Эмиттер коллектор затвор: Эта страница ещё не существует

Содержание

Малоизвестные факты из жизни IGBT и FWD Часть 2. IGBT

Структура

Свойства IGBT в большой степени определяются паразитными элементами, имеющимися в структуре транзистора. Накопление заряда и его последующее рассасывание приводят к появлению потерь переключения, созданию эффекта запоминания и появлению так называемого «хвостового» тока при выключении. Для лучшего понимания происходящих процессов и возможных механизмов отказа рассмотрим эквивалентную электрическую схему IGBT (рис. 17).

Рис. 17. Ячейка IGBT (NPT-структура с планарным затвором):
а) паразитные элементы структуры;
б) эквивалентная электрическая схема с паразитными элементами

Описание физической природы паразитных конденсаторов и резисторов, показанных на рисунке, приведено в таблице 1.

Таблица 1. Паразитные элементы IGBT-структуры
Символ Название Физическое описание
CGE Емкость «затвор–эмиттер» Перекрывающая металлизация области «затвор–исток»; зависит от напряжения на затворе, не зависит от напряжения «коллектор–эмиттер»
CCE Емкость «коллектор–эмиттер» Емкость перехода между n-дрейфовой областью и р-карманом
CGC Емкость «затвор–коллектор» Емкость Миллера, формируется за счет перекрытия области затвора и дрейфовой зоны n-
RG Внутренний резистор затвора Поликремниевый резистор затвора; как правило, в модулях с параллельным соединением чипов требуется дополнительное сопротивление для подавления уравнивающих токов и соответствующих осцилляций между чипами
RD Дрейфовое сопротивление Сопротивление n-области (сопротивление базы PNP-транзистора)
RW Поперечное сопротивление в области р-кармана Сопротивление «база–эмиттер» паразитного биполярного NPN-транзистора

На эквивалентной электрической схеме IGBT кроме внутренних резисторов и конденсаторов показан «идеальный MOSFET», NPN-транзистор в области затвора (n+-эмиттерная область (эмиттер)/

р+-карман (база)/n-дрейфовая область с боковым резистором р+-кармана под эмиттерами в качестве сопротивления «база–эмиттер» RW) и PNP-транзистор (p+ в эмиттере/n-дрейфовая область — база/р+-карман — коллектор), образующий в сочетании с NPN паразитную тиристорную структуру. Этот тиристор может защелкиваться при выполнении следующего условия:

где αnpn, αpnp = αТ×gЕ — усиление тока транзисторов в базовых цепях;

М — коэффициент усиления; αТ — коэффициент переноса базы; γЕ — эффективность эмиттера.

Защелкивание приводит к потере управляемости IGBT и его отказу, это состояние должно быть исключено во всех статических и динамических режимах за счет грамотного проектирования конструкции, корректного выбора резисторов затворов и снабберных цепей. Как правило, открывание паразитного тиристора происходит на критических скоростях переключения (динамическое защелкивание из-за увеличения дырочного тока относительно номинального уровня) или при превышении критического значения плотности тока, которое снижается с ростом температуры чипа.

Каждое новое поколение ключей обладает более высокой стойкостью к защелкиванию, основной причиной которого у современных IGBT является многократное превышение номинальной плотности тока при выключении.

Одним из технологических способов подавления паразитной триггерной структуры является уменьшение сопротивления «база–эмиттер» RW субтранзистора NPN путем высокого легирования p+-кармана под n-эмиттерами и сокращения длины n-эмиттера таким образом, чтобы пороговое напряжение перехода «база–эмиттер» NPN-транзистора не достигалось при всех условиях эксплуатации. Кроме того, дырочный ток (базовый ток NPN) поддерживается на минимальном уровне за счет снижения коэффициента передачи тока PNP-транзистора. Отметим, что в любом случае приходится находить компромисс между динамическими характеристиками и надежностью с одной стороны, и параметрами проводимости — с другой.

 

Статические параметры IGBT

Статические и переходные характеристики IGBT-транзистора, работающего с антипараллельным диодом и без него, показаны на рис. 18. Рассматриваются следующие стационарные состояния IGBT.

Рис. 18.
a) Выходные характеристики n-канального IGBT;
б) передаточная характеристика IC = f(VGE)

Выключение и лавинный пробой

Если сигнал включения затвора меньше порогового уровня VGE(th), то при приложенном напряжении «коллектор–эмиттер» V

CE через IGBT протекает пренебрежимо малый ток утечки. При увеличении VCE обратный ток плавно растет, однако когда напряжение на коллекторе достигает предельной величины VCES, начинается лавинный пробой PIN-перехода: p+-карман/n-дрейфовая зона/n+-эпитаксиальный слой. Уровень V(BR)VES в первом приближении соответствует напряжению пробоя VCER биполярного PNP-транзистора, входящего в IGBT-структуру. Последующее лавинообразное нарастание тока в коллектор-базовом диоде приводит к разрушению IGBT. При этом области базы и эмиттера практически закорочены металлизацией эмиттера — между ними нет ничего, кроме бокового резистора
p
+-кармана.

Включение (1 квадрант)

Прямая характеристика IGBT (при положительном напряжении и токе коллектора VCE и IC) имеет две характерные зоны (рис. 18):

  • Активная область.

Если сигнал управления затвором VGE незначительно превышает пороговое значение VGE(th), то большая часть его компенсируется за счет токового насыщения (горизонтальный участок характеристики), ток коллектора IC зависит от величины VGE. Как показано на рис. 17, крутизна прямой характеристики IGBT определяется следующим образом:

Крутизна нарастает пропорционально IC и VGE и спадает с увеличением температуры кристалла. При коммутации силовых модулей, содержащих несколько параллельных чипов, активное состояние имеет место только в процессе переключения. Постоянная работа силовых ключей в активном режиме недопустима, поскольку порог VGE(th) падает при нагреве, и даже небольшой разброс характеристик индивидуальных кристаллов приведет к значительному тепловому и токовому небалансу.

  • Область насыщения.

Состояние насыщения, соответствующее включенному состоянию IGBT в процессе коммутации (крутая часть выходной характеристики), достигается в том случае, когда величина тока коллектора зависит только от внешних цепей (нагрузки). Поведение транзистора при этом определяется напряжением насыщения «коллектор–эмиттер»

VCE(sat). Протекание тока по n-дрейфовой зоне за счет неосновных носителей приводит к насыщению ключа. Отметим, что величина VCE(sat) для IGBT намного ниже, чем прямое падение напряжения MOSFET аналогичного класса напряжения. У большинства современных ключей напряжение насыщения имеет положительный температурный коэффициент, и только PT-IGBT-структура является исключением.

Инверсный режим (3 квадрант)

В инверсном режиме работы меняется полярность

pn-перехода в области коллектора IGBT, его предельное обратное напряжение, как правило, не превышает 20 В. Перспективные RB IGBT с симметричной блокирующей способностью имеют встроенный быстрый последовательный диод (в отличие от обычных транзисторов, снабженных антипараллельным диодом).

 

Динамические параметры IGBT

Поведение IGBT в импульсных режимах определяется их структурой, величиной внутренних конденсаторов и сопротивлений, а также параметрами нагрузки. В отличие от идеального ключа, для динамического управления IGBT требуется определенная мощность, что связано с необходимостью перезаряда входных емкостей изолированного MOS-затвора. Кроме того, на процесс переключения заметное влияние оказывают распределенные индуктивности силовых терминалов внутри модуля и шин звена постоянного тока преобразователя. Их наличие в сочетании с паразитными емкостями силовых кристаллов и соединительных цепей приводит к появлению коммутационных перенапряжений и осцилляций.

Зависимость импульсных характеристик IGBT от величины внутренних конденсаторов и сопротивлений может быть объяснена следующим образом. У выключенного транзистора значение обратной емкости CGC мало и примерно равно CCE. При включении CGC быстро увеличивается до тех пор, пока напряжение «затвор–эмиттер»

VGE не сравняется с VCE, что объясняется инверсией насыщающегося слоя, находящегося под областью затвора.

В технической документации на IGBT обычно приводятся значения входных и выходных конденсаторов Cies, Cres, Coes в выключенном состоянии (таблица 2). Ценность этих данных для расчета импульсных характеристик невелика, поскольку при коммутации транзистора величины Cies и Cres меняются в очень широких пределах. Намного более полезным для вычислений является график, связывающий заряд и напряжение затвора (рис. 20а).

Рис. 20.
a) Характеристика заряда затвора;
б) малосигнальные емкости IGBT

Таблица 2. Определение малосигнальных емкостей IGBT
Описание емкости Значение
Входная Cies Cies = CGE+CGC
Обратная (Миллера) Cres Cres = CGC
Выходная Cоes Cоes = C+C

На рис. 19 показан процесс «жесткой» коммутации IGBT на резистивно-индуктивную нагрузку, обеспечивающую непрерывность тока, поскольку постоянная времени нагрузки L/R намного больше периода рабочей частоты (1/fsw). Такой режим работы является наиболее показательным для качественной оценки динамических свойств силового ключа. На рис. 19а приведены типовые кривые тока и напряжения коллектора в зависимости от сигнала управления VGE; там же показана рабочая характеристика включения и выключения в виде графика IC = f(VCE). Эти графики с небольшими изменениями справедливы и для MOSFET-ключей.

Рис. 19. Типовые характеристики «жесткого» переключения MOSFET и IGBT (резистивно-индуктивная нагрузка):
а) ток и напряжение;
б) рабочая характеристика включения/выключения и схема измерения

В процессе «жесткой» коммутации в течение короткого времени на транзистор воздействуют одновременно высокие значения тока и напряжения, поскольку благодаря наличию оппозитного диода ток в индуктивности не прерывается при отключении IGBT:

  • При включении транзистора он берет на себя весь ток нагрузки Iload, а к закрытому диоду прикладывается полное напряжение. Ток коллектора IC достигает величины Iload до того, как напряжение VCE упадет до уровня насыщения VCE(sat).
  • При выключении транзистора оппозитный диод может принять на себя ток нагрузки только после перехода в проводящее состояние. Для этого напряжение «коллектор–эмиттер» должно превысить уровень коммутируемого сигнала до того, как ток коллектора упадет ниже уровня отсечки.

В отличие от тиристоров IGBT способны работать в жестком режиме без применения снабберов благодаря так называемому «динамическому переходу», формируемому в дрейфовой зоне при коммутации. Транзистор при этом, однако, рассеивает очень большую энергию:

С помощью пассивной снабберной цепи рабочая характеристика (рис. 19б) может быть смещена ближе к осям координат. Потери переключения при этом переходят от транзистора к снабберу, что в большинстве случаев снижает эффективность работы всей системы. Поскольку максимально возможная рабочая зона зависит не только от тока/напряжения/частоты, но и от факторов, связанных с неидеальностью транзистора, то реальная область безопасной работы (Safe Operating Area, SOA) приводится в технических характеристиках для различных условий работы.

Как показано на рис. 19, при включении IGBT напряжение VCE в течение 10 нс снижается до уровня, эквивалентного падению на n-дрейфовой области. Затем n-зона переносится положительно заряженными носителями от р-коллектора; спустя период времени от нескольких наносекунд до нескольких микросекунд напряжение динамического насыщения VCE(sat)dyn падает до уровня статического насыщения VCE(sat).

Включение IGBT

  • 0–t1 (транзистор заблокирован).

При подаче сигнала управления VGE по цепи затвора начинает протекать ток, заряжающий конденсатор CGE до значения QG1. Уровень VGE нарастает линейно с постоянной времени, определяемой входной емкостью IGBT и сопротивлением затвора RG, и пока оно не достигнет порогового значения VGE(sat), транзистор закрыт и ток коллектора отсутствует.

  • t1t2 (нарастание тока коллектора).

После достижения порогового уровня (момент t1) IC начинает расти. В это же время сигнал VGE, связанный с коллекторным током в активной рабочей зоне IGBT в соответствии с выражением IC = gfs × VGE (gfs — проводимость), увеличивается до значения VGE = IC/gfs (момент t2). Поскольку оппозитный диод продолжает поддерживать ток в точке t2, напряжение на коллекторе VCE уменьшается незначительно. Заряд затвора при этом достигает величины QG2. В течение данного интервала времени основные потери генерируются в IGBT, поскольку до тех пор, пока величина IC меньше тока нагрузки IL, определенная часть IL продолжает протекать через оппозитный диод. Именно поэтому сигнал на коллекторе не может заметно опуститься ниже питания VCC. Разница VCC и V, отмеченная на рис. 19, в основном вызвана динамическими перепадами напряжения на паразитных индуктивностях коммутируемых цепей.

  • t2t3 (транзистор полностью включен и находится в активной рабочей зоне, плоский участок характеристики).

Когда оппозитный диод закрывается, напряжение на коллекторе падает до уровня насыщения VCE(sat), это происходит к моменту t3. В интервале t2t3 ток коллектора и напряжение на затворе все еще связаны через проводимость gfs, а величина VCE остается практически неизменной. Спад VCE создает компенсирующий ток iG, заряжающий емкость Миллера СCG до уровня (QG3QG2), заряд затвора в момент времени t3 составляет QG3. После того как весь ток нагрузки IL переходит на транзистор, начинается блокировка оппозитного диода. Однако из-за наличия эффекта обратного восстановления коллекторный ток IGBT вначале резко возрастает до величины (IL+IRRM), после чего по мере рассасывания заряда восстановления Qrr падает до статического уровня IL.

  • t3t4 (область насыщения).

К моменту t3 транзистор полностью открыт, его рабочая точка прошла активную область и достигла границы насыщения, параметры VGE и IC больше не связаны друг с другом посредством gfs. Напряжение на затворе продолжает нарастать до уровня сигнала управления VGG, соответственно растет и заряд затвора, который к этому моменту времени составляет (QGtotQG3).

Напряжение «коллектор–эмиттер» не может мгновенно достичь уровня насыщения VCE(sat); в зависимости от величины VG и IC это происходит через несколько сотен наносекунд. Эта так называемая фаза «динамического насыщения» VCE(sat)dyn = f(t) представляет собой период времени, необходимый для того, чтобы неосновные носители заняли широкую n-область IGBT. Данный процесс также называется «модуляцией проводимости».

Выключение IGBT

При выключении IGBT все процессы идут в обратном порядке: полный заряд затвора QGtot должен быть рассеян за счет подачи отрицательного напряжения управления. Возникающий при этом ток выключения разряжает внутренние емкости транзистора до уровня, при котором практически исчезает влияние носителей заряда в канальной области, с этого момента начинается резкий спад тока коллектора. Однако после прекращения тока эмиттера за счет инжекции в области коллектора IGBT генерируется большое количество носителей р-заряда, которые продолжают присутствовать в n-дрейфовой зоне. Теперь они должны рекомбинировать или исчезнуть за счет обратной инжекции, что приводит к появлению так называемого «хвостового» остаточного тока. Поскольку он полностью спадает только через несколько микросекунд после начала нарастания напряжения на коллекторе, его форма и длительность протекания в основном определяют уровень потерь выключения Eoff.

Всплеск напряжения на коллекторе, показанный на рисунке 19, вызван прерыванием тока в распределенной индуктивности LS силовой цепи. Его амплитуда пропорциональна скорости выключения dif/dt транзистора и величине LS. Наличие паразитных компонентов, неизбежно присутствующих в реальных применениях, также приводит к искажениям сигнала управления затвором VGE, что наиболее ярко выражено в режиме «жесткой» коммутации. Чем больше величина этих элементов, тем выше уровень искажений и сложнее анализ динамических характеристик силового ключа.

 

Базовые формулы для расчета мощности потерь

На рис. 21 показа схема понижающего DC/DC-конвертера, считающаяся наиболее наглядной для оценки динамических свойств силовых ключей, а также формы токов транзистора и диода в так называемом «неразрывном» режиме. Каскад осуществляет регулирование выходного напряжения Vout за счет изменения коэффициента заполнения DC управляющих импульсов.

Рис. 21. Понижающий DC/DC-конвертер, формы токов

Подобные схемы работают в режиме высокочастотной ШИМ-модуляции, и рассеиваемая ими мощность обусловлена потерями проводимости и переключения:

Величины напряжения отсечки VCE(TO) и динамического сопротивления rCE приводятся в спецификациях IGBT, их также можно определить по прямой характеристике VCE = f(IC). Коэффициент заполнения DC представляет собой отношение длительности импульса проводимости к периоду повторения: DCIGBT = =tonIGBT/T. Поскольку ток через оппозитный диод течет, когда транзистор закрыт, то для диода DCD = 1–DCIGBT.

Динамические потери рассчитываются как произведение энергии потерь Esw на рабочую частоту fsw. Для того чтобы учесть зависимость Esw от тока и напряжения, можно использовать следующие выражения, содержащие эмпирические коэффициенты Ki, Kv:

где: Iref, Vref — номинальные значения тока и напряжения, для которых нормируется энергия потерь; Iout, Vout — реальные величины тока и напряжения; Kv = 1,35 (для 1700-В IGBT), 1,4 (для 1200-В IGBT), Ki = 1 (для IGBT), 0,6 (для диодов).

Несколько более сложным является определение мощности, рассеиваемой полумостовым силовым каскадом трехфазного инвертора, показанным вместе с соответствующими эпюрами напряжений и токов на рис. 22. Наиболее понятным принципом формирования ШИМ-сигнала является сравнение синусоидального сигнала огибающей Vref(t) и несущего напряжения треугольной формы Vh(t). Коэффициент заполнения DC в данном случае пропорционален мгновенному значению входного синусоидального напряжения, а амплитуда выходного сигнала равна напряжению питания VCC.

Рис. 22. Схема импульсного полумостового каскада, эпюры напряжений и токов

Форма выходного тока Iout близка к синусоидальной благодаря индуктивному характеру нагрузки, а уровень его пульсаций зависит от периода ШИМ-сигнала, величины Lload и VCC. Амплитуда выходного напряжения V’outm(1) и тока нагрузки зависит от коэффициента модуляции M = Voutm(1)/Vd, и, соответственно, максимальной величины DC.

Из-за индуктивного характера нагрузки ток отстает от напряжения на угол cos(φ). Формулы для расчета потерь для данной схемы имеют более сложный вид, чем в предыдущем случае:

Понимание процессов, происходящих в импульсных каскадах, необходимо техническим специалистам, занимающимся проектированием преобразовательной техники на базе полупроводниковых ключей. Не будет преувеличением сказать, что самым распространенным из них является IGBT — «рабочая лошадка» современной силовой электроники. Знание особенностей этих полупроводников, некоторые из которых освещены в данной статье, способно помочь проектировщикам при выборе элементов, при расчете параметров схемы и т. д. Высокие скорости коммутации подобных ключей требуют тщательной проработки конструкции звена постоянного тока, которое во многом определяет не только электрические параметры конвертера, но и его надежность. DC-шина должна быть низкоиндуктивной, малогабаритной, механически прочной и, кроме того, ее крепление не должно создавать деформирующих усилий, негативно воздействующих на силовые терминалы модулей.

Не менее важным этапом является анализ температурных режимов, позволяющий подтвердить правильность выбора силового ключа и режима его работы. Этот этап разработки стал существенно проще благодаря появлению программ теплового расчета, предлагаемых ведущими производителями силовых модулей. Одной из наиболее распространенных и популярных является программа SEMISEL, доступная на сайте фирмы SEMIKRON.

Литература
  1. Wintrich A., Nicolai U., Tursky W., Reimann T. Application Notes for IGBT and MOSFET modules. SEMIKRON International. 2010.
  2. Lehmann J., Netzel M., Pawel S., Doll Th. Method for Electrical Detection of End-of-Life Failures in Power Semiconductors. SEMIKRON Elektronik GmbH.
  3. Freyberg M., Scheuermann U. Measuring Thermal Resistance of Power Modules // PCIM Europe journal. 2003.
  4. Thermal Considerations in the Application of Silicon Rectifier. IR Designer’s Manual. 1991.
  5. Calculation of the Maximum Virtual Junction Temperature Reached Under Short-time or Intermittent Duty. IEC 60747-6 by SEMIKRON.

Как работают транзисторы MOSFET | hardware

Мощные транзисторы MOSFET хорошо известны своей исключительной скоростью переключения при весьма малой мощности управления, которую нужно прикладывать к затвору. Основная причина в том, что затвор изолирован, поэтому требуется мощность только на перезаряд емкости затвор-исток, и в статическом режиме цепь затвора практически не потребляет тока. В этом отношении мощные MOSFET по своим характеристикам приближаются к «идеальному переключателю». Основные недостатки, которые не дают MOSFET стать «идеальным», это сопротивление открытого канала RDS(on), и значительная величина положительного температурного коэффициента (чем выше температура, тем выше сопротивление открытого канала). В этом апноуте обсуждаются эти и другие основные особенности высоковольтных N-канальных мощных MOSFET, и предоставляется полезная информация по выбору транзисторов и их применению (перевод статьи [1]).

Для того, чтобы было проще понять работу полевого N-канального транзистора MOSFET, его стоит сравнить с широко распространенным биполярным кремниевым транзистором структуры NPN. Электроды у биполярного транзистора называются база, коллектор, эмиттер, а у полевого транзистора затвор, сток, исток.

База выполняет те же функции, что и затвор, коллектор соответствует стоку, а эмиттер соответствует истоку.

Давайте рассмотрим простейшую схему включения транзистора NPN:

Когда входной ключ разомкнут, то через эмиттерный переход транзистора T1 ток не течет, и канал коллектор-эмиттер имеет высокое сопротивление. Говорят, что транзистор закрыт, через его канал коллектор-эмиттер ток практически не течет. Когда замыкается входной ключ, то от батарейки B1 через резистор R1 и эмиттерный переход транзистора течет открывающий ток. Когда транзистор открыт, то его сопротивление канала коллектор-эмиттер уменьшается, и почти все напряжение батареи B2 оказывается приложенным к нагрузке R3. Т. е. когда во входной цепи течет ток (через R1), то в выходной цепи тоже течет ток (через R3), но в выходной цепи ток и напряжение (т. е. действующая мощность) в несколько раз больше. Здесь как раз и проявляются усиливающие свойства транзистора — маленькая мощность на входе позволяет управлять большой мощностью на выходе.

А так будет в этой схеме работать транзистор MOSFET:

На первый взгляд все то же самое — когда на входе есть управляющая мощность, она также появляется и на выходе (обычно усиленная во много раз). В этом смысле биполярный транзистор и MOSFET-транзистор очень похожи. Но есть два самых важных различия:

• Биполярный транзистор управляется током, а полевой транзистор напряжением.

Примечание: отсюда, кстати и пошло название полевого транзистора: его канал управляется не током, а электрическим полем затвор-исток.

Это означает, что входное сопротивление биполярного транзистора мало, а входное сопротивление MOSFET-транзистора очень велико. Обратите внимание на входной ток биполярного транзистора — 0.3 мА, этот ток в основном определяется сопротивлением резистора R1. Причина проста: на входе у биполярного транзистора имеется эмиттерный переход, который по сути обыкновенный диод, смещенный в прямом направлении. Если ток через этот диод есть, то транзистор открывается, если нет, то закрывается. Открытый диод имеет малое сопротивление, и максимальное падение напряжения на нем составляет около 0.7V. Поэтому практически все напряжение B1 (если быть точным, то 3.7 — 0.7 = 3V) оказывается приложенным к резистору R1. Этот резистор играет роль ограничителя входного тока биполярного транзистора.

У полевого транзистора MOSFET в этом отношении все по-другому. Входной ток определяется главным образом сопротивлением резистора R2, поэтому входной ток очень мал. Практически все входное напряжение оказывается приложенным к R2 и к переходу затвор — исток полевого транзистора. Причина проста: затвор и исток изолированы друг от друга слоем оксида кремния, по сути это конденсатор, поэтому ток через затвор практически не течет.

По этой причине на низких частотах, когда входная емкость не шунтирует источник сигнала, полевой транзистор имеет гораздо большее усиление по мощности в сравнении с биполярным транзистором. И действительно, в нашем примере входная мощность у биполярного транзистора составляет 0.3 мА * 3.7V = 1.11 мВт, а у полевого транзистора входная мощность составит всего лишь 0.00366 мА * 3.7V = 0.0135 мВт, т. е. в 82 раза меньше! Это соотношение могло бы быть еще больше не в пользу биполярного транзистора, если увеличить сопротивление резистора R2.

• Падение напряжения на выходном канале у полевого транзистора намного меньше, чем у биполярного.

Для данного примера падение напряжения коллектор-эмиттер биполярного транзистора составит примерно 0.3V, а у полевого 0.1V и даже меньше. Обычно выходное сопротивление у полевого транзистора намного меньше, чем у биполярного.

В исходном состоянии, когда на затворе относительно истока нулевое положительное напряжение, сопротивление канала определяется количеством неосновных носителей в полупроводнике, и очень велико. Когда к затвору прикладывается положительное напряжение относительно истока, то появляется проводящий ток канал сток-исток. Поэтому MOSFET иногда называют полевым транзистором с индуцированным каналом.

[Структура мощного транзистора MOSFET]

На рис. 1 показан срез структуры N-канального транзистора MOSFET компании Advanced Power Technology (APT). (Здесь рассматриваются MOSFET только N-структуры, как самые популярные.) Положительное напряжение, приложенное от вывода истока (source) к выводу затвора (gate), заставляет электроны притянуться ближе к выводу затвора в области подложки. Если напряжение исток-затвор равно или больше определенного порогового напряжения, достаточного для накапливания нужного количества электронов для достижения инверсии слоя n-типа, то сформируется проводящий канал через подложку (говорят, что канал MOSFET расширен). Электроны могут перетекать в любом направлении через канал между стоком и истоком. Положительный (или прямой) ток стока втекает в сток, в то время как электроны перемещаются от истока к стоку. Прямой ток стока будет заблокирован, как только канал будет выключен, и предоставленное напряжение сток-исток будет прикладываться в обратном направлении к p-n переходу подложка-сток. В N-канальных MOSFET только электроны формируют проводимость, здесь нет никаких не основных носителей заряда. Скорость переключения канала ограничена только длительностью перезаряда паразитных емкостей между электродами MOSFET. Поэтому переключение может быть очень быстрым, приводя к низким потерям при переключении. Этот фактор делает мощные MOSFET такими эффективными для работы на высокой частоте переключения.

Рис. 1. Срез рабочей структуры транзистора MOSFET.

RDS(on). Основные составляющие, которые входят в сопротивление открытого канала RDS(on), включают сам канал, JFET (аккумулирующий слой), область дрейфа Rdrift, паразитные сопротивления (металлизация, соединительные провода, выводы корпуса). При напряжениях приблизительно выше 150V в сопротивлении открытого канала доминирует область дрейфа. Эффект RDS(on) относительно невелик на высоковольтных транзисторах MOSFET. Если посмотреть на рис. 2, удвоение тока канала увеличивает RDS(on) только на 6%.

Рис. 2. Зависимость RDS(on) от тока через канал.

Температура, с другой стороны, сильно влияет на RDS(on). Как можно увидеть на рис. 3, сопротивление приблизительно удваивается при возрастании температуры от 25°C до 125°C. Температурный коэффициент RDS(on) определяется наклоном кривой графика рис. 3, и он всегда положителен для большинства поставщиков транзисторов MOSFET. Большой положительный температурный коэффициент RDS(on) определяется потерями на соединении I2R, которые увеличиваются с ростом температуры.

Рис. 3. Зависимость RDS(on) от температуры.

Положительный температурный коэффициент RDS(on) очень полезен, когда нужно параллельно включать транзисторы MOSFET, поскольку это обеспечивает их температурную стабильность и равномерное распределение рассеиваемой мощности между транзисторами. Этим MOSFET выгодно отличаются от традиционных биполярных транзисторов. Но это не гарантирует, что параллельно соединенные транзисторы будут равномерно распределять между собой общий ток. Это широко распространенное заблуждение [2]. То, что действительно делает MOSFET простыми для параллельного включения — это их относительно малый разброс по параметрам между отдельными экземплярами в пределах серии, в частности по параметру RDS(on), в комбинации с более безопасными свойствами канала в контексте перегрузки по току, когда благодаря положительному температурному коэффициенту RDS(on) сопротивление канала растет при повышении температуры.

Для любого заданного размера кристалла RDS(on) также увеличивается с увеличением допустимого напряжения V(BR)DSS, как это показано на рис. 4.

Рис. 4. Зависимость нормализированного RDS(on) от V(BR)DSS.

Кривая нормализированного RDS(on) в зависимости от V(BR)DSS для Power MOS V и Power MOS 7 MOSFET показывает, что RDS(on) растет пропорционально квадрату V(BR)DSS. Эта нелинейная зависимость между RDS(on) и V(BR)DSS является побудительным стимулом для исследования технологий с целью уменьшить потери проводимости мощных транзисторов [3].

[Внутренние и паразитные элементы]

JFET. В структуре MOSFET Вы можете представить себе встроенный JFET, как это показано на рис. 1. JFET оказывает значительное влияние на RDS(on), и является частью нормального функционирования MOSFET.

Внутренний диод на подложке (Intrinsic body diode). Переход p-n между подложкой и стоком формирует внутренний диод, так называемый body diode (см. рис. 1), или паразитный диод. Обратный ток стока не может быть блокирован, потому что подложка замкнута на исток, предоставляя мощный путь для тока через body diode. Расширение канала транзистора (при положительном напряжении на затворе относительно истока) уменьшает потери на прохождение обратного тока стока, потому что электроны проходят через канал в дополнение к электронам и неосновным носителям, проходящим через  body diode.

Наличие внутреннего диода на подложке удобно в схемах, для которых требуется путь для обратного тока стока (часто называемого как ток свободного хода), таких как схемах мостов. Для таких схем предлагаются транзисторы FREDFET, имеющие улучшенные восстановительные характеристики (FREDFET это просто торговое имя компании Advanced Power Technology, используемое для выделения серий MOSFET с дополнительными шагами в производстве, направленными на ускорение восстановления intrinsic body diode). В FREDFET нет отдельного диода; это тот же MOSFET intrinsic body diode. Для управления временем жизни неосновных носителей во внутреннем диоде применяется либо облучение электронами (наиболее часто используемый вариант) или легирование платиной, что значительно уменьшает заряд обратно смещенного перехода и время восстановления.

Побочный эффект от обработки FREDFET — повышенный ток утечки, особенно на высоких температурах. Однако, если учесть, что MOSFET имеет очень малый начальный ток утечки, то добавленный через FREDFET ток утечки остается допустимым до температур перехода ниже 150°C. В зависимости от дозы облучения FREDFET может иметь RDS(on) больше, чем у соответствующего MOSFET. Прямое напряжение для паразитного диода для FREDFET также немного больше. Заряд затвора и скорость переключения у MOSFET и FREDFET идентичны. Поэтому термин MOSFET здесь будет использоваться всегда для обоих типов MOSFET и FREDFET, если специально не оговорено что-то другое.

Скорость восстановления для паразитного диода у MOSFET или даже у FREDFET намного хуже в сравнении со скоростью быстрого дискретного диода. В приложениях, где жесткие рабочие условия с температурой порядка 125°C, потери на включение из-за восстановления из обратного смещения примерно в 5 раз выше, чем у быстрых дискретных диодов. НА это есть 2 причины:

1. Рабочая область паразитного диода совпадает с рабочей областью MOSFET или FREDFET, и рабочая область у дискретного диода для той же функции намного меньше, поэтому у дискретного диода намного меньше заряд восстановления.

2. Паразитный диод MOSFET или даже FREDFET не оптимизирован под обратное восстановление, как это сделано для дискретного диода.

Как и любой стандартный кремниевый диод, у паразитного диода заряд восстановления и время зависит от температуры, di/dt (скорости изменения тока), и величины тока. Прямое напряжение паразитного диода, VSD, уменьшается с ростом температуры по коэффициенту примерно 2. 5 mV/°C.

Паразитный биполярный транзистор. Разделенная на слои структура MOSFET также формирует паразитный биполярный транзистор (BJT) структуры NPN, и его включение на является частью нормального функционирования. Если BJT откроется и войдет в насыщение, то это может вызвать самоблокировку, при которой MOSFET не может быть выключен кроме как через внешний разрыв цепи тока стока. Высокая мощность рассеивания (например, при возникновении сквозного тока в плече моста) при самоблокировке может вывести MOSFET из строя.

База паразитного BJT замкнута на исток, чтобы предотвратить самоблокировку, и потому что напряжение пробоя (breakdown voltage) было бы значительно уменьшено (для того же самого значения RDS(on)), если бы база была оставлена плавающей. Существует теоретическая возможность самоблокировки при очень большой скорости dv/dt в момент выключения. Однако для современных стандартных мощных транзисторов очень трудно создать схему, где будет достигнута такое высокое dv/dt.

Есть риск включения паразитного BJT, если внутренний диод проводит, и затем выключается с чрезмерно высоким изменением dv/dt. Мощная коммутация dv/dt вызывает высокую плотность неосновных носителей заряда (положительные носители, или дырки) в подложке, что может создать напряжение на подложке, достаточное для включения паразитного BJT. По этой причине в даташите указано ограничение пиковой коммутации (восстановление встроенного диода) dv/dt. Пиковая коммутация dv/dt для FREDFET выше в сравнении с MOSFET, потому что у FREDFET снижено время жизни неосновных носителей заряда.

[На что влияет температура]

Скорость переключения. Температура практически не влияет на скорость переключения и потери, потому что (паразитные) емкости мало зависят от температуры. Однако ток обратного восстановления в диоде увеличивается с температурой, так что температурные эффекты внешнего диода (это может быть дискретный диод, или внутренний диод в MOSFET или FREDFET) влияют на потери включения мощных схем.

Пороговое напряжение, или напряжение отсечки (Threshold voltage). Напряжение отсечки затвора, обозначаемое как VGS(th), является важным стандартным параметром. Оно говорит, насколько много миллиампер через сток будет течь при пороговом напряжении на затворе, когда транзистор в основном выключен, но находится на пороге включения. У напряжения отсечки есть отрицательный температурный коэффициент; это означает, что напряжение отсечки уменьшается с ростом температуры. Температурный коэффициент влияет на время задержки включения и выключения, и следовательно влияет на выбор «мертвого времени» в мостовых схемах.

Переходная характеристика (Transfer characteristic). На рис. 5 показана переходная характеристика MOSFET-транзистора APT50M75B2LL.

Рис. 5. Пример переходной характеристики MOSFET.

Переходная характеристика зависит как от температуры, так и от тока стока. На рис. 5 при токе ниже 100 A напряжение затвор-исток имеет отрицательный температурный коэффициент (при заданном токе стока уменьшается напряжение затвор-исток при повышении температуры). При токе выше 100 A температурный коэффициент становится положительным. Температурный коэффициент напряжения затвор-исток и ток стока в том месте, где коэффициент меняет знак, важен для проектирования работы схем в линейном режиме [4].

Напряжение пробоя (Breakdown voltage). Напряжение пробоя имеет положительный температурный коэффициент, этот будет обсуждаться в секции Walkthrough.

Устойчивость к перегрузке по току (Short circuit capability). Возможность противостояния коротким замыканиям не всегда встречается в даташите. Причина понятна — MOSFET стандартной мощности не подходят для устойчивой работы в режиме перегрузки по току в сравнению с IGBT или другими транзисторами, работающими с высокой плотностью тока. Само собой разумеется, что MOSFET и FREDFET (в некотором смысле) устойчивы к перегрузке по току.

[Обзор параметров даташита. Максимальные предельные значения]

Назначение даташитов, предоставляемых APT, состоит в предоставлении соответствующей информации, которая полезна и удобна для выбора подходящего устройства в конкретном приложении. Предоставляются графики, чтобы можно было экстраполировать от одного набора рабочих условий к другому. Следует отметить, что графики предоставляют типичную производительность, но не минимумы или максимумы. Производительность также зависит кое в чем от схемы; различные тестовые схемы приведут к отличающимся результатам.

VDSS, напряжение сток-исток. Это оценка максимального напряжения сток-исток не вызывая лавинного пробоя (avalanche breakdown) с затвором, замкнутым на исток при температуре 25°C. В зависимости от температуры напряжение лавинного пробоя могло бы быть фактически меньше, чем параметр VDSS. См. описание V(BR)DSS в разделе «Статические электрические характеристики».

VGS, напряжение затвор-исток. Это предельное напряжение между выводами затвора и истока. Назначение этого параметра — предотвратить повреждение изолирующего оксидного слоя затвора (например, от статического электричества). Фактическая устойчивость оксидной пленки затвора намного выше, чем заявленный параметр VGS, но он варьируется в зависимости от производственных процессов, так что если укладываться в предел VGS, то это гарантирует надежную работу приложения.

ID, непрерывный ток стока. ID определяет максимальный уровень продолжающегося постоянного тока, когда транзистор выходит из строя при максимальной температуре перехода TJ(max), для случая 25°C, и иногда для более высокой температуры. Он основан на термосопротивлении между корпусом и переходом RӨJC, и для случая температуры TC может быть вычислен по формуле:

Это выражение просто говорит о том, какая максимальная мощность может рассеиваться

при максимальной генерируемой теплоте из-за потерь в соединении I2D X RDS(on)@TJ(max), где RDS(on)@TJ (max) сопротивление открытого канала при максимальной температуре перехода. Отсюда можно вывести ID:

Обратите внимание, что в ID не входят никакие потери на переключение, и случай с температурой 25°C на практике встречается редко. По этой причине в приложениях, где MOSFET часто переключается, фактический коммутируемый ток обычно меньше половины ID @ TC = 25°C; обычно между 1/4 до 1/3.

Зависимость ID от TC. Этот график просто отражает формулу 2 для диапазона температур. Здесь также не учтены потери на переключение. На рис. 6 приведен пример такого графика. Обратите внимание, что в некоторых случаях выводы корпуса транзистора ограничивают максимально допустимый продолжительный ток (переключаемый ток может быть больше): 100 A для корпусов TO-247 и TO-264, 75 A для TO-220 и 220 A для SOT-227.

Рис. 6. Максимальный ток стока в зависимости от температуры.

IDM, импульсный ток стока. Этот параметр показывает, какой импульс тока может выдержать устройство. Этот ток может значительно превышать максимально допустимый постоянный ток. Назначение этого параметра IDM состоит в том, чтобы удержать рабочий омический регион в пределе выходных характеристик. Посмотрите на рис. 7:

Рис. 7. Выходная характеристика MOSFET.

На этом графике есть максимальный ток стока для соответствующего напряжения затвор-исток, когда транзистор MOSFET открыт. Если рабочая точка при данном напряжении затвор-исток переходит выше омического региона «колена» рис. 7, то любое дальнейшее увеличение тока через сток приведет к значительному увеличению напряжения сток-исток (транзистор переходит из режима насыщения в линейный режим) и последующей потере проводимости. Если мощность рассеивания станет слишком велика, и это будет продолжаться довольно долго, то устройство может выйти из строя. Параметр IDM нужен для того, чтобы установить рабочую точку ниже «колена» для типичных применений транзистора в ключевом режиме.

Нужно ограничить плотность тока, чтобы предотвратить опасный нагрев, что иначе может привести к необратимому перегоранию MOSFET.

Чтобы избежать проблем с превышением тока через соединительные провода иногда применяют плавкие предохранители. В случае перегрузки по току выгорят именно они вместо транзистора.

Относительно температурных ограничений на IDM, рост температуры зависит от длительности импульса тока, интервала времени между импульсами, интенсивности рассеивания тепла, сопротивления открытого канала RDS(on), а также и от формы и амплитуды импульса тока. Если просто удержаться в пределах IDM, то это еще не означает, что температура перехода не будет превышена. См. обсуждение переходного теплового сопротивления в разделе «Температурные и механические характеристики», чтобы узнать способ оценки температуры перехода во время импульса тока.

PD, общая мощность рассеивания. Этот параметр определяет максимальную мощность, которую может рассеивать устройство, и он основан на максимально допустимой температуре перехода и термосопротивлении RӨJC для случая температуры 25°C.

Линейный коэффициент снижения мощности это просто инверсия RӨJC.

TJ, TSTG: рабочий и складской диапазон температур перехода. Этот параметр ограничивает допустимую температуру кристалла устройства во время работы и во время хранения. Установленные пределы гарантируют, что будут соблюдены гарантийные эксплуатационные сроки устройства. Работа в пределах этого диапазона может значительно увеличить срок службы.

EAS, лавинная энергия одиночного импульса. Если импульс напряжения (возникающий обычно из-за утечки и случайной индуктивности) не превышает напряжение пробоя, то не будет лавинного пробоя устройства, так что нет необходимости рассеивать энергию пробоя. Параметр максимальной лавинной энергии оценивает устройство в плане рассеивания мощности режима лавинного пробоя при переходных процессах с повышенным напряжением.

Все устройства, которые оценены по лавинной энергии, имеют параметр EAS. Лавинная энергия связана с параметром разблокированного индуктивного переключения (unclamped inductive switching, UIS). EAS показывает, сколько лавинной энергии устройство может поглотить. Условия для схемы тестирования Вы можете найти в документации по ссылкам, и EAS вычисляется по формуле:

Здесь L величина индуктивности, из которой поступает импульс тока iD, случайно поступающий в на закрытый переход транзистора через сток при тесте. Индуцируемое напряжение превышает напряжение пробоя MOSFET, что вызывает лавинный пробой. Лавинный пробой позволяет импульсу тока от индуктивности течь через MOSFET, даже если он закрыт. Энергия, запасенная в индуктивности, аналогична энергии, сохраненной в утечке и/или случайной индуктивности, и она должна быть рассеяна в MOSFET.

Когда транзисторы MOSFET соединены параллельно, это совершенно не означает, что у них одинаковое напряжение пробоя. Обычно пробьется только один транзистор, и только на него поступит вся энергия тока лавинного пробоя.

EAR, повторная лавинная энергия. Этот параметр стал «промышленным стандартом», но он не имеет смысла без информации о частоте, других потерях и эффективности охлаждения. Рассеивание тепла (охлаждение) часто ограничивает значение повторной рассеиваемой энергии. Также трудно предсказать, сколько энергии находится в лавинном событии. То, о чем говорит EAR в действительности, означает, что устройство может выдерживать повторяющиеся лавинные пробои без какого-либо ограничения по частоте, если устройство не перегрето, что в принципе верно для любого устройства, которое может испытать лавинный пробой. Во время анализа проекта хорошей практикой является измерение температуры устройства или его радиатора во время работы — чтобы увидеть, что MOSFET не перегрет, особенно если возможны условия лавинного пробоя.

IAR, ток лавинного пробоя. Для некоторых устройств, которые могут выйти из строя во время лавинного пробоя, этот параметр дает лимит на максимальный ток пробоя. Так что это как бы «точный отпечаток» спецификаций лавинной энергии, показывающий реальные возможности устройства.

[Статические электрические характеристики]

V(BR)DSS, Drain-source breakdown voltage, напряжение пробоя сток-исток. Параметр V(BR)DSS (иногда его называют BVDSS) определяет максимальное напряжение сток-исток, при котором через канал сток-исток будет течь ток не больше допустимого при заданной температуре и нулевом напряжении между затвором и истоком. Фактически этот параметр соответствует напряжению лавинного пробоя канала сток-исток закрытого транзистора. 

Как показано на рис. 8, у параметра V(BR)DSS есть положительный температурный коэффициент. Таким образом, MOSFET может выдержать больше напряжение, если он нагрет, по сравнению с холодным состоянием. Фактически в охлажденном состоянии V(BR)DSS будет меньше, чем предельно допустимое напряжение сток-исток VDSS, указанное для температуры 25°C. В примере, показанном на рис. 8 при -50°C, напряжение V(BR)DSS будет составлять 90% от максимально допустимого VDSS, указанного для температуры 25°C. 

Рис. 8. Нормализованная зависимость напряжения пробоя от температуры. 

VGS(th), Gate threshold voltage, напряжение отсечки затвора. Это пороговое напряжение затвор-исток, при превышении которого транзистор начнет открываться. Т. е. при напряжении на затворе выше VGS(th) транзистор MOSFET начинает проводить ток через канал сток-исток. Для параметра VGS(th) также указываются условия проверки (ток стока, напряжение сток-исток и температура кристалла). Все транзисторы MOSFET допускают некоторый разброс порогового напряжения отсечки затвора от устройства к устройству, что вполне нормально. Таким образом, для VGS(th) указывается диапазон (минимум и максимум), в который должны попасть все устройства указанного типа. Как уже обсуждалось ранее в разделе «На что влияет температура», VGS(th) имеет отрицательный температурный коэффициент. Это значит, что с увеличением нагрева MOSFET откроется при более низком напряжении затвор-исток. 

RDS(on), ON resistance, сопротивление в открытом состоянии. Этот параметр определяет сопротивление открытого канала сток-исток при указанном токе (обычно половина от тока ID), напряжении затвор-исток (обычно 10V) и температуре 25°C, если не указано что-либо другое. 

IDSS, Zero gate voltage drain current, ток утечки канала. Это ток, который может течь через закрытый канал сток-исток, когда напряжение на затвор-исток равно нулю. Поскольку ток утечки увеличивается с температурой, то IDSS указывается для комнатной температуры и для нагретого состояния. Потери мощности из-за тока утечки IDSS через канал сток-исток обычно незначительны. 

IGSS, Gate-source leakage current, ток утечки затвора. Это ток, который может через затвор при указанном напряжении затвор-исток. 

[Динамические характеристики

Рис. 9 показывает месторасположения внутренних емкостей транзистора MOSFET. Величина этих емкостей определяется структурой MOSFET, используемыми материалами и приложенными напряжениями. Эти емкости не зависят от температуры, так что температура не влияет на скорость переключения MOSFET (за исключением незначительного эффекта, связанного с пороговым напряжением, которое зависит от температуры). 

Рис. 9. Паразитные емкости транзистора MOSFET в структуре кристалла. 

Емкости Cgs и Cgd меняются в зависимости от приложенного к ним напряжений, потому что они затрагивают обедненные слои в устройстве [8]. Однако на Cgs намного меньше меняется напряжение в сравнении с Cgd, так что емкость Cgs изменяется меньше. Изменение Cgd при изменении напряжения сток-затвор может быть больше, потому что напряжение может меняться в 100 раз или больше. 

На рис. 10 показаны внутренние емкости MOSFET с точки зрения схемотехники. Емкости затвор-сток и затвор-исток могут повлиять на схему управления, и вызвать нежелательные эффекты при быстрых переключениях в мостовых схемах. 

Рис. 10. Паразитные емкости транзистора MOSFET в рабочей схеме. 

Если кратко, то чем меньше Cgd, тем будет меньше влияние на схему управления при перепаде напряжения при включении транзистора. Также емкости Cgs и Cgd формируют емкостный делитель напряжения, и при большом соотношении Cgs к Cgd желательно защитить схему управления от паразитных помех от перепадов напряжения, возникающих при переключении. Это соотношение, умноженное на пороговое напряжение, определяет качество защиты схемы управления от переключений в выходной цепи, и силовые транзисторы MOSFET компании APT лидируют в индустрии по этому показателю. 

Ciss, Input capacitance, входная емкость. Это емкости, измеренная между выводами затвора истока, когда по переменному напряжению сток замкнут на исток. Ciss состоит из параллельно соединенных емкостей Cgd (емкость затвор-сток) и Cgs (емкость затвор-исток): 

Входная емкость должна быть заряжена до порогового напряжения перед тем, как транзистор начнет открываться, и разряжена до напряжения общего провода перед тем, как транзистор выключится. Таким образом, сопротивление управляющей схемы и емкость Ciss образуют интегрирующую цепь, которая напрямую влияет на задержки включения и выключения. 

Coss — Output capacitance, выходная емкость. Это емкость, измеренная между стоком и истоком, когда затвор замкнут по переменному току на сток. Coss состоит из параллельно соединенных емкостей Cds (емкость сток-исток) и Cgd (емкость затвор-сток):

Для приложений с мягким переключением параметр Coss важен, потому что влияет на резонанс схемы. 

Crss, Reverse transfer capacitance, обратная переходная емкость. Это емкость, измеренная между стоком и затвором, когда исток соединен с землей. Обратная переходная емкость эквивалентна емкости затвор-сток. 

Обратная переходная емкость часто упоминается как емкость Миллера. Это один из главных параметров, влияющих на время нарастания и спада напряжения во время переключения. Он также влияет на эффекты времени задержки выключения. 

На рис. 11 показан пример зависимости типичных значений емкости от напряжения сток-исток. 

Рис. 11. Зависимость емкости от напряжения. 

Емкости уменьшаются при увеличении напряжения сток-исток, особенно это влияет на выходную и обратную переходную емкости.

Qgs, Qgd и Qg, Gate charge, заряд затвора. Значения заряда отражают заряд, сохраненный на внутренних емкостях, описанных ранее. Заряд затвора используется для разработки схемы управления, поскольку нужно учитывать изменения емкости при изменении напряжения на переходах переключения [9, 10].

На рис. 12 показано, что Qgs заряжается от начала координат до первого перегиба и далее заряжается до второго перегиба кривой (этот заряд известен как заряд Миллера), и Qg является зарядом от начала координат до точки, где VGS равно указанному управляющему напряжению затвора. 

Рис. 12. VGS как функция заряда затвора. 

Заряд затвора незначительно изменяется с током стока и напряжением сток-исток, но не зависит от температуры. Для этого параметра указываются условия тестирования. График заряда затвора, обычно приведенный в даташите, показывает кривые заряда затвора для фиксированного тока стока и различных напряжений сток-исток. Напряжение горизонтального участка VGS(pl), «плато», показанное на рис. 12, незначительно увеличивается с ростом тока (и соответственно уменьшается при снижении тока). Напряжение  также имеет прямо пропорциональную зависимость от порогового напряжения, так что изменения порогового напряжения коррелирует и изменением напряжения плато. 

[Резистивные параметры времени переключения (данные resistive switching)]

Эти параметры имеются в даташите по чисто историческим причинам. 

td(on), Turn-on delay time, время задержки включения. Это время от момента, когда напряжение затвор-исток на 10% превысит напряжение отсечки затвора до момента времени, когда ток стока вырастет больше 10% от указанного выходного тока. Это показывает задержку начала поступления тока в нагрузку.

td(off), Turn-off delay Time, время задержки выключения. Это время от момента, когда напряжение затвор-исток упадет ниже 90% напряжения отсечки затвора до момента, когда ток стока упадет ниже 90% от указанного выходного тока. Это показывает задержку отключения тока в нагрузке.

tr, Rise time, время нарастания. Это время, за которое ток стока вырастет от 10% до 90% (значение тока указывается).

tf, Fall time, время спада. Это время, за которое ток стока спадет от 90% до 10% (значение тока указывается). 

[Энергии переключения в индуктивностях

Из-за того, что данные resistive switching трудно использовать для предсказания потерь на переключение в реальных рабочих условиях мощных преобразователей, компания Advanced Power Technology включает во многие даташиты транзисторов MOSFET и FREDFET данные энергии переключения в индуктивностях. Это предоставляет разработчику ключевых блоков питания удобный способ сравнения быстродействия транзисторов MOSFET или FREDFET с другими транзисторами, даже если они выполнены по другой технологии наподобие IGBT. Поэтому можно использовать для разработки самый подходящий по качеству мощный транзистор. 

На рис. 13 показана схема тестирования переключения транзистора с учетом потерь в индуктивностях. Это импульсный тест, где применяется очень короткий по длительности цикл открытого состояния транзистора, так что энергия, запасенная в индуктивности, успеет рассеяться намного раньше поступления последующих импульсов, и саморазогрев можно не учитывать. Температура транзистора и фиксирующего диода во время теста регулируется принудительно от внешнего термостата. 

Рис. 13. Схема тестирования потерь на индуктивности.

В таблице динамических характеристик указываются следующие условия тестирования: VDD на рис. 13, ток теста, напряжение управления для затвора, сопротивление затвора и температура кристалла. Обратите внимание, то сопротивление затвора может включать сопротивление выхода микросхемы драйвера. Поскольку время переключения и энергии меняются с температурой (главным образом из-за диода в тестовой схеме), то данные предоставляются как для комнатной температуры, так и для разогретого состояния диода и тестируемого транзистора. Также предоставляется график зависимости между временем переключения и энергиями тока стока, и сопротивлением затвора. Определения времени задержки (включения) и времени нарастания и спада тока совпадают с аналогичными временами для данных resistive switching. 

Фактические формы сигнала при переключениях используются в даташите для определения различных измеренных параметров. Рис. 14 показывает форму сигнала включения и определения, связанные с ним. Энергия переключения может быть масштабирована напрямую для изменений между напряжением в приложении и энергией при тестовом напряжении, указанном в даташите. Так что, к примеру, если тесты в даташите были проведены при напряжении 330V, и в приложении применяется напряжение 400, то для масштабирования нужно просто умножить энергию переключения из даташита на коэффициент 400/330. 

Рис. 14. Формы сигналов включения и соответствующие определения. 

Времена переключения и энергии очень зависят от других компонентов и случайных (паразитных) индуктивностей в схеме. Диод сильно влияет на энергию включения. Паразитная индуктивность, включенная последовательно с истоком, является частью пути возвратного управляющего тока, и поэтому значительно влияет на времена переключения и энергии. Таким образом, время переключения и значения энергии, представленные в даташите, могут отличаться от того, что наблюдается в реальном приложении силового узла блока питания или ключа управления мотором. 

Eon, Turn-on switching energy with diode, энергия включения с диодом. Это зафиксированная индуктивная энергия включения, которая включает индуктивный коммутирующий реверсивный ток восстановления диода в тестируемом транзисторе, и она учитывает потери при включении. Обратите внимание, что транзисторы FREDFET в схемах мостов получают жесткие условия переключения, где паразитный диод сложно коммутируется, и энергия включения примерно в 5 раз выше, чем если бы использовался дискретный диод с быстрым восстановлением, наподобие того как показано в схеме рис. 13. 

Энергия включения является интегралом результата от тока стока и напряжения сток-исток на интервале от момента, когда ток стока вырастет больше 5% или 10% от тестового тока, то момента, когда напряжение спадет ниже 5% от тестового напряжения, как это показано на рис. 14. 

Eoff, Turn-off switching energy, энергия выключения. Это параметр, характеризующий фиксацию потерь на индуктивности при выключении. На рис. 13 показана схема тестирования, и рис. 15 показывает форму сигнала и определения. Eoff является интегралом результата от тока стока и напряжением сток-исток на интервале времени от момента, когда напряжение затвор-исток упадет ниже 90% до момента, когда ток стока станет нулевым. Это соответствует измерениям энергии выключения по JEDEC-стандарту 24-1. 

Рис. 15. Формы сигналов выключения и соответствующие определения. 

[Температурные и механические характеристики]

RƟJC, Junction to case thermal resistance, тепловое сопротивления между подложкой и корпусом. Этот параметр характеризует эффективность передачи тепла от кристалла к внешнему корпусу транзистора. Выделяющееся тепло является результатом потерь мощности в самом транзисторе. Обратите внимание, что тесты компании APT показывают температуры пластмассы, совпадающую с металлической частью корпуса дискретного компонента. 

Максимальное значение RƟJC включает допуск, учитывающий погрешности изменения для обычного процесса производства. Из-за улучшений производственного процесса в индустрии есть тенденция сокращения разницы между максимальным значением RƟJC и его реальным значением. 

ZƟJC, Junction to case transient thermal impedance, переходной термический импеданс между подложкой и корпусом. Этот параметр учитывает теплоемкость устройства, так что он может использоваться для оценки мгновенных температур из-за потерь мощности. 

В условиях проведения теста на термоимпеданс на тестируемый транзистор прикладываются импульсы мощности различной длительности, и при этом ждут спада температуры между каждым импульсом. Это дает измерение переходного термосопротивления для «одиночного импульса». Из этого строится модель резистор-емкость (RC) по кривой изменения температуры. Рис. 16 показывает такую RC-модель переходного термосопротивления. Некоторые даташиты могут показывать конденсаторы и резисторы, включенные параллельно, но это будет ошибкой. Конденсаторы «заземлены», как это показано на рис 16, и значения компонента остаются такими же. Нет никакого физического значения для промежуточных узлов в модели. Разное количество пар резистор-конденсатор используется просто для того, чтобы создать хорошую подгонку к фактическим измененным данным термосопротивления. 

Рис. 16. RC-модель переходного термосопротивления. 

Чтобы симулировать возрастание температуры с помощью RC-модели, Вы прикладываете источник тока с магнитудой, соответствующей рассеиваемой мощности в MOSFET. Таким образом, Вы можете использовать систему PSPICE или другой программный симулятор электронных схем, чтобы применить ввод произвольных потерь мощности. Из этого Вы можете оценить повышение температуры участка подложка-корпус как напряжение на ступеньках лестницы, установив ZEXT в ноль, как это показано на рис. 16. Вы можете расширить модель, чтобы включить теплоотвод, добавив дополнительные конденсаторы и/или резисторы. 

Переходное термосопротивление в виде семейства кривых, опубликованное в даташите, это просто симуляция прямоугольного импульса, основанная на RC-модели термосопротивления. Рис. 17 показывает пример. Вы можете использовать семейство кривых для оценки пикового нарастания температуры для прямоугольных импульсов мощности, которые являются обычными в источниках питания. Однако из за того, что минимальная длительность импульса 10 мкс, график имеет значение только для частот ниже 100 кГц. На более высоких частотах Вы будете просто использовать термосопротивление RƟJC.

Рис. 17. Семейство кривых термосопротивления.

[Пример анализа даташита]

Предположим, что в реальном приложении ключевого блока питания Вы хотите применить жесткое переключение тока 15A на частоте 200 кГц при напряжении 400V, при средней скважности 35%. Напряжение управления затвора 15V, и сопротивление цепи управления затвора составляет 15Ω для включения и 5Ω для выключения. Также предположим, что Вы хотите позволить максимальную температуру перехода 112°C, с удержанием температуры корпуса транзистора 75°C. С транзистором, рассчитанным на 500V, есть запас только в 100V между напряжением в приложении и VDSS. С учетом скачков напряжения на шине питания 400V узкий запас по напряжению все равно достаточен, потому что у транзистора MOSFET есть эффект лавинного пробоя, который дает «безопасную цепь». Это конфигурация с продолжительной проводимостью, так что быстро восстанавливающийся диод FREDFET не нужен, MOSFET будет работать достаточно хорошо. Такой транзистор Вам следует выбрать? 

Поскольку это приложение с довольно высокой частотой переключения, то лучшим выбором будет серия Power MOS 7. Посмотрим на транзистор APT50M75B2LL. Его расчетный ток 57A, что больше чем в 3 раза переключаемого тока — хорошая стартовая точка, учитывая высокую частоту и жесткое переключение. Давайте оценим потери проводимости, потери переключения, и посмотрим, будет ли тепло рассеиваться достаточно быстро. Общая мощность, которую можно рассеять: 

При 112°C сопротивление RDS(on) примерно в 1.8 раз больше, чем при комнатной температуре (см. рис. 3). Так что потери на проводимость составят: 

Pconduction = (1.8*0.075Ω * 15A) * 15A = 30.4 Вт 

Для оценки потерь на включение мы можем посмотреть на график зависимости потерь переключения от тока при температуре 125°C, показанный на рис. 18. Даже при том, что наше приложение требует максимальную температуру перехода 112°C, этот график будет достаточно точен, потому что энергия переключения MOSFET не чувствительна к температуре, за исключением изменений температуры, связанных с диодом в схеме. Поэтому не будет больших изменений при переходе от 112°C к 125°C. В любом случае, наша оценка будет консервативной. 

Рис. 18. Индуктивные потери переключения. 

По рис. 18 на токе 15A значение Eon будет около 300 μJ, и Eoff около 100 μJ. Значения были измерены при 330V, а в нашем приложении на шине питания 400V. Так что мы можем просто сделать масштабирование энергий переключения по напряжению:

Данные на рис. 18 были также измерены при сопротивлении затвора 5Ω, и мы будем использовать 15Ω при включении. Поэтому мы можем использовать график зависимости энергии переключения от данных сопротивления затвора, показанный на рис. 19, чтобы снова сделать масштабирование энергии. 

Рис. 19. Зависимость энергии переключения от сопротивления затвора. 

Даже при том, что тестовый ток на рис. 19 больше, чем в нашем приложении, разумно учесть соотношение в изменении энергии переключения между рис. 19 и нашим случаем. От 5Ω до 15Ω значение Eon поменяется с коэффициентом около 1.2 (1500μJ / 1250μJ, см. рис. 19). Применим это с данным, скорректированным по напряжению, которые мы видим на рис. 18, и получим Eon = 1.2*364μJ = 437μJ. 

Потери на переключение составят: 

Pswitch = fswitch — ( Eon + Eoff) = 200kHz — (437μJ +121μJ) = 112 Вт

Pconduction + Pswitch = 142.4 Вт, что дает возможность сохранить температуру перехода ниже 112°C в случае корпуса, охлажденного до 75°C. Так что APT50M70B2LL будет удовлетворять требованиям этого примера применения. Такая же техника может использоваться для менее мощных транзисторов MOSFET. На практике потери часто больше всего бывают на переключении. Чтобы поместить транзистор на радиатор и поддерживать температуру корпуса 75°C вероятно потребуется керамическая прокладка (для электрической изоляции) между корпусом и теплоемким радиатором. Преимущество MOSFET состоит в том, что могут применяться демпферы и/или техники резонанса для уменьшения потерь на переключение, причем с транзисторами MOSFET не нужно беспокоиться о влиянии на переключение эффектов зависимости от напряжения или температуры.

[UPD160207. Figure-of-merit]

Для оценки транзисторов FET применяют так называемый показатель качества, Figure of merit (FOM) [11]. Он учитывает одновременно потери на включенном транзисторе и потери на переключение. Обычно FOM вычисляется как произведение сопротивления канала сток-исток открытого транзистора R(DS)ON на заряд затвора QG. QG это заряд, который надо поместить на затвор транзистора MOSFET, чтобы он полностью открылся. С точки зрения рационального дизайна трудно одновременно снизить оба параметра, так что они хороши для оценки качества разработки ключа на полевом транзисторе.

Конечно, сравнение имеет смысл делать только в неком стандартном наборе условий. Это означает, что не только напряжение между затвором и истоком VGS поставляет заряд, также и напряжение сток-исток VDS влияет на сопротивление R(DS). (Это означает, что не просто канал полностью открыт, а то, что сопротивление R(DS) изменяется вверх и вниз.) Усложненный анализ учитывает, что R(DS)ON немного меняется с током стока, так что при сравнении переключающихся транзисторов рабочий ток стока ID также должен быть определен.

Иногда Вы увидите незначительно отличающийся показатель качества FOM: FOMSW, который будет произведением от which R(DS)ON и Q. Он характеризует заряд переключения, который немного меньше QG.

[Ссылки]

1. Power MOSFET tutorial site:eetimes.com.
2. R. Severns, E. Oxner; «Parallel Operation of Power MOSFETs», technical article TA 84-5, Siliconix Inc. 
3. J. Dodge; «Latest Technology PT IGBTs vs. Power MOSFETs», application note, Advanced Power Technology.
4. R. Frey, D. Grafham — APT, T. Mackewicz — TDIDynaload; «New 500V Linear MOSFETs for a 120 kW Active Load», application note APT0002, Advanced Power Technology.
5. Реле и транзисторы: как они работают в качестве электронных переключателей.
6. JFET site:wikipedia.org.
7. Bipolar junction transistor site:wikipedia.org.
8. N. Mohan, T. Undeland, W. Robbins; «Power Electronics » Converters Applications, and Design», text book published by Wiley.
9. K. Dierberger, «Gate Drive Design for Large Die MOSFETs», application note APT9302, Advanced Power Technology.
10. R. McArthur, «Making Use of Gate Charge Information in MOSFET and IGBT Datasheets», application note APT0103, Advanced Power Technology.
11. Оценка качества транзисторов MOSFET.

Что такое транзистор — простым языком

Транзистор – это электронный компонент, который управляет высоким током с помощью низкого. Транзистор еще можно назвать полупроводниковым триодом. Это второе название пришло к нему от его «родителя» – электровакуумного триода, одной из разновидностей так называемых «ламп».

Из чего состоит транзистор?

Видимая часть транзистора состоит из корпуса и трех «ножек»-выводов (однако существуют и разновидности транзисторов, у которых количество выводов больше трех). Корпус транзистора изготовляют из керамики, металлических сплавов или пластмассы. Заглядывая наперед, отметим, что существует два вида транзисторов – биполярный и полевой.

Внутри корпуса биполярного транзистора размещается три слоя полупроводника, два из которых расположены по краям и имеют одинаковый тип проводимости (p либо n), это – коллектор и эмиттер. Третий слой расположен между первыми двумя и отличается типом проводимости от своих соседей. Это – база.

Расположение полупроводников определяет тип транзистора: p-n-p либо n-p-n. На каждый из полупроводников нанесен металлический слой. С помощью этого слоя и проволочных связей полупроводники соединены с выводами транзистора. Однако не стоит забывать, что расположение выводов транзистора может меняться, в зависимости от модели транзистора.

На изображении – биполярный транзистор n-p-n типа.

Полевой транзистор также имеет в своем арсенале полупроводники, но их расположение, количество и принцип работы отличается от биполярных транзисторов и зависит от вида полевого транзистора.

Где используются транзисторы?

Транзисторы используются в большинстве электронных схем. Это может быть как простой генератор частоты, так и материнская плата компьютера.

Заглянем под крышку усилителя – и тут транзисторы. Они аккуратно разместились на схеме радиоприемника, чтобы преобразовать радиосигнал в аналоговый. Если нужно собрать электронный стабилизатор или ключ – не обойдетесь без транзисторов.

Существует ряд сверхмощных транзисторов. Они могут работать с нагрузкой до 1.5 кВт и применяют их в промышленной сфере. Рабочая температура таких транзисторов может достигать 200-300 градусов Цельсия. Для их охлаждения используют радиаторы теплоотвода.

Группа транзисторов, в совокупности с дополнительными элементами, может совершать ряд логических операций и представляет собой своего рода процессор. Собственно, процессор на основе полупроводника и является группой транзисторов. Они заключены в общий корпус и связаны там между собой таким образом, как если бы располагались на монтажной плате. В мощных процессорах, благодаря миниатюрности кристаллов полупроводника, может быть заключено до нескольких десятков миллионов транзисторов.

Принцип работы транзистора

В биполярных транзисторах управление током коллектора происходит путем изменения управляющего тока базы. Ток, которым нужно управлять, направлен по цепи – «эмиттер-коллектор». Однако, в состоянии покоя транзистора этот ток не может проходить между ними. Это вызвано сопротивлением эмиттерного перехода, которое возникает в результате взаимодействия слоёв полупроводника. Но стоит подать на базу транзистора незначительный ток, и сопротивление между эмиттером и коллектором упадет, тем самым даст возможность проходить току через эмиттер и коллектор, усиливая выходной сигнал. Изменяя ток базы, можно изменять ток на выходе транзистора.

В полевых транзисторах такое управление осуществляется благодаря созданию поперечного электрического поля, которое создается напряжением, приложенным к затвору относительно истока. Это значительно уменьшает энергопотребление транзистора, так как сопротивление затвора велико, и для создания поля не нужно постоянно поддерживать управляющий ток. Если бы не полевой транзистор, мы меняли бы батарейки в пульте от телевизора в разы чаще, чем обычно.

Таким образом, транзисторы можно сравнить с водопроводным краном, где подача и слив воды – это эмиттер\исток и коллектор\сток транзистора, а рукоять вентиля – это его база\затвор.

Разновидности, обозначение транзисторов

На большинстве схем транзисторы могут обозначаться буквами «VT», «Q», «T», «ПТ», «ПП». К буквам может применяться приписка в виде цифры, например «VT 4», которая указывает номер детали на схеме. Или модель транзистора целиком, например «T KT-315Б».
Транзисторы делятся на два вида: биполярный и полевой.

Схематическое обозначение биполярного транзистора:

Как видно на рисунке, обозначение транзисторов разных типов отличается направлением стрелки эмиттера. Транзисторы n-p-n типа обозначаются со стрелкой эмиттера, направленной от базы. В случае p-n-p типа, стрелка будет направлена в сторону базы транзистора. На многих схемах эмиттер, коллектор и база отмечены буквами латинского языка: эмиттер – «E», база – «B» коллектор – «C».

Типовая схема подключения биполярных транзисторов:

Рекомендовано практически во всех схемах с биполярным транзистором давать дополнительное сопротивление ко входам коллектора и базы. Это продлит срок службы транзистора и стабилизирует его работу.

Обозначений полевых транзисторов есть больше, чем биполярных. Основные представлены на изображениях ниже.

Как вы видите, выводы транзистора обозначены буквами «З»-затвор, «С»-сток, «И»-исток. Функцию базы выполняет затвор, а коллектор и эмиттер, это – сток и исток, соответственно. Как биполярные транзисторы делятся на n-p-n и p-n-p, так полевые делятся на:

  • с управляющим p-n переходом с каналом n-типа;
  • с изолированным затвором с индуцированным каналом n-типа;
  • с изолированным затвором со встроенным каналом n-типа;
  • с управляющим p-n переходом с каналом p-типа;
  • с изолированным затвором с индуцированным каналом p-типа;
  • с изолированным затвором со встроенным каналом p-типа.

Некоторые транзисторы с управляющим p-n-переходом предоставляют доступ к каналу с помощью четвертой «ножки»-вывода либо используется сам корпус транзистора.

На изображениях ниже – схемы включения полевых транзисторов:

С управляющим p-n-переходом с общим истоком

С управляющим p-n-переходом с общим стоком

С управляющим p-n-переходом с общим затвором

Маркировка транзисторов

Маркировка транзистора наносится на корпус, иногда нужно также обращать внимание на длину выводов. Современная маркировка транзисторов зависит от производителя. По причине этого, рекомендовано изучать спецификации от производителей, чтобы корректно читать маркировку.

Маркировка бывает цветовая, кодовая и смешанная. Есть случаи нестандартной маркировки, где могут использоваться различного рода символы.

Вольт амперная характеристика

На двух графиках представлены вольт амперные характеристики отдельно для биполярных и полевых транзисторов.

Биполярные транзисторы:

Полевые транзисторы:

Особенности применения биполярных транзисторов с изолированным затвором

Современные силовые устройства преобразования параметров электроэнергии строятся на силовых полупроводниковых ключах, отличающихся от биполярных транзисторов. Особое место среди них занимают рассматриваемые в статье IGBT технологии, то есть устройства с использованием БТИЗ транзисторов (биполярных транзисторов с изолированным затвором) или в английской аббревиатуре IGBT (Insulated Gate Bipolar Transistors) транзисторов. Применение этих технологий существенно расширяет энергетические возможностями и повышает надежность силовых электротехнических устройств.

Биполярные транзисторы с изолированным затвором

Различают две технологии реализации IGBT транзисторов, которые поясняются эквивалентными схемами, приведенными на рис.1а, б, а для маломощных транзисторов – на рис.1, в [2]. Как следует из рис.1, IGBT транзисторы имеют три электрода: эмиттер (э), коллектор (к) и затвор (з).

Рис.1 Tехнологии реализации IGBT транзисторов

Сочетание двух полупроводниковых приборов в одной структуре позволило объединить преимущества полевых и биполярных транзисторов: высокое входное сопротивление и малое сопротивление между силовыми электродами во включенном состоянии.

Обратим внимание на то, что на эквивалентных схемах у силового транзистора в том месте, где обозначен эмиттер, написано «коллектор», а где обозначен коллектор написано «эмиттер». Это общепринятое обозначение по принципу управления, указывающее, что входной сигнал управления подается между затвором и эмиттером.

Кратко охарактеризуем историю создания и развития IGBT транзисторов, являющихся продуктом развития технологии силовых транзисторов. Эта история насчитывает несколько десятилетий. С 80-х годов прошлого века и по сегодняшний день создано четыре поколения этих приборов: первое поколение – с 1985 года, когда были достигнуты максимальные значения напряжения Uмакс=1000В, тока Iмакс≈ 25А и минимальное значение времени переключения tпер.мин≈1мкс второе – с 1990 года, когда были достигнуты максимальные значения Uмакс=1600В, Iмакс≈ 50А и минимальное значение времени переключения tпер.мин≈0.5мкс третье – с 1994 года, когда были достигнуты максимальные значения напряжения Uмакс=3500В тока Iмакс≈ 100А и минимальное значение времени переключения tпер.мин≈0.25мкс и, наконец, четвертое поколение – с 1998 года, для которого характерны следующие достижения:Uмакс=4500В, Iмакс≈ 150А, время переключения tпер.мин≈0.2мкс

Для входного пробивного напряжение Uвх.пр современных IGBT транзисторов в справочных данных практически всех фирм-производителей транзисторов приводится значение, равное Uвх.пр=±20В, и таким образом при работе с этими приборами необходимо следить, чтобы напряжение затвор-эмиттер не превышало указанное значение напряжения. Далее, напряжение на затворе IGBT транзистора, при котором входной МОП и выходной биполярный транзистор начинают отпираться, составляет от 3,5 до 6,0 В, и гарантированное напряжение, при котором транзистор полностью открыт, то есть может пропускать максимально допустимый ток через коллектор-эмиттерный переход, составляет от 8 до предельного значения 20 В.

Максимальные токи, которые могут коммутировать современные IGBT транзисторы, находятся в пределах от 7 до 150 А, а их допустимый импульсный ток, как правило, в 2,5 – 3,0 раза превышает максимальный. Для больших мощностей выпускаются составленные из нескольких транзисторов модули с предельными значениями тока до 1000 А. Пробивные напряжения IGBT транзисторов находятся в пределах от 400 до 4500 В.

Основные параметры некоторых IGBT транзисторов приведены в табл.1, а параметры модулей, выпускаемых по технологии Trench или NPT, – в табл. 2 [1].

 

Табл.1

Тип элемента

Uкэ

В

Uкэн

В

Iк при
t=25°С

А

Iк при
t=100°С

А

Р


Вт

IRG4BC30FD

600

1,6

31

17

100

IRGBC30MD2

600

3,9

26

16

100

IRG4PC30FD

600

1,6

31

17

100

IRG4PC40FD

600

1,5

49

27

160

IRG4PC50FD

600

1,5

70

39

200

IRGPC40MD2

600

4,0

40

24

160

IRGPC50MD2

600

3,0

59

35

200

IRGPh40MD2

1200

4,5

15

9

100

IRGPh50FD2

1200

4,3

29

17

160

IRGPh50MD2

1200

4,4

31

18

160

IRGPH50FD2

1200

3,9

45

25

200

IRGPH50MD2

1200

3,9

42

23

200

OM6516SC

1000

4,0

25

125

OM6520SC

1000

4,0

25

125

 

Табл.2

Тип модуля

Uкэ

В

Uкэн

В

Iк при
t= 25°С

А

Iк при
t= 100°С

А

Р

Вт

IRGDDN300M06

600

3,0

399

159

1563

IRGDDN400M06

600

3,0

599

239

1984

IRGDDN600M06

600

3,7

799

319

2604

IRGRDN300M06

600

3,0

399

159

1563

IRGRDN400M06

600

3,0

599

239

1984

IRGRDN600M06

600

3,7

799

319

2604

IRGTDN200M06

600

3,0

299

119

1000

IRGTDN300M06

600

3,0

399

159

1316

Где:

  • Uкэ — Напряжение коллектор-эмиттер
  • Uкэн— Напряжение коллектор-эмиттер открытого транзистора
  • Iк — Постоянный ток коллектора
  • Р — Максимальная рассеиваемая мощность

Напряжение коллектор-эмиттерного перехода открытого транзистора находится в пределах от 1,5 до 4,0 В (в зависимости от типа, значений тока и предельного напряжения IGBT транзистора) в одинаковых режимах работы. Для различных типов приборов напряжение на переходе открытого транзистора тем выше, чем выше значение пробивного напряжения и скорость переключения.

 

Вследствие низкого коэффициента усиления выходного биполярного транзистора в целом, IGBT транзистор защищен от вторичного пробоя и имеет (что особо важно для импульсного режима) прямоугольную область безопасной работы.

С ростом температуры напряжение на коллектор-эмиттерном переходе транзистора несколько увеличивается, что дает возможность включать приборы параллельно на общую нагрузку и увеличивать суммарный выходной ток.

Также как МОП транзисторы, IGBT транзисторы имеют емкости затвор-коллектор, затвор-эмиттер, коллектор-эмиттер. Величины этих емкостей обычно в 2 – 5 раз ниже, чем у МОП транзисторов с аналогичными предельными параметрами. Это связано с тем, что у IGBT транзисторов на входе размещен маломощный МОП транзистор. Для управления им в динамических режимах нужна меньшая мощность.

Время нарастания или спада напряжения на силовых электродах IGBT транзисторов при оптимальном управлении составляет около 50 – 200 нс и определяется в основном скоростью заряда или разряда емкости затвор-коллектор от схемы управления.

Существенным преимуществом IGBT транзисторов по сравнению с биполярными транзисторами является то, что биполярные транзисторы в структуре IGBT не насыщаются и, следовательно, у них отсутствует время рассасывания. Однако после уменьшения напряжения на затворе ток через силовые электроды еще протекает в течение от 80 – 200 нс до единиц мкс в зависимости от типа прибора. Уменьшить эти временные параметры невозможно, так как база p-n-p транзистора недоступна.

Технологические методы уменьшения времени спада ведут к увеличению напряжения насыщения коллектор-эмиттерного перехода. Поэтому чем более быстродействующим является транзистор, тем выше напряжение насыщения.

IGBT транзисторы по сравнению с МОП транзисторами обладают следующими преимуществами:

  • Экономичностью управления, связанной с меньшим значением емкости затвора и, соответственно, меньшими динамическими потерями на управление.
  • Высокой плотностью тока в переходе эмиттер-коллектор – такой же, как и у биполярных транзисторов.
  • Меньшими потери в режимах импульсных токов.
  • Практически прямоугольной областью безопасной работы.
  • Возможностью параллельного соединения транзисторов для работы на общую нагрузку.
  • Динамическими характеристиками у транзисторов, выпущенных за последние годы, приближающимися к характеристикам МОП транзисторов.

Основным недостатком IGBT транзисторов является сравнительно большое время выключения, что ограничивает частоты переключения до 20 – 100 кГц даже у самых быстродействующих транзисторов. Кроме того, с ростом частоты необходимо уменьшать ток коллектора. Например, из зависимости тока коллектора IGBT транзистора от частоты для транзистора IRGPC50UD2, приведенной на рис. 2, следует, что при частотах работы транзисторов, превышающих 10 кГц, приходится уменьшать ток коллектора более чем в два раза. Но все же для силовых инверторов с увеличением мощности преобразования рабочую частоту необходимо уменьшать также из соображений уменьшения влияния паразитных индуктивностей монтажа.

 

Рис.2 Зависимость тока коллектора IGBT транзистора от частоты

Процесс включения IGBT транзистора разделяется на два этапа. При подаче положительного напряжения между затвором и истоком открывается полевой транзистор, и далее движение зарядов из области n в область p приводит к открыванию биполярного транзистора, то есть к появлению тока между эмиттером и коллектором. Таким образом, полевой транзистор управляет биполярным.

У IGBT транзисторов с максимальным значением напряжения в пределах 500 – 1200 В падение напряжения в насыщенном состоянии находится в диапазоне 1,2 – 3,5 В, то есть оно приблизительно такое же, как и у биполярных транзисторов. Однако эти значения падения напряжения намного меньшие по сравнению со значениями падения напряжения на силовых MOП транзисторах в проводящем состоянии с аналогичными параметрами.

С другой стороны, MOП транзисторы с максимальными значениями напряжения, не превышающими 200 В, имеют меньшие значения падения напряжения между силовыми электродами во включенном состоянии, чем IGBT транзисторы. В связи с этим применение МОП транзисторов является более предпочтительным в области низких рабочих напряжений и коммутируемых токов до 70 А.

По быстродействию IGBT транзисторы превосходят биполярные транзисторы, однако уступают MOП транзисторам. Значения времен рассасывания накопленного заряда и спада тока при выключении IGBT транзисторов находятся в пределах 0,2 – 0,4 мкс.

Область безопасной работы IGBT транзисторов позволяет обеспечить надежную работу этих устройств без усложнений дополнительными цепями ускорения переключения при частотах от 10 до 20 кГц. Этого не могут обеспечить биполярные транзисторы.

IBGT транзисторы относятся к приборам силовой электроники, и выпускаемые промышленностью на сегодняшний день реальные приборы имеют предпочтение в их использовании в диапазоне мощностей от единиц киловатт до единиц мегаватт. Дальнейшее совершенствование IGBT транзисторов проводится по пути повышения быстродействия, предельных коммутируемых токов и напряжений.

Управление МОП и IGBT транзисторами

МОП и IGBT транзисторы являются полупроводниковыми приборами, управляемыми напряжением. Из обширного круга вопросов, относящихся к проблеме управления этими приборами, особый интерес представляет наиболее сложный случай управления, который имеет место в мостовой или полумостовой схеме включения с индуктивной погрузкой.

Отметим, что управление транзисторами инверторов можно осуществлять через импульсные высокочастотные трансформаторы, хотя такое управление усложняет конструкцию и принципиальную схему инвертора. Отсутствие тока потребления на управление в статических режимах и низкое общее потребление мощности затворами транзисторов позволяют отказаться от трансформаторных схем питания.

Компаниями-производителями силовых полупроводников выпускается ряд драйверов управления, которые согласовывают маломощную схему управления с выходными транзисторами верхнего и нижнего плеча силового инвертора. Выходные каскады этих драйверов выполняются, как правило, в виде двухтактных усилителей мощности на полевых транзисторах, обеспечивающих импульсный выходной ток до 2 А. Организация питания верхнего плеча инвертора осуществляется по схеме зарядного «насоса», показанной на рис. 3.

Рис.3 Схема питания верхнего плеча инвертора

Схемы формирования, гальваническая развязка и усилитель нижнего плеча драйверов получают питание от низковольтного вспомогательного источника питания Uн. При включении транзистора нижнего плеча VT2 (в первом полупериоде работы) диод VD1 открывается и заряжает накопительный конденсатор С1, в дальнейшем питающий усилитель верхнего плеча. В каждом полупериоде при открытом транзисторе VT2 конденсатор C1 подзаряжается, а при открытом транзисторе VT1 питается выходной усилитель верхнего плеча.

В последнее время фирмы-производители полупроводниковых приборов начали выпускать различные драйверы отдельных транзисторов полумостовых и мостовых схем, выдерживающие напряжение до 600 В. В качестве примера приведем наименование некоторых из этих драйверов [3]:

  • IR2125 – драйвер верхнего плеча;
  • IR2110, Н1Р25001Р, PWR 200/201– драйверы полумостового инвертора;
  • IR2130 – драйвер трехфазной мостовой схемы;
  • IR2155 – драйвер полумостового инвертора с автогенератором.

Эти драйверы надежно работают и обеспечивают оптимальные параметры в работе с МОП и IGBT транзисторами. К тому же их стоимость небольшая, а схемы инверторов требуют установки всего лишь одного драйвера и нескольких внешних компонентов.

Переключение больших токов с высокими скоростями переключения сопряжено с рядом трудностей. Для получения надежно работающих устройств основные усилия должны быть направлены на создание конструкции с минимизированными величинами паразитных индуктивностей, которые в случае не принятия специальных мер могут запасать значительное количество энергии в силовых шинах тока и вызывать нежелательные переключения силовых ключей, всплески высокого напряжения, дополнительную мощность рассеяния на силовых транзисторах, ложные срабатывания и т.д.

Микросхема драйвера IR2110 является одной из многих схем, применяемых для полумостовых высоковольтных инверторов. Полумостовой инвертор на IGBT транзисторах показан на рис. 4. Резисторы R2 и R3 служат для уменьшения скорости переключения силовых транзисторов. Дело в том, что управление затворами мощных IGBT или МОП транзисторов непосредственно от драйвера IR2110 или ему аналогичного может привести к нежелательно высоким скоростям переключения.

Реальная конструкция инвертора обладает конечными значениями величин индуктивностей соединений, на которых выделяются всплески напряжений при переключениях плеч, причем чем меньше время переключения, тем больше амплитуда всплеска. Величины резисторов R2 и R3 выбираются таким образом, чтобы фронты переключений не порождали значительных потерь и больших импульсных амплитуд, нарушающих работу инвертора.

Рис.4 Схема полумостового инвертора на IGBT транзисторах

На входы 10 и 12 драйвера должны поступать две импульсные последовательности, причем вход 10 управляет транзистором VT1, а вход 12 – транзистором VT2. Вход 11 включает или выключает инвертор и может использоваться для защиты, то есть при подаче напряжения на вход 11 работа преобразователя прекращается.

Драйвер IR2155, позволяющий получить самую простую схему полумостового преобразователя, представляет собой монолитную интегральную схему, способную управлять двумя транзисторами в полумостовом преобразователе. Они могут работать при напряжениях питания до 600 В, имеют четкие формы выходных импульсов с коэффициентами заполнения от 0 до 99 %.

Функциональная схема драйвера IR 2151 показана на рис. 5.

Рис.5 Функциональная схема драйвера IR 2151

Драйвер содержит входную часть на операционных усилителях, которая может работать в автогенераторном режиме. Частота определяется дополнительными навесными элементами, подключаемыми к выводам C1, R1. Генераторы паузы на нуле обеспечивают задержки во включении выходного транзистора на 1 мкс после закрытия предыдущего транзистора. В канале верхнего плеча осуществляется гальваническая развязка, далее напряжение усиливается усилителем мощности на полевых транзисторах и выходное напряжение с выхода HO(7) поступает на затвор силового транзистора. Нижнее плечо работает от задающего генератора через генератор паузы на нуле и устройство задержки.

Для обеспечения стабильности работы драйвера внутри имеется стабилитрон, ограничивающий напряжение Vcc(1) на уровне 15 В.

 

Литература

  1. Short form catalog International Rectifier. Product Digest.
  2. В.И. Сенько и др. Электроника и микросхемотехника (на укр. яз.). Том 1. – К.: Обереги, 2000.
  3. М. Браун. Источники питания. Расчет и конструирование. Пер. с англ. – К.: МК-Прогрес, 2007.
  4. Микросхемы для импульсных источников питания – 3. – М.: Изд. дом «Додека – ХХI», 2002.

Как собрать драйвер полевого транзистора из дискретных компонентов

Как собрать драйвер полевого транзистора из дискретных компонентов

Драйвером обычно называется отдельное устройство или отдельный модуль, микросхема в устройстве, обеспечивающие преобразование электрических управляющих сигналов в электрические или другие воздействия, пригодные для непосредственного управления исполнительными или сигнальными элементами.

Одно дело, когда для скоростного управления мощным полевым транзистором с тяжелым затвором есть готовый драйвер в виде специализированной микросхемы наподобие UCC37322, и совсем другое, когда такого драйвера нет, а схему управления силовым ключом необходимо реализовать здесь и сейчас.

В таких случаях нередко приходится прибегать к помощи дискретных электронных компонентов, которые есть в наличии, и уже из них собирать драйвер затвора. Дело, казалось бы, не хитрое, однако для получения адекватных временных параметров переключения полевого транзистора, все должно быть сделано качественно и работать правильно.

Весьма стоящая, лаконичная и качественная идея с целью решения аналогичной задачи была предложена еще в 2009 году Сергеем BSVi в его блоге «Страничка эмбеддера».

Схема была успешно протестирована автором в полумосте на частотах до 300 кГц. В частности, на частоте 200 кГц, при нагрузочной емкости в 10 нФ, удалось получить фронты длительностью не более 100 нс. Давайте же рассмотрим теоретическую сторону данного решения, и попробуем подробно разобраться, как эта схема работает.

Основные токи заряда и разряда затвора при отпирании и запирании главного ключа текут через биполярные транзисторы выходного каскада драйвера. Данные транзисторы должны выдержать пиковый ток управления затвором, а их максимальное напряжение коллектор-эмиттер (по datasheet) обязано быть больше чем напряжение питания драйвера. Обычно для управления затвором полевика достаточно 12 вольт. Что касается пикового тока, то предположим, что он не превысит 3А.

Если для управления ключом необходим ток более высокий, то и транзисторы выходного каскада должны быть более мощными (разумеется, с подходящей граничной частотой передачи тока).

Для нашего примера в качестве транзисторов выходного каскада подойдет комплиментарная пара — BD139 (NPN) и BD140 (PNP). У них предельное напряжение коллектор-эмиттер составляет 80 вольт, пиковый ток коллектора 3А, граничная частота передачи тока 250 МГц (важно!), а минимальный статический коэффициент передачи тока 40.

Для повышения коэффициента усиления по току в схему выходного каскада добавлена дополнительная комплиментарная пара слаботочных транзисторов КТ315 и КТ361 с максимальным обратным напряжением 20 вольт, минимальным статическим коэффициентом передачи тока 50, и граничной частотой 250 МГц — такой же высокой, как у выходных транзисторов BD139 и BD140.

В итоге на выходе получаем две пары транзисторов, включенных по схеме Дарлингтона с общим минимальным коэффициентом передачи по току 50*40 = 2000 и с граничной частотой равной 250 МГц, то есть теоретически в пределе скорость переключения может достигать единиц наносекунд. Но поскольку здесь речь идет об относительно продолжительных процессах заряда и разряда емкости затвора, то это время будет на порядок выше.

Управляющий сигнал необходимо подавать на объединенные базы транзисторов КТ315 и КТ361. Токи открывания баз NPN (верхних) и PNP (нижних) транзисторов должны быть разделены.

Для этого в схему можно было бы установить разделительные резисторы, но гораздо более эффективным для данной конкретной схемы оказалось решение с установкой вспомогательного блока на КТ315, резисторе и диоде 1n4148.

Функция этого блока — быстро активировать базы верхних транзисторов слаботочного каскада при подаче высшего напряжения на базу данного блока, и так же быстро через диод подтянуть базы к минусу, когда на базе блока появится сигнал низшего уровня.

Чтобы иметь возможность управлять данный драйвером от слаботочного источника сигнала с выходным током порядка 10 мА, в схему установлены слаботочный полевой транзистор КП501 и высокоскоростная оптопара 6n137.

При подаче управляющего тока через цепь 2-3 оптопары, выходной биполярный транзистор внутри нее переходит в проводящее состояние, причем на выводе 6 находится открытый коллектор, к которому и присоединен резистор, подтягивающий затвор слаботочного полевого транзистора КП501 к плюсовой шине питания оптопары.

Таким образом, когда на вход оптопары подается сигнал высокого уровня, на затворе полевика КП501 будет сигнал низкого уровня, и он закроется, тем самым обеспечив возможность для протекания тока через базу верхнего по схеме КТ315 — драйвер станет заряжать затвор главного полевика.

Если же на входе оптопары сигнал низкого уровня или сигнал отсутствует, то на выходе из оптопары будет сигнал высокого уровня, затвор КП501 зарядится, его стоковая цепь замкнется, а база верхнего по схеме КТ315 подтянется к нулю.

Выходной каскад драйвера начнет разряжать затвор управляемого им ключа. Важно учесть, что в данном примере напряжение питания оптопары ограничено 5 вольтами, а главный каскад драйвера питается напряжением 12 вольт.

Ранее ЭлектроВести писали, почему в современных инверторах используют транзисторы, а не тиристоры.

По материалам: electrik.info.

Транзисторы

Транзистором называется преобразовательный полупроводниковый прибор, имеющий не менее трех выводов, пригодный для усиления мощности. Наиболее распространенные транзисторы имеют два p-n перехода. В них используются носители заряда обеих полярностей. Такие транзисторы называются биполярными.

Основным элементом транзистора является кристалл германия или кремния, в котором созданы три области различных проводимостей. Две крайние области всегда обладают проводимостью одинакового типа, противоположного проводимости средней области. Если крайние области обладают электронной проводимостью, а средняя соответственно дырочной, то такой транзистор называется транзистором типа n-p-n. Когда проводимости расположены на оборот — p-n-p типа. Физические процессы, протекающие в транзисторах обоих типов, аналогичны. Средняя область транзистора называется базой, одна крайняя область называется эмиттером, другая — коллектором. К каждой из областей припаяны выводы, при помощи которых прибор включается в схему. В транзисторе имеются два p-n перехода — эмиттерный (между эмиттером и базой) и коллекторный (между базой и коллектором). Расстояние между ними очень мало — порядка нескольких микрометров.

Полевым транзистором называется трехэлектродный полупроводниковый прибор, в котором ток создают основные носители заряда под действием продольного электрического поля, а управление величиной тока осуществляется поперечным электрическим полем, создаваемым напряжением, приложенным к управляющему электроду.

Все полевые транзисторы по своим конструктивным особенностям можно разделить на две группы: полевые транзисторы с p-n переходами (канальные, или униполярные, транзисторы) и полевые транзисторы с изолированным затвором (МДП или МОП — транзисторы). Тонкий слой полупроводника типа n (или p), ограниченный с двух сторон электронно — дырочными переходами, называется каналом. Включение канала в электрическую цепь обеспечивается с помощью двух электродов, один из которых называется истоком, а второй — стоком. Вывод, подсоединенный к областям p-типа, является управляющим электродом и называется затвором. Выводы исток, сток, затвор соответствуют эмиттеру, коллектору и базе обычного биполярного транзистора.

Основные параметры и аспекты применения дискретных IGBT

1 октября 2018

Инструкция по особенностям практического применения дискретных транзисторов IGBT с экскурсом в основы теории и результатами практических испытаний для трех моделей IGBT производства Infineon: IRG7PC35SD для резонансных приложений с мягкими переключениями, IRGB20B50PD1 для работы на высоких частотах и IRGP4069D для высокочастотных приложений с жесткими переключениями.

Требования к схеме управления затвором

Влияние импеданса цепи затвора на потери при переключениях

Эквивалентная схема биполярного транзистора с изолированным затвором (БТИЗ, IGBT) состоит из биполярного PNP-транзистора, управляемого N-канальным МОП-транзистором (MOSFET) (рисунок 1). Вывод, называемый коллектором, фактически является эмиттером для внутреннего PNP-транзистора. MOSFET управляет базой PNP-транзистора и определяет скорость включения и падение напряжения на IGBT в открытом состоянии. Таким образом, выход внешнего драйвера подключается напрямую к затвору MOSFET, ток стока которого становится базовым током PNP-транзистора. Поскольку характеристики включения IGBT сильно зависят от параметров входного МОП-транзистора, то потери на включение определяются величиной импеданса цепи затвора. С другой стороны, характеристики выключения в основном зависят от скорости рекомбинации неосновных носителей, а значит, параметры встроенного МОП-транзистора значительно меньше влияют на уровень потерь IGBT при выключении.

Рис. 1. Эквивалентная схема IGBT

В результате, в отличие от силовых МОП-транзисторов, заряд затвора IGBT не полностью определяет уровень динамических потерь. В то же время заряд затвора остается важным параметром при расчете цепей управления IGBT.

Увеличение импеданса в цепи затвора продлевает плато Миллера и уменьшает скорость спадания тока. В то же время влияние импеданса на общие потери коммутации зависит от конструкции IGBT и его динамических характеристик. При этом потери на включение для всех без исключения IGBT сильно зависят от величины импеданса. Однако влияние импеданса на потери при выключении зависит от скорости IGBT и его технологии. Например, trench-IGBT и высокоскоростные IGBT отличаются большей чувствительностью к импедансу в цепи затвора. Однако, в любом случае верно, что входной импеданс затвора IGBT имеет большое значение, а дополнительный импеданс, вносимый цепью управления, оказывает меньшее влияние на уровень потерь.

На практике импеданс в цепи затвора часто увеличивают, чтобы ограничить выбросы тока, вызванные восстановлением обратного диода, при включении. Такой подход во многих случаях способен значительно снизить динамические потери. При этом негативное влияние от увеличения импеданса можно минимизировать с помощью дополнительного обратного диода, включенного параллельно затворному резистору. Это позволит сократить потери при выключении.

Зависимость энергии переключения от величины сопротивления в цепи затвора, как правило, всегда приводится в документации на современные силовые ключи.

Влияние импеданса цепи затвора на чувствительность к шуму

В биполярных транзисторах с изолированным затвором любое изменение напряжения dv/dt на коллекторе оказывает влияние на напряжение на затворе из-за наличия паразитной емкостной связи. Эта связь определяется делителем, образованным емкостью Миллера CRES и емкостью «затвор-эмиттер» CGE (рисунок 2а). При определенном соотношении этих двух емкостей и импеданса затвора (ZG) выброс напряжения может оказаться достаточным для включения IGBT.

Если затвор не имеет жесткой связи с эмиттером, то определенный высокий уровень dv/dt на коллекторе может вызвать на затворе значительный выброс напряжения, превышающий пороговое напряжение, что приведет к переходу IGBT в открытое состояние. По мере перехода IGBT в проводящее состояние происходит ограничение dv/dt, спад напряжения на затворе и окончательное закрывание транзистора (рисунок 2б). В результате описанного выше процесса  через IGBT протекает короткий импульс сквозного тока, который вызывает дополнительные потери мощности.

Обратите внимание, что сквозной ток, протекающий через IGBT, сложно отделить от тока перезаряда выходной емкости (рисунок 2б). Сквозной ток начинает преобладать только после того, как напряжение затвора превысит пороговое значение (приблизительно от 3 до 5 В), а емкостный ток перезаряда начинает протекать сразу же, как только начинается изменение dv/dt на коллекторе.

Чтобы уменьшить чувствительность к помехам и снизить риск паразитного включения IGBT, импеданс в цепи затвора в выключенном состоянии транзистора должен быть минимальным, а напряжение затвора близким к нулю. Для решения этой задачи иногда применяют дополнительный PNP-транзистор в цепи затвора IGBT (рисунок 2а).

В приложениях с высокой мощностью для включения и выключения IGBT часто используют уровни  управляющего напряжения затвора от +15 В до -5…-15 В соответственно. Это обеспечивает дополнительный уровень помехоустойчивости и улучшает характеристики переключения. Однако такой подход требует создания дополнительного изолированного источника питания для IGBT верхнего плеча, что увеличивает стоимость схемы управления. Важно отметить, что если в приложении необходимо только лишь обеспечить защиту от dv/dt, то для решения проблемы может быть достаточно дополнительного конденсатора, включенного между затвором и истоком, или рассмотренного выше варианта с PNP-транзистором (рисунок 2а).

Рис. 2. Изменение напряжения dv/dt на коллекторе нижнего IGBT приводит к изменению напряжения на затворе и появлению сквозного тока

Таким образом, бывают случаи, когда увеличение рассеиваемой мощности из-за эффекта dv/dt оказывается меньшим из зол по сравнению с необходимостью создания сложной схемы управления с отрицательным напряжением для управления затвором. В любом случае индуктивность в цепи затвора должна быть минимизирована, например, за счет подключения затвора с помощью нескольких параллельных дорожек на печатной плате или применения нескольких скрученных проводов.

Компания Infineon предлагает большой выбор драйверов, отвечающих требованиям самих разных приложений. Например, схема, представленная на рисунке 3, обеспечивает простое, недорогое и эффективное решение для управления затвором IGBT. В качестве еще одного примера можно привести схему, изображенную на рисунке 4. В ней драйвер контролирует напряжение затвора, что позволяет ему при необходимости ограничивать ток и обеспечивать защиту от короткого замыкания.

Рис. 3. IR2110 обеспечивает простое, высокопроизводительное и недорогое решение для управления полумостовой схемой

Рис. 4. Схема управления IGBT с защитой от короткого замыкания

Вклад общей индуктивности эмиттера в импеданс цепи затвора

Под понятием «общая индуктивность эмиттера» понимается индуктивность, которая является общей для тока коллектора и тока затвора (рисунок 5а). Эта индуктивность определяет дополнительную обратную связь между коллектором и затвором, которая пропорциональна L·diC/dt. Не сложно заметить, что падение напряжения на этой индуктивности вычитается из напряжения затвор-исток при включении транзистора, и добавляется к нему при выключении. Таким образом, общая индуктивность замедляет процесс переключения IGBT.

Это явление похоже на эффект Миллера, за исключением того, что оно пропорционально скорости изменения тока коллектора di/dt, а не его напряжения dv/dt. В обоих случаях обратная связь пропорциональна крутизне передаточной характеристики IGBT, которая определяется размером кристалла и используемой технологией. Значение di/dt на уровне 0,7 A/нс является распространенным для схем с IGBT. В таком случае при наличии паразитной индуктивности 10 нГн, на ней можно ожидать падения напряжения 7 В. Стоит отметить, что обратная связь замедляет процесс включения, тем самым ограничивая diC/dt.

Простые меры предосторожности могут снизить общую индуктивность эмиттера до минимального значения, которое определяется паразитной индуктивностью корпуса транзистора. Для этого следует разделить проводники, используемые для протекания тока коллектора, и проводники, относящиеся к схеме управления затвором (рисунок 5б). При этом, чтобы дополнительно уменьшить индуктивность, необходимо свить прямой и обратный проводники в цепи затвора или разместить их параллельно, если речь идет о печатной плате. Эти методы повышают стойкость к изменению di/dt и уменьшают звон в цепи затвора.

Рис. 5. Общая индуктивность эмиттера может быть уменьшена за счет использования отдельных проводников для протекания тока коллектора и для управления затвором

Траектории переключения и область безопасной работы ОБР

При работе с большими токами и напряжениями неосновные носители могут быть неравномерно распределены по кристаллу IGBT, что в случае выхода из области безопасной работы (ОБР) приводит к отказу силового ключа. В разделе 6 руководства AN-983 от Infineon/International Rectifier рассматриваются условия, при которых это происходит.

Распределение тока внутри кристалла может быть различным и зависит от знака связанного с ним di/dt. Поэтому область безопасной работы представляется в виде двух графиков: ОБР с прямым смещением и ОБР с обратным смещением.

ОБР с прямым смещением относится к работе транзисторов в линейных режимах A и B, а также в режиме короткого замыкания, который можно рассматривать как предельный случай режима B. Данные о тепловых ограничениях при работе IGBT с импульсными токами часто включаются в график ОБР, хотя на кривой теплового отклика (Transient Thermal Response) эта же информация представляется более полно и точно. Из-за ограниченного использования IGBT в линейном режиме график ОБР с прямым смещением обычно не приводится в документации.

ОБР с обратным смещением относится к случаю выключения индуктивной нагрузки и к случаю выключения при коротком замыкании (рисунок 6). На первом этапе при отключении индуктивной нагрузки напряжение на коллекторе транзистора увеличивается от низкого значения VCE(sat) до полного напряжения питания, при этом ток коллектора остается постоянным. После этого напряжение на коллекторе продолжает нарастать и превышает напряжение питания. Когда напряжение на коллекторе превышает напряжение питания на величину прямого падения p-n-перехода, диод, включенный параллельно индуктивности, открывается, тем самым отводя ток от транзистора. Таким образом, рабочая точка движется вдоль линии постоянного тока до тех пор, пока напряжение коллектор-эмиттер не превысит напряжение питания (рисунок 6б). Дальнейшее увеличение напряжения коллектора зависит от величины паразитной индуктивности LS и скорости выключения.

Рис. 6. Отключение индуктивной нагрузки и траектория рабочей точки во время переходного процесса

Очевидно, что для обеспечения безопасной коммутации вся траектория переключения должна лежать внутри ОБР.{t}{V_{CE}(i)\times i(t)dt},$$

где t — длина импульса. Зная энергию, можно рассчитать рассеиваемую мощность, для чего следует умножить энергию на частоту. При этом полагается, что потери оказываются незначительными, когда транзистор выключен i(t) ≈ 0. К сожалению, не существует простых выражений для определения напряжений и токов для IGBT в момент, когда он проводит ток. Следовательно, для упрощения мы будем разделять потери на две составляющие: статические потери проводимости и динамические потери при переключениях.

К потерям проводимости относятся потери, возникающие между окончанием интервала включения и началом интервала выключения. Обычно энергия включения измеряется в интервале времени между моментом, когда ток коллектора превышает значение 5% от номинального значения, до момента, когда напряжение «коллектор-эмиттер» падает до 5% от испытательного напряжения. Аналогично, энергия выключения измеряется с момента, когда напряжение «коллектор-эмиттер» превышает 5% от испытательного напряжения. Таким образом, потери проводимости следует отсчитывать с момента, когда напряжение «коллектор-эмиттер» составляет менее 5% от испытательного или питающего напряжения (см. руководство AN-983 от  Infineon/International Rectifier, раздел 8.4). Зависимость VCE(i) в приведенной выше формуле определяет поведение IGBT в открытом состоянии. Эта информация представлена в документации в виде графиков и табличных значений.

Как правило, в таблицах приводится информация только для нескольких конкретных рабочих точек. Однако, используя дополнительные данные, получаемые из графиков, можно выполнить расчет потерь проводимости. Поиск максимального напряжения VCE при любом токе и температуре делается за три шага:

  1. Определите типовое значение напряжения коллектор-эмиттер VCE из графика типовой зависимости VCE от тока коллектора iC для заданных значений тока и температуры кристалла.
  2. Определите коэффициент разброса прямого падения напряжения VCE. Для этого разделите максимальное значение VCE на типовое значение VCE, взятые из табличных данных.
  3. Умножьте значение VCE, полученное на первом шаге, на коэффициент разброса.

Умножая полученное максимальное значение VCE на величину номинального тока и на длительность импульса, получаем энергию потерь проводимости. Если же требуется рассчитать мощность потерь, то произведение тока и напряжения следует умножать на коэффициент заполнения.

Описанный алгоритм расчета относится к случаю, когда ток коллектора имеет постоянное значение в течение интервала проводимости. Если форма сигнала в течение интервала проводимости непостоянна, то интервал следует разделить на части, и рассчитать потери проводимости для каждой из частей с последующим суммированием. В идеале самым универсальным способом является построение математической модели с аппроксимацией зависимости тока и напряжения, а также формы рабочего сигнала с дальнейшим выполнением интегрирования.

Потери при жестких переключениях

При определении динамических потерь при жестких переключениях следует отдельно рассчитывать потери при включении и потери при выключении.

Как и в случае с потерями проводимости, потери при жестких переключениях рассчитываются с учетом графиков и табличных данных, приведенных в документации.

Как поясняется в разделе 8.4 руководства AN-983 от Infineon/International Rectifier, значение энергии переключения, указанное в документации, приводится для конкретных тестовых условий и для конкретной схемы испытаний. Важно помнить, что энергия переключения значительно изменяется с температурой, и все вычисления должны проводиться с учетом данных, приведенных для заданной температуры.

Потери на включение и выключение могут быть рассчитаны с использованием методики, описанной в предыдущем разделе, с некоторыми дополнительными изменениями:

  • Показатели потерь энергии должны быть масштабированы с учетом рабочего напряжения. Как уже было сказано, данные, представленные в документации, были получены при определенном значении напряжения, которое может иметь другое значение в рассчитываемой схеме.
  • Точно так же сопротивление в цепи затвора тестовой схемы, применяемой в документации, может отличаться от сопротивления, используемого в фактическом приложении. В последнее время в документации приводится зависимость энергии переключения от сопротивления в цепи затвора.
  • чтобы получить значение потерь мощности, следует умножить энергию переключения на частоту.

Переходной процесс при включении транзистора осложняется из-за восстановления диода, подключенного параллельно индуктивной нагрузке (рисунок 6а). Когда IGBT включается, через него начинает протекать не только ток нагрузки, но и ток восстановления обратного диода. Данные о потерях из-за встроенного диода также приводят в современной документации.

Ранее при тестировании IGBT использовалась другая тестовая схема с «идеальным диодом». Поэтому в документации приводились данные о потерях на включение без потерь на диоде. Таким образом, при необходимости эти составляющие потерь следует рассчитать по отдельности и сложить.

На рисунке 7 показана типовая форма сигналов при включении. Обратите внимание, что обратное восстановление диода увеличивает динамические потери за счет двух механизмов:

Рис. 7. Обратное восстановление диода увеличивает ток нагрузки (IRGP4066D, 400 В, 75 А, 175°C)

  • из-за того, что ток восстановления диода добавляется к току транзистора, когда напряжение коллектора все еще близко к напряжению питания;
  • из-за того, что уменьшение напряжения происходит с задержкой.

Как и в случае с расчетом потерь проводимости, потери при переключениях можно рассчитать с помощью относительно простых алгоритмов.

Компромисс между потерями проводимости и потерями при переключениях: оптимизация транзисторов

Для повышения эффективности преобразовательных схем компания Infineon предлагает использовать специализированные IGBT, предназначенные для работы в составе конкретных приложений. Например, существуют транзисторы, оптимизированные для питания двигателей, для индукционного нагрева, для плазменных дисплеев и т.д.

В результате номенклатура IGBT разрастается и становится достаточно разнообразной. По этой причине  поиск оптимального транзистора превращается в сложный итерационный процесс, который практически невозможно формализовать. Кроме того, разработчикам силовых схем приходится искать компромисс между потерями на переключения, потерями проводимости и требованиями устойчивости к короткому замыканию. Чтобы продемонстрировать необходимость компромисса, приведем пример сравнения различных транзисторов в рамках типовой импульсной схемы с учетом тепловых показателей.

Для сравнения различных моделей IGBT была выбрана популярная полумостовая схема, коммутирующая индуктивную нагрузку. Условия проведения испытаний приведены на рисунке 8, и могут быть изменены в соответствии с конкретным приложением. Вместо полумоста можно использовать обратноходовые или резонансные схемы. Из рисунка 8 становится видно, что изменение рабочей частоты по-разному влияет на значение максимального коммутируемого тока для разных транзисторов.

Рис. 8. Зависимость максимального коммутируемого тока от частоты переключений для трех разных IGBT

На рисунке 8 изображены результаты испытаний для следующих моделей IGBT:

  • IRG7PC35SD – IGBT-транзистор, выполненный по trench-технологии с высокой плотностью и разработанный с целью получения минимального падения напряжения. Этот транзистор является идеальным выбором для резонансных приложений (с мягкими переключениями). Как и следовало ожидать, в результате испытаний IRG7PC35SD продемонстрировал отличные показатели на низких частотах.
  • IRGB20B50PD1 – планарный транзистор технологии Gen 5. Несмотря на то, что IRGB20B50PD1 был разработан в конце девяностых годов, он по-прежнему остается одним из лучших транзисторов для работы на высоких частотах, несмотря на то, что падение напряжения у него выше, чем у транзисторов, выполненных по trench-технологии.
  • IRGP4069D – IGBT-транзистор, производимый по trench-технологии, предназначенный для высокочастотных приложений с жесткими переключениями.

Тепловой анализ

IGBT, как и силовые МОП-транзисторы и тиристоры, имеют ограничения, связанные с тепловым режимом эксплуатации. Грамотно выполненный тепловой анализ становится ключом к их эффективному использованию. Эта тема подробно освещена в руководстве AN-1057 от Infineon/International Rectifier.

В общем случае целью теплового анализа является выбор оптимального радиатора. Для этого может потребоваться ряд расчетов, как указано в руководстве AN-949 от Infineon/International Rectifier.

Чтобы значение теплового сопротивления «корпус-радиатор» соответствовало значению, указанному в документации, следует при монтаже использовать то же самое усилие затяжки. Стоит помнить, что чрезмерное усилие затяжки приводит к деформации корпуса и может повредить кристалл. С другой стороны, недостаточный момент затяжки приводит к ухудшению теплоотвода.

Повышение температуры при работе с короткими импульсами тока может быть рассчитано с помощью кривой теплового отклика (thermal response curve), которая приводится в документации. Этот расчет рассматривается в разделе «Peak Current Rating» руководства AN-949 от Infineon/International Rectifier.

Для коротких импульсов (5 мс или менее) повышение температуры, рассчитанное с помощью кривой теплового отклика, как правило, оказывается неточным. В таких случаях требуется выполнение подробного моделирования.

Замена MOSFET-транзисторов на IGBT

Во многих высоковольтных приложениях не удается использовать МОП-транзисторы, несмотря на их отличные динамические характеристики. Причиной этого является их невысокая устойчивость к помехам и наличие значительных паразитных индуктивностей. В таких случаях IGBT становятся наиболее привлекательной альтернативой по целому ряду причин. К преимуществам IGBT можно отнести:

  • минимальные потери проводимости, которые слабо зависят от температуры.
  • меньшая площадь кристалла по сравнению с MOSFET, что приводит к уменьшению входной емкости, упрощению управления затвором и снижению стоимости.
  • отсутствие резких перепадов di/dt и dv/dt, что обеспечивает минимальный уровень генерируемых помех и хорошие показатели ЭМС.
  • высокие динамические характеристики встроенных диодов, которые значительно превосходят показатели встроенных диодов MOSFET, благодаря чему при переключениях генерируются меньшие импульсы тока. Это является большим плюсом для приложений, в которых обратный диод является обязательным элементом схемы.

Поскольку корпусные исполнения и назначение выводов у MOSFET и IGBT совпадает, то при их замене друг на друга никаких механических изменений или модификаций печатной платы не требуется.

Требования к управлению затворами IGBT и МОП-транзисторов в значительной степени совпадают. В большинстве случаев для нормального включения будет достаточно 12…15 В, а при выключении можно обойтись без отрицательных запирающих напряжений. Так как входная емкость у IGBT меньше, чем у MOSFET, то чтобы избежать звона, в ряде схем может потребоваться увеличение сопротивления резистора в цепи затвора.

Рекомендации по параллельному включению IGBT

При параллельном включении нескольких IGBT удается уменьшить потери проводимости и снизить тепловое сопротивление. В то же время потери при переключениях, наоборот, увеличиваются. Таким образом, если основной вклад в общие потери вносит динамическая составляющая, то использование параллельного включения позволит улучшить только тепловые характеристики.

Параллельное включение МОП-транзисторов можно выполнить без особых проблем из-за положительного температурного коэффициента их потерь проводимости, в то время как потери на переключения для MOSFET в значительной степени не зависят от температуры. У IGBT наблюдается обратная картина – потери проводимости слабо зависят от температуры, зато потери на переключение имеют значительный положительный температурный коэффициент. По этой причине использование параллельного включения IGBT оказывается не таким простым, как для МОП-транзисторов.

Вопросы параллельного включения МОП-транзисторов были подробно рассмотрены в руководстве AN-941 от Infineon/International Rectifier. Большинство выводов, сделанных в AN-941, справедливы и для IGBT. При необходимости читатель может ознакомиться с ними самостоятельно. Далее будут рассмотрены только те вопросы, которые характерны для IGBT.

Напряжение насыщения VCE(on) в IGBT слабо зависит от тока и температуры, в то время как для МОП-транзисторов падение напряжения на открытом канале сильно зависит от обоих параметров. Когда два IGBT работают параллельно, напряжение VCE(on) для обоих транзисторов будет одинаковым в «принудительном» порядке. Таким образом, при заданной нагрузке через один IGBT может протекать больше тока, чем через другой. Эта разбалансировка для малых значений токов очень часто оказывается достаточно значительной и достигает 75…100%. Само по себе неравномерное распределение токов не является чем-то критическим, однако это оказывает значительное влияние на перегрев и потери на переключения. Рассмотрим эти вопросы подробнее.

Температура перехода: Поскольку падение напряжения одинаково для обоих IGBT, то транзистор, через который протекает больше тока, рассеивает большую мощность и имеет больший перегрев кристалла. Это смягчается тремя факторами:

  1. Обширные испытания показали, что неравномерное распределение нагрузки имеет тенденцию к уменьшению по мере увеличения тока. Это связано с тем, что разница в напряжениях насыщения сокращается с ростом тока. Таким образом, значительная разбалансировка при малых токах оказывается не такой значительной при больших токах.
  2. Обеспечение хорошей тепловой связи между кристаллами транзисторов гарантирует, что, несмотря на значительный дисбаланс токов, температурный перепад будет находиться в пределах нескольких градусов.
  3. Существуют IGBT с небольшим положительным температурным коэффициентом. Они становятся оптимальным выбором, если требуется параллельное включение транзисторов.

Потери коммутация при рассогласовании токов: вполне очевидно, что IGBT, который проводит больше тока, переключается также при большем токе. Следовательно, на него будет приходиться не только большая часть потерь проводимости, но большая часть динамических потерь на переключения.

Казалось бы, существует лавинообразный процесс, который должен привести к тому, что из-за более высоких потерь температура перегруженного IGBT превысит допустимое значение. Однако аналитический и экспериментальный анализ показал, что с увеличением тока дисбаланс между транзисторами уменьшается, а отличие температур сокращается до нескольких градусов. Это, как было сказано выше, связано с выравниванием напряжений насыщения при увеличении токовой нагрузки.

Стоит отметить, что наиболее эффективным методом борьбы с неравномерным распределением токов при параллельном включении является отбор транзисторов. Еще одной важной причиной разбалансировки являются различия в пороговых напряжениях, что особенно заметно у trench-IGBT. Таким образом, подбор транзисторов с согласованными значениями VCE(on) и VGS(th) является эффективным способом защиты от неравномерного распределения токов.

В дополнение к совету, озвученному в предыдущем абзаце, рекомендуется следовать рекомендациям, упомянутым в руководстве AN-941:

  • Используйте отдельные резисторы затвора для устранения риска паразитных колебаний.
  • Убедитесь, что транзисторы, включенные параллельно, имеют сильную тепловую связь.
  • Выравнивайте значения общей индуктивности эмиттера и уменьшайте ее до величины, которая не оказывает большого влияния на общие потери коммутации на заданной частоте.
  • Минимизируйте индуктивность рассеяния до значения, которое обеспечивает допустимое значение выбросов напряжения при максимальном рабочем токе.
  • Убедитесь, что схема управления имеет минимальное собственное сопротивление.
  • Защитные стабилитроны в цепи затвора могут вызывать колебания. Если без них не обойтись, то следует размещать их между выходом драйвера и резистором затвора.
  • Помните, что конденсаторы в цепи затвора замедляют коммутацию, тем самым увеличивая рассогласование между устройствами, а также могут вызывать колебания.
  • Паразитные составляющие должны быть минимизированы. Проводящий рисунок и электрические соединения должны быть максимально симметричными для всех транзисторов.

Оригинал статьи

•••

Наши информационные каналы

Microsoft Word — TSQ50404-RGS00TS65E_Rev.001

% PDF-1.6 % μῦ 1 0 obj > эндобдж 3 0 obj > эндобдж 4 0 объект > транслировать PScript5.dll Версия 5.2.22016-10-05T11: 58: 38 + 09: 002016-10-05T11: 58: 38 + 09: 00application / pdf

  • Microsoft Word — TSQ50404-RGS00TS65E_Rev.001
  • 112577
  • Acrobat Distiller 11.0 (Windows) uuid: 969f1afb-9123-48b7-95b5-8fa329b68f0fuid: 24226190-dcfb-402a-b9b8-c717296a0076 конечный поток эндобдж 6 0 obj > эндобдж 7 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > транслировать HVmoHί ؏ p} gW «/ ʩF 9JI ꓋ O @ ڿ ϲ`08iu52; 3gWw # Ψrp% & I5b # _Ƙ!%>` LdbaE1, HR #) e̔F * LZP, 5JLsJ & 5 & 5 («8bKXy ՛ ycUiC YC -mVRh * 6cXD + Sg

    Что такое IGBT — работа, работа, приложения и различные типы IGBT

    Самыми популярными и часто используемыми силовыми электронными переключателями являются биполярный транзистор BJT и полевой МОП-транзистор.Мы уже подробно обсудили работу BJT и MOSFET, а также то, как они используются в схемах. Но оба этих компонента имели некоторые ограничения для использования в приложениях с очень высоким током. Итак, мы переместили еще одно популярное силовое электронное коммутационное устройство под названием IGBT. Вы можете думать о IGBT как о слиянии BJT и MOSFET, эти компоненты имеют входные характеристики BJT и выходные характеристики MOSFET. В этой статье мы познакомимся с основами IGBT , с тем, как они работают и как использовать их в схемах.

    Что такое IGBT?

    IGBT — это короткая форма биполярного транзистора с изолированным затвором . Это трехконтактное полупроводниковое переключающее устройство, которое можно использовать для быстрого переключения с высокой эффективностью во многих типах электронных устройств. Эти устройства в основном используются в усилителях для переключения / обработки сложных волновых паттернов с широтно-импульсной модуляцией (ШИМ). Типичный символ IGBT вместе с его изображением показан ниже.

    Как упоминалось ранее, IGBT представляет собой смесь BJT и MOSFET. Символ IGBT также представляет собой то же самое, поскольку вы можете видеть, что сторона входа представляет собой полевой МОП-транзистор с выводом затвора, а сторона вывода представляет собой BJT с коллектором и эмиттером. Коллектор и Эмиттер являются проводящими клеммами, а затвор — это управляющая клемма , с помощью которой управляется операция переключения.

    Внутренняя структура IGBT IGBT

    может быть сконструирован с эквивалентной схемой, состоящей из двух транзисторов и MOSFET, поскольку IGBT обладает выходом указанной ниже комбинации транзистора PNP, транзистора NPN и MOSFET.IGBT сочетает в себе низкое напряжение насыщения транзистора с высоким входным сопротивлением и скоростью переключения полевого МОП-транзистора. Результат, полученный в результате этой комбинации, обеспечивает характеристики переключения выхода и проводимости биполярного транзистора, но напряжение регулируется как полевой МОП-транзистор.

    Поскольку IGBT представляет собой комбинацию MOSFET и BJT, они также называются разными именами. Различные названия IGBT — это транзистор с изолированным затвором (IGT), металлооксидный транзистор с изолированным затвором (MOSIGT), полевой транзистор с модуляцией усиления (GEMFET), полевой транзистор с кондуктивной модуляцией (COMFET).

    Работа IGBT

    IGBT имеет три вывода, прикрепленных к трем различным металлическим слоям, металлический слой вывода затвора изолирован от полупроводников слоем диоксида кремния (SIO2). БТИЗ состоит из 4 слоев полупроводника, соединенных между собой. Слой, расположенный ближе к коллектору, — это слой подложки p + , выше, это слой n- , другой p-слой находится ближе к эмиттеру, а внутри p-слоя у нас есть слои n + .Соединение между слоем p + и n-слоем называется переходом J2, а соединение между n-слоем и p-слоем называется переходом J1. Структура IGBT показана на рисунке ниже.

    Чтобы понять работу IGBT , рассмотрим источник напряжения V G , подключенный к клемме затвора по отношению к эмиттеру. Рассмотрим другой источник напряжения V CC , подключенный между эмиттером и коллектором, где коллектор остается положительным по отношению к эмиттеру.Из-за источника напряжения V CC переход J1 будет смещен в прямом направлении, тогда как переход J2 будет смещен в обратном направлении. Поскольку J2 имеет обратное смещение, ток не будет протекать внутри IGBT (от коллектора к эмиттеру).

    Сначала учтите, что на клемму Gate нет напряжения, на этом этапе IGBT будет в непроводящем состоянии. Теперь, если мы увеличим приложенное напряжение затвора, из-за эффекта емкости на слое SiO2 отрицательные ионы будут накапливаться на верхней стороне слоя, а положительные ионы будут накапливаться на нижней стороне слоя SiO2.Это вызовет введение отрицательно заряженных носителей заряда в p-область, чем выше приложенное напряжение V G , тем больше будет вставка отрицательно заряженных носителей. Это приведет к образованию канала между переходом J2, который позволяет току течь от коллектора к эмиттеру . Течение тока представлено как путь тока на рисунке, когда приложенное напряжение затвора V G увеличивается, величина тока, протекающего от коллектора к эмиттеру, также увеличивается.

    Типы IGBT

    IGBT классифицируется как два типа на основе буферного слоя n +, IGBT, которые имеют буферный слой n +, называются Punch through IGBT (PT-IGBT) , IGBT, которые не имеют буферного слоя n +, называются Non-Punch Through-IGBT (NPT-IGBT).

    Исходя из своих характеристик, NPT-IGBT и PT-IGBT называются симметричными и несимметричными IGBT. Симметричные IGBT — это те, которые имеют одинаковое прямое и обратное напряжение пробоя.Асимметричные IGBT — это те, у которых напряжение обратного пробоя меньше, чем напряжение прямого пробоя. Симметричные IGBT в основном используются в цепях переменного тока, тогда как асимметричные IGBT в основном используются в цепях постоянного тока, поскольку им не нужно поддерживать напряжение в обратном направлении.

    Разница между пробивкой через IGBT (PT-IGBT) и без пробивки через IGBT (NPT-IGBT)

    Пробивка через IGBT (PT-IGBT)

    Без пробивки — IGBT (NPT-IGBT)

    Они менее устойчивы к режимам короткого замыкания и имеют меньшую термическую стабильность.

    Они более надежны при отказе от короткого замыкания и обладают большей термостойкостью.

    Коллектор представляет собой сильно легированный слой P +

    Коллектор представляет собой слаболегированный P-слой.

    Он имеет небольшой положительный температурный коэффициент напряжения в открытом состоянии, поэтому параллельная работа требует большой осторожности и внимания.

    Температурный коэффициент напряжения в открытом состоянии строго положительный, поэтому параллельная работа проста.

    Потери при выключении более чувствительны к температуре, поэтому они значительно возрастают при более высокой температуре.

    Потеря выключения менее чувствительна к температуре, поэтому она останется неизменной с температурой.

    Работа IGBT как цепи

    Поскольку IGBT представляет собой комбинацию BJT и MOSFET, давайте рассмотрим их работу в виде принципиальной схемы. На приведенной ниже диаграмме показана внутренняя схема IGBT , которая включает в себя два BJT, один MOSFET и JFET. Контакты затвора, коллектора и эмиттера IGBT отмечены ниже.

    Коллектор транзистора PNP соединен с транзистором NPN через JFET, JFET соединяет коллектор транзистора PNP и базу транзистора PNP.Эти транзисторы скомпонованы таким образом, чтобы формировать паразитный тиристор, созданный для создания контура отрицательной обратной связи . Резистор RB помещается так, чтобы закоротить выводы базы и эмиттера NPN-транзистора, чтобы гарантировать, что тиристор не защелкивается, что приводит к защелкиванию IGBT. Используемый здесь JFET будет обозначать структуру тока между любыми двумя ячейками IGBT, позволяет использовать MOSFET и поддерживает большую часть напряжения.

    Характеристики переключения IGBT

    IGBT — это устройство , управляемое напряжением, , следовательно, ему требуется только небольшое напряжение на затвор, чтобы оставаться в состоянии проводимости.А поскольку это однонаправленные устройства, они могут переключать ток только в прямом направлении, то есть от коллектора к эмиттеру. Типичная схема переключения IGBT показана ниже, напряжение затвора V G подается на штырь затвора для переключения двигателя (M) с напряжения питания V +. Резистор Rs примерно используется для ограничения тока через двигатель.

    Входные характеристики IGBT можно понять из приведенного ниже графика. Первоначально, когда на вывод затвора не подается напряжение, IGBT находится в выключенном состоянии, и ток не течет через вывод коллектора.Когда напряжение, приложенное к выводу затвора, превышает пороговое напряжение , IGBT начинает проводить, и ток коллектора I G начинает течь между выводами коллектора и эмиттера. Коллекторный ток увеличивается относительно напряжения затвора, как показано на графике ниже.

    Выходные характеристики IGBT имеют три ступени. Первоначально, когда напряжение затвора V GE равно нулю, устройство находится в выключенном состоянии, это называется областью отсечки .Когда V GE увеличивается и если оно меньше порогового напряжения , то через устройство будет протекать небольшой ток утечки, но устройство все равно будет находиться в области отсечки. Когда напряжение V GE превышает пороговое значение, устройство переходит в активную область , и ток начинает течь через устройство. Протекание тока будет увеличиваться с увеличением напряжения V GE , как показано на графике выше.

    Приложения IGBT БТИЗ

    используются в различных приложениях, таких как приводы двигателей переменного и постоянного тока, нерегулируемые источники питания (ИБП), импульсные источники питания (SMPS), управление тяговыми двигателями и индукционный нагрев, инверторы, используемые для объединения полевых транзисторов с изолированным затвором для управления вход и биполярный силовой транзистор в качестве переключателя в одном устройстве и т. д.

    Пакеты IGBT

    GBT доступны в разных типах пакетов с разными названиями от разных компаний.Например, Infineon Technologies предлагает пакеты для сквозного монтажа и для поверхностного монтажа. Пакет сквозного типа включает TO-262, TO-251, TO-273, TO-274, TO-220, TO-220-3 FP, TO-247, TO-247AD. В комплект для поверхностного монтажа входят ТО-263, ТО-252.

    IGBT-транзистор

    — основы, характеристики, схема переключения и приложения

    IGBT — это сокращенная форма биполярного транзистора с изолированным затвором , комбинация биполярного переходного транзистора (BJT) и Металлооксидный полевой транзистор (MOS-FET) .Это полупроводниковое устройство, используемое для переключения связанных приложений.

    Поскольку IGBT представляет собой комбинацию полевого МОП-транзистора и транзистора , он имеет преимущества обоих транзисторов и полевого МОП-транзистора. MOSFET имеет преимущества высокой скорости переключения с высоким импедансом, а с другой стороны, BJT имеет преимущество в высоком усилении и низком напряжении насыщения, оба присутствуют в транзисторе IGBT. IGBT — это полупроводник с регулируемым напряжением , который обеспечивает большие токи коллектора-эмиттера с почти нулевым током затвора.

    Как уже говорилось, IGBT имеет преимущества как MOSFET, так и BJT, IGBT имеет такой же изолированный затвор, как и типичные MOSFET, и такие же выходные характеристики передачи. Хотя BJT — это устройство с управлением по току, но для IGBT управление зависит от MOSFET, поэтому это устройство с управлением напряжением, эквивалентное стандартным MOSFET.

    Эквивалентная схема IGBT и символ

    На изображении выше показана эквивалентная схема IGBT.Такая же структура схемы используется в транзисторе Дарлингтона, где два транзистора соединены одинаковым образом. Как мы можем видеть на изображении выше, IGBT объединяет два устройства, MOSFET с N каналом и транзистор PNP . N-канальный MOSFET управляет PNP-транзистором. Выводы стандартного BJT включают коллектор, эмиттер, базу, а стандартный вывод MOSFET включает затвор, сток и исток. Но в случае штырей IGBT транзистора , это Gate , который поступает от N-канального MOSFET, а коллектор и эмиттер поступают от PNP-транзистора.

    В транзисторе PNP коллектор и эмиттер являются проводящими путями, а когда IGBT включен, они проводят ток через него. Этот путь контролируется N-канальным MOSFET.

    В случае BJT, мы вычисляем коэффициент усиления, который обозначается как Beta ( ), путем деления выходного тока на входной.

      β = выходной ток / входной ток  

    Но, как мы знаем, полевой МОП-транзистор не является устройством, управляемым током; это устройство, управляемое напряжением, входной ток через затвор полевого МОП-транзистора отсутствует.Таким образом, та же формула, которая применяется для расчета коэффициента усиления BJT, не применима для технологии MOSFET. Затвор полевого МОП-транзистора изолирован от пути прохождения тока. Напряжение затвора полевого МОП-транзистора изменило проводимость выходного тока. Таким образом, коэффициент усиления представляет собой отношение изменений выходного напряжения к изменениям входного напряжения. Это верно для IGBT. Коэффициент усиления IGBT — это отношение изменений выходного тока к изменениям входного напряжения затвора .

    Из-за возможности высокого тока большой ток BJT контролируется напряжением затвора MOSFET.

    На изображении выше показан символ IGBT . Как мы видим, символ включает в себя коллектор-эмиттерную часть транзистора и затворную часть полевого МОП-транзистора. Три терминала показаны как Gate, коллектор и эмиттер.

    В проводящем или включенном режиме « ВКЛ. » ток течет от коллектора к эмиттеру . То же самое происходит с транзистором BJT. Но в случае с IGBT вместо базы стоит Gate.Разница между напряжением затвора и эмиттера называется Vge , а разница напряжений между коллектором и эмиттером называется Vce .

    Ток эмиттера (Ie) почти такой же, как ток коллектора (Ic) , Ie = Ic . Поскольку ток в коллекторе и эмиттере относительно одинаков, напряжение Vce очень низкое.

    Узнайте больше о BJT и MOSFET здесь.

    Приложения IGBT:

    IGBT в основном используется в приложениях, связанных с питанием.Стандартные силовые BJT обладают очень медленным откликом, тогда как MOSFET подходит для приложений с быстрым переключением, но MOSFET — дорогостоящий выбор там, где требуется более высокий номинальный ток. IGBT подходит для замены силовых BJT и силовых MOSFET .

    Кроме того, IGBT предлагает более низкое сопротивление включения по сравнению с BJT, и благодаря этому свойству IGBT является термически эффективным в приложениях, связанных с высокой мощностью.

    IGBT широко применяются в области электроники.Из-за низкого сопротивления , очень высокого номинального тока, высокой скорости переключения, привода с нулевым затвором, IGBT используются в системах управления двигателями большой мощности, инверторах, импульсных источниках питания с областями высокочастотного преобразования.

    На приведенном выше изображении показано базовое приложение переключения, использующее IGBT. RL представляет собой резистивную нагрузку, подключенную через эмиттер IGBT к земле. Разница напряжений на нагрузке обозначается как VRL . Нагрузка также может быть индуктивной.А справа показана другая схема. Нагрузка подключается к коллектору, а резистор для защиты по току подключается к эмиттеру. В обоих случаях ток будет течь от коллектора к эмиттеру.

    В случае BJT нам необходимо обеспечить постоянный ток через базу BJT. Но в случае IGBT, как и MOSFET, нам необходимо обеспечить постоянное напряжение на затворе, и насыщение поддерживается в постоянном состоянии.

    В левом случае разность напряжений VIN , которая представляет собой разность потенциалов входа (затвора) с землей / VSS, управляет выходным током, протекающим от коллектора к эмиттеру.Разница напряжений между VCC и GND практически одинакова на нагрузке.

    В правой цепи ток, протекающий через нагрузку, зависит от напряжения, деленного на значение RS .

      I  RL2  = V  IN  / R  S   

    Биполярный транзистор с изолированным затвором (IGBT) можно переключать « ВКЛ, » и « ВЫКЛ, » путем активации затвора. Если мы сделаем затвор более положительным, подав напряжение на затвор, эмиттер IGBT будет поддерживать IGBT в состоянии « ON », и если мы сделаем затвор отрицательным или нулевым нажатием, IGBT останется в состоянии « OFF ».Это то же самое, что и переключение BJT и MOSFET.

    Кривая I-V для IGBT и передаточные характеристики

    На приведенном выше изображении показаны ВАХ в зависимости от другого напряжения затвора или Vge . Ось X обозначает напряжение коллектора-эмиттера или Vce , а ось Y обозначает ток коллектора . В выключенном состоянии ток, протекающий через коллектор и напряжение затвора, составляет ноль .Когда мы меняем Vge или напряжение затвора, устройство переходит в активную область. Стабильное и постоянное напряжение на затворе обеспечивает непрерывный и стабильный ток через коллектор. Увеличение Vge пропорционально увеличивает ток коллектора: Vge3> Vge2> Vge3 . BV — напряжение пробоя IGBT.

    Эта кривая почти идентична кривой передачи I-V BJT, но здесь показано Vge , потому что IGBT — это устройство, управляемое напряжением.

    На изображении выше показана передаточная характеристика IGBT. Он практически идентичен PMOSFET . IGBT перейдет в состояние « ON » после того, как Vge превысит пороговое значение в зависимости от спецификации IGBT.

    Вот сравнительная таблица, которая даст нам четкое представление о различиях между IGBT и POWER BJT, и Power MOSFET .

    Характеристики прибора

    IGBT

    Силовой полевой МОП-транзистор

    POWER BJT

    Номинальное напряжение

    Более 1 кВ (очень высокое)

    Менее 1 кВ (высокое)

    Менее 1 кВ (высокое)

    Текущий рейтинг

    Более 500 А (высокий)

    Менее 200 А (высокий)

    Менее 500 А (высокий)

    Устройство ввода

    Напряжение, Вге, 4-8В

    Напряжение, Вгс, 3-10В

    Ток, hfe, 20-200

    Входное сопротивление

    Высокая

    Высокая

    Низкий

    Выходное сопротивление

    Низкий

    Средний

    Низкий

    Скорость переключения

    Средний

    Быстро (нС)

    Медленно (США)

    Стоимость

    ВЫСОКИЙ

    Средний

    Низкий

    В следующем видео мы увидим схему переключения IGBT-транзистора .

    Напряжение коллектор-эмиттер — обзор

    Напряжение блокировки коллектор-эмиттер ( BV CES ): Этот параметр определяет максимальное напряжение коллектор-эмиттер в закрытом состоянии при коротком замыкании затвора и эмиттера. Пробой задается при определенном токе утечки и изменяется в зависимости от температуры на положительный температурный коэффициент.

    Напряжение блокировки эмиттер – коллектор ( BV ECS ): Этот параметр определяет обратный пробой перехода коллектор – база pnp-транзисторного компонента IGBT.

    Напряжение затвор-эмиттер ( В GES ): Этот параметр определяет максимально допустимое напряжение затвор-эмиттер, когда коллектор замкнут на эмиттер. Толщина и характеристики слоя оксида затвора определяют это напряжение. Напряжение затвора должно быть ограничено до гораздо более низкого значения, чтобы ограничить ток коллектора в условиях неисправности.

    Непрерывный ток коллектора ( I C ): Этот параметр представляет значение постоянного тока, необходимого для повышения температуры перехода до максимальной температуры от указанной температуры корпуса.Этот рейтинг указан для температуры корпуса 25 ° C и максимальной температуры перехода 150 ° C.Поскольку нормальные условия эксплуатации вызывают более высокие температуры корпуса, приведен график, показывающий изменение этого рейтинга в зависимости от температуры корпуса.

    Пиковый повторяющийся ток коллектора ( I CM ): В переходных условиях IGBT может выдерживать более высокие пиковые токи по сравнению с его максимальным постоянным током, который описывается этим параметром.

    Максимальная рассеиваемая мощность ( P D ): Этот параметр представляет собой рассеиваемую мощность, необходимую для повышения температуры перехода до максимального значения 150 ° C при температуре корпуса 25 ° C. Обычно предоставляется график, показывающий изменение этого рейтинга в зависимости от температуры.

    Температура перехода ( T j ): Определяет допустимый диапазон температуры перехода IGBT во время его работы.

    Ограниченный ток индуктивной нагрузки ( I LM ): Этот параметр определяет максимальный повторяющийся ток, который IGBT может отключать при ограниченной индуктивной нагрузке. Во время включения IGBT ток обратного восстановления свободного диода параллельно с индуктивной нагрузкой увеличивает потери переключения при включении IGBT.

    Ток утечки коллектор – эмиттер (I CES ): Этот параметр определяет ток утечки при номинальном напряжении и определенной температуре, когда затвор закорочен на эмиттер.

    Пороговое напряжение затвор-эмиттер ( В GE ( th ) ): Этот параметр определяет диапазон напряжения затвор-эмиттер, в котором IGBT включается для проведения тока коллектора. Пороговое напряжение имеет отрицательный температурный коэффициент. Пороговое напряжение увеличивается линейно с толщиной оксида затвора и как квадратный корень из концентрации легирования p-основания. Фиксированный поверхностный заряд на границе оксид – кремний и подвижные ионы в оксиде смещают пороговое напряжение.

    Напряжение насыщения коллектор – эмиттер ( В CE (SAT) ): Этот параметр определяет прямое падение напряжения коллектор – эмиттер и является функцией тока коллектора, напряжения затвора и температуры. Уменьшение сопротивления канала MOSFET и области JFET и увеличение коэффициента усиления биполярного транзистора pnp может минимизировать падение напряжения в открытом состоянии. Падение напряжения на MOSFET-компоненте IGBT, который обеспечивает базовый ток pnp-транзистора, уменьшается за счет большей ширины канала, меньшей длины канала, более низкого порогового напряжения и большей длины затвора.Более высокое время жизни неосновных носителей заряда и тонкая область n-epi вызывают высокую инжекцию носителей и уменьшают падение напряжения в области дрейфа.

    Крутизна в прямом направлении ( г FE ): Крутизна в прямом направлении измеряется с небольшим изменением напряжения затвора, которое линейно увеличивает ток коллектора IGBT до его номинального тока при 100 ° C. БТИЗ снижается при токах, намного превышающих его тепловую нагрузочную способность.Поэтому, в отличие от биполярных транзисторов, пропускная способность IGBT ограничена тепловыми соображениями, а не коэффициентом усиления. При более высоких температурах крутизна начинает уменьшаться при более низких токах коллектора. Следовательно, эти особенности крутизны защищают IGBT при работе от короткого замыкания.

    Общий заряд затвора ( Q G ): Этот параметр помогает разработать схему управления затвором подходящего размера и приблизительно рассчитать ее потери.Из-за поведения устройства неосновной несущей время переключения не может быть приблизительно рассчитано с использованием значения заряда затвора. Этот параметр изменяется в зависимости от напряжения затвор-эмиттер.

    Время задержки включения ( t d ): It i s определяется как время между 10% напряжения затвора и 10% конечного тока коллектора.

    Время нарастания ( t r ): Это время, необходимое для увеличения тока коллектора до 90% от его конечного значения с 10% от его конечного значения.

    Время задержки выключения ( t d (off) ): Это время между 90% напряжения затвора и 10% конечного напряжения коллектора.

    Время спада ( t f ): Это время, необходимое для того, чтобы ток коллектора упал с 90% от его начального значения до 10% от начального значения.

    Входная емкость ( C ies ): Это измеренная емкость затвор-эмиттер, когда коллектор закорочен на эмиттер.Входная емкость складывается из емкости затвор-эмиттер и емкости Миллера. Емкость затвор-эмиттер намного больше, чем емкость Миллера.

    Выходная емкость ( C oes ): Это емкость между коллектором и эмиттером при замыкании затвора на эмиттер, которая имеет типичную зависимость напряжения pn перехода.

    Емкость обратной передачи ( C res ): Это емкость Миллера между затвором и коллектором, которая имеет сложную зависимость от напряжения.

    Безопасная рабочая зона (SOA): Безопасная рабочая зона определяет границу тока и напряжения, в пределах которой IGBT может работать без разрушительного отказа. При малых токах максимальное напряжение IGBT ограничено пробоем транзистора с открытой базой. Паразитная фиксация тиристора ограничивает максимальный ток коллектора при низких напряжениях. БТИЗ, невосприимчивые к статической фиксации, могут быть уязвимы для динамической фиксации. Работа при коротком замыкании и индуктивное переключение нагрузки — это условия, при которых IGBT подвергается комбинированной нагрузке по напряжению и току.Область безопасной работы с прямым смещением (FBSOA) определяется во время переходного процесса при включении индуктивного переключения нагрузки, когда в IGBT протекают и электронный, и дырочный ток при наличии высокого напряжения на устройстве. Зона безопасной работы с обратным смещением (RBSOA) определяется во время переходного процесса выключения, когда в IGBT протекает только ток дырки с высоким напряжением на нем.

    Как использовать MOSFET — Учебное пособие для начинающих

    Давайте поговорим об основах MOSFET и о том, как их использовать.Это руководство написано в первую очередь для неакадемических любителей, поэтому я постараюсь упростить концепцию и сосредоточиться больше на практической стороне вещей.

    Однако, если вы разбираетесь в том, как работает MOSFET, я поделюсь некоторыми полезными академическими статьями и ресурсами в конце этого поста. MOSFET имеет некоторые преимущества и недостатки по сравнению с BJT, поэтому тщательно выбирайте основание для вашего приложения.

    Вы можете купить MOSFET для проектов Arduino на Amazon: http://amzn.to/2Gk6ruW

    MOSFET — это металлооксидный полупроводниковый полевой транзистор .Это особый тип полевого транзистора (FET).

    В отличие от BJT, который «управляется током», MOSFET — это устройство, управляемое напряжением. MOSFET имеет клеммы « gate », « Drain » и « Source » вместо клемм «база», «коллектор» и «эмиттер» в биполярном транзисторе. Подавая напряжение на затвор, он генерирует электрическое поле для управления током, протекающим через канал между стоком и истоком, при этом ток от затвора к полевому МОП-транзистору не течет.

    МОП-транзистор можно рассматривать как переменный резистор, где разность напряжений затвор-исток может управлять сопротивлением сток-исток. Когда нет приложения напряжения между затвором-источником, сопротивление сток-исток очень велико, что почти похоже на разомкнутую цепь, поэтому ток не может течь через сток-источник. Когда применяется разность потенциалов затвор-исток, сопротивление сток-исток уменьшается, и ток будет течь через сток-источник, который теперь представляет собой замкнутую цепь.

    Вкратце, полевой транзистор управляется приложенным напряжением затвор-исток (которое регулирует электрическое поле в канале), например, при защемлении или открытии соломинки и остановке или разрешении протекания тока. Благодаря этому свойству полевые транзисторы отлично подходят для протекания большого тока, а полевые МОП-транзисторы обычно используются в качестве переключателя.

    Хорошо, позвольте мне резюмировать различия между BJT и MOSFET .

    • В отличие от биполярных транзисторов, MOSFET управляется напряжением. В то время как BJT управляется по току, необходимо тщательно рассчитать базовый резистор в соответствии с величиной переключаемого тока.Не так с полевым МОП-транзистором. Просто подайте достаточное напряжение на ворота, и переключатель сработает.
    • Поскольку они управляются напряжением, полевые МОП-транзисторы имеют очень высокий входной импеданс, поэтому ими может управлять что угодно.
    • MOSFET имеет высокое входное сопротивление.

    Чтобы использовать полевой МОП-транзистор в качестве переключателя, напряжение на затворе (Vgs) должно быть выше, чем у источника. Если подключить гейт к источнику (Vgs = 0), он выключится.

    Например, у нас есть IRFZ44N, который является «стандартным» полевым МОП-транзистором и включается только при Vgs = 10–20 В.Но обычно мы стараемся не давить на него слишком сильно, поэтому напряжение 10–15 В является обычным для Vgs для этого типа полевого МОП-транзистора.

    Однако, если вы хотите управлять им от Arduino, который работает при 5 В, вам понадобится МОП-транзистор «логического уровня», который можно включить при 5 В (Vgs = 5 В). Например, STP55NF06L. У вас также должен быть резистор, подключенный последовательно к выходу Arduino, чтобы ограничить ток, поскольку затвор очень емкостный и может потреблять большой мгновенный ток, когда вы пытаетесь его включить. Около 220 Ом — хорошее значение.

    На этой странице показаны некоторые подробные объяснения того, как MOSFET работает как переключатель. На этой странице показано расширенное использование MOSFET.

    Полевые МОП-транзисторы

    бывают четырех различных типов. Нам нужно знать три основные категории.

    • N-канал (NMOS) или P-канал (PMOS)
    • Расширение или Режим истощения
    • Логический уровень или Нормальный MOSFET

    N-Channel — Для N-канального MOSFET источник заземлен.Чтобы включить полевой МОП-транзистор, нам нужно поднять напряжение на затворе. Чтобы выключить его, нам нужно подключить ворота к земле.

    P-Channel — Источник подключен к шине питания (Vcc). Чтобы позволить току течь, ворота должны быть заземлены. Чтобы выключить его, необходимо подтянуть гейт к Vcc.

    Depletion Mode — Требуется приложенное напряжение затвор-исток (Vgs) для выключения устройства.

    Режим улучшения — Транзистору требуется приложенное напряжение затвор-исток (Vgs) для включения устройства.

    Несмотря на разнообразие, наиболее часто используемым типом является N-канальный режим расширения .

    Существуют также полевые МОП-транзисторы с логическим уровнем и нормальные полевые МОП-транзисторы , но единственное различие — это уровень потенциала затвор-исток, необходимый для управления полевым МОП-транзистором.

    Я постараюсь объяснить это как можно проще, чтобы получить более подробную информацию или, если вы сомневаетесь, просмотрите ссылки и ссылки, которые я даю в конце сообщения.

    MOSFET — это полевой транзистор, управляемый напряжением, который отличается от JFET.Электрод затвора электрически изолирован от основного полупроводника тонким слоем изоляционного материала (серьезно!). Этот изолированный металлический затвор похож на пластину конденсатора с чрезвычайно высоким входным сопротивлением (почти бесконечным!). Из-за изоляции затвора нет тока в МОП-транзистор от затвора.

    Когда на затвор подается напряжение, оно изменяет ширину канала сток-исток, по которому текут носители заряда (электроны или дырки).Чем шире канал, тем лучше проводит прибор.

    MOSFET используется иначе, чем обычный полевой транзистор с переходом.

    • Бесконечно высокий входной импеданс делает полевые МОП-транзисторы полезными для усилителей мощности. Эти устройства также хорошо подходят для приложений с высокоскоростной коммутацией. Некоторые интегральные схемы содержат крошечные полевые МОП-транзисторы и используются в компьютерах.
    • Поскольку оксидный слой очень тонкий, МОП-транзистор может быть поврежден накоплением электростатических зарядов. При работе со слабым сигналом на радиочастоте устройства MOSFET обычно не работают так же хорошо, как другие типы полевых транзисторов.

    Где поставить нагрузку на полевой МОП-транзистор? Источник или слив?

    Потому что нагрузка имеет сопротивление, которое, по сути, является резистором. Для N-канального MOSFET причина, по которой мы обычно помещаем нагрузку на сторону стока, заключается в том, что источник обычно подключен к GND.

    Если нагрузка подключена со стороны истока, Vgs должен быть выше для переключения MOSFET, иначе ток между истоком и стоком будет недостаточным, чем ожидалось.

    Радиатор подключен к канализации?

    Обычно радиатор на задней панели полевого МОП-транзистора подключается к стоку! Если вы устанавливаете несколько полевых МОП-транзисторов на радиатор, они должны быть электрически изолированы от радиатора! Если радиатор прикреплен болтами к заземляющей раме, рекомендуется изолировать его.

    Для чего нужен корпусный диод?

    Полевые МОП-транзисторы

    также имеют внутренний диод, который может пропускать ток непреднамеренно. Внутренний диод также ограничивает скорость переключения. Вам не нужно беспокоиться об этом, если вы работаете на частоте ниже 1 МГц.

    Полевые транзисторы с изолированным затвором Рабочий лист

    Пусть электроны сами дадут вам ответы на ваши собственные «практические проблемы»!

    Примечания:

    По моему опыту, студентам требуется много практики с анализом цепей, чтобы стать профессионалом.С этой целью инструкторы обычно предоставляют своим ученикам множество практических задач, над которыми нужно работать, и дают ученикам ответы, с которыми они могут проверить свою работу. Хотя такой подход позволяет студентам овладеть теорией схем, он не дает им полноценного образования.

    Студентам нужна не только математическая практика. Им также нужны настоящие практические схемы построения схем и использование испытательного оборудования. Итак, я предлагаю следующий альтернативный подход: ученики должны построить свои собственные «практические задачи» из реальных компонентов и попытаться математически предсказать различные значения напряжения и тока.Таким образом, математическая теория «оживает», и учащиеся получают практические навыки, которых они не достигли бы, просто решая уравнения.

    Еще одна причина для следования этому методу практики — научить студентов научному методу : процессу проверки гипотезы (в данном случае математических предсказаний) путем проведения реального эксперимента. Студенты также разовьют реальные навыки поиска и устранения неисправностей, поскольку они время от времени допускают ошибки при построении схем.

    Выделите несколько минут времени со своим классом, чтобы ознакомиться с некоторыми «правилами» построения схем, прежде чем они начнутся.Обсудите эти вопросы со своими учениками в той же сократической манере, в которой вы обычно обсуждаете вопросы рабочего листа, вместо того, чтобы просто говорить им, что они должны и не должны делать. Я никогда не перестаю удивляться тому, насколько плохо студенты понимают инструкции, представленные в типичном формате лекции (монолог инструктора)!

    Примечание для тех инструкторов, которые могут жаловаться на «потраченное впустую» время, необходимое ученикам для построения реальных схем вместо того, чтобы просто математически анализировать теоретические схемы:

    Какова цель студентов, посещающих ваш курс?

    Если ваши ученики будут работать с реальными схемами, им следует по возможности учиться на реальных схемах.Если ваша цель — обучить физиков-теоретиков, то во что бы то ни стало придерживайтесь абстрактного анализа! Но большинство из нас планирует, чтобы наши ученики что-то делали в реальном мире с образованием, которое мы им даем. «Потраченное впустую» время, потраченное на создание реальных схем, принесет огромные дивиденды, когда им придет время применить свои знания для решения практических задач.

    Кроме того, если студенты создают свои собственные практические задачи, они учатся выполнять первичное исследование , тем самым давая им возможность продолжить свое образование в области электрики / электроники в автономном режиме.

    В большинстве наук реалистичные эксперименты намного сложнее и дороже, чем электрические схемы. Профессора ядерной физики, биологии, геологии и химии хотели бы, чтобы их ученики применяли высшую математику в реальных экспериментах, не представляющих опасности для безопасности и стоивших меньше, чем учебник. Они не могут, но вы можете. Воспользуйтесь удобством, присущим вашей науке, и заставьте ваших учеников практиковать математику на множестве реальных схем!

    Неисправности транзисторов

    • Раздел 7.3 Тестовые транзисторы
    • • Модель с двумя диодами для BJT.
    • • Определение соединений транзисторов.
    • • Тестирование БЮТ.
    • • Тестирование полевых транзисторов.
    • • Тестирование полевых МОП-транзисторов

    Двухдиодный транзистор, модель

    Рис.7.3.1 Модель двухдиодного транзистора.

    Как показано на рис. 7.3.1, независимо от того, является ли транзистор (а) типом NPN или (б) биполярным транзистором типа PNP, он состоит из двух диодных переходов, перехода база-эмиттер и перехода база-коллектор.В целях тестирования их можно представить себе просто как два диода с одним общим соединением, то есть с базой. Итак, чтобы проверить транзистор, вам просто нужно проверить прямое и обратное сопротивление каждого из этих переходов. Однако для этого сначала необходимо выяснить, какой штифт какой.

    Plan A — Используйте лист данных производителя

    Лучший способ проверить функции контактов — воспользоваться таблицей данных производителя. Практически каждый транзистор, когда-либо созданный, имеет свой собственный лист данных в Интернете.Просто введите номер транзистора в строку поиска в Интернете, и вы найдете несколько сайтов, на которых публикуются нужные вам данные. Вы также должны найти схему в таблице данных, показывающую соединения контактов транзистора (распиновку), где показаны контакты коллектора, базы и эмиттера, а также любые варианты. Если вы не можете найти нужную информацию, придется прибегнуть к Плану Б.

    Рис.7.3.2 Общие транзисторные блоки.

    Plan B — Определение функций выводов путем просмотра информации о корпусе транзистора.

    Что делать, если вы не можете найти идентификационный номер жизненно важного транзистора на самом транзисторе? Еще не все потеряно; вы все еще можете найти функции булавки, немного поработав детективом. Если транзистор, который вы тестируете, имеет металлический корпус, как, например, на схемах компоновки обычных корпусов TO18, TO3, TO126, TO202, TO72 и т. Д., Это полезно. К коллектору почти всегда присоединяется металлический корпус или зона радиатора, чтобы тепло отводилось легче. Это означает, что если вы измеряете сопротивление от корпуса или металлической монтажной области к каждому контакту по очереди, один контакт, который измеряет нулевое сопротивление, является коллектором.Однако нам действительно нужно найти базу. В корпусах транзисторов, таких как TO39, это просто; эмиттер почти всегда находится рядом с металлическим язычком, а коллектор подсоединен к банке.

    Обратите внимание, что часто это делает основание центром трех соединений — но это не всегда так; не полагайтесь на то, что база находится в центре. Изучите распространенные типы пакетов, показанные на рис. 7.3.2. Возможны вариации даже в пределах одного и того же типа упаковки. Так что, если план B не решил загадку, не беспокойтесь, всегда есть план C.

    Plan C — Тестирование транзисторов с неизвестными выводами.

    Еще один полезный способ найти базу — это измерить сопротивление между различными контактами. Представьте для начала, что мы подозреваем, что неизвестный транзистор может быть типа NPN (они гораздо более распространены, чем PNP в современных схемах), и он может быть неисправным

    Рис.7.3.3 Определение выводов транзисторов и поиск неисправных транзисторов


    .

    Использование таблицы поиска неисправностей

    Следуйте инструкциям в графах 1, 2 и 3

    Если вы переходите к блоку 4, и оба теста дают показания от 500 Ом до 1 кОм, молодцы! Вы нашли базовый вывод с первой попытки, и в поле 5 сообщается, что вы тестируете транзистор NPN.

    В качестве альтернативы, если оба измерения указывают на бесконечность, вы перейдете к блоку 6, поскольку положительный вывод не был на базе. Так что вернитесь к тесту 2 и попробуйте снова, подключив положительный провод к другому выводу. Повторяйте этот тест, пока не найдете основной штифт.

    Или, если оба измерения на шаге 4 показывают бесконечность, либо транзистор неисправен (один или оба перехода имеют разомкнутую цепь), либо транзистор имеет тип PNP. Поэтому вам нужно начать все сначала, но на этот раз используя отрицательный вывод измерителя, чтобы найти базовый штифт.

    Если в тесте 3 один или оба теста показывают 0 Ом (короткое замыкание), и вы случайно не коснулись положительного и отрицательного выводов вместе во время тестов, транзистор неисправен из-за короткого замыкания одного или обоих переходов.

    Диагностическая таблица проверяет биполярный транзистор независимо от того, знаете ли вы, какие контакты какие или нет, но —

    Если вы уже знаете распиновку

    Вот сокращенная версия для подтверждения неисправности известного транзистора.Если все тесты прошли успешно, транзистор в порядке. Если какие-либо тесты не пройдут, транзистор выброшен в мусорное ведро.

    1. Проверить сопротивление между коллектором и эмиттером.

    2. Затем поменяйте местами положительное и отрицательное подключение счетчика. Если транзистор исправен, в обоих направлениях должно быть показание бесконечности.

    Теперь подключите положительный провод измерительного прибора к базе и проверьте сопротивление обоих переходов, подключив отрицательный измерительный щуп (3) к коллектору, а затем (4) к эмиттеру.В обоих случаях вы должны получить типичное значение прямого сопротивления от 500 Ом до 1 кОм.

    Наконец, поменяйте местами подключения счетчика, чтобы отрицательный провод был подключен к базе. Подключите положительный зонд (5) к коллектору, затем (6) к эмиттеру. Оба соединения теперь должны показывать бесконечность.

    Тестирование полевых транзисторов

    Рис.7.3.4 Диод JFET Модель

    Полевые транзисторы

    сконструированы иначе, чем биполярные транзисторы, и поэтому требуют других методов тестирования.Сначала рассмотрим схемы JFET на рис. 7.3.4, которые показывают путь сток / исток как единый блок кремния типа N или P, а затвор — как простой диод, который имеет либо анод (в полевых транзисторах с каналом P), либо катод ( в N-канальных полевых транзисторах), подключенных непосредственно к тракту сток / исток. Поэтому вместо того, чтобы тестировать два PN перехода, как в BJT, в JFET нам нужно проверить только один переход.

    Первое, что нужно знать перед тестированием подозрительного JFET, — это распиновка, как и у любого другого транзистора, ее можно получить, загрузив лист данных для конкретного интересующего JFET.

    Рис.7.3.5 2N3819 Паспорт.

    После идентификации контактов истока, стока и затвора следующие тесты цифрового измерителя должны выявить состояние полевого транзистора:

    • 1. Переключите измеритель в режим проверки диодов.
    • 2. Измерьте сопротивление между Источником и Сливом с помощью положительного провода измерителя на сливном штифте.
    • 3. Поменяйте местами провода измерителя (положительный на источник) и снова снимите показания сопротивления.

    Результаты испытаний 1.и 2. обычно должны составлять от 130 до 180 Ом, но это может варьироваться в разных полевых транзисторах JFET. Если сопротивление кажется подозрительно низким, это может означать, что на затворе с очень высоким импедансом имеется остаточное напряжение из-за емкости затворного перехода. Чтобы устранить эту возможность, закоротите затвор и источник, на мгновение коснувшись обоих контактов вместе, затем повторите тесты 1. и 2. Показание 0 Ом или бесконечность означает, что JFET неисправен.

    • 4. Предполагая, что шаги 2 и 3 в порядке, проверьте сопротивление между затвором и источником с помощью положительного измерительного щупа на выводе затвора.Ожидайте сопротивление от 700 Ом до 1 кОм. Это прямое сопротивление диода затвора.
    • 5. Удерживая положительный датчик счетчика на затворе, переместите отрицательный зонд к сливу и проверьте сопротивление между затвором и сливом. Ожидайте аналогичных результатов для теста 4.
    • 6. Теперь поменяйте местами подключения измерителя и проверьте обратное сопротивление диода затвора, поместив отрицательный щуп на вывод затвора, а положительный щуп на вывод истока. Теперь сопротивление должно быть бесконечным.
    • 7. Наконец, проверьте сопротивление затвора для слива, оставив отрицательный датчик на затворе и переместив положительный зонд к контакту слива. Снова чтение должно быть бесконечным.

    Рис. 7.3.6 JFET в антистатической пене


    .

    Во всех этих тестах вам следует по возможности воздерживаться от работы с JFET. В идеале при работе с полевыми транзисторами любого типа вы должны работать на рабочей станции ESD (антистатический разряд) или носить антистатический браслет.В качестве альтернативы вы можете, по крайней мере, воткнуть штыри (при условии, что они достаточно длинные) в кусок антистатической пены, например полевые транзисторы, в которых обычно хранятся полевые транзисторы. Тогда сопротивление между штырями позволит избежать накопления статического напряжения, но будет достаточно высоким. чтобы не сильно повлиять на показания сопротивления, которые вы снимаете во время этих тестов.

    Тестирование полевых МОП-транзисторов

    Первое, что нужно понять о полевых МОП-транзисторах, это то, что они гораздо более чувствительны к повреждению статическим разрядом, чем любые другие типы транзисторов, даже полевые транзисторы.Это связано с тем, что полевые МОП-транзисторы являются транзисторами с изолированным затвором, поэтому затвор полностью изолирован от тракта сток / исток. Это означает, что между затвором и другими выводами существует значительная емкость. Эту емкость можно легко зарядить до любого напряжения, включая чрезвычайно высокие напряжения, которые могут присутствовать на человеческом (вашем) теле, например, просто при ходьбе по комнате с ковровым покрытием. Такое статическое напряжение может легко вывести из строя полевой МОП-транзистор. Поэтому с самого начала следует проявлять осторожность, чтобы не прикасаться к клеммам MOSFET, когда MOSFET не находится в антистатической упаковке или не подключен к цепи.Поэтому для целей этих тестов мы будем предполагать, что тестировщик (вы) будете использовать антистатические методы, как описано в разделе о тестировании JFET. Однако одна мера предосторожности, которую мы не можем использовать, — это вставить MOSFET в антистатическую пену; так как это помешает нашим тестам работать. Поэтому для проведения тестов мы постараемся по возможности не прикасаться к контактам полевого МОП-транзистора и вставить контакты в макетную плату.

    Тестовая последовательность полевого МОП-транзистора

    Рис.7.3.7 MOSFET на макетной плате.

    • 1. Установите цифровой мультиметр в положение проверки диодов.
    • 2. На мгновение замкните клеммы затвора и стока вместе с одним из щупов измерителя, чтобы разрядить любую емкость затвора.
    • 3. Подключите положительный датчик измерителя к клемме слива, а отрицательный датчик к клемме источника. Счетчик должен показывать бесконечность.
    • (Если измеритель показывает 0 Ом, попробуйте снова замкнуть затвор и сток с отрицательным проводом измерителя, чтобы гарантировать удаление любого заряда затвора).
    • Подключите положительный провод измерителя к источнику, а отрицательный датчик — к клемме слива. Измеритель должен теперь показать около 500 Ом
    • .
    • То, что вы сейчас проверили, — это обратное и прямое сопротивление внутреннего защитного диода полевого МОП-транзистора.
    • 4. Теперь подключите отрицательный щуп измерителя к клемме источника и на мгновение коснитесь клеммы затвора положительным щупом измерителя. Это на мгновение зарядит базовую емкость, достаточную для включения полевого МОП-транзистора.
    • 5. Подключите положительный датчик к сливу, а отрицательный — к источнику (повторение теста 3). На этот раз измеритель должен показывать 0 Ом, потому что MOSFET теперь включается напряжением, которое вы приложили к затвору.
    • 6. Поменяйте местами провода измерителя (положительный на источник и отрицательный на сток). Сопротивление сток / исток снова должно быть 0 Ом, подтверждая, что полевой МОП-транзистор включен.
    • 7. Чтобы выключить полевой МОП-транзистор, используйте любой датчик, чтобы на мгновение замкнуть замыкание Gate to Drain.
    • 8.Убедитесь, что полевой МОП-транзистор теперь выключен, поместив положительный датчик на клемму слива и отрицательный датчик на источник, чтобы убедиться, что сопротивление между стоком и источником равно бесконечности, что еще раз показывает, что при нулевом напряжении на затворе полевой МОП-транзистор находится в выключен, и полевой МОП-транзистор работает правильно.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *