Флюс для припоя: Как выбрать флюс для пайки, виды и особенности применения

Содержание

Флюс для пайки СКФ спирто-канифольный 30мл REXANT 09-3640

Флюс для пайки СКФ 09-3640

Флюс для пайки СКФ спирто-канифольный для удаления оксидов с поверхностей,  улучшения растекания жидкого припоя и защиты от действия окружающей среды при пайке печатных плат и радиокомпонентов.

Применение

Для пайки деталей или поверхностей припоями оловянно-свинцовой группы, нихрома при температурном диапазоне (290-350°С). После пайки смывка не обязательна.

  • состав: спирт этиловый, канифоль сосновая
  • емкость: 30мл.

Меры предосторожности: при попадании на кожу необходимо промыть мыльной водой; хранить в плотно закрытой таре в местах, недоступных для детей; избегать воздействия тепла и прямых солнечных лучей.

Флюс для пайки СКФ спирто-канифольный 30мл REXANT
Изображения и характеристики данного товара, в том числе цвет, могут отличаться от реального внешнего вида. Комплектация и габариты товара могут быть изменены производителем без предварительного уведомления. Описание на данной странице не является публичной офертой.

Флюс для пайки СКФ спирто-канифольный 30мл REXANT — цена, фото, технические характеристики. Для того, чтобы купить Флюс для пайки СКФ спирто-канифольный 30мл REXANT в интернет-магазине prestig.ru, нажмите кнопку «В КОРЗИНУ» и оформите заказ, это займет не больше 3 минут. Для того чтобы купить Флюс для пайки СКФ спирто-канифольный 30мл REXANT оптом, свяжитесь с нашим оптовым отделом по телефону +7 (495) 664-64-28

  • ожидается Щелковская. Пункт самовывоза
  • в наличии Щелковская. Магазин
  • ожидается Удаленный склад (доставка +2 дня)

15 рецептов флюсов для пайки » Полезные самоделки

Слабо коррозионные флюсы более активны по сравнению с предыдущими, однако после паяния с их применением необходимо тщательно удалить остатки флюса во избежание дальнейшей коррозии изделия. К этим флюсам относятся некоторые органические кислоты, минеральные масла, глицерин и др.

Коррозионные флюсы — самые активные. Их используют преимущественно для паяния черных и цветных металлов со стойкой окисной пленкой. Эти флюсы могут приводить к коррозии металла вокруг паяного соединения, поэтому после окончания пайки изделие тщательно очищают от остатков флюса и промывают водой или спиртом. Наиболее распространенным флюсом этого типа является хлористый цинк, к которому добавляют нашатырный спирт и канифоль.

 

Таблица 1. Характеристики основных флюсов для паяния мягкими припоями.

 


Весьма удобны в работе флюсы-пасты. Они не растекаются по поверхности изделия и удобны в хранении. Основной компонент флюсов-паст — канифоль или хлористый цинк (в зависимости от требуемой активности), а загуститель — вазелин. Высокоактивную флюс-пасту можно приготовить из следующих компонентов: канифоль — 100 г, олеиновая кислота — 45 г, стеариновая кислота — 30 г, пальмитиновая кислота — 25 г. Канифоль сплавляют с кислотами при температуре 100 град. С, но не выше. Для этих целей целесообразно применять водяную баню.

 

Таблица. 2 Составы флюсов для пайки алюминия.

 


Флюс для паяния цинка и оцинкованных изделий можно приготовить из концентрированной серной кислоты, разбавленной двумя частями воды. Вместо кислоты можно использовать 50 %-ный раствор едкого натра или калия.

Паяние алюминия осуществляют при помощи специальных высокоактивных флюсов. Это связано с тем, что на поверхности алюминия и его сплавов образуется прочная пленка окислов, препятствующая соединению припоя с основным металлом. Флюсы для паяния алюминия приготавливают на основе фтористых солей и хлористого лития. Если же этих флюсов нет, окисную пленку разрушают во время паяния.

Наиболее просты флюсы №8 и № 9, однако они менее активны, нежели те, что содержат фтористые соединения. Паяют алюминий припоями, которые содержат олово, алюминий, цинк, кадмий. При самостоятельном изготовлении припоя сначала плавят цинк, потом добавляют остальные компоненты. Чтобы в процессе приготовления припоя цинк не выгорал, на поверхность его расплава насыпают порошкообразный древесный уголь.


Сборник «Паяльники и припои» составленный А.Н. Борисовым 2004

Водосмываемые и безотмывные флюсы. Что выбрать?

20 Мая 2015

Херьян Дипстратен (Gerjan Diepstraten), Cobar Europe B. V., [email protected]
Тим Лоуренс (Tim Lawrence), Ph.D., Cobar/Balver Zinn, [email protected]

Под редакцией инженера-технолога, к. х. н. Татьяны Кузнецовой
Перевод Артема Вахитова

Отмывать «безотмывный» флюс или использовать паяльную пасту с водосмываемым флюсом? Рассуждениями на эту тему делятся специалисты компании Cobar.

После отказа в 1970-х годах от использования хлорфторуглеродных растворителей для отмывки печатных узлов в электронной промышленности на этапе сборки все шире применяется технология безотмывных флюсов. Среди ее преимуществ — снижение затрат, сокращение числа технологических операций и упрощение процесса аттестации за отсутствием необходимости задавать параметры отмывки.

Для тех, кому нужна повышенная надежность, которую обеспечивает отмывка, сохраняется возможность использовать паяльные пасты с водосмываемыми флюсами, представленными на рынке в широком ассортименте. Этот метод позволяет применять сильно активированные материалы, подходящие для компонентов с плохой паяемостью и/или высокой теплоемкостью, без риска эксплуатационных отказов.

В последние годы стирается грань между описанными двумя стратегиями: некоторые производители прибегают к отмывке остатков безотмывных флюсов, стремясь совместить удобство применения таких флюсов с надежностью, обеспечиваемой отмывкой водой.

В настоящей статье оценивается целесообразность такого подхода.

Водосмываемые и безотмывные флюсы

Помимо способности к флюсованию основным требованием к водосмываемому флюсу является возможность удаления его остатков путем отмывки в воде (желательно без применения химических добавок). Не обязательно, чтобы все компоненты флюса были водорастворимыми. Водосмываемый флюс обычно изготавливается на базе водорастворимого полимера, активированного гидрогалогенидами аминов и органическими кислотами с добавлением подходящих растворителей и реологических модификаторов.

В состав типичного безотмывного флюса входит канифоль (часто модифицированная для улучшения цвета и повышения стойкости к окислению), другие компоненты для улучшения активации (отчасти аналогичные тем, которые применяются в водосмываемых флюсах), ингибиторы коррозии, растворители и желирующие вещества. Основным элементом является канифоль. По своим физико-химическим свойствам она идеально подходит для поставленных целей.

В процессе пайки оплавлением образуется вязкая жидкость, действующая как устойчивый активатор. По окончании этого процесса жидкость затвердевает, обволакивая продукты флюсования и не вступившие в реакцию компоненты флюса. Будучи нерастворимым в воде диэлектриком, канифоль создает местное конформное покрытие, которое защищает находящиеся под ним участки электронных цепей от воздействия различных факторов, например от повышенной влажности.

В отличие от водорастворимых флюсов здесь не требуется, чтобы все остатки флюса были растворимы в том или ином растворителе. Более того, такое требование было бы чрезвычайно обременительным, учитывая широкое разнообразие используемых материалов — от водорастворимых дикарбоновых кислот и гидрогалогенидов аминов до водонерастворимых галогенированных органических соединений и канифоли, а также различных солей, оксидов и гидроксидов металлов, образующихся в процессе пайки. При разработке формул безотмывных флюсов возможность отмывки не предусматривается. Валидация продуктов (в частности, по показателям поверхностного сопротивления изоляции и электрохимической миграции) осуществляется исходя из этого предположения.

Методы отмывки

Омыление — широко распространенный и давно применяющийся метод отмывки. Омылителем называется щелочной материал, при взаимодействии которого с кислотными компонентами загрязнений образуется мыло (соль органической кислоты), растворимое или, по крайней мере, диспергируемое в воде. В этой форме загрязнения удаляются с поверхности. Помимо электроники, омылители применяются во многих бытовых и промышленных моечных системах, например, в качестве моющих средств для посудомоечных машин. В электронике основным объектом отмывки являются остатки канифольного флюса. В результате реакции омылителя с его кислотными компонентами образуется канифольное мыло. По аналогичному механизму удаляется непрореагировавшая карбоксильная кислота. Так как омылитель применяется в форме водного раствора, он действует и на остатки водорастворимых флюсов. Однако в зависимости от тщательности процесса отмывки водонерастворимые и неомыляемые загрязнения могут удаляться не полностью.

На рынке представлено множество различных гликольэфирных чистящих растворителей. Как правило, они тоже хорошо растворяют канифоль, но не столь эффективны в отношении других флюсовых загрязнений, особенно более полярных (с низкой молекулярной массой) карбоксильных кислот. Полуводная технология, при которой растворитель смешивается с водой или предусматривается дальнейшее ополаскивание в воде, позволяет удалять более широкий спектр загрязнений.

При отмывке чистой водой (без омылителя) удаляются только водорастворимые загрязнения, если только нет значительного физического воздействия или высокой температуры для создания эффекта физического «трения». Последний вариант может быть действенным, но ставит под угрозу целостность печатной платы.

Практическая возможность отмывки безотмывного флюса

Эксперимент

Есть множество причин не отмывать безотмывный флюс, но интерес к такой возможности растет. Формула безотмывного флюса такова, что он обволакивает активаторы, оставшиеся на плате после пайки. Он не рассчитан на отмывку, и поэтому его остатки труднее удалить с печатного узла.

Эти остатки содержат активаторы, желирующие вещества и смолы. Их количество зависит от состава паяльной пасты и условий технологического процесса (например, температуры оплавления), воздействию которых подвергался печатный узел.

При проведении первого эксперимента исследовалась возможность отмывки безотмывного флюса и определялось влияние различных параметров на качество отмывки. Он был спланирован как полный факторный эксперимент со следующими параметрами и уровнями.

Таблица 1. План эксперимента

Фактор Единицы измерения Уровень 1 Уровень 2 Уровень 3
Температура отмывки °C 35 50 65
Время отмывки мин 5 10 20
Концентрация омылителя % Только деионизированная вода Деионизированная вода + 10% отмывочного средства Деионизированная вода + 20% отмывочного средства

Эксперимент был выполнен на небольшом лабораторном отмывочном устройстве. Паяльная паста была нанесена печатным способом на медные образцы (трафарет размерами 107×76×0,2 мм с тремя круглыми отверстиями с диаметром апертуры 6,5 мм).

Образцы были подвергнуты пайке оплавлением в конвекционной печи по типовому профилю для оловянно-свинцовых припоев с пиковой температурой 215 °C. Затем была произведена отмывка образцов при различных значениях концентрации омылителя, температуры и времени отмывки. Остаток был взвешен на весах с четырехзначным отсчетным устройством.

Средняя масса паяльной пасты, нанесенной на образцы, равнялась 0,07 г. Остаток флюса после пайки составил 51%. Остальные 49% испарились в процессе пайки оплавлением.

Анализ данных

Все факторы эксперимента (температура, концентрация и время отмывки) существенно повлияли на результат. Отмыть безотмывный флюс чистой деонизированной водой не удалось, так как он содержит неполярные водонерастворимые остатки, удаляемые только с использованием добавок, например омылителей.


Рис. 1. Доля флюса, удаленного с печатной платы. Приведенные значения являются средними от уровней параметров

Наибольшее влияние оказали концентрация отмывочного средства и время отмывки. На рис. 2 показано соотношение между обоими факторами.


Рис. 2. Степень чистоты печатной платы как функция времени отмывки и концентрации омылителя
Дополнительные эксперименты по отмывке

На основе этих данных были выбраны два метода отмывки тестовых печатных плат, пайка которых осуществлялась тремя различными паяльными пастами с безотмывными флюсами:

  • струйный;
  • ультразвуковой.

После пайки тестовые платы отмывались, а качество их отмывки проверялось путем визуального контроля и с помощью измерителя уровня ионных загрязнений.

Максимально допустимый остаток флюса на печатном узле регулируется стандартом IPC J-STD-001E: печатные узлы класса 1 — менее 200 мг/см2; печатные узлы класса 2 — менее 100 мг/см2; печатные узлы класса 3 — менее 40 мг/см2.

Аэрозольный метод тестировался в машине для групповой отмывки с использованием отмывочного средства на водной основе при следующих параметрах.

Таблица 2. Условия групповой аэрозольной отмывки

Параметр Значение
Концентрация омылителя 20%
Время отмывки 12 мин
Температура отмывки 60 °C
Ополаскивание 6 циклов, деионизированная вода
Время сушки 12 мин
Температура сушки 65 °C

Ультразвуковая отмывка печатных узлов является предметом дискуссий уже на протяжении 50 лет. Согласно стандарту IPC-STD001E ультразвуковая отмывка допустима в следующих случаях:

  • печатные платы без компонентов или печатные узлы, содержащие только зажимы или соединители, но не электронные компоненты;
  • печатные узлы с электронными компонентами — только если производитель может документально подтвердить, что воздействие ультразвука не ухудшает механические или электрические характеристики изделия или компонентов, подвергающихся отмывке.

Современные ультразвуковые отмывочные машины работают на переменной частоте во избежание возникновения потенциально вредных гармоник. Тестовая плата без компонентов отмывалась в ультразвуковой отмывочной установке с одной ванной.

Таблица 3. Условия ультразвуковой отмывки

Параметр Значение
Концентрация омылителя 20%
Время отмывки 12 мин
Температура отмывки 60 °C
Частота 30 кГц
Ополаскивание 4 цикла, деионизированная вода
Время сушки 8 мин
Температура сушки 65 °C

Визуальный контроль плат после отмывки показал, что все остатки флюса были удалены и паяные соединения выглядели чистыми.

Паста с безотмывным флюсом и SnPb-припоем — до
отмывки

Паста с безотмывным флюсом и SnPb-припоем — после отмывки

Паста с безотмывным флюсом и припоем SAC305 — до отмывки

Паста с безотмывным флюсом и припоем SAC305 — после отмывки

Паста с безотмывным флюсом и припоем SN100C — до отмывки

Паста с безотмывным флюсом и припоем SN100C — после отмывки

На тестовых платах был измерен уровень остаточных ионных загрязнений. Результаты для трех различных сплавов и двух методов отмывки показаны на рис. 4.


Рис. 4. Уровни остаточных ионных загрязнений: существенно ниже максимума в 40 мг/см2 во всех случаях

Зона риска: малоразмерные компоненты с малым зазором между платой и корпусом

Между соседними проводниками в присутствии электрического поля во влажной среде может происходить электрохимическая миграция. Металл анода растворяется с возникновением металлических ионов (катионов), которые мигрируют к катоду. На катоде они восстанавливаются и образуют дендриты, растущие по направлению к аноду. В итоге это может привести к короткому замыканию. Даже когда этого не происходит, в пределах электрохимической ячейки, возникающей между проводниками, снижается поверхностное сопротивление изоляции. Оба эффекта потенциально угрожают целостности электрических цепей, особенно тех, что содержат малый шаг между проводниками.

В частности, угрозу надежности изделия представляют остатки высокоактивных органических кислотных, галоидных или галогенизированных флюсов в малых зазорах под корпусами компонентов, не удаленные в процессе отмывки после пайки.

Существующие методы управления технологическими процессами и обеспечения качества не позволяют надежно выявлять остатки флюса в этих местах.

Если применяется водосмываемый флюс, печатный узел необходимо полностью отмыть от его остатков, иначе может пострадать надежность (например, из-за риска роста дендритов). Более серьезная проблема возникает в связи с распространяющейся в последнее время практикой отмывки безотмывных флюсов слабым раствором отмывочного средства в деионизированной воде. Как и в случае водосмываемого флюса, остатки флюса на печатном узле могут стать причиной отказа, поскольку попытка отмывки нарушает защитные свойства канифоли.

Одной из важных тенденций в электронике является миниатюризация. Размеры компонентов постоянно уменьшаются. В связи с этим растут требования к точности работы устройств трафаретной печати и автоматов установки компонентов, а в паяльных пастах порой приходится использовать порошок припоя типов 4 или 5 вместо типа 3. Применение более мелких порошков вынуждает пересмотреть композицию флюса. У мелкого порошка больше площадь поверхности металла, поэтому он может требовать большего количества флюса или иной системы активации. Чем больше флюса в паяльной пасте, тем большее его количество остается под небольшими компонентами после пайки.

Еще один эффект, возникающий при малом шаге между компонентами, — это гроздевидное комкование припоя из-за недостаточного слипания. Термином «гроздевидное комкование припоя» (solder graping) обозначают последствия плохого смачивания, когда паяльная паста частично расплавилась, но до конца не спаялась или не растеклась. Гроздевидному комкованию могут способствовать как дефекты порошка припоя (окисление, загрязнение металла), так и неоптимальный состав флюса (необходимость в более сильном активаторе или добавках, повышающих температурную стабильность).

Гроздевидное комкование не следует считать дефектом, если лишь внешние шарики припоя соприкасаются с расплавленной массой припоя и остаются ее частью, не нарушая требований к минимальному электрическому зазору.

Нерасплавленные шарики припоя могут застревать в остатках флюса и в худшем случае приводить к образованию мостиков припоя.


Рис. 5. Гроздевидное комкование припоя на компонентах типоразмера 0603

При отмывке этих плат остатки флюса полностью удаляются вместе с застрявшими шариками припоя, если те не соединены с расплавленной массой припоя (рис. 6 и 7).


Рис. 6. Шарики припоя, застрявшие в остатках флюса поверх галтели припоя на контактной площадке вывода микросхемы в корпусе типа SOIC

В случае цепей с малым шагом между проводниками наблюдается непропорционально высокое содержание окислов на контактных площадках и поверхности выводов компонентов при меньшем количестве флюса (меньших объемах паяльной пасты).


Рис. 7. Отмывка безотмывного флюса привела к удалению всех его остатков, в том числе застрявших шариков припоя

Миниатюризация компонентов затрудняет отмывку. Расстояния между контактными площадками резко сокращаются с 3,5 мм для компонентов типоразмера 2010 до 0,1 мм для компонентов типоразмера 01005. Растет риск образования мостиков припоя, электрохимической миграции и других неблагоприятных эффектов, а зазор между корпусами компонентов и платой сужается. В связи с этим возникает потребность в отмывочных составах с низким поверхностным натяжением и достаточной капиллярной силой для проникновения под эти малоразмерные компоненты.


Рис. 8. Типоразмеры компонентов и зазор между корпусом и платой

После демонтажа припаянных SMD-компонентов стало очевидно, что весь объем пространства под компонентами типоразмера менее 0603 был полностью заполнен остатками флюса из паяльной пасты, препятствующими проникновению отмывочного средства.

Для того чтобы проверить отмываемость малоразмерных компонентов с малым зазором между корпусом и платой, печатный узел был подвергнут отмывке в лабораторном устройстве, которое использовалось в спланированном выше эксперименте. Отмывка производилась в течение разного времени с помощью того же отмывочного средства (в концентрации 20%) при температуре 50 °C. Затем компоненты были демонтированы для визуального контроля наличия остатков флюса.

Таблица 4. «0» — остатки удалены полностью; «–» — остатки удалены частично; «X» — остатки не удалены

Время отмывки
Компоненты 20 мин 40 мин 60 мин
MELF 0 0
0402 X 0
0603 X 0
1206 X X

Термопрофили пайки оплавлением и их влияние на количество остатка флюса

Качество пайки конкретной паяльной пастой и последующей отмывки зависит от термопрофиля пайки оплавлением. Профиль нагрева также влияет на смачивание, количество остатка флюса и твердость (отмываемость) остатков.

В целях определения условий наилучшего смачивания для паяльной пасты и количества остатка флюса на печатном узле после пайки был спланирован эксперимент по методу Тагучи.

Факторы, учтенные в эксперименте, описывают три критически важных фазы процесса пайки: скорость нагрева, время выдержки и пиковую температуру пайки. Четвертый фактор — атмосфера (воздушная или азотная).

Для оплавления паяльной пасты, нанесенной на медные образцы методом трафаретной печати, использовался термогравиметрический анализатор. На образцы по 100-мкм трафарету наносился отпечаток паяльной пасты диаметром 1,5 мм. По измеренной потере массы в ходе пайки определялось количество остатка флюса. Под микроскопом измерялся диаметр участка смачивания. По сделанному шлифу паяного соединения определялись высота галтели припоя и краевой угол смачивания (чем меньше этот угол, тем лучше смачивание).


Рис. 9. Усредненные характеристики влияния различных параметров на смачивание (чем меньше краевой угол смачивания, тем лучше)

Для оловянно-свинцовых сплавов наилучшее растекание достигалось при быстром нагреве и пиковой температуре 215 °C в атмосфере азота.

Паяльная паста с водосмываемым припоем содержит более сильные активаторы, что приводит к лучшему смачиванию. Средний краевой угол смачивания для паяльной пасты с водосмываемым флюсом был на 1° меньше, чем для паяльной пасты с безотмывным флюсом.


Рис. 10. Параметры профиля пайки в плане эксперимента по методу Тагучи

Свинцовые и бессвинцовые припои

Применение бессвинцовых припоев создает многочисленные дополнительные трудности при отмывке. В этих условиях привлекательным вариантом являются водосмываемые флюсы, так как в них можно использовать более сильные активаторы. Но из-за повышенных температур пайки у таких флюсов тверже остаток, что затрудняет отмывку.

Остаток флюсов этого типа труднее смывается из-за большей молекулярной массы, более сложной структуры ингредиентов и большего количества побочных продуктов реакции.

У бессвинцовых сплавов поверхностное натяжение приблизительно на 20% выше, чем у оловянно-свинцовых. Это сказывается на характеристиках смачивания. Результат можно увидеть, измерив краевой угол смачивания паяного соединения.

Оптимальные параметры для каждой паяльной пасты были определены по методу Тагучи. Затем в ходе проверочных экспериментов с оптимальными настройками были получены следующие данные.

Таблица 5. Краевой угол смачивания для различных паяльных паст, нанесенных на медные образцы и подвергнутых пайке оплавлением в атмосфере азота при оптимальных условиях

Краевой угол смачивания, ° Остаток флюса, %
Безотмывный флюс Водосмываемый флюс Безотмывный флюс Водосмываемый флюс
SAC 305 19,2 16,9 23,2 55,7
SN100C 17,9 14,8 18,8 50,8
SnPb 9,5 9,2 21,2 59,4

С помощью термогравиметрического анализа измерялся остаток флюса после пайки. В случае бессвинцовых припоев остаток был меньше из-за более высоких температур в профиле пайки по сравнению с оловянно-свинцовыми припоями.

По своему составу водосмываемый флюс кардинально отличается от безотмывного. Его остаток на печатной плате имеет большую массу и совершенно иной состав. Он гигроскопичен и активен, но легко удаляется даже деионизированной водой.

Заключение

Отмывочные средства стали совершеннее, и отмывка после пайки превратилась в рентабельный этап производственного процесса в условиях, когда важнейшими факторами, угрожающими эксплуатационной надежности, являются коррозия и утечка тока.

Одной только деионизированной воды может оказаться недостаточно для удаления остатков флюса под малоразмерными SMD-компонентами. Она позволяет удалять только неионные остатки с поверхности печатной платы. Ввиду высокого поверхностного натяжения деионизированная вода неспособна проникать под компоненты с малым зазором между корпусом и платой.

Остаток безотмывного флюса можно отмыть, но чистая деионизированная вода не позволяет удалять твердые остатки, которые выделяют воду, а не растворяются в ней. Для полного удаления смол необходим омылитель.


Рис. 11. Риск снижения надежности для различных формул флюсов

Для полного смывания остатка предпочтительно использовать паяльную пасту с водосмываемым флюсом, потому что он легко удаляется, содержит более сильные активаторы и безопасен после отмывки. При неполном смывании есть риск снижения надежности (с миниатюризацией риск возрастает из-за малого зазора между корпусами компонентов и платой, высокой плотности монтажа, малой толщины проводников и малого расстояния между ними).

Флюсы

Флюс — вещества (чаще смесь) органического и неорганического происхождения, предназначенные для удаления оксидов с поверхности под пайку, снижения поверхностного натяжения, улучшения растекания жидкого припоя и/или защиты от действия окружающей среды.

Назначение:

  • способствуют лучшему смачиванию припаиваемых деталей;
  • способствуют лучшему растеканию припоя по шву;
  • предохраняют нагретый при пайке металл от окисления.

Паяльный флюс не должен взаимодействовать с припоем, кроме флюсов для реактивно-флюсовой пайки.

Флюсы выбирают в зависимости от:

  • соединяемых пайкой металлов или сплавов, 
  • применяемого припоя, 
  • вида монтажно-сборочных работ.

Температура плавления флюса должна быть ниже температуры плавления припоя.

В зависимости от технологии, флюс может использоваться в виде:

  • жидкости, 
  • пасты,
  • порошка.

Существуют также паяльные пасты, содержащие частицы припоя вместе с флюсом; иногда трубка из припоя содержит внутри флюс-заполнитель.

Примерами флюсов могут служить:

  • канифоль, 
  • нашатырь (хлорид аммония,соли, например, бура (тетраборат натрия, Na2B4O7),
  • ортофосфорная кислота — раствор кислоты в воде, от 85 % и менее с добавками присадок,
  • ацетилсалициловая кислота — применяется как активный кислотный флюс.
По составу все флюсы можно разделить на две большие группы:
  1. Активные (кислотные)
  2. Пассивные (бескислотные)

Активные флюсы, в состав которых входит, как правило, кислотосодержащие реагенты (ортофосфорная и соляная кислоты, хлористый цинк, хлористый аммоний). 
Данные флюсы прекрасно справляются с жирными налетами и окислами.
Недостатки:
  • недостаточная промывка места пайки со временем приводит к «выеданию» металла и его коррозии, где остался кислотосодержащий флюс.
  • при попадании на кожу человека такие флюсы вызывают ожоги, а их пары при вдыхании человеком особо токсичны.
Примеры:

Ортофосфорная и паяльная кислота – опасные химически активные флюсы. 
Применяется при пайке сильно окисленных металлов, низколегированных сталей, никеля, а так же их сплавов. 
После пайки обязательным условием является очистка места спаивания 5% раствором соды, чтобы погасить кислотную активность и выедание металла. 
Паяльная кислота особо эффективна при температуре 270 – 330 градусов.

Флюсы ЗИЛ2 – активный флюс, который хорошо подходит спаивания стали, латуни, меди легкоплавкими припоями на основе висмута.

Ф-38Н – сильно химически активный флюс. 
Применяется для пайки быстро окисляемых на воздухе металлов при температуре выше 300 градусов. 
Им паяют нихром, манганин, бронзу. Обязательное применение при его использовании средств индивидуальной защиты. 
Промывка щелочью так же обязательна.


Пассивные флюсы — помогают удалить жировые отложения, а так же в меньшей степени удаляют окислы. 
Сами по себе это органические вещества, не вызывающие коррозии, которые служат не только важной составляющей при пайке радиокомпонентов, но и выполняют защитную функцию от окисления. 
Единственный их минус заключается том, что под действием температуры в месте спайки остаются темные пятна.
Пары флюса вредны для человека. Исключение только составляет флюс ЛТИ-120, который не содержит нежелательных компонентов.

Примеры:

Канифоль сосновая – самый простой, дешевый и доступный вид флюса. Относится к классу химически пассивных флюсов. 
На рынке она доступна в свободной продаже из-за популярности. 
Применяется практически широком спектре радиомонтажных работ. 
Умеренно растворяется в спирте с добавлением глицерина, благодаря чему стали популярны среди радиолюбителей спирто-канифольные флюсы. 
У канифоли есть много недостатков, среди которых один из главных — а способность накапливать влагу, а значит риск провоцирования короткого замыкания, в случае, если вы не очистите деталь после пайки.

ЛТИ 120 — пассивный флюс радиомонтажный, нейтральный. 
Состав: канифоль сосновая, спирт этиловый, активаторы. 
Остатки флюса смывать не обязательно, при желании легко смываются спиртом, ацетоном и т.п.

Паяльный жир – существует в двух видах: активный и нейтральный. 
Применяется для окисленных деталей, состоящих из черного или цветного металла. 
Активный паяльный жир в радиоконструировании не применяется.
Нейтральный паяльный жир не содержит активных компонентов, поэтому может использоваться для пайки радиодеталей.

 
Безотмывочный флюс фирмы Nordson

Компания Nordson основана в 1954 г. в США. 
Занимается производством целого ряда дифференцированных продуктов, например, таких как: продукты, используемые для дозирования клеев, герметиков, биоматериалов и других материалов; для управления жидкостью и т. д. и работает с различными отраслями: упаковочные системы, медицинское оборудование, энергетика, строительство и т. д.

Одним из таких продуктов является , созданный для работы с любым сплавом и процессом нагрева, пастообразный флюс Nordson EFD FluxPlus.

Это целая линейка флюсов (канифольный слабоактивированный, канифольный активированный флюс, безотмывочный и водорастворимый), которая идеально подходит для повторной пайки компонентов с выводами типа BGA, ремонта мобильных устройств, оплавления пастообразного мягкого припоя и т. д.

В отличие от жидких флюсов, клейкая паста FluxPlus может быть точно нанесена в том месте, где это необходимо, не загрязняя соседние области.

Характеристики и преимущества:

  1. Контролируемое распределение флюса благодаря точному дозированию.
  2. Перед пайкой флюс удерживает мелкие детали по месту.
  3. Флюс подается в большем количестве по сравнению с проволочным припоем с флюсовым сердечником.
Самым популярным среди всех перечисленных флюсов является Флюс FLUXPLUS EFD 6-412-A безотмывочный, который мы и заказываем.

Состоящий из канифоли, растворителя и небольшого количества активатора флюс, не требующий отмывки, обладает низкой активностью и подходит для легко паяных поверхностей. 
Остаток флюса, не требующего отмывки, прозрачный, твердый, не вызывает коррозию, не проводит ток и рассчитан на то, чтобы остаться на узле. 
Остаток может быть удален с помощью подходящего растворителя.

Флюс-паста для припоя 250гр. №3 Viega

Флюс-паста для мягкого припоя 250гр. №3 Viega.

Не требует предварительной зачистки поверхностей перед нанесением, содержит компоненты удаляющие окислы.
нормативы согласно DIN EN 29454-1 
нормативы протокол DVGW GW 7 
нормативы DVGW рег. № DV-0101AP2021

В отличие от обычного флюса (Viega  109 912) паста содержит 60% металлического порошка, благодаря которому поверхность пайки предварительно оцинковывается, что в свою очередь благоприятно влияет на капиллярный эффект.

Кроме того, паста хорошо показывает температуру нагрева: достижению рабочей температура пайки соответствует появление зеркала жидкого металла. Следовательно, перегрев флюса в случае применения пасты практически исключён.

Таким образом, можно пользоваться обоими средствами. Главное, не забывать после завершения пайки удалять остатки флюса при помощи влажной тряпки! Остатки флюса из внутренней части трубы удаляются при проведении предписанной промывки системы холодной водой.

Флюс исполняет важную роль в процессе мягкой пайки. Он защищает очищенные поверхности от окисления вследствие подогрева, обеспечивает хорошее смачивание этих поверхностей расплавленным припоем. Ввиду того, что флюс нарушает поверхность медных элементов, его наносят непосредственно перед исполнением пайки, тонким слоем и только на конец трубы, на участке не превышающем глубины раструба. 

Основные характеристики товара
Наименование Флюс паста
Вес 250 гр.
Страна производитель Германия

Флюс 34-А — флюс высокотемпературный паяльный

Температурный интервал активности: 420 — 620°C (характеристики в ТУ нет)

Для припоев: среднеплавкие припои на основе сплавов алюминия с кремнием и цинком, такие как припой 34-А (характеристики в ТУ нет)

Для материалов: алюминий и его сплавы (не содержащих магния более 1,5% — характеристики в ТУ нет)

Агрегатное состояние: порошок

Способы нанесения: насыпью порошком флюса, окунанием в раствор флюса в воде

Способы нагрева для пайки: пламенем горелки, печной

Растворители: вода

Удаление остатков флюса: смывка горячей водой

Состав: NaF — 10±1%, LiCl — 32±3%, ZnCl2 — 8±2%, KCl — 50±3%

Соответствует ТУ 48-4-229-87

Нанесение флюса возможно различными способами, имеющими свои преимущества и недостатки. Следует учитывать чрезвычайную гигроскопичность флюса, склонность к образованию комков в присутствии влаги и «расплыванию» при нахождении на открытом воздухе.

Небольшие детали удобно слегка прогреть и осыпать флюсом (окунуть во флюс) воспользовавшись эффектом «налипания» флюса на разогретую поверхность. Влажный флюс не ляжет на нагретую поверхность.

Можно детали, покрытые плёнкой воды, осыпать флюсом (окунуть во флюс), добиваясь «прилипания». Подготовленные поверхности деталей под пайку должны хорошо смачиваться водой.

Реже, при массовом производстве (с намёком на механизацию), применяют замешивание флюса на воде с последующим нанесением на детали окунанием. Все компоненты флюса не растворяются в воде и находятся в растворе в виде взвеси. Флюс необходимо постоянно перемешивать, для равномерного распределения компонентов по объёму. Разведение нужно вести крайне аккуратно, добавляя флюс небольшими порциями и тщательно перемешивая. Растворение происходит с сильнейшим разогревом! Раствор может вскипеть и вызвать ожоги!!! Необходимо дожидаться остывания смеси до очередного добавления флюса. Раствор не предназначен для длительного хранения.

Все описанные способы не универсальны и рассчитаны на высокую квалификацию и опыт паяльщика.

Пригоден для пайки в печах и горелками, кроме кислородно-ацетиленовых из-за снижения активности флюса.

Пайка алюминия имеет много сложностей, связанных с ярко выраженными особенностями этого металла. Чрезвычайно химически активный металл, имеющий в воздушной среде механически и химически стойкую пленку окиси алюминия, защищающую его от химических взаимодействий с окружающими веществами. При этом обладает высокой теплопроводностью.

При флюсовой пайке, нужно удалить стойкую плёнку окиси и защитить поверхность от окисления. Это достигается тем, что флюс (флюс 34-А) при нагреве разрушает и растворяет окись алюминия, при этом на поверхности осаждается металлический цинк, совместно с покровом флюса защищающий алюминий. Поэтому при пайке нужно тщательно следить за целостностью флюсового покрова.

Для равномерного растекания припоя, необходимо обеспечить равномерный нагрев в зоне пайки. Необходимо учитывать большой теплоотвод из зоны пайки через алюминиевые детали. Припой лучше растекается в сторону увеличения нагрева, это нужно учесть для получения галтельного перехода припоя между деталями. Поэтому, при нагреве газовой горелкой пламя должно «омывать» зону пайки и некоторую прилегающую к ней часть деталей. Необходимо использовать среднюю часть пламени, обладающую восстановительными или нейтральными свойствами, в отличие от конечной окислительной части, имеющей большую температуру. Окислительное пламя может резко снизить активность флюса! Для компенсации неравномерности прогрева различных по толщине, массе спаиваемых деталей, пламя горелки нужно сместить в сторону более массивной детали. При перегреве и длительном нагреве, алюминий сильно растворяется в припое, что приводит к некачественной пайке.

Поверхность спаиваемых деталей должна быть обезжирена. Хорошие результаты дают «лёгкие» растворители типа ацетона. Если поверхность не подвергалась механической обработке, её необходимо протравить для удаления большей части окисной плёнки в соответствующих растворах.

Флюсовые остатки удаляются кипячением в воде или промывкой горячей водой с протиранием волосяной щёткой.

Флюс для мягкого припоя

Для соединения различных металлических деталей между собой часто применяется пайка. Этот вид соединения популярен в различных сферах жизни и производства. Чаще им пользуются радиолюбители и домашние мастера.

Пайка может выручить как при ремонте компьютера, телевизора, радиотехники, так и в промышленности, ремонте холодильников. Пайка хороша в создании герметичности соединения. А некоторые материалы по-другому просто невозможно соединить.

Не все металлы можно соединить сваркой. А чтобы пайка получилась качественной и герметичной, необходимы навыки работы, хорошие инструменты и соответствующие припои для пайки и флюсы.

Составы и виды припоев и флюсов выбирают в соответствии с материалами, из которых изготовлены соединяемые материалы. Например, для алюминия нужен совсем другой флюс, нежели чем для меди. Рассмотрим основные свойства припоев, их применяемость, особенности использования.

Основные свойства

В качестве припоя применяют разные сплавы металлов. Есть сплавы на одном чистом металле, обычно это олово. Металлы, входящие в состав припоя, отличаются между собой разными параметрами.

Смачиваемость

Любые припои для пайки в обязательном порядке должны обладать свойством смачиваемости, иначе соединяемые детали невозможно будет соединить качественной пайкой.

Смачиваемостью называется явление, при котором надежность связи между молекулами твердого вещества с жидкостью больше, чем у жидкости. При наличии хорошей смачиваемости жидкость расходится по поверхности, при этом заполняет все ее полости. Когда припой недостаточно смачивает металл, его не применяют для этого металла. Для пайки меди чистый свинец не используют, он не смачивает медь.

Температура плавления

Несмотря на вид припоя, у любого вида температура плавления не должна быть больше, чем температура спаиваемых деталей. Однако она должна быть больше рабочих температур материалов, чтобы при работе спаянного устройства припой не расплавился.

В этом вопросе есть два порога температуры. Первый – это температура, во время которой только начинается плавление самых легкоплавких составляющих припоя, а второй – это когда весь припой превратился в жидкость. Интервал между этими двумя значениями называется интервалом кристаллизации припоя.

Если соединенное пайкой место будет находиться при температуре кристаллизации, то место пайки может быстро разрушиться, даже от небольшой нагрузки, так как соединение будет иметь повышенное электрическое сопротивление и хрупкость. Во время пайки нужно знать, что пока припой окончательно не затвердел, нельзя прикладывать к нему какие-либо нагрузки.

Свойства припоев

В любом составе припоя не должны содержаться вещества, обладающие токсичными свойствами для человека, выше нормы. Припои для пайки должны иметь свойства термостабильности и электростабильности. При выборе припоя учитывается теплопроводность припоя и его тепловое расширение. Они должны быть на уровне с паяными деталями.

Виды припоев

Все припои для пайки разделяются на твердые и мягкие. Температура плавления твердых припоев составляет более 450 градусов, а мягких – до этого значения.

Припои для пайки: мягкие

Наиболее популярные из них являются сплавы олова и свинца с различным процентным соотношением. Для придания особых свойств припою, в него могут добавить вспомогательные составляющие. Кадмий и висмут используются для уменьшения температуры плавления. Сурьма повышает прочность пайки.

Припой на олове и свинце имеют малую температуру плавления и низкую прочность. Для ответственных деталей такой припой лучше не применять. Если приходится паять мягким припоем детали, подверженные серьезным нагрузкам, то рекомендуется повысить площадь пайки деталей.

Наиболее популярными припоями мягкого типа стали от ПОС – 18 до ПОС – 90. Цифры в маркировке обозначают процентное содержания олова в припое. Эти марки припоев применяют в производстве приборов, а также электронных устройств. ПОС-90 служит для пайки деталей, подвергающихся в дальнейшем гальванике. ПОС-61 применяется для пайки точных устройств, особо ответственных деталей из различных материалов. Им осуществляют пайку латуни, меди, когда нужна прочность соединения и повышенная электропроводность.

ПОС-40 применяется для неответственных деталей, для которых не нужна особая точность. Зону пайки можно нагревать до высокого значения температуры. ПОС-30 хорошо сочетается с латунью и медью, а также стальными сплавами.

Твердые припои для пайки

Среди твердых припоев с большой температурой плавления имеется две группы: сплавы меди и серебра. К медным видам припоев можно отнести припои, созданные на основе цинка и меди, которые хорошо сочетаются для соединений, предназначенных для статической нагрузки. Эти сплавы хрупкие, поэтому их не нужно применять для пайки материалов с ударной или вибрационной нагрузкой.

Другие виды припоя

Имеются и другие виды припоя, которые редко применяются. Они необходимы для пайки редких металлов, либо для особых специальных условий. Есть припои на основе никеля, служащие для деталей, работающих при высоких температурах, либо изготовленных из нержавеющей стали. Золотые припои используют для вакуумных трубок. Имеются также припои магния.

Форма выпуска

Припои выпускают в виде различных форм и упаковок. Чаще припои изготавливают в виде проволоки, фольги, либо порошка или таблеток. Также бывают гранулированные припои, паяльные пасты. Форма припоя выбирается в зависимости от вида зоны пайки.

Пайка алюминия

Алюминиевые детали соединяют с помощью пайки, при этом используют специальные припои. Пайку алюминия используют в промышленности, бытовых условиях.

Вообще, пайку алюминия считают сложной работой. Так получается, когда неправильно выбирают вид припоя. Берут совсем не тот припой, какой нужно, предназначенный для других металлов. Причина трудной пайки заключается в образовании оксидной пленки, которая не позволяет создать хорошую смачиваемость алюминия.

Чтобы запаять алюминиевую деталь, применяется припой, содержащий цинк, серебро, медь, алюминий и кремний. В торговой сети имеется множество припоев с такими составляющими в разных пропорциях. При выборе следует учесть, что наибольшая коррозионная стойкость и прочность соединения достигается припоем с значительным содержанием цинка.

Алюминий можно также спаять и обычным припоем из свинца и олова, но для этого нужна качественная подготовка поверхности, которая включает в себя зачистку металлической щеткой из нержавеющей стали. При пайке нужно использовать активный флюс. Но такой способ редко применяется.

Пайку алюминия производят при высокой температуре. Наиболее применяемые припои для пайки алюминия – это алюминиево-медно-кремниевые составы.

Пайка меди

Медь паять легче всего. С ней сочетаются практически все виды припоев. Применяются как мягкие легкоплавкие припои, так и твердые виды, а также сплавы олова, свинца, серебра, цинка и т. д.

Для ремонта компьютера или телевизора подходят любые мягкие припои. Для пайки труб, водопровода, холодильника применяют твердые припои. Соблюдая эти простые правила можно получить хороший результат.

Пайка нержавейки

Для соединения пайкой деталей, изготовленных из нержавеющей стали, специалисты рекомендуют применять припой, состоящий из свинца и олова. Неплохой результат получается с припоем, содержащим кадмий. Можно использовать мягкие припои на основе цинка.

Их нельзя применять совместно с низколегированными сталями, а также углеродистыми сплавами. Наиболее оптимальный вариант припоя для нержавеющей стали – это припой из чистого олова, тем более, если пайка будет соприкасаться с пищевыми продуктами.

При проведении пайки в сухом месте или в печи, используют марганец с серебром, чистую медь или припои на никеле и хроме. Во время пайки в условиях коррозии, применяют тиноли на основе серебра с частью никеля.

Пайка стали

Эффективным припоем для соединения деталей из стали является ПОС-41. Другие припои для пайки также можно применять, но они не совсем подходят для этих целей. Припой на основе цинка плохо сочетается со сталью, особенно низколегированных и углеродистых сплавов.

Как самому приготовить припой

Для приготовления припоя своими руками составляющие части (обычно это свинец и олово) взвешивают на весах. Эту смесь плавят в тигле на газовой горелке. Расплавленный состав перемешивают металлическим стержнем.

Далее, небольшой пластинкой из стали снимают шлак с поверхности расплавленного припоя, затем аккуратно разливают его в формочки, сделанные из жести, либо гипса.

Плавку осуществляют в проветриваемом помещении, с соблюдением мер безопасности, то есть, надевают очки, фартук, перчатки.

Виды флюсов

Ни одна пайка не обходится без флюса, так же как без припоя. Это химическое вещество, растворяющее и поглощающее окислы. Флюс осуществляет защиту металла от окисления и способствует смачиванию соединяемых деталей.

Для процесса пайки припоем на основе олова и свинца используют флюс на основе соляной кислоты, либо хлористого цинка. Флюсом может служить также хлористый аммоний или бура. Эти флюсы являются активными. Пассивные флюсы состоят из канифоли, масла, вазелина и других подобных веществ.

Например, с мягкими видами припоев можно применять раствор соляной кислоты. Со сталью, медью и латунью используют хлористый цинк. Жирные вещества способен растворять нашатырный спирт. Для пайки алюминиевых сплавов в качестве флюса применяют смесь из тунгового масла, хлористого цинка, канифоли. Имеет свое применение и фосфорная кислота.

В процессе радиоконструирования и ремонта электроники очень важен элемент аккуратной и качественной пайки изделий и радиодеталей. От этого фактора сильно зависит долговечность изделия и его время наработки на отказ. Решающим моментом качественной пайки является выбор подходящего припоя и флюса, способных оптимальным способом произвести соединение металлических и металлизированных частей с тем условием, чтобы на место пайки внешние факторы оказывали наименьшее влияние, как например: деформация, большие токи, токи высокой частоты, внешние окислители, температура и т.д. В то же время пайка элементов не должна быть излишне перегружена припоем, так как в данном случае могут быть образованы кольцевые трещины, элементы «холодной пайки» (когда визуально припой на месте, но контактирующая область металлов отсутствует), а так же замыкания соседних дорожек или контактов. Чрезмерное применение припоя может не только вывести аппаратуру из строя, но и усугубить процесс настройки и наладки изделия. В этой связи особое внимание необходимо уделить довольно важному аспекту в радиоэлектронике как выбор припоя и флюса, о чем пойдет ниже речь в этой статье.

Из определения известно, что процесс пайки представляет собой соединение двух металлизированных или металлических твердых поверхностей с помощью припоя, температура плавления которого значительно ниже величины разрушения (плавления) соединяемых изделий. Основной функцией припоя является хорошая диффузия с контактируемой металлической поверхностью или, выражаясь простым языком, расплавление припоя на металле (лужение). Кроме того, припой должен иметь оптимальную температурную вязкость, позволяющую ровным слоем распределиться ему по поверхности металлов. Данный фактор качественного лужения возможен только при отсутствии жировых отложений и окислов на спаиваемых поверхностях, удалением которых занимаются флюсы. Флюсы также могут служить катализаторами диффузии припоя для возможности его проникновения в верхний микронный слой металлов в предполагаемом месте пайки. За счет низкой вязкости и ее уменьшения в зависимости от повышения температуры плавление флюсов происходит при гораздо меньших температурных показателях, чем припой.

Припои и их разновидности

Припой состоит большей частью из олова с добавлением различных материалов. В структуру припоя могут входить следующие компоненты:

Олово (Sn) – представляет собой мягкий металл с температурой плавления + 231,9 С градусов. Олово растворяется в соляной и серной кислоте. Большая часть органических кислот на него не действуют. При воздействии комнатных температур олово не подвергается окислению, однако при ее снижении ниже +18 С и особенно ниже -50 С происходит разрушение кристаллической решетки металла, в результате чего олово приобретает серый оттенок.

Свинец (Pb) – очень популярный металл в изготовлении припоя за счет легкоплавкости. В чистом виде металл очень мягкий, легко обрабатываемый. У свинца окисляется только верхняя часть, контактируемая с воздухом. Металл легко растворяется в щелочи и кислотах, содержащих азот и органику.

Кадмий (Cd) – применяется для изготовления легкоплавких припоев в малых дозах совместно с оловом, висмутом или свинцом. В чистом виде – токсичен, температура его плавления + 321 С. Зачастую кадмий применяется в антикоррозийных целях.

Висмут (Bi) – один из самых легкоплавких металлов при использовании его в составе припоя с температурой плавления + 271 С. Висмут хорошо растворим в азотной кислоте, а так же в подогретом растворе серной кислоты.

Сурьма (Sb) – тугоплавкий металл с температурой плавления + 630,5 С. Не подвержен воздействию воздуха. Не окисляется. В припое дает эффект глянца. Металл токсичен.

Цинк (Zn) – хрупкий металл синевато-серого цвета с температурой плавления + 419 С. Быстро окисляется на воздухе. Используется в припоях аппаратуры, работающей во влажных условиях, за счет того, что покрывает под воздействием влаги пленкой окиси, защищающей места пайки. Цинк легко растворим в кислотах. Цинк вместе с медью применяется для твердых припоев, а так же кислотных флюсов.

Медь (Cu) – металл с самой высокой температурой плавления в изготовлении припоя + 1083 С. Не поддается воздействию воздуха, однако верхним слоем окисляется при попадании влаги. Медь применяется в тугоплавких припоях.

Припои разделяют на легкоплавкие и тугоплавкие.

Легкоплавкие припои нашли широкое применение при конструировании радиоаппаратуры и пайке радиоэлектронных компонентов, а так же при лужении дорожек радиомонтажных плат. Температура плавления легкоплавких припоев не выше + 450 С. В основу таких припоев обычно входит олово, свинец, кадмий, висмут или цинк. В радиоэлектронике большое применение получили припои с температурой плавления до + 145 С градусов. В процессе лужения обезжиренных и очищенных плат применяется сплав Розе или сплав Вуда. Температура плавления этих сплавов 70 – 95 градусов, поэтому они равномерно залуживают плату, опущенную в кипящую воду. В отечественной промышленности список легкоплавких материалов большей частью составляют припои оловянно-свинцовые или ПОС. В случае добавления в припой кадмия или висмута к окончанию добавляются буквы К или В. Цифра в окончании маркировки соответствует процентному содержанию олова в припое по отношению к свинцу (большей частью) и сурьме (в мелких количествах). Чем меньше цифра, тем припой более тугоплавкий но и более прочный. Буква Ф означает, что в состав припоя включен флюс. В последнее время из-за европейских экологических стандартов в фирменной аппаратуре применяется в основном бессвинцовый припой с относительно высокой для радиокомпонентов температурой плавления + 220 градусов. Ниже приведен список распространенных отечественных припоев:

ПОС-18 – состоит из олова (17 – 18%), сурьмы (2 – 2,5%) и свинца (79 – 81%). Применяется при низких требованиях прочности пайки, в основном для лужения металлов. Температура плавления +183 +270 градусов (начало плавления / растекаемость).

ПОС-30 – состоит из олова (29 – 30 %), сурьмы (1,5 – 2%), свинца (68 – 70%). Лужения и пайка меди, стали и их сплавов. Температура плавления +183 +250 градусов.

ПОС-50 – олово 49 – 50%, сурьма 0,8%, свинец 49 – 50%. Применяется для качественного спаивания различных металлов, в том числе и в радиоэлектронике. Плавление +183 +230 градуса.

ПОС-90 – олово 89 – 90%, сурьма 0,15%, свинец 10 – 11%. Высокопрочный припой с температурой плавки +18 + 222 градуса, применяемый в лужении деталей с последующим золочением и серебрением. Не применяется в установках с повышенной рабочей температурой.

Припои ПОС-40 и ПОС-60 в радиоэлектронике наиболее популярны. Для спаивания латуни или пластин для экранирования стоит применять ПОС-30. При поверхностном лужении дорожек на платах лучше всего использовать припои с содержанием кадмия или висмута ПОСК-50 или ПОСВ-33. Припои с флюсами и без их содержания для монтажа радиодеталей выпускаются в виде проволоки с толщиной 1 мм для пайки SMD элементов до 3 мм. для радиокомпонентов в обыкновенном корпусе. Для пайки металлов из стали или пайки крупных площадей, припои идут без флюса в трубках диаметром 5 мм. В импортной промышленности так же выпускают свинцово-оловянные шарики диаметром от 0,2 до 0,8 мм., предназначенные для пайки BGA чипов.

Тугоплавкие припои большей частью используются в промышленной пайке твердых металлов. Их температура плавления от + 450 до + 800 С. В состав таких припоев входят медь, серебро, никель или магний. Отличительной особенностью этих припоев является их прочность. Из-за высокой температуры плавления тугоплавкие припои в бытовых условиях для радиомонтажных работ не используются. Большей частью они используются для спаивания латуни, стали, меди, бронзы, чугуна и других металлов с высокой температурой плавления. Припои марки ПМЦ (припой медно-цинковый) применяется для спаивания латуни с содержанием меди (ПМЦ-42), бронзы и меди (ПМЦ-52). Данный припой выпускается в виде слитков определенных форм.

ПМЦ-42 – состоит из меди (40 – 45%), цинка (52 – 57%). Также в его состав входят сурьма, свинец, олово и железо. Его температура плавления + 830 градусов.

ПМЦ-53 – медь 49 – 53%, цинк 44 – 49%. Температура плавления +870 градусов.

В производстве припоев особое место занимают, пожалуй, самые дорогие тугоплавкие припои, основу которых составляет медь с добавлением серебра. Маркируются они как ПСР. Припои с серебром обладают высокой прочностью. Место пайки гибко и легко обрабатываемо. Температура таких припоев от +720 до +830 градусов. Высокотемпературные припои ПСР-10 и 12 используют для спаивания сплавов латуни и меди, ПСР-25 и 45 необходимы для работы с медью, бронзой и латунью. ПСР-70 – припой с максимальным содержанием серебра применяют в пайке высокочастотных элементов: волноводов, защитных контуров и т.д.

Существуют припои, применяемые для пайки алюминия на основе олова, цинка и кадмия. Главная проблема пайки алюминия заключается в его быстром окислении на воздухе, поэтому алюминий паяют в масле с использованием ультразвуковых паяльников.

Флюсы

От правильно выбранного флюса довольно сильно зависит качество пайки, ровность шва и его аккуратность. Флюс при нагреве должен образовывать тонкую растекающуюся пленку на поверхности припоя, которая усиливает сцепление припоя с металлом. Чем меньше температура плавления флюса, тем качество пайки лучше. Так же температура его плавления должна быть ниже температурных режимов плавки припоя. Промышленность сегодня изготовляет флюсы двух типов.

– Химически активные флюсы, в состав которых входит, как правило, кислотосодержащие реагенты (ортофосфорная и соляная кислоты, хлористый цинк, хлористый аммоний). Данные флюсы прекрасно справляются с жирными налетами и окислами, однако, недостаточная промывка места пайки со временем приводит к «выеданию» металла и его коррозии, где остался кислотосодержащий флюс. На практике кислотосодержащие флюсы стараются в быту использовать как можно реже, особенно в радиоэлектронике, поскольку они ведут к разрушению текстолита, к тому же, при попадании на кожу человека такие флюсы вызывают ожоги, а их пары при вдыхании человеком особо токсичны. К наиболее популярным активным флюсам относится паяльная кислота, ортофосфорная кислота, хлористый цинк, бура, нашатырь, представляющий собой хлористый аммоний.

– Химически пассивные флюсы помогают удалить жировые отложения, а так же в меньшей степени удаляют окислы. Примером может быть канифоль, стеарин, воск. Сами по себе это органические вещества, не вызывающие коррозии, которые служат не только важной сост авляющей при пайке радиокомпонентов, но и выполняют защитную функцию от окисления. Новомодной тенденцией стало использование флюсов ЛТИ, для пайки легкоплавкими припоями. С их помощью можно осуществлять пайку оцинкованных контактов, свинец, очищенное железо, нержавеющую сталь и т.д. В их состав входит спирт, канифоль, малая доза кислоты, триэтаноламин. Для подобной пайки применяют ЛТИ флюс совместно с паяльной пастой. Единственный их минус заключается том, что под действием температуры в месте спайки остаются темные пятна. Пары флюса вредны для человека. Исключение только составляет флюс ЛТИ-120, который не содержит нежелательных компонентов: солянокислотного анилина и метафенилениамина.

Наименования флюсов и их применение

Канифоль сосновая – самый простой, дешевый и доступный вид флюса с низким током утечки. Относится к классу химически пассивных флюсов. На рынке она доступна в свободной продаже из-за популярности. Применяется практически широком спектре радиомотажных работ. Умеренно растворяется в спирте с добавлением глицерина, благодаря чему стали популярны среди радиолюбителей спирто-канифольные флюсы.

Ортофосфорная и паяльная кислота – опасные химически активные флюсы. Применяется при паке сильно окисленных металлов, низколегированных сталей, никеля, а так же их сплавов. После пайки обязательным условием является очистка места спаивания 5% раствором соды, чтобы погасить кислотную активность и выедание металла. Паяльная кислота особо эффективна при температуре 270 – 330 градусов.

Паяльная кислота ПЭТ – оптимальная температура процесса пайки с ее применением 150 – 320 градусов. Применяется при спаивании углеродистых сталей, латуни, меди, никеля.

Паяльный жир – существует в двух видах: активный и нейтральный. Применяется для окисленных деталей, состоящих из черного или цветного металла. Активный паяльный жир в радиоконструировании не применяется. Нейтральный паяльный жир не содержит активных компонентов, поэтомуможет использоваться для пайки радиодеталей.

БУРА – необходима при высокотемпературной пайке высокоулеродитсых металлов: чугуна, меди, стали и т.д.

ТАГС – флюс на глицериновой основе для радиомонтажа. Из-за остаточного сопротивления нуждается в отмывке спиртом.

Флюсы ЗИЛ – хорошо подходят спаивания стали, латуни, меди легкоплавкими припоями на основе висмута.

Ф-38Н ПЭТ – сильно химически активный флюс. Применяется для пайки быстро окисляемых на воздухе металлов при температуре выше 300 градусов. Им паяют нихром, манганин, бронзу. Обязательное применение при его использовании средств индивидуальной защиты. Промывка щелочью так же обязательна

Активные флюсы ФИМ – пайка окисленного серебра, платины. Требует отмывки водном раствором с содержанием соды. В составе флюса фосфорная кислота.

ФКДТ и ФКТ ПЭТ – популярный неактивный флюс широкого применения для лужения проводов и медных контактов в РЭА.

ФТС – бесканифольный пассивный флюс без дыма. Предназначен для пайки радиодеталей.

Паяльная паста «Тиноль» – специальный химический флюс для пайки SMD радиодеталей термофеном паяльной станции.

Флюс-гель ТТ – флюс с индикатором химической активности красноватого оттенка для широкого спектра пайки. При воздействии температурой обесцвечивается, указывая на отсутствие активных компонентов. Не требует отмывки.

СТ-61 – паяльная паста пассивная. А – температура плавления +200 градусов, В – для компьютерных и мобильных радио запчастей, С – канифоль.

Импортные флюсы

IF 8001 Interflux – один из лучших флюсов для бессвинцовой пайки SMD компонентов, в том числе и работы с BGA чипами. Довольно дорогой. Не требует смывания.

IF 8300 BGA Interflux (30cc) – для пайки корпусов BGA. Представляет собой гель. Без вредного галогена.

IF 9007 Interflux BGA – паяльная безотмывочная паста для пайки свинцовым припоем. После работы оставляет едва заметный слой флюса с высоким удельным сопротивлением.

FMKANC32-005 – крем слабоактивированный безотмывочный. Показывает хорошие результаты при пайке BGA чипов и работе с инфракрасными паяльными станциями.

Классификация импортных флюсов

Нередко в маркировке импортных флюсов можно встретить маркировочные символы. Рассмотрим ниже их обозначение.

«R» – канифоль, которая идет либо в чистом виде, либо в виде раствора (спирто-канифоль). Химически пассивный флюс, поэтому перед применением требует ручной зачистки поверхности спаиваемых компонентов от окислов. После окончания работ требует отмывки спиртом или ацетоном.

«RMA» – флюс на основе канифоли с небольшим добавлением активаторов (органических кислот и их соединениями). При термической обработке кислотосодержащие активаторы испаряются. Для их применения необходима вытяжка. Оптимальная пайка достигается с использованием горячего воздуха.

«RA» – активированная канифоль. По заверению производителей из-за низкой активности кислот не оказывает коррозийных процессов на место пайки, поэтому не требует отмывки. Мы бы все таки рекомендовали после работы с ним использовать слабый раствор щелочи или спирт для отмывки, если речь не идет о BGA пайке!

«SRA» – кислотные флюсы активного действия для пайки нержавеющей стали, никеля. В электронике практически не используются из-за разрушающего действия кислот. После пайки таким флюсом изделие нуждается в тщательной отмывке спиртом или ацетоном.

Так же нередко к импортным флюсам к названию добавляют надпись «no clean», которая означает, что данный флюс не требует смывки. Такие флюсы нередко применяют при пайке радиокомпонентов, где очистка после пайки деталей затруднена физически. Например, при пайке BGA микросхем.

Строительное оборудование инструмент монтаж обслуживание

Основные материалы, применяемые для пайки
Мягкие припои
Твердые припои
Припои для пайки алюминия
Флюсы
Химически пассивные флюсы (бескислотные)

Одним из основных элементов электромонтажных и радиомонтажных работ является пайка. Качество монтажа во многом определяется правильным выбором необходимых припоев и флюсов, применяемых при пайке проводов, сопротивлений, конденсаторов и т. п.

Для облегчения этого выбора ниже приводятся краткие сведения о твердых и легких припоях и флюсах, пользовании ими и их изготовлении.

Пайка представляет собой соединение твердых металлов при помощи расплавленного припоя, имеющего температуру плавления меньшую, чем температура плавления основного металла.

Припой должен хорошо растворять основной металл, легко растекаться по его поверхности, хорошо смачивать всю поверхность пайки, что обеспечивается лишь при полной чистоте смачиваемой поверхности основного металла.

Для удаления окислов и загрязнений с поверхности спаиваемого металла, защиты его от окисления и лучшего смачивания припоем служат химические вещества, называемые флюсами.

Температура плавления флюсов ниже, чем температура плавления припоя. Различают две группы флюсов: 1) химически активные, растворяющие пленки окиси, а часто и сам металл (соляная кислота, бура, хлористый аммоний, хлористый цинк) и 2) химически пассивные, защищающие лишь спаиваемые поверхности от окисления (канифоль, воск, стеарин и т. п.)

В зависимости от химического состава и температуры плавления припоев различают пайку твердыми и мягкими припоями. К твердым относятся припои с температурой плавления выше 400°С, к легким — припои с температурой плавления до 400°С.

Основные материалы, применяемые для пайки

Олово — мягкий, ковкий металл серебристо-белого цвета. Удельный вес при температуре 20°С – 7,31. Температура плавления 231,9°С. Хорошо растворяется в концентрированной соляной или серной кислоте. Сероводород на него почти не влияет. Ценным свойством олова является его устойчивость во многих органических кислотах. При комнатной температуре мало поддается окислению, но при воздействии температуры ниже 18°С способен переходить в серую модификацию («оловянная чума»). В местах появления частиц серого олова происходит разрушение металла. Переход белого олова в серое резко ускоряется при понижении температуры до —50°С. Для пайки может применяться как в чистом виде, так и в виде сплавов с другими металлами.

Свинец — синевато-серый металл, мягкий, легко поддается обработке, режется ножом. Удельный вес при температуре 20°С 11,34. Температура плавления 327qC. На воздухе окисляется только с поверхности. В щелочах, а также в азотной и органических кислотах растворяется легко. Стоек против воздействий серной кислоты и сернокислых соединений. Применяется для изготовления припоев.

Кадмий — серебристо-белый металл, мягкий, пластичный, механически непрочный. Удельный вес 8,6. Температура плавления 321°С. Применяется как для антикоррозийных покрытий, так и в сплавах со свинцом, оловом, висмутом для легкоплавких припоев.

Сурьма — хрупкий серебристо-белый металл. Удельный вес 6,68. Температура плавления 630,5°С. На воздухе не окисляется. Применяется в сплавах со свинцом, оловом, висмутом, кадмием для легкоплавких припоев.

Висмут — хрупкий серебристо-серый металл. Удельный вес 9,82. Температура плавления 271°С. Растворяется в азотной и горячей серной кислотах. Применяется в сплавах с оловом, свинцом, кадмием для получения легкоплавких припоев.

Цинк — синевато-серый металл. В холодном состоянии хрупок. Удельный вес 7,1. Температура плавления 419°С. В сухом воздухе окисляется, во влажном воздухе покрывается пленкой окиси, которая предохраняет его от разрушения. В соединении с медью дает ряд прочных сплавов.. Легко растворяется в слабых кислотах. Применяется для изготовления твердых припоев и кислотных флюсов.

Медь — красноватый металл, тягучий и мягкий. Удельный вес 8,6 – 8,9. Температура плавления 1083 С. Растворяется в серной и азотной кислотах и в аммиаке. В сухом воздухе почти не поддается окислению, в сыром воздухе покрывается окисью зеленого цвета. Применяется для изготовления тугоплавких припоев и сплавов.

Канифоль —продукт переработки смолы хвойных деревьев Более светлые сорта канифоли (более тщательно очищенные) считаются лучшими. Температура размягчения канифоли от 55 до 83°С. Применяется как флюс для пайки мягкими припоями.

Мягкие припои

Пайка мягкими припоями получила широкое распространение, особенно при производстве монтажных работ. Наиболее часто применяемые мягкие припои содержат значительное количество олова. В табл. 1 приведены составы некоторых свинцово-оловянных припоев.

Химический состав в %

примесей не более

При выборе типа припоя необходимо учитывать его особенности и применять в зависимости от назначения спаиваемых деталей. При пайке деталей, не допускающих перегрева, используются припои, имеющие низкую температуру плавления.

Наибольшее применение находит припой марки ПОС-40. Он применяется при пайке соединительных проводов, сопротивлений, конденсаторов. Припой ПОС-30 используют для пайки экранирующих покрытий, латунных пластинок и других деталей. Наряду с применением стандартных марок находит применение и припой ПОС-60 (60% олова и 40% свинца).

Мягкие припои изготовляются в виде прутков, болванок, проволоки (диаметром до 3 мм) и трубок, наполненных флюсом. Технология указанных припоев без специальных примесей несложна и вполне осуществима в условиях мастерской: свинец расплавляют в графитовом или металлическом тигле и в него небольшими частями добавляют олово, содержание которого определяют в зависимости от марки припоя. Жидкий сплав перемешивают, снимают нагар с поверхности и расплавленный припой выливают в деревянные или стальные формочки. Добавление висмута, кадмия и других присадок не обязательно.

Для пайки различных деталей, не допускающих значительного перегрева, применяются особо легкоплавкие припои, которые получают добавлением в свинцово-оловянные припои висмута и кадмия или одного из этих металлов. В табл. 2 приведены составы некоторых легкоплавких припоев.

Химический состав в %

Температура плавления в °С

При использовании висмутовых и кадмиевых припоев следует учитывать, что они обладают большой хрупкостью и создают менее прочный спай, чем свинцово-оловянные.

Твердые припои

Твердые припои создают высокую прочность шва. В электро- и радиомонтажных работах они используются значительно реже, чем мягкие припои. В табл. 3 приведены составы некоторых медно-цинковых припоев.

Химический состав в %

Температура плавления в о С

примесей не более

В зависимости от содержания цинка изменяется цвет припоя. Эти припои применяются для пайки бронзы, латуни, стали и других металлов, имеющих высокую температуру плавления. Припой ПМЦ-42 применяется при пайке латуни с содержанием 60—68% меди. Припой ПМЦ-52 применяется при пайке меди и бронзы. Медно-цинковые припои изготовляются путем сплавления меди и цинка в электропечах, в графитовом тигле. По мере расплавления меди в тигель добавляют цинк, после расплавления цинка добавляется около 0,05% фосфорной меди. Расплавленный припой разливается в формочки. Температура плавления припоя должна быть меньше температуры плавления припаиваемого металла. Кроме указанных медно-цинковых припоев, находят применение и серебряные припои. Составы последних приведены в табл. 4.

Химический состав в %

Температура плавления в о С

примеси не более

Ос т а л ь н о е

Серебряные припои обладают большой прочностью, спаянные ими швы хорошо изгибаются и легко обрабатываются. Припои ПСР-10 и ПСР-12 применяются для пайки латуни, содержащей не менее 58% меди, припои ПСР-25 и ПСР-45 — для пайки меди, бронзы и латуни, припой ПСР-70 с наиболее высоким содержанием серебра — для пайки волноводов, объемных контуров и т. п.

Кроме стандартных серебряных припоев, используются и другие, составы которых приведены в табл. 5.

Химический состав в %

Первый из них применяется для пайки меди, стали, никеля, второй, обладающий высокой проводимостью,— для пайки проводов; третий может применяться для пайки меди, но не пригоден для черных металлов; четвертый припой обладает особой легкоплавкостью, является универсальным для пайки меди, ее сплавов, никеля, стали.

В ряде случаев в качестве припоя используется технически чистая медь с температурой плавления 1083°С.

Припои для пайки алюминия

Пайка алюминия вызывает большие затруднения вследствие его способности легко окисляться на воздухе. В последнее время находит применение пайка алюминия с помощью ультразвуковых паяльников. В табл. 6 приведены составы некоторых припоев для пайки алюминия.

Химический состав в %

Твердые припои с температурой плавления 525 о С

При пайке алюминия в качестве флюсов применяют органические вещества: канифоль, стеарин и т. п.

Последний припой (твердый) применяется со сложным флюсом, в состав которого входит: хлористый литий (25—30%), фтористый калий (8—12%), хлористый цинк (8—15%), хлористый калий (59—43%). Температура плавления флюса около 450°С.

Флюсы

От качества флюса во многом зависит хорошее смачивание припоем мест спайки и образование прочных швов. При температуре паяния флюс должен плавиться и растекаться равномерным слоем, в момент же пайки он должен всплывать на внешнюю поверхность припоя. Температура плавления флюса должна быть несколько «иже температуры плавления применяемого припоя.

Химически активные флюсы (кислотные)— это флюсы, имеющие в большинстве случаев в своем составе свободную соляную кислоту. Существенным недостатком кислотных флюсов является интенсивное образование коррозии паяных швов.

К химически активным флюсам прежде всего относится соляная кислота, которая употребляется для пайки стальных деталей мягкими припоями. Кислота, оставшаяся после пайки на поверхности металла, растворяет его и вызывает, появление коррозии. После пайки изделия необходимо промыть горячей проточной водой. Применение соляной кислоты при пайке радиоаппаратуры запрещается, так как во время эксплуатации возможно нарушение электрических контактов в местах пайки. Следует учитывать, что соляная кислота при попадании на тело вызывает ожоги.

Хлористый цинк (травленая кислота) в зависимости от условий пайки применяется в виде порошка или раствора. Используется для пайки латуни, меди и стали. Для приготовления флюса необходимо в свинцовой или стеклянной посуде растворить одну весовую часть цинка в пяти весовых частях 50-процентной соляной кислоты. Признаком образования хлористого цинка служит прекращение выделения пузырьков водорода. Из-за того, что в растворе всегда имеется небольшое количество свободной кислоты, в местах пайки возникает коррозия, поэтому после пайки место спая должно тщательно промываться в проточной горячей воде. Пайку с хлористым цинком в помещении, где находится радиоаппаратура, производить нельзя. Применять хлористый цинк для пайки электро и радиоаппаратуры также нельзя. Хранить хлористый цинк необходимо в стеклянной посуде с плотно закрытой стеклянной пробкой.

Бура (водная натриевая соль пироборной кислоты) применяется как флюс при пайке латунными и серебряными припоями. Легко растворяется в воде. При нагревании превращается в стекловидную массу. Температура плавления 741°С. Соли, образующиеся при пайке бурой, необходимо удалять механической зачисткой. Порошок буры следует хранить в герметически закрытых стеклянных банках.

Нашатырь (хлористый аммоний) применяется в виде порошка для очистки рабочей поверхности паяльника перед лужением.

Химически пассивные флюсы (бескислотные)

К бескислотным флюсам относятся различные органические вещества: канифоль, жиры, масла и глицерин. Наиболее широко в электро- и радиомонтажных работах применяется канифоль (в сухом виде или раствор ее в спирте). Самое ценное свойство канифоли, как флюса, заключается в том, что ее остатки после пайки не вызывают коррозии металлов. Канифоль не обладает ни восстанавливающими, ни растворяющими свойствами. Она служит исключительно для предохранения места пайки от окисления. Для приготовления спиртово-канифольного флюса берется одна весовая часть толченой канифоли, которая растворяется в шести весовых частях спирта. После полного растворения канифоли флюс считается готовым. При применении канифоли места пайки должны быть тщательно очищены от окислов. Часто для пайки с канифолью детали следует предварительно облуживать.

Стеарин не вызывает коррозии. Используется для пайки с особо мягкими припоями свинцовых оболочек кабелей, муфт и др. Температура плавления около 50°С.

В последнее время широкое применение получила группа флюсов ЛТИ, применяемых для пайки металлов мягкими припоями. По своим антикоррозийным свойствам флюсы ЛТИ не уступают бескислотным, но в то же время с ними можно паять металлы, которые раньше не поддавались пайке, например детали с гальваническими покрытиями. Флюсы ЛТИ могут применяться также для пайки железа и его сплавов (включая нержавеющую сталь), меди и ее сплавов и металлов с высоким удельным сопротивлением (см. табл. 7).

Почему ручки Flux упрощают ремонт печатных плат

Флюс необходим для предотвращения окисления, которое имеет тенденцию образовываться при контакте горячих металлов с воздухом. Во время ремонта и пайки печатных плат часто можно увидеть жидкий флюс из оборудования для пайки волной, разлитый в банки и нанесенный кислотной щеткой. Больше лучше, правда? Почему бы не залить флюсом зону доработки и не выполнить работу быстрее?

На самом деле, вы можете создавать больше работы и, возможно, рискуете в будущем потерпеть неудачу.Избыточный флюс, который не полностью активирован и не доведен до температуры пайки, может привести к коррозии и росту дендритов. Стоит найти более точный метод нанесения флюса. Вот почему флюсовые ручки — отличный способ дозировать флюс для настольной пайки.

Что такое ручка Flux?

Ручки Flux — это ручки с клапанами, предварительно заполненные флюсом. Ручка Flux позволяет избежать беспорядка и хлопот, связанных с наполнением ваших собственных бутылок для флюса. Ручка для дозирования флюса содержит флюс в герметичном корпусе ручки.Ручки для флюса — отличный способ избавиться от флюса для настольной пайки.

Как пользоваться флюсом

  1. Держите ручку вертикально и кратковременно нажмите на кончик, чтобы начать поток жидкости. Это пропитает кончик пера флюсом.
  2. Нанести флюс на место пайки. Снова осторожно нажмите на наконечник, когда потребуется больше флюса, чтобы наконечник оставался влажным.

Типы фломастеров

Ручки для флюса CircuitWorks®, не требующие очистки: Самым популярным маркером для флюса является наша дозирующая ручка CircuitWorks для бессвинцовых флюсов, поскольку она используется в различных областях.Этот не требующий очистки флюс разработан для работы при повышенных температурах бессвинцовой пайки, но также эффективен при пайке с оловянным свинцом. Он разработан с низким поверхностным натяжением для предотвращения образования перемычек. Очистка после пайки не является обязательной, поскольку легкий остаток, оставшийся после пайки, едва заметен, не вызывает коррозии и не содержит галогенидов. В случаях, когда требуется удаление, его можно легко удалить с помощью бессвинцовой жидкости для удаления флюса Flux-Off®.

Дозирующая ручка CircuitWorks No-Clean

— хороший выбор для оловянно-свинцовой пайки, когда следует избегать очистки.Легкие остатки можно оставить на доске или удалить с помощью средства для удаления флюса Flux-Off® No-Clean Plus Flux Remover.

CircuitWorks® Rosin Flux Pen — это флюс для канифоли с высоким содержанием сухого остатка, который обеспечивает отличную паяемость в самых разных областях применения. Оставшийся остаток не вызывает коррозии и не содержит галогенидов, но для эстетики лучше всего удалить его после пайки. Средство для удаления флюса Flux-Off® легко удалит остатки флюса.

Водорастворимый флюс CircuitWorks® — это очень активный флюс ORh2 с нейтральным pH.Он позволяет легко паять как бессвинцовые, так и содержащие свинец припои. Этот флюс необходимо очищать, и его можно легко удалить деионизированной водой, как в периодической или поточной системе, или настольную очистку с помощью водорастворимого средства для удаления флюса Flux-Off®.

Каждый из упомянутых средств удаления флюса разработан для удаления определенного типа флюса. Во многих случаях удалитель флюса будет достаточно хорошо работать с другими типами флюса, но наилучшие характеристики дефлюксирования достигаются при использовании соответствующего съемника флюса.

Используйте шприцы для флюса для Tacky Flux

Что такое липкий флюс?

Липкий флюс — это вязкая пастообразная форма флюса, которую легко нанести, не распределяя ее по окружающим областям, как жидкий флюс. Его можно использовать для удержания мелких деталей на месте перед пайкой и часто используется при производстве и ремонте компонентов поверхностного монтажа.

Липкие флюсы в дозаторах для шприцев обеспечивают удобство дозирования, как ручка, в ситуациях, когда липкий флюс лучше подходит для применения.

Флюсы CircuitWorks® Tacky обычно используются в самых разных областях. Густая, похожая на мед консистенция идеальна для шарнирных соединений, замены шариков BGA и ручной пайки SMT-компонентов. Флюс наносится из шприца, и его можно вручную распределить по желаемой области для пайки.

CircuitWorks® No-Clean Tacky Flux — это слабоактивированный канифольный (RMA) липкий флюс, не требующий очистки. Его рецептура включает уникальную смесь канифоли и смолы в сочетании с запатентованной смесью активаторов и стабилизаторов, что обеспечивает значительно увеличенный срок хранения и долгосрочную стабильность продукта.Оставшийся остаток стабилен и может быть оставлен на доске без очистки или может быть легко удален с помощью Flux-Off® No-Clean Plus Flux Remover. Бессвинцовый липкий флюс CircuitWorks® разработан для более высоких температур, характерных для бессвинцовой пайки.

Независимо от типа флюса, необходимого в процессе пайки переделки печатной платы, для вас найдется ручка или шприц CircuitWorks® Flux Pen или шприц. Свяжитесь с Chemtronics по телефону 770-424-4888 или свяжитесь с нами.

Рынок припоя

к 2026 году превысит оценку в 250 миллионов долларов, сообщает Global Market Insights Inc.

Селбивилль, Делавэр, 21 мая 2020 г. (GLOBE NEWSWIRE) — По данным Global Market Insights, Inc., размер рынка припоя к концу 2026 года должен превысить оценку в 250 миллионов долларов. очень подробный анализ основных выигрышных стратегий, заметных инвестиционных карманов, размера и оценок рынка, колеблющихся рыночных тенденций, конкурентных сценариев, а также движущих сил и возможностей.

Повышение уровня жизни и растущая потребность в более качественной бытовой электронике, такой как смартфоны, умные дома и офисная техника, классифицируются как одни из самых важных факторов, способствующих росту мирового рынка.Кроме того, растущее внедрение печатных плат в военную промышленность, бытовую электронику, телекоммуникации и автомобилестроение является еще одним определяющим фактором, повышающим спрос на операции пайки, улучшая перспективы рынка флюсов для припоя.

Запрос образца отчета по адресу: https://www.gminsights.com/request-sample/detail/4660

Согласно прогнозам, в сегменте водорастворимых продуктов CAGR составит более 6,2%. в течение 2020-2026 гг. благодаря превосходным характеристикам пайки продукта.Фактически, этот тип припоя демонстрирует замечательные паяльные способности и обладает огромной активностью, которая легко очищает поверхность металлов. Более того, этот вид флюса также относительно легко полностью удалить с электрической платы. Однако агрессивный химический состав этого флюса вызывает значительную коррозию печатных плат, что требует использования дополнительных флюсов, стойких к повторной коррозии.

Между тем, другой сектор, который в основном включает в себя военную и промышленную электронику.Ожидается, что в этом сегменте рынка флюсов для припоя в течение прогнозируемого периода будет наблюдаться существенный среднегодовой темп роста примерно 7,5%. Продукт также находит применение при пайке различных электронных плат в электронных устройствах военного назначения для обеспечения эффективного удаления примесей, наряду с низкими характеристиками образования пустот и оседания, а также нулевым отказом.

Кроме того, растущий уровень геополитической напряженности во всем мире и растущая потребность в повышении военного потенциала нескольких стран значительно увеличили размер военных расходов в нескольких странах.Расходы, среди прочего, в основном сосредоточены на оборудовании, которое еще больше повышает общий рыночный спрос на припой со стороны военных электронных систем.

Основные причины роста рынка флюсов для припоя рост:

  • Растущий спрос на флюс для припоя на канифольной основе благодаря его исключительным очищающим свойствам.
  • Растущий спрос на бытовую электронику.
  • Растущий спрос со стороны электронной промышленности Азиатско-Тихоокеанского региона.

Сделайте запрос о покупке этого отчета: https: // www.gminsights.com/inquiry-before-buying/4660

Северная Америка представляла значительную долю отрасли в 2019 году. Планируется, что к концу 2026 года на регион будет приходиться более 10% всей отрасли. можно объяснить растущей потребностью в сложных автомобильных электронных устройствах во всем регионе. Ожидается, что к 2026 году в Европе также будет накоплена значительная прибыль.

Видные игроки отрасли, работающие в индустрии припоя, включают PREMIER INDUSTRIES, KOKI Company Ltd, FCT Solder, INVENTEC PERFORMANCE CHEMICALS, Indium Corporation, Henkel, MacDermid Alpha Electronics Solutions, Shenzhen Tong fang Компания Electronic New Material Co., Ltd., La-Co Industries Inc. и Johnson Matthey среди других.

О Global Market Insights, Inc.

Global Market Insights, Inc. со штаб-квартирой в Делавэре, США, является поставщиком глобальных маркетинговых исследований и консалтинговых услуг. Предлагая синдицированные и индивидуальные отчеты об исследованиях, консультации по вопросам роста и услуги бизнес-аналитики, Global Market Insights, Inc. стремится помочь клиентам с помощью проницательной информации и действенных рыночных данных, которые помогут в принятии стратегических решений.

GMIPulse , наша платформа бизнес-аналитики, предлагает интерактивный онлайн-вариант изучения наших собственных данных отраслевых исследований простым и динамичным способом. Клиенты получают возможность изучать рыночную информацию по 11 категориям верхнего уровня и сотням отраслевых сегментов внутри них, охватывая региональную, корпоративную и перекрестную статистику, что делает наше предложение привлекательным для лиц, принимающих решения.

 Свяжитесь с нами:

Арун Хегде
Корпоративные продажи, США
Global Market Insights, Inc.Телефон: 1-302-846-7766
Бесплатный звонок: 1-888-689-0688
Электронная почта: [email protected]
Интернет: https://www.gminsights.com 

Открытое обсуждение: срок годности припоя?

Когда мы недавно писали о том, глядя на паяльная паста близко, мы случайно упомянуть, что он имеет срок жизни-то, что можно было бы ожидать, чтобы быть непротиворечивым, учитывая, что есть срок годности, напечатанный прямо на банке.

Но наш читатель Трав прокомментировал

Очень красивые фотки.Что происходит с паяльной пастой, когда срок ее годности истекает? это смешно на вкус? Яйца плоские?

Я предполагаю, что паста довольно жидкая и не удерживает припой на месте, или она становится густой и не распределяется равномерно.

Я слышал, что срок его действия истекает, но не знал, как это сделать. Трубка с флюсом у меня уже 20 лет. Когда он становится слишком густым, я добавляю пару капель спирта, и кажется, что он работает как новый.

Нам нравится теория «шары уходят»! А если серьезно, мы предполагаем, что они не будут маркировать пасту с коротким сроком хранения — обычно 4-12 месяцев при хранении в холодильнике, в зависимости от типа пасты — если только не было причины (и, надеюсь, уважительной), чтобы это сделать. так.

Сообщение в блоге на веб-сайте Indium Corporation предлагает небольшое понимание. Оказывается, химические «активаторы» во флюсе, которые служат для очистки от оксидов поверхностей, которые будут припаяны, также взаимодействуют с микроскопическими шариками припоя, постепенно стирая оксиды с их поверхности. Когда частицы припоя достаточно чистые, они могут фактически свариваться вместе, что приводит к увеличению эффективного размера зерна и вязкости. Как отмечает Трав, добавление небольшого количества спирта может снизить вязкость флюса, но мы видим, как увеличенный размер зерна и другие факторы (например, израсходование некоторых активаторов) могут повлиять на производительность другими способами.

Но в любом случае, похоже, что существует целый ряд опытов, и мы хотели бы открыть вопрос для обсуждения: каков ваш опыт работы с устаревшей паяльной пастой? Это сработало нормально? А если нет, то в чем был режим отказа?


А как насчет припоя (порошковой проволоки) отдельно?

Компания Kester сообщает об этом в своей политике в отношении срока годности:

Порошковая проволока для припоя имеет ограниченный срок хранения, который зависит от сплава, используемого в проволоке.Для сплавов, содержащих более 70% свинца, срок годности составляет два года с даты изготовления. Срок годности других сплавов составляет три года с даты изготовления.

Итак, наша катушка бессвинцового припоя, изображенная выше, с датой изготовления 3/16/05, истекла пять лет назад в 2008 году. Предположительно, одна из причин указанного срока годности заключается в том, что флюс со временем становится менее активным, поскольку он взаимодействует с припой металлический.

Но по нашему личному опыту, этот вид припоя в целом работает нормально, даже если срок годности истек на много лет.

Многие другие, кажется, имели аналогичный опыт с припоем.

Когда мы писали о сборке винтажного Heathkit, мы упоминали, что он идет с припоем. На самом деле он поставлялся с двумя небольшими пакетиками припоя, в частности с канифольным сердечником 60/40, с веселой надписью «Сделано специально для Heathkit от Alpha Metals, Inc.».

Поскольку (1) срок годности комплекта и припоя составляет почти 40 лет, (2) Alpha Metals также использует трехлетний показатель срока годности, и (3) у нас уже была свежая открытая катушка Alpha Metals 60/40. Канифольный припой в лаборатории, мы решили использовать свежую катушку и сохранили старые пакеты припоя на черный день.Неужели мы поступили неправильно? Наверняка так думали некоторые наши читатели:

Срок годности припоя? Вы уверены, что? Паяльная паста имеет срок годности, но я никогда не слышал о сроке годности настоящей катушки с припоем из канифоли 60/40. Я сам использовал довольно старые вещи, быстрый поиск в Google по сроку годности припоя обнаружил у меня дискуссию, в которой парень говорит об использовании припоя 60-х годов без проблем с первым щелчком!

Итак, каков был ваш опыт? Вы использовали «старый» припой, и если да, то насколько хорошо он работал?

изделий для пайки: часто задаваемые вопросы

Хранение и обращение

Требуется ли ориентация контейнеров для пасты при хранении?

Да.Шприцы и картриджи следует хранить вертикально кончиками вниз. При хранении на боку поршень может двигаться, наполняя пасту воздухом. Банки следует хранить правильной стороной вверх.

Требуется ли охлаждение паяльной пасты?

Рекомендуемая температура хранения паяльной пасты от 40 ° F до 50 ° F (от 4 ° C до 10 ° C). Хранение при температурах выше холодильных снизит срок годности и аннулирует гарантию.

Каков срок хранения паяльной пасты?

Минимум девять месяцев для дозирующей пасты SolderPlus, двенадцать месяцев для Паста для печати PrintPlus и двенадцать месяцев для пасты FluxPlus при хранении как рекомендовано.Более теплые условия уменьшат срок хранения и / или вызовут флюс разделение паяльной пастой. Конечному пользователю необходимо определить фактическую полку. жизнь, если хранить вне рекомендаций. В этом случае замена гарантия недействительна.

Что делать, если паста нагревается выше рекомендованной температуры хранения во время доставки?

Наши значения срока годности были разработаны с учетом ожидаемого теплового воздействия. при нормальных условиях транспортировки, которые могут превышать охлаждение температуры. Если возникла проблема с доставкой и паста была подвергаться воздействию температур выше 27 ° C в течение длительного периода времени, паста должна быть протестированным перед использованием.

Что произойдет с паяльной пастой или пастовым флюсом, если он замерзнет?

Во многих случаях ничего не происходит. Однако некоторые пасты чувствительны к повреждение, снижающее производительность. Как следствие, мы не рекомендуем замораживание любой из наших паяльных паст или пастообразных флюсов. Если вы «заморозите» пасты, проверьте ее работоспособность перед использованием на живом продукте.

Прослужит ли паяльная паста или флюс по истечении указанного срока хранения?

Nordson EFD гарантирует, что правильно хранимая паста прослужит не менее срок годности, указанный на этикетке продукта, или материал будет заменен бесплатно.Срок службы многих наших паяльных паст и пастообразных флюсов превышает гарантийный срок. период. Клиенты, желающие использовать пасту с истекшим сроком годности, должны повторно квалифицировать материал путем прогона тестовых плат или деталей через все производство процесс для подтверждения хороших результатов пайки. Nordson EFD не продлевает срок годности продукта в письменной форме после истечения срока годности, указанного на этикетка продукта.

Есть ли явные признаки неправильного хранения и / или обращения?

Помимо плохой работы, есть еще один важный признак неправильного обращения с припоем. паста — это разделение частиц флюса и сплава.Паяльная паста должна быть однородный по цвету и консистенции.

Следует ли использовать паяльную пасту прямо из холодильника?

№. Паяльную пасту следует использовать при «комнатной температуре». Это обеспечит заданной вязкости и предотвращения возможной конденсации. Рекомендуемая разминка время четыре часа. Шприцы могут нагреться менее чем за четыре часа. часы. Это время должно быть подтверждено каждым клиентом.

Может ли паяльная паста нагреться быстрее рекомендованной 4 часы?

Не рекомендуем.Однако при необходимости может потребоваться более быстрый разогрев. достигается помещением герметичного контейнера в водяную баню или подобное оборудование при температуре окружающей среды или близкой к ней. Шприцев требуется примерно пятнадцать минут, а для банок и картриджей может потребоваться до 45 минут. НЕ нагревайте пасту в духовке или другой среде, установленной выше «комнатной температуры». Сухой полностью упаковывать перед использованием, чтобы предотвратить попадание воды паяльная паста.

Следует ли повторно охлаждать паяльную пасту?

Обычно нет.При необходимости следует использовать паяльную пасту. Материал следует оставить при приемлемой комнатной температуре после извлечения из холодильника. в если емкость с паяльной пастой не использовалась после извлечения из охлаждение, а температура окружающей среды превышает 75 ° F (25 ° C) в течение продолжительного за время до использования его следует вернуть в прохладное место для хранения.

Можно ли повторно использовать излишки пасты для трафарета?

Как правило, мы не рекомендуем повторно использовать паяльную пасту, оставшуюся на трафарет.Однако, если паста относительно свежая, ее можно положить в банку и хранить. для повторного использования. Никогда не кладите использованную пасту обратно в тот же контейнер, что и новую пасту! Это приведет к загрязнению неиспользованной пасты и ухудшению ее характеристик.

Процесс и проверка

Я получаю шарики припоя по бокам компонентов микросхемы. Как мне заставить их уйти?

Шарики припоя на сторонах компонентов микросхемы обычно называют «Шарики припоя» из-за их большого размера. Возможны два изменения процесса чтобы свести к минимуму или устранить проблему.

  1. Уменьшение апертуры, предназначенное для уменьшения количества застрявшей пасты между деталью и маской для пайки платы. Самая эффективная форма — это треугольная форма удаляется с внутреннего края каждого отверстия, часто называется обратная домашняя пластина.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *