Как проверить транзистор mosfet мультиметром: Как проверить мосфет мультиметром не выпаивая

Содержание

Как проверить n канальный мосфет мультиметром

Электроника, схемотехника, от души и с умом: для начинающих и для бывалых

Проверяем на работоспособность полевой транзистор структуры металл-диэлектрик-полупроводник (МДП, МОП, MOSFET, GIFET, MISFET).

Необходимое оборудование: мультиметр, цифровой или аналоговый, с возможностью проверки диодов.

N-канальный МДП полевой транзистор с индуцированным переходом:

  • Gate = Затвор
  • Drain = Сток
  • Source = Исток

P-канальный МДП полевой транзистор с индуцированным переходом:

  • Затвор = Gate
  • Исток = Source
  • Сток = Drain

Внимание : проверка полевых транзисторов с p-n переходом (J-FET, JFET, JUGFET) будет описана в другой статье.

Наиболее распространённая цоколёвка МДП транзисторов:

Описываемая здесь последовательность действий лучше всего подходит для проверки МДП транзисторов средней и большой мощности, или – всех, что предназначены для крепления на радиатор.

Ограничения

  • При работе с малосигнальными МДП транзисторами требуется быть предельно осторожным относительно статического электричества, чтобы не поубивать их во время такой проверки.
  • МДП транзисторы, работающие в режиме обеднения (со встроенным каналом), надо проверять несколько иначе. Полезность данной статьи сей факт никак не уменьшает, и вот почему: вероятность того, что у вас окажется такой девайс, стремится к бесконечно малой величине. Если же вы справились-таки раздобыть Depletion Mode MOSFET – вам эта статья уж и подавно не нужна 😉
  • В случае, если вам повезло стать обладателем раритетного МДП устройства без структурного диода, то, соответственно, описанная ниже проверка структурного диода смысла не имеет.
  • Возможно, напряжения на щупах мультиметра не хватит для надёжного открытия транзистора. Тогда можно взять 9-вольтовую батарейку «крона» с последовательно включенным резистором не менее 1КОм и использовать этот источник для заряда затвора.

Проверяем

1) Затвор должен быть изолирован от других выводов
  • а) Подключаем чёрный «-» щуп мультиметра к выводу стока (фланец) или выводу истока, красным «+» щупом касаемся вывода затвора: прибор показывает разрыв цепи. Отсоединяем щупы в обратном порядке: сначала от затвора, потом от истока или стока. Следим, чтобы больше ничего не дотрагивалось до вывода затвора.
  • б) Подсоединяем красный щуп мультиметра к выводу стока или истока, чёрный – к затвору: прибор показывает разрыв цепи. Отсоединяем щуп сначала от затвора.

Разряжаем ёмкость затвора: берём транзистор за фланец крепления радиатора (вывод стока), если такового нет, то сначала дотрагиваемся до вывода стока или истока, потом нежно обнимаем все три ножки 🙂

2) Проверяем структурный диод.

Для этого проверяем на исправность диод, что между стоком и истоком, так же, как мы бы прозванивали обычный кремниевый диод.

  • а) В прямом включении падение как на обычном кремниевом диоде: мультиметр должен показать падение напряжения в диапазоне приблизительно от 0.4 до 0.7 Вольт.
  • б) В обратном включении – диод заперт.

3) Заряжаем ёмкость затвора – канал открыт.

Для n-канальных МДП транзисторов (а таковых подавляющее большинство):

  • n-а) Подключаем чёрный щуп мультиметра к выводу истока, красным щупом касаемся вывода затвора.

В случае p-канального МДП транзистора полярность соответственно меняем на обратную.

  • p-а) Подключаем красный щуп мультиметра к выводу истока, чёрным щупом касаемся вывода затвора.
  • б) Замеряем падение на (при-)открытом канале.

Для этого щуп, только что коснувшийся затвора, переносим на сток. Прибор должен показать небольшое падение напряжения, или даже короткое замыкание, некоторые приборы при этом радостно пищат. Заряд с затвора исправного транзистора стекает исключительно медленно – канал должен оставаться открытым довольно долго.

4) Разряжаем затвор.

Для этого можно держась за фланец или вывод истока коснуться затвора. Можно это сделать пальцами, можно проводом, а можно повторить процедуру заряда ёмкости затвора, но приложив обратную полярность напряжения.

  • n) Для n-канальных МДП: Подключаем чёрный щуп мультиметра к выводу истока, красным щупом касаемся вывода стока.
  • p) Для p-канальных МДП: Подключаем красный щуп мультиметра к выводу истока, чёрным щупом касаемся вывода затвора.

Убеждаемся, что канал закрыт: измеренное сопротивление или падение напряжения должно стремиться к бесконечности (помним о наличии структурного диода).

Возможные сюрпризы

Подавляющее большинство неисправностей МДП транзисторов так или иначе связано с пробоем изолятора затвора. Проявляться это может как вполне измеримой утечкой в цепи затвора, так и в постоянно открытым или наоборот закрытым состоянии канала, без малейшего намёка на пробой собственно затвора.

Разрушение кристалла при перегрузках часто сопровождается таким фейерверком, что ничего мерять там уже и не надо.

К сожалению, бывают ещё и скрытые дефекты, деградация качества прибора, вызванные пробоем и никак не проявляющиеся в тестах, описанных в данной статье. Недавно я сам попался на такой дефект при работе с маленькими полевиками (2n7002). Что тут можно посоветовать:

  1. Соблюдаем строжайшую антистатическую дисциплину
  2. Измеряем характеристики транзистора. В моём случае из-за скрытого пробоя лишь увеличилось пороговое напряжение отпирания транзистора.

MOSFET — проверка и прозвонка

Проверка и определение цоколевки MOSFET

Как показывает опыт, новички, сталкивающиеся с проверкой элементной базы подручными средствами, без каких-либо проблем справляются с проверкой диодов и биполярных транзисторов, но затрудняются при необходимости проверить столь распространенные сейчас MOSFET-транзисторы (разновидность полевых транзисторов). Я надеюсь, что данный материал поможет освоить этот нехитрый способ проверки полевых транзисторов.

Очень кратко о полевых транзисторах

На данный момент понаделано очень много всяких полевых транзисторов. На рисунке показаны графические обозначения некоторых разновидностей полевых транзисторов.

G-затвор, S-исток, D-сток. Сравнивая полевой транзистор с биполярным, можно сказать, что затвор соответствует базе, исток – эмиттеру, сток полевого транзистора – коллектору биполярного транзистора.

Наиболее распространены n-канальные MOSFET – они используются в цепях питания материнских млат, видеокарт и т.п. У MOSFET имеется встроенный диод:

MOSFET n-канальный (слева) и p-канальный (справа).

Транзисторы лучше рисовать с диодом — чтобы потом было проще в схеме ориентироваться. Этот диод является паразитным и от него не удается избавиться на этапе изготовления транзистора. Вообще при изготовлении MOSFET возникает паразитный биполярный транзистор, а диод – один из его переходов. Правда нужно признать, что по схемотехнике этот диод все равно частенько приходится ставить, поэтому производители транзисторов этот диод шунтируют диодом с лучшими показателями как по быстродействию, так и по падению напряжения. В низковольтные MOSFET обычно встраивают диоды Шоттки. А вообще в идеале этого диода не должно было бы быть.

Типовое включение полевого (MOSFET) транзистора:

MOSFET типовое включение

Проверка полевых транзисторов (MOSFET)

И вот, иногда наступает момент, когда необходимо полевой транзистор проверить, прозвонить или определить его цоколевку. Сразу оговоримся, что проверить таким образом можно «logic-level» полевые транзисторы, которые можно встретить в цепях питания на материнских платах и видеокартах. «logic-level» в данном случае означает, что речь идет о приборах, которые управляются, т.е. способны полностью открывать переход D-S, при приложении к затвору относительно небольшого, до 5 вольт, напряжения. На самом деле очень многие MOSFET способны открыться, пусть даже и не полностью, напряжением на затворе до 5В.

В качестве примера возьмем N-канальный MOSFET IRF1010N для его проверки (прозвонки). Известно, что у него такая цоколевка: 1 – затвор (G), 2 – сток (D), 3 – исток (S). Выводы считаются как показано на рисунке ниже.

Распиновка корпуса TO-220

1. Мультиметр выставляем в режим проверки диодов, этот режим очень часто совмещен с прозвонкой. У цифрового мультиметра красный щуп «+», а черный «–», проверить это можно другим мультиметром.
На любом уважающем себя мультиметре есть такая штуковина

Прозвонка диодов, да и вообще полупроводниковых переходов на мультиметре.

2. Щуп «+» на вывод 3, щуп «–» на вывод 2. Получаем на дисплее мультиметра значения 400…700 – это падение напряжения на внутреннем диоде.

3. Щуп «+» на вывод 2, щуп «–» на вывод 3. Получаем на дисплее мультиметра бесконечность. У мультиметров обычно обозначается как 1 в самом старшем разряде. У мультиметров подороже, с индикацией не 1999 а 4000 будет показано значение примерно 2,800 (2,8 вольта).

4. Теперь удерживая щуп «–» на выводе 3 коснуться щупом «+» вывода 1, потом вывода 2. Видим, что теперь щупы стоят так же, как и в п.3, но теперь мультиметр показывает 0…800мВ – у MOSFET открыт канал D-S. Если продолжать удерживать щупы достаточно долго, то станет заметно, что падение напряжения D-S увеличивается, что означает, что канал постепенно закрывается.

5. Удерживая щуп «+» на выводе 2, щупом «–» коснуться вывода 1, затем вернуть его на вывод 3. Как видим, канал опять закрылся и мультиметр показывает бесконечность.

Поясним, что же происходит. С прозвонкой внутреннего диода все понятно. Непонятно почему канал остается либо закрытым, либо открытым? На самом деле все просто. Дело в том, что у мощных MOSFET емкость между затвором и истоком достаточно большая, например у взятого мной транзистора IRF1010N измеренная емкость S-G составляла 3700пФ (3,7нФ). При этом сопротивление S-G составляет сотни ГОм (гигаом) и более. Не забыли – полевые транзисторы управляются электрическим полем, а не током в отличие от биболярных. Поэтому в п.4 касаясь “+” затвора (G) мы его заряжаем относительно истока (S) как обычный конденсатор и управляющее напряжение на затворе может держаться еще достаточно долго.

Если хвататься за выводы транзистора руками, особенно жирными и влажными, емкость транзистора будет разряжаться значительно быстрее, т.к. сопротивление будет определяться не диэлектриком у затвора транзистора, а поверхностным сопротивлением. Не смытый флюс также сильно снижает сопротивление. Поэтому рекомендую помыть транзистор, перед проверкой, например, в спирто-бензиновой смеси.

P.S. Спирто-бензиновая смесь при испарении может генерировать статическое электричество, которое, как известно, негативно действует на полевые транзисторы.

Небольшие пояснения о мультиметрах

1. У цифровых мультиметров режим проверки диодов проводится измерением падения напряжения на щупах, при этом по щупам прибор пропускает стабильный ток 1мА. Именно поэтому в данном режиме прибор показывает не сопротивление, а падение напряжения. Для германиевых диодов оно равно 0,3…0,4В, для кремниевых 0,6…0,8В. Но что бы там не измерялось напряжение на щупах прибора редко превышает 3В – это ограничение накладывается схемотехникой мультиметров.
2. В п.4 при измерении падения напряжения открытого канала величина, отображаемая мультиметром может сильно меняться от различных факторов: напряжения на щупах, температуры, тока стабилизации, характеристик самого полевого транзистора.

Тренировка =)

Теперь можно потренироваться в определении цоколевки мощного транзистора. Перед нами транзистор IRF5210 и его цоколевка мне неизвестна.

1. Начну с поиска диода. Попробую все варианты подключения к мультиметру. После каждого измерения корочу ножки транзистора фольгой чтобы обеспечить разряд емкостей транзистора. Возможные варианты показаны в таблице:

Т.е. диод находится между выводами 2 и 3, соответственно затвор (G) находится на выводе 1.

2. Осталось определить, где находятся сток (D) и исток (S) и полярность (n-канал или p-канал) полевого транзистора.

2.1. Если это n-канальный транзистор, то сток (D) – 3 вывод, исток (S) – 2 вывод. Проверяем. Прикладываем «–» щуп мультиметра к выводу 2, «+» к выводу 3 – канал закрыт, так и должно быть – мы же его еще не пытались открыть. Теперь не отнимая щупа «–» от вывода 2 щупом «+» касаемся вывода 1, затем «+» опять прикладываем к выводу 3. Канал не открылся – значит, наше предположение о том, что IRF5210 n-канальный транзистор оказалось неверным.

2.2. Если это p-канальный транзистор, то сток (D) – 2 вывод, исток (S) – 3. Проверяем. Прикладываем «+» щуп мультиметра к выводу 3, «–» к выводу 2 – канал закрыт, так и должно быть – мы же его еще не пытались открыть. Теперь не отнимая щупа «+» от вывода 3 щупом «–» касаемся вывода 1, затем «–» опять прикладываем к выводу 2. Канал открылся – значит, что IRF5210 p-канальный транзистор, вывод 1 – затвор, вывод 2 – сток, вывод 3 – исток.

На самом деле все не так сложно. Буквально пол часа тренировки – и вы сможете без каких-либо проблем проверять MOSFETы и определять их цоколевку!

В этой статье я расскажу вам, как проверить полевой транзистор с изолированным затвором, то есть МОП-транзистор. Это вторая часть статьи по проверки полевых транзисторов. В первой части я рассказывал, как проверить транзистор с управляющим p-n переходом.

Да, полевые транзисторы с управляющим p-n переходом уходят в прошлое, а сейчас в современных схемах применяются более совершенные полевые транзисторы с изолированным затвором. Тогда предлагаю научиться их проверять.

Но для того, что бы понять, как проверить полевой транзистор, давайте я вам в двух словах расскажу, как он устроен.

Полевой транзистор с изолированным затвором мы знаем под более привычным названием МОП -транзистор (метал -окисел-полупроводник), МДП -транзистор(метал -диэлектрик-полупроводник), либо в английском варианте MOSFET(Metal-Oxide-Semiconductor-Field-Effect-Transistor)

Эти аббревиатуры вытекают из структуры построения транзистора. А именно.

Структура полевого MOSFET транзистора.

Для создания МОП-транзистора берется подложка, выполненная из p-полупроводника, где основными носителями заряда являются положительные заряды, так называемые дырки. На рисунке вы видите, что вокруг ядра атома кремния вращаются электроны, обозначенные белыми шариками.

Когда электрон покидает атом, в этом месте образуется «дырка» и атом приобретает положительный заряд, то есть становиться положительным ионом. Дырки на модели обозначены, как зеленые шарики.

На p-подложке создаются две высоколегированные n-области, то есть области с большим количеством свободных электронов. На рисунке эти свободные электроны обозначены красными шариками.

Свободные электроны свободно перемещаются по n-области. Именно они впоследствии и будут участвовать в создании тока через МДП-тназистор.

Пространство между двумя n-областями, называемое каналом покрывается диэлектриком, обычно это диоксид кремния.

Над диэлектрическим слоем располагают металлический слой. N-области и металлический слой соединяют с выводами будущего транзистора.

Выводы транзистора называются исток, затвор и сток.

Ток в МОП-транзисторе течет от истока через канал к стоку. Для управления этим током служит изолированный затвор.

Однако если подключить напряжение между истоком и стоком, при отсутствии напряжения на затворе ток через транзистор не потечет, потому что на его пути будет барьер из p-полупроводника.

Если подать на затвор положительное напряжение, относительно истока, то возникающее электрическое поле будет к области под затвором притягивать электроны и выталкивать дырки.

По достижению определенной концентрации электронов под затвором, между истоком и стоком создается тонкий n-канал, по которому потечет ток от истока к стоку.

Следует сказать, что ток через транзистор можно увеличить, если подать больший потенциал напряжения на затвор. При этом канал становиться шире, что приводит к увеличению тока между истоком и стоком.

МДП-транзистор с каналом p-типа имеет аналогичную структуру, однако подложка в таком транзисторе выполнена из полупроводника n-типа, а области истока и стока из высоколегированного полупроводника p-типа.

В таком полевом транзисторе основными носителями заряда являются положительные ионы (дырки). Для того, что бы открыть канал в полевом транзисторе с каналом p-типа необходимо на затвор подать отрицательный потенциал.

Проверка полевого MOSFET транзистора цифровым мультиметром

Для примера возьмем полевой МОП-транзистор с каналом n-типа IRF 640. Условно-графическое обозначение такого транзистора и его цоколевку вы видите на следующем рисунке.

Перед началом проверки транзистора замкните все его выводы между собой, что бы снять возможный заряд с транзистора.

Проверка встроенного диода

Для начал следует подготовить мультимер и перевести его в режим проверки диодов. Для этого переключатель режимов/пределов установите в положение с изображением диода.

В этом режиме мультиметр при подключении диода в прямом направлении (плюс прибора на анод, минус прибора на катод) показывает падение напряжения на p-n переходе диода. При включении диода в обратном направлении мультиметр показывает «1».

Итак, подключаем щупы мультиметра, как было сказано выше, в прямом включении диода. Таким образом, красный шум (+) подключаем на исток, а черный (-) на сток.

Мультиметр должен показать падение напряжение на переходе порядка 0,5-0,7.

Меняем полярность подключения встроенного диода, при этом мультиметр, при исправности диода покажет «1».

Проверка работы полевого МОП транзистора

Проверяемый нами МОП-транзистор имеет канал n-типа, поэтому, что бы канал стал электропроводен необходимо на затвор транзистора относительно истока либо стока подать положительный потенциал. При этом электроны из подложки переместятся в канал, а дырки будут вытолкнуты из канала. В результате канал между истоком и стоком станет электропроводен и через транзистор потечет ток.

Для открытия транзистора будет достаточно напряжения на щупах мультиметра в режиме прозвонки диодов.

Поэтому черный (отрицательный) щуп мультиметра подключаем на исток (или сток), а красным касаемся затвора.

Если транзистор исправен, то канал исток-сток станет электропроводным, то есть транзистор откроется.

Теперь если прозвонить канал исток-сток, то мультиметр покажет какое-то значение падение напряжения на канале, в виду того, что через транзистор потечет ток.

Таким образом черный щуп транзистора ставим на исток, а красный на сток и мультиметр покажет падение напряжение на канале.

Если поменять полярность щупов, то показания мультиметра будут примерно одинаковыми.

Что бы закрыть транзистор достаточно относительно истока на затвор подать отрицательный потенциал.

Следовательно, подключаем положительный (красный) щуп мультиметра на исток, а черным касаемся затвор.

При этом исправный транзистор закроется. И если после этого прозвонить канал исток-сток, то мультиметр покажет лишь падение напряжения на встроенном диоде.

Если транзистор управляется напряжением с мультиметра (то есть открывается и закрывается), значит можно сделать вывод, что транзистор исправен.

Проверка полевого МОП – транзистора с каналом p-типа осуществляется подобным образом. За тем исключением, что во всех пунктах проверки полярность подключения щупов меняется на противоположную.

Более подробно и просто всю методику проверки полевого транзистора я изложил в следующем видеоуроке:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Как проверить транзистор mosfet – АвтоТоп

Для проверки исправности полевого транзистора можно воспользоваться любым цифровым мультиметром с функцией «прозвонки» диодов. Данная функция работает таким образом, что позволяет измерить прямое падение напряжения на p-n-переходе, которое и будет отображено на дисплее мультиметра в ходе тестирования.

В процессе данной проверки мультиметр способен пропустить через проверяемую цепь ток в пределах нескольких миллиампер, и если падение напряжения окажется при этом слишком малым, то в случае наличия у прибора функции звукового оповещения, он запищит. А поскольку в любом полевом транзисторе присутствуют p-n-переходы, то можно рассчитывать на вполне адекватный результат.

Прежде чем проверять полевой транзистор на исправность, замкните на секунду фольгой все его выводы чтобы снять статический заряд, чтобы разрядить все его переходные емкости, включая емкость затвор-исток.

Проверка встроенного обратного диода

Практически в любом современном полевом транзисторе, за исключением специальных их типов, параллельно цепи сток-исток включен внутренний «защитный» диод.

Наличие этого диода внутри полевика обусловлено особенностями технологии производства мощных транзисторов. Иногда он мешает, считается паразитным, однако в большинстве полевых транзисторов без него, как части цельной структуры электронного компонента, не обойтись. Следовательно, в исправном полевом транзисторе данный диод тоже должен быть исправным. В n-канальном полевом транзисторе данный диод включен катодом к стоку, анодом — к истоку, а в p-канальном — анодом к стоку, катодом — к истоку.

Включите мультиметр в режим «прозвонки» диодов. Если полевой транзистор является n-канальным, то красный щуп мультиметра приложите к его истоку (source), а черный — к стоку (drain).

Обычно сток находится посередине и соединен с проводящей подложкой транзистора, а истоком является правый вывод (уточните это в datasheet). В случае если внутренний диод исправен, на дисплее мультиметра отобразится прямое падение напряжения на нем – в районе 0,4-0,7 вольт. Если теперь положение щупов изменить на противоположное, то прибор покажет бесконечность. Если все так, значит внутренний диод исправен.

Проверка цепи сток-исток

Полевой транзистор управляется электрическим полем затвора. И если емкость затвор-исток зарядить, то проводимость в направлении сток-исток увеличится.

Итак, если транзистор является n-канальным, приложите черный щуп к затвору (gate), а красный — к истоку, и через секунду измените расположение щупов на противоположное — красный к затвору, а черный — к истоку. Так мы сначала наверняка разрядили затвор, а после — зарядили его. Затвор обычно слева, а исток — справа (см. datasheet).

Теперь красный щуп переместите с затвора — на сток, а черный пусть останется на истоке. Если транзистор исправен, то как только вы переместите красный щуп с затвора на сток, мультиметр покажет что на стоке есть падение напряжения (не бесконечное, но может увеличиваться) — это значит, что транзистор перешел в проводящее состояние.

Теперь красный щуп на исток, а черный — на затвор (разряжаем затвор противоположной полярностью), после чего снова красный щуп на сток, а черный — на исток. Прибор должен показать бесконечность — транзистор закрылся. Для p-канального полевого транзистора щупы просто меняются местами.

Если прибор запищит

Если на этапе проверки сток-исток прибор запищит, это может быть вполне нормальным, ведь у современных полевых транзисторов сопротивление сток-исток в открытом состоянии бывает очень маленьким. Главное — чтобы не было звона затвор-исток и сток-исток, особенно в тот момент когда затвор заряжен противоположной полярностью. Как вариант, можно соединить затвор с истоком и в таком положении прозвонить сток-исток (для n-канального красный на сток, черный — на исток), прибор должен показать бесконечность.

Поделитесь этой статьей с друзьями:

Вступайте в наши группы в социальных сетях:

Для проверки полевого транзистора понадобятся мультиметр и источник питания 9-12 вольт. Проверяться будет полевой транзистор n-типа IRF740. Расположение выводов и иные параметры на IRF740 можно посмотреть в datasheet.

Для проверки транзисторов черный щуп подключается к гнезду “COM” мультиметра, красный – к гнезду “V/ Ω”. Мультиметр включается в режим проверки полупроводников.

Пинцетом или перемычкой замкните кратковременно исток и затвор транзистора. Потенциалы затвора и истока уравняются, транзистор будет гарантированно закрыт.

Присоедините красный щуп мультиметра к истоку, черный к стоку. Если транзистор исправен, мультиметр покажет падение напряжения на паразитном диоде (этот диод образуется при изготовлении транзистора).

Присоедините красный щуп мультиметра к стоку, черный к истоку. Если транзистор исправен, мультиметр покажет отсутствие замыкания и утечки.

Соедините минус источника питания (9-12 вольт) с истоком транзистора, на секунду присоедините плюс источника питания к затвору транзистора, при этом исправный транзистор откроется.

Далее присоедините красный щуп мультиметра к истоку, черный к стоку. Если транзистор исправен, мультиметр покажет короткое замыкание.

Присоедините красный щуп мультиметра к стоку, черный к истоку. Если транзистор исправен, мультиметр покажет короткое замыкание.

Для проверки полевых транзисторов n-типа можно собрать несложную схему. При нажатии кнопки лампочка загорается, при отпускании тухнет.

В этом видео показано как проверить полевой транзистор мультиметром:

В радиоэлектронике и электротехнике транзисторы относятся к одним из основных элементов, без которых не будет работать ни одна схема. Среди них, наиболее широкое распространение получили полевые транзисторы, управляемые электрическим полем. Само электрическое поле возникает под действием напряжения, следовательно, каждый полевой транзистор является полупроводниковым прибором, управляемым напряжением. Наиболее часто применяются элементы с изолированным затвором. В процессе эксплуатации радиоэлектронных устройств и оборудования довольно часто возникает необходимость проверить полевой транзистор мультиметром, не нарушая общей схемы и не выпаивая его. Кроме того, на результаты проверки оказывает влияние модификация этих устройств, которые технологически разделяются на п- или р-канальные.

Устройство и принцип действия полевых транзисторов

Полевые транзисторы относятся к категории полупроводниковых приборов. Их усиливающие свойства создаются потоком основных носителей, который протекает через проводящий канал и управляется электрическим полем. Полевые транзисторы, в отличие от биполярных, для своей работы используют основные носители заряда, расположенные в полупроводнике. По своим конструктивным особенностям и технологии производства полевые транзисторы разделяются на две группы: элементы с управляющим р-п-переходом и устройства с изолированным затвором.

К первому варианту относятся элементы, затвор которых отделяется от канала р-п-переходом, смещенным в обратном направлении. Носители заряда входят в канал через электрод, называемый истоком. Выходной электрод, через который носители заряда уходят, называется стоком. Третий электрод – затвор выполняет функцию регулировки поперечного сечения канала.

Когда к истоку подключается отрицательное, а к стоку положительное напряжение, в самом канале появляется электрический ток. Он создается за счет движения от истока к стоку основных носителей заряда, то есть электронов. Еще одной характерной особенностью полевых транзисторов является движение электронов вдоль всего электронно-дырочного перехода.

Между затвором и каналом создается электрическое поле, способствующее изменению плотности носителей заряда в канале. То есть, изменяется величина протекающего тока. Поскольку управление происходит с помощью обратно смещенного р-п-перехода, сопротивление между каналом и управляющим электродом будет велико, а мощность, потребляемая от источника сигнала в цепи затвора, очень мала. За счет этого обеспечивается усиление электромагнитных колебаний не только по току и напряжению, но и по мощности.

Существуют полевые транзисторы, у которых затвор отделяется от канала слоем диэлектрика. В состав элемента с изолированным затвором входит подложка – полупроводниковая пластина, имеющая относительно высокое удельное сопротивление. В свою очередь, она состоит из двух областей с противоположными типами электропроводности. На каждую из них нанесен металлический электрод – исток и сток. Поверхность между ними покрывает тонкий слой диэлектрика. Таким образом, в полученную структуру входят металл, диэлектрик и полупроводник. Данное свойство позволяет проверить полевой транзистор мультиметром не выпаивая. Поэтому данный вид транзисторов сокращенно называют МДП. Они различаются наличием индуцированных или встроенных каналов.

Проверка мультиметром

Перед началом проверки на исправность полевого транзистора мультиметром, рекомендуется принять определенные меры безопасности, с целью предотвращения выхода транзистора из строя. Полевые транзисторы обладают высокой чувствительностью к статическому электричеству, поэтому перед их проверкой необходимо организовать заземление. Для снятия с себя накопленных статических зарядов, следует воспользоваться антистатическим заземляющим браслетом, надеваемым на руку. В случае отсутствия такого браслета можно просто коснуться рукой батареи отопления или других заземленных предметов.

Хранение полевых транзисторов, особенно с малой мощностью, должно осуществляться с соблюдением определенных правил. Одно из них заключается в том, что выводы транзисторов в этот период, находятся в замкнутом состоянии между собой. Конфигурация цоколей, то есть расположение выводов в различных моделях транзисторов может отличаться. Однако их маркировка остается неизменной, в соответствии с общепринятыми стандартами. Затвор по-английски означает Gate, сток – Drain, исток – Source, а для маркировки используются соответствующие буквы G, D и S. Если маркировка отсутствует необходимо воспользоваться специальным справочником или официальным документом от производителя электронных компонентов.

Проверку можно выполнить с помощью стрелочного омметра, но более удобной и эффективной будет прозвонка цифровым мультиметром, настроенным на тестирование p-n-переходов. Полученное значение сопротивления, отображаемое на дисплее, на пределе х100 численно будет соответствовать напряжению на р-п-переходе в милливольтах. После подготовки можно переходить к непосредственной проверке. Прежде всего нужно знать, что исправный транзистор обладает бесконечным сопротивлением между всеми его выводами. Прибор должен показывать такое сопротивление независимо от полярности щупов, то есть прикладываемого напряжения.

Современные мощные полевые транзисторы имеют встроенный диод, расположенный между стоком и истоком. В результате, при решении задачи, как прозвонить полевой транзистор мультиметром, канал сток-исток, ведет себя аналогично обычному диоду. Отрицательным щупом черного цвета необходимо коснуться подложки – стоку D, а положительным красным щупом – вывода истока S. Мультиметр покажет наличие прямого падения напряжения на внутреннем диоде до 500-800 милливольт. В обратном смещении, когда транзистор закрыт, прибор будет показывать бесконечно высокое сопротивление.

Далее, черный щуп остается на месте, а красный щуп касается вывода затвора G и вновь возвращается к выводу истока S. В этом случае мультиметр покажет значение, близкое к нулю, независимо от полярности приложенного напряжения. Транзистор откроется в результате прикосновения. Некоторые цифровые устройства могут показывать не нулевое значение, а 150-170 милливольт.

Если после этого, не отпуская красного щупа, коснуться черным щупом вывода затвора G, а затем возвратить его к выводу подложки стока D, то в этом случае произойдет закрытие транзистора, и мультиметр вновь отобразит падение напряжения на диоде. Такие показания характерны для большинства п-канальных устройств, используемых в видеокартах и материнских платах. Проверка р-канальных транзисторов осуществляется таким же образом, только со сменой полярности щупов мультиметра.

P channel mosfet схема включения. Как проверить транзистор мультиметром, не выпаивая их схемы

Инструкция

Проверить полевой транзистор, когда он впаян в электронную схему не получится, поэтому перед проверкой выпаяйте его. Осмотрите корпус. Если на корпусе есть дырка от расплавления кристалла, то проверять транзистор нет смысла. Если же корпус целый, то можно приступать к проверке.

Подавляющее большинство мощных полевых транзисторов имеют структуру MOS-FET и n-канал с изолированным затвором. Реже встречаются с p-каналом, в основном в оконечных каскадах звуковых усилителей. Разные структуры полевых транзисторов требуют разных способов их проверки.

Выпаяв транзистор, дайте ему остыть.

Положите транзистор на сухой лист бумаги. Вставьте провода омметра красный в плюсовой разъем, а черный в минусовой. Установите предел измерений на 1кОм. Сопротивление канала открытого транзистора зависит от приложенного напряжения к затвору относительно истока, поэтому в процессе работы с транзистором, вы можете установить более удобный для вас предел измерения. Подключение электродов внутри корпуса показано на фото.

Коснитесь черным щупом электрода «исток» транзистора, а красным прикоснитесь к электроду «сток». Если прибор покажет короткое замыкание, уберите щупы и соедините все три электрода плоской отверткой. Цель – разрядить емкостный переход затвора, возможно, он был заряжен. После этого повторите измерение сопротивления канала. Если прибор по-прежнему показывает короткое замыкание, значит, транзистор неисправен и подлежит замене.

Если прибор показал сопротивление близкое к бесконечности, то проверьте переход затвора. Она проверяется аналогично переходу канала. Коснитесь любым щупом электрода «исток» транзистора, а другим прикоснитесь к электроду «затвор». Сопротивление должно быть бесконечно большим. Изолированный затвор электрически не связан с каналом транзистора и любое обнаруженное сопротивление в этой цепи говорит о неисправности транзистора.

Методика проверки полностью исправного транзистора выглядит так: Прикоснитесь черным щупом омметра к электроду «исток» транзистора, коснитесь красным щупом электрода «затвор». Сопротивление должно быть бесконечно большим, затем, не замыкая «затвор» на другие электроды, коснитесь красным щупом электрода «сток». Прибор покажет маленькое сопротивление на этом участке. Величина этого сопротивления зависит от напряжения между щупами омметра. Теперь коснитесь красным щупом электрода «исток», повторите вышеописанную процедуру. Сопротивление канала будет очень большое, близкое к бесконечности. Способ проверки MOS-FET транзистора с p-каналом отличается тем, что при измерениях надо поменять между собой красный и черный щупы омметра.

Отказ системы, в которой используется одновременно множество электромагнитных реле , может быть вызван неисправностью всего одного из них. Не допустить такой ситуации можно лишь путем их регулярной проверки.

Инструкция

Независимо от способа проверки реле , на время его испытания обязательно подключите параллельно его обмотке диод типа 1N4007 в обратной полярности. Такой же диод желательно установить и в схему, где оно работает постоянно, если только по алгоритму ее работы на обмотку не подается по очереди напряжение различной полярности. Извлечение реле и установку его в устройство производите тогда, когда последнее обесточено.

Если необходимо провести проверку реле в статическом режиме, просто подавайте на его обмотку напряжение, равное минимальному напряжению срабатывания. Когда оно подано, должны гарантированно размыкаться все нормально замкнутые контакты и замыкаться все нормально разомкнутые. При снятия напряжения с обмотки ситуация должны меняться на противоположную в отношении всех контактных групп. Для проверки состояния контактов используйте обычный омметр или даже пробник с батарейкой и лампочкой.

Проверку реле в динамическом режиме осуществляйте при помощи обычного мультивибратора на двух транзисторах. Подключите его в качестве нагрузки одного из транзисторов. Меняя номиналы частотозадающих элементов, сделайте частоту срабатывания реле близкой к предельной для него (она указана в документации). Чтобы проверить ту или иную контактную группу, подайте на нее напряжение через лампочку или мощный резистор таким образом, чтобы ток через нее не превышал предельный. Параллельно группе подключите осциллограф. Убедитесь по изображению на его экране, что в срабатывании контактов отсутствуют перебои. Проверьте таким образом поочередно все группы. Не держите реле в таком режиме слишком долго, поскольку при быстром срабатывании оно изнашивается.

В случае выявления неисправности реле дальнейшие действия осуществляйте в зависимости от его типа. Если оно допускает регулировку контактов, осуществите таковую, если же нет, замените реле целиком. В случае, если неправильно функционирует только одна контактная группа, просто задействуйте вместо нее другую либо переставьте реле в такой узел, где она не задействована.

Видео по теме

Некоторые модели тестеров оснащены встроенными измерителями коэффициента усиления маломощных транзисторов . Если же вы таким прибором не обладаете, то исправность транзисторов можно проверить обычным тестером в режиме омметра, либо же при помощи цифрового тестера в режиме проверки диодов.


Инструкция

Для проверки биполярных транзисторов присоедините один щуп мультиметра подключите к базе транзистора, второй щуп подносите поочередно к эмиттеру и коллектору, потом поменяйте щупы местами повторите те же действия. Обратите внимание, что внутри электродов многих цифровых либо же мощных транзисторов могут располагаться защитные диоды между коллектором и эмиттером и встроенные резисторы между базой и эмиттером или в цепи базы, если вы этого не знаете, то по ошибке можете посчитать этот элемент неисправным.

При проверке полевых транзисторов учитывайте тот факт, что они бывают самых разнообразных видов. К примеру, проверка транзисторов , имеющих затвор на основе запорного слоя p-n-перехода, осуществляется так. Возьмите обычный стрелочный омметр или цифровой (второй более удобный).

Измерьте сопротивление между стоком и истоком, оно должно иметь небольшую величину и быть приблизительно равным в обоих направлениях. Теперь измерьте прямое и обратное сопротивление перехода, для этого подключите щупы к затвору и стоку (либо истоку). Если транзистор исправен, сопротивление будет разным в обоих направлениях.

Когда проверяете сопротивление между стоком и истоком, снимите заряд с затвора, для этого в течение пар секунд замкните его с истоком, если этого не сделать – вы получите неповторяющийся результат. Большинство маломощных полевых транзисторов крайне чувствительно к статике. Потому перед тем, как взять транзистор в руки, убедитесь, что на вашем теле не осталось зарядов. Чтобы освободиться от них, коснитесь рукой любого заземленного прибора (подойдет батарея отопления). Мощные полевые транзисторы чаще всего оснащены защитой от статики, но даже несмотря на это защита при работе с ними также не повредит.

Красивое и романтичное название полевого цветка иван-да-марья связано с древними славянскими легендами о запретной и нерушимой любви. Этот цветок собирали в числе прочих в купальскую ночь и использовали для различных обрядов.

Какой полевой цветок называют Иван-да-Марья

На самом деле этим именем называют несколько совершенно различных растений, относящихся к разным семействам. Поэтому довольно сложно сказать точно, какой именно цветок звали так наши предки. Во всяком случае, известно, что это название носит двухцветный цветок, обычно желтый с фиолетовым.

Чаще всего иваном-да-марьей называют растение, известное в ботанике как марьянник дубравный – однолетнее дикорастущее растение, отличающееся ярко-желтыми цветками с фиолетовыми прицветниками. Другие названия этого растения – иванова трава, брат с сестрой.

Иногда иваном-да-марьей зовут также фиалку трехцветную (анютины глазки) или луговой шалфей, реже – барвинок малый.

Легенды об Иване-да-Марье

Наиболее распространенная версия легенды, объясняющей название цветка, связана с именем Ивана Купалы.

Родились когда-то в одной семье близнецы – мальчик и девочка, Купала и Кострома. Когда они были еще маленькими детьми, Купалу унесла в далекие края птица Сирин. Спустя много лет молодой человек плыл по реке на лодке, странствуя в незнакомых землях. Тем часом мимо его лодки проплывал девичий венок. Купала подобрал его, а сойдя на берег, встретил и его хозяйку – красавицу Кострому. Молодые люди всем сердцем полюбили друг друга. Они поженились по славянскому обычаю. И лишь потом, придя в родную деревню, узнали о том, что приходятся друг другу родными братом и сестрой.

Согласно одной из версий легенды, боги покарали Кострому и Купалу за их запретную любовь, обратив их в цветок. По другой версии, несчастные влюбленные сами попросили об этом богов, чтобы никогда не разлучаться.

Еще один вариант предания рассказывает о том, что Кострома, не вынеся позора, пошла топиться в реке и превратилась в русалку, мару.

Самая жестокая легенда повествует о сестре, которая попыталась соблазнить своего брата, за что и была им убита. Перед смертью же она попросила посадить этот цветок на ее могиле.

Более «мягкая» история – о брате и сестре, которые жили на берегу реки. Однажды сестру заманили русалки и превратили в мару, жену водяного. Тогда ее брат собрал полынь-траву и с ее помощью одолел водяного.

Символика растения

Иван-да-марья – один из главных символов праздника Ивана Купалы, знак нерушимой любви.

Кроме того, считается, что желтый цвет символизирует огонь, а фиолетовый – воду (росу). Таким образом, иван-да-марья – символ единения противоположностей, знак огня и воды.

Видео по теме

Источники:

  • как проверить полевые транзисторы
Содержание:

В радиоэлектронике и электротехнике транзисторы относятся к одним из основных элементов, без которых не будет работать ни одна схема. Среди них, наиболее широкое распространение получили полевые транзисторы, управляемые электрическим полем. Само электрическое поле возникает под действием напряжения, следовательно, каждый полевой транзистор является полупроводниковым прибором, управляемым напряжением. Наиболее часто применяются элементы с изолированным затвором. В процессе эксплуатации радиоэлектронных устройств и оборудования довольно часто возникает необходимость проверить полевой транзистор мультиметром, не нарушая общей схемы и не выпаивая его. Кроме того, на результаты проверки оказывает влияние модификация этих устройств, которые технологически разделяются на п- или р-канальные.

Устройство и принцип действия полевых транзисторов

Полевые транзисторы относятся к категории полупроводниковых приборов. Их усиливающие свойства создаются потоком основных носителей, который протекает через проводящий канал и управляется электрическим полем. Полевые транзисторы, в отличие от биполярных, для своей работы используют основные носители заряда, расположенные в полупроводнике. По своим конструктивным особенностям и технологии производства полевые транзисторы разделяются на две группы: элементы с управляющим р-п-переходом и устройства с изолированным затвором.

К первому варианту относятся элементы, затвор которых отделяется от канала р-п-переходом, смещенным в обратном направлении. Носители заряда входят в канал через электрод, называемый истоком. Выходной электрод, через который носители заряда уходят, называется стоком. Третий электрод — затвор выполняет функцию регулировки поперечного сечения канала.

Когда к истоку подключается отрицательное, а к стоку положительное напряжение, в самом канале появляется электрический ток. Он создается за счет движения от истока к стоку основных носителей заряда, то есть электронов. Еще одной характерной особенностью полевых транзисторов является движение электронов вдоль всего электронно-дырочного перехода.

Между затвором и каналом создается электрическое поле, способствующее изменению плотности носителей заряда в канале. То есть, изменяется величина протекающего тока. Поскольку управление происходит с помощью обратно смещенного р-п-перехода, сопротивление между каналом и управляющим электродом будет велико, а мощность, потребляемая от источника сигнала в цепи затвора, очень мала. За счет этого обеспечивается усиление электромагнитных колебаний не только по току и напряжению, но и по мощности.


Существуют полевые транзисторы, у которых затвор отделяется от канала слоем диэлектрика. В состав элемента с изолированным затвором входит подложка — полупроводниковая пластина, имеющая относительно высокое . В свою очередь, она состоит из двух областей с противоположными типами электропроводности. На каждую из них нанесен металлический электрод — исток и сток. Поверхность между ними покрывает тонкий слой диэлектрика. Таким образом, в полученную структуру входят металл, диэлектрик и полупроводник. Данное свойство позволяет проверить полевой транзистор мультиметром не выпаивая. Поэтому данный вид транзисторов сокращенно называют МДП. Они различаются наличием индуцированных или встроенных каналов.

Проверка мультиметром

Перед началом проверки на исправность полевого транзистора мультиметром, рекомендуется принять определенные меры безопасности, с целью предотвращения выхода транзистора из строя. Полевые транзисторы обладают высокой чувствительностью к статическому электричеству, поэтому перед их проверкой необходимо организовать заземление. Для снятия с себя накопленных статических зарядов, следует воспользоваться антистатическим заземляющим браслетом, надеваемым на руку. В случае отсутствия такого браслета можно просто коснуться рукой батареи отопления или других заземленных предметов.


Хранение полевых транзисторов, особенно с малой мощностью, должно осуществляться с соблюдением определенных правил. Одно из них заключается в том, что выводы транзисторов в этот период, находятся в замкнутом состоянии между собой. Конфигурация цоколей, то есть расположение выводов в различных моделях транзисторов может отличаться. Однако их маркировка остается неизменной, в соответствии с общепринятыми стандартами. Затвор по-английски означает Gate, сток — Drain, исток — Source, а для маркировки используются соответствующие буквы G, D и S. Если маркировка отсутствует необходимо воспользоваться специальным справочником или официальным документом от производителя электронных компонентов.

Проверку можно выполнить с помощью , но более удобной и эффективной будет прозвонка цифровым мультиметром, настроенным на тестирование p-n-переходов. Полученное значение сопротивления, отображаемое на дисплее, на пределе х100 численно будет соответствовать напряжению на р-п-переходе в милливольтах. После подготовки можно переходить к непосредственной проверке. Прежде всего нужно знать, что исправный транзистор обладает бесконечным сопротивлением между всеми его выводами. Прибор должен показывать такое сопротивление независимо от полярности щупов, то есть прикладываемого напряжения.


Современные мощные полевые транзисторы имеют встроенный диод, расположенный между стоком и истоком. В результате, при решении задачи, как прозвонить полевой транзистор мультиметром, канал сток-исток, ведет себя аналогично обычному диоду. Отрицательным щупом черного цвета необходимо коснуться подложки — стоку D, а положительным красным щупом — вывода истока S. Мультиметр покажет наличие прямого падения напряжения на внутреннем диоде до 500-800 милливольт. В обратном смещении, когда транзистор закрыт, прибор будет показывать бесконечно высокое сопротивление.

Далее, черный щуп остается на месте, а красный щуп касается вывода затвора G и вновь возвращается к выводу истока S. В этом случае мультиметр покажет значение, близкое к нулю, независимо от полярности приложенного напряжения. Транзистор откроется в результате прикосновения. Некоторые цифровые устройства могут показывать не нулевое значение, а 150-170 милливольт.

Если после этого, не отпуская красного щупа, коснуться черным щупом вывода затвора G, а затем возвратить его к выводу подложки стока D, то в этом случае произойдет закрытие транзистора, и мультиметр вновь отобразит падение напряжения на диоде. Такие показания характерны для большинства п-канальных устройств, используемых в видеокартах и материнских платах. Проверка р-канальных транзисторов осуществляется таким же образом, только со сменой полярности щупов мультиметра.

Такие полупроводниковые элементы, как транзисторы, являются неотъемлемой частью практически всех электронных схем — от радиоприемников до системных плат сверхсложных вычислительных центров. Проверка этого элемента на работоспособность — операция, которую обязан уметь выполнять любой человек, так или иначе занимающийся ремонтом электронных плат, будь он профессиональный ремонтник или любитель.

Для осуществления этой операции можно применять специальный тестер транзисторов, но если его нет под рукой, или в его надежности есть сомнения, можно воспользоваться самым обыкновенным мультиметром. Даже те модели, которые не имеют специального гнезда для проверки биполярных или полевых транзисторов, могут быть использованы для точной проверки. Для этого мультиметр выставляется в режим максимального сопротивления, либо «прозвонки», если таковой есть.

Общий алгоритм проверки

Как проверить транзистор мультиметром? В общем и целом алгоритм выглядит так:

Дальнейшие действия по проверке будут зависеть от того, какого типа элемент требуется проверить. В основном в электронике применяются полупроводниковые элементы двух видов — биполярный и полевой.

Биполярный

Как проверить биполярный транзистор мультиметром? В первую очередь нужно выяснить, к какому из двух подтипов — npn или pnp он относится. Для этого вспомним, что же вообще такое биполярный транзистор.

Это полупроводниковый элемент, в котором реализован так называемый npn или pnp переход. N-p-n — это переход «электрон — дырка — электрон», p-n-p, соответственно, наоборот, «дырка — электрон — дырка». Конструктивно он состоит из трех частей — эмиттера, коллектора и базы. Фактически биполярник — это два сопряженных обыкновенных диода, у которых база является общей точкой соединения.

На схеме pnp транзистор отличается от своего npn-собрата направлением стрелки в круге — стрелки эмиттерного перехода. У схемы p-n-p она направлена к базе, у n-p-n — наоборот.

Эту разницу нужно знать для проверки биполярного транзистора. Pnp-схема открывается приложением к базе отрицательного напряжения, npn — положительного. Но перед этим необходимо выяснить, какой из контактов проверяемого транзистора является базой, какой эмиттером, а какой коллектором.

Обратите внимание, что определить описанным ниже способом, какой из контактов — база, а какие — эмиттер и коллектор, можно только у исправного элемента. Сам по себе факт прохождения транзистором этой проверки говорит о том, что он, скорее всего, исправен.

Инструкция здесь может быть следующая:

  1. красный (плюсовой) щуп подключается к первому попавшемуся выводу, например левому, черным (минусовым) поочередно касаются центрального и правого. Фиксируют значение «1» на центральном, и 816 Ом, например, на правом;
  2. красный щуп мультиметра закорачивают с центральным контактом, черный — поочередно с боковыми. Прибор выдает «1» на левом и какое-либо значение, допустим, 807 — на правом;
  3. при контакте красного щупа мультиметра с правым выводом, а черного — с левым и центральным получаем в обоих случаях «1». Это означает, что база определена — это и есть правый контакт транзистора. А сам транзистор — pnp-типа.

В принципе, этого достаточно, чтобы сказать, что транзистор исправен. Теперь, чтобы проверить его структуру и конкретное расположение эмиттера и коллектора, закорачиваем черный (минусовой) щуп мультиметра с базой, а красный — по очереди с левым и центральным контактом.


Тот контакт, что дает меньшую величину сопротивления, будет коллекторным (в нашем случае 807 Ом). Тот, что большую — 816 Ом — является эмиттерным.

Проверка транзистора npn типа происходит так же, только к базе прикладывается плюсовой контакт.

Это способ проверки p-n переходов между базой и коллектором и базой и эмиттером. Показания мультиметра могут быть разными, в зависимости от типа транзистора, но всегда будут лежать в пределах 500-1200 Ом. Для завершения испытания коснитесь щупами эмиттера и коллектора. Исправный элемент при этом будет выдавать бесконечно большое сопротивление вне зависимости от своего типа, как бы вы ни меняли полярность. Если значение на экране отличается от «1» — один из переходов пробит, деталь непригодна к работе.

Проверка без выпаивания

Если у вас нет уверенности, что проверять нужно именно этот транзистор, измерить его параметры можно и на плате, не выпаивая. Но при этом мультиметр должен показывать значения в пределах 500-1200 Ом. Если они измеряются единицами или даже десятками Ом — схема зашунтирована низкоомными резисторами. Для точной проверки транзистор придется выпаять.

Полевой

Полевой, он же — mosfet транзистор отличается от биполярного тем, что в нем может протекать либо только положительный заряд, либо только отрицательный («дырка» или электрон). Его контакты имеют иное значение — затвор, сток, исток.


Как проверить полевой транзистор мультиметром? Методика проверки почти та же, что и в предыдущем случае, но предварительно, во избежание выхода элемента из строя, необходимо снять с себя заряд статического электричества, так как полевик очень чувствителен к статике. Используйте антистатический браслет либо просто коснитесь рукой заземленного металлического элемента, например корпуса приборного шкафа.

Полевики всегда имеют небольшую проводимость между стоком и истоком, которая выявляется на экране мультиметра как сопротивление порядка 400-700 Ом. Если поменять полярность, сопротивление незначительно изменится, возрастет или упадет на 40-60 Ом. Перед этим необходимо закоротить исток и сток между собой, чтобы «обнулить» емкости переходов.

Если при проверке с помощью мультиметра между истоком и стоком обнаруживается бесконечно большое сопротивление, полевой транзистор неисправен.
Между истоком и затвором либо стоком и затвором также будет обнаруживаться проводимость, но только в одну сторону. Плюс, приложенный к затвору, а минус — к истоку, вызовет открытие перехода и, соответственно, значение на экране в границах 400-700 Ом. Обратная схема — плюс к истоку, минус к затвору — у исправного полевика даст «1», то есть. очень большое сопротивление.

Проверка линии сток-затвор проходит аналогично. Если же линия исток-затвор или сток-затвор имеет проводимость в обе стороны, это значит, что полевой транзистор пробит.

В заключение надо сказать несколько слов о составном типе. Составной транзистор — это элемент, соединяющий в себе два обычных биполярных транзистора (иногда три и более). Проверка мультиметром производится аналогично методологии для простого «биполярника».

Полевые транзисторы — полупроводниковые приборы, в которых управление переходными процессами, а также величиной выходного тока осуществляется изменением величины электрического поля. Существует два вида данных устройств: с (в свою очередь делятся на транзисторы со встроенным каналом и с индукционным каналом) и с управляемым переходом. Полевые транзисторы благодаря своим уникальным характеристикам находят широкое применение в радиоэлектронной аппаратуре: блоках питания, телевизорах, компьютерах и др.

При ремонте такой техники наверняка каждый начинающий радиолюбитель сталкивался с таким вопросом: как проверить полевой транзистор? Чаще всего с проверкой таких элементов можно столкнуться при ремонте импульсных блоков питания. В этой статье мы подробно расскажем, как это правильно сделать.

Как проверить полевой транзистор омметром

В первую очередь, чтобы приступить к проверке полевого транзистора, необходимо разобраться с его «цоколевкой», то есть с расположением выводов. На сегодняшний день существует множество различных исполнений таких элементов, соответственно, расположение электродов у них отличается. Часто можно встретить полупроводниковые транзисторы с подписанными контактами. Для маркировки используют латинские литеры G, D, S. Если же подписи нет, то необходимо воспользоваться справочной литературой.

Итак, разобравшись с маркировкой контактов, рассмотрим, как проверить полевой транзистор. Следующим шагом будет принятие необходимых мер безопасности, потому что полевые приборы очень чувствительны к статическому напряжению, и чтобы предотвратить выход из строя такого элемента, необходимо организовать заземление. Чтобы снять с себя накопленный статический заряд, обычно надевают на запястье антистатический заземляющий браслет.

Не следует также забывать, что хранить полевые транзисторы необходимо с замкнутыми выводами. Сняв статическое напряжение, можно переходить к процедуре проверки. Для этого понадобится простой омметр. У исправного элемента между всеми выводами сопротивление должно стремиться к бесконечности, но при этом существуют некоторые исключения. Сейчас мы рассмотрим, как проверить полевой транзистор n-типа.

Прикладываем положительный щуп прибора к электроду затвора (G), а отрицательный щуп к контакту истока (S). В этот момент начинает заряжаться емкость затвора и элемент открывается. При измерении сопротивления между истоком и стоком (D) омметр покажет некоторую величину сопротивления. В разных типах транзисторов эта величина различна. Если закоротить выводы транзистора, то сопротивление между стоком и истоком снова будет стремиться к бесконечности. Если этого не произошло, значит, транзистор неисправен.

Если вы спросите, как проверить полевой транзистор P-типа, то ответ прост: повторяем вышеописанную процедуру, только меняем полярность. Не следует также забывать, что современные мощные полевые транзисторы между истоком и стоком имеют встроенный диод, соответственно «прозванивается» он только в одну сторону.

Проверка полевого транзистора мультиметром

При наличии прибора «мультиметра», можно проверить полевой транзистор. Для этого выставляем в режим «прозвонки» диодов и вводим полевой элемент в режим насыщения. Если транзистор N-типа, то минусовым щупом касаемся стока, а плюсовым — затвора. Исправный транзистор в таком случае открывается. Переносим плюсовой щуп, не отрывая минусового, на исток, и мультиметр показывает какое-то значение сопротивления. После этого запираем транзистор: не отрывая щупа от истока, минусовым касаемся затвора и возвращаем на сток. Транзистор заперт, и сопротивление стремится к бесконечности.


Многие радиолюбители спрашивают: «Как проверить полевой транзистор, не выпаивая?» Сразу ответим, что стопроцентного способа не существует. Для этого используют мультиметр с колодкой HFE, но этот метод часто дает сбой, и можно потратить много времени впустую.

Транзистор является наиболее популярным активным компонентом, входящим в состав электрических схем. У любого, кто интересуется электроникой, время от времени возникает необходимость проверить подобный элемент. Особенно часто проверку приходится делать начинающим радиолюбителям, которые в своих схемах используют транзисторы, бывшие в употреблении, например, выпаянные из старых плат. Для «прозвонки» можно использовать специальные приборы-тестеры, позволяющие измерять параметры транзисторов, чтобы потом их можно было сравнить их с указанными в справочнике. Однако для элементов, входящих в любительскую схему достаточно выполнить проверку по правилу: «исправен, неисправен». Эта статья рассказывает, как проверить транзистор мультиметром именно по такому методу тестирования.

Подготовка инструментов

У каждого современного радиолюбителя есть универсальный инструмент под названием цифровой мультиметр. Он позволяет измерять постоянные и переменные токи и напряжение, сопротивление элементов. Он также позволяет проверить работоспособность элементов схемы. Рядом с переключателем в режим «прозвонки», как правило, нарисован диод и динамик (см. фото на рис. 1).

Рисунок 1 – Лицевая панель мультиметра

Перед проверкой элемента необходимо убедиться в работоспособности самого мультиметра:

  1. Батарея должна быть заряжена.
  2. При переключении в режим проверки полупроводников дисплей должен отображать цифру 1.
  3. Щупы должны быть исправны, т. к. большинство приборов – китайские, и разрыв провода в них является очень частым явлением. Проверить их нужно, прислонив кончики щупов друг к другу: в этом случае на дисплее отобразятся нули и раздастся писк – прибор и щупы исправны.
  4. Щупы подключаются согласно цветовой маркировке: красный щуп — в красный разъем, черный – в черный разъем с надписью COM.

Технологии проверки

Биполярный

Структура биполярного транзистора (БТ) включает в себя 2 p-n или 2 n-p перехода. Выводы этих переходов называются эмиттером и коллектором. Вывод срединного слоя называется базой. Упрощенно БТ можно представить как два включенных встречно диода, как изображено на рисунке 2.

Проверить биполярный транзистор мультиметром не сложно, в чем Вы сейчас и убедитесь. Как известно основным свойством p-n перехода является его односторонняя проводимость. При подключении положительного (красный) щупа к аноду, а черного к катоду на дисплее мультиметра будет отображена величина прямого напряжения на переходе в милливольтах. Величина напряжения зависит от типа полупроводника: для германиевых диодов это напряжение будет порядка 200–300 мВ, а для кремниевых от 600 до 800 мВ. В обратном направлении диод ток не пропускает, поэтому если поменять щупы местами, то на дисплее будет отображена 1, свидетельствующая о бесконечно большом сопротивлении.

Если же диод «пробит», то скорей всего раздастся звуковой сигнал, причем в обоих направлениях. В случае если диод «в обрыве», то на индикаторе, так и будет отображаться единица.

Таким образом, суть проверки исправности транзистора заключается в «прозвонке» p-n переходов база-коллектор, база-эмиттер и эмиттер-коллектор в прямом и обратном включении:

  • База-коллектор: Красный щуп подключается к базе, черный к коллектору. Соединение должно работать как диод и проводить ток только в одном направлении.
  • База-эмиттер: Красный щуп остается подключенным к базе, черный подключается к эмиттеру. Аналогично предыдущему пункту соединение должно проводить ток только при прямом включении.
  • Эмиттер-коллектор: У исправного перехода сопротивление данного участка стремится к бесконечности, о чем будет говорить единица на индикаторе.

При проверке работоспособности pnp типа «диодный» аналог будет выглядеть также, но диоды будут подключены наоборот. В этом случае черный щуп подключается к базе. Переход эмиттер-коллектор проверяется аналогично.

На видео ниже наглядно показывается проверка биполярного транзистора мультиметром:

Полевой

Полевые транзисторы (ПТ) или «полевики» используются в блоках питания, мониторах, аудио и видеотехнике. Поэтому с необходимостью проверки более часто сталкиваются мастера по ремонту аппаратуры. Самостоятельно проверить такой элемент в домашних условиях можно также с помощью обычного мультиметра.

На рисунке 3 представлена структурная схема ПТ. Выводы Gate (затвор), Drain (сток), Source (исток) могут располагаться по-разному. Очень часто производители маркируют их буквами. Если маркировка отсутствует, то необходимо свериться со справочными данными, предварительно узнав наименование модели.

Рисунок 3 – Структурная схема ПТ

Стоит иметь в виду, что при ремонте аппаратуры, в которой стоят ПТ, часто возникает задача проверки работоспособности и целостности без выпаивания элемента из платы. Чаще всего выходят из строя мощные полевые транзисторы, устанавливаемые в импульсные блоки питания. Также следует помнить, что «полевики» крайне чувствительны к статическим разрядам. Поэтому перед тем, как проверить полевой транзистор не выпаивая, необходимо надеть антистатический браслет и соблюдать технику безопасности.

Рисунок 4 – Антистатический браслет

Проверить ПТ мультиметром можно по аналогии с прозвонкой переходов биполярного транзистора. У исправного «полевика» между выводами бесконечно большое сопротивление вне зависимости от приложенного тестового напряжения. Однако, имеются некоторые исключения: если приложить положительный щуп тестера к затвору, а отрицательный – к истоку, то зарядится затворная емкость, и переход откроется. При замере сопротивления между стоком и истоком мультиметр может показать некоторое значение сопротивления. Неопытные мастера часто принимают подобное явление как признак неисправности. Однако, это не всегда соответствует реальности. Необходимо перед проверкой канала сток-исток замкнуть накоротко все выводы ПТ, чтобы разрядились емкости переходов. После этого их сопротивления снова станут большими, и можно повторно проверить работает транзистор или нет. Если подобная процедура не помогает, то элемент считается нерабочим.

«Полевики», стоящие в мощных импульсных блоках питания часто имеют внутренний диод на переходе сток-исток. Поэтому этот канал при проверке ведет себя как обычный полупроводниковый диод. Во избежание ложной ошибки необходимо перед тем, как проверить транзистор мультиметром, удостовериться в наличии внутреннего диода. Следует поменять местами щупы тестера. В этом случае на экране должна отобразиться единица, что свидетельствует о бесконечном сопротивлении. Если этого не происходит, то, скорее всего, ПТ «пробит».

Технология проверки полевого транзистора показана на видео:

Составной

Типовой составной транзистор или схема Дарлингтона изображена на рисунке 5. Эти 2 элемента расположены в одном корпусе. Внутри также находится нагрузочный резистор. У такой модели аналогичные выводы, что и у биполярного. Нетрудно догадаться, что проверить составной транзистор мультиметром можно точно также, как и БТ. Следует отметить, что некоторые типы цифровых мультиметров в режиме тестирования имеют на клеммах напряжение меньшее 1,2 В, что недостаточно для открывания р-n перехода, и в этом случае прибор показывает разрыв в цепи.

Как проверить полевой транзистор мультиметром

При проведении ремонтных работ электронной техники, возникает вопрос проверки функционального состояния тех или иных полупроводниковых элементов. Решение этой проблемы сильно облегчает наличие специализированных приборов, однако, во многих случаях вполне можно обойтись и без них.

Есть ряд способов, как проверить транзистор мультиметром без использования сложных приборов и каких-либо дополнительных электрических схем. Рассматриваются алгоритмы проверки различных типов транзисторов.

 

 

Проверка trz (транзистора), равно как и любого другого элемента схемы, начинается с определения его типа. Эту информацию несложно найти в интернете. У опытного мастера всегда есть под рукой ссылки на проверенные ресурсы. Если таковых нет, то, обычно достаточно вбить маркировку компонента в поисковой системе и нужная информация найдется уже на первой странице поисковой выдачи. Наиболее распространенные типы транзисторов: биполярные, полевые, составные, однопереходные. Определив тип элемента, можно начинать его функциональную проверку.

Биполярный транзистор

Наиболее распространенные транзисторы. Используются в основном в схемах усиления или генерации сигнала: в усилителях, генераторах, модуляторах, инверторах и т. д. Бывают двух типов: p-n-p и n-p-n. Не углубляясь в структуру полупроводникового прибора, достаточно будет сказать, что каждый p-n переход представляет собой диод. Строго говоря, это не совсем так, но для проверки работоспособности такое представление вполне допустимо. Таким образом, последовательность p-n-p представима в виде двух диодов, соединенных катодами, а n-p-n – двух диодов, соединенных анодами. Чтобы проверить, работоспособность такого элемента, нужно мультиметром замерить сопротивление переходов.

Определение работоспособности p-n-p полупроводника:

  • Берется мультиметр. Черный провод (обозначим его как Ч) помещается в гнездо COM (минус).
  • Красный (К) – в гнездо VΩmA (плюс).
  • Тестер выставляется на замер электрического сопротивления. Предельное значение выбирается 2 кОм. Это означает, что мультиметр может корректно измерять сопротивление от 0 до 2000 Ом. При превышении данного порога, на экране прибора загорится «1».
  • Для замера прямых сопротивлений Ч закрепляется на базе элемента.
  • Чтобы замерить величину сопротивления эмиттерного перехода, К помещается на эмиттер.
  • Измеренное значение должно быть от 500 до 1200 Ом. Аналогично и для коллектора.
  • Для измерения обратных сопротивлений на базе элемента закрепляется К. Ч поочередно помещается на коллектор и эмиттер. Полученные значения должны превышать установленный порог в 2кОм. Об этом, в обоих случаях, будет свидетельствовать цифра «1» на экране тестера.
  • Для n-p-n полупроводника применяется та же самая методика. За исключение того, что в п.1 Ч и К помещаются в противоположные гнезда. Тем самым меняется полярность щупов тестера.

Если изначально нет информации относительно расположения базы, коллектора, эмиттера, это нетрудно определить. Измерительный прибор устанавливается в состояние п. 1 и п. 2 вышеприведенной схемы. К (плюс) помещается на правый вывод полупроводника. Ч (минус) поочередно замыкается на средний и левый выводы. Если в обоих случаях тестер покажет «1», то данный контакт и есть база. В противном случае аналогичным образом тестируем оставшиеся контакты.

Остается найти эмиттер и коллектор. Для этого необходимо просто замерить сопротивление коллекторных и эмиттерных переходов. Ч помещается на базу. К поочередно замыкается на оставшиеся выводы. Полученные значения должны лежать в диапазоне от 500–1200 Ом. При этом большее значение будет относиться к коллекторному переходу, а меньшее, соответственно к эмиттерному.

Полевой транзистор

Обладает значительно меньшим энергопотреблением по сравнению с биполярным. Основная область применения – это приборы, работающие в ждущем или следящем режимах. Импортные элементы обычно имеют маркировку, упрощающую идентификацию выводов: G-затвор, S-исток, D-сток. Полевой транзистор или, как его еще называют, мосфет, бывает n-канальный и p-канальный. Алгоритмы проверки работоспособности полупроводников обоих типов похожи.

Определение функциональности n-канального полупроводника.

Поскольку у таких компонентов между стоком и истоком часто встраивается диод, то, для проверки функциональности, на измерительном устройстве устанавливается в режим проверки диодов. Ч идет на минус тестера, а К – на плюс.

  • К помещается на исток элемента, а Ч – на сток. Напряжение должно быть от 500 до 700 мВ.
  • К – на сток, а Ч – на исток. Значение в этом случае должны выходить за пределы измерений мультиметра. Об этом свидетельствует цифра «1» на экране прибора.
  • Ч – на истоке. Касание К затвора открывает транзистор. Ч остается на истоке, а К соединяется со стоком. Замеренное напряжение должно лежать в диапазоне от 0 до 800 мВ и не зависеть от смены полярности проводов тестера.
  • Замыкание К на исток, а Ч – на затвор проводит к закрытию прибора и переводу его в изначальное состояние.

Для определение работоспособности p-канального полупроводника Ч подключается к плюсу мультиметра, а К – к минусу. Дальнейшая последовательность действий аналогична методике проверки элемента n-канального типа.

Составной транзистор

Также известен как пара Дарлингтона. Является каскадом из двух и более биполярных транзисторов. Тестирование таких элементов одним лишь мультиметром, без сборки дополнительных схем, не представляется возможным. Вопрос монтажа подобных вспомогательных схем выходит за рамки данной статьи.

Однопереходный транзистор

В основном используются во всевозможных реле и пороговых устройствах. У элементов данного типа присутствует только один p-n переход. Для проверки его работоспособности мультиметром замеряется сопротивление между ножками «Б1» и «Б2». Если полученная величина незначительна, то компонент неисправен.

Проверка элемента без выпаивания его из схемы

Часто возникает вопрос, как проверить smd транзистор мультиметром. SMD – это аббревиатура от английского Surface Mounted Device (устройство, монтируемое на поверхность). Такие полупроводники не вставляются в отверстия плат. Их просто напаивают сверху на контактные дорожки. В современных платах плотность таких дорожек невероятно велика. Более того, часто они располагаются в несколько слоев. Поэтому если какая-то из дорожек располагается в середине такого «пирога», то ее может быть просто не видно.

Становится понятно, что поскольку демонтаж и обратный монтаж smd компонентов на контактные дорожки печатных плат зачастую сопряжен со значительными сложностями, то лучше всего было бы осуществить проверку функциональности элемента, не выпаивая его. К сожалению, такое подход возможен только для биполярных транзисторов. Однако даже при положительных итогах проверки нельзя быть полностью уверенным в результате. В большинстве же случаев только лишь демонтаж элемента с печатной планы позволяет гарантированно проверить его работоспособность.

типы, режимы и инструкции, разбивка

Давайте займемся теорией, повремените убегать. Портал ВашТехник наряду с заумными сентенциями, рассчитанными быть понятыми профи, предоставит методику пяти пальцев. Не слышали? Просто, как пять пальцев. Сначала обсудим типы транзисторов, потом расскажем, что можно сделать при помощи мультиметра. Рассмотрим штатные гнезда hFE (объясним, что это такое), методику замещения схемы через соединение нескольких диодов. Расскажем, с чего начать. Поймете, как проверить транзистор мультиметром, или… Давайте, пожалуй, без «или». Приступим, чтобы твердо отличать МОП-транзистор от мопса, растолчем теорию.

Типы, классификация транзисторов

Избегаем исследовать дебри. Знайте простое правило: в биполярных транзисторах носители обоих знаков участвуют в создании выходного тока, в полевых – одного. Определение умников. Теперь работаем пальцами:

Устройство транзисторов

  1. Транзисторы полевого типа выступают началом. Когда Битлз выходили на сцену, на замену вакуумным триодам стали приходить полупроводники. Если говорить кратко, p-n-p транзистор – два богатых положительными носителями слоя кристалла (кремний, германий, примесной проводимости). Проводя уроки физики, учитель часто рассказывал, как V-валентный мышьяк легировал решетку кремния, образуя новый материала. Добавим, что положительные p-области, отгорожены узкой отрицательной (n-negative). Как ком в горле. Узкий перешеек, называемый базой, отказывается пускать электроны (в нашем случае скорее дырки) течь в нужном направлении. Небольшой отрицательный заряд появляется на управляющем электроде, дырки коллектора (верхняя p-область на традиционных электрических схемах) больше не могут сдерживаться, буквально рвутся в сторону приложенного напряжения. Поскольку база тонкая, используя набранную скорость носители пролетают перешеек, уносятся дальше — достигая эмиттера (нижняя p-область), здесь увлекаются разностью потенциалов, создаваемой напряжением питания. Типичное школьное объяснение. Относительно небольшое напряжение управляющего электрода способно регулировать скорость сильного потока дырок (положительных носителей), увлекаемого полем напряжения питания. На этом построена техника. Навстречу дыркам движутся электроны, транзисторы называют биполярными.
  2. Полевые транзисторы снабжены каналом любого типа проводимости, разделяющим области истока и стока (см. рисунок выше). Управляющий электрод называют затвором. Причем основной материал подложки, затвора противоположен каналу, истоку и стоку. Поэтому положительное напряжение (см. рисунок) запрет ход зарядам через транзистор. Плюс оттянет (в p-область) доступные электроны. Полевые транзисторы в электронике применяются намного чаще. На рисунке затвор электрически соединен с кристаллом, структура называется управляющим p-n переходом. Бывает, область изолирована от кристалла диэлектриком, в качестве которого часто выступает оксид. Чистой воды MOSFET транзистор, по-русски – МОП.

Схема проверки транзистора

При помощи мультиметра, в штатном режиме проверяются биполярные транзисторы. Если тестер поддерживает такую опцию, часто именуемую hFE, на лицевой панели смонтирован круглый разъем, поделенный вертикальной чертой на две части, где надписаны по 4 гнезда следующим образом:

  1. B – база (англ. Base).
  2. С – коллектор (англ. Collector).
  3. E – эмиттер (англ. Emitter).

Гнезд для эмиттера два, чтобы учесть раскладку выводов корпуса. База может быть с края, посередине. Для удобства сделано. Нет разницы, в какое гнездо вставить ножку эмиттера биполярного транзистора. Пара слов, как пользоваться.

Проверка биполярного транзистора мультиметром в штатном режиме

Чтобы гнездо проверки биполярных транзисторов начало работать (вести измерения), переведем тестер в режим hFE. Откуда взялись буквы? h – касается категории параметров, описывающих четырехполюсник любого типа. Не важно знать, что подразумевает понятие – просто уясним: существует целая группа h-параметров, среди которых имеется один важный занимающимся электроникой. Называется коэффициентом усиления по току с общим эмиттером. Обозначается, h31 (либо строчной греческой буквой бета).

Цифровая мнемоника плохо воспринимается человеческим глазом, поэтому было решено (за рубежом, понятное дело), что F будет обозначать прямое усиление по току (forward current amplification), тогда как E говорит, что измерение велось в схеме с общим эмиттером (которая применяется учебниками физики для иллюстрации принципов работы транзисторов биполярного типа). Схем включения много, каждая обладает достоинствами, параметры можно охарактеризовать через h31 (некоторые другие, упомянутые справочниками). Считается, если коэффициент усиления в норме, радиоэлемент 100% работоспособен. Теперь читатели знают, как проверяется p-n-p транзистор или n-p-n транзистор.

h31 зависит от некоторых параметров, указываемых инструкцией мультиметра. Напряжение питания 2,8 В, ток базы 10 мА. Дальше берутся графики технической документации (data sheet) транзистора, профессионал знает, как найти остальное. При включении режима hFE, подсоединении ножек биполярного транзистора в нужные гнезда на дисплее появляется значение коэффициента усиления прибора по току. Потрудитесь сопоставить справочным данным, сделав поправку на режим измерения (если понадобится). Только звучит сложно, достаточно пару раз сделать самостоятельно, добьетесь результатов.

Проверка транзисторов мультиметром: нештатный режим

Допустим, вызывает сомнение исправность транзистора полевого типа. Известный русский вопрос в электронике присутствует. Начинают думать… м-да.

  • Полевой транзистор отпирается или запирается определенным знаком напряжения. Обсуждали выше. Если помните, говорили, при прозвонке на щупах тестера небольшое постоянное напряжение. Будем использовать в наших тестах. Пока транзистор на плате, сложно сделать измерения, стоит изъять из привычного окружения, как можно применить нестандартные методики. Оказывается, если приложить на электрод отпирающее напряжение, за счет некоторой собственной емкости транзистора область зарядится, сохраняя приобретенные свойства. Допускается прозвонить электроды между истоком и стоком. Сопротивление порядка 0,5 кОм покажет: полевой транзистор работоспособен. Стоит закоротить базу с другими отводами, проводимость исчезнет. Полевой транзистор закрылся и годен.
  • Биполярные транзисторы, полевые с управляющим p-n переходом проверяют гораздо проще. В первом случае применяется схема замещения элемента двумя диодами, включенными навстречу (или наоборот спинками). Подадим отпирающее напряжение (p – плюс, n – минус), получив на измерителе сопротивления номинал 500 – 700 Ом. Можно также звонить, пользуясь слухом. Недаром на шкале часто нарисован диод. Прозвонка используется для проверки работоспособности. Напряжения хватает открыть p-n-переход.

Подготовка к проверке транзистора

Временами схватишь руками составной транзистор. Внутри корпуса находиться несколько ключей. Используется для экономии места при одновременном увеличении коэффициента усиления (причем в десятки, тысячи раз, если речь шла о каскадной схеме). Устроен так транзистор Дарлингтона. В корпус зашит защитный стабилитрон, предохраняющий переход эмиттер-база от перегрузки по напряжению. Тестирование идет одним путем:

  • Нужно найти подробные технические характеристика транзистора (составного элемента). При нынешнем масштабе компьютеризации не составит проблемы. Даже если изделие импортное. Обозначения на схемах понятные, термины не сложные. Параметр hFE расписали.
  • Затем ведется изучение, выполняется анализ. Разбиение схемы на более простые составляющие. Если между переходами коллектора и эмиттера включен стабилитрон, логично начать проверку с него. В начальный момент транзистор заперт, ток мультиметра пойдет, минуя защитный каскад. В одном направлении стабилитрон даст сопротивление 500-700 Ом, в другом (если не пробьется) будет обрыв. Аналогично разобьем на части транзистор Дарлингтона, если имеете представление (обсуждали выше).

Режим прозвонки покажет цифры. Говорят, падение напряжения, по некоторым сведениям, номинал сопротивления. Потрудимся привести опыты, решая вопрос. Вызвонить известный по значению сопротивления, заведомо исправный резистор. Если на экране появится номинал в омах, думать нечего. В противном случае можно оценить заодно ток (разделив потенциал дисплея на номинал). Знать тоже нужно, пригодится в процессе тестирования. До начала работ рекомендуется хорошенько изучить мультиметр. Достаньте инструкцию из мусорной корзины, прочитайте.

Народ интересуется вопросом, можно ли проверить транзистор мультиметром, не выпаивая. Очевидно, многое определено схемой. Тестер просто прикладывает напряжения, оценивает возникающие токи. На основе показаний вычисляется коэффициент усиления, служа критерием годности/негодности. Попробуйте проверить полевой транзистор мультиметром из входящих в состав процессора! Отбрось надежду всяк сюда входящий. Не всегда можно прозвонить полевой транзистор мультиметром.

Разбить биполярный транзистор на диоды

Рисунок, представленный среди текста, демонстрирует схему замещения транзистора двумя диодами. Позволит рассматривать усилительный элемент, представив суммой двух независимых более простых. Не обладающих усилением, проявляющих нелинейные свойства (неодинаковость прямого/обратного включения).

Мощные транзисторы силовых цепей бессилен открыть скудными силами мультиметр. Поэтому для тестирования устройств применяются специальные схемы. Нельзя проверить биполярный транзистор мультиметром напрямую.

Проверка диода

Проверка условных диодов, замещающих транзистор

Методик несколько. Можно попробовать измерить сопротивление стандартной шкалой Ω. Красный щуп нужно прикладывать к p-области. Тогда дисплей мультиметра покажет цифру, меньшую бесконечности. В противоположном направлении результат будет нулевым. Мультиметр покажет обрыв. Нормальные результаты прозвонки диода.

Если пользоваться специальным режимом, экран показывает размер сопротивления в прямом направлении, обрыв (стандартно единичка в левом углу ЖК-экрана) в другом. Обратите внимание – рисунок содержит поясняющие надписи, куда прислонять щуп, получая открытый p-n переход. В обратном направлении прибор показывает обрыв.

AVR-STM-C++: Как мультиметром проверить MOSFET

Как проверить полевой транзистор мультиметром?
Исходя из особенностей конструкции полевых транзисторов способ проверки отличается от способа проверки биполярных транзисторов. Тем не менее есть один надежный способ проверки.
Транзистор должен быть выпаян, на распаяном транзисторе в большинстве случаев этот способ не сработает за счет обвязки (окружающих деталей). Мультиметр ставим на режим прозвонки диодов.
Сам полевой транзистор может содержать в себе встроенный диод, он будет между Drain и Source. Поэтому для начала ищем даташит на наш полевик — чтобы точно знать с чем имеем дело.
Для примера возьмем MOSFET IRLZ44N. Из даташита на него мы узнаем где у него какие ноги. IRLZ44N цоколевка
Из этого же даташита мы видим, что есть диод, а это значит, что между Drain и Source мы увидим вместо бесконечного сопротивления — некое падение напряжения.

Итак, ставим черный щуп на Drain, красный на Gate. Прибор должен показать бесконечное сопротивление, тоесть показатели просто не поменяются. Меняем щупы местами — картина та же. Переставляем красный с Drain на Source, потом меняем местами (Красный на Gate, черный на Source) — показания меняться не должны. Gate, он же затвор, отделен от Drain и Source, если звониться в какую-либо сторону — затвор пробит, мосфет неисправен.


Теперь нам надо прозвонить Drain и Source, но для начала коротим все ноги щупом — дабы те напряжения, которые мы ему передали при прозвонке, уравнять. Ставим черный щуп на Drain, красный — на Source. Тут мы должны увидеть тот самый диод — тоесть падение напряжения. Меняем щупы местами — бесконечное сопротивление, как и в случае с Gate. Если видим что-то иное — коротим ноги щупом и повторяем замер. Если результат не бесконечное сопротивление — наш полевой транзистор вышел из строя.
Дальше ставим черный щуп на Source, красным касаемся Gate и ставим после этого на Drain. MOSFET должен открыться, тоесть показать низкое сопротивление. Так как напряжение, которым мы открыли полевой транзистор — низкое, то и сопротивление транзистора будет велико.
По сути Gate-Source — это конденсатор, который мы только что зарядили. Пока он заряжен — полевой транзистор открыт.
Если ваш мосфет ведет себя не так — скорей всего он вышел из строя.
Такой способ проверки полевых транзисторов поможет проверить фактически все широко распространенные MOSFET-транзисторы.

Как проверить полевой транзистор? | ROM.by

MOSFET — это Metal-Oxide-Semiconductor Field-Effect Transistor.

Нижеизложенная методика обеспечивает проверку MOSFET’ов вне схемы. MOSFET должен находиться на непроводящей поверхности. Поверхность MOSFET’а должна быть относительно чистой, т.к. загрязнение поверхности между выводами MOSFET’а может привести к искажению результатов проверки. Также следует обращать внимание на соотношение Vgs(th) и максимального напряжения, выдаваемого мультиметром в режиме проверки диодов.

Для диагностики полевых транзисторов N-канального вида ставим мультиметр на проверку диодов (обычно он пищит на этом положении), черный щуп слева на подложку (D — сток), красный на дальний от себя вывод справа (S — исток), мультиметр показывает падение напряжения на внутреннем диоде — 502 мВ, транзистор закрыт (Рис.4). Далее, не снимая черного щупа, касаемся красным щупом ближнего вывода (G — затвор) (Рис.5) и опять возвращаем его на дальний (S — исток), тестер показывает 0 мВ (на некоторых цифровых мультиметрах будет показываться не 0, а 150…170 мВ): полевой транзистор открылся прикосновением (Рис.6).

Если сейчас черным щупом коснуться нижней (G — затвор) ножки, не отпуская красного щупа (Рис.7), и вернуть его на подложку (D — сток), то полевой транзистор закроется и мультиметр снова будет показывать падение напряжения около 500 мВ (Рис.8). Это верно для большинства N-канальных полевиков в корпусе DPAK и D²PAK, применяемых на материнских платах и видеокартах.

Транзистор выполнил всё, что от него требовалось. Диагноз — исправен. Для проверки P-канальных полевых транзисторов нужно поменять полярность напряжений открытия-закрытия. Для этого просто меняем щупы мультиметра местами.

Ссылка по теме.

MOSFET тестирование

Содержание страницы

Простой тест

Для правильного тестирования полевого МОП-транзистора требуется много дорогостоящего тестового оборудования, но если у вас есть подходящий цифровой мультиметр, вы можете провести довольно точный тест «годен / не годен», который не даст результатов практически для всех неисправных полевых МОП-транзисторов.

В настоящее время большинство мультиметров имеют диапазон проверки диодов. На большинстве мультиметров (но далеко не на всех!) Это дает около 3-4 В на тестируемом устройстве. Этого достаточно, чтобы включить большинство полевых МОП-транзисторов — хотя бы частично, и достаточно для тестирования.Счетчики, которые используют более низкое испытательное напряжение холостого хода (иногда 1,5 В), не будут выполнять этот тест!

Итак: подключите минус измерителя к источнику полевого МОП-транзистора. Это указано стрелкой на рисунке выше, на котором показаны самые популярные полевые МОП-транзисторы TO220.

Держите полевой МОП-транзистор за корпус или язычок, если хотите, не имеет значения, касаетесь ли вы металлического корпуса, но будьте осторожны, не касайтесь выводов, пока вам это не понадобится.

Сначала прикоснитесь плюсом счетчика к воротам.

Теперь переместите положительный датчик измерителя в сток.У вас должно быть низкое чтение. Емкость затвора полевого МОП-транзистора была заряжена измерителем, и устройство было включено.

Когда плюс измерителя все еще подключен к сливу, коснитесь пальцем между истоком и затвором (и стоком, если хотите, это не имеет значения). Затвор будет выпущен через ваш палец, и показания счетчика должны быть высокими, указывая на непроводящее устройство.

Такой простой тест не может быть на 100%, но он полезен и обычно бывает адекватным.

Тест лучше

То, что на самом деле измеряет приведенный выше тест, — это напряжение отсечки: самое высокое напряжение, которое может быть приложено к затвору полевого МОП-транзистора без его начала проводить.Схема ниже показывает лучший способ.

Есть два нажимных переключателя, один — переключающий, второй — нажимной (нормально разомкнутый). Пользуюсь парочкой микровыключателей. Он использует диодный тест мультиметра, или вы можете использовать любой источник питания или батарею на 9 В с резистором, включенным последовательно с MOSFET, для ограничения тока.

Когда оба переключателя находятся в нормальном положении, конденсатор C1 заряжается до напряжения холостого хода диодного тестера. Емкость конденсатора не критична, 10н-100н в порядке.При нажатии Sw1 заряженный конденсатор отключается от выводов счетчика и снова подключается к затвору полевого МОП-транзистора. МОП-транзистор должен полностью включиться, поэтому тестер диодов укажет на короткое замыкание.

Выпуск Sw1. Затвор полевого МОП-транзистора все еще заряжен. Только утечка может разрядить его, поэтому полевой МОП-транзистор должен еще некоторое время оставаться проводящим.

Нажмите SW2, чтобы замкнуть затвор полевого МОП-транзистора на исток, чтобы разрядить его. Измеритель должен показать обрыв цепи.

В качестве альтернативы подключите конденсатор к измерителю + ve через диод, чтобы позволить конденсатору заряжаться. Теперь, когда конденсатор подключен к затвору, полевой МОП-транзистор будет проводить, но диод не позволит проводящему МОП-транзистору разрядить конденсатор.

Мертвые полевые МОП-транзисторы

Умирающие полевые МОП-транзисторы часто выделяют пламя, особенно в бытовой электронике. Один участник группы пользователей сказал, что полевой транзистор в MOSFET расшифровывается как Fire Emitting Transistor. В коммерческом оборудовании, где полевые МОП-транзисторы защищены от грубых злоупотреблений, может произойти «мягкий» отказ, и МОП-транзисторы могут выглядеть нормально, но быть бесполезными: однако, обычно, если они выглядят нормально, так и есть!

Когда полевые МОП-транзисторы выходят из строя, они часто коротко замыкают сток на затвор. Это может вернуть напряжение стока на затвор, где, конечно, если оно подается (через резисторы затвора) в схему управления, может быть, взорвав его.Он также попадет в любые другие параллельные ворота MOSFET, взорвав их. Итак — если полевые МОП-транзисторы умерли, проверьте также драйверы! Это, вероятно, лучшая причина для добавления стабилитрона затвор-исток: стабилитрон выходит из строя при коротком замыкании, а правильно подключенный стабилитрон может ограничить повреждение в случае отказа! 4QD также использует субминиатюрные резисторы затвора, которые имеют тенденцию выходить из строя при этой перегрузке, отключая затвор неисправного МОП-транзистора.

Если вы хотите узнать больше о полевых МОП-транзисторах в управлении двигателем, посетите наш раздел схем.


Подходящие счетчики

Подходят далеко не все марки / модели счетчиков, поэтому я перечислю здесь известные мне. Если вы можете добавить в этот список, свяжитесь со мной.
Марка Модель Test V Комментарии
Avo — Megger M5091 4.0 v Диапазон звукового сигнала.
Fluke 77iii
LEM — Heme LH 630 3.0 v Измеритель тока на эффекте Холла

Информация о странице


© 1998-2012 4QD
Автор Пейджа: Ричард Торренс
URI документа:
Последнее изменение:

Как проверить транзистор и диод »Электроника

Очень быстро и легко научиться тестировать транзистор и диод с помощью аналогового мультиметра — обычно этого достаточно для большинства приложений.


Руководство по мультиметру Включает в себя:
Основные сведения о тестере Аналоговый мультиметр Как работает аналоговый мультиметр Цифровой мультиметр DMM Как работает цифровой мультиметр Точность и разрешение цифрового мультиметра Как купить лучший цифровой мультиметр Как пользоваться мультиметром Измерение напряжения Текущие измерения Измерения сопротивления Тест диодов и транзисторов Диагностика транзисторных цепей


В то время как многие цифровые мультиметры в наши дни имеют особые возможности для тестирования диодов, а иногда и транзисторов, не все это делают, особенно старые аналоговые мультиметры, которые все еще широко используются.Однако по-прежнему довольно легко выполнить простой тест «годен / не годен», используя простейшее оборудование.

Этот вид тестирования позволяет определить, работает ли транзистор или диод, и, хотя он не может предоставить подробную информацию о параметрах, это редко является проблемой, потому что эти компоненты проверяются при изготовлении, и производительность сравнительно редко может быть нарушена. упадут до точки, в которой они не работают в цепи.

Большинство отказов являются катастрофическими, в результате чего компонент становится полностью неработоспособным.Эти простые тесты мультиметра позволяют очень быстро и легко обнаружить эти проблемы.

Таким образом можно тестировать диоды

большинства типов — силовые выпрямительные диоды, сигнальные диоды, стабилитроны / опорные диоды напряжения, варакторные диоды и многие другие типы диодов.

Как проверить диод мультиметром

Базовый тест диодов выполнить очень просто. Чтобы убедиться, что диод работает нормально, необходимо провести всего два теста мультиметра.

Тест диода основан на том факте, что диод будет проводить только в одном направлении, а не в другом.Это означает, что его сопротивление будет отличаться в одном направлении от сопротивления в другом.

Измеряя сопротивление в обоих направлениях, можно определить, работает ли диод, а также какие соединения являются анодом и катодом.

Поскольку фактическое сопротивление в прямом направлении зависит от напряжения, невозможно дать точные значения ожидаемого прямого сопротивления, так как напряжение на разных измерителях будет разным — оно будет даже различным в разных диапазонах измерителя.


… полоса на корпусе диода представляет катод ….

Метод проверки диода аналоговым измерителем довольно прост.

Пошаговая инструкция:
  1. Установите измеритель на его диапазон Ом — подойдет любой диапазон, но средний диапазон Ом, если их несколько, вероятно, лучше всего.
  2. Подключите катодную клемму диода к клемме с положительной меткой на мультиметре, а анод — к отрицательной или общей клемме.
  3. Установите измеритель на показания в омах, и должны быть получены «низкие» показания.
  4. Поменяйте местами соединения.
  5. На этот раз должно быть получено высокое значение сопротивления.

Примечания:

  • На шаге 3 выше фактическое показание будет зависеть от ряда факторов. Главное, чтобы счетчик отклонялся, возможно, до половины и более. Разница зависит от многих элементов, включая батарею в глюкометре и используемый диапазон.Главное, на что следует обратить внимание, это то, что счетчик сильно отклоняется.
  • При проверке в обратном направлении кремниевые диоды вряд ли покажут какое-либо отклонение измерителя. Германиевые, которые имеют гораздо более высокий уровень обратного тока утечки, могут легко показать небольшое отклонение, если измеритель установлен на высокий диапазон Ом.

Этот простой аналоговый мультиметр для проверки диода очень полезен, потому что он очень быстро показывает, исправен ли диод.Однако он не может тестировать более сложные параметры, такие как обратный пробой и т. Д.

Тем не менее, это важный тест для обслуживания и ремонта. Хотя характеристики диода могут измениться, это случается очень редко, и очень маловероятно, что произойдет полный пробой диода, и это будет сразу видно с помощью этого теста.

Соответственно, этот тип теста чрезвычайно полезен в ряде областей тестирования и ремонта электроники.

Проверка диодов мультиметром

Как проверить транзистор мультиметром

Тест диодов с помощью аналогового мультиметра может быть расширен, чтобы обеспечить простую и понятную проверку достоверности биполярных транзисторов. Опять же, тест с использованием мультиметра дает только уверенность в том, что биполярный транзистор не перегорел, но он все еще очень полезен.

Как и в случае с диодом, наиболее вероятные отказы приводят к разрушению транзистора, а не к небольшому ухудшению характеристик.

Испытание основано на том факте, что биполярный транзистор можно рассматривать как состоящий из двух встречных диодов, и при выполнении теста диодов между базой и коллектором и базой и эмиттером транзистора с использованием аналогового мультиметра, большая часть можно установить базовую целостность транзистора.

Эквивалентная схема транзистора с диодами для проверки мультиметром.

Требуется еще один тест. Транзистор должен иметь высокое сопротивление между коллектором и эмиттером при разомкнутой цепи базы, так как имеется два встречных диода.Однако возможно, что коллектор-эмиттерный тракт перегорел, и между коллектором и эмиттером был создан путь проводимости, при этом все еще выполняя диодную функцию по отношению к базе. Это тоже нужно проверить.

Следует отметить, что биполярный транзистор не может быть функционально воспроизведен с использованием двух отдельных диодов, потому что работа транзистора зависит от базы, которая является переходом двух диодов, являясь одним физическим слоем, а также очень тонкой.

Пошаговая инструкция:

Инструкции даны в основном для транзисторов NPN, поскольку они являются наиболее распространенными в использовании.Варианты показаны для разновидностей PNP — они указаны в скобках (.. .. ..):

  1. Установите измеритель на его диапазон Ом — подойдет любой диапазон, но средний диапазон Ом, если их несколько, вероятно, лучше всего.
  2. Подключите клемму базы транзистора к клемме с маркировкой «плюс» (обычно красного цвета) на мультиметре
  3. Подключите клемму с маркировкой «минус» или «общий» (обычно черного цвета) к коллектору и измерьте сопротивление.Он должен читать обрыв цепи (для транзистора PNP должно быть отклонение).
  4. Когда клемма с маркировкой «положительный» все еще подключена к базе, повторите измерение с положительной клеммой, подключенной к эмиттеру. Показание должно снова показать обрыв цепи (мультиметр должен отклоняться для транзистора PNP).
  5. Теперь поменяйте местами подключение к базе транзистора, на этот раз подключив отрицательную или общую (черную) клемму аналогового измерительного прибора к базе транзистора.
  6. Подключите клемму с маркировкой «плюс» сначала к коллектору и измерьте сопротивление. Затем отнесите к эмиттеру. В обоих случаях измеритель должен отклониться (указать обрыв цепи для транзистора PNP).
  7. Далее необходимо подключить отрицательный или общий вывод счетчика к коллектору, а положительный полюс счетчика — к эмиттеру. Убедитесь, что счетчик показывает обрыв цепи. (Счетчик должен показывать обрыв цепи для типов NPN и PNP.
  8. Теперь поменяйте местами соединения так, чтобы отрицательный или общий вывод измерителя был подключен к эмиттеру, а положительный полюс измерителя — к коллектору.Еще раз проверьте, что прибор показывает обрыв цепи.
  9. Если транзистор проходит все тесты, значит, он в основном исправен и все переходы целы.

Примечания:

  • Заключительные проверки от коллектора до эмиттера гарантируют, что основание не «продувалось». Иногда возможно, что диод все еще присутствует между коллектором и базой, эмиттером и базой, но коллектор и эмиттер закорочены вместе.
  • Как и в случае с германиевым диодом, обратные показания для германиевых транзисторов не будут такими хорошими, как для кремниевых транзисторов. Допускается небольшой уровень тока, поскольку это является следствием присутствия неосновных носителей в германии.

Обзор аналогового мультиметра

Хотя большинство мультиметров, которые продаются сегодня, являются цифровыми, тем не менее, многие аналоговые счетчики все еще используются. Хотя они могут и не быть новейшими технологиями, они по-прежнему идеальны для многих применений и могут быть легко использованы для измерений, подобных приведенным выше.

Хотя описанные выше тесты предназначены для аналоговых измерителей, аналогичные тесты могут быть проведены с цифровыми мультиметрами, цифровыми мультиметрами.

Часто цифровые мультиметры могут включать специальную функцию тестирования биполярных транзисторов, и это очень удобно в использовании. Общие характеристики тестирования с помощью специальной функции тестирования биполярных транзисторов часто очень похожи на упомянутые здесь, хотя некоторые цифровые мультиметры могут давать значение для текущего усиления.

Использование простого теста для диодов и транзисторов очень полезно во многих сценариях обслуживания и ремонта.Очень полезно иметь представление о том, работает ли диод или транзистор. Поскольку тестеры транзисторов широко не продаются, возможность использования любого мультиметра для обеспечения этой возможности особенно полезна. Это даже удобнее, потому что тест выполнить очень просто.

Другие темы тестирования:
Анализатор сети передачи данных Цифровой мультиметр Частотомер Осциллограф Генераторы сигналов Анализатор спектра Измеритель LCR Дип-метр, ГДО Логический анализатор Измеритель мощности RF Генератор радиочастотных сигналов Логический зонд Тестирование и тестеры PAT Рефлектометр во временной области Векторный анализатор цепей PXI GPIB Граничное сканирование / JTAG Получение данных
Вернуться в меню тестирования.. .

Testing MOSFET — (Часть 16/17)

MOSFET — это более часто используемые транзисторы. Они известны своей высокой скоростью переключения и высоким входным сопротивлением. Вот почему их предпочитают использовать при изготовлении интегральных схем и высокочастотных прикладных микросхем. Индивидуальные полевые МОП-транзисторы также широко используются во многих приложениях. Перед использованием полевого МОП-транзистора в схеме важно проверить, не неисправен ли он. В неисправном МОП-транзисторе сток может закоротиться на затвор.Это может вызвать обратную связь по напряжению стока на выводе затвора, и это напряжение затем будет поступать в схему драйвера через резистор затвора, который может еще больше взорвать схему драйвера. Поэтому лучше протестировать полевой МОП-транзистор, прежде чем использовать его в схеме. Поскольку N-канальные MOSFET более распространены, тестирование N-канальных MOSFET обсуждается только в этом руководстве.

Необходимые компоненты —

Рис.1: Список компонентов, необходимых для тестера MOSFET

Методы испытаний полевого МОП-транзистора

Существует два распространенных метода тестирования полевого МОП-транзистора —

.

1) С помощью измерительного прибора — в этом методе полевой МОП-транзистор проверяется с помощью мультиметра или омметра.В этом методе снова есть три способа проверить неисправный полевой МОП-транзистор —

.

I) Тест диода — требуется мультиметр с режимом диода

II) Тест сопротивления — требуется омметр

III) С помощью омметра и мультиметра в диодном режиме

2) Используя основные электронные компоненты — В этом методе тестовая схема предназначена для проверки рабочего состояния полевого МОП-транзистора.

Тест диодов

В этом методе для проверки полевого МОП-транзистора требуется мультиметр с диодным режимом.Поскольку полевой МОП-транзистор имеет внутренний основной диод, в N-канальном МОП-транзисторе этот основной диод проходит от истока к стоку с анодом на истоке и катодом на стоке диода. При прямом смещении падение на диоде очень мало в зависимости от типа диода. В большинстве полевых МОП-транзисторов прямое падение на диоде составляет от 0,4 В до 0,9 В. При обратном смещении этот диод действует как разомкнутая цепь или цепь с высоким сопротивлением. Таким образом, МОП-транзистор можно проверить, исследуя проводимость через этот корпусный диод исток-сток. Выполните следующие шаги, чтобы провести тест диода —

1.Для этого теста установите мультиметр в диодный режим.

2. Для N-канального MOSFET подключите красный зонд (положительный) к истоку, а черный — к стоку (общий). Таким образом, основной диод находится в состоянии прямого смещения. Теперь на мультиметре должно быть получено показание в диапазоне от 0,4 В до 0,9 В (как показано на рисунке ниже). Если показание равно нулю или нет показаний, значит, полевой МОП-транзистор неисправен.

Рис.2: Принципиальная схема, показывающая падение напряжения на полевом МОП-транзисторе при прямом смещении

3.Перевернув щупы измерителя, должно возникнуть состояние обрыва цепи, и на мультиметре не должно появиться никаких показаний из-за обратного смещения диода (см. Рисунок ниже). Если показание не равно нулю, МОП-транзистор неисправен.

Рис. 3: Принципиальная схема, показывающая падение нулевого напряжения на полевом МОП-транзисторе при обратном смещении

Тест на сопротивление

В этом методе требуется омметр. Сопротивление сток-исток (Rds) полевого МОП-транзистора очень велико (в мегаомах), когда на его вывод затвора не подается пусковой импульс.Таким образом, эту функцию MOSFET можно использовать для тестирования неисправного MOSFET. Выполните следующие шаги, чтобы провести тест сопротивления —

1. Хороший полевой МОП-транзистор должен иметь высокое сопротивление (Rds) от стока до истока независимо от полярности измерительных щупов.

2. Установите измеритель в режим измерения сопротивления или с помощью омметра проверьте сопротивление стока к истоку. Показания должны иметь сопротивление в мегаомах (как показано на рисунке ниже). Сверьтесь с таблицей данных MOSFET, чтобы проверить сопротивление между стоком и истоком (Rds) в выключенном состоянии, и сравните его с наблюдаемым значением Rds (выкл.).

Рис. 4: Принципиальная схема, показывающая высокое сопротивление сток-исток на полевом МОП-транзисторе

3. Если значение сопротивления стока до истока (Rds (off)) оказывается равным нулю или меньше, чем указано в его техническом описании, MOSFET неисправен.

Проверка MOSFET омметром и мультиметром в диодном режиме

В этом методе полевой МОП-транзистор проверяется срабатыванием терминала затвора.Когда срабатывает затвор полевого МОП-транзистора, сопротивление стока к истоку (Rds) полевого МОП-транзистора становится очень низким (от мегаом до ома) в зависимости от типа полевого МОП-транзистора. МОП-транзистор может быть активирован мультиметром, так как в нем есть батарея. Таким образом, он действует как источник питания, когда он установлен в диодном режиме. Но перед запуском MOSFET убедитесь, что пороговое напряжение (Vth или Vgs) MOSFET не слишком велико, что мультиметр не может обеспечить. Выполните следующие шаги, чтобы провести этот тест —

1.Проверьте сопротивление между стоком и истоком с помощью теста сопротивления, упомянутого выше. Обратите внимание на сопротивление стока к истоку, Rds (выкл.) Для справки.

2. Включите полевой МОП-транзистор, установив мультиметр в режим диода, затем прикрепите черный (отрицательный) датчик измерителя к стоку и на мгновение прикоснитесь к затвору красным. Это должно вызвать срабатывание ворот (как показано на рисунке ниже). При этом MOSFET должен включиться.

Рис. 5: Принципиальная схема, показывающая срабатывание затвора полевого МОП-транзистора

3.Возьмите омметр и проверьте сопротивление стока до истока, Rds (вкл.). На этот раз показание должно быть очень низким (ноль или приблизительно ноль), чем предыдущее показание Rds (выкл.) (Как показано на рисунке ниже). Это подтвердит, что полевой МОП-транзистор находится в хорошем состоянии. Обратитесь к таблице данных полевого МОП-транзистора, чтобы проверить значение сопротивления между стоком и истоком в состоянии Rds (вкл.) И сравнить его с наблюдаемым значением. Если наблюдаемое значение сильно отличается от указанного в таблице данных, MOSFET неисправен.

Рис. 6: Принципиальная схема, показывающая низкое сопротивление сток-исток (Rds) полевого МОП-транзистора во включенном состоянии

4. Если показание такое же, как Rds (выкл.), То также неисправен полевой МОП-транзистор.

5. Если значение сопротивления между стоком и истоком в состоянии, Rds (вкл.) Соответствует значению, указанному в таблице данных, то для дальнейшего тестирования разрядите полевой МОП-транзистор, закоротив затвор и сток пальцем или любым другим способом. перемычка.

6. Еще раз проверьте сопротивление стока к истоку (Rds) методом сопротивления. Показание должно быть равно предыдущему показанию сопротивления стока к истоку в выключенном состоянии, Rds (off). Если показание меньше предыдущего значения Rds (выкл.), То также неисправен полевой МОП-транзистор.

Тестирование полевого МОП-транзистора с использованием основных электронных компонентов

Этот метод тестирования — один из лучших и точных способов проверки полевого МОП-транзистора.Для проведения этого теста, прежде всего, соберите схему, как показано ниже —

Рис.7: Принципиальная схема для тестирования MOSFET

Для проведения этого теста выполните следующие шаги —

1. Подайте импульс запуска стробирования через сопротивление R1 с помощью кнопки.

2. К нагрузке подключен светодиод (обозначенный сопротивлением R3) для визуальной индикации включения и выключения полевого МОП-транзистора.

3. В схеме сопротивление затвор-исток полевого МОП-транзистора (Rgs) действует как понижающее сопротивление, а также разряжает паразитную емкость полевого МОП-транзистора, которая защищает полевой МОП-транзистор от любых повреждений.

4. Изначально кнопка находится в нормальном состоянии, следовательно, ворота не подключены к источнику питания. В этом состоянии сопротивление стока к истоку очень велико, что подтверждается испытанием сопротивления. Таким образом, светодиод при нагрузке не должен включаться (как показано на рисунке ниже).Это указывает на то, что полевой МОП-транзистор находится в выключенном состоянии. Если светодиод горит, МОП-транзистор неисправен.

Рис. 8: Принципиальная схема, показывающая, что светодиод выключен перед срабатыванием ворот

5. Когда кнопка нажата, срабатывает затвор, и это делает сопротивление стока к истоку очень низким, приближаясь к нулю Ом. Таким образом, нагрузка должна получить все падение напряжения на ней, и это должен включить светодиод. Это будет означать, что полевой МОП-транзистор находится во включенном состоянии и работает правильно (как показано на рисунке ниже).Если светодиод остается в выключенном состоянии, это означает, что полевой МОП-транзистор неисправен.

Рис. 9: Принципиальная схема, показывающая, что светодиод включен после срабатывания затвора

6. Когда кнопка отпускается, затвор разряжается через затвор до сопротивления источника (Rgs), и светодиод снова должен погаснуть. Если он не выключается, значит, MOSFET неисправен.

7. В этой тестовой схеме светодиод потребляет ток около 20 мА, чего достаточно для приличной яркости светодиода.Для ограничения тока к нему должно быть последовательно подключено сопротивление ограничителя тока. Сопротивление нагрузки работает как сопротивление ограничителя тока в цепи.

Значение этого сопротивления можно рассчитать следующим образом —

.

(входное напряжение светодиода), Vin = 5V

По закону Ома Vin = IL * RL

желаемый ток для светодиода, IL = 20 мА

Путем выставления всех значений,

5 = 0,02 * RL

RL = 250E

В зависимости от наличия, для токоограничивающего резистора принято сопротивление 220E.Итак,

RL = 220E

При тестировании полевого МОП-транзистора с использованием тестовой схемы необходимо соблюдать следующие меры предосторожности —

1. Входное питание затвора должно быть больше или равно пороговому напряжению (Vgs (the)) полевого МОП-транзистора, в противном случае он не включит полевой МОП-транзистор. Для этого обратитесь к таблице данных MOSFET в случае.

2. Не превышайте входное напряжение (напряжение стока и напряжение затвора) полевого МОП-транзистора, превышающее его напряжение пробоя, так как это может повредить полевой МОП-транзистор.

3. Обычно потребляемый ток светодиода составляет 20 мА (прибл.). Итак, выберите соответствующий резистор ограничителя тока (RL), чтобы он мог обеспечивать достаточный ток для включения светодиода.

4. Всегда используйте сопротивление затвора к истоку, чтобы избежать любого внешнего шума на затворе и разрядить паразитную емкость полевого МОП-транзистора. В противном случае полевой МОП-транзистор может быть поврежден, поскольку этот паразитный конденсатор будет продолжать заряжаться и превысит предел напряжения пробоя затвор-исток.

5. Всегда используйте низкое сопротивление резистора (от 10E до 500E) на затворе полевого МОП-транзистора. Это решит проблему звона (паразитных колебаний) и скачков напряжения в полевом МОП-транзисторе.

6. При тестировании полевого МОП-транзистора методом тестовой схемы используйте схему переключения низкого уровня (как на схеме выше). Не используйте схему переключения на стороне высокого напряжения для MOSFET, поскольку она никогда не включит MOSFET, и тогда можно будет проверить неисправный MOSFET.

Фиг.10. Прототип испытательной схемы полевого МОП-транзистора

В следующем руководстве будет обсуждаться схема начальной загрузки для управления полевым МОП-транзистором верхнего плеча.

Видео проекта


Подано в: Electronic Projects


Тестирование транзисторного МОП-транзистора — тест на утечку и отказ

Советы для тестирования МОП-транзистора — тестовый полевой элемент с аналоговым мультиметром

Правильный способ проверки МОП-транзистора — использовать аналоговый мультиметр.Стенд Mosfet для области металлооксидных полупроводников транзистор с эффектом или мы просто назвали его фет. Импульсный источник питания и многие другие схемы используют в качестве части схемы транзисторы. Отказ МОП-транзистора и утечка в цепи довольно велики, и вам нужно знать, как точно проверить Это.

Измерительные компоненты с двумя выводами, например, резисторы, конденсаторы и диоды намного проще, чем измерить транзистор и фет, у которых есть три ножки.Многие мастера по ремонту электроники испытывают трудности особенно проверяя компоненты трех отведений. Сначала найдите распиновку затвора, стока и истока из книги по замене полупроводников или поиск по его таблице данных из поисковой системы.

Если у вас есть перекрестная ссылка или диаграмма для каждого контакта mosfet, затем используйте аналоговый мультиметр, настроенный на диапазон 10 кОм, чтобы проверить его. Предполагая, что вы тестируете N-канальный MOSFET, установите черный щуп к сливному штифту.

Коснитесь штифта затвора красным щупом, чтобы разрядить внутреннюю емкость в MOSFET. Теперь переместите красный зонд к контакту истока, пока черный зонд все еще касается дренажного штифта. Используйте свой правый палец и коснитесь затвора и сливного штифта вместе, и вы заметите, что стрелка аналогового мультиметра переместится вперед к центральному диапазону измерителя. масштаб.

Коснитесь пальцем заслонки и сливного штифта.

Поднимая красный щуп с вывода источника и снова вставляя штифт источника, указатель по-прежнему останется в середине шкалы измерителя. Чтобы разрядить его, нужно поднять красный зонд и прикоснуться к нему. всего один раз на штифте ворот. Это в конечном итоге снова разрядит внутреннюю емкость.

В это время используйте красный щуп, чтобы снова коснуться вывода источника, указатель вообще не пинает, потому что вы уже разрядили его, коснувшись штифта затвора.Это хорошая характеристика МОП-транзистора. нужно потренироваться больше, взяв немного еды со скамьи или из отделения для компонентов. Как только вы узнаете секреты, протестируйте другой MOSFET так же просто, как и проверить диод.


Если вы заметили, что весь результат, который вы измерили, упал до нуля и не разрядится, тогда фет считается закороченным и нуждается в замене. Тестирование полевого транзистора Fet с каналом P происходит так же, как и при проверке N канал фет.Что вы делаете, так это переключите полярность датчика при проверке P-канала. Некоторые аналоговые мультиметры имеют диапазон 100 кОм, Этот тип измерителя не может действительно тестировать фет из-за отсутствия батареи на 9 В внутри мультиметра. У этого типа измерителя не будет достаточно мощности для срабатывания МОП-транзистора. Убедитесь, что вы используете глюкометр с переключатель диапазона раз 10 кОм.

Типичные номера деталей MOSFET с N каналом: 2SK791, K1118, IRF634, IRF. Номер детали 740 и P-канального транзистора: J307, J516, IRF 9620 и т. Д.Вы также можете получить тестер mosfet на рынке и один из Известным брендом является портативный супер-крикетный транзистор sencore tf46 и тестер фет. Вы можете сделать ставку на Ebay.

Sencore TF46 Тестер транзисторов и полевых транзисторов


Как проверить полевой МОП-транзистор?

MOSFET (полевой транзистор , металлооксид-полупроводник, ) Существует два типа, а именно;

1.Расширение MOSFET,
2. Истощение — MOSFET.
( MOSFET ) — это транзистор, используемый для усиления или переключения электронных сигналов. Хотя полевой МОП-транзистор представляет собой четырехконтактное устройство с выводами истока (S), затвора (G), стока (D) и корпуса (B), корпус (или подложка) полевого МОП-транзистора часто подключается к выводу истока, что делает это трехконтактное устройство, как и другие полевые транзисторы. Поскольку эти две клеммы обычно соединены друг с другом (замкнуты накоротко) внутри, на электрических схемах появляются только три клеммы.
MOSFET, безусловно, является наиболее распространенным транзистором как в цифровых, так и в аналоговых схемах, хотя одно время гораздо более распространенным был транзистор с биполярным переходом.
Путем подачи поперечного электрического тока через изолятор, нанесенный на полупроводниковый материал, можно управлять толщиной и, следовательно, сопротивлением проводящего канала полупроводникового материала. MOSFET используется чаще, чем scr, и является отличным переключающим устройством в мегагерцовом диапазоне. Скорость переключения устройства определяется рабочим циклом и частотой генератора ШИМ.Полевой транзистор
MOSFET известен как металлооксидный полупроводниковый полевой транзистор. При работе с полевыми МОП-транзисторами необходимо соблюдать особую осторожность из-за их высокой степени чувствительности к статическим напряжениям.
СИМВОЛЫ МОП-транзистора


  • IRF 540 N-Channel PDF Подробности: MOSFET IRF540-datasheet
  • N-канальный полевой МОП-транзистор PDF Детали: N-канальный полевой МОП-транзистор
  • ИСПЫТАТЕЛЬНЫЕ ЦЕПИ МОП-транзистора
  • : Подробная информация: IRF540-TEST CIRCUIT-datasheet

ПЕРЕД ТЕСТИРОВАНИЕМ MOSFET НЕКОТОРЫЕ СОВЕТЫ: ​​
1.Паяльник должен быть заземлен.
2. Металлическая пластина должна быть помещена на верстак и заземлена на корпус судна через резистор сопротивлением 250 кОм — 1 МОм.
3. Вам также следует носить браслет с прикрепленным к нему заземляющим ремнем и заземляться на корпус корабля через резистор сопротивлением 250 кОм — 1 мОм.
4. Запрещается использовать вакуумный плунжер (присоску для припоя) из-за сильных электростатических зарядов, которые он может генерировать. Рекомендуется удаление припоя капилляром. Также рекомендуется оборачивать полевые МОП-транзисторы металлической фольгой, когда они находятся вне цепи.
Анимация работы MOSFET:

ВПЕРВЫЕ ИСПОЛЬЗОВАНИЕ ЦИФРОВОГО МУЛЬТИМЕТРА : DMM означает цифровой мультиметр

ТЕСТИРОВАНИЕ С DMM — (диодный режим)

1. Никогда не превышайте предельные значения защиты, указанные в технических характеристиках для каждого диапазона измерения.
2. Если шкала измеряемых величин неизвестна заранее, установите переключатель диапазонов в крайнее верхнее положение.
3. Когда счетчик подключен к измерительной цепи, не прикасайтесь к неиспользуемым клеммам.Перед поворотом переключателя диапазонов для изменения функций отключите все провода от тестируемой цепи. Никогда не проводите измерения сопротивления в цепи под напряжением. Всегда будьте осторожны при работе с напряжением выше 60 В постоянного тока или 30 В переменного тока RMS.
4. ПРИ ИЗМЕРЕНИИ УПРАВЛЯЙТЕ ПАЛЬЦАМИ ЗА БАРЬЕРАМИ ЗОНДА. ПРЕЖДЕ ЧЕМ ПЫТАЙТЕСЬ ВСТАВИТЬ ТРАНЗИСТОРЫ ДЛЯ ИСПЫТАНИЯ, ВСЕГДА УБЕДИТЕСЬ, ЧТО ИСПЫТАТЕЛЬНЫЕ ПРОВОДЫ ОТКЛЮЧЕНЫ ОТ ЛЮБОЙ ЦЕПИ ИЗМЕРЕНИЯ. КОМПОНЕНТЫ НЕ ДОЛЖНЫ ПОДКЛЮЧАТЬСЯ К ВЧ-РОЗЕТКЕ ПРИ ИЗМЕРЕНИИ НАПРЯЖЕНИЯ С ПОМОЩЬЮ ТЕСТОВЫХ ПРОВОДОВ.

ВАЖНО:

A. Если измеряемое сопротивление превышает максимальное значение выбранного диапазона или вход не подключен, будет отображаться индикация превышения диапазона.

B. При проверке внутрисхемного сопротивления убедитесь, что в проверяемой цепи отключено все питание и что все конденсаторы полностью разряжены.

C. Для измерения сопротивления выше 1 МОм измерителю может потребоваться несколько секунд для получения стабильных показаний. Это нормально для измерений высокого сопротивления .

ШАГ-1 . ВЫБЕРИТЕ РЕЖИМ ДИОДА В ЦИФРОВОМ МУЛЬТИМЕТРЕ (DMM)
Подключите положительный измерительный провод цифрового мультиметра к PIN-1 (Gate)
DMM Отрицательный измерительный провод к PIN-2 (слив) открыт или ‘1’ или OL
DMM Отрицательный измерительный провод к контакту 3 (источник) OL или «1» открыт

STEP-2 . Подключите отрицательный измерительный провод DMM к PIN-1 (G)
Положительный измерительный провод DMM к PIN-2 (D) СЧИТЫВАНИЕ DMM ПОКАЗЫВАЕТ OL или ‘1’ или ОТКРЫТЬ
положительный измерительный провод цифрового мультиметра к PIN-3 (S) OL или «1» или откройте
ШАГ-3.
Подключите отрицательный измерительный провод цифрового мультиметра к PIN-2 (D)
DMM положительный измерительный провод к PIN-3 (S) СЧИТЫВАНИЕ DMM ПОКАЗЫВАЕТ = (0,427 = 427 мВ) ХОРОШО.
ШАГ-4.
Подключите положительный измерительный провод DMM к PIN-2 (D)
Отрицательный измерительный провод цифрового мультиметра к PIN-3 (S) разомкнут или «1» или OL
Проверка: Если показания цифрового мультиметра выше показывают, что состояние — ХОРОШО .
ЛЮБЫЕ ДРУГИЕ ЧТЕНИЯ ДАЕТ, ЧТО УСТРОЙСТВО МОЖЕТ ОТКАЗАТЬСЯВ настоящее время большинство мультиметров имеют диапазон проверки диодов. На большинстве мультиметров (но далеко не на всех!) Это дает около 3-4 В на тестируемом устройстве. Этого достаточно, чтобы включить большинство полевых МОП-транзисторов — хотя бы частично, и достаточно для тестирования. Счетчики, которые используют более низкое испытательное напряжение холостого хода (иногда 1,5 В), не будут выполнять этот тест!
Пластиковый пакет IRF 540
Шаг 1. Подключите отрицательный щуп измерителя к источнику полевого МОП-транзистора. Это указано стрелкой на рисунке выше, на котором показаны самые популярные полевые МОП-транзисторы TO220.Держите полевой МОП-транзистор за корпус или за язычок, если хотите, не имеет значения, касаетесь ли вы металлического корпуса, но будьте осторожны, не касайтесь выводов до тех пор, пока вам это не понадобится.
Шаг 2. Прикоснитесь плюсовым щупом расходомера к затвору. Теперь переместите положительный зонд измерителя в слив. У вас должно быть низкое чтение.
Емкость затвора полевого МОП-транзистора была заряжена измерителем, и устройство было включено.
Шаг 3. Когда плюс измерителя все еще подключен к сливу, коснитесь пальцем между истоком и затвором (и стоком, если хотите, это не имеет значения).
Затвор будет выпущен через ваш палец, и показания счетчика должны стать высокими, указывая на непроводящее устройство. Такой простой тест не может быть стопроцентным, но он полезен и обычно бывает адекватен. То, что на самом деле измеряет приведенный выше тест, — это напряжение отсечки: самое высокое напряжение, которое может быть приложено к затвору полевого МОП-транзистора без его начала проводить.
Схема ниже показывает лучший способ

ТЕСТИРОВАНИЕ МОП-транзистора С ЦЕПЕЙ

Необходимые компоненты: —
1.Блок питания 12в.
2. ПЕРЕКЛЮЧАТЕЛЬ ВКЛ / ВЫКЛ
3. Резистор R = 1 кОм, 68 кОм.
4. МОП-транзистор IRF540 Подключите и проверьте вышеуказанную схему, как светодиод будет включаться или выключаться.
Неисправный полевой МОП-транзистор: При выходе из строя полевого МОП-транзистора в них часто происходит короткое замыкание стока на затвор. Это может вернуть напряжение стока на затвор, где, конечно, если оно подается (через резисторы затвора) в схему управления, может быть, взорвав его. Он также попадет в любые другие параллельные ворота MOSFET, взорвав их. Итак — если полевые МОП-транзисторы умерли, проверьте также и драйверы!

Это, вероятно, лучшая причина для добавления стабилитрона затвор-источник: стабилитрон выходит из строя при коротком замыкании, а правильно подключенный стабилитрон может ограничить повреждение в случае отказа!

Проверка полупроводников аналоговыми и цифровыми мультиметрами

Тестирование полупроводников мультиметрами

Перед построением какой-либо схемы рекомендуется протестировать каждый полупроводник, который вы планируете использовать в проекте.Это хорошая практика, особенно при повторном использовании компонентов старых приборов. В этом кратком руководстве описываются общие процедуры тестирования Si- и Ge-сигнальных и выпрямительных диодов, стабилитронов, светодиодов, биполярных переходов и МОП-транзисторов на предмет распространенных отказов, таких как короткие замыкания, утечки и обрывы.

Испытательный сигнал и диодные переходы выпрямителя

Обычный сигнал или выпрямительный диод должен показывать низкое сопротивление на аналоговом омметре (установлен на шкале низкого сопротивления) при прямом смещении (отрицательный вывод на катоде, положительный вывод на аноде) и почти бесконечное сопротивление в обратном направлении смещения. .Германиевый диод будет показывать более низкое сопротивление по сравнению с кремниевым диодом в прямом направлении. Неисправный диод покажет около нулевого сопротивления (закорочено) или разомкнут в обоих направлениях.

Примечание. часто полярность щупов аналоговых мультиметров противоположна той, которую можно было бы ожидать от цветовой кодировки. У многих из них красный провод будет отрицательным по отношению к черному.

На цифровом мультиметре , использующем нормальные диапазоны сопротивления, этот тест обычно показывает обрыв для любого полупроводникового перехода, поскольку измеритель не подает достаточно напряжения, чтобы достичь значения прямого падения.

К счастью, почти каждый цифровой мультиметр будет иметь режим проверки диодов . В этом режиме кремниевый диод должен показывать падение напряжения от 0,5 до 0,8 В в прямом направлении (отрицательный вывод на катоде, положительный вывод на аноде) и открываться в обратном направлении. Для германиевого диода показание будет ниже, около 0,2–0,4 В в прямом направлении. Неисправный диод покажет очень низкое падение напряжения (если закорочено) или разомкнется в обоих направлениях.

Примечание. Небольшие утечки диодов в направлении обратного смещения редки, но они часто остаются незамеченными при использовании режима проверки диодов на большинстве цифровых мультиметров.Чтобы убедиться в исправности диода, вам следует провести еще одно измерение: используя высокий диапазон сопротивления (2 МОм или выше) на цифровом мультиметре, поместите отрицательный провод на анод, а положительный — на катод. Хороший кремниевый диод (самый распространенный тип диодов в современных схемах) обычно показывает бесконечное сопротивление. Более старый диод Ge может иметь гораздо более высокий уровень обратного тока утечки, поэтому он может показывать небесконечное значение. Если сомневаетесь, попробуйте сравнить показания с измерениями, сделанными на хорошем диоде того же типа.

Проверка стабилитронов

Для быстрой диагностики переход стабилитрона можно проверить как обычный диод, как описано выше. Но, чтобы проверить напряжение стабилитрона на обратный пробой , вам понадобится простой источник питания с напряжением, превышающим ожидаемое значение, и резистор высокого номинала.

Подключите резистор высокого номинала (чтобы ограничить ток до безопасного значения) последовательно со стабилитроном и подайте напряжение в обратном направлении на диод (анод к отрицательному полюсу).Напряжение, измеренное на диоде, будет напряжением пробоя или стабилитроном.

Тестирование светодиодов

Светодиодные диоды обычно имеют прямое падение напряжения , слишком велико для тестирования с помощью большинства мультиметров, поэтому вам следует использовать схему, аналогичную описанной выше.

Убедитесь, что вы используете источник питания с напряжением более 3 В и подходящий резистор, ограничивающий ток. Небольшого тока в 1-10 мА будет достаточно, чтобы зажечь большинство светодиодов при включении в схему.

Тестирование биполярных переходных транзисторов (БЮТ)

При тестировании BJT было сделано предположение, что транзистор — это просто пара подключенных диодов. Поэтому его можно проверить на короткое замыкание, обрыв или утечку с помощью простого аналогового или цифрового мультиметра. Тесты усиления, частотной характеристики и т. Д. Можно проводить только с помощью дорогостоящих специализированных инструментов, но в большинстве случаев простой тест — это все, что вам нужно при создании простых схем для хобби.

Примечание: некоторые силовые транзисторы имеют встроенные демпферные диоды, подключенные через C-E, и резисторы, подключенные через B-E, что может спутать эти показания.Кроме того, несколько малых сигнальных транзисторов имеют встроенные резисторы, последовательно соединенные с базой или другими выводами, что делает этот простой метод тестирования бесполезным. Транзисторы Дарлингтона также могут показывать необычные падения напряжения и сопротивления. При тестировании транзистора этого типа вам нужно будет сравнить его с заведомо исправным транзистором или проверить спецификации, чтобы быть уверенным.

Чтобы проверить биполярный переходной транзистор с помощью цифрового мультиметра, выньте его из цепи и выполните следующие измерения в режиме проверки диодов:

  • Подключите красный (положительный) вывод к базе транзистора.Подключите черный (отрицательный) провод к эмиттеру. Хороший NPN-транзистор считывает падение напряжения на переходе от 0,4 до 0,9 В. Хороший PNP-транзистор покажет , открытый .
  • Оставьте красный измерительный провод на основании и переместите черный измерительный провод к коллектору — показание должно быть , почти таким же, как в предыдущем тесте , открытым для PNP и , немного меньшим падением напряжения для транзисторов NPN.
  • Поменяйте местами провода глюкометра и повторите тест.На этот раз подключите черный провод измерителя к базе транзистора, а красный провод — к эмиттеру. Хороший транзистор PNP считывает падение напряжения на переходе от 0,4 до 0,9 В. Хороший транзистор NPN будет читать , открыт .
  • Оставьте черный провод измерителя на основании и переместите красный провод к коллектору — показание должно быть , почти таким же, как в предыдущем тесте , открытым для NPN и , немного меньшим падением напряжения для транзисторов PNP.
  • Поместите один метр на коллектор, другой на эмиттер, а затем переверните. Оба теста должны показывать открыто для транзисторов NPN и PNP.

Аналогичный тест можно провести с аналоговым ВОМ, используя шкалу низких сопротивлений. Только 2 из 6 возможных комбинаций (переходы B-E и B-C при прямом смещении) должны иметь низкое сопротивление (от 100 Ом до нескольких кОм), и ни одно из сопротивлений не должно быть около 0 Ом.

Если вы обнаружите короткое замыкание (нулевое сопротивление или нулевое падение напряжения) между двумя выводами, или если транзистор не прошел ни один из тестов, описанных выше, это значит, что он неисправен и должен быть заменен.

Если вы получаете показания, которые не имеют смысла, попробуйте сравнить их с измерениями, выполненными на хорошем транзисторе того же типа.

У некоторых аналоговых мультиметров цвета щупов инвертированы, поскольку это упрощает проектирование внутренней схемы. Таким образом, рекомендуется подтвердить и обозначить полярность проводов вашего прибора, выполнив несколько измерений в режиме сопротивления (VOM) или в режиме тестирования диодов (DMM) с использованием заведомо исправного диода.Это также покажет вам, чего ожидать от чтения соединения с прямым смещением.

Определение выводов и полярности неизвестных транзисторов с биполярным переходом

Тип ( PNP или NPN ) и расположение выводов любого биполярного переходного транзистора можно легко определить с помощью цифрового или аналогового мультиметра, если транзистор рассматривается как пара подключенных диодов. Коллектор и эмиттер можно идентифицировать, зная тот факт, что легирование для перехода B-E всегда намного выше, чем для перехода B-C, поэтому прямое падение напряжения будет немного выше.Это будет отображаться как разница в несколько милливольт на шкале тестирования диодов цифрового мультиметра или немного более высокое сопротивление на аналоговом вольтомметре.

Сначала проведите несколько измерений между различными проводами . Вскоре вы определите вывод ( Base ), который покажет прямое падение напряжения (на цифровых мультиметрах) или низкое сопротивление (аналоговые VOM) в сочетании с двумя другими выводами (эмиттером и коллектором). Теперь, когда база идентифицирована, внимательно наблюдайте за падениями напряжения на B-E и B-C.Переход B-C будет иметь немного меньшее падение напряжения (DMM) или немного меньшее сопротивление при использовании аналогового омметра.

Примечание: На каждый градус увеличения температуры транзистора падение напряжения на диоде будет уменьшаться на несколько милливольт. Это изменение может сбивать с толку при определении переходов B-E и B-C. Итак, убедитесь, что вы не держите тестируемый транзистор в руке и оставляете достаточно времени, чтобы он остыл до комнатной температуры после пайки!

Если вы дошли до этого момента, вы уже знаете полярность тестируемого транзистора.Если отрицательный вывод (черный вывод, подключенный к COM на большинстве цифровых мультиметров) помещен на базу при измерении падений напряжения B-C и B-E — у вас есть транзистор PNP . Точно так же — если положительный вывод измерителя поместить на базу, у вас есть транзистор NPN .

Эта процедура может сначала показаться сложной, но практика на нескольких транзисторах с известными выводами быстро прояснит ситуацию. Это хорошая привычка проверять каждый транзистор перед тем, как вставлять его в схему, так как таблица данных не всегда под рукой, а неправильная установка выводов может иметь разрушительные результаты.

Тестирование полевых МОП-транзисторов

Полевые транзисторы сложно проверить с помощью мультиметра, но «к счастью», когда срабатывает силовой MosFet, он срабатывает очень долго: все их выводы показывают короткое замыкание. 99% плохих MosFet будут иметь GS, GD и DS закорочены . Другими словами — все будет связано воедино.

Примечание: При измерении MosFet держите его за корпус или язычок и не касайтесь металлических частей измерительных щупов любыми другими выводами MosFet до тех пор, пока это не понадобится.Не допускайте контакта MosFet с вашей одеждой, пластиком и т. Д. Из-за высокого статического напряжения, которое они могут генерировать.

Вы узнаете, что MosFet хорош, когда ворота имеют бесконечное сопротивление как к истощению, так и к источнику. Исключением из этого правила являются полевые транзисторы со схемой защиты — они могут действовать как шунтирующий диод GS — падение диода для обратного смещения затвора. Подключение затвора к источнику должно привести к тому, что сток к источнику будет действовать как диод. Прямое смещение GS с 5 В и измерение DS при прямом смещении должны дать очень низкое сопротивление.При обратном смещении он по-прежнему будет работать как диод.

Еще одна простая процедура проверки: подключите отрицательный вывод мультиметра к источнику MosFet. Коснитесь ворот MosFet положительным проводом измерителя. Переместите положительный зонд к сливу — вы должны получить низкое показание, поскольку внутренняя емкость MosFet на затворе теперь заряжена измерителем, и устройство включено. Когда положительный провод глюкометра все еще подключен к сливу, прикоснитесь к источнику и затвору пальцем.Ворота будут разряжены через ваш палец, и показания должны быть высокими, указывая на непроводящее устройство! Этот простой тест не является доказательством отказа, но обычно его достаточно.

Как проверить транзистор с помощью мультиметра

Транзисторы действуют как затвор или переключатель для электрических сигналов с возможностью регулирования напряжения или тока. Обычно они имеют три слоя, которые сделаны из полупроводниковых материалов, которые могут проводить ток. К таким полупроводниковым материалам относятся:

Как работает транзистор

Если небольшое изменение напряжения или тока происходит на внутренних слоях полупроводника транзистора, происходит быстрое и сильное изменение тока, которое передается на весь компонент.Затем транзисторы действуют как переключатель, многократно замыкаясь и открываясь, а также как электрический затвор.

  • Транзисторы используются в обеих комбинациях, называемых интегральными и одиночными схемами.
  • Транзисторы, используемые в комбинированных / интегральных схемах, встречаются в таком оборудовании, как высокопроизводительные компьютеры, сотовые телефоны, планшеты, ноутбуки и настольные компьютеры.
  • В этой статье вы услышите о различных типах транзисторов, таких как PNP и NPN.
  • Транзистор PNP — положительный, отрицательный, положительный.Это также известно как поиск источников.
  • Транзистор NPN означает отрицательный, положительный, отрицательный. Это также известно как опускание.

Итак, в чем разница между этими двумя транзисторами?

В транзисторе NPN ток обычно течет от коллектора к выводу эмиттера. С другой стороны, PNP-транзистор обычно включается, когда на выводе базы транзистора нет тока. В транзисторе PNP ток часто течет от эмиттера к клемме коллектора.

Транзистор NPN включается при высоком уровне сигнала, в то время как транзистор PNP обычно включается при очень низком уровне сигнала.

Основное различие между транзистором NPN и транзистором PNP обычно заключается в правильном смещении их соединений транзисторов. Полярности напряжения и направления тока обычно постоянно противоположны друг другу.

Когда дело доходит до мультиметров, технические специалисты и профессионалы используют их чаще всего.От цифрового мультиметра до аналогового мультиметра — этот электрический инструмент используется для диагностики и тестирования многих электрических компонентов и цепей широкого диапазона.

Когда дело доходит до тестирования или проверки транзисторов, этот универсальный компонент — мультиметр — лучше всего подходит для этой работы. Большинство цифровых мультиметров имеют встроенную функцию тестирования транзисторов. В таких случаях тестирование транзисторов становится очень быстрым и простым.

Как проверить транзистор с помощью мультиметра со встроенными функциями транзистора

Если ваш цифровой мультиметр имеет встроенную функцию тестирования транзисторов, то все, что вам нужно, это выполнить следующие простые шаги:

  1. Первый шаг — вставка подключите транзистор к разъему цифрового мультиметра.
  2. После этого вам нужно установить мультиметр в правильный режим.
  3. После завершения вы получите такие показания, как усиление (hFE). Имея это значение, вы можете перепроверять показания «не прошел / прошел» и таблицы данных.

Тестирование транзистора с помощью мультиметра (настройки диодов)

Для мультиметров без встроенной функции тестирования транзисторов вы можете проверить свои транзисторы с помощью функции тестирования диодов.

Для получения точных и правильных показаний вам необходимо удалить транзистор из схемы.Ниже приведены шаги, которые необходимо выполнить:

1. Подключение базы к эмиттеру

Первое, что нужно сделать на этом шаге, — это подключить положительный вывод цифрового мультиметра к БАЗУ транзистора (B).

После этого подсоедините отрицательный вывод цифрового мультиметра к ЭМИТТЕРУ транзистора (E).

Если ваш NPN-транзистор в идеальном состоянии, цифровой мультиметр должен показать падение напряжения от 0,45 до 0,9 В. Для транзистора PNP ваш цифровой мультиметр должен давать показания OL (превышение предела).

2. Подключение базы к коллектору

На этом этапе вам нужно будет сохранить положительный полюс цифрового мультиметра, подключить его к ОСНОВАНИЮ (B), а затем подсоединить отрицательный провод цифрового мультиметра к КОЛЛЕКТОРУ (C).

Для правильно функционирующего транзистора NPN цифровой мультиметр должен показывать падение напряжения от 0,45 до 0,9 В. Для транзистора PNP ваш цифровой мультиметр должен давать показания OL (превышение предела).

3. Подключение эмиттера к базе

Первое, что нужно сделать на этом шаге, — это подсоединить положительный вывод цифрового мультиметра к ЭМИТТЕРУ транзистора (E).

После этого подсоедините отрицательный вывод цифрового мультиметра к БАЗУ транзистора (B)

Для исправного функционирования NPN-транзистора цифровой мультиметр должен выдавать показания OL (превышение предела). Для транзистора PNP ваш цифровой мультиметр должен показывать падение напряжения от 0,45 до 0,9 В.

4. Подключение коллектора к базе

На этом этапе вам нужно будет подключить положительный провод цифрового мультиметра к КОЛЛЕКТОРУ (C), а затем подсоединить отрицательный провод цифрового мультиметра к базе (B).

Для исправного функционирования NPN-транзистора цифровой мультиметр должен давать показания OL (превышение предела). Для транзистора PNP ваш цифровой мультиметр должен показывать падение напряжения от 0,45 до 0,9 В.

5. Подсоединение коллектора к эмиттеру

На этом этапе вам нужно будет подсоединить положительный вывод цифрового мультиметра к КОЛЛЕКТОРУ (C), а затем подсоединить отрицательный вывод цифрового мультиметра к ЭМИТТЕРУ (E).

Для исправного функционирования транзисторов NPN и PNP цифровой мультиметр должен выдавать показания OL (превышение предела).

6. Подключение эмиттера к коллектору

И, наконец, положительный вывод цифрового мультиметра должен быть подключен к ЭМИТТЕРА (E), а затем подсоединен отрицательный провод цифрового мультиметра к КОЛЛЕКТОРУ (C)

Для правильного функционирования NPN и PNP транзистор, ваш цифровой мультиметр должен показывать OL (превышение предела).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *