Как проверить полевой транзистор: Как проверить полевой транзистор: проверка мультиметром, не выпаивая

Содержание

✅ Как проверить полевой транзистор мультиметром не выпаивая

Как проверить полевой МОП (Mosfet) — транзистор цифровым мультиметром

В этой статье я расскажу вам, как проверить полевой транзистор с изолированным затвором, то есть МОП-транзистор. Это вторая часть статьи по проверки полевых транзисторов. В первой части я рассказывал, как проверить транзистор с управляющим p-n переходом.

Да, полевые транзисторы с управляющим p-n переходом уходят в прошлое, а сейчас в современных схемах применяются более совершенные полевые транзисторы с изолированным затвором. Тогда предлагаю научиться их проверять.

Но для того, что бы понять, как проверить полевой транзистор, давайте я вам в двух словах расскажу, как он устроен.

Полевой транзистор с изолированным затвором мы знаем под более привычным названием МОП -транзистор (метал -окисел-полупроводник), МДП -транзистор(метал -диэлектрик-полупроводник), либо в английском варианте MOSFET(Metal-Oxide-Semiconductor-Field-Effect-Transistor)

Эти аббревиатуры вытекают из структуры построения транзистора. А именно.

Структура полевого MOSFET транзистора.

Для создания МОП-транзистора берется подложка, выполненная из p-полупроводника, где основными носителями заряда являются положительные заряды, так называемые дырки. На рисунке вы видите, что вокруг ядра атома кремния вращаются электроны, обозначенные белыми шариками.

Когда электрон покидает атом, в этом месте образуется «дырка» и атом приобретает положительный заряд, то есть становиться положительным ионом. Дырки на модели обозначены, как зеленые шарики.

На p-подложке создаются две высоколегированные n-области, то есть области с большим количеством свободных электронов. На рисунке эти свободные электроны обозначены красными шариками.

Свободные электроны свободно перемещаются по n-области. Именно они впоследствии и будут участвовать в создании тока через МДП-тназистор.

Пространство между двумя n-областями, называемое каналом покрывается диэлектриком, обычно это диоксид кремния.

Над диэлектрическим слоем располагают металлический слой. N-области и металлический слой соединяют с выводами будущего транзистора.

Выводы транзистора называются исток, затвор и сток.

Ток в МОП-транзисторе течет от истока через канал к стоку. Для управления этим током служит изолированный затвор.

Однако если подключить напряжение между истоком и стоком, при отсутствии напряжения на затворе ток через транзистор не потечет, потому что на его пути будет барьер из p-полупроводника.

Если подать на затвор положительное напряжение, относительно истока, то возникающее электрическое поле будет к области под затвором притягивать электроны и выталкивать дырки.

По достижению определенной концентрации электронов под затвором, между истоком и стоком создается тонкий n-канал, по которому потечет ток от истока к стоку.

Следует сказать, что ток через транзистор можно увеличить, если подать больший потенциал напряжения на затвор. При этом канал становиться шире, что приводит к увеличению тока между истоком и стоком.

МДП-транзистор с каналом p-типа имеет аналогичную структуру, однако подложка в таком транзисторе выполнена из полупроводника n-типа, а области истока и стока из высоколегированного полупроводника p-типа.

В таком полевом транзисторе основными носителями заряда являются положительные ионы (дырки). Для того, что бы открыть канал в полевом транзисторе с каналом p-типа необходимо на затвор подать отрицательный потенциал.

Проверка полевого MOSFET транзистора цифровым мультиметром

Для примера возьмем полевой МОП-транзистор с каналом n-типа IRF 640. Условно-графическое обозначение такого транзистора и его цоколевку вы видите на следующем рисунке.

Перед началом проверки транзистора замкните все его выводы между собой, что бы снять возможный заряд с транзистора.

Проверка встроенного диода

Для начал следует подготовить мультимер и перевести его в режим проверки диодов. Для этого переключатель режимов/пределов установите в положение с изображением диода.

В этом режиме мультиметр при подключении диода в прямом направлении (плюс прибора на анод, минус прибора на катод) показывает падение напряжения на p-n переходе диода. При включении диода в обратном направлении мультиметр показывает «1».

Итак, подключаем щупы мультиметра, как было сказано выше, в прямом включении диода. Таким образом, красный шум (+) подключаем на исток, а черный (-) на сток.

Мультиметр должен показать падение напряжение на переходе порядка 0,5-0,7.

Меняем полярность подключения встроенного диода, при этом мультиметр, при исправности диода покажет «1».

Проверка работы полевого МОП транзистора

Проверяемый нами МОП-транзистор имеет канал n-типа, поэтому, что бы канал стал электропроводен необходимо на затвор транзистора относительно истока либо стока подать положительный потенциал. При этом электроны из подложки переместятся в канал, а дырки будут вытолкнуты из канала. В результате канал между истоком и стоком станет электропроводен и через транзистор потечет ток.

Для открытия транзистора будет достаточно напряжения на щупах мультиметра в режиме прозвонки диодов.

Поэтому черный (отрицательный) щуп мультиметра подключаем на исток (или сток), а красным касаемся затвора.

Если транзистор исправен, то канал исток-сток станет электропроводным, то есть транзистор откроется.

Теперь если прозвонить канал исток-сток, то мультиметр покажет какое-то значение падение напряжения на канале, в виду того, что через транзистор потечет ток.

Таким образом черный щуп транзистора ставим на исток, а красный на сток и мультиметр покажет падение напряжение на канале.

Если поменять полярность щупов, то показания мультиметра будут примерно одинаковыми.

Что бы закрыть транзистор достаточно относительно истока на затвор подать отрицательный потенциал.

Следовательно, подключаем положительный (красный) щуп мультиметра на исток, а черным касаемся затвор.

При этом исправный транзистор закроется. И если после этого прозвонить канал исток-сток, то мультиметр покажет лишь падение напряжения на встроенном диоде.

Если транзистор управляется напряжением с мультиметра (то есть открывается и закрывается), значит можно сделать вывод, что транзистор исправен.

Проверка полевого МОП – транзистора с каналом p-типа осуществляется подобным образом. За тем исключением, что во всех пунктах проверки полярность подключения щупов меняется на противоположную.

Более подробно и просто всю методику проверки полевого транзистора я изложил в следующем видеоуроке:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Как проверить мосфет (полевик)

Использование полевых транзисторов очень распространено. Если происходит поломка необходимо найти неисправную деталь. Иногда требуется точно определить, работоспособен ли полевой транзистор. Это возможно выполнить с использованием мультиметра. Как проверить полевик — подробнее рассказывается далее.

Полевой транзистор — что это

Он включает три основных элемента — исток, затвор и сток. Для их создания используются полупроводники n-типа и p-типа. Они могут сочетаться одним из способов:

  1. Сток, исток соответствуют n-типу, а затвор — p-типу. Их называют транзисторы n-p-n типа.
  2. Такие, у которых используется полярность p-n-p. Тип проводимости у каждой части транзистора изменён на противоположный в сравнении с предыдущим вариантом.

Если эту деталь соединить с источником питания, то ток будет отсутствовать. Но всё будет иначе, если это сделать между истоком и затвором или стоком и затвором. Нужно, чтобы к затвору было приложено напряжение, соответствующее по знаку его типу проводимости (положительное для p-типа, отрицательное для n-типа). Тогда через эту деталь потечёт ток. Чем более высокое напряжение было подано на затвор, тем он будет сильнее.

Транзистор станет открытым при условии, что на затвор подаётся разность потенциалов нужной полярности. В этом случае при помощи электрического поля создаётся канал между истоком и стоком, через который могут перемещаться электрические заряды. У других разновидностей транзисторов управление происходит на основе тока, а не напряжения.

Рассматриваемые электронные компоненты также называют мосфетами. Это слово происходит из аббревиатуры MOSFET — Metal Oxide Semiconductor Field Effect Transistor (в переводе это означает: металл-окисел-полупроводник полевой транзистор).

Как работает

Полевой транзистор отличается от других разновидностей особенностями своего устройства. Он может относиться к одному из двух типов:

  • с управляющим переходом;
  • с изолированным затвором.

Первые из них бывают n канальными и p канальными. Первые из них более распространены. Они используют следующий принцип действия.

В качестве основы используется полупроводник с n-проводимостью. К нему с противоположных сторон присоединены контакты истока и стока. В средней части с противоположных сторон имеются вкрапления проводника с p-проводимостью — они являются затвором. Та часть полупроводника, которая между ними — это канал.

Если к истоку и стоку n канального транзистора приложить разность потенциалов, то потечёт ток. Однако при подаче на затвор отрицательного напряжения по отношению к истоку, то ширина канала для перемещения электронов уменьшится. В результате сила тока станет меньше.

Таким образом, уменьшая или увеличивая ширину канала, можно регулировать силу тока между истоком и стоком или изолировать их друг от друга.

В p-канальных транзисторах принцип работы будет аналогичным.

Этот тип полевых транзисторов становится менее распространённым, а вместо него получают всё большее распространение те, в которых используется изолированный затвор. Они могут относиться к одному из двух типов: n-p-n или p-n-p. У них принцип действия является аналогичным. Здесь будет рассмотрен более подробно первый из них: n-p-n.

В этом случае в качестве основы для транзистора применяется полупроводник p-типа. В него встраиваются две параллельно расположенные полоски полупроводника с другим типом основных носителей заряда. Между ними по поверхности прокладывается изолятор, а сверху устанавливается слой проводника. Эта часть является затвором, а полоски — это исток и сток.

Когда на затвор подаётся положительное напряжение по отношению к истоку, на пластину попадает положительный заряд, создающий электрическое поле. Оно притягивает к поверхности положительные заряды, создавая канал для протекания тока между истоком и стоком. Чем сильнее напряжение, поданное на затвор, тем более сильный ток проходит между истоком и стоком.

Для всех типов полевых транзисторов управление происходит при помощи подачи напряжения на затвор.

Какие случаются неисправности

Полевые транзисторы могут быть перегружены током во время проведения проверки и, в результате перегрева прийти в неисправное состояние.

Важно! Они уязвимы к статическому напряжению. В процессе проведения работы нужно обеспечить, чтобы оно не попадало на проверяемую деталь.

При работе в составе схемы может произойти пробой, в результате которого полевой транзистор становится неисправным и подлежит замене. Его можно обнаружить по низкому сопротивлению p-n-переходов в обоих направлениях.

Определить то, насколько транзистор является работоспособным можно, если прозвонить его с помощью цифрового мультиметра.

Это нужно делать следующим образом (для примера используется широко распространённая модель М-831, рассматривается полевой транзистор с каналом n-типа):

  1. Мультиметр нужно переключить в режим диодной проверки. Он отмечен на панели схематическим изображением диода.
  2. К прибору присоединены два щупа: чёрный и красный. На лицевой панели имеются три гнезда. Чёрный устанавливают в нижнее, красный — в среднее. Первый из них соответствует отрицательному полюсу, второй — положительному.
  3. Нужно на тестируемом полевом транзисторе определить, какие выходы соответствуют истоку, затвору и стоку.
  4. В некоторых моделях дополнительно предусмотрен внутренний диод, защищающий деталь от перегрузки. Сначала нужно проверить то, как он работает. Для этого красный провод присоединяют к истоку, а чёрный — к стоку.

На индикаторе должно появиться значение, входящее в промежуток 0,5-0,7. Если провода поменять местами, то на экране будет указана единица, что означает, что ток в этом направлении не проходит.

  1. Дальше осуществляется проверка работоспособности транзистора.

Если присоединить щупы к истоку и стоку, то ток не будет проходить по ним. Чтобы открыть затвор. Необходимо подать положительное напряжение на затвор. Нужно учитывать, что на красный щуп подан от мультиметра положительный потенциал. Теперь достаточно его соединить с затвором, а чёрный со стоком или истоком, для того, чтобы транзистор стал пропускать ток.

Теперь, если красный провод подключить к истоку, а чёрный — к стоку, то мультиметр покажет определённую величину падения напряжения, например, 60. Если подключить наоборот, то показатель будет примерно таким же.

Если на затвор подать отрицательный потенциал, то это закроет транзистор в обоих направлениях, однако будет работать встроенный диод. Если полевик закрыт не будет, то это указывает на его неисправность.

Проверка мофсета с p-каналом выполняется аналогичным образом. Отличие состоит в том, что при проверке там, где раньше использовался красный щуп, теперь используется чёрный и наоборот.

Способы устранения

Для того, чтобы при проверке не повредить деталь, нужно применять при проверке такие мультиметры, у которых используется рабочее напряжения не более 1,5 в.

Если в результате проверки на мультиметре было обнаружено, что полевой транзистор вышел из строя, то его необходимо заменить на новый.

Инструкция по прозвонке без выпаивания

Чтобы проверить, исправен ли полевой транзистор, нужно его выпаять и прозвонить с мультиметром. Однако могут возникать ситуации, когда нужно в схеме есть несколько таких деталей и неизвестно, какие из них исправны, а какие — нет. В этом случае полезно знать, как проверить полевой транзистор мультиметром не выпаивая.

В этом случае применяют проверку без выпаивания. Она даёт примерный результат.

Важно! После того, как будет определён предположительно неисправный элемент, его отсоединяют и проверяют, получив точную информацию о его работоспособности. Если он функционирует нормально, его устанавливают на прежнее место.

Проверка без выпаивания выполняется следующим образом:

  1. Перед проведением прозвонки полевого транзистора цифровым мультиметром устройство отключают от электрической розетки или от аккумуляторов. Последние вынимают из устройства.
  2. Если красный щуп соединить с истоком, а чёрный — со стоком, то можно рассчитывать, что мультиметр покажет 500 мв. Если на индикаторе можно увидеть эту или превышающую её цифру, то это говорит о том, что транзистор полностью фунукционален. В том случае, если эта величина гораздо меньше — 50 или даже 5 мв, то в этом случае можно с высокой вероятностью предположить неисправность.
  1. Если красный мультиметровый щуп переставить на затвор, а чёрный оставить на прежнем месте, то на индикаторе можно будет увидеть 1000 мв или больше, что говорит об исправности полевого транзистора. Когда разница составляет 50 мв, то это внушает опасение, что деталь испорчена.
  2. Если чёрный щуп тестера поставить на исток, а красный поместить на затвор, то для работоспособного транзистора можно ожидать на дисплее 100 мв или больше. В тех случаях, когда цифра будет меньше 50 мв, имеется высокая вероятность того, что проверяемая деталь неработоспособна.

Нужно учитывать, что выводы, получаемые без выпайки, носят вероятностный характер. Эти данные позволяют получить предварительные выводы об используемых в схеме полевых транзисторах.

Для проверки их нужно выпаять, произвести проверку и установить, если работоспособность подтверждена.

Правила безопасной работы

Мосфеты очень уязвимы по отношению к статическому электричеству. В этом случае может произойти пробой. Для того, чтобы этого не случилось, нужно при помощи проведения тестирования его удалять.

При пайке возможна ситуация, когда тепло, попадающее на транзистор, приведёт к его порче. В этом случае нужно обеспечить теплоотвод. Для этого достаточно придерживать выводы транзистора плоскогубцами в процессе пайки.

Полевики имеют широкое распространение в современных электронных приборах. Когда происходит поломка, необходимо знать, как проверить мосфет. Выяснить, исправен ли он, возможно, если использовать для этого мультиметр.

Как проверить полевой транзистор?

MOSFET: N-канальный полевой транзистор.

S — исток, D — сток, G — затвор

На мультиметре выставляем режим проверки диодов.

Транзистор закрыт: сопротивление — 502 ома

MOSFET — это Metal-Oxide-Semiconductor Field-Effect Transistor. Для диагностики полевых транзисторов N-канального вида ставим мультиметр на проверку диодов (обычно он пищит на этом положении), черный щуп слева на подложку (D — сток), красный на дальний от себя вывод справа (S — исток), тестер показывает 502 Ома — полевой транзистор закрыт (Рис.4). Далее, не снимая черного щупа, касаемся (Рис.5) красным щупом ближнего вывода (G — затвор) и опять возвращаем его на дальний (S — исток), тестер показывает 0 Ом: полевой транзистор открылся прикосновением (Рис.6).

Если сейчас черным щупом коснуться нижней (G — затвор) ножки, не отпуская красного щупа (Рис. 7), и вернуть его на подложку (D — сток), то полевой транзистор закроется и снова будет показывать сопростивление около 500 Ом (Рис.8). Это верно для большинства N-канальных полевиков в корпусе DPAK и D²PAK, применяемых на материнских платах и видеокартах.

В цепи сток-исток имеется диод. Кстати его наличие обусловлено технологией производства.

Тестером можно подтвердить наличие этого диода.

0.5В — это падение напряжение на внутреннем диоде Шоттки. Если поменять щупы местами, то должен быть «обрыв».

А теперь можно проверить и затвор.

Тестер должен показывать «обрыв» при проверке затвор-исток и затвор-сток, причем полярность щупов не имеет значения.

Но вот что интересно, если черный щуп («-«) держать на истоке, а красным щупом («+») коснуться затвора, то транзистор откроется. В чем мы можем убедится, опять проверив

Тестер покажет почти нулевое сопротивление.

Теперь поместим щуп «+» на сток, а черный щуп на затвор и проверим сток-исток. Тестер опять будет показывать или падение напряжения на диоде или «обрыв», т. е транзистор закрылся!

Кстати есть еще одна тонкость — если мы откроем транзистор и измерим сопротивление сток-исток, но только не сразу, а через некоторое время, то тестер будет показывать сопротивление отличное от нуля. И чем больше пройдет времени, тем больше будет сопротивление.

Почему же так происходит? А все очень просто — емкость между затвором и стоком достаточно большая (обычно единицы нанофарад) и когда мы открываем MOSFET транзистор, эта емкость заряжается. А так как полевой транзистор управляется полем а не током, то пока не разрядится конденсатор, транзистор будет открыт.

P-канальный MOSFET транзистор можно проверить по такому же принципу, только полярность затвора другая.

В современной радиоэлектронной аппаратуре все чаще находят применение полевые транзисторы. Как доказала практика, конструктивная надежность данных компонентов обуславливает высокую практичность работоспособности всевозможной бытовой техники. В процессе ремонтных работ, которые все же случаются, возникает необходимость тестирования того или иного компонента на предмет его исправности. Например, как проверить полевой транзистор, который выпаяли из неисправного блока, вышедшего из строя аппарата. Самый простой метод проверки с применением стрелочного тестера. У исправного транзистора между всеми его выводами прибор показывает бесконечное сопротивление, кроме современных, имеющих диод между стоком и истоком, который и ведет себя, как обычный диод. Второй способ проверки с применение современного цифрового мультиметра. Черный щуп, являющийся отрицательным, прикладываем к выводу стока транзистора. Красный щуп, являющийся положительным, прикладываем к выводу истока. Мультиметр показывает прямое падение напряжения на внутреннем диоде около 450мВ, в обратном – бесконечное сопротивление. В данный момент транзистор закрыт. Что мы делаем далее. Не снимая черного щупа, прикладываем красный к затвору, и вновь возвращаем на вывод истока. Мультиметр показывает 280мВ, т.е. он открылся прикосновением. Теперь, если прикоснуться затвора черным щупом, не отпуская красного щупа и вернуть его на вывод стока, то полевой транзистор закроется, и прибор снова покажет падение напряжения на диоде. Диагностика произведена, в результате чего мы убедились в исправности тестируемого транзистора. Для образца мы применили N-канальный полевой транзистор. Чтобы проверить исправность P-канального транзистора, необходимо, всего лишь, поменять местами щупы мультиметра.

ЗЫ: Взял где взял, обобщил и добавил немного. (не отвлекайтесь и откликайтесь кому это не по зубам) — Копипаста? Да! . обобщённая и дополненная.

Простите за качество некоторых картинок (чем богаты).

Как проверить различные типы транзисторов мультиметром?

Полупроводниковые элементы используются практически во всех электронных схемах. Те, кто называют их наиболее важными и самыми распространенными радиодеталями абсолютно правы. Но любые компоненты не вечны, перегрузка по напряжению и току, нарушение температурного режима и другие факторы могут вывести их из строя. Расскажем (не перегружая теорией), как проверить работоспособность различных типов транзисторов (npn, pnp, полярных и составных) пользуясь тестером или мультиметром.

С чего начать?

Прежде, чем проверить мультиметром любой элемент на исправность, будь то транзистор, тиристор, конденсатор или резистор, необходимо определить его тип и характеристики. Сделать это можно по маркировке. Узнав ее, не составит труда найти техническое описание (даташит) на тематических сайтах. С его помощью мы узнаем тип, цоколевку, основные характеристики и другую полезную информацию, включая аналоги для замены.

Например, в телевизоре перестала работать развертка. Подозрение вызывает строчный транзистор с маркировкой D2499 (кстати, довольно распространенный случай). Найдя в интернете спецификацию (ее фрагмент показан на рисунке 2), мы получаем всю необходимую для тестирования информацию.

Рисунок 2. Фрагмент спецификации на 2SD2499

Большая вероятность, что найденный даташит будет на английском, ничего страшного, технический текст легко воспринимается даже без знания языка.

Определив тип и цоколевку, выпаиваем деталь и приступаем к проверке. Ниже приведены инструкции, с помощью которых мы будем тестировать наиболее распространенные полупроводниковые элементы.

Проверка биполярного транзистора мультиметром

Это наиболее распространенный компонент, например серии КТ315, КТ361 и т.д.

С тестированием данного типа проблем не возникнет, достаточно представить pn переход в как диод. Тогда структуры pnp и npn будут иметь вид двух встречно или обратно подключенных диодов со средней точкой (см. рис.3).

Рисунок 3. «Диодные аналоги» переходов pnp и npn

Присоединяем к мультиметру щупы, черный к «СОМ» (это будет минус), а красный к гнезду «VΩmA» (плюс). Включаем тестирующее устройство, переводим его в режим прозвонки или измерения сопротивления (достаточно установить предел 2кОм), и приступаем к тестированию. Начнем с pnp проводимости:

  1. Присоединяем черный щуп к выводу «Б», а красный (от гнезда «VΩmA») к ножке «Э». Смотрим на показания мультиметра, он должен отобразить величину сопротивления перехода. Нормальным считается диапазон от 0,6 кОм до 1,3 кОм.
  2. Таким же образом проводим измерения между выводами «Б» и «К». Показания должны быть в том же диапазоне.

Если при первом и/или втором измерении мультиметр отобразит минимальное сопротивление, значит в переходе(ах) пробой и деталь требует замены.

  1. Меняем полярность (красный и черный щуп) местами и повторяем измерения. Если электронный компонент исправный, отобразится сопротивление, стремящееся к минимальному значению. При показании «1» (измеряемая величина превышает возможности устройства), можно констатировать внутренний обрыв в цепи, следовательно, потребуется замена радиоэлемента.

Тестирование устройства обратной проводимости производится по такому же принципу, с небольшим изменением:

  1. Красный щуп подключаем к ножке «Б» и проверяем сопротивление черным щупом (прикасаясь к выводам «К» и «Э», поочередно), оно должно быть минимальным.
  2. Меняем полярность и повторяем измерения, мультиметр покажет сопротивление в диапазоне 0,6-1,3 кОм.

Отклонения от этих значений говорят о неисправности компонента.

Проверка работоспособности полевого транзистора

Этот тип полупроводниковых элементов также называют mosfet и моп компонентами. На рисунке 4 показано графическое обозначение n- и p-канальных полевиков в принципиальных схемах.

Рис 4. Полевые транзисторы (N- и P-канальный)

Для проверки этих устройств подключаем щупы к мультиметру, таким же образом, как и при тестировании биполярных полупроводников, и устанавливаем тип тестирования «прозвонка». Далее действуем по следующему алгоритму (для n-канального элемента):

  1. Касаемся черным проводом ножки «с», а красным – вывода «и». Отобразится сопротивление на встроенном диоде, запоминаем показание.
  2. Теперь необходимо «открыть» переход (получится только частично), для этого щуп с красным проводом соединяем с выводом «з».
  3. Повторяем измерение, проведенное в п. 1, показание изменится в меньшую сторону, что говорит о частичном «открытии» полевика.
  4. Теперь необходимо «закрыть» компонент, с этой целью соединяем отрицательный щуп (провод черного цвета) с ножкой «з».
  5. Повторяем действия п. 1, отобразится исходное значение, следовательно, произошло «закрытие», что говорит об исправности компонента.

Для тестирования элементов p-канального типа последовательность действий остается той же, за исключением полярности щупов, ее нужно поменять на противоположную.

Заметим, что биполярные элементы, у которых изолированный затвор (IGBT), тестируются также, как описано выше. На рисунке 5 показан компонент SC12850, относящийся к этому классу.

Рис 5. IGBT транзистор SC12850

Для тестирования необходимо выполнить те же действия, что и для полевого полупроводникового элемента, с учетом, что сток и исток последнего будут соответствовать коллектору и эмиттеру.

В некоторых случаях потенциала на щупах мультиметра может быть недостаточно (например, чтобы «открыть» мощный силовой транзистор), в такой ситуации понадобится дополнительное питание (хватит 12 вольт). Подключать его нужно через сопротивление 1500-2000 Ом.

Проверка составного транзистора

Такой полупроводниковый элемент еще называют «транзистор Дарлингтона», по сути это два элемента, собранные в одном корпусе. Для примера, на рисунке 6 показан фрагмент спецификации к КТ827А, где отображена эквивалентная схема его устройства.

Рис 6. Эквивалентная схема транзистора КТ827А

Проверить такой элемент мультиметром не получится, потребуется сделать простейший пробник, его схема показана на рисунке 7.

Рис. 7. Схема для проверки составного транзистора

Обозначение:

  • Т – тестируемый элемент, в нашем случае КТ827А.
  • Л – лампочка.
  • R – резистор, его номинал рассчитываем по формуле h31Э*U/I, то есть, умножаем величину входящего напряжения на минимальное значение коэффициента усиления (для КТ827A — 750), полученный результат делим на ток нагрузки. Допустим, мы используем лампочку от габаритных огней автомобиля мощностью 5 Вт, ток нагрузки составит 0,42 А (5/12). Следовательно, нам понадобится резистор на 21 кОм (750*12/0,42).

Тестирование производится следующим образом:

  1. Подключаем к базе плюс от источника, в результате должна засветиться лампочка.
  2. Подаем минус – лампочка гаснет.

Такой результат говорит о работоспособности радиодетали, при других результатах потребуется замена.

Как проверить однопереходной транзистор

В качестве примера приведем КТ117, фрагмент из его спецификации показан на рисунке 8.

Рис 8. КТ117, графическое изображение и эквивалентная схема

Проверка элемента осуществляется следующим образом:

Переводим мультиметр в режим прозвонки и проверяем сопротивление между ножками «Б1» и «Б2», если оно незначительное, можно констатировать пробой.

Как проверить транзистор мультиметром, не выпаивая их схемы?

Этот вопрос довольно актуальный, особенно в тех случаях, если необходимо тестировать целостность smd элементов. К сожалению, только биполярные транзисторы можно проверить мультиметром не выпаивая из платы. Но даже в этом случае нельзя быть уверенным в результате, поскольку не редки случаи, когда p-n переход элемента зашунтирован низкоомным сопротивлением.

Как проверить полевой транзистор

Для проверки исправности полевого транзистора можно воспользоваться любым цифровым мультиметром с функцией «прозвонки» диодов. Данная функция работает таким образом, что позволяет измерить прямое падение напряжения на p-n-переходе, которое и будет отображено на дисплее мультиметра в ходе тестирования.

В процессе данной проверки мультиметр способен пропустить через проверяемую цепь ток в пределах нескольких миллиампер, и если падение напряжения окажется при этом слишком малым, то в случае наличия у прибора функции звукового оповещения, он запищит. А поскольку в любом полевом транзисторе присутствуют p-n-переходы, то можно рассчитывать на вполне адекватный результат.

Прежде чем проверять полевой транзистор на исправность, замкните на секунду фольгой все его выводы чтобы снять статический заряд, чтобы разрядить все его переходные емкости, включая емкость затвор-исток.

Проверка встроенного обратного диода

Практически в любом современном полевом транзисторе, за исключением специальных их типов, параллельно цепи сток-исток включен внутренний «защитный» диод.

Наличие этого диода внутри полевика обусловлено особенностями технологии производства мощных транзисторов. Иногда он мешает, считается паразитным, однако в большинстве полевых транзисторов без него, как части цельной структуры электронного компонента, не обойтись. Следовательно, в исправном полевом транзисторе данный диод тоже должен быть исправным. В n-канальном полевом транзисторе данный диод включен катодом к стоку, анодом — к истоку, а в p-канальном — анодом к стоку, катодом — к истоку.

Включите мультиметр в режим «прозвонки» диодов. Если полевой транзистор является n-канальным, то красный щуп мультиметра приложите к его истоку (source), а черный — к стоку (drain).

Обычно сток находится посередине и соединен с проводящей подложкой транзистора, а истоком является правый вывод (уточните это в datasheet). В случае если внутренний диод исправен, на дисплее мультиметра отобразится прямое падение напряжения на нем — в районе 0,4-0,7 вольт. Если теперь положение щупов изменить на противоположное, то прибор покажет бесконечность. Если все так, значит внутренний диод исправен.

Проверка цепи сток-исток

Полевой транзистор управляется электрическим полем затвора. И если емкость затвор-исток зарядить, то проводимость в направлении сток-исток увеличится.

Итак, если транзистор является n-канальным, приложите черный щуп к затвору (gate), а красный — к истоку, и через секунду измените расположение щупов на противоположное — красный к затвору, а черный — к истоку. Так мы сначала наверняка разрядили затвор, а после — зарядили его. Затвор обычно слева, а исток — справа (см. datasheet).

Теперь красный щуп переместите с затвора — на сток, а черный пусть останется на истоке. Если транзистор исправен, то как только вы переместите красный щуп с затвора на сток, мультиметр покажет что на стоке есть падение напряжения (не бесконечное, но может увеличиваться) — это значит, что транзистор перешел в проводящее состояние.

Теперь красный щуп на исток, а черный — на затвор (разряжаем затвор противоположной полярностью), после чего снова красный щуп на сток, а черный — на исток. Прибор должен показать бесконечность — транзистор закрылся. Для p-канального полевого транзистора щупы просто меняются местами.

Если прибор запищит

Если на этапе проверки сток-исток прибор запищит, это может быть вполне нормальным, ведь у современных полевых транзисторов сопротивление сток-исток в открытом состоянии бывает очень маленьким. Главное — чтобы не было звона затвор-исток и сток-исток, особенно в тот момент когда затвор заряжен противоположной полярностью. Как вариант, можно соединить затвор с истоком и в таком положении прозвонить сток-исток (для n-канального красный на сток, черный — на исток), прибор должен показать бесконечность.

Как проверить полевой транзистор мультиметром

При проведении ремонтных работ электронной техники, возникает вопрос проверки функционального состояния тех или иных полупроводниковых элементов. Решение этой проблемы сильно облегчает наличие специализированных приборов, однако, во многих случаях вполне можно обойтись и без них.

Есть ряд способов, как проверить транзистор мультиметром без использования сложных приборов и каких-либо дополнительных электрических схем. Рассматриваются алгоритмы проверки различных типов транзисторов.

 

 

Проверка trz (транзистора), равно как и любого другого элемента схемы, начинается с определения его типа. Эту информацию несложно найти в интернете. У опытного мастера всегда есть под рукой ссылки на проверенные ресурсы. Если таковых нет, то, обычно достаточно вбить маркировку компонента в поисковой системе и нужная информация найдется уже на первой странице поисковой выдачи. Наиболее распространенные типы транзисторов: биполярные, полевые, составные, однопереходные. Определив тип элемента, можно начинать его функциональную проверку.

Биполярный транзистор

Наиболее распространенные транзисторы. Используются в основном в схемах усиления или генерации сигнала: в усилителях, генераторах, модуляторах, инверторах и т. д. Бывают двух типов: p-n-p и n-p-n. Не углубляясь в структуру полупроводникового прибора, достаточно будет сказать, что каждый p-n переход представляет собой диод. Строго говоря, это не совсем так, но для проверки работоспособности такое представление вполне допустимо. Таким образом, последовательность p-n-p представима в виде двух диодов, соединенных катодами, а n-p-n – двух диодов, соединенных анодами. Чтобы проверить, работоспособность такого элемента, нужно мультиметром замерить сопротивление переходов.

Определение работоспособности p-n-p полупроводника:

  • Берется мультиметр. Черный провод (обозначим его как Ч) помещается в гнездо COM (минус).
  • Красный (К) – в гнездо VΩmA (плюс).
  • Тестер выставляется на замер электрического сопротивления. Предельное значение выбирается 2 кОм. Это означает, что мультиметр может корректно измерять сопротивление от 0 до 2000 Ом. При превышении данного порога, на экране прибора загорится «1».
  • Для замера прямых сопротивлений Ч закрепляется на базе элемента.
  • Чтобы замерить величину сопротивления эмиттерного перехода, К помещается на эмиттер.
  • Измеренное значение должно быть от 500 до 1200 Ом. Аналогично и для коллектора.
  • Для измерения обратных сопротивлений на базе элемента закрепляется К. Ч поочередно помещается на коллектор и эмиттер. Полученные значения должны превышать установленный порог в 2кОм. Об этом, в обоих случаях, будет свидетельствовать цифра «1» на экране тестера.
  • Для n-p-n полупроводника применяется та же самая методика. За исключение того, что в п.1 Ч и К помещаются в противоположные гнезда. Тем самым меняется полярность щупов тестера.

Если изначально нет информации относительно расположения базы, коллектора, эмиттера, это нетрудно определить. Измерительный прибор устанавливается в состояние п. 1 и п. 2 вышеприведенной схемы. К (плюс) помещается на правый вывод полупроводника. Ч (минус) поочередно замыкается на средний и левый выводы. Если в обоих случаях тестер покажет «1», то данный контакт и есть база. В противном случае аналогичным образом тестируем оставшиеся контакты.

Остается найти эмиттер и коллектор. Для этого необходимо просто замерить сопротивление коллекторных и эмиттерных переходов. Ч помещается на базу. К поочередно замыкается на оставшиеся выводы. Полученные значения должны лежать в диапазоне от 500–1200 Ом. При этом большее значение будет относиться к коллекторному переходу, а меньшее, соответственно к эмиттерному.

Полевой транзистор

Обладает значительно меньшим энергопотреблением по сравнению с биполярным. Основная область применения – это приборы, работающие в ждущем или следящем режимах. Импортные элементы обычно имеют маркировку, упрощающую идентификацию выводов: G-затвор, S-исток, D-сток. Полевой транзистор или, как его еще называют, мосфет, бывает n-канальный и p-канальный. Алгоритмы проверки работоспособности полупроводников обоих типов похожи.

Определение функциональности n-канального полупроводника.

Поскольку у таких компонентов между стоком и истоком часто встраивается диод, то, для проверки функциональности, на измерительном устройстве устанавливается в режим проверки диодов. Ч идет на минус тестера, а К – на плюс.

  • К помещается на исток элемента, а Ч – на сток. Напряжение должно быть от 500 до 700 мВ.
  • К – на сток, а Ч – на исток. Значение в этом случае должны выходить за пределы измерений мультиметра. Об этом свидетельствует цифра «1» на экране прибора.
  • Ч – на истоке. Касание К затвора открывает транзистор. Ч остается на истоке, а К соединяется со стоком. Замеренное напряжение должно лежать в диапазоне от 0 до 800 мВ и не зависеть от смены полярности проводов тестера.
  • Замыкание К на исток, а Ч – на затвор проводит к закрытию прибора и переводу его в изначальное состояние.

Для определение работоспособности p-канального полупроводника Ч подключается к плюсу мультиметра, а К – к минусу. Дальнейшая последовательность действий аналогична методике проверки элемента n-канального типа.

Составной транзистор

Также известен как пара Дарлингтона. Является каскадом из двух и более биполярных транзисторов. Тестирование таких элементов одним лишь мультиметром, без сборки дополнительных схем, не представляется возможным. Вопрос монтажа подобных вспомогательных схем выходит за рамки данной статьи.

Однопереходный транзистор

В основном используются во всевозможных реле и пороговых устройствах. У элементов данного типа присутствует только один p-n переход. Для проверки его работоспособности мультиметром замеряется сопротивление между ножками «Б1» и «Б2». Если полученная величина незначительна, то компонент неисправен.

Проверка элемента без выпаивания его из схемы

Часто возникает вопрос, как проверить smd транзистор мультиметром. SMD – это аббревиатура от английского Surface Mounted Device (устройство, монтируемое на поверхность). Такие полупроводники не вставляются в отверстия плат. Их просто напаивают сверху на контактные дорожки. В современных платах плотность таких дорожек невероятно велика. Более того, часто они располагаются в несколько слоев. Поэтому если какая-то из дорожек располагается в середине такого «пирога», то ее может быть просто не видно.

Становится понятно, что поскольку демонтаж и обратный монтаж smd компонентов на контактные дорожки печатных плат зачастую сопряжен со значительными сложностями, то лучше всего было бы осуществить проверку функциональности элемента, не выпаивая его. К сожалению, такое подход возможен только для биполярных транзисторов. Однако даже при положительных итогах проверки нельзя быть полностью уверенным в результате. В большинстве же случаев только лишь демонтаж элемента с печатной планы позволяет гарантированно проверить его работоспособность.

Пособие для начинающего радиолюбителя: как проверить полевой транзистор

Полевые транзисторы – полупроводниковые приборы, в которых управление переходными процессами, а также величиной выходного тока осуществляется изменением величины электрического поля. Существует два вида данных устройств: с изолированным затвором (в свою очередь делятся на транзисторы со встроенным каналом и с индукционным каналом) и с управляемым переходом. Полевые транзисторы благодаря своим уникальным характеристикам находят широкое применение в радиоэлектронной аппаратуре: блоках питания, телевизорах, компьютерах и др.

При ремонте такой техники наверняка каждый начинающий радиолюбитель сталкивался с таким вопросом: как проверить полевой транзистор? Чаще всего с проверкой таких элементов можно столкнуться при ремонте импульсных блоков питания. В этой статье мы подробно расскажем, как это правильно сделать.

Как проверить полевой транзистор омметром

В первую очередь, чтобы приступить к проверке полевого транзистора, необходимо разобраться с его «цоколевкой», то есть с расположением выводов. На сегодняшний день существует множество различных исполнений таких элементов, соответственно, расположение электродов у них отличается. Часто можно встретить полупроводниковые транзисторы с подписанными контактами. Для маркировки используют латинские литеры G, D, S. Если же подписи нет, то необходимо воспользоваться справочной литературой.

Итак, разобравшись с маркировкой контактов, рассмотрим, как проверить полевой транзистор. Следующим шагом будет принятие необходимых мер безопасности, потому что полевые приборы очень чувствительны к статическому напряжению, и чтобы предотвратить выход из строя такого элемента, необходимо организовать заземление. Чтобы снять с себя накопленный статический заряд, обычно надевают на запястье антистатический заземляющий браслет.

Не следует также забывать, что хранить полевые транзисторы необходимо с замкнутыми выводами. Сняв статическое напряжение, можно переходить к процедуре проверки. Для этого понадобится простой омметр. У исправного элемента между всеми выводами сопротивление должно стремиться к бесконечности, но при этом существуют некоторые исключения. Сейчас мы рассмотрим, как проверить полевой транзистор n-типа. 

Прикладываем положительный щуп прибора к электроду затвора (G), а отрицательный щуп к контакту истока (S). В этот момент начинает заряжаться емкость затвора и элемент открывается. При измерении сопротивления между истоком и стоком (D) омметр покажет некоторую величину сопротивления. В разных типах транзисторов эта величина различна. Если закоротить выводы транзистора, то сопротивление между стоком и истоком снова будет стремиться к бесконечности. Если этого не произошло, значит, транзистор неисправен.

Если вы спросите, как проверить полевой транзистор P-типа, то ответ прост: повторяем вышеописанную процедуру, только меняем полярность. Не следует также забывать, что современные мощные полевые транзисторы между истоком и стоком имеют встроенный диод, соответственно «прозванивается» он только в одну сторону.

Проверка полевого транзистора мультиметром

При наличии прибора «мультиметра», можно проверить полевой транзистор. Для этого выставляем измерительный прибор в режим «прозвонки» диодов и вводим полевой элемент в режим насыщения. Если транзистор N-типа, то минусовым щупом касаемся стока, а плюсовым — затвора. Исправный транзистор в таком случае открывается. Переносим плюсовой щуп, не отрывая минусового, на исток, и мультиметр показывает какое-то значение сопротивления. После этого запираем транзистор: не отрывая щупа от истока, минусовым касаемся затвора и возвращаем на сток. Транзистор заперт, и сопротивление стремится к бесконечности.

Многие радиолюбители спрашивают: «Как проверить полевой транзистор, не выпаивая?» Сразу ответим, что стопроцентного способа не существует. Для этого используют мультиметр с колодкой HFE, но этот метод часто дает сбой, и можно потратить много времени впустую.

исследование транзистора с помощью мультиметра

В современной электронике MOSFET-транзисторы являются одними из самых широко применяемых радиоэлементов. Несмотря на свою надёжность, они нередко выходят из строя, что связано с нарушениями режима в их работе. При этом поиск неисправного элемента в связи со спецификой устройства полевого транзистора вызывает определённые трудности. Но зная принцип работы радиодетали, проверить мосфет мультиметром не так уж и сложно.

Особенности работы MOSFET

Отличие полевого транзистора от классического биполярного состоит в том, что его работа зависит от приложенного напряжения, а не тока. В литературе часто такой радиоэлемент называют МОП-транзистор (метал-оксид-полупроводник) или МДП-транзистор (метал-диэлектрик-полупроводник). В английском варианте его название звучит как мосфет, образованное от MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).

Полевые транзисторы являются активными элементами, то есть их работа невозможна без приложения к выводам напряжения. Впервые идея создания прибора, поток носителей заряда в котором управляется величиной приложенного напряжения, была предложена австро-венгерским учёным Юлием Лилиенфельдом. Однако отсутствие технологий создания такого устройства позволило выпустить прототип лишь в 1960 году. С 1977 году мосфеты начали применять при производстве электронно-вычислительных машин, тем самым увеличивая производительность последних.

Различные учёные мира постоянно ведут исследования по улучшению работы электронного прибора, поэтому на сегодняшний день изобретено и внедрено в производство несколько видов полевых транзисторов. Каждый из них обладает своими преимуществами и недостатками, но общий принцип работы у них одинаков.

Виды и конструкция

Разделяют мосфеты на две группы. В зависимости от вида управляющего электрода они могут быть: с p-n переходом и изолированным затвором. В последнее время первого вида элементы начинают использовать всё реже. Транзисторы с управляющим p-n переходом конструктивно представляют собой полупроводниковое основание, основными носителями заряда которого могут быть как дырки (p-тип) так и электроны (n-тип).

На концах основания выполняются выводы, называемые сток и исток. К этим контактам подключается управляемая часть схемы. Управление же прибором происходит через третий вывод транзистора (затвор), образованный путём соединения с основанием проводника обратной проводимости. Таким образом,

p-n транзистор имеет три вывода:

  1. Исток — вход, через который поступают основные носители энергии.
  2. Сток — выход устройства, через который уходят основные носители энергии.
  3. Затвор — вывод управляющий прохождением зарядов через прибор.

В зависимости от типа проводимости управляющего электрода такие мосфеты делятся на n и p типа.

Радиоэлемент с изолированным затвором устроен иначе. Его затвор отделён от основания слоем диэлектрика. При изготовлении прибора используется полупроводник, обладающий высоким удельным сопротивлением. Его называют подложкой или затвором. На нём создаются две зоны с обратным типом проводимости — сток и исток. Таким образом, получается три области. Расстояние между управляемыми электродами очень мало, а отделяемый от них затвор покрывается слоем диэлектрика порядка 0,1 микрометра. Обычно в качестве диэлектрика используется соединение SiO2.

В зависимости от способа изготовления устройства с изолированным контактом разделяют на два типа: обеднённые и обогащённые. Первые выпускаются только n-типа и могут иметь два затвора, а вторые бывают как n, так и p-типа.

Обогащённого типа устройства называются транзисторами с индуцированным каналом. В них управляемые контакты не связаны проводящим слоем. Поэтому ток на стоке появляется только при приложении определённой разности потенциалов к затвору относительно истока. Обеднённые транзисторы в своей конструкции содержат встроенный канал, из-за чего транзистор реагирует на напряжение как положительной, так и отрицательной полярности.

Характеристики радиоэлемента

На схемах и в литературе принято обозначать мосфет латинскими буквами VT, после которых идёт его порядковый номер в схеме. Графически полевой элемент изображается кругом, в середине которого рисуются прямые линии, обозначающие путь прохождения тока. На выводе затвора указывается в виде стрелки тип проводимости. Затвор, сток и исток подписываются соответственно буквами латинского алфавита — S, D, G.

Полевые устройства характеризуются множеством параметров. Но среди основных выделяют следующие характеристики:

  1. Напряжение между управляемыми электродами. Показывает величину напряжения, которое может выдержать транзистор без ухудшения своих параметров. То есть практически это максимальное напряжение источника питания, на работу с которым рассчитан транзистор.
  2. Сила тока стока. Обычно указывается максимальное значение для определённой величины постоянного напряжения, приложенного к затвору — истоку.
  3. Импеданс канала сток-исток в открытом состоянии. Чем это значение будет больше, тем хуже работает транзистор, так как на сопротивлении возникают потери энергии, и увеличивается нагрев мосфета.
  4. Мощность рассеивания. Зависит от температуры окружающей среды. Этот параметр изображается в виде характеристики, показывающей зависимость мощности от температуры.
  5. Уровень насыщения канала исток-затвор. Обозначает граничную величину разности потенциалов, при преодолении которой ток через канал не проходит.
  6. Порог включения. Это минимальное напряжение, которое необходимо приложить к транзистору для открытия его проводящего канала.
  7. Ёмкость затвора. Существенный недостаток полевых транзисторов связан именно с этим параметром. Так, из-за паразитной ёмкости ограничивается применение устройств в высокочастотных цепях, снижая скорость переключения режимов работы.

Важно также знать, что мосфеты чувствительны к статическому электричеству, особенно это касается приборов с изолированным затвором. Поэтому проводя проверку полевого транзистора мультиметром, следует надеть на обе руки антистатические браслеты, при этом также не стоит надевать на себя шерстяную одежду.

Принцип работы

Суть работы радиоэлемента с изолированным затвором заключается в управлении величиной тока, проходящего через него, с помощью изменения разности потенциалов. Когда к истоку и затвору прикладывается напряжение, то в приборе образуется электрическое поле поперечное приложенному. Это поле увеличивает число свободных носителей заряда в приповерхностном слое.

Из-за этого возле диэлектрика начинает скапливаться значительное количество носителей заряда, в результате чего формируется зона проводимости. Через эту область начинает протекать ток, то есть между управляемыми выводами. При снятии напряжения с открытого затвора проводимость исчезнет, и течение тока прекратится.

Немного другие процессы происходят в работе полевого транзистора с p-n переходом. Если на этот переход подаётся напряжение обратное основным носителям заряда, его область начинает расширяться. Увеличение перехода приводит к сужению толщины проводящего канала, а значит, увеличению сопротивления. В результате проходящий между стоком и истоком ток уменьшается. Таким образом, изменяя уровень напряжения, изменяется и сила тока, проходящая через транзистор.

Способы измерения

Для измерения параметров полевых транзисторов применяются специализированные приборы. В основе их работы лежит использование микроконтроллера и встроенного генератора. Сигнал определённого вида подаётся на контакты транзистора, в результате чего изменяется. С помощью встроенного анализатора устройство оценивает эти изменения и преобразует данные в удобную для восприятия информацию. Вся суть пользования таким измерителем сводится к установлению мосфета в специальные контактные площадки и нажатии кнопки запуск.

В быту же радиолюбителями часто применяются самодельные устройства. Так, простейшего вида приспособление из нескольких элементов позволяет измерить сопротивление каналов. Для этого используется: вольтметр, автомобильная лампочка, источник напряжения и резистор номиналом около 100 Ом. Собрав такую схему, можно без труда измерить Rds радиоэлемента, тем самым проверить мосфет на работоспособность.

Но проще всего и быстрее для диагностики радиоэлемента использовать мультиметр. С его помощью несложно проверить мосфет на способность работы в ключевом режиме. И если по результатам проверки он нормально открывается и закрывается, то вероятность его исправности очень велика.

Транзистор с управляющим электродом

Для лучшего понимания процесса проверки мосфета его можно представить в виде эквивалентной схемы как треугольник. Две стороны такого треугольника представляют собой два диода, а третья — резистор. При этом точка соединения диодов считается затвором, а соединение их с резистором — стоком и истоком.

Представив эквивалентную схему, можно приступить к проверке элемента. Для примера удобно рассмотреть один из типов проводимости, например, n-тип:

  1. Измерение сопротивление канала. Для этого с помощью переключателя выбора измерений мультиметр устанавливается в режим проверки сопротивления. Предел измерения выбирается около двух мегом. Щупами прибора касаются стока и истока транзистора. В результате на экране мультиметра появится число равное сопротивлению перехода. После меняется полярность щупов, и снова измеряется сопротивление. При исправном мосфете эти значения должны быть примерно одинаковыми. Такое подключение на эквивалентной схеме соответствует положению, когда измерялась бы величина сопротивления резистора.
  2. Проверка перехода затвор-исток. Для этого мультиметр переключается в режим прозвонки диодов. Измерительным проводом, подключённым к плюсу тестера, прикасаются к затвору, а минусовым — к истоку. Итогом такого действия будет измерение мультиметром падения напряжения на открытом переходе. Его значение должно составлять примерно 600–700 милливольт. На следующем этапе изменяется полярность приложенных проводов. Если мосфет исправен, тестер покажет бесконечность. Это будет обозначать, что переход закрыт.
  3. Исследование перехода сток-затвор. Мультиметр оставляется в режиме прозвонки диодов. Но положительным щупом прикасаются к затвору, а отрицательным к стоку. В этом случае тестер должен показать падение напряжения на переходе порядка 600–700 милливольт. При смене полярности в случае работоспособности транзистора тестер покажет бесконечность.

Если все три пункта выполнились правильно, мосфет считается работоспособным. Проверка радиоэлемента другого типа осуществляется аналогично, только изменяется полярность подключению щупов.

Мосфет с изолированным затвором

Такой вида транзистора имеет в своём корпусе встроенный диод, располагающийся между истоком и стоком, поэтому первоначально на исправность проверяется именно он. Для его проверки мультиметр переключается в режим проверки диодов, а его щупы подключаются к стоку и истоку. В прямом направлении прибор должен показать падение напряжения, а в случае смены полярности — бесконечность.

Основная проверка транзистора заключается в имитации его работы в режиме ключа. В случае радиоэлемента n-типа его диагностика осуществляется следующим образом:

  1. Мультиметр переключается на проверку диодов.
  2. Щупом, подключённым к минусу, дотрагиваются до истока, а к плюсу — до затвора.
  3. Плюсовой провод переносится к стоку. Если мосфет рабочий, то сопротивление перехода будет очень низким, то есть канал станет открытым.
  4. Далее, положительный щуп подключается к истоку, а отрицательный — к затвору. После этих действий транзистор закроется.

По результатам измерения делается вывод о работоспособности элемента. Таким образом, соблюдая последовательность приведённых действий, можно проверить мосфет любого типа на работоспособность с помощью мультиметра.

Как проверить полевой транзистор

Полевые транзисторы — это полупроводниковые устройства, в которых управление переходными процессами, а также величиной выходного тока осуществляется путем изменения величины электрического поля. Эти устройства бывают двух типов: с изолированным затвором (в свою очередь, разделенными на транзисторы со встроенным каналом и с индукционным каналом) и с управляемым переходом. Полевые транзисторы благодаря своим уникальным характеристикам широко используются в радиоэлектронной технике: источниках питания, телевизорах, компьютерах и т. Д.

При ремонте такой техники, начинающий радиолюбитель столкнулся с таким вопросом: как проверить полевой транзистор? Чаще всего с проверкой таких элементов можно столкнуться при ремонте импульсных источников питания. В этой статье мы подробно расскажем, как это сделать правильно.

как проверить полевой транзистор омметром

Прежде всего, чтобы приступить к проверке полевого транзистора, необходимо разобраться с его «шапкой», то есть с расположением выводов.На сегодняшний день существует множество различных вариантов таких элементов, соответственно расположение электродов у них разное. Часто можно встретить полупроводниковые транзисторы с подписанными контактами. Для маркировки используйте латинские буквы G, D, S. Если нет подписи, то необходимо использовать справочную литературу.

Итак, разобравшись с маркировкой контактов, рассмотрим, как проверить полевой транзистор. Следующим шагом является принятие необходимых мер безопасности, поскольку полевые устройства очень чувствительны к статическому напряжению, и для предотвращения выхода из строя такого элемента необходимо организовать заземление.Чтобы снять с себя накопленный статический заряд, на запястье обычно надевают антистатический заземляющий браслет.

Не забывайте, что хранение полевых транзисторов необходимо с закрытыми клеммами. Сняв статическое напряжение, можно переходить к процедуре проверки. Для этого понадобится простой омметр. В случае хорошего элемента между всеми выводами сопротивление должно стремиться к бесконечности, но есть некоторые исключения. Теперь посмотрим, как проверить полевой транзистор n-типа.

Подсоедините положительный щуп к электроду затвора (G), а отрицательный щуп к контакту истока (S). В этот момент емкость затвора начинает заряжаться и ячейка открывается. При измерении сопротивления между истоком и стоком (D) омметр покажет некоторое значение сопротивления. В разных типах транзисторов это значение разное. Если выводы транзистора закорочены, сопротивление между стоком и истоком снова будет стремиться к бесконечности. Если этого не произошло, значит, транзистор неисправен.

Если вы спросите, как проверить полевой транзистор P-типа, то ответ прост: повторите описанную выше процедуру, только поменяйте полярность. Также не следует забывать, что современные мощные полевые транзисторы между истоком и стоком имеют встроенный диод, поэтому он лишь «отзывает» его в сторону.

Тест мультиметра на полевых транзисторах

Если есть «мультиметр», вы можете проверить полевой транзистор. Для этого переводим измерительный прибор в режим «непрерывности» диодов и вводим полевой элемент в режим насыщения.Если транзистор N-типа, то отрицательный щуп касается стока, а положительный — затвора. Затем открывается нужный транзистор. Переносим плюсовой щуп, не беря минусовой, на источник, и мультиметр показывает какое-то значение сопротивления. После этого блокируем транзистор: не отсоединяя щуп от истока, касаемся минусовой шторкой и возвращаем в сток. Транзистор заблокирован, а сопротивление стремится к бесконечности.

Многие радиолюбители спрашивают: «Как проверить полевой транзистор, не испаряясь?» Сразу отвечу, что стопроцентного метода не существует.Для этого используйте мультиметр с обувью HFE, но этот метод часто дает сбой, и вы можете потерять много времени.

Полевой транзистор »Электроника

Полевой транзистор, полевой транзистор, представляет собой трехконтактное активное устройство, которое использует электрическое поле для управления током и имеет высокий входной импеданс, который используется во многих схемах.


FET, полевой транзистор, руководство включает:
FET основы Характеристики полевого транзистора JFET МОП-транзистор МОП-транзистор с двойным затвором Силовой MOSFET MESFET / GaAs полевой транзистор HEMT & PHEMT Технология FinFET


Полевой транзистор FET — ключевой электронный компонент, используемый во многих областях электронной промышленности.

Полевой транзистор, используемый во многих схемах, состоящих из дискретных электронных компонентов, в областях от ВЧ-технологий до управления мощностью и электронного переключения до общего усиления.

Однако в основном полевые транзисторы используются в интегральных схемах. В этом приложении схемы на полевых транзисторах потребляют гораздо меньше энергии, чем микросхемы, использующие технологию биполярных транзисторов. Это позволяет работать очень крупным интегральным схемам. Если бы использовалась биполярная технология, потребляемая мощность была бы на несколько порядков больше, а генерируемая мощность была бы слишком большой, чтобы рассеиваться на интегральной схеме.

Помимо использования в интегральных схемах, дискретные версии полевых транзисторов доступны как в виде выводных электронных компонентов, так и в качестве устройств для поверхностного монтажа.

Типичные полевые транзисторы

Полевой транзистор, история полевых транзисторов

До того, как первые полевые транзисторы были представлены на рынке электронных компонентов, эта концепция была известна в течение ряда лет. Было много трудностей в реализации этого типа устройства и в том, чтобы заставить его работать.

Некоторые из первых концепций полевого транзистора были изложены в статье Лилиенфилда в 1926 году и в другой статье Хайля в 1935 году.

Следующие основы были заложены в 1940-х годах в Bell Laboratories, где была создана группа исследований полупроводников. Эта группа исследовала ряд областей, относящихся к полупроводникам и полупроводниковой технологии, одним из которых было устройство, которое могло бы модулировать ток, протекающий в полупроводниковом канале, путем размещения электрического поля рядом с ним.

Во время этих ранних экспериментов исследователи не смогли воплотить идею в жизнь, превратив свои идеи в другую идею и, в конечном итоге, изобрели другую форму компонента полупроводниковой электроники: биполярный транзистор.

После этого большая часть исследований в области полупроводников была сосредоточена на улучшении биполярного транзистора, а идея полевого транзистора некоторое время не была полностью исследована. Сейчас полевые транзисторы очень широко используются, обеспечивая основной активный элемент во многих интегральных схемах.Без этих электронных компонентов технология электроники сильно отличалась бы от нынешней.

Полевой транзистор — основы

Концепция полевого транзистора основана на концепции, согласно которой заряд на соседнем объекте может притягивать заряды в полупроводниковом канале. По сути, он работает с использованием эффекта электрического поля — отсюда и название.

Полевой транзистор состоит из полупроводникового канала с электродами на обоих концах, называемых стоком и истоком.

Управляющий электрод, называемый затвором, помещается в непосредственной близости от канала, так что его электрический заряд может влиять на канал.

Таким образом, затвор полевого транзистора управляет потоком носителей (электронов или дырок), текущих от истока к стоку. Это достигается за счет управления размером и формой проводящего канала.

Полупроводниковый канал, по которому протекает ток, может быть P-типа или N-типа. Это дает начало двум типам или категориям полевых транзисторов, известных как полевые транзисторы с P-каналом и N-каналом.

В дополнение к этому есть еще две категории. Увеличение напряжения на затворе может либо истощить, либо увеличить количество носителей заряда, доступных в канале. В результате есть полевые транзисторы в режиме улучшения и полевые транзисторы в режиме истощения.

Обозначение схемы соединения на полевом транзисторе

Поскольку только электрическое поле управляет током, протекающим в канале, говорят, что устройство работает от напряжения и имеет высокий входной импеданс, обычно много МОм. Это может быть явным преимуществом по сравнению с биполярным транзистором, работающим от тока и имеющим гораздо более низкий входной импеданс.

Переходный полевой транзистор, JFET работает ниже насыщения

Цепи на полевых транзисторах

Полевые транзисторы широко используются во всех схемах, от схем с дискретными электронными компонентами до интегральных схем.

Примечание по конструкции схемы полевого транзистора:

Полевые транзисторы могут использоваться во многих типах схем, хотя три основные конфигурации — это общий исток, общий сток (истоковый повторитель) и общий затвор.Сама схема довольно проста и может быть реализована довольно легко.

Подробнее о Схема полевого транзистора

Поскольку полевой транзистор представляет собой устройство, работающее от напряжения, а не устройство тока, такое как биполярный транзистор, это означает, что некоторые аспекты схемы сильно отличаются: в частности, устройства смещения. Однако проектировать электронную схему с полевыми транзисторами относительно просто — она ​​немного отличается от схемы с биполярными транзисторами.

Используя полевые транзисторы, можно спроектировать такие схемы, как усилители напряжения, буферы или повторители тока, генераторы, фильтры и многое другое, а схемы очень похожи на схемы для биполярных транзисторов и даже термоэмиссионных клапанов / вакуумных ламп. Интересно, что клапаны / лампы также являются устройствами, работающими от напряжения, и поэтому их схемы очень похожи, даже с точки зрения устройства смещения.

Типы полевых транзисторов

Есть много способов определить различные типы доступных полевых транзисторов.Различные типы означают, что при проектировании электронной схемы необходимо выбрать правильный электронный компонент для схемы. Правильно подобрав устройство, можно получить наилучшие характеристики для данной схемы.

Полевые транзисторы

можно разделить на несколько категорий, но некоторые из основных типов полевых транзисторов можно увидеть на древовидной диаграмме ниже.

Типы полевых транзисторов

На рынке существует множество различных типов полевых транзисторов, которые имеют разные названия.Некоторые из основных категорий отложены ниже.

  • Junction FET, JFET: Junction FET, или JFET, использует диодный переход с обратным смещением для обеспечения соединения затвора. Структура состоит из полупроводникового канала, который может быть N-типа или P-типа. Затем на канале изготавливается полупроводниковый диод таким образом, чтобы напряжение на диоде влияло на канал полевого транзистора.

    При работе он имеет обратное смещение, а это означает, что он эффективно изолирован от канала — только обратный ток диода может течь между ними.JFET — это самый базовый тип полевого транзистора, который был разработан впервые. Однако он по-прежнему обеспечивает отличный сервис во многих областях электроники.


  • Полевой транзистор с изолированным затвором / полевой транзистор на основе оксида металла и кремния МОП-транзистор: В МОП-транзисторе используется изолированный слой между затвором и каналом. Обычно он формируется из слоя оксида полупроводника.

    Название IGFET относится к любому типу полевого транзистора с изолированным затвором.Наиболее распространенной формой IGFET является кремниевый МОП-транзистор — Metal Oxide Silicon FET. Здесь затвор выполнен из слоя металла, нанесенного на оксид кремния, который, в свою очередь, находится на канале кремния. МОП-транзисторы широко используются во многих областях электроники, особенно в интегральных схемах.

    Ключевым фактором IGFET / MOSFET является чрезвычайно высокий импеданс затвора, который могут обеспечить эти полевые транзисторы. Тем не менее, будет соответствующая емкость, и это уменьшит входной импеданс при повышении частоты.


  • МОП-транзистор с двумя затворами: Это специализированная форма МОП-транзистора с двумя затворами, последовательно расположенными вдоль канала. Это позволяет значительно улучшить производительность, особенно на ВЧ, по сравнению с устройствами с одним затвором.

    Второй затвор полевого МОП-транзистора обеспечивает дополнительную изоляцию между входом и выходом, и в дополнение к этому его можно использовать в таких приложениях, как смешивание / умножение.


  • MESFET: Кремниевый полевой транзистор MEtal обычно изготавливается из арсенида галлия и часто называется полевым транзистором на основе GaAs. Часто GaAsFET используются в ВЧ-приложениях, где они могут обеспечить низкий уровень шума с высоким коэффициентом усиления. Одним из недостатков технологии GaAsFET является очень маленькая структура затвора, что делает ее очень чувствительной к повреждению статическим электричеством. При обращении с этими устройствами необходимо соблюдать особую осторожность.


  • HEMT / PHEMT: Транзистор с высокой подвижностью электронов и псевдоморфный транзистор с высокой подвижностью электронов являются развитием базовой концепции полевого транзистора, но разработаны для обеспечения работы на очень высоких частотах. Несмотря на то, что они дороги, они позволяют достичь очень высоких частот и высокого уровня производительности.


  • FinFET: Технология FinFET теперь используется в интегральных схемах, чтобы обеспечить более высокий уровень интеграции, позволяя использовать элементы меньшего размера.Поскольку требуются более высокие уровни плотности и становится все труднее реализовать все более мелкие размеры элементов, технология FinFET используется все более широко.


  • VMOS: Стандарт VMOS для вертикальной MOS. Это тип полевого транзистора, который использует вертикальный ток для улучшения коммутационных и токонесущих характеристик. Полевые транзисторы VMOS широко используются в энергетических приложениях.

Хотя в литературе можно встретить и другие типы полевых транзисторов, часто эти типы являются торговыми названиями для конкретной технологии и являются вариантами некоторых типов полевых транзисторов, перечисленных выше.

Характеристики полевого транзистора

Помимо выбора конкретного типа полевого транзистора для любой данной схемы, также необходимо понимать различные спецификации. Таким образом можно гарантировать, что полевой транзистор будет работать с требуемыми рабочими параметрами.

Спецификации полевого транзистора

включают все, от максимально допустимых напряжений и токов до уровней емкости и крутизны. Все они играют роль в определении того, подходит ли какой-либо конкретный полевой транзистор для данной схемы или приложения.

Технология полевых транзисторов может использоваться в ряде областей, где биполярные транзисторы не так подходят: каждое из этих полупроводниковых устройств имеет свои преимущества и недостатки и может использоваться с большим эффектом во многих схемах. Полевой транзистор имеет очень высокий входной импеданс и является устройством, управляемым напряжением, что позволяет использовать его во многих областях.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор FET Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

Полевой транзистор

»Примечания по электронике

Полевой транзистор JFET — активный электронный компонент, который является одной из рабочих лошадок в электронной промышленности, обеспечивая хороший баланс между стоимостью и производительностью.


FET, полевой транзистор, руководство включает:
FET основы Характеристики полевого транзистора JFET МОП-транзистор МОП-транзистор с двойным затвором Силовой MOSFET MESFET / GaAs полевой транзистор HEMT & PHEMT Технология FinFET


Переходный полевой транзистор или JFET широко используется в электронных схемах.Полевой транзистор с переходным эффектом — это надежный и полезный электронный компонент, который можно очень легко использовать в различных электронных схемах, от усилителей с полевыми транзисторами до переключающих цепей с полевыми транзисторами.

Полевой транзистор с переходным эффектом находится в свободном доступе, а полевые транзисторы JFET можно купить за очень небольшие деньги. Это делает их идеальными для использования во многих схемах, где требуется хороший баланс между стоимостью и производительностью.

Полевые транзисторы

доступны уже много лет, и, хотя они не обеспечивают чрезвычайно высокий уровень входного сопротивления постоянному току, как у полевых МОП-транзисторов, они, тем не менее, очень надежны, прочны и просты в использовании.Это делает эти электронные компоненты идеальным выбором для многих конструкций электронных схем. Также доступны компоненты как с выводами, так и с устройствами для поверхностного монтажа.

Основы JFET

В основном полевой транзистор или полевой транзистор состоит из секции кремния, проводимость которой регулируется электрическим полем. Часть кремния, через которую протекает ток, называется каналом и состоит из кремния одного типа, N-типа или P-типа.

Соединительный полевой транзистор, символ цепи JFET

Соединения на обоих концах устройства известны как исток и сток.Электрическое поле для управления током прикладывается к третьему электроду, известному как затвор.

Поскольку только электрическое поле управляет током, протекающим в канале, говорят, что устройство работает от напряжения и имеет высокий входной импеданс, обычно много МОм. Это может быть явным преимуществом по сравнению с биполярным транзистором, работающим от тока и имеющим гораздо более низкий входной импеданс.

Работа JFET

Junction FET — это устройство, управляемое напряжением.Другими словами, напряжения, появляющиеся на затворе, управляют работой устройства.

Устройства с N-каналом и P-каналом работают одинаково, хотя носители заряда инвертированы, т.е. электроны в одном и дырки в другом. Случай для N-канального устройства будет описан, так как это наиболее часто используемый тип.

Junction FET, JFET работает ниже насыщения

Толщина этого слоя изменяется в соответствии с величиной обратного смещения на переходе.Другими словами, при небольшом обратном смещении обедненный слой проходит только немного в канал, и остается большая площадь для проведения тока.

Когда на затвор прикладывается большое отрицательное смещение, слой обеднения увеличивается, распространяясь дальше в канал, уменьшая площадь, по которой может проходить ток.

С увеличением смещения слой истощения в конечном итоге будет увеличиваться до такой степени, что он простирается прямо через канал, и канал считается отрезанным.

Когда в канале протекает ток, ситуация несколько меняется. При отсутствии напряжения на затворе в канале электроны (при условии, что это канал n-типа) будут притягиваться положительным потенциалом на стоке и будут течь к нему, позволяя току течь внутри устройства и, следовательно, во внешней цепи.

Величина тока зависит от ряда факторов и включает площадь поперечного сечения канала, его длину и проводимость (т.е.е. количество свободных электронов в материале) и приложенное напряжение.

Из этого видно, что канал действует как резистор, и по его длине будет падение напряжения. В результате это означает, что p-n переход становится все более смещенным в обратном направлении по мере приближения к стоку. Следовательно, слой истощения становится толще ближе к сливу, как показано.

По мере увеличения обратного смещения затвора достигается точка, в которой канал почти перекрывается обедняющим слоем.Однако канал никогда не закрывается полностью. Причина этого в том, что электростатические силы между электронами заставляют их распространяться, давая обратный эффект увеличению толщины обедненного слоя.

После определенного момента поле вокруг электронов, текущих в канале, успешно противодействует дальнейшему увеличению обедненного слоя. Напряжение, при котором слой обеднения достигает своего максимума, называется напряжением отсечки.

Приложения для схемы JFET

Полевые транзисторы

— очень полезные электронные компоненты, поэтому они используются во многих конструкциях электронных схем.Они предлагают ряд явных преимуществ, которые можно использовать во многих схемах.

  • Простое смещение
  • Высокое входное сопротивление
  • Низкий уровень шума

Учитывая их характеристики, полевые транзисторы JFET используются во многих схемах, от усилителей до генераторов, от логических переключателей до фильтров и многих других приложений.

Структура и изготовление JFET

JFET могут быть как N-канальными, так и P-канальными устройствами. Их можно сделать очень похожими способами, за исключением того, что области N и P в приведенной ниже структуре поменяны местами.

Часто устройства изготавливаются на более крупной подложке, а сам полевой транзистор изготавливается, как показано на схеме ниже.

Типичная структура полевого транзистора

Существует несколько способов изготовления полевых транзисторов. Для кремниевых устройств сильно легированная подложка обычно действует как второй затвор.

Активная область n-типа может быть затем выращена с помощью эпитаксии, или она может быть сформирована путем диффузии примесей в подложку или ионной имплантацией.

В случае использования арсенида галлия подложка образована полуизолирующим внутренним слоем.Это снижает уровни любых паразитных емкостей и позволяет получить хорошие высокочастотные характеристики.

Какой бы материал ни использовался для полевого транзистора, расстояние между стоком и истоком имеет важное значение и должно быть сведено к минимуму. Это сокращает время прохождения, когда требуются высокочастотные характеристики, и дает низкое сопротивление, которое имеет жизненно важное значение, когда устройство должно использоваться для питания или коммутации.

Ввиду их популярности JFET доступны в различных пакетах.Они широко доступны в виде свинцовых электронных компонентов в популярном пластиковом корпусе TO92, а также в ряде других. Затем, как устройства для поверхностного монтажа, они доступны в пакетах, включающих SOT-23 и SOT-223. Вероятно, наиболее широко используются JFET в качестве устройств для поверхностного монтажа. Наиболее крупномасштабное производство осуществляется с использованием технологии поверхностного монтажа и сопутствующих устройств для поверхностного монтажа.

Хотя JFET менее популярен, чем MOSFET и имеет меньшее количество JFET, он все же остается очень полезным компонентом.Предлагая высокий входной импеданс, простое смещение, низкий уровень шума и низкую стоимость, он обеспечивает высокий уровень производительности, который может использоваться во многих ситуациях.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор FET Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

Транзистор полевой

Мощный N-канальный полевой транзистор

Полевой транзистор (FET) — это транзистор, который использует электрическое поле для управления формой и, следовательно, проводимостью канала одного типа носителя заряда в полупроводниковом материале. Полевые транзисторы иногда называют униполярными транзисторами , чтобы противопоставить их работу с одной несущей и работу с двумя несущими биполярных (переходных) транзисторов (BJT).Концепция полевого транзистора предшествовала BJT, хотя физически он не был реализован до после BJT из-за ограничений полупроводниковых материалов и относительной простоты изготовления BJT по сравнению с полевыми транзисторами в то время.

История

Основная статья: История транзистора

Принцип полевых транзисторов был впервые запатентован Джулиусом Эдгаром Лилиенфельдом в 1925 году и Оскаром Хейлом в 1934 году, но практические полупроводниковые устройства (JFET, полевой транзистор с переходным затвором) были разработаны намного позже, после появления транзисторного эффекта. наблюдалась и объяснялась командой Уильяма Шокли в Bell Labs в 1947 году.MOSFET (полевой транзистор металл-оксид-полупроводник), который в значительной степени вытеснил JFET и оказал более сильное влияние на развитие электроники, был впервые предложен Давоном Кангом в 1960 году. [1]

Основная информация

полевых транзисторов — это устройства с основным носителем заряда. Устройство состоит из активного канала, по которому основные носители заряда, электроны или дырки, проходят от истока к стоку. Проводники истока и стока подключены к полупроводнику через омические контакты.Проводимость канала является функцией потенциала, приложенного к затвору. [2] [3]

Три клеммы полевого транзистора: [4]

  • Источник (S), через который большинство несущих входят в канал. Обычный ток, поступающий в канал в точке S, обозначается I S .
  • Дренаж (D), через который большинство носителей покидают канал. Обычный ток, поступающий в канал в точке D, обозначается I D .Напряжение от стока к источнику составляет В DS .
  • Затвор (G), терминал, который модулирует проводимость канала. Подавая напряжение на G, можно управлять I D .

Подробнее о терминалах

Поперечное сечение полевого МОП-транзистора n-типа

Все полевые транзисторы имеют выводы затвор , сток и исток , которые примерно соответствуют базовому , коллектору и эмиттеру BJT. Большинство полевых транзисторов также имеют четвертый вывод, называемый корпусом , основанием , массивом или подложкой . Эта четвертая клемма служит для смещения транзистора в работу; редко используется нетривиальный вывод на корпусе в схемотехнике, но его наличие важно при настройке физической схемы интегральной схемы. Размер затвора, длина L на схеме, — это расстояние между истоком и стоком. Ширина является расширением транзистора, на схеме перпендикулярно поперечному сечению. Обычно ширина намного больше, чем длина ворот.Длина затвора 1 мкм ограничивает верхнюю частоту примерно до 5 ГГц, от 0,2 мкм до примерно 30 ГГц. Кроме того, полевые транзисторы используются реже, чем биполярные транзисторы.

Названия терминалов относятся к их функциям. Терминал ворот можно рассматривать как управляющий открытием и закрытием физических ворот. Этот затвор позволяет электронам проходить через или блокирует их прохождение, создавая или устраняя канал между истоком и стоком. Электроны текут от вывода истока к выводу стока, если на них влияет приложенное напряжение.Под телом понимается основная часть полупроводника, в котором находятся затвор, исток и сток. Обычно клемма корпуса подключается к самому высокому или самому низкому напряжению в цепи, в зависимости от типа. Вывод на корпусе и вывод источника иногда соединяются вместе, поскольку источник также иногда подключается к самому высокому или наименьшему напряжению в цепи, однако есть несколько вариантов использования полевых транзисторов, которые не имеют такой конфигурации, например, затворы передачи и каскодные схемы. .

Работа на полевом транзисторе

ВАХ и выходной график n-канального JFET транзистора.

Полевой транзистор управляет потоком электронов (или электронных дырок) от истока к стоку, влияя на размер и форму «проводящего канала», создаваемого напряжением (или отсутствием напряжения), приложенным к клеммам затвора и истока (для простота обсуждения, это предполагает, что тело и источник связаны). Этот проводящий канал представляет собой «поток», по которому электроны текут от истока к стоку.

В устройстве с n-канальным режимом обеднения отрицательное напряжение затвор-исток заставляет область обеднения расширяться по ширине и вторгаться в канал с боков, сужая канал. Если область истощения расширяется, чтобы полностью закрыть канал, сопротивление канала от истока до стока становится большим, и полевой транзистор эффективно выключается, как переключатель. Точно так же положительное напряжение затвор-исток увеличивает размер канала и позволяет электронам легко течь.

И наоборот, в устройстве с n-канальным режимом расширения положительное напряжение затвор-исток необходимо для создания проводящего канала, поскольку внутри транзистора его не существует. Положительное напряжение привлекает свободно плавающие электроны внутри тела к затвору, образуя проводящий канал. Но сначала необходимо привлечь достаточно электронов возле затвора, чтобы противодействовать ионам легирующей примеси, добавленным в тело полевого транзистора; это формирует область, свободную от мобильных несущих, называемую областью истощения, и это явление упоминается как пороговое напряжение полевого транзистора.Дальнейшее увеличение напряжения затвор-исток привлечет к затвору еще больше электронов, которые смогут создать токопроводящий канал от истока к стоку; этот процесс называется инверсия .

Для устройств с расширенным или обедненным режимами при напряжениях сток-исток, намного меньших, чем напряжения затвор-исток, изменение напряжения затвора изменит сопротивление канала, а ток стока будет пропорционален напряжению стока (относительно напряжение источника). В этом режиме полевой транзистор работает как переменный резистор, и говорят, что полевой транзистор работает в линейном режиме или омическом режиме . [5] [6]

Если напряжение сток-исток увеличивается, это создает значительное асимметричное изменение формы канала из-за градиента потенциала напряжения от истока к стоку. Форма области инверсии становится «защемленной» около дренажного конца канала. При дальнейшем увеличении напряжения сток-исток точка отсечки канала начинает перемещаться от стока к истоку. Сообщается, что полевой транзистор находится в режиме насыщения ; [7] некоторые авторы называют его активным режимом для лучшей аналогии с рабочими областями биполярного транзистора. [8] [9] Режим насыщения или область между омическим состоянием и насыщением используется, когда необходимо усиление. Промежуточная область иногда считается частью омической или линейной области, даже если ток стока не является приблизительно линейным с напряжением стока.

Даже несмотря на то, что проводящий канал, образованный напряжением затвор-исток, больше не соединяет исток со стоком во время режима насыщения, поток носителей не блокируется. Рассматривая снова n-канальное устройство, в корпусе p-типа существует обедненная область, окружающая проводящий канал, а также области стока и истока.Электроны, составляющие канал, могут свободно выходить из канала через область обеднения, если они притягиваются к стоку напряжением сток-исток. Область обеднения свободна от носителей и имеет сопротивление, подобное кремнию. Любое увеличение напряжения сток-исток увеличит расстояние от стока до точки отсечки, увеличивая сопротивление из-за области истощения пропорционально приложенному напряжению сток-исток. Это пропорциональное изменение приводит к тому, что ток сток-исток остается относительно постоянным независимо от изменений напряжения сток-исток и в отличие от работы в линейном режиме.Таким образом, в режиме насыщения полевой транзистор ведет себя как источник постоянного тока, а не как резистор, и может наиболее эффективно использоваться в качестве усилителя напряжения. В этом случае напряжение затвор-исток определяет уровень постоянного тока через канал.

Состав

Полевой транзистор может быть сконструирован из ряда полупроводников, из которых кремний является наиболее распространенным. Большинство полевых транзисторов изготавливаются с использованием обычных методов обработки объемных полупроводников с использованием монокристаллической полупроводниковой пластины в качестве активной области или канала.

Среди наиболее необычных материалов корпуса — аморфный кремний, поликристаллический кремний или другие аморфные полупроводники в тонкопленочных транзисторах или полевые транзисторы с органическими эффектами, которые основаны на органических полупроводниках и часто используют органические изоляторы затвора и электроды. Полевые транзисторы производятся с использованием различных материалов, таких как карбид кремния (Sic), арсенид галлия (GaAs), нитрид галлия (GaN), арсенид индия-галлия (InGaAs). В июне 2011 года IBM объявила, что успешно использовала полевые транзисторы на основе графена в интегральной схеме. [10] [11] Эти транзисторы могут иметь частоту отсечки 100 ГГц, что намного выше, чем у стандартных кремниевых полевых транзисторов [12] .

Типы полевых транзисторов

Полевые транзисторы истощенного типа при типичных напряжениях. JFET, поликремниевый MOSFET, MOSFET с двойным затвором, MOSFET с металлическим затвором, MESFET. обеднение, электроны, дырки, металл, изолятор. Вверху = источник, внизу = сток, слева = затвор, справа = масса. Напряжения, которые приводят к образованию каналов, не показаны.

Канал полевого транзистора легирован для получения полупроводника N-типа или полупроводника P-типа.Сток и исток могут быть легированы легированием противоположного типа по отношению к каналу, в случае полевых транзисторов в режиме обеднения, или легированы легированием аналогичного типа по отношению к каналу, как в полевых транзисторах в режиме улучшения. Полевые транзисторы отличаются также методом изоляции между каналом и затвором. Типы полевых транзисторов:

  • CNTFET (полевой транзистор из углеродных нанотрубок)
  • DEPFET — это полевой транзистор, сформированный на полностью обедненной подложке, который одновременно действует как датчик, усилитель и узел памяти.Его можно использовать как датчик изображения (фотона).
  • DGMOSFET — это полевой МОП-транзистор с двойным затвором.
  • DNAFET — это специализированный полевой транзистор, который действует как биосенсор, использующий ворота, состоящие из одноцепочечных молекул ДНК, для обнаружения совпадающих цепей ДНК.
  • FREDFET (эпитаксиальный диодный транзистор с быстрым обратным или быстрым восстановлением) — это специализированный полевой транзистор, предназначенный для обеспечения очень быстрого восстановления (выключения) основного диода.
  • HEMT (транзистор с высокой подвижностью электронов), также называемый HFET (гетероструктурный полевой транзистор), может быть изготовлен с использованием технологии запрещенной зоны в тройном полупроводнике, таком как AlGaAs.Полностью обедненный материал с широкой запрещенной зоной образует изоляцию между затвором и корпусом.
  • IGBT (биполярный транзистор с изолированным затвором) представляет собой устройство для управления мощностью. Он имеет структуру, похожую на полевой МОП-транзистор, соединенный с биполярным основным проводящим каналом. Они обычно используются в диапазоне рабочего напряжения сток-исток 200–3000 В. Силовые МОП-транзисторы по-прежнему являются предпочтительным устройством для напряжений сток-исток от 1 до 200 В.
  • ISFET (ионно-чувствительный полевой транзистор), используемый для измерения концентрации ионов в растворе; когда концентрация ионов (например, H + , см. pH-электрод) изменяется, ток через транзистор соответственно изменится.
  • JFET (полевой транзистор) использует смещенный в обратном направлении p-n-переход для отделения затвора от корпуса.
  • MESFET (полевой транзистор металл-полупроводник) заменяет p-n переход полевого транзистора с барьером Шоттки; используется в GaAs и других полупроводниковых материалах AIIIBV.
  • MODFET (полевой транзистор с модулирующим легированием) использует структуру с квантовыми ямами, образованную градиентным легированием активной области.
  • МОП-транзистор (полевой транзистор металл-оксид-полупроводник) использует изолятор (обычно SiO 2 ) между затвором и корпусом.

На подложке p-типа расположены два островка n-типа. Между этими двумя n регионами есть n-канал. Две n-области образуют терминалы Истока и Слива. Вывод затвора находится в изолированном слое SiO2. Есть проводимость без напряжения затвора.

D МОП-транзистор

< [13] >

Аналогично типу истощения, но без n-канала.Следовательно, для проводимости требуется некоторое положительное напряжение затвора, которое привлекает электроны из p-области, которая проводит от источника к стоку.

E МОП-транзистор

< [14] > [15]

  • NOMFET — полевой транзистор с органической памятью в виде наночастиц. [1]
  • OFET — это органический полевой транзистор, в канале которого используется органический полупроводник.
  • GNRFET — это полевой транзистор, в канале которого используется графеновая нанолента.
  • VeSFET (полевой транзистор с вертикальной щелью) представляет собой полевой транзистор квадратной формы без перехода с узкой щелью, соединяющей исток и сток в противоположных углах. Два затвора занимают другие углы и контролируют ток через щель. [2] [3]

Преимущества FET

Основным преимуществом полевого транзистора является высокое входное сопротивление порядка 100 МОм или более. Таким образом, это устройство, управляемое напряжением, которое демонстрирует высокую степень изоляции между входом и выходом.Это униполярное устройство, зависящее только от тока большинства. Он менее шумный, поэтому его можно найти в FM-тюнерах для тихого приема. Он относительно невосприимчив к радиации. Он не показывает напряжения смещения при нулевом токе стока и, следовательно, является отличным прерывателем сигнала. Обычно он имеет лучшую термическую стабильность, чем BJT. [4]

Недостатки FET

Он имеет относительно низкое произведение коэффициента усиления и полосы пропускания по сравнению с BJT. Недостатком полевого МОП-транзистора является то, что он очень чувствителен к перегрузкам, что требует особого обращения во время установки. [16]

Использует

БТИЗ

находят применение в переключении катушек зажигания двигателей внутреннего сгорания, где важны возможности быстрого переключения и блокировки напряжения.

Наиболее часто используемый полевой транзистор — это МОП-транзистор. Технология CMOS (дополнительный металлооксидный полупроводник) является основой современных цифровых интегральных схем. В этом технологическом процессе используется схема, в которой (обычно «режим улучшения») p-канальный MOSFET и n-канальный MOSFET соединены последовательно, так что, когда один включен, другой выключен.

Хрупкий изолирующий слой полевого МОП-транзистора между затвором и каналом делает его уязвимым для электростатических повреждений во время работы. Обычно это не проблема после того, как устройство было установлено в правильно спроектированной цепи.

В полевых транзисторах электроны могут течь в любом направлении через канал при работе в линейном режиме, и соглашение об именах клемм стока и истока несколько произвольно, поскольку устройства обычно (но не всегда) построены симметрично от истока до стока.Это делает полевые транзисторы подходящими для переключения аналоговых сигналов между трактами (мультиплексирование). Используя эту концепцию, можно, например, сконструировать твердотельный микшерный пульт.

Обычно полевой транзистор используется в качестве усилителя. Например, из-за большого входного сопротивления и низкого выходного сопротивления он эффективен в качестве буфера в конфигурации с общим стоком (истоковый повторитель).

См. Также

Список литературы

Внешние ссылки

Полевые транзисторы (современные)


В 1945 г. у Шокли появилась идея сделать твердотельное устройство. полупроводников.Он рассудил, что сильное электрическое поле может вызвать электрический ток внутри соседнего полупроводника. Он попытался построить один, затем Уолтер Браттейн попытался построить его, но это не сработало.

Три года спустя Браттейн и Бардин построили первый рабочий транзистор, германиевый точечный транзистор, который выпускался как серия «А». Шокли тогда разработан переходной (сэндвич) транзистор, который был изготовлен в течение нескольких лет после этого.Но в 1960 году ученый Белла Джон Аталла разработал новый дизайн, основанный на первоначальных теориях Шокли о полевом эффекте. К концу 1960-х производители перешли из интегральные схемы переходного типа к полевым устройствам. Cегодня, большинство транзисторов являются полевыми транзисторами. Вы используете миллионы из них сейчас.

МОП-полевые транзисторы

Большинство современных транзисторов являются «МОП-полевыми транзисторами», или металлооксидные полупроводниковые полевые транзисторы.Они были разработан в основном Bell Labs, Fairchild Semiconductor и сотнями Кремниевой долины, японских и других производителей электроники.

Полевые транзисторы названы так потому, что слабый электрический сигнал, проходящий через один электрод, создает электрическое поле через остальную часть транзистора. Это поле меняется с положительного на отрицательное, когда входящий сигнал делает и контролирует второй ток, проходящий через остальные транзистора.Поле модулирует второй ток, чтобы имитировать первый — но он может быть существенно больше.

Как это работает

На дне транзистора находится П-образный участок. (хотя он более плоский, чем истинная буква «U») полупроводника N-типа с избытком электронов. В центре буквы U находится секция, известная как «база», сделанная из P-типа (положительно заряженная) полупроводник со слишком малым количеством электронов.(Собственно, N- и P-типы можно перевернуть, и устройство будет работать точно так же, за исключением того, что дырки, а не электроны, вызывают ток.)

Три электрода прикреплены к верхней части этого полупроводниковый кристалл: один к средней положительной секции и по одному на каждое плечо U. Подавая напряжение на электроды на U ток будет течь через него. Сторона, где электроны входящий известен как источник, и сторона, где электроны выходит называется стоком.

Если ничего не произойдет, ток будет течь от с одной стороны на другую. Из-за того, как электроны ведут себя при переход между полупроводниками N- и P-типа, однако ток не будет течь особенно близко к базе. Он путешествует только через тонкий канал посередине U.

К основанию прикреплен электрод, клин из полупроводника P-типа посередине, отделенный от остальная часть транзистора тонким слоем оксида металла, например в виде диоксида кремния (играющего роль изолятора). Этот электрод называется «затвор». Слабый электрический сигнал, который мы хотим усилить, проходит через гейт. Если заряд, проходящий через ворота, отрицательный, он добавляет больше электронов к базе. Поскольку электроны отталкиваются друг от друга, электроны в U отойдите как можно дальше от базы. Это создает зона обеднения вокруг базы — целая область, где электроны не может путешествовать.Канал посередине U через который может течь, становится еще тоньше. Добавьте достаточно отрицательный заряд к базе и канал полностью перещипнется, остановка всего тока. Это как наступить на садовый шланг чтобы остановить поток воды. (Раньше транзисторы управлялись эту зону истощения, используя то, как движутся электроны, когда два полупроводниковые пластины кладут рядом друг с другом, создавая то, что известен как соединение P-N.В MOS-FET переход P-N заменен оксидом металла, который оказалось, что массовое производство микрочипов проще.)

А теперь представьте, если заряд проходит через ворота положительный. Положительное основание притягивает много электронов — внезапно территория вокруг базы, которая раньше была нейтральной зоной открывается. Канал для тока через U становится больше, чем было изначально, и может течь гораздо больше электроэнергии через.

Переменный заряд на базе, следовательно, меняется сколько тока проходит через U. Входящий ток может использоваться как кран для включения или выключения тока по мере его прохождения остальной транзистор.

С другой стороны, транзистор можно использовать в и более сложным образом — в качестве усилителя. ток путешествие через U становится больше или меньше в идеальной синхронизации с зарядом, входящим в базу, что означает, что он имеет идентичный шаблон как исходный слабый сигнал.А со второй ток подключен к другому источнику напряжения, это может быть сделано, чтобы быть больше. Ток, проходящий через U-образный идеальная копия оригинала, только в усилении. Транзистор используется таким образом для стереоусиления в динамиках и микрофонах, а также для усиления телефонных сигналов при их перемещении по Мир.

Сноска к Шокли

Шокли наблюдал за ростом Кремниевой долины, но мог не похоже, чтобы войти в Землю Обетованную, которую он вообразил.Он никогда удалось сделать полевые транзисторы, в то время как другие компании проектировали, росли и процветали. Фред Зейтц назвал Шокли Моисей из Кремниевой долины «.

Другие типы транзисторов:
— Точечный Транзистор
— Переходный («Сэндвич»). Транзистор

Ресурсы:
Как все работает Дэвид Маколей
Научная энциклопедия Ван Ностранда
— The Полевой транзистор
— Интервью, Уолтер Браун, 3 мая 1999 г.


Авторские права 1999 г., ScienCentral, Inc. и Американский институт физики.Нет часть этого веб-сайта может быть воспроизведена без письменного разрешения. Все права защищены.

% PDF-1.5 % 1 0 obj > endobj 3 0 obj > endobj 2 0 obj > endobj 4 0 obj > endobj 5 0 obj > endobj 6 0 obj > endobj 7 0 obj > endobj 8 0 объект > endobj 9 0 объект > endobj 10 0 obj > endobj 11 0 объект > endobj 12 0 объект > endobj 13 0 объект > endobj 14 0 объект > endobj 15 0 объект > endobj 16 0 объект > endobj 17 0 объект > endobj 18 0 объект > endobj 19 0 объект > endobj 20 0 объект > endobj 21 0 объект > endobj 22 0 объект > endobj 23 0 объект > endobj 24 0 объект > endobj 25 0 объект > endobj 26 0 объект > endobj 27 0 объект > endobj 28 0 объект > endobj 29 0 объект > endobj 30 0 объект > / XObject> >> / Аннотации [163 0 R 164 0 R] / Родитель 8 0 R / MediaBox [0 0 595 842] >> endobj 31 0 объект > endobj 32 0 объект > endobj 33 0 объект > endobj 34 0 объект > endobj 35 0 объект > endobj 36 0 объект > endobj 37 0 объект > endobj 38 0 объект > endobj 39 0 объект > endobj 40 0 obj > endobj 41 0 объект > endobj 42 0 объект > endobj 43 0 объект > endobj 44 0 объект > endobj 45 0 объект > endobj 46 0 объект > endobj 47 0 объект > endobj 48 0 объект > endobj 49 0 объект > endobj 50 0 объект > endobj 51 0 объект > endobj 52 0 объект > endobj 53 0 объект > endobj 54 0 объект > endobj 55 0 объект > endobj 56 0 объект > endobj 57 0 объект > endobj 58 0 объект > endobj 59 0 объект > endobj 60 0 obj > endobj 61 0 объект > endobj 62 0 объект > endobj 63 0 объект > endobj 64 0 объект > endobj 65 0 объект > endobj 66 0 объект > endobj 67 0 объект > endobj 68 0 объект > endobj 69 0 объект > endobj 70 0 объект > endobj 71 0 объект > endobj 72 0 объект > endobj 73 0 объект > endobj 74 0 объект > endobj 75 0 объект > endobj 76 0 объект > endobj 77 0 объект > endobj 78 0 объект > endobj 79 0 объект > endobj 80 0 объект > endobj 81 0 объект > endobj 82 0 объект > endobj 83 0 объект > endobj 84 0 объект > endobj 85 0 объект > endobj 86 0 объект > endobj 87 0 объект > endobj 88 0 объект > endobj 89 0 объект > endobj 90 0 объект > endobj 91 0 объект > endobj 92 0 объект > endobj 93 0 объект > endobj 94 0 объект > endobj 95 0 объект > endobj 96 0 объект > endobj 97 0 объект > endobj 98 0 объект > endobj 99 0 объект > endobj 100 0 объект > endobj 101 0 объект > endobj 102 0 объект > endobj 103 0 объект > endobj 104 0 объект > endobj 105 0 объект > endobj 106 0 объект > endobj 107 0 объект > endobj 108 0 объект > endobj 109 0 объект > endobj 110 0 объект > endobj 111 0 объект > endobj 112 0 объект > endobj 113 0 объект > endobj 114 0 объект > endobj 115 0 объект > endobj 116 0 объект > endobj 117 0 объект > endobj 118 0 объект > endobj 119 0 объект > endobj 120 0 объект > endobj 121 0 объект > endobj 122 0 объект > endobj 123 0 объект > endobj 124 0 объект > endobj 125 0 объект > endobj 126 0 объект > endobj 127 0 объект > endobj 128 0 объект > endobj 129 0 объект > endobj 130 0 объект > endobj 131 0 объект > endobj 132 0 объект > endobj 133 0 объект > endobj 134 0 объект > endobj 135 0 объект > endobj 136 0 объект > endobj 137 0 объект > endobj 138 0 объект > endobj 139 0 объект > endobj 140 0 объект > endobj 141 0 объект > endobj 142 0 объект > endobj 143 0 объект > endobj 144 0 объект > endobj 145 0 объект > endobj 146 0 объект > endobj 147 0 объект > endobj 148 0 объект > endobj 149 0 объект > endobj 150 0 объект > endobj 151 0 объект > endobj 152 0 объект > endobj 153 0 объект > endobj 154 0 объект > endobj 155 0 объект > endobj 156 0 объект > endobj 157 0 объект > endobj 158 0 объект > endobj 159 0 объект > endobj 160 0 объект > ручей xVMo6 $ s & ͞tHч? `Ol) kY Է Y ^ w ސ eYjCQHǧ9.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *