соединены вместе, а к началам подключается 3 фазы. Напряжение на каждой обмотке составляет 220В.

    При включении в сеть с линейным напряжением 220В применяется соединение «треугольник». При этом начало следующей обмотки подключается к концу предыдущей.

    Некоторые аппараты мощностью более 30 кВт изготавливаются для сети с линейным напряжением 660В. В таких аппаратах при включении в сеть 0,4кВ обмотки подключаются «треугольником».

    Обмотки трёхфазной машины при включении от 220 вольт соединяются различными способами. Синхронная скорость и скорость вращения от этого не меняются.

    Соединение звездой

    При включении трехфазного электродвигателя на 220 вольт проще всего применить имеющееся соединение «звезда». К двум выводам подаётся питание 220В, а к третьему оно подаётся через фазосдвигающую ёмкость. Однако при этом на каждой из катушек оказывается не 220В, а 110, что приведёт к падению мощности до 30%. Поэтому такое подключение на практике не применяется.

    Соединение треугольником

    Самая распространенная  схема подключения трехфазного электродвигателя к сети 220 – треугольник. При этом питание подаётся на одну сторону треугольника, а параллельно другой стороне подключаются конденсаторы. Реверс осуществляется изменением стороны треугольника, на которой находится ёмкость.

    Подключение звездой и треугольником

    Изменение схемы подключения обмоток трёхфазного электродвигателя на треугольник

    Самое сложное при подключении трёхфазной электромашины к бытовой сети 220 вольт – соединить её обмотки треугольником.

    Изменение соединений на клеммнике

    При подключении к сети 220 вольт проще всего эта операция выполняется, если провода подключены к клеммнику. На нём в два ряда установлены шесть болтов.

    Соединение производится попарно, кусочками проволоки или перемычками, идущими в комплекте с двигателем.

    Соединение выводов на клеммнике звездой и треугольником

    Сборка треугольника, согласно маркировке выводов

    Если клеммник отсутствует, а на выводах есть маркировка, то задача также простая. Обмотки маркируются С1-С4, С2-С5, С3-С6, где С1, С2, С3 – начала обмоток, и концы соединяются С1-С6, С2-С4, С3-С5.

    Интересно. В старых электродвигателях импортного производства вывода маркируются A-X, B-Y, C-Z, а современные обозначения: U1-U2, V1-V2, W1-W2.

    Что делать, если есть только три вывода

    Сложнее всего собрать схему подключения со «звезды» на «треугольник» в электромашинах, соединение обмоток которых находится внутри корпуса. Эта операция выполняется при полной разборке электромашины. Для переключения обмоток на треугольник необходимо:

  • разобрать электродвигатель;
  • найти внутри место соединения обмоток и рассоединить его;
  • к концам обмоток припаять отрезки гибких проводов и вывести их наружу;
  • собрать аппарат;
  • попарно вызвонить вывода катушек;
  • соединить старый вывод одной катушки с новым проводом следующей;
  • операцию повторить ещё два раза.
  • Соединение при отсутствии маркировки

    Если маркировки нет, а из корпуса выходит шесть концов, то необходимо определить начало и конец каждой обмотки:

  • Тестером попарно определить вывода, относящиеся к каждой обмотке. Пометить пары;
  • В одной из пар выбрать провод. Отметить его как начало обмотки, оставшийся отмечается как конец;
  • Соединить отмеченную обмотку последовательно с другой парой проводов;
  • Подключить к соединённым катушкам напряжение ~12-36В;
  • Замерить вольтметром напряжение на оставшейся паре. Вместо вольтметра можно использовать контрольную лампочку;
  • Статор с обмотками представляет собой трансформатор и при согласованном соединении вольтметр покажет наличие напряжения. В этом случае во второй паре проводов отмечаются начало и конец катушки. При отсутствии напряжения изменить полярность подключения одной из пар выводов и повторить п.п. 4-5;
  • Соединить одну из отмеченных пар с оставшейся неразмеченной и повторить п.п. 3-6.
  • После определения начала и концов во всех обмотках, они соединяются треугольником.

    Подключение фазосдвигающих конденсаторов

    Для нормальной работы электромашине необходимы пусковые и рабочие ёмкости.

    Выбор номинала рабочего конденсатора

    Есть разные формулы для определения необходимой ёмкости рабочего конденсатора, учитывающие номинальный ток, cosφ и другие параметры, но чаще всего просто берётся 7мкФ на 100Вт или 70мкФ на 1кВт мощности.

    После сборки схемы целесообразно включить последовательно с машиной амперметр и, увеличивая и уменьшая рабочую ёмкость, добиться минимальной величины показаний прибора.

    Выбор и подключение пусковых конденсаторов

    Пуск с использованием только рабочих фазосдвигающих конденсаторов длительный, а при значительном моменте на валу машины невозможен.

    Для облегчения пуска и уменьшения его длительности на период разгона электромашины параллельно рабочим подключаются пусковые ёмкости. Они выбираются в 2-3 раза больше, чем рабочие. Номинальное напряжение также более 300В.

    Пуск происходит несколько секунд, поэтому допускается подсоединение электролитических конденсаторов.

    Как подключить трехфазный двигатель на 220 вольт с использованием пусковых конденсаторов

    Схема запуска должна предусматривать отключение пусковых ёмкостей после пуска электромашины. Если этого не сделать, то машина начнёт перегреваться. Для этого есть разные способы:

    • Отключение пусковых ёмкостей с помощью реле времени. Задержка отключения составляет несколько секунд и подбирается опытным путём;
    • Применение универсального переключателя (ключа УП) на 3 положения. Его диаграмма включения собирается таким образом, чтобы в первом положении все контакты были разомкнуты, во втором замыкались два: питание и пусковые конденсаторы, а в третьем – только питание. Для реверсивной работы используется ключ на 5 положений;
    • Специальная кнопочная станция – ПНВС (пускатель нажимной с пусковым контактом). В этих конструкциях есть 3 контакта. При нажатии «Пуск» замыкаются все, но крайние фиксируются, а средний нужен, чтобы запустить машину, и отпадает после отпускания кнопки. Нажатие на кнопку «Стоп» отключает зафиксированные контакты.

    Как переделать схему вращения в реверсивную

    Для реверса электродвигателя необходимо изменить направление вращения магнитного поля. При запуске мотора без конденсаторов ему предварительно придаётся вручную необходимое направление вращения, а в конденсаторной схеме производится переключение ёмкости с нулевого провода на фазный. Это производится тумблером, переключателем или пускателями.

    Реверс конденсаторного двигателя

    Важно! Пусковые конденсаторы подсоединяются параллельно рабочим и переключаются при изменении направления вращения одновременно с ними.

    Электронные преобразователи бытового напряжения в промышленное трёхфазное 380В

    Эти трёхфазные инверторы применяются для использования в бытовой сети трехфазных двигателей. Электродвигатели подключаются напрямую к выходу аппарата.

    Необходимая мощность преобразователя выбирается, в зависимости от тока электрической машины. Есть три режима работы таких приборов:

    • Пусковой. Допускает кратковременное (до 5 секунд) двукратное превышение мощности. Этого достаточно для запуска электродвигателя;
    • Рабочий, или номинальный;
    • Перегрузочный. Допускает в течение получаса превышение тока в 1,3 раза.

    Преимущества инвертора 220 в 380:

    • подключение не переделанных трёхфазных электромашин на 220 вольт;
    • получение полной мощности и момента электромашины без потерь;
    • экономия электроэнергии;
    • плавный запуск и регулировка оборотов.

    Несмотря на появление электронных преобразователей, конденсаторные схемы включения трёхфазных электродвигателей продолжают применяться в быту и небольших мастерских.

    Видео

    Подключение трехфазного двигателя к однофазной сети

    Подключение трехфазного двигателя к однофазной сети не так сложно, как может показаться на первый взгляд. Среди разнообразных схем подключения в однофазную сеть трехфазных электродвигателей, простейшей считается схема включения его третьей обмотки, через сдвигающего фазу конденсатор.

    КПД электродвигателя в этом случае уменьшается примерно до 60% от его номинальной мощности, по сравнению если бы он был подключен к штатной трехфазной сети.

    Большинство трехфазных двигателей, при включении в электросеть, имеющую одну фазу, работают нестабильно. Среди подобных, к примеру, двигатель серии МА у которого короткозамкнутый ротор. Поэтому выбирая трехфазный электродвигатель для подключения по схеме к однофазной сети, необходимо смотреть с сторону двигателей серий УАД , АПН, АО, А, АО2, АОЛ и другие.

    Для того чтобы электромотор хорошо работал с подключенным конденсатором, нужно, чтобы его емкость изменялась в зависимости от количества оборотов. В реальности, данное требование трудно реализовать.

    В связи с этим применяют схему подключения с двумя ступенями управления. Во время запуска трехфазного двигателя включают 2 конденсатора.

    После того как электродвигатель наберет обороты, оставляют только один конденсатор, а другой отключают.

    Расчёт конденсатора для подключения трехфазного двигателя

    Для того чтобы запустить электродвигатель нужно нажать и удерживать кнопку SA1. После полного набора оборотов кнопку можно отпустить, при этом контакты SA1.2 расцепляются, а SA1.1, SA1.3 должны остаться замкнутыми. Их расцепляют, когда необходимо остановить электродвигатель. Реверсное движение трехфазного электродвигателя осуществляется путем переключения SB1.

    Для определения необходимой емкости Cр используют следующую формулу:

    Ср = (4800*I)/U

    где U = 220В, I – ток потребления двигателем, Ср – измеряется в микрофарадах.

    Ток потребления можно высчитать по формуле:

    I = P / (1.73*U*КПД*cosф)

    Все данные для этого расчета можно узнать из паспорта двигателя.

    Электроемкость Сп должна быть примерно в два раза больше Ср. Самыми распространенным являются бумажные конденсаторы серии МБГЧ, МБПГ, МБГО. Напряжение их должно быть не менее 500В.

    При отсутствии бумажного конденсатора для пуска (Сп), допускается применение электролитических серии КЭ2, ЭГПМ, К503 с напряжением более 500В. Для надежной работы их необходимо соединить по следующей схеме:

    Подключение сопротивления R1 в схеме нужно для разряда остатка энергии в конденсаторах после пуска двигателя. При такой схеме подключения, их суммарная емкость будет равна Сп = (С1+С2)/2.

    Если трехфазный электромотор эксплуатируется не на полную мощь (часто крутится на холостых оборотах), то емкость Ср нужно уменьшить. Это связано с повышенным протеканием тока ( до 30%) по обмотке трехфазного электродвигателя на холостом ходу.

     Источник: “Домашний электрик и не только…”, Пестриков В.М.

    Запуск 3х фазного двигателя от 220 Вольт

    Запуск 3х фазного двигателя от 220 Вольт

    Часто возникает необходимость в подсобном хозяйстве подключать трехфазный электродвигатель, а есть только однофазная сеть (220 В). Ничего, дело поправимое. Только придется подключить к двигателю конденсатор, и он заработает.

    Читаем подробно далее

    Емкость применяемого конденсатора, зависит от мощности электродвигателя и рассчитывается по формуле

    С = 66·Рном ,

    где С – емкость конденсатора, мкФ,   Рном – номинальная мощность электродвигателя, кВт.

    То есть можно считать, что на каждые 100 Вт мощности трехфазного электродвигателя требуется около 7 мкФ электрической емкости.

    Например, для электродвигателя мощностью 600 Вт нужен конденсатор емкостью 42 мкФ. Конденсатор такой емкости можно собрать из нескольких параллельно соединенных конденсаторов меньшей емкости:

    Cобщ = C1 + C1 + … + Сn

    Итак, суммарная емкость конденсаторов для двигателя мощностью 600 Вт должна быть не менее 42 мкФ. Необходимо помнить, что подойдут конденсаторы, рабочее напряжение которых в 1,5 раза больше напряжения в однофазной сети.

    В качестве рабочих конденсаторов могут быть использованы конденсаторы типа КБГ, МБГЧ, БГТ. При отсутствии таких конденсаторов применяют и электролитические конденсаторы. В этом случае корпуса конденсаторов электролитических соединяются между собой и хорошо изолируются.

    Отметим, что частота вращения трехфазного электродвигателя, работающего от однофазной сети, почти не изменяется по сравнению с частотой вращения двигателя в трехфазном режиме.

    Большинство трехфазных электродвигателей подключают в однофазную сеть по схеме «треугольник» (рис. 1). Мощность, развиваемая трехфазным электродвигателем, включенным по схеме «треугольник», составляет 70-75% его номинальной мощности.

    Рис 1.   Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник»

    Трехфазный электродвигатель подключают так же по схеме «звезда» (рис. 2).

    Рис. 2.   Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «звезда»

    Чтобы произвести подключение по схеме «звезда», необходимо две фазные обмотки электродвигателя подключить непосредственно в однофазную сеть (220 В), а третью – через рабочий конденсатор (Ср) к любому из двух проводов сети.

    Для пуска трехфазного электродвигателя небольшой мощности обычно достаточно только рабочего конденсатора, но при мощности больше 1,5 кВт электродвигатель либо не запускается, либо очень медленно набирает обороты, поэтому необходимо применять еще пусковой конденсатор (Сп). Емкость пускового конденсатора в 2,5-3 раза больше емкости рабочего конденсатора. В качестве пусковых конденсаторов лучше всего применяют электролитические конденсаторы типаЭП или такого же типа, как и рабочие конденсаторы.

    Схема подключения трехфазного электродвигателя с пусковым конденсатором Сп показана на рис. 3.

    Рис. 3.   Схема подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором Сп

    Нужно запомнить: пусковые конденсаторы включают только на время запуска трехфазного двигателя, подключенного к однофазной сети на 2-3 с, а затем пусковой конденсатор отключают и разряжают.

    Обычно выводы статорных обмоток электродвигателей маркируют металлическими или картонными бирками с обозначением начал и концов обмоток. Если же бирок по каким-либо причинам не окажется, поступают следующим образом.

    Сначала определяют принадлежность проводов к отдельным фазам статорной обмотки.

    Для этого возьмите любой из 6 наружных выводов электродвигателя и присоедините его к какому-либо источнику питания, а второй вывод источника подсоедините к контрольной лампочке и вторым проводом от лампы поочередно прикоснитесь к оставшимся 5 выводам статорной обмотки, пока лампочка не загорится. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Условно пометим бирками начало первого провода С1, а его конец – С4. Аналогично найдем начало и конец второй обмотки и обозначим их C2 и C5, а начало и конец третьей – СЗ и С6.

    Следующим и основным этапом будет определение начала и конца статорных обмоток. Для этого воспользуемся способом подбора, который применяется для электродвигателей мощностью до 5 кВт.

    Соединим все начала фазных обмоток электродвигателя согласно ранее присоединенным биркам в одну точку (используя схему «звезда») и включим двигатель в однофазную сеть с использованием конденсаторов.

    Если двигатель без сильного гудения сразу наберет номинальную частоту вращения, это означает, что в общую точку попали все начала или все концы обмотки.

    Если при включении двигатель сильно гудит и ротор не может набрать номинальную частоту вращения, то в первой обмотке поменяйте местами выводы С1 и С4.

    Если это не помогает, концы первой обмотки верните в первоначальное положение и теперь уже выводы C2 и С5 поменяйте местами. То же самое сделайте в отношении третьей пары, если двигатель продолжает гудеть.

    При определении начал и концов фазных обмоток статора электродвигателя строго придерживайтесь правил техники безопасности. В частности, прикасаясь к зажимам статорной обмотки, провода держите только за изолированную часть. Это необходимо делать еще и потому, что электродвигатель имеет общий стальной магнитопровод и на зажимах других обмоток может появиться большое напряжение.

    Для изменения направления вращения ротора трехфазного электродвигателя, включенного в однофазную сеть по схеме «треугольник» (см. рис. 1), достаточно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй фазной обмотки статора (V).

    Чтобы изменить направление вращения трехфазного электродвигателя, включенного в однофазную сеть по схеме «звезда» (см. рис.

     2, б), нужно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй обмотки (V).

    Направление вращения однофазного двигателя изменяют, поменяв подключение концов пусковой обмотки П1 и П2 (рис. 4).

    При проверке технического состояния электродвигателей нередко можно с огорчением заметить, что после продолжительной работы появляются посторонний шум и вибрация, а ротор трудно повернуть вручную.

    Причиной этого может быть плохое состояние подшипников: беговые дорожки покрыты ржавчиной, глубокими царапинами и вмятинами, повреждены отдельные шарики и сепаратор. Во всех случаях необходимо детально осмотреть электродвигатель и устранить имеющиеся неисправности.

    При незначительном повреждении достаточно промыть подшипники бензином, смазать их, очистить корпус двигателя от грязи и пыли.

    Чтобы заменить поврежденные подшипники, удалите их винтовым съемником с вала и промойте бензином место посадки подшипника. Новый подшипник нагрейте в масляной ванне до 80° С.

    Уприте металлическую трубу, внутренний диаметр которой немного превышает диаметр вала, во внутреннее кольцо подшипника и легкими ударами молотка по трубе насадите подшипник на вал электродвигателя. После этого заполните подшипник на 2/3 объема смазкой.

    Сборку производите в обратном порядке. В правильно собранном электродвигателе ротор должен вращаться без стука и вибрации.

    Рис. 4.   Изменение направления вращения ротора однофазного двигателя переключением пусковой обмотки

    Подключение трехфазного двигателя к однофазной сети через частотник

    Практически вся генерируемая электроэнергия в мировом хозяйстве трехфазная. В быту, где в больших мощностях нет особой необходимости, для безопасности людей, простоты управления и удешевления применяется однофазная сеть. Что делать, если при определенных обстоятельствах возникает необходимость приспособить однополюсную бытовую розетку для питания техники, рассчитанной на трехфазное напряжение? Скажем, для подключения циркулярной пилы, насоса, наждачного или сверлильного станка.

    Прежде всего, необходимо уточнить какого рода сама нагрузка. Электродвигатели бывают постоянного/переменного токаи, в то же время, делятся на синхронные/асинхронные. При этом на втором различии основываетсяэлектромагнитный принцип возникновения вращения, а постоянный/переменный тип тока используется для работы электродвигателя.

    Таким образом, двигатель постоянного тока вполне может быть асинхронным. Тогда достаточно преобразовать напряжение 220 В переменного тока в 380 В постоянного тока.

    Схема подключения его очень простая:

    Читая чертёж слева направо, видим, что имеется однофазная сеть с переменным током. Приведение напряжения 220 к 380 В осуществляется с помощью повышающего трансформатора и мостового выпрямителя. Это делается путем выбора соответствующего соотношения обмоток каждой стороны преобразующего трансформатора.

    При монтаже выпрямителя необходимо учесть полярность на выходе. Есть риск повредить конденсатор и считайте, повезёт, если этим дело ограничится. Схема мостового выпрямителя, наиболее популярная, по ней выполнена почти все выпущенные трансформаторные блоки питания. Сложно? Есть много других способов подключения.

    Схема регулирования трёхфазного двигателя, подключенного в однофазную сеть через частотный преобразователь

    • UZ –частотник;
    • L — фаза;
    • N — нулевая фаза;
    • u, v, w — выводы для включения электродвигателя.Реле времени:K1 — пуск электродвигателя;
    • K2 — реверс;
    • K3, K4 – II и III скорости.

    Принцип построения всех преобразователей частоты одинаковый. Сначала посредством выпрямителя преобразовывается напряжение переменноевпостоянное. Далее управляемым приводом создаются разно частотные импульсы.

    Импульсы, распределенные по трем фазам асинхронного двигателя, порождают вращающееся магнитоэлектрическое поле статора. Регулировка частотным преобразователем может осуществляться либо с его съемной панели, либо с помощью аналоговых входов.

    Существует несколько способов подключения фаз двигателя. Классические варианты соединения фаз: «звезда» и треугольник». «Звезда» — это соединение, при коем концы фазных обмоток соединяются в один узел. Подключение фаз в «треугольник», это когда конец одной фазы является началом следующей.

    Но самым распространённым способом плавного пуска асинхронного двигателя считается вариант «звезда-треугольник».

    Схема подключения трехфазного двигателя к 220В через преобразователя частоты по принципу «звезда – треугольник»

    Для уменьшения пусковых токов и момента (P движка больше 5 кВт) часто используется комбинированный способ.

    При пуске напряжение на статор подаётся по принципу «звезда», по мере разгона мотора до номинального значения скорости, питание переключается на «треугольник». В схеме задействовано реле времени, выполняющее переключение. При этом на нём выставляется продолжительность разгона, чтобы движок успел набрать обороты по номиналу.

    Заключение

    Пусковые токи асинхронных двигателей очень большие и, если не делать пуск плавным, их величина теоретически может достигать значений токов КЗ. Случается, она равняется 90% от номинала двигателя. Схема подключения трехфазного двигателя к 220 В по принципу «звезда-треугольник» — это один из эффективных способов плавного пуска со снижением напряжения, преимущества которого состоят в высоком пусковом моменте, снижении пускового тока, повышении КПД, широком диапазоне регулирования скорости,полном спектре встроенных защит привода.

    Как подключить трехфазный двигатель в однофазную сеть


    Как подключить трехфазный двигатель в однофазную сеть своими руками

    Теоретический материал, изложенный в первой части темы, посвященной однофазному подключению трехфазного электродвигателя, предназначен для того, чтобы домашний мастер мог осознанно перевести промышленные устройства сети 380 вольт на бытовую электрическую проводку 220.

    Рекомендуем внимательно ознакомиться с этой статьей здесь.

    Благодаря ей вы не просто механически повторите наши рекомендации, а будете выполнять их осознанно.

    Оптимальные схемы для подключений трехфазного двигателя к бытовой однофазной сети

    Среди многочисленных способов подключения электродвигателя на практике широкое распространение получило всего два, именуемые коротко:

    Название дано по методу соединения обмоток в электрической схеме внутри статора. Оба способы отличаются тем, что у них на каждую фазу двигателя прикладывается напряжение разной величины.

    В схеме звезды линейное напряжение подводится сразу на две обмотки, соединенные последовательно. Их электрическое сопротивление складывается, осуществляет бо́льшее противодействие проходящему току.

    У треугольника линейное напряжение подается на каждую обмотку индивидуально и поэтому ему оказывается меньшее сопротивление. Токи создаются выше по амплитуде.

    Обращаем внимание на два этих отличия и делаем практические выводы для их использования:

    1. схема звезды обладает пониженными токами в обмотках, позволяет эксплуатировать электродвигатель длительно с минимальными нагрузками, обеспечивать небольшие крутящие моменты на валу;
    2. более высокие токи, создаваемые схемой треугольника, обеспечивают лучшую выходную мощность, позволяют использовать двигатель в экстремальных нагрузках, поэтому ему требуется надежное охлаждение для длительной работы.

    Два этих отличия подробно объяснены на картинке. Внимательно посмотрите на нее. Красными стрелками для наглядности специально помечены приходящие напряжения с линии (линейные) и приложенные к обмоткам (фазные). У схемы треугольника они совпадают, а для звезды — снижены за счет подключения двух обмоток через нейтраль.

    Эти способы следует проанализировать применительно к условиям работы вашего будущего механизма на этапе проектирования, до начала его создания. Иначе двигатель схемы звезды может не справляться с подключенными нагрузками и будет останавливаться, а у треугольника — перегреваться и в итоге сгорит. Нагрузку по току двигателя можно предусмотреть выбором схемы подключения.

    Как узнать схему подключения обмоток статора у асинхронного двигателя

    На каждом заводе принято на корпусе электротехнического оборудования помещать информационные таблички. Пример ее исполнения для трехфазного электродвигателя показан на фотографии.

    Домашнему мастеру можно обращать внимание не на всю информацию, а только на:

    1. мощность потребления: по ее величине судят о работоспособности подключаемого привода;
    2. схему соединения обмоток — вопрос только что разобран;
    3. число оборотов, которое может потребовать подключения редуктора;
    4. токи в фазах — под них созданы обмотки;
    5. класс защиты от воздействий внешней среды — определяет условия эксплуатации, включая защиту от атмосферной влаги.

    Сведениям завода обычно можно доверять, но они создавались для нового двигателя, поставляемого в продажу. Эта схема за все время эксплуатации может подвергаться реконструкции несколько раз, потеряв свой первозданный вид. Старый двигатель при неправильном хранении может потерять работоспособность.

    Следует выполнить электрические измерения его схемы и проверить состояние изоляции.

    Как определить схемы подключения обмоток статора

    Для проведения электрических замеров необходимо иметь доступ к каждому окончанию всех трех обмоток. Обычно шесть их выводов подключены на свои болты внутри клеммной коробки.

    Но, среди способов заводского монтажа встречается такой, когда специальные асинхронные модели изготовлены по схеме звезды так, что нейтральная точка собрана концами обмоток внутри корпуса, а на вводную коробку заведена одной жилой ее сборка. Этот неудачный для нас вариант потребует раскручивания на корпусе шпилек крепления крышек для снятия последних. Затем надо подобраться к месту соединения обмоток и разъединить их концы.

    Электрическая проверка концов обмоток статора

    Для работы нам потребуется омметр. Можно воспользоваться тестером в этом режиме или даже простой батарейкой с лампочкой. Любым из этих приборов необходимо проверить цепь каждой обмотки. Этот вопрос более подробно изложен отдельной статьей.

    После нахождения обоих концов для одной обмотки их необходимо пометить собственной маркировкой для проведения последующих проверок и подключения.

    Замеры полярности у обмоток статора

    Поскольку обмотки навиты строго определённым образом, то нам необходимо точно найти у них начала и окончания. Для этого существует два простых электрических метода:

    1. кратковременная подача постоянного тока в одну обмотку для создания импульса;
    2. использование источника переменной ЭДС.

    В обоих случаях работает принцип электромагнитной индукции. Ведь обмотки собраны внутри магнитопровода, хорошо обеспечивающего трансформацию электроэнергии.

    Проверка импульсом от батарейки

    Работа выполняется сразу на двух обмотках. Картинка показывает этот процесс для трех — так меньше рисовать.

    Процесс состоит из двух этапов. Вначале определяются однополярные обмотки, а затем проводится контрольная проверка, позволяющая исключить возможную ошибку у выполненных измерений.

    Для поиска однополярных зажимов на любую свободную обмотку подключается вольтметр постоянного тока, переключенный на предел чувствительной шкалы. По нему будем осуществлять проверку напряжения, появляющегося за счет трансформации импульса.

    Минусовой вывод батарейки жестко соединяют с произвольным концом второй обмотки, а плюсом кратковременно дотрагиваются до ее второго окончания. Этот момент на картинке показан контактом кнопки Кн.

    Наблюдают поведение стрелки вольтметра, реагирующей на подачу импульса в своей цепи. Она может двигаться к плюсу или минусу. Совпадение полярностей обеих обмоток будет показано положительным отклонением, а отличие — отрицательным.

    При снятии импульса стрелка пойдет в обратную сторону. На это тоже обращают внимание. Затем маркируют концы.

    После этого замер выполняют на третьей обмотке, а контрольную проверку осуществляют переключением батарейки на другую цепочку.

    Проверка понижающим трансформатором

    Источник ЭДС переменного тока на 24 вольта рекомендуется использовать в целях обеспечения электрической безопасности. Пренебрегать этим требованием не рекомендуется.

    Вначале берут две произвольные обмотки, например, №2 и №3. Попарно соединяют вместе их вывода и к этим местам подключают вольтметр, но уже переменного тока. В оставшуюся обмотку №1 пода

    Как подключить трехфазный двигатель

    Устройство подключается к схеме сети однофазного трехфазного двигателя. Трехфазный асинхронный двигатель, как сделать самому

    Многие дачники, да и сами садоводы изготавливают агрегаты для обработки почвы, работающие на электричестве. Для этого часто используются асинхронные трехфазные двигатели. Они просты в устройстве, долговечны при правильной эксплуатации, работают от обычной однофазной сети с пусковым и рабочим конденсатором.

    Меня тоже заставили использовать электродвигатель — большая потребность. После 11 лет работы на культиваторах отказались от бензиновых двигателей. Починить не удалось. Возник вопрос: что делать? Копает лопатой тяжело, и она у меня приличная.

    Тогда решил электрифицировать свой мотоблок. Поставил мотор, в наличии, а именно 1,1 кВт, 900 об / мин., С конденсатором 100 мкФ (он триггер, и работает при этом).

    Power показал несколько преимуществ перед бензином. Никакого шума, дыма, вони, не нужен газ, не ищите искры.Кроме того, мотор может вращаться в обоих направлениях, поэтому культиваторы я смонтировал задним ходом, что очень упрощает работу. Единственный недостаток — приходится работать с кабелем. Я сделал его легко снимаемым, как обычный удлинитель.

    А вот трехфазный двигатель в однофазном, который есть в доме, может развивать только 50-60% своей мощности при работе в трехфазной сети, что, как показала практика, недостаточно, т.к. культиватор работает намного медленнее, чем с бензиновыми двигателями.Стал искать способы увеличения мощности мотора. Пришлось изучить литературу по электротехнике, провести много экспериментов. Наконец то нашел.

    Чтобы получить трехфазный двигатель на полную мощность в однофазном режиме, необходимо подключить двигатель, работающий с другим — такой же мощности (или немного больше), и работать всухую. Количество оборотов может быть разным. Оба двигателя должны быть соединены в «треугольник», это обязательное условие. Когда двигатель работает на холостом ходу, однофазный преобразователь переходит в трехфазный переменный ток и подает его на рабочий двигатель, который развивает полную мощность.Два электродвигателя меньшей мощности можно использовать в качестве преобразователя.

    Использую два мотора по 0,6 кВт. Преобразователь кладут на край станины (не на румпель), оба кабеля (двухжильный и трехжильный) соединяются изолентой. Итак, я пашу землю восемь лет.

    VFD для однофазных приложений

    ЧРП и однофазные двигатели переменного тока

    Моя первая работа вне школы была с производителем двигателей, обеспечивающим техническую поддержку. Находясь на Среднем Западе, у нас было много фермерских и сельскохозяйственных клиентов.

    Их области применения варьировались от вентиляторов, насосов, элеваторов, мешалок, шнеков, конвейеров и т. Д. Фермерские установки часто не имели доступа к трехфазному питанию и приходилось довольствоваться однофазным напряжением 230 В. Мы продали много однофазных двигателей Farm Duty / Ag для этих установок.

    Люди часто хотели запускать двигатели на пониженных скоростях, поэтому они спрашивали: «Могу ли я добавить ЧРП к моему однофазному двигателю?». Обычно однофазные двигатели не могут работать с частотно-регулируемыми приводами.Однако можно вводить одну фазу в частотно-регулируемый привод и выводить переменное напряжение на трехфазный асинхронный двигатель. В этой статье описывается, как это работает, и предлагаются некоторые соображения.

    Универсальный однофазный двигатель для работы в ферме

    Проблема с однофазными двигателями с линейной подачей

    Одной из проблем при управлении крупными однофазными двигателями переменного тока от сети является пусковой ток. Однофазный двигатель мощностью 10 л.с. потребляет номинальное напряжение 38 А (при 230 В).

    Но этот двигатель (конструкция NEMA B) будет потреблять в 6-8 раз больше номинального тока при запуске — или 234 А! Такое высокое потребление усилителя может вызвать проблемы на распределительной панели.Даже утилиты могут это заметить.

    Однофазный двигатель мощностью 10 л.с. потребляет пусковой ток 234 А при 230 В.

    Честно говоря, проблемы, связанные с высокими пусковыми токами, также будут влиять на трехфазный двигатель с сетевым питанием. Но в случае с трехфазным двигателем человек может легко добавить VFD. Одним из преимуществ работы с частотно-регулируемым приводом является то, что при увеличении скорости двигателя он ограничивает ток двигателя, чтобы избежать этих больших пиков.

    Центробежный переключатель в однофазных двигателях с конденсаторным пуском

    Есть несколько различных конструкций однофазных двигателей.Я выделю тот, который я видел больше всего в промышленных приложениях — с конденсаторным пуском и центробежным переключателем. В конструкции используется конденсаторная сеть, которая находится в цепи двигателя на низких скоростях. Конденсаторы помогают обеспечивать крутящий момент при нулевой скорости и запускать двигатель в правильном направлении.

    Схема подключения общего однофазного двигателя — с конденсаторами и центробежным выключателем

    Когда двигатель вращается и становится инерционным, центробежный переключатель размыкается, и конденсаторная сеть отключается от первичных обмоток двигателя.Скорость, с которой размыкается переключатель, происходит до достижения двигателем нормальной рабочей скорости 60 Гц.

    По этой причине не рекомендуется использовать двигатель, рассчитанный на 50 Гц, в сети 60 Гц. По крайней мере, без замены или регулировки центробежного переключателя. Возможно, что переключатель никогда не размыкается при работе на частоте 50 Гц. Это может привести к повреждению конденсаторов или перегреву обмоток двигателя.

    Аналогичная проблема связана с использованием частотно-регулируемого привода для управления скоростью однофазного двигателя.Снижение скорости эффективно удерживает конденсаторы в цепи в течение длительных периодов времени и может потенциально повредить двигатель.

    Однофазный вход для ЧРП

    Итак, если вы не можете использовать частотно-регулируемый привод с однофазным двигателем такой конструкции, какое решение? Ответ — ввести одну фазу в ЧРП. VFD может действовать как преобразователь фаз и выводить три фазы на трехфазный двигатель.

    Есть некоторые соображения, особенно с калибровкой.Некоторые VFD разработаны и рассчитаны на ввод как однофазных, так и трехфазных. Обратитесь к производителю частотно-регулируемого привода, но в руководстве вы увидите что-то подобное, в котором обозначены обе фазы.

    Для приводов большего размера номинальные значения обычно указывают только на трехфазный вход. Однофазный вход возможен, но, вероятно, потребуется однофазное снижение номинальных характеристик.

    Давайте посмотрим на приложение VFD с трехфазным входом, работающим от двигателя мощностью 10 л.с. Допустим, потерь нет и PowerIN = PowerOUT.Входной ток и выход будут одинаковыми.

    Входная мощность распределяется по трем фазам

    Теперь возьмем то же приложение, работающее с двигателем мощностью 10 л.с., но с однофазным входом. PowerIN = PowerOUT. Вот только вся мощность на входе теперь проходит через один провод вместо трех. Фактически, к входному однофазному току применяется коэффициент √ (3) по сравнению с трехфазным током.

    Вся входная мощность (ток) проходит по одному проводнику

    Опять же, некоторые размеры приводов уже имеют входные выпрямители с завышенными размерами и по своей природе могут выдерживать повышенный однофазный входной ток — это должно отражаться в номинальных характеристиках силовой ступени.Для более крупных приложений HP в конечном итоге может потребоваться увеличение размера привода для работы с большим входным током.

    Как правило, мы предлагаем округлить в большую сторону и предположить, что однофазный входной ток будет вдвое больше, чем трехфазный входной ток.

    Наконец, также неплохо использовать сетевой дроссель 5% при подаче однофазной входной мощности на привод. Во время включения на привод будет подача зарядного тока на устройство.5% -ный реактор поможет снизить пиковый зарядный ток и защитит входной выпрямительный каскад частотно-регулируемого привода.

    А как насчет стоимости

    Однофазные двигатели, особенно более мощные, имеют надбавку к цене. Быстрый расчет того же двигателя мощностью 10 л.с. сверху и однофазного варианта — это + 60% надбавка к стоимости. Я предполагаю, что часть дополнительных затрат связана с добавленными частями конденсаторной сети и переключателя. Другая часть стоимости связана с тем, что однофазные асинхронные двигатели большего размера являются более специализированными по сравнению с трехфазными.

    Добавьте дополнительные затраты на частотно-регулируемый привод / реактор, но также вычтите надбавку за однофазный двигатель. Я думаю, вы обнаружите, что общие затраты на добавление частотно-регулируемого привода намного меньше, чем вы думаете.

    Стоит ли мне покупать роторный преобразователь?

    Фазовый преобразователь, безусловно, является вариантом. Он преобразует однофазную мощность в трехфазную. Но это все, что он делает. Он не предлагает многих преимуществ, которые предлагает ЧРП.Это включает в себя возможность управления скоростью двигателя, повышение производительности на низких скоростях, функции защиты и мониторинг температуры двигателя.

    Аналогичный аргумент можно привести и в отношении стоимости преобразователя фазы. Фазовый преобразователь вряд ли сэкономит много денег, если вообще сэкономит деньги, по сравнению с приводом.

    Преимущества использования частотно-регулируемых приводов в однофазных приложениях

    Пользователю будет выгодно перейти от двигателя с сетевым питанием к двигателю с ЧРП.Они смогут оптимизировать скорость двигателя для процесса. Возможно, это означает замедление конвейера во время загрузки вместо полного отключения двигателя. Слегка нагруженные двигатели также могут быть увеличены для ускорения процессов, например, конвейера или шнека.

    Пользователь также получит выгоду от экономии энергии благодаря ЧРП. Особенно квадратичные нагрузки, такие как вентиляторы и насосы. Чем выше пошлина приложение, тем больше будет экономия. Добавьте в приложение некоторую базовую обратную связь, такую ​​как датчик температуры или влажности, и к ЧРП можно подключить проводку для регулирования процесса.KEB F5 даже имеет встроенный ПИД-регулятор, поэтому весь процесс можно регулировать внутри привода, что устраняет необходимость во внешнем ПЛК или управлении

    Одно из преимуществ частотно-регулируемых приводов, которое часто упускается из виду, — это все их защитные функции, позволяющие обнаруживать нештатные ситуации.

    • Повышенное / пониженное напряжение — автоматическое отключение при падении напряжения или скачке напряжения.
    • Motor Overheat — Для этой опции требуется термистор или датчик температуры двигателя. Он защищает вложения в двигатель и является хорошей идеей для дорогих двигателей, двигателей, трудных в обслуживании, а также для приложений с высокими температурами окружающей среды.
    • Защита от перегрузки по току — это может обнаруживать ненормальную неисправность, например, короткое замыкание обмотки двигателя и отключение.

    Конечно, есть еще много защитных функций, но вы поняли.

    Однофазные частотно-регулируемые приводы KEB

    Привод

    KEB F5 может использоваться с однофазными установками. Загрузите руководство на странице продукта F5 VFD или свяжитесь с инженером KEB America, чтобы обсудить ваше приложение и решить, какой VFD подходит для вашего приложения.

    Система обнаружения и диагностики неисправностей на основе нейронной сети

    для трехфазного инвертора в преобразователе частоты с асинхронным двигателем

    В последнее время электрические приводы обычно ассоциируют инвертор и индукционную машину. Следовательно, инвертор необходимо учитывать наряду с асинхронным двигателем, чтобы обеспечить актуальную и эффективную диагностику этих систем. Различные сбои в инверторе могут повлиять на работу системы из-за непредвиденного технического обслуживания, что увеличивает фактор стоимости и снижает общую эффективность.В этой статье представлено обнаружение и диагностика неисправностей на основе извлечения признаков и техники нейронной сети для трехфазного инвертора. Основная цель этой системы обнаружения и диагностики неисправностей — эффективное обнаружение одной или нескольких неисправностей. Некоторые особенности извлекаются из преобразованного выходного тока Кларка и используются в нейронной сети в качестве входных данных для обнаружения и диагностики неисправностей. Следовательно, для проверки осуществимости предложенной схемы проводится некоторое моделирование, а также аппаратная реализация и эксперименты.Результаты показывают, что разработанная система не только легко обнаруживает неисправности, но также может эффективно различать несколько неисправностей. Эти результаты подтверждают достоверность и показывают удовлетворительную работу спроектированной системы. Результаты доказывают превосходство спроектированной системы над предыдущими системами выявления неисправностей, поскольку она может обнаруживать и диагностировать неисправности за один цикл по сравнению с предыдущими системами обнаружения нескольких циклов с высокой точностью.

    1. Введение

    В последние годы асинхронные двигатели в основном получают питание от инвертора источника напряжения с широтно-импульсной модуляцией (PWM-VSI) для работы с регулируемой скоростью в различных промышленных приложениях.Действительно, наиболее распространенным приводом в промышленности является привод с вертикальной интегральной схемой и асинхронным двигателем. В последнее время промышленность стала требовать высоких значений мощности. Инверторные приводные системы стали решением для приложений с высокой мощностью, поскольку эти системы более надежны, чем те, которые поставляются напрямую через Интернет. Существует несколько типов неисправностей, таких как неисправность контроллера, неисправность датчика тока, неисправность коммутационного устройства, неисправность двигателя и неисправность шины постоянного тока [1, 2]. Однако использование инверторов имеет некоторые недостатки, так как появление силовых электронных преобразователей повлекло за собой повышенную вероятность отказов компонентов, в основном отказов коммутирующих устройств, таких как IGBT, MOSFET и BJT.

    Неисправности этих переключающих устройств можно классифицировать на неисправность открытого выключателя и неисправность короткого выключателя. Короткое замыкание выключателя не только приводит к возникновению аномального сверхтока в системе преобразования энергии и генераторе, но также вызывает некоторые вторичные проблемы, такие как размагничивание синхронного генератора. В этом случае вся система должна быть немедленно остановлена ​​в целях безопасности, в то время как отказ разомкнутого переключателя не требует остановки работы, но в системе могут возникать шум и вибрации.Кроме того, сверхток в исправных переключателях может вызвать дополнительные отказы в этих переключателях. Следовательно, неисправность открытого переключателя должна обрабатываться немедленно. Высокие затраты из-за простоя и ремонта, а также общая потребность в повышении надежности привели к исследованиям в области систем обнаружения неисправностей [3–5].

    Что касается диагностики этих неисправностей открытого переключателя, здесь упоминаются некоторые из ранее исследованных подходов.

    Peuget et al. предложили два метода обнаружения неисправностей на основе анализа траектории вектора тока и мгновенной частоты, но метод, использующий эту частоту, не может обнаружить неисправные переключатели [6].Хомфой и Толберт предложили метод диагностики неисправностей для обнаружения и определения места неисправности в многоуровневом инверторе с использованием нейронной сети. Однако этот метод требует вычислительных затрат [7]. Зидани и др. предложили нечеткую методику, которая обнаруживает неисправные переключатели в инверторе PWM для асинхронного двигателя, используя схему Concordia, но этот метод был применен к однофазному инвертору [8]. Также Ко и Ли пытались предложить систему диагностики неисправностей на основе нечеткой логики, но этот метод применим только для единичного отказа, потому что нечеткая логика не может различать угол одиночного и множественного отказа, поскольку они перекрывают друг друга [9].

    В этой статье метод обнаружения и диагностики неисправностей на основе нейронной сети [10, 11] для трехфазного инвертора, питающего асинхронный двигатель, предназначен для обнаружения и локализации отказов в установленном инверторно-асинхронном двигателе без необходимости использования дополнительных датчиков или вычислительных средств. усилие, как показано на рисунке 1. Этот метод может обнаруживать одиночные или множественные неисправности переключающего устройства в трехфазной инверторной системе, анализируя схемы тока статора и извлекая характеристики из этого выходного тока, а затем используя эти функции в методе нейронной сети.Также проводится аппаратная реализация имитационной модели для подтверждения реализуемости предложенной схемы. Результаты показали, что разработанная система обнаружения и диагностики неисправностей является более надежной, точной, систематической, эффективной и динамичной при обнаружении как одиночных, так и множественных неисправностей. Этот предложенный метод намного лучше по сравнению с предыдущими методами [7–10], поскольку он может обнаруживать даже множественные неисправности со 100% точностью благодаря эффективной системе выделения признаков по сравнению с точностью 95% или ниже этих методов, а также он может обнаруживать одиночные и множественные отказы быстрее даже в одном текущем цикле.Эти смоделированные и основанные на оборудовании системные результаты подтверждают достоверность и показывают удовлетворительную производительность системы.


    2. Структура системы обнаружения и диагностики неисправностей

    Диагностика производительности и мониторинг состояния для преобразователей частоты переменного тока необходимы, более или менее в зависимости от области применения. Обнаружение и диагностика неисправностей позволяет избежать незапланированного обслуживания и простоя, чтобы в случае неисправности можно было запустить аварийный режим. В этой статье мы обсудили две ситуации отказа: (i) одиночный отказ (ii) множественный отказ

    2.1. Система извлечения признаков

    Система извлечения признаков должна быть определена как система, которая может предоставить нейронной сети соответствующие важные детали в наборе шаблонов, чтобы можно было достичь наивысшей точности работы нейронной сети. Система извлечения признаков должна быть универсальной для различных заданий скорости нормализованными функциями. Также локализация каждого класса паттернов должна быть в пределах, определенных порогом. В предыдущих исследованиях различные исследователи также пытались использовать систему извлечения признаков для обнаружения и диагностики неисправностей трехфазных инверторов и асинхронных двигателей.

    Ко и Ли пытались использовать средство извлечения признаков для своей системы диагностики неисправностей инвертора в системе ветряных турбин [9]. Он рассматривал текущий угол и диаметр как характеристики с методом нечеткой логики только для обнаружения единичных неисправностей. Эта исследовательская работа не применима для множественных разломов, поскольку нечеткая логика не сможет различить углы одиночного и множественного разлома, поскольку они перекрывают друг друга. Следовательно, требуется дальнейшее усовершенствование, чтобы сделать этот метод применимым для обнаружения множественных неисправностей.

    Аналогичным образом, Zidani et al. [8] используют тот же угол и разницу диаметров в своих исследованиях вместе с нечеткой логикой для обнаружения неисправностей. Этот подход также применим только для обнаружения единичной неисправности.

    Кадри и др. [10] также пытались использовать извлечение признаков для обнаружения и диагностики неисправностей. Но в их случае средство извлечения признаков извлекает только один объект, как показано в

    . Этот метод приемлем только для среды с постоянной скоростью; также они сами отметили, что для повышения эффективности классификации необходимо улучшить систему извлечения признаков.Точность системы не очень высока, поскольку одно значение функции может привести к ложным срабатываниям в случае нескольких неисправностей, то есть двух или трех неисправностей одновременно.

    В предлагаемой нами системе мы использовали четыре различных функции наряду с нейросетевой системой для обнаружения и диагностики неисправностей, что делает нашу систему более точной и эффективной и отделяет ее от предыдущих методов. Большое количество функций играет жизненно важную роль в различении одиночных и множественных неисправностей.

    Мы использовали указанные ниже математические уравнения, чтобы вычислить наши четыре функции по отдельности как для Simulink, так и для аппаратной среды.Чтобы получить функции в неисправных условиях, мы вручную генерируем неисправности в инверторной системе для всех возможных сценариев. Этот процесс повторяется несколько раз, чтобы учесть все возможные изменения значений характеристик из-за шума и других неопределенностей в среде реального времени. Диапазон данных каждой функции в каждом состоянии отказа определяется на основе результатов повторяющегося процесса на следующем этапе, чтобы использовать наилучшие возможные данные для обучения нейронной сети. Затем нейронная сеть обучается на этих данных для дальнейшего процесса.

    Как показано на блок-схеме на рисунке 1, проектирование ИНС на основе системы обнаружения и диагностики неисправностей состоит из четырех основных этапов.

    Первоначально данные измеренного выходного тока преобразуются из трехфазного в двухфазный с помощью преобразования Кларка. Это преобразование выполняется для оценки изменения структуры тока статора, когда в инверторе происходит отказ силовых переключателей разомкнутой цепи, как показано на рисунке 2. Кроме того, на рисунке 3 показано пространство диагностики сбоев для каждого сбоя переключателя.В нормальных и нормальных условиях диаграмма тока статора в системе отсчета α β представляет собой круг, тогда как в случае неисправности диаграмма тока смещена в сторону неисправного переключателя.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *