Как правильно повысить плотность электролита в аккумуляторе
Пониженная или повышенная плотность электролита в аккумуляторе уменьшает эффективность работы батареи и ускоряет ее износ. Поэтому периодически необходимо измерять данный показатель и в случае отклонений от нормы проводить корректировку. Разберем детально, как это правильно сделать.
Содержание
- Чем и как проверять плотность электролита для аккумуляторов
- Как повысить плотность электролита в автомобильном аккумуляторе
- Резюме
Чем и как проверять плотность электролита для аккумуляторов
Нормой считается показатель в 1,27 грамма на кубический сантиметр. Измерения проводятся специальным диагностическим инструментом — ареометром. Важно, чтобы он был качественно изготовлен и показывал точные результаты. Хорошим и недорогим прибором является ареометр RedMark в тубе. Его можно использовать для проверки электролита и тосола.
Вот несколько правил, которые следует соблюдать:
- Измерения нужно проводить при полностью заряженной батарее.
- Проверять необходимо каждую банку.
- Температура воздуха должна быть 20–25 градусов тепла.
С учетом последнего пункта может возникнуть вопрос о том, как повысить плотность электролита в аккумуляторе зимой. Если автомобиль стоит не в теплом гараже, придется снять батарею и занести ее домой. Полностью зарядить и только потом проверить каждую банку.
Как повысить плотность электролита в автомобильном аккумуляторе
Прежде чем приступить к работе, подготавливаем все необходимое. Важно помнить, что данная жидкость представляет собой соединение, опасное для человека. Его попадание на открытые участки кожи может вызвать сильные химические ожоги. Поэтому работать необходимо в защитных резиновых перчатках. Кроме того, потребуются:
- ареометр;
- стеклянная емкость;
- корректирующий электролит;
- дистиллированная вода.
Суть работы заключается в том, чтобы откачать часть жидкости из аккумуляторной батареи и заместить ее корректирующим электролитом. Для откачки можно использовать ареометр. Набираем в него жидкость из батарейных банок и сливаем ее в заранее подготовленную емкость.
При откачивании важно помнить о том, что нельзя оголять аккумуляторные пластины. Необходимо, чтобы они все время были покрыты жидкостью.
Многие автовладельцы задаются вопросом, какой корректирующий электролит для аккумуляторов купить? Хорошим вариантом является «ДРЕКО», имеющий плотность 1,3 г/см3. С его помощью приводим показатели каждой банки в норму.
Вы спросите, а что будет, если переборщить? Параметры 1,28–1,29 г/см3 — это уже повышенная плотность электролита, которую в новом аккумуляторе нужно обязательно снизить. Просто добавляем дистиллированную воду. Использовать обычную, из-под крана, нельзя.
Резюме
Быстрый разряд и слабый пусковой ток далеко не всегда говорят о том, что батарею пора менять.
Как повысить плотность электролита в аккумуляторе?
Каждый год автолюбители сталкиваются с проблемой зарядки аккумулятора, сульфатации и десульфатации. Многие измеряют плотность электролита и пытаются ее восстановить. Но почему нельзя повысить плотность аккумулятора без добавления кислоты в электролит? Давайте ответим на этот вопрос.
Рассмотрим процессы, которые протекают при заряде и разряде аккумулятора — теория аккумулятора
Классическая формула:
⇐ зарядPb + PbO2 + 2H2SO4 ⇐ ⇒ 2PbSO4 + 2H2 O (1) разряд ⇒
Если внимательно разобрать формулу, то очевидно, что при разряде аккумулятора у нас образуется такое вещество, как сульфат свинца. Это вещество (соль) очень плохо растворимо в воде и при определенной концентрации выпадает в осадок, иногда образуя кристаллы. Из за образования данного вещества и уменьшения концентрации кислоты в электролите, соответственно пропадает плотность. Доведя аккумулятор до абсолютного разряда, плотность в электролите станет ровна единице. В растворе, будет отсутствовать кислота.
Если мы вернемся к вопросу: «Почему нельзя повысить плотность не добавляя кислоты в электролит?», а только лишь повышением напряжения, то ответ очевиден.
Предположим у нас при плотности 1,25 г/см3, которую залили на заводе, в аккумуляторе присутствует 100 молекул кислоты при полном заряде, мы начали разряжать аккумулятор, получаем 100 молекул сульфата. Если дальше заряжать аккумулятор мы опять получим те же 100 молекул кислоты и плотность 1,25 г/см3 (если не испарилась вода).
Вывод: если мы не добавляли кислоту в электролит, и у нас повысилась плотность – мы потеряли воду.
Теперь давайте разберемся с коварным веществом сульфатом свинца. Это вещество очень плохо растворимо в воде, а это значит, что насыщенный раствор данного вещества получается при очень небольшой его концентрации в электролите. Когда мы разряжаем аккумулятор, концентрация раствора сульфата свинца возрастает. Поэтому все производители аккумуляторов пишут придельное напряжение разряда аккумулятора (для 12В аккумулятора это 10,8В). Дальнейший разряд приводит к тому, что образуется перенасыщенный раствор сульфата свинца. С перенасыщенными растворами мы встречались в школе. Например, выращивая кристаллы из медного купороса. Когда в перенасыщенный раствор попадает нить, то на ней сразу начинает расти красивый синий камень. Такой же процесс происходит в аккумуляторе, начинают расти кристаллы сульфата свинца и самая большая проблема, они уже обратно не растворяются в воде. Именно этот процесс принято называть сульфатацией. Эти кристаллы не проводят электричество, поэтому вырастание их на пластинах приводит к умиранию аккумулятора. Свойства этого кристалла можно сравнить с кристаллом оксида алюминия.
Обратим внимание на процессы ускоряющие сулифатацию. Как раз недостаток воды, которая испаряется, очень сильно влияет на ускорение процесса. Мы только что обсудили перенасыщенный раствор сульфата. Так вот перенасыщение его произойдет быстрее, если в аккумуляторе не хватает воды, следовательно и оседание сульфата на поверхностях пластины пройдет быстрее.
Возвращаясь к нашим 100 молекулам — в связанном состоянии теряем группу SO4, далее при заряде мы уже получаем , к примеру, 50 молекул кислоты. Емкость аккумулятора изменилась в меньшую сторону.
В корзину
₽16 190
В корзину
₽10 490
В корзину
₽15 990
В корзину
Теперь вернемся к процессам заряда аккумулятора зарядными устройствами. Есть две (не будем сильнее углубляться в тему) основные схемы заряда аккумулятора, постоянным током (часто пишут IU) и постоянным напряжением (UI). Например, зарядные устройства Optimate используют первую схему. Она более правильная. Смысл ее в том, что в аккумулятор подается постоянный ток. Происходит та реакция, о которой мы говорили выше, оставшиеся наши молекулы, а их осталось 50, становятся снова кислотой. И так как замещать больше нечего, напряжение на пластинах повышается до 14,4В. Optimate понимает, что замещать больше нечего и переходит в другой режим работы. Дальнейший заряд не приведет к увеличению емкости, а лишь усугубит положение путем выпаривания воды из электролита.
Если мы заряжаем постоянным напряжением, то устройство не понимает, произошла ли вся замена растворенных молекул сульфата свинца на молекулы кислоты.
Как повысить плотность электролита в аккумуляторе? ― 130.com.ua
Практически все автовладельцы не обращают внимания на аккумулятор до первых проблем. Именно наша безответственность быстро приносит моменты поломок, когда машина уже просто отказывается заводиться. Самая частая причина — севший аккумулятор.
Кстати, даже новый аккумулятор может помешать вашей поездке. Есть доля вероятности купить не совсем качественный аппарат. Что это означает? Чаще всего: не полностью заряженный аккумулятор или дефицит электролита. Такие нюансы не проверяют во время покупки.
Основные способы
Как только аккумулятор отказывается работать, ставим его на зарядку.
Чаще всего это происходит с батареями, которые были посажены в 0. Тут появляется новая задача-проверить насколько разряжена батарея. Сначала проверьте плотность электролита с помощью специального прибора: кислотомера.
Делаем так:
- Установить кислотомер в любой аккумуляторной банке.
- Шкала ареометра покажет плотность электролита.
- Сравните полученные значения с табличными параметрами плотности.
Если вы живете в регионе с суровым климатом, то значение будет примерно 1,25 кг/л. Здесь имейте в виду, что разница в плотности между двумя берегами не должна быть больше 0,01.
Как поднять плотность?
Способ решения этой проблемы зависит от того, какие значения вы получите.
Плотность 1,18-1,20 кг/л
Грушей откачиваем старый электролит: насколько возможно. Залейте новый на половину того объема, который вы выкачали. Условно, например: накачал 1 кг., насыпал 0,5 кг. Здесь нужно добиться нормы плотности электролита, а остальное доливают дистиллированной водой.
Плотность менее 1,18 кг/л
В этом случае необходимо использовать аккумуляторную кислоту. Делаем все так же, как и в первом случае, но есть вероятность, что процедуру придется повторить. Ваша главная задача остается прежней — получить значение нормы.
Плотность очень низкая
К сожалению, для спасения батареи придется полностью менять электролит. С помощью груши нужно будет максимально откачать старый электролит, а банки закрыть пробками. И далее придерживайтесь этого плана:
- Закрутив пробки, положите аккумулятор на бок. Берем сверло 3 мм. или 3,5 мм. и сделайте одно отверстие на дне банки. Итак, мы можем полностью слить электролит.
- Промойте все банки дистиллированной водой. Отверстия закрыты кислотостойким пластиком. Итак, мы сделали все необходимое для подготовки бака к новому электролиту.
- Приготовьте электролит самостоятельно. Возьмите дистиллированную воду и влейте в нее аккумуляторную кислоту. Обратите внимание, что обратный порядок не допускается, то есть в кислоту нельзя наливать воду. Не забудьте надеть резиновые перчатки.
В результате вы должны получить необходимые значения электролита для вашего региона. Если по каким-то причинам плотность электролита увеличить не удалось, придется выбирать новый аккумулятор. купить аккумулятор с доставкой по Украине в Харьков, Киев, Одессу можно на 130.com.ua.
ТОП-3 автомобильный аккумулятор
Лучшие автомобильные аккумуляторы
Ищете качественные и лучшие аккумуляторы для автомобилей? Данный рейтинг аккумуляторов для автомобилей составлен на основании таких параметров, как: высокий спрос при положительных отзывах наших покупателей, качественное изготовление — отсутствие заводского брака и обращений в сервис, официальная гарантийная и послегарантийная поддержка в Украине.
Аккумуляторная батарея Varta Dynamic Dynamic AGM 6CT -70AZ
Особенности:
- ★ Расположение терминала — «+» Справа
- ★ Начальный ток — 760 A
- ★ Структура 70016. 66616.616.616616. 616.6616.16.
- ★ емкость 85 AH
- ★ Начальный ток 760 A
- ★ «+» Справа 19
- ★ «+»0057 Автомобильная батарея exide Agm 6ct 95 AH
Особенности:
- ★ Расположение терминала — «+» справа
- ★ Начало тока — 850 A
- ★ емкость 95 AH
- ★ емкость 95 AH
- ★ С автомобильный аккумулятор
Материалы по теме
Новый аккумуляторный электролит может расширить модельный ряд электромобилей
Марк Шварц
Новый электролит на основе лития, изобретенный учеными Стэнфордского университета, может проложить путь к следующему поколению аккумуляторных батарей электрические транспортные средства.
В исследовании, опубликованном 22 июня в журнале Nature Energy , исследователи из Стэнфорда демонстрируют, как их новая конструкция электролита повышает производительность литий-металлических аккумуляторов, многообещающей технологии для питания электромобилей, ноутбуков и других устройств.
Обычный (прозрачный) электролит слева и новый Стэнфордский электролит
справа. (Изображение предоставлено Чжао Ю)«Большинство электромобилей работают на литий-ионных батареях, которые быстро приближаются к своему теоретическому пределу по плотности энергии», — сказал соавтор исследования И Цуй, профессор материаловедения и инженерии, а также фотонной науки. в Национальной ускорительной лаборатории SLAC. «Наше исследование было сосредоточено на литий-металлических батареях, которые легче литий-ионных батарей и потенциально могут обеспечивать больше энергии на единицу веса и объема».
Литий-ионный против металлического лития
Литий-ионные аккумуляторы, используемые во всем, от смартфонов до электромобилей, имеют два электрода — положительно заряженный катод, содержащий литий, и отрицательно заряженный анод, обычно сделанный из графита. Раствор электролита позволяет ионам лития перемещаться туда и обратно между анодом и катодом, когда батарея используется и когда она перезаряжается.
Литий-металлическая батарея может удерживать в два раза больше электроэнергии на килограмм, чем современная обычная литий-ионная батарея. Литий-металлические батареи делают это, заменяя графитовый анод металлическим литием, который может хранить значительно больше энергии.
«Литий-металлические батареи очень перспективны для электромобилей, где вес и объем имеют большое значение», — сказал соавтор исследования Чжэнан Бао, K.K. Ли Профессор инженерной школы. «Но во время работы литий-металлический анод реагирует с жидким электролитом. Это вызывает рост литиевых микроструктур, называемых дендритами, на поверхности анода, что может привести к возгоранию и выходу батареи из строя».
Исследователи десятилетиями пытались решить проблему дендритов.
«Электролит был ахиллесовой пятой литий-металлических аккумуляторов», — сказал соавтор Чжао Юй, аспирант по химии. «В нашем исследовании мы используем органическую химию для рационального проектирования и создания новых стабильных электролитов для этих батарей».
Новый электролит
В ходе исследования Ю и его коллеги изучили, могут ли они решить проблемы стабильности с помощью обычного имеющегося в продаже жидкого электролита.
«Мы предположили, что добавление атомов фтора в молекулу электролита сделает жидкость более стабильной, — сказал Юй. «Фтор — широко используемый элемент в электролитах для литиевых аккумуляторов. Мы использовали его способность притягивать электроны для создания новой молекулы, которая позволяет металлическому литиевому аноду хорошо функционировать в электролите».
Результатом стало новое синтетическое соединение, сокращенно FDMB, которое можно легко производить в больших количествах.
«Конструкции электролитов становятся очень экзотичными, — сказал Бао. «Некоторые из них подали хорошие надежды, но их производство очень дорого. Молекулу FDMB, которую придумал Чжао, легко производить в больших количествах, и она довольно дешевая».
«Невероятная производительность»
Команда из Стэнфорда протестировала новый электролит в литий-металлическом аккумуляторе.
Результаты были потрясающими. Опытная батарея сохранила 90 процентов от первоначального заряда после 420 циклов зарядки и разрядки. В лабораториях типичные литий-металлические батареи перестают работать примерно через 30 циклов.
Кандидаты в доктора наук и ведущие авторы Хансен Ван (слева) и Чжао Ю (справа) тестируют
экспериментальную клетку в своей лаборатории. (Изображение предоставлено Hongxia Wang.)Исследователи также измерили, насколько эффективно ионы лития переносятся между анодом и катодом во время зарядки и разрядки, свойство, известное как «кулоновская эффективность».
«Если вы зарядите 1000 ионов лития, сколько вы получите обратно после разрядки?» — сказал Цуй. «В идеале вам нужно 1000 из 1000 для кулоновской эффективности 100 процентов. Чтобы быть коммерчески жизнеспособным, элемент батареи должен иметь кулоновский КПД не менее 99,9%. В нашем исследовании мы получили 99,52% в полуячейках и 99,98% в полных ячейках; невероятное выступление».
Аккумулятор без анода
Для потенциального использования в бытовой электронике команда из Стэнфорда также протестировала электролит FDMB в безанодных литий-металлических мешочных элементах — имеющихся в продаже батареях с катодами, которые подают литий к аноду.
«Идея состоит в том, чтобы использовать литий только на стороне катода для снижения веса», — сказал соавтор Хансен Ван, аспирант в области материаловедения и инженерии. «Безанодная батарея проработала 100 циклов, прежде чем ее емкость упала до 80 процентов — не так хорошо, как эквивалентная литий-ионная батарея, которая может работать от 500 до 1000 циклов, но все же одна из самых эффективных безанодных элементов».
«Эти результаты обнадеживают для широкого спектра устройств», — добавил Бао. «Легкие безанодные аккумуляторы станут привлекательной чертой для дронов и многих других потребительских электронных устройств».
Battery500
Министерство энергетики США (DOE) финансирует большой исследовательский консорциум под названием Battery500, чтобы сделать литий-металлические батареи жизнеспособными, что позволит производителям автомобилей создавать более легкие электромобили, которые могут преодолевать гораздо большие расстояния между зарядками. Это исследование было частично поддержано грантом консорциума, в который входят Стэнфорд и SLAC.
Улучшая аноды, электролиты и другие компоненты, Battery500 стремится почти втрое увеличить количество электроэнергии, которую может обеспечить литий-металлическая батарея, со 180 ватт-часов на килограмм, когда программа была запущена в 2016 году, до 500 ватт-часов на килограмм. Более высокое отношение энергии к весу, или «удельная энергия», является ключом к решению проблем с запасом хода, которые часто возникают у потенциальных покупателей электромобилей.
«Безанодная батарея в нашей лаборатории достигла удельной энергии около 325 ватт-часов на килограмм, приличное число», — сказал Цуй. «Нашим следующим шагом может быть совместная работа с другими исследователями из Battery500 для создания элементов, которые приближаются к цели консорциума в 500 ватт-часов на килограмм».
В дополнение к более длительному сроку службы и лучшей стабильности, электролит FDMB также гораздо менее воспламеняем, чем обычные электролиты, как показали исследователи во встроенном видео.
«Наше исследование, по сути, представляет собой принцип проектирования, который люди могут применять для создания лучших электролитов», — добавил Бао. «Мы только что показали один пример, но есть много других возможностей».
Другие соавторы из Стэнфорда: Цзянь Цинь , доцент кафедры химического машиностроения; ученые с докторской степенью Сянь Конг, Кеченг Ван, Вэньсяо Хуан, Снехашис Чоудхури и Чибуезе Аманчукву; аспиранты Уильям Хуан, Ючи Цао, Дэвид Макканик, Ю Чжэн и Саманта Хунг; и студенты Ютинг Ма и Эдер Ломели. Синьчан Ван из Сямэньского университета также является соавтором. Чжэнань Бао и И Цуй — старшие научные сотрудники Стэнфордского университета 9.0118 Предварительный суд Института энергетики . Цуй также является главным исследователем Стэнфордского института материаловедения и энергетики , совместной исследовательской программы SLAC и Стэнфорда.
Эта работа также была поддержана Программой исследования материалов для аккумуляторов Управления автомобильных технологий Министерства энергетики США.
Аккумулятор в автомобиле Fiamm Titanium Pro L4B 85P
Особенности: