Электрохимическая коррозия примеры: Электрохимическая коррозия

Содержание

Электрохимическая коррозия: причины, типы, скорость протекания

Электрохимическая коррозия относится к наиболее часто встречающимся процессам постепенного разрушения металла.

Как мы знаем, наше окружение наполнено электричеством.

В зависимости от среды, меняются показатели проводимости. Не отличается то, что при контакте с такой средой сталь начинает постепенно портиться.

У процесса есть несколько важных отличий.

В первую очередь – неодновременное протекание восстановления окислительного процесса и ионизации атомов металла.

На интенсивность распространения при этом влияет такой параметр, как электродный потенциал металла.

Главная причина электрохимической коррозии в том, что большинство металлов проявляют термодинамическую неустойчивость.

Примеры распространения коррозии такого типа встречаются в воде, почве, на открытом воздухе.

Она часто становится причиной потери прочности и постепенного разрушения металла на днище судов, трубопроводов, опор ЛЭП и других объектов.

Если говорить о типах электрохимической коррозии, то называют 3 разновидности:

  • щелевые поражения;
  • питтинги;
  • межкристаллическое повреждение.

Повреждаться могут разные типы металлов в зависимости от их расположения. Ржавчина появляется при контакте со стоячей и текущей водой, в местах соединения разных металлов, а также на сварных швах.

Какие механизмы отвечают за протекание электрохимической коррозии

Такое повреждение металла проводится двумя механизмами – гомогенным и гетерогенным. Рассмотрим каждый из них подробно.

  • Гомогенный. Первоначально затрагивается поверхностный слой металлического изделия. Постепенно металл начинает растворяться под действием актов – катодного или анодного. На протяжении определенного времени происходит миграция катода и анода. Со временем процесс ускоряется. Особенность гомогенного механизма в том, что затрагивает как твердые, так и жидкие металлы. Меняется только скорость течения.
  • Гетерогенный. У большинства твердых металлов не наблюдается гомогенной поверхности. Это связано с тем, что в самом материале состав кристаллической решетки может отличаться. Также как и в описанном выше случае, формируется анодный и катодный процессы, металл начинает постепенно разрушаться.

У такого вида процесса есть несколько особенностей

.

В первую очередь – четкое деление на катодный и анодный процесс. Один из основных факторов, влияющих на их скорость протекания относительно друг друга – это время.

Схема электрохимической коррозии

В зависимости от типа металла, коррозия может быть локализована на отдельных участках. Также наблюдается растворение поверхностного слоя на анодах, что позволяет поражению затронуть обширные площади.

Здесь появляется еще одна особенность протекания процесса – формирование гальванических элементов. Это происходит из-за специфики структуры поверхности, на которой присутствуют микроэлектроды.

Из-за чего начинает развиваться коррозия

После того, как мы рассмотрели суть электрохимической коррозии, пришло время обратить внимание на причины распространения коррозии.

Среди них три распространенные:

  • Сплав имеет неоднородную структуру. В большинстве сплавов поверхность негомогенная, потому что в кристаллической решетке присутствуют посторонние включения. Ухудшает ситуацию и присутствие пор макро и микротипа. Это приводит к тому, что продукты коррозии также начинают образовываться неравномерно.
  • Неоднородная среда, в которой находится металл. Чтобы коррозия протекла быстрее, важен фактор доступа окислителя. Электрохимическая реакция может быть ускорена.
  • Отличие физических условий. Коррозия усиливается в том случае, если происходит облучение, в среде присутствуют блуждающие тока. Негативно влияет и температура, особенно при перепадах. В таком случае разница между холодными и теплыми местами становится причиной появления анода.

Именно по причине различия в критических факторах, скорость электрохимической коррозии может сильно меняться.

Главные внутренние факторы протекания электрохимической коррозии

На интенсивность распространения коррозийного поражения влияют две группы факторов – внешние и внутренние.

Текущее состояние поверхности металла

Когда поверхность металла неровная, коррозийный процесс протекает намного интенсивнее. Если на поверхности присутствуют небольшие выступы, они начинают накапливать воду.

Это может негативно повлиять на интенсивность распространения.

Чтобы не допустить такого фактора, важно использовать отшлифованный или отполированный металл.

Когда сталь гладкая, вода не так сильно повреждает ее, потому что постепенно происходит формирование равномерной пленки по всей поверхности.

Также хорошим средством для уменьшения поражения становится применение пассивирования, а также ряд других способов.

Степень термодинамической стойкости металла

Разные виды материалов отличаются разными показателями термодинамической устойчивости.

Наиболее стойкие разновидности материала не разрушаются при помещении в агрессивную среду.

Чтобы понять, есть ли у металла склонность к коррозии

под действием термодинамических факторов, измеряют потенциал анодного и катодного процесса, а также изобарно-изотермического.

Именно такой фактор оказывает большое влияние на потенциальное воздействие среды на постепенное развитие коррозии.

К сожалению, у большинства представленных в продаже марок металлов стойкость невысокая. Есть и неустойчивые разновидности, у которых этот риск нивелируется благодаря склонности к образованию пассивных пленок на поверхности.

Кристаллографическая структура

Оказывает прямое воздействие на металл.

Как известно, атомы в кристаллической решетке располагаются по-разному. Лучше защищены те разновидности, у которых атомы упакованы неплотно.

Особенности решетки также учитывают при планировании защиты материала методом создания на нем специальных пленок. И пленка и сам основной материал должны четко соответствовать по составу друг другу или быть максимально приближенными.

В этом случае исключается появление напряжения, которое негативно отражается на текущем состоянии заготовки. Если контакт с агрессивной средой все-таки происходит, материал начинает разрушаться слой за слоем.

Гетерогенность

Этот фактор рассматривается в непосредственной связи с величиной зерна металла.

Если в сплаве есть выраженные анодные включения, они сильно влияют на ускорение протекания коррозии.

Катодные включения не столь опасны, потому что на интенсивности процесса не отражаются. Величина зерна как фактор риска рассматривается не так часто и этим показателем можно пренебречь.

Не стоит сбрасывать со счетов и механические факторы

Важно понимать, что многие конструкции из металла используются под постоянным напряжением.

К этой категории относится повышенное внутреннее напряжение, когда сильно увеличивается риск деформации.

Негативно влияют на качество металла также воздействие истирания, периодические контакты с другими металлическими изделиями.

Такой фактор оказывает значительное влияние на интенсивность распространения повреждения.

Даже если само сырье первоначально обладало стойкостью к потенциальным повреждениям, в таком случае она уменьшится – формируемые пленки просто не будут закрепляться на поверхности.

Потому лучше сразу исключить это условие электрохимической коррозии – постараться не использовать металлоконструкции под пиковыми сильными нагрузками, не допускать возникновения трения и соприкосновения между собой стальных деталей.

Основные внешние факторы электрохимической коррозии

Кроме внутренних, на металл также влияют и внешние факторы.

Они могут не только ускорять, но и замедлять процесс, а также влиять на характер его протекания.

К ним относятся следующие:

  • Температура. Температура сильно влияет на то, как себя ведет металл в разных условиях. От нее сильно зависит то, насколько быстро будут растворяться вторичные продукты коррозии. Среди других особенностей – запуск и стимуляция диффузионных процессов в металле, создание перенапряжения на электродах и другие проявления. Когда металлическое изделие помещается в растворы с кислородной деполяризацией, по мере прогрева электролита диффузия окислителя ускоряется. На фоне этого наблюдается сильное снижение перенапряжения ионизации кислорода.

Если деталь помещается в растворы неокисляющихся кислот, наблюдается коррозия с водородной деполяризацией.

Повышение температуры уменьшает скорость распространения повреждений, потому что сильно снижается перенапряжение водорода.

Отдельно стоит отметить ситуацию, когда металл уже покрывается специальной защитной пленкой. В этом случае сам тип пленки будет влиять на то, как именно она поведет себя при контакте с разными видами внешних угроз, в том числе, с повышением температуры.

Нагрев и охлаждение могут отразиться на состоянии катодов и анодов через их внутренние процессы.

В некоторых случаях полярность электродов значительно меняется.

Как мы уже отмечали выше, проблемы могу возникать из-за того, что разные участки детали нагреты до отличающихся друг от друга температур.

В этом случае стремительно увеличивается количество термогальванических пар, стимулирующих распространение коррозии на новые участки.

  • Уровень рН раствора, в который помещен металл. Такой показатель как рН указывает, насколько в растворе будут активными ионы водорода, и как быстро коррозия будет распространяться по материалу. Это опасно, потому что может непредсказуемо менять потенциал катодных процессов, формирование окисных пленок. Также создается значительное перенапряжение реакции на электродах. Рекомендуется не допускать контакта металла со средами, у которых показатель рН высокий.

Если по каким-то причинам металлическая заготовка оказалась помещена в раствор, большое значение будет иметь скорость, с которой он движется, а также само наличие внутренних колебаний.

Заранее определить точное воздействие будет сложно по той причине, что всегда непросто предсказать, как поведут себя нейтральные электролиты.

Cчитается, что при смешении электролита, меняются показатели диффузии кислорода, что значительно отражается на процессе протекания коррозии.

Можно уделять меньше внимания скорости движения электролита в том случае, если вы имеете дело со средами повышенной кислотности.

На них подобное поражение оказывает минимум влияния.

Чем отличаются анодный и катодный процессы

Если вы внимательно проследите за тем, как работает гальванический элемент, то увидите, что в нем протекают сразу два связанных друг с другом процесса – анодный и катодный.

Рассмотрим их более подробно.

Анодный процесс

В химии показывается формулой Fe → Fe2+ + 2e. Она показывает, что постепенно запускается окисление, ионы металла начинают переход в раствор.

Катодный процесс

Может протекать по-разному.

В частности, переизбыток электронов решается ассимиляцией атомами электролита и его молекул. На фоне этого происходит восстановительная реакция непосредственно на самом катоде.

Формула будет зависеть от того, в каких условиях протекает реакция.

Так при наличии водородной деполяризации можно записать процесс как  2 H+ + 2e → h3.

Важно понимать, что оба процесса сильно связаны друг с другом под влиянием кинетического фактора.

С течением времени может происходить взаимное замедление или ускорение анодного или катодного процесса. При этом сам анод всегда будет оставаться тем местом, на котором формируется коррозия металла.

Во время анализа протекания процесса коррозии часто обращают внимание на электропроводящие фазы и момент после их соприкосновения.

Обычно одна фаза имеет положительный заряд, в то время как другая – отрицательный. Это приводит к появлению разности потенциалов.

Таким образом возникает ДЭС или как его часто называют ученые – двойной электрический слой с ассиметричным расположением частиц в местах, где фазы разделяются.

Опасным для металла становится скачок потенциалов. Он может стимулироваться двумя центральными причинами:

  • Большая накопленная энергия гидратации. В таком случае наблюдается отрыв ионов металла и постепенное перетекание их в раствор. На поверхности в результате остается аналогичное число электронов, заряд становится отрицательным. Далее, в соответствии с законами физики, наблюдается перетекание катионов из раствора, формируется ДЭС на границе, как мы уже описывали выше.
  • Разряжение катионов электролита. В результате металл начинает стремительно принимать положительный заряд. ДЭС появляется из-за активности анионов раствора в контакте с катионами электролита.

Что происходит в том случае, если поверхностный слой металла совсем не имеет определенного заряда?

В таком случае ДЭС наблюдаться не будет, возникнет явление нулевого заряда.

Его потенциал будет отличаться в зависимости от того, с каким металлом вам приходится работать.

Описанный процесс значительно отражается на том, как протекает коррозия и как быстро она захватывает все новые и новые участки металла.

В современной науке нет средств, которые могли бы точно измерить величину скачка потенциала, значит и процесс формирования электродвижущей силы оказывается на таким интенсивным.

Если рассматривать вопросы, связанные с процессом поляризации, можно написать отдельную статью на эту тему.

Потому далее мы рассмотрим другой важный показатель – поляризацию.

Поляризация и ее влияние на скорость протекания коррозии

Процесс поляризации связан с интенсивностью распространения электрохимической коррозии.

Этот показатель отражает, насколько сильное перенапряжение наблюдается на определенном участке.

Принято выделять три вида поляризации:

  • Электрохимическая. Чаще всего наблюдается в ситуации, когда катодный и анодный процессы начинают замедляться.
  • Фазовая. Возникает в том случае, если на поверхности материала формируется новая фаза.
  • Концентрационная. Этот процесс появляется в том случае, если есть очень малые показатели скорости отвода продуктов коррозии, а также подхода деполяризатора.

Особенности поляризации также стоит учитывать в том случае, если вы заинтересованы в дополнительной защите металлов от постепенного разрушения.

Обеспечиваем эффективную защиту от коррозии

Наша компания предлагает заказчикам защиту металлоконструкций разных типов от коррозии.

Мы используем методику горячего цинкования.

В пользу работы с нами говорит сразу несколько факторов:

  • Опыт работы с 2007 года, есть постоянные заказчики.
  • Большие производственные площади. Три цеха для горячего цинкования, мощность 120 тысяч тонн в год.
  • Универсальность. Работаем со множеством видов изделий благодаря установленной на предприятии самой глубокой ванны в ЦФО – 3,43 метра.

Мы используем в процессе проверенное европейское оборудование. Даем гарантию соответствия качества товаров требованиям ГОСТ 9.307-89.

Чтобы получить дополнительные консультации и ответы на интересующие вас вопросы, звоните нам или оставляйте заявку на сайте.

Вернуться к статьям

Поделиться статьей

Примеры электрохимической коррозии — Справочник химика 21

    В качестве примера электрохимической коррозии можно привести коррозию железа в контакте с медью в растворе электролита — соляной кислоты (т. е. при высокой концентрации ионов водорода Н»). При таком контакте возникает гальванический элемент(рнс. 5.8). [c.161]

    Примеры электрохимической коррозии [c.72]

    В качестве примера электрохимической коррозии рассмотрим коррозию железа в контакте с медью в растворе соляной кислоты. При таком контакте возникает гальванический элемент (рис. 83) [c.190]


    Примерами электрохимической коррозии металлов являются ржавление различных металлических изделий и конструкций в атмосфере (металлических станков и оборудования заводов, стальных мостов, каркасов зданий, средств. транспорта и др.) коррозия наружной металлической обшивки судов в речной и морской воде ржавление стальных сооружений гидросооружений ржавление стальных трубопроводов в земле разрушение баков и аппаратов растворами кислот, солей н щелочей на химических и других заводах, коррозионные потери металла при кислотном травлении окалины коррозионные потери металлических деталей при нагревании их в расплавленных солях и щелочах и др. [c.148]

    Электрохимическая коррозия вызывается образованием на поверхности металла или сплава гальванических микроэлементов, состоящих из частиц металла, расположенных рядом и имеющих разные потенциалы (основной металл и металл покрытия, компоненты сплава, включения других металлов в основной и т. д.) наличием влаги с растворенной в ней углекислотой или другими химическими соединениями, т. е. электролита. Пример электрохимической коррозии. — ржавление металла. [c.57]

    Наибольший вред приносит электрохимическая коррозия. Электрохимической коррозией называется разрушение металла в среде электролита с возникновением внутри системы электрического тока. В этом случае наряду с химическими процессами (отдача электронов) протекают и электрические (перенос электронов от одного участка к другому). В качестве примера электрохимической коррозии рассмотрим коррозию железа в контакте с медью в растворе соляной кислоты. При таком контакте возникает гальванический элемент (рис. 87) (—)Fe H l u(+). Более активный металл — железо — окисляется, посылая электроны атомам меди, и переходит в раствор в виде ионов Fe +, а ионы водорода разряжаются восстанавливаются) на меди 2Н++2е-=Нг. [c.178]

    В качестве второго примера электрохимической коррозии можно привести коррозию днища и нижних поясов резервуаров, которая происходит между металлом резервуара и донной водой, представляющей собой раствор электролита. [c.64]

    Цель работы. 1. Изучение коррозионной устойчивости окисных пленок. 2. Ознакомление с примерами электрохимической коррозии и некоторыми методами защиты. [c.184]

    Примеры электрохимической коррозии металлов ржавление различных металлических изделий и конст- [c.103]

    Процессы электрохимической коррозии могут развиваться не только в больших объемах электролитов, но и в тонких пленках влаги, конденсирующейся на поверхности изделия. Типичным примером электрохимической коррозии 1В тонкой пленке является атмосферная коррозия. [c.75]

    Рассмотрим классический пример электрохимической коррозии в серной кислоте цинка, загрязненного примесями других металлов, которые катодны по отношению к цинку. С течением времени на поверхности цинка, первоначально имевшей относительно небольшое количество примесей, примесей становится все больше и больше, так как по мере растворения цинка все новые и новые включения (катоды) будут выходить на поверхность металла, а также возможно вторичное осаждение нонов частично растворившихся катодных примесей. Количество микроэлементов на поверхности с течением времени будет увеличиваться. Увеличение числа ми1сроэлементов за счет обнажения новых катодных участков схематично показагю на фиг. 10. [c.29]


Процесс коррозии железа. Химическая коррозия, электрохимическая коррозия, элетрокоррозия

Процесс коррозии железа чаще всего сводится к его окислению кислородом воздуха или кислотами, содержащимися в растворах, и превращению его в оксиды. Коррозия металлов (ржавление) вызывается окислительно-восстановительными реакциями, протекающими на границе металла и окружающей среды. В зависимости от механизма возникновения, различают такие виды коррозии железа, как: химическая, электрохимическая и электрическая.

Процесс химической коррозии железа

Окислительно-восстановительные реакции в данном случае проходят через переход электронов на окислитель. В процессе коррозии такого типа кислород воздуха взаимодействует с поверхностью железа. При этом образуется оксидная пленка, которая называется ржавчиной:

3Fe + 2O2 = Fe3O4 (FeO•Fe2O3)

В отличие от плотно прилегающих оксидных пленок, которые образуются в процессе коррозии на щелочных металлах, алюминии, цинке, рыхлая оксидная пленка на железе свободно пропускает к поверхности металла кислород воздуха, а также другие газы и пары воды. Это способствует дальнейшей коррозии железа.

Процесс электрохимической коррозии

Этот вид коррозии проходит в среде, которая проводит электрический ток. Металл в грунте подвергается, преимущественно, электрохимической коррозии. Процесс коррозии такого типа – это результат химических реакций с участием компонентов окружающей среды. Также электрохимическая коррозия возникает в случае контакта металлов, находящихся в ряду напряжений на некотором расстоянии друг от друга, в результате чего возникает гальваническая пара катод-анод.

Атмосферный и грунтовый процесс коррозии выражается схемой:

Fe + O2 + H2O → Fe2O3 · xH2O

В результате образуется ржавчина различной расцветки, что обусловлено тем, что образуются различные окислы железа. Какое именно вещество образуется в процессе коррозии железа, зависит от давления кислорода, влажности воздуха, температуры, длительности процесса, состава железного сплава, состояния поверхности изделия и т. д. Скорость разрушения разных металлов различна.

Процесс коррозии металла в растворах электролитов – это результат работы большого количества микроскопических гальванических элементов, у которых в качестве катода выступают примеси в металле, а в качестве анода – сам металл. В результате чего возникают микроскопические гальванические элементы.

Также атомы железа на разных участках имеют различную способность отдавать электроны (окисляться). Участки металла, на котором протекает этот процесс, выступают в роли анода. Остальные участки – катодные, на которых происходят процессы восстановления воды и кислорода:

H2O + 2e = 2OH + H2

O2 + 2H2O + 4e = 4OH

Результат – из ионов железа (II) и гидроксид-ионов образуется гидроксид железа (II). Далее идет его окисление до гидроксида железа (III) – основного компонента ржавчины:

Fe2+ + 2OH = Fe(OH)2
Fe(OH)2 + O2 + H2O → Fe2O3 · xH2O

Для того чтобы гальванический элемент работал, необходимо наличие двух металлов различной химической активности и среды, которая проводит электрический ток, – электролита. При контакте железа и другого металла (например, цинка) коррозия железа замедляется, а более активного металла (цинка) – ускоряется. Это обусловлено тем, что поток электронов идет от более активного металла (анода) к менее активному металлу (катоду). Так, при контакте железа с менее активным металлом, коррозия железа ускоряется.

Процесс электрической коррозии

Такой вид разрушения металлических подземных конструкций, кабелей и сооружений могут вызывать блуждающие токи, исходящие от трамваев, метро, электрических железных дорог и различных электроустановок с постоянным током.

Ток с металлических конструкций выходит в грунт в виде положительных ионов металла – происходит электролиз металла. Участок выхода токов – это анодные зоны. Именно в них и протекают активные процессы электрической коррозии железа. Блуждающие токи могут достигать 300 А и действовать в радиусе нескольких десятков километров.

Блуждающими токами, исходящими от источников переменного тока, вызывается слабая коррозия подземных стальных конструкций, и сильная – конструкций из цветных металлов. Защита металлических конструкций от коррозии является очень важной задачей, так как она причиняет огромные убытки. 

Типы и причины коррозии, способы ее предотвращения Блоги по решениям для ходовых и управляющих систем

Предотвращение коррозии — важнейшая задача во многих отраслях промышленности. В отсутствие защитных мер коррозия может оказать пагубное влияние на инфраструктуру, а также безопасность и эффективность бизнеса. Риску подвержен и бюджет компаний: по результатам исследования, проведенного организацией NACE International, ежегодные затраты на борьбу с коррозией составляют 2,5 триллиона долл. США.
С другой стороны, современным инженерам-конструкторам доступно значительно больше инструментов, чем прежде. Более глубокое понимание типов и причин коррозии, усовершенствованные материалы и передовые подходы — все это помогает техническим специалистам предотвращать разрушение металлов и снижать его интенсивность.


В этой публикации представлено краткое содержание новой брошюры Parker о борьбе с коррозией.


Определение коррозии

Коррозия — это процесс, при котором инфраструктура, продукция и детали разрушаются вследствие химической либо электрохимической реакции с окружающей средой.
 

Основные типы коррозии

Сегодня в разных отраслях промышленности распространены шесть типов коррозии.
•    Электрохимическая коррозия, возникающая при контакте двух материалов с разными электрохимическими свойствами (например, сталь и латунь) в агрессивной среде и приводящая к разрушению менее устойчивого материала.
•    Точечная коррозия, при которой в металле быстро возникают глубокие и узкие отверстия, в то время как остальная поверхность остается неповрежденной. Обычно это происходит с самопассивирующимися материалами, такими как нержавеющая сталь или сплавы алюминия.
•    Равномерная коррозия, которая развивается постепенно на открытой для воздействия поверхности металла, оставляя равномерный слой отложений.
•    Щелевая коррозия, охватывающая те участки, где в небольших углублениях (выемках или углах) скапливается жидкость.
•     Межкристаллитная коррозия, которая возникает внутри зернистой структуры сплава или рядом с ней и вызывает локальные повреждения.
•    Коррозионное растрескивание под напряжением, когда материал подвергается непрерывной или меняющейся нагрузке в агрессивной среде, что приводит к появлению трещин.
 

Что вызывает коррозию?

Коррозия — результат воздействия ряда различных факторов, характерных для каждой конкретной отрасли. Ниже перечислены распространенные примеры для отдельных отраслей.
•    В сфере строительства коррозия часто возникает в ситуациях, когда металлы подвергаются воздействию природных факторов и экстремальных температур.
•    Подземные разработки обычно проводят в средах с кислой водой (нередко содержащей хлориды и сульфаты) в сочетании с высокой влажностью и температурой.
•    В лесной промышленности коррозия обычно появляется при работе на удаленных участках, когда оборудование паркуют прямо на траве или земле. За ночь там накапливается большое количество воды, которая может вызывать коррозию встроенных механических систем и компонентов.
Условия окружающей среды также влияют на скорость развития и распространение коррозии. При повышенной влажности металлы реагируют друг с другом и разрушаются гораздо быстрее, чем в сухих условиях.
В агрессивных средах обычно присутствуют следующие факторы (отдельно или в различных сочетаниях):
•    влажность;
•    экстремальные температуры;
•    сырые поверхности;
•    взвешенные в воздухе частицы;
•    соль;
•    промышленные смазочные материалы.
 

Предотвращение коррозии и защита

Инженерам доступен целый ряд методов, которые помогают снизить интенсивность коррозии или предотвратить ее возникновение. Ниже перечислены методы, более подробно описанные в брошюре о борьбе с коррозией.
•    Выбор материалов. Ключевую роль играет выбор подходящих материалов с учетом задачи и условий ее выполнения. В агрессивной среде разрушению подвержены все металлы, однако сплавы могут резко отличаться друг от друга по своим показателям. Решающее значение в этом случае имеет баланс между пределом прочности на разрыв и стойкостью к нагреву, воздействию химических веществ и коррозии.
•    Совместимость материалов. При разработке продуктов инженеры должны учитывать вероятность соприкосновения потенциально несовместимых материалов. Так, сочетания меди и нержавеющей стали или бронзы и стали могут стать причиной электрохимической коррозии. Для решения этой проблемы следует выбирать совместимые материалы и сплавы либо применять изоляцию, которая позволяет предотвратить образование электрической цепи.
•    Защитные покрытия. На некоторые металлы, такие как сталь, железо и алюминий, можно нанести защитное покрытие, устойчивое к коррозии. Чтобы выбрать оптимальную комбинацию металла и покрытия, требуется тщательно проанализировать требования к прочности, надежности, трению, моменту затяжки и коррозионной стойкости.
•    Коррозионные испытания. В ходе контролируемых испытаний можно смоделировать различные агрессивные атмосферы, включая распыленную соленую воду, солевой туман, сухость и влажность. Такие испытания обычно проводят с соблюдением очень точных параметров, например моделируют сезонные циклы, чтобы воссоздать реальные погодные условия.
•    Системы защиты от коррозии. Эффективная система защиты помогает предприятиям успешно справляться с коррозией. Мониторинг состояния и анализ журналов для учета инцидентов улучшают понимание практических аспектов, связанных с коррозией, а обмен информацией между подразделениями позволяет выявить потенциальную зависимость между капиталовложениями, методами обслуживания и сроком службы активов.
 

Борьба с коррозией: брошюра

Скачать брошюру  

Автор статьи — доктор Филипп Вагенер (Philipp Wagener)

 

 

 

 

Связанные статьи:

Пыль гораздо вреднее, чем кажется

 

Основные виды коррозии металлов | «ЧелМетСнаб»

Содержание:


Коррозией металлов называется их разрушение вследствие химического или электрохимического взаимодействия с окружающей средой. По механизму протекания процесса различают два типа коррозии металлов: химическую и электрохимическую.

Химическая коррозия — это коррозийный процесс, протекающий в средах, не проводящий электрический ток. Химическая коррозия имеет место, например, при высокотемпературном нагреве стали для горячей обработки давлением или термической обработки. При этом на поверхности металла образуются различные химические соединения — оксиды, сульфиды и другие — в виде пленки.

В отдельных случаях образовавшиеся при химической коррозии пленки, особенно сплошные, предохраняют металл от дальнейшей коррозии. Например, алюминий, олово, свинец, никель и хром способны к образованию на поверхности металлов плотных защитных пленок. пленки же на поверхности стальных и чугунных изделий непрочны, способны к растрескиванию и проникновению коррозии в глубь металла.

Электрохимическая коррозия обычно сопровождается протеканием электрического тока. Примерами могут служить ржавление металлических конструкций и изделий в атмосфере, корпусов судов и стальной арматуры гидросооружений в речной и морской воде и т.п.

Детальное рассмотрение механизмов химической и электрохимической коррозии показывает, что резкого различия между ними не существует. В ряде случаев возможен постепенный переход химической коррозии в электрохимическую и, наоборот, механизм коррозии металлов в растворах электролитов может иметь двоякий характер.

Коррозия по условиям протекания бывает следующая. Газовая- коррозия металла в газах при высоких температурах. Коррозия в неэлектролитах (например, коррозия стали в бензине). Атмосферная коррозия различных металлических конструкций на воздухе. Коррозия в электролитах- в проводящих электрический ток жидких средах. Почвенная (например, коррозия подземных трубопроводов). Коррозия внешним током или электрокоррозия (например, коррозия подземной трубы блуждающими токами). Контактная — электрохимическое разрушение металлов, происходящее в результате контакта различных металлов в электролите (например, коррозия деталей из алюминиевых сплавов, соприкасающихся с деталями из меди). Структурная- связанная со структурной неоднородностью металлов; например, ускорение коррозионного процесса чугуна в растворе серной кислоты в результате имеющихся в нем включений графита. Коррозия под напряжением, изменяющимся по значению и знаку, что часто вызывает коррозионную усталость- понижение предела выносливости металла. Коррозия при трении; например, разрушение шейки вала при вращении в морской воде. Щелевая, протекающая в узких щелях и зазорах между отдельными деталями. Биокоррозия- коррозия металлов под воздействием продуктов, выделяемых микроорганизмами, и пота рук человека. По характеру коррозионных процессов и месту их распределения различают сплошную, местную и межкристаллитную коррозию. Сплошная коррозия характеризуется тем, что металлическое изделие разрушается почти равномерно и коррозия охватывает всю его поверхность. Этот вид коррозии сравнительно легко поддается контролю и оценке.

Местная коррозия обычно бывает сосредоточенна на отдельных участках поверхности изделия. Это более опасный вид коррозии, так как распространяется на значительную глубину, а следовательно, приводит к потере работоспособности изделий. Чаще всего этот вид коррозии наблюдается в местах механических повреждений поверхности изделий. При межкристаллитной коррозии процесс разрушения начинается с поверхности изделия и распространяется в глубь его, в основном по границам зерен. Межкристаллитная коррозия вызывает хрупкость металла и значительное снижение его несущей способности. Этот часто встречающийся на практике вид коррозии является весьма опасным и обычно имеет место при термической обработке металлов или сварке. Степень коррозийной стойкости сталей существенно зависит от содержания углерода. Так, с уменьшением содержания углерода в легированной хромоникелевой стали марки Х18Н9 до 0.015% практически устраняется склонность ее к межкристаллитной коррозии.

Методы защиты металлов от коррозии, их эффективность


Существуют многочисленные способы защиты металлов от коррозии. Выбор того или иного способа определяется конкретными условиями работы и хранения металлических изделий. Применяются следующие способы защиты: легирование сталей, нанесение металлических покрытий, электрохимическая защита.

Легирование наиболее надежно защищает металл от коррозии, причем наиболее эффективно в условиях воздействия механических напряжений и коррозийной среды. Легирование позволяет предотвратить и коррозийное растрескивание изделий.

Так, например, к группе сталей с особыми химическими свойствами относят коррозионно-стойкие стали. Их получают путем введения в углеродистые и низколегированные стали значительных добавок хрома или хрома и никеля. При содержании хрома 13, 17 и 25% хромистые стали являются не только коррозионно-, но и жаростойкими. Хромоникелевые стали обладают большей коррозионной стойкостью, чем хромистые, и находят широкое применение в химической промышленности.

Механизм защиты сталей от коррозии их легированием различен и связан либо с повышением коррозионной стойкости всего объема металла, либо с образованием на поверхности изделия защитных пленок.

Металлические покрытия наносят на поверхность изделия тонким слоем металла, обладающего достаточной стойкостью в данной среде. Металлические покрытия придают также поверхностным слоям металлоизделий требуемую твердость, износостойкость. Различают два типа металлических покрытий- анодное и катодное. Для железоуглеродистых сплавов таким анодным покрытием может служить покрытие из цинка и кадмия. В воде и во влажном воздухе цинк покрывается слоем основной углекислой соли белого цвета, защищающим его от дальнейшего разрушения. Широкое применение получили цинковые покрытия для защиты арматуры, труб и резервуаров от действия воды и горячих жидкостей.

Металлические покрытия наносят различными способами. Наиболее часто применяется горячий метод, гальванизация и металлизация.

При горячем методе изделие погружают в расплавленный металл, который смачивает его поверхность и покрывает тонким слоем. Затем изделие вынимают из ванны и охлаждают. Таким методом изделие покрывают слоем олова или цинка. Лужение применяют при изготовлении белой жести, при устройстве покрытий на внутренних поверхностях пищевых котлов и других изделий. Цинкованием предохраняют от коррозии, например, кровельное железо, водопроводные трубы.

При гальваническом способе металлические изделия помещают в гальваническую ванну. Под действием электрического тока на поверхности изделия происходит катодное осаждение пленки защитного металла. Толщину гальванического покрытия можно регулировать в широких пределах. Покрытия получают также распылением расплавленного металла с помощью специальных металлизационных пистолетов и напылением на его поверхность защищаемого металла. Этот вид защиты используют для крупногабаритных конструкций: ж./д мостов и т. д. В качестве защитного металла используют алюминий, цинк, хром, коррозионно-стойкие стали.

Неметаллические покрытия выполняются из лаков, красок, эмалей и др. веществ и изолируют изделие от воздействия внешней среды. Эти покрытия имеют преимущество перед металлическими. Они легко наносятся на изделие, хорошо закрывают поры, не изменяют свойств металла и являются относительно дешевыми. При хранении и перевозке изделий металлические изделия покрывают специальными смазочными материалами, минеральными маслами и жирами. Для защиты изделий, работающих в высокоагрессивных средах, применяют пластмассовые покрытия из винипласта, поливинилхлорида.

Химические покрытия — защитные оксидные иные пленки- создаются при воздействии на металл сильных химических реагентов. Широко применяются также оксидирование и фосфатирование металлоизделий.

Оксидирование заключается в создании на поверхности изделия оксидной пленки, обладающей большой коррозийной стойкостью. Наиболее широко применяют оксидирование для защиты от коррозии изделий из алюминия и его сплавов.

Фосфатирование стальных изделий заключается в создании поверхностного слоя из фосфатов марганца и железа. Фосфатные покрытия используются в дальнейшем в качестве подслоя. Фосфатные покрытия часто применяются в сочетании со смазочными материалами для уменьшения трения при обработке металлов давлением, волочением, для хорошей приработке трущихся деталей машин.

В отдельных случаях прибегают к защите металлов от коррозии при помощи протекторов. Сущность протекторной защиты заключается в том, что к поверхности защищаемого изделия прикрепляют протекторы- куски металла. Образуется гальваническая пара , в которой анод- протектор, катод- изделие. В результате протектор разрушается, защищая изделие. Таким образом, защищают, например, подводные металлические части кораблей, прикрепляя к ним пластины цинка.

Возможно вас заинтересует


Народнохозяйственное значение борьбы с коррозией


Одним из основных факторов, определяющих долговечность машин и оборудования, является коррозия металлов. Потери от коррозии можно разделить на прямые и косвенные. Прямые потери- это стоимость заменяемых изделий, затраты на защитные мероприятия и безвозвратные потери металла вследствие коррозии. По подсчетам специалистов, безвозвратные потери металла в мировом масштабе составляют в настоящее время около 10…15% от объема производства стали. Косвенные потери продукта в результате утечек, снижение производительности агрегата, загрязнение продуктами коррозии целевого продукта и т.п.

Значительная часть мощности предприятий черной металлургии затрачивается на восполнение потерь металла вследствие коррозии. Однако это далеко не полностью отражает действительный ущерб, связанный с выходом из строя изделий из металла. Значительные потери обусловлены авариями оборудования, простоями его, потерями и отходами в металлообработке, нарушениями качества продукции и в конечном счете повышением ее себестоимости и снижением производительности труда. Поэтому экономия металла, повышение качества металлов и металлоизделий, уменьшение коррозионных потерь — непременное условие повышения эффективности производства и качества продукции, которое должно обеспечиваться в государственном масштабе.

Урок 9. коррозия металлов и её предупреждение — Химия — 11 класс

Химия, 11 класс

Урок № 9. Коррозия металлов и её предупреждение

Перечень вопросов, рассматриваемых в теме: урок посвящён изучению видов коррозии, особенностям химической и электрохимической коррозии, методам защиты металлических изделий от коррозионного разрушения.

Глоссарий

Анодное покрытие – способ защиты металлического изделия от коррозии, когда защищаемый металл покрывается металлическим покрытием из более активного металла.

Газовая коррозия – разрушение металла в среде агрессивных газов (кислорода, оксида серы, хлороводорода) обычно при высоких температурах.

Гальванокоррозия – вид электрохимической коррозии, при которой два контактирующих металла в среде электролита образуют коррозионный гальванический элемент с возникновением электрического тока между металлами.

Жидкостная коррозия – разрушение металла в жидкостях, не проводящих электрический ток (органические растворители, нефтепродукты).

Ингибиторы – вещества, вводимые в коррозионную среду, в результате чего снижается её окисляющая способность.

Катодная защита – способ защиты металла от коррозии, когда защищаемое металлическое изделие подсоединяется к отрицательному полюсу внешнего источника электрического тока.

Катодное покрытие – способ защиты металла от коррозии, когда металлическое изделие покрывается тонким слоем из менее активного металла.

Коррозия – разрушение металла в результате окислительно-восстановительных реакций между металлом и окружающей средой

Осушение – удаление из окружающей среды влаги для предотвращения возникновения коррозии.

Протекторная защита – способ защиты металла от коррозии, когда к защищаемому металлическому изделию присоединяют кусок другого, более активного металла.

Химическая коррозия – разрушение металла в среде, не проводящей электрический ток.

Электрокоррозия – вид электрохимической коррозии, возникающей в среде электролита под действием внешнего электрического поля.

Электрохимическая коррозия – разрушение металла в среде электролита при контакте двух металлов с образованием коррозионного элемента и возникновением электрического тока.

Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.

Дополнительная литература:

1. Рябов, М.А. Сборник задач, упражнений и тестов по химии. К учебникам Г.Е. Рудзитис, Ф.Г. Фельдман «Химия. 10 класс» и «Химия. 11 класс»: учебное пособие / М.А. Рябов. – М.: Экзамен. – 2013. – 256 с.

2. Рудзитис, Г.Е. Химия. 10 класс: учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М.: Просвещение. – 2018. – 352 с.

Открытые электронные ресурсы:

  • Единое окно доступа к информационным ресурсам [Электронный ресурс]. М. 2005 – 2018. URL: http://window.edu.ru/ (дата обращения: 01.06.2018).

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ

Коррозия и её виды

Коррозия металлов – процесс разрушения металлического изделия в результате окислительно-восстановительной реакции металла с окружающей средой. В зависимости от механизма различают два вида коррозии: химическую и электрохимическую. Химическая коррозия происходит в среде, не проводящей электрический ток. К этому виду коррозии относится газовая коррозия, в результате которой металл разрушается под действием агрессивных газов: кислорода, оксида серы, хлороводорода. Газовая коррозия обычно происходит при высоких температурах. Другой вид химической коррозии – жидкостная коррозия, которая возникает в агрессивных жидкостях, не проводящих электрический ток, например, в органических растворителях или нефтепродуктах.

Электрохимическая коррозия происходит в среде электролитов, которые хорошо проводят электрический ток. Различают два вида электрохимической коррозии: гальванокоррозия и электрокоррозия. Гальванокоррозия возникает в месте контакта двух металлов, наличия в металле примесей, разной температуры на соседних участках металлов, разной концентрации электролитов в среде, контактирующей с металлом и в случае разной концентрации кислорода на соседних участках металла. Например, в чугуне примеси углерода и карбида железа играют роль катода, на котором происходит восстановление молекулярного кислорода в присутствии паров воды: 2Н2О + О2 + 4е → 4ОН-, а железо становится анодом и окисляется.

Fe0 – 2e → Fe2+. В результате среда становится щелочной, образуется сначала «белая» ржавчина Fe(ОН)2: Fe2+ + 2OH → Fe(ОН)2↓, которая окисляется кислородом воздуха во влажной среде до трёхвалентного гидроксида железа.

4Fe(ОН)2↓ + 2Н2О + О2 → 4Fe(ОН)3↓, Fe(OH)3 + nh3O → Fe2O3·xh3O (ржавчина).

Если в атмосфере присутствует большое количество кислых газов (СО2, SO2, NO2), то при растворении их в воде образуются кислоты. В кислой среде коррозия идет ещё интенсивнее. В присутствии кислорода на катоде образуется вода, а в бескислородной среде выделяется водород.

На аноде: Fe0 – 2е → Fe2+;

На катоде: О2 + 4Н+ + 4е → 2Н2О

или в бескислородной среде: 2Н+ + 2е → Н20↑.

Ионы железа образуют соли с кислотными остатками образовавшихся при растворении газов кислот. В дальнейшем под действием кислорода воздуха, соли двухвалентного железа окисляются до солей трёхвалентного железа.

Электрокоррозия возникает под действием на металл электрического тока от внешнего источника постоянного тока. Часто она происходит под действием блуждающих токов от рельсов электротранспорта, от плохо изолированных опор линий электропередач. Участок, на который попадает ток от внешнего источника, заряжается отрицательно и становится катодом. На нём происходит восстановление элементов среды. А соседний участок становится анодом, на нём металл окисляется.

Факторы, увеличивающие скорость коррозии

Возникновение коррозионного гальванического элемента увеличивает скорость коррозии. При контакте двух металлов более активный металл отдает электроны менее активному. Возникает электрический ток. Активный металл растворяется и в результате реакции со средой, и за счет передачи электронов менее активному металлу. Принятые электроны менее активный металл отдает в окружающую среду, таким образом, окисление активного металла и восстановление компонентов окружающей среды происходит быстрее. Скорость коррозии зависит от количества кислорода, который контактирует с металлом. Железный гвоздь, погруженный в воду на половину своей длины, разрушается быстрее всего, так как доступу кислорода ничего не препятствует. Гвоздь, полностью погруженный в воду, разрушается медленнее, так как количество кислорода, участвующего в реакции, ограничивается скоростью растворения кислорода в воде. В пробирке, где сверху воды налили масло, коррозия идет медленнее всего, так как масло препятствует поступлению кислорода в воду.

Методы защиты металлов от коррозии

Одним из распространённых методов защиты металлов от коррозии является нанесение защитных покрытий. Покрытия бывают металлическими и неметаллическими. Если металлическое изделие покрыто слоем более активного металла, покрытие называют анодным. Если покрытие изготовлено из менее активного металла, оно называется катодным. Неметаллические покрытия – это различные эмали, лаки, краски, резиновые, битумные и полимерные покрытия. По отношению к железу анодными покрытиями будут цинковые, хромовые, алюминиевые покрытия. Эти покрытия защищают металл даже в случае появления царапин или трещин. Так как покрытие изготовлено из более активного металла, оно является анодом по отношению к защищаемому металлу и будет разрушаться. Защищаемое металлическое изделие разрушаться не будет. Катодные покрытия обычно делают из малоактивных металлов. Это никель, олово, свинец, медь, серебро, золото. Из-за низкой активности такие металлы слабо подвергаются воздействию коррозии, но в случае нарушения покрытия, возникнет коррозионный элемент, в котором анодом станет защищаемое металлическое изделие. Оно начнет разрушаться. Защитные оксидные покрытия на поверхности металла можно создать путем химической обработки концентрированной азотной кислотой (пассивация алюминия, хрома), концентрированным раствором щелочи и горячего масла (воронение), фосфорной кислотой и её кислыми солями (фосфатирование).

Эффективным, но дорогим методом защиты металлов от коррозии является введение в сплав антикоррозионных легирующих добавок: хрома, никеля, молибдена, титана. Для повышения стойкости к коррозии в кислой среде в сплав добавляют кремний.

К методам электрохимической защиты относятся протекторная и катодная защита. Протекторная защита предусматривает закрепление на защищаемом изделии пластин из активного металла: цинка, алюминия, магния. Попадая в агрессивную среду, протектор становится анодом, начинает разрушаться, а металлическое изделие, являясь катодом, не разрушается до полного разрушения протектора. Катодная защита производится путём подсоединения защищаемого металлического изделия к отрицательному полюсу внешнего источника постоянного электрического тока. В результате защищаемый металл приобретает отрицательный заряд и становится катодом. В качестве анода используют вспомогательный кусок металла (железный лом, старый рельс), который заземляют.

Важным направлением предотвращения коррозии металлов является снижение агрессивности окружающей среды. Для этого проводят осушение почвы, воздуха. В жидкие среды добавляют ингибиторы – вещества, реагирующие с окислительными компонентами среды и снижающие скорость коррозии. Для борьбы с блуждающими токами проводят надёжную изоляцию токопроводящих конструкций, организацию бесстыкового пути.

Предотвращение потерь металла от коррозии позволит не только сберечь тонны металла, но и предотвратить аварии на производстве и транспорте, сберечь человеческие жизни.

ПРИМЕРЫ И РАЗБОР РЕШЕНИЙ ЗАДАЧ ТРЕНИРОВОЧНОГО МОДУЛЯ

1. Расчёт массы металла, предохраняемого от разрушения за счёт нанесения защитных покрытий

Условие задачи: В результате атмосферной коррозии толщина стального изделия уменьшается на 0,12 мм/год. Потерю какой массы стального изделия плотностью 7750 кг/м3 и площадью 10 м2 можно предотвратить путем нанесения лакокрасочного покрытия, которое сохраняет свои защитные свойства в течение 4 лет? Ответ запишите в виде целого числа в килограммах.

Шаг первый: необходимо перевести скорость коррозии из мм/год в м/год.

Для этого скорость коррозии умножим на 10-3:

0,12·10-3 = 1,2·10-4 (м/год).

Шаг второй: Найдём объём слоя металла, который может быть разрушен коррозией за 1 год. Для этого толщину слоя разрушенного в течение года металла умножим на площадь стального изделия:

1,2·10-4·10 = 1,2·10-33/год).

Шаг третий: Найдём массу вычисленного объёма металла.

Для этого объём металла умножим на его плотность:

1,2·10-3·7750 = 9,3 (кг/год).

Шаг четвёртый: Найдём массу металла, которая могла бы разрушиться за 4 года. Для этого массу сохранённого за год металла умножим за 4 года:

9,3·4 = 37,2 (кг). Округляем до целого числа, получаем 37 (кг).

Ответ: 37

2. Расчёт массы металла, разрушенного в результате коррозии

Условие задачи: Через железную решётку, предохраняющую от попадания в канализацию крупного мусора, проходит 20 м3 воды в сутки. Содержание кислорода в воде 1 % от объёма воды. Какая масса железа окислится за 6 месяцев использования решётки, если на окисление металла расходуется 60% содержащегося в воде кислорода? Ответ записать в килограммах в виде целого числа.

Шаг первый: найдём объём кислорода, который содержится в 20 м3 воды.

Для этого разделим 20 м3 на 100:

20 : 100 = 0,2 (м3/сутки) = 200 (л/сутки)

Шаг второй: Найдём объём кислорода, который проходит в воде через решётку в течение 6 месяцев.

Для этого объём кислорода, проходящий через решетку в сутки, умножим на 30 дней и на 6 месяцев:

200·30·6 = 36000 (л).

Шаг третий: Найдём объём кислорода, который расходуется на окисление железа. Для этого умножим найденный объём кислорода на 60 и разделим на 100:

(36000·60) : 100 = 21600 (л).

Шаг четвёртый: Запишем уравнение реакции взаимодействия железа с кислородом в нейтральной среде:

2Fe + O2 + 2H2O → 2Fe(OH)2.

Шаг пятый: Найдём массу железа, окисленного 21600 л кислорода.

Для этого составим пропорцию с учётом того, что масса 1 моль железа равна 56 г/моль, а 1 моль газа в нормальных условиях занимает 22,4 л.

2·56 г железа реагирует с 22,4 л кислорода;

х г железа реагирует с 21600 л кислорода.

х = (2·56·21600) : 22,4 = 108000 (г) = 108 кг.

Ответ: 108.

Коррозия металлов. Термины – РТС-тендер



УТВЕРЖДЕН Комитетом стандартов, мер и измерительных приборов при Совете Министров СССР 28 июня 1968 г.

Дата введения установлена 01.01.69

ВЗАМЕН ГОСТ 5272-50

* ПЕРЕИЗДАНИЕ с Изменениями N 1, 2, утвержденными в апреле 1971 г., в мае 1982 г. (ИУС 5-71, 8-82).


Настоящий стандарт устанавливает применяемые в науке, технике и производстве термины и определения основных понятий в области коррозии металлов.

Термины, установленные настоящим стандартом, обязательны для применения в документации всех видов, учебниках, учебных пособиях, технической и справочной литературе.

Для каждого понятия установлен один стандартизованный термин. Применение терминов — синонимов стандартизованного термина запрещается. Недопустимые к применению термины-синонимы приведены в стандарте в качестве справочных и обозначены пометой «Ндп».

Основные термины набраны полужирным шрифтом, их краткие формы — светлым, недопустимые — курсивом.


Для отдельных стандартизованных терминов в стандарте приведены в качестве справочных их краткие формы, которые разрешается применять в случаях, исключающих возможность их различного толкования.

В случаях, когда существенные признаки понятия содержатся в буквальном значении термина, определение не приведено и, соответственно, в графе «Определение» поставлен прочерк.



(Измененная редакция, Изм. N 1, 2).


Цифрами обозначены порядковые номера терминов.

Звездочкой отмечены номера дополнительных терминов, встречающихся в таблице в графе «Примечание».

Термины, имеющие в своем составе несколько слов, расположены по алфавиту главных слов (обычно имен существительных).

Порядок слов в указателе обратный.

Термины, состоящие из двух имен существительных, помещены в алфавите соответственно слову, стоящему в именительном падеже.


(Измененная редакция, Изм. N 1, 2)


Электронный текст документа
подготовлен ЗАО «Кодекс» и сверен по:
официальное издание
Защита от коррозии. Часть 4. Методы
натурных испытаний: Сб. ГОСТов. —
М.: ИПК Издательство стандартов, 1999


1. Коррозия металлов

Разрушение металлов вследствие химического или электрохимического взаимодействия их с коррозионной средой

1. Для процесса коррозии следует применять термин «коррозионный процесс», а для результата процесса — «коррозионное разрушение».

2. Под металлом следует понимать объект коррозии, которым может быть металл или металлический сплав

2. Коррозионная среда

Среда, в которой происходит коррозия металла

2а. Жидкая коррозионная среда

2б. Газообразная коррозионная среда

2в. Окислительная газовая среда

Газовая среда, вызывающая окисление металла

2г. Инертная газовая среда

Газообразная среда, не взаимодействующая с металлом

3. Корродирующий металл

Металл, подвергающийся коррозии

4. Коррозионные потери

Количество металла, превращенного в продукты коррозии за определенное время

5. Продукты коррозии

Химические соединения, образующиеся в результате взаимодействия металла и коррозионной среды

При электрохимической коррозии образование продуктов коррозии является результатом анодной и катодной реакций коррозионного процесса

6. Скорость коррозии

Коррозионные потери единицы поверхности металла в единицу времени

Применим для терминов 1, 30-34

7. Скорость проникновения коррозии

Глубина коррозионного разрушения металла в единицу времени

8. Коррозионная стойкость

Способность металла сопротивляться коррозионному воздействию среды

Коррозионная стойкость определяется качественно и количественно (скоростью коррозии в данных условиях, группой или баллом стойкости по принятой шкале). Коррозионная стойкость может быть оценена:

а) изменением веса металла в результате коррозии, отнесенным к единице поверхности и единице времени;

б) объемом выделившегося водорода (или поглощенного кислорода) в процессе коррозии, отнесенным к единице поверхности и единице времени;

в) уменьшением толщины металла вследствие коррозии, выраженным в линейных единицах и отнесенным к единице времени;

г) изменением какого-либо показателя механических свойств за определенное время коррозионного процесса, выраженным в процентах, или временем до разрушения образца заданных размеров;

д) изменением отражательной способности поверхности металла за определенное время коррозионного процесса, выраженным в процентах;

е) плотностью тока, отвечающей скорости данного коррозионного процесса;

ж) временем до появления первого коррозионного очага на образце заданных размером или числом коррозионных очагов на образце по истечении заданного времени

9. Коррозионностойкий металл

Металл, обладающий высокой коррозионной стойкостью

10. Внутренние факторы коррозии

Факторы, влияющие на скорость, вид и распределение коррозии, связанные с природой металла (состав, структура, внутренние напряжения, состояние поверхности)

11. Внешние факторы коррозии

Факторы, влияющие на скорость, вид и распределение коррозии, связанные с составом коррозионной среды и условиями коррозии (температура, давление, скорость движения металла относительно среды и т.д.)

12. Коррозионный очаг

Участок поверхности металла, на котором сосредоточен коррозионный процесс

13. Критическая влажность

Значение относительной влажности, выше которой наступает быстрое увеличение скорости атмосферной коррозии металла


16. Газовая коррозия

Химическая коррозия металла в газах при высоких температурах

Коррозия, протекающая в условиях любого влажного газа, относится к атмосферной коррозии

17. Атмосферная коррозия

Коррозия металла в атмосфере воздуха

18. Коррозия при неполном погружении

Коррозия металла, частично погруженного в жидкую коррозионную среду

19. Коррозия по ватерлинии

Коррозия металла вблизи ватерлинии при неполном погружении его в жидкую коррозионную среду

20. Коррозия при полном погружении

Коррозия металла, полностью погруженного в жидкую коррозионную среду

21. Подводная коррозия

Коррозия металла, полностью погруженного в воду

22. Коррозия при переменном погружении

Коррозия металла при переменном погружении его целиком или частично в жидкую коррозионную среду

23. Подземная коррозия

Коррозия металла в почвах и грунтах

24. Биокоррозия

Коррозия металла под влиянием жизнедеятельности микроорганизмов

25. Коррозия внешним током

Электрохимическая коррозия металла под воздействием тока от внешнего источника

26. Коррозия блуждающим током

Электрохимическая коррозия металла под воздействием блуждающего тока

27. Контактная коррозия

Электрохимическая коррозия, вызванная контактом металлов, имеющих разные стационарные потенциалы в данном электролите

28. Коррозия при трении

Разрушение металла, вызываемое одновременным воздействием коррозионной среды и трения

29. Фреттинг-коррозия

Коррозия при колебательном перемещении двух поверхностей относительно друг друга в условиях воздействия коррозионной среды

30. Сплошная коррозия

Коррозия, охватывающая всю поверхность металла

31. Равномерная коррозия

Сплошная коррозия, протекающая с одинаковой скоростью по всей поверхности металла

32. Неравномерная коррозия

Сплошная коррозия, протекающая с неодинаковой скоростью на различных участках поверхности металла

33. Местная коррозия

Коррозия, охватывающая отдельные участки поверхности металла

34. Подповерхностная коррозия

Местная коррозия, начинающаяся с поверхности, но преимущественно распространяющаяся под поверхностью металла таким образом, что разрушение и продукты коррозии оказываются сосредоточенными в некоторых областях внутри металла

Обычно начало коррозионного разрушения не обнаруживается макроскопическим обследованием поверхности, но всегда обнаруживается при микроскопическом обследовании

Подповерхностная коррозия часто вызывает вспучивание металла и его расслоение

35. Точечная коррозия

Местная коррозия металла в виде отдельных точечных поражений

Питтинг

36. Коррозия пятнами

Местная коррозия металла в виде отдельных пятен

37. Сквозная коррозия

Местная коррозия, вызвавшая разрушение металла насквозь

38. Послойная коррозия

Коррозия, распространяющаяся преимущественно в направлении пластической деформации металла

39. Нитевидная коррозия

Коррозия, распространяющаяся в виде нитей, преимущественно под неметаллическими защитными покрытиями

40. Структурная коррозия

Коррозия, связанная со структурной неоднородностью металла

41. Межкристаллитная коррозия

Коррозия, распространяющаяся по границам кристаллов (зерен) металла

Ндп. Интеркристаллитная коррозия

42. Избирательная коррозия

Коррозия, разрушающая одну структурную составляющую или один компонент сплава

Ндп. Селективная коррозия

43. Графитизация чугуна

Избирательная коррозия серого литейного чугуна, протекающая вследствие растворения ферритных и перлитных составляющих с образованием относительно мягкой массы графитного скелета без изменения формы

44. Обесцинкование

Избирательное растворение латуней, приводящее к обеднению сплава цинком и образованию на поверхности губчатого медного осадка

45. Щелевая коррозия

Усиление коррозии в щелях и зазорах между двумя металлами, а также в местах неплотного контакта металла с неметаллическим коррозионно-инертным материалом

Ндп. Щелевой эффект

46. Ножевая коррозия

Локализованный вид коррозии металла в зоне сплавления сварных соединений в сильно агрессивных средах

47. Коррозионная язва

Местное коррозионное разрушение, имеющее вид отдельной раковины

48. Коррозионное растрескивание

Коррозия металла при одновременном воздействии коррозионной среды и внешних или внутренних механических напряжений растяжения с образованием транскристаллитных или межкристаллитных трещин

49. Коррозия под напряжением

Коррозия металла при одновременном воздействии коррозионной среды и постоянных или переменных механических напряжений

50. Коррозионная усталость

Понижение предела усталости металла, возникающее при одновременном воздействии циклических растягивающих напряжений и коррозионной среды

51. Предел коррозионной усталости

Максимальное механическое напряжение, при котором еще не происходит разрушение металла после одновременного воздействия установленного числа циклов переменной нагрузки и заданных коррозионных условий

52. Коррозионная хрупкость

Хрупкость, приобретенная металлом в результате коррозии

Под хрупкостью следует понимать свойство материала разрушаться без заметного поглощения механической энергии в необратимой форме


56. Коррозионный элемент

Гальванический элемент, возникающий при взаимодействии металла и среды, влияющей на скорость и характер коррозии металла

57. Коррозионный макроэлемент

Коррозионный элемент, электроды которого имеют размеры, хорошо различаемые невооруженным глазом

58. Коррозионный микроэлемент

Коррозионный элемент, электроды которого могут быть обнаружены лишь при помощи микроскопа (структурные составляющие сплава, включения примесей и др.)

59. Коррозионный субмикроэлемент

Коррозионный элемент, электроды которого имеют величину, лежащую за пределами разрешающей способности оптического микроскопа

60. Многоэлектродный элемент

Коррозионный элемент, имеющий более двух электродов

61. Концентрационный элемент

Коррозионный элемент с электродами из одного и того же металла, возникающий за счет различной концентрации реагирующих веществ у поверхности металла

62. Аэрационный элемент

Коррозионный элемент с электродами из одного и того же металла, возникающий за счет большего притока кислорода к одной из частей поверхности металла

63. Поляризация

Изменение потенциала электрода в результате протекания тока

64. Контролирующий процесс

Процесс, кинетика которого определяет скорость коррозии

65. Поляризационный контроль

Ограничение скорости электрохимической коррозии поляризационными явлениями на электродах

66. Анодный контроль

Ограничение скорости электрохимической коррозии анодной реакцией

67. Катодный контроль

Ограничение скорости электрохимической коррозии катодной реакцией

68. Омический контроль

Ограничение скорости электрохимической коррозии омическим сопротивлением

69. Диффузионный контроль

Ограничение скорости коррозии диффузией исходных или конечных продуктов электродных реакций

70. Поляризационная коррозионная диаграмма

Диаграмма зависимости истинных скоростей сопряженных анодной и катодной реакций коррозионного процесса от потенциала

71. Коррозионный ток

Скорость электрохимической коррозии, выраженная величиной электрического тока

Ндп. Ток саморастворения

72. Максимальный коррозионный ток

Максимально возможное значение коррозионного тока, отвечающее точке пересечения анодной и катодной кривых на поляризационной диаграмме

73. Потенциал коррозии

Потенциал металла, установившийся в результате протекания сопряженных анодного и катодного процесса без внешней поляризации

74. Поляризационная кривая

Кривая зависимости скорости электродного (анодного или катодного) процесса от потенциала

75. Идеальная поляризационная кривая

Кривая зависимости истинной скорости электродного процесса (с учетом скорости саморастворения) от потенциала

76. Реальная поляризационная кривая

Кривая зависимости измеряемой скорости электродного процесса от потенциала

77. Деполяризация

Уменьшение поляризации электрода

78. Водородная деполяризация

Катодная реакция восстановления ионов водорода

79. Окислительная деполяризация

Катодная реакция восстановления окисленных частиц среды

80. Кислородная деполяризация

Катодная реакция восстановления (ионизации) кислорода

81. Разностный эффект

Изменение скорости саморастворения металла при внешней поляризации

Ндп. Дифференц-эффект

82. Положительный разностный эффект

Уменьшение скорости саморастворения металла при внешней поляризации

83. Отрицательный разностный эффект

Увеличение скорости саморастворения металла при внешней поляризации

84. Пассивация

Резкое уменьшение скорости коррозии вследствие торможения анодной реакции ионизации металла при образовании на его поверхности фазовых или адсорбционных слоев

85. Пассивное состояние

Состояние относительной высокой коррозионной стойкости, вызванное торможением анодной реакции ионизации металла в определенной области потенциала

Пассивность

86. Условия пассивации

Сумма всех условий, необходимых для наступления пассивного состояния металла

87. Устойчивость пассивного состояния

Способность металла сохранять пассивное состояние при изменении внешних условий

88. Анодная пассивность

Пассивность, вызванная анодной поляризацией металла

89. Потенциал начала пассивации

Потенциал, соответствующий переходу металла из области активного анодного растворения в область активно-пассивного состояния

90. Плотность тока пассивации

Плотность тока анодного растворения металла при потенциале начала пассивации

91. Потенциал полной пассивации

Потенциал, соответствующий переходу металла в пассивное состояние

92. Плотность тока полной пассивации

Плотность тока анодного растворения металла при потенциале полной пассивации

93. Пассивирующее вещество

Вещество, способствующее переходу металла в пассивное состояние в условиях пассивации

Пассиватор

94. Активация

Переход металла из пассивного состояния в активное

Ндп. Депассивация

95. Активирующее вещество

Вещество (реагент), способствующее переходу металла из пассивного состояния в активное или затрудняющее наступление пассивности

Активатор

96. Перепассивация

Резкое увеличение скорости анодного растворения металла (при смещении потенциала в положительную сторону) вследствие нарушения пассивного состояния

При нарушении пассивного состояния и увеличении скорости растворения металла лишь на отдельных участках поверхности наблюдается пробой пассивной пленки

97. Потенциал активации

Потенциал, соответствующий переходу металла из пассивного состояния в активное при смещении потенциала к более отрицательным значениям

В большинстве случаев соответствует потенциалу пассивации

97а. Потенциал питтингообразования

Потенциал, соответствующий возникновению точечной коррозии в результате локального нарушения пассивности металла

98. Потенциал перепассивации

Потенциал, соответствующий переходу металла из пассивного состояния в состояние перепассивации

99. Ржавчина

Продукты коррозии железа и его сплавов, образующиеся при электрохимической коррозии и состоящие преимущественно из окислов


100. Ингибитор коррозии

Вещество, которое при введении в коррозионную среду (в незначительном количестве) заметно снижает скорость коррозии металла

101. Ингибитор кислотной коррозии

Ингибитор, снижающий скорость коррозии металла в кислой среде

102. Ингибитор щелочной коррозии

Ингибитор, снижающий скорость коррозии металла в щелочной среде

103. Ингибитор коррозии в нейтральных средах

Ингибитор, снижающий скорость коррозии металла в нейтральных средах

104. Ингибитор атмосферной коррозии

Ингибитор, снижающий скорость коррозии металлов в атмосферных условиях

105. Контактный ингибитор

Ингибитор, действие которого проявляется при искусственном нанесении его на поверхность металла

106. Летучий ингибитор

Ингибитор, способный в обычных условиях испаряться и самопроизвольно попадать из газовой фазы на поверхность металла

107. Универсальный ингибитор

Ингибитор коррозии, пригодный для защиты черных и цветных металлов

108. Анодный ингибитор

Ингибитор, защитное действие которого обусловлено торможением анодной реакции коррозионного процесса

109. Катодный ингибитор

Ингибитор, защитное действие которого обусловлено торможением катодной реакции коррозионного процесса

110. Анодно-катодный ингибитор

Ингибитор, защитное действие которого обусловлено торможением анодной и катодной реакций коррозионного процесса

111. Стимулятор коррозии

Вещество, которое при введении в коррозионную среду увеличивает скорость коррозии

112. Противокоррозионная защита

Процессы и средства, применяемые для уменьшения или прекращения коррозии металла

112а. Ингибирование

Противокоррозионная защита, осуществляемая введением ингибиторов

113. Степень защиты

Оценка эффективности выбранного метода защиты от коррозии

114. Защитная пленка

Пленка, образующаяся на металле в естественных условиях при его взаимодействии с коррозионной средой или создаваемая искусственно путем химической или электрохимической обработки и затрудняющая протекание процесса коррозии

115. Адсорбционный слой

Слой, возникающий на металле в результате адсорбции атомов или молекул окружающей среды и затрудняющий протекание процесса коррозии

116. Окисная пленка

Пленка, состоящая преимущественно из окислов металла

117. Покрытие

По ГОСТ 9.008-82

117а, 117б (Исключены, Изм. N 2).

118. Электрохимическая защита

Защита металла от коррозии, осуществляемая поляризацией от внешнего источника тока или путем соединения с металлом (протектором), имеющим более отрицательный или более положительный потенциал, чем у защищаемого металла

В зависимости от направления поляризации различают катодную и анодную защиты

118а. Защитный потенциал

Потенциал металла, при котором достигается определенная степень защиты

Защитный потенциал может задаваться анодной или катодной поляризацией от внешнего источника или путем соединения с протектором

119. Протектор

Металл, применяемый для электрохимической защиты и имеющий более отрицательный или более положительный потенциал, чем у защищаемого металла

120. Катодная защита

Электрохимическая защита металла, осуществляемая катодной поляризацией от внешнего источника тока или путем соединения с металлом, имеющим более отрицательный потенциал, чем у защищаемого металла

121. Анодный протектор

Металл, имеющий более отрицательный потенциал, чем у защищаемого металла

122. Анодная защита

Электрохимическая защита металла, способного пассивироваться анодной поляризацией, осуществляемая от внешнего источника тока или посредством соединения с металлом, имеющим более положительный потенциал, чем у защищаемого металла

123. Катодный протектор

Металл, имеющий более положительный потенциал, чем у защищаемого металла

124-125а

(Исключены, Изм. N 2).

126. Неметаллическое изолирующее покрытие

Неметаллическое покрытие, механически изолирующее металл от воздействия коррозионной среды

126а. Полимерное защитное покрытие

127. Грунт

Прилегающий к металлу слой покрытия, обеспечивающий прочность сцепления с металлом и улучшающий защитные свойства покрытия

128. Внешний слой покрытия

Слой многослойного покрытия, соприкасающийся с коррозионной средой

129-142б (Исключены, Изм. N 2).

143. Ингибитированная бумага

Бумага, содержащая ингибитор и применяемая для защиты металла от атмосферной коррозии

144. Защитная смазка

Невысыхающий слой, состоящий из смеси масел с различными добавками, нанесенный на металл и предназначенный для временной защиты металла от коррозии

145. Защитная атмосфера

Атмосфера, искусственно создаваемая для защиты металла от газовой коррозии

146. Деаэрация

Удаление из коррозионной среды кислорода воздуха

146а. (Исключен, Изм. N 2).


146б. Коррозионные испытания

Испытания для определения коррозионной стойкости металла и (или) защитных покрытий

147. Лабораторные испытания

Коррозионные испытания металла, проводимые в искусственных условиях

148. Испытания в природных условиях

Коррозионные испытания металла, проводимые в атмосфере, в море, в почве и т.п.

Полевые испытания

149. Эксплуатационные испытания

Коррозионные испытания машин, аппаратов, сооружений и т.п. в эксплуатационных условиях

150. Ускоренные испытания

Коррозионные испытания, проводимые в условиях, близких к эксплуатационным, но дающие результаты в более короткий срок

151. Водородный показатель коррозии

Объем выделившегося в процессе коррозии водорода, отнесенный к единице поверхности металла и единице времени

152. Кислородный показатель коррозии

Объем поглощенного в процессе коррозии кислорода, отнесенный к единице поверхности металла и единице времени

153. Шкала коррозионной стойкости

Шкала, предназначенная для качественной и количественной оценки коррозионной стойкости металла в определенных условиях

При оценке коррозии следует пользоваться десятибалльной шкалой коррозионной стойкости металлов (см. ГОСТ 9.908)

154. Коррозионный балл

Единица шкалы коррозионной стойкости

154а. Визуальная оценка коррозионной стойкости

Оценка коррозионной стойкости, осуществляемая внешним осмотром

Визуальная оценка может осуществляться как вооруженным, так и невооруженным глазом

Визуальная оценка

А

Активация

94

Активатор

95

Атмосфера защитная

145

Б

Балл коррозионный

154

Биокоррозия

24

Бумага ингибитированная

143

В

Вещество активирующее

95

Вещество пассивирующее

93

Влажность критическая

13

Г

Графитизация чугуна

43

Грунт

127

Д

Деаэрация

146

Депассивация Ндп

94

Деполяризация

77

Деполяризация водородная

78

Деполяризация кислородная

80

Деполяризация окислительная

79

Диаграмма поляризационная коррозионная

70

Дифференц-эффект Ндп

81

Ж

Жаростойкость

53

З

Защита анодная

122

Защита катодная

120

Защита противокоррозионная

112

Защита электрохимическая

118

И

Ингибирование

112а

Ингибитор анодный

108

Ингибитор анодно-катодный

110

Ингибитор атмосферной коррозии

104

Ингибитор катодный

109

Ингибитор кислотной коррозии

101

Ингибитор контактный

105

Ингибитор коррозии

100

Ингибитор коррозии в нейтральных средах

103

Ингибитор летучий

106

Ингибитор универсальный

107

Ингибитор щелочной коррозии

102

Испытания коррозионные

146а

Испытания лабораторные

147

Испытания в природных условиях

148

Испытания полевые

148

Испытания ускоренные

150

Испытания эксплуатационные

149

К

Контроль анодный

66

Контроль диффузионный

69

Контроль катодный

67

Контроль омический

68

Контроль поляризационный

65

Коррозия атмосферная

17

Коррозия блуждающим током

26

Коррозия внешним током

25

Коррозия газовая

16

Коррозия избирательная

42

Коррозия интеркристаллитная Ндп

41

Коррозия контактная

27

Коррозия межкристаллитная

41

Коррозия местная

33

Коррозия металлов

1

Коррозия неравномерная

32

Коррозия нитевидная

39

Коррозия ножевая

46

Коррозия подводная

21

Коррозия под напряжением

49

Коррозия подземная

23

Коррозия подповерхностная

34

Коррозия по ватерлинии

19

Коррозия при неполном погружении

18

Коррозия при переменном погружении

22

Коррозия при полном погружении

20

Коррозия при трении

28

Коррозия послойная

38

Коррозия пятнами

36

Коррозия равномерная

31

Коррозия селективная Ндп

42

Коррозия сквозная

37

Коррозия сплошная

30

Коррозия структурная

40

Коррозия точечная

35

Коррозия химическая

15

Коррозия электрохимическая

14

Коррозия щелевая

45

Кривая поляризационная

74

Кривая поляризационная идеальная

75

Кривая поляризационная реальная

76

М

Макроэлемент коррозионный

57

Металл корродирующий

3

Металл коррозионностойкий

9

Микроэлемент коррозионный

58

О

Обесцинкование

44

Окалина

54

Очаг коррозионный

12

Оценка визуальная

154а

Оценка коррозионной стойкости визуальная

154а

П

Пассиватор

93

Пассивация

84

Пассивность

85

Пассивность анодная

88

Перепассивация

96

Питтинг

35

Пленка защитная

114

Пленка окисная

116

Плотность тока пассивации

90

Плотность тока полной пассивации

92

Показатель коррозии водородный

151

Показатель коррозии кислородный

152

Покрытие защитное

117

Покрытие защитное полимерное

126а

Покрытие неметаллическое изолирующее

126

Поляризация

63

Потенциал активации

97

Потенциал защитный

118а

Потенциал коррозии

73

Потенциал начала пассивации

89

Потенциал перепассивации

98

Потенциал питтингообразования

97а

Потенциал полной пассивации

91

Потери коррозионные

4

Предел коррозионной усталости

51

Продукты коррозии

5

Протектор

119

Протектор анодный

121

Протектор катодный

123

Процесс коррозионный

1*

Процесс контролирующий

64

Р

Разрушение коррозионное

1*

Растрескивание коррозионное

48

Ржавчина

99

С

Скорость коррозии

6

Скорость проникновения коррозии

7

Слой адсорбционный

115

Слой покрытия внешний

128

Слой обезуглероженный

55

Смазка защитная

144

Состояние пассивное

85

Среда газовая инертная

Среда газовая окислительная

Среда коррозионная

2

Среда коррозионная газообразная

Среда коррозионная жидкая

Стимулятор коррозии

111

Стойкость коррозионная

8

Субмикроэлемент коррозионный

59

Степень защиты

113

Т

Ток коррозионный

71

Ток максимальный коррозионный

72

Ток саморастворения Ндп

71

У

Условия пассивации

86

Усталость коррозионная

50

Устойчивость пассивного состояния

87

Ф

Факторы коррозии внешние

11

Факторы коррозии внутренние

10

Фреттинг-коррозия

29

Х

Хрупкость коррозионная

52

Ш

Шкала коррозионной стойкости

153

Э

Элемент аэрационный

62

Элемент концентрационный

61

Элемент коррозионный

56

Элемент многоэлектродный

60

Эффект отрицательный разностный

83

Эффект положительный разностный

82

Эффект разностный

81

Эффект щелевой Ндп

45

Я

Язва коррозионная

47

16.8: Электрохимическая коррозия — Chemistry LibreTexts

Цели обучения

Убедитесь, что вы полностью понимаете следующие важные идеи. Особенно важно, чтобы вы знали точное значение всех выделенных терминов в контексте этой темы.

  • Электрохимическая коррозия металлов происходит, когда электроны от атомов на поверхности металла переносятся на подходящий акцептор электронов или деполяризатор . Должна присутствовать вода, чтобы служить средой для переноса ионов.
  • Наиболее распространенными деполяризаторами являются кислород, кислоты и катионы менее активных металлов.
  • Поскольку электроны проходят через сам металлический объект, анодная и катодная области (две половины электрохимической ячейки) могут находиться на значительном расстоянии друг от друга.
  • Анодные области имеют тенденцию развиваться в местах, где металл подвергается напряжению или защищен от кислорода.
  • Контакт с другим металлом, прямой или косвенный, может привести к коррозии более активного металла.
  • Коррозию стали можно предотвратить путем цинкования , то есть путем покрытия ее цинком, более активным металлом, растворение которого оставляет на металле отрицательный заряд, который препятствует дальнейшему растворению Fe 2+ .
  • Катодная защита с использованием внешнего источника напряжения широко используется для защиты подземных сооружений, таких как резервуары, трубопроводы и опоры. Источником может быть расходуемый анод из цинка или алюминия, либо сетевой или фотоэлектрический источник питания.

Коррозию можно определить как разрушение материалов химическими процессами. Из них наиболее важной на сегодняшний день является электрохимическая коррозия металлов, в которой процесс окисления M → M + + e облегчается наличием подходящего акцептора электронов, иногда называемого в коррозионной науке как . деполяризатор.

В некотором смысле коррозию можно рассматривать как самопроизвольное возвращение металлов в свои руды; Огромное количество энергии, затраченной на добычу, очистку и производство металлов в полезные объекты, рассеивается множеством различных маршрутов.Экономические аспекты коррозии намного важнее, чем думает большинство людей; ориентировочная стоимость коррозии только в США составила 276 миллиардов долларов в год. Из этой суммы около 121 миллиарда долларов было потрачено на борьбу с коррозией, а разница в 155 миллиардов долларов осталась чистой убытком для экономики. Коммунальные предприятия, особенно системы питьевого водоснабжения и канализации, несут наибольший экономический ущерб, за которыми следуют автомобили и транспорт.

Ячейки коррозии и реакции

Особенностью большинства процессов коррозии является то, что стадии окисления и восстановления происходят в разных местах металла.Это возможно, потому что металлы являются проводящими, поэтому электроны могут течь через металл из анодной области в катодную (рис. \ (\ PageIndex {1} \)). Присутствие воды необходимо для переноса ионов к металлу и от него, но может быть достаточно тонкой пленки адсорбированной влаги.

Рисунок \ (\ PageIndex {1} \): Коррозия — это двухэтапный процесс. Рисунок \ (\ PageIndex {1} \): Электрохимическая коррозия железа. Коррозия часто начинается в месте (1), где металл находится под напряжением (на изгибе или сварке) или изолирован от воздуха (где два куска металла соединены или находятся под неплотно приставшей пленкой краски.) Ионы металлов растворяются в пленке влаги, а электроны мигрируют в другое место (2), где они захватываются деполяризатором . Кислород — самый распространенный деполяризатор; образующиеся гидроксид-ионы реагируют с Fe 2+ с образованием смеси водных оксидов железа, известной как ржавчина . (CC BY 3.0 Unported; Стивен Лоуэр)

Коррозионная система может рассматриваться как короткозамкнутый электрохимический элемент, в котором анодный процесс примерно равен

. {-}} \ label {1.{-}} \ rightarrow \ ce {M (s)} \ label {1.7.2c} \]

где \ (\ ce {M} \) — металл.

Какие части металла служат анодами и катодами, может зависеть от многих факторов, как видно из обычно наблюдаемых нерегулярных структур коррозии. Атомы в областях, которые подверглись напряжению, которое может быть получено при формовании или механической обработке, часто имеют более высокую свободную энергию и, следовательно, имеют тенденцию становиться анодными.

Рисунок \ (\ PageIndex {2} \): Принципиальная схема ячеек коррозии железа.(CC BY-NSA-NC; анонимно по запросу)

Если одна часть металлического объекта защищена от атмосферы так, что \ (\ ce {O2} \) недостаточно для создания или поддержания оксидной пленки, это «защищает «регион часто будет местом, где коррозия наиболее активна. Тот факт, что такие участки обычно скрыты от глаз, во многом объясняет сложность обнаружения и контроля коррозии.

Рисунок \ (\ PageIndex {3} \): Точечная коррозия Большинство металлов покрыто тонкой оксидной пленкой, которая препятствует анодному растворению.Когда происходит коррозия, иногда в металле образовывается узкое отверстие или ямка. Дно этих ям, как правило, лишено кислорода, что способствует дальнейшему врастанию ямы в металл. (CC BY 3.0 Unported; Стивен Лоуэр)

В отличие от анодных участков, которые, как правило, локализуются в определенных областях поверхности, катодная часть процесса может происходить практически где угодно. Поскольку оксиды металлов обычно являются полупроводниками, большинство оксидных покрытий не препятствуют потоку электронов к поверхности, поэтому почти любая область, которая подвергается воздействию \ (\ ce {O2} \) или какого-либо другого акцептора электронов, может действовать как катод.Склонность участков, лишенных кислорода, становиться анодными, является причиной многих часто наблюдаемых видов коррозии.

Ржавые пятна от автомобилей и ванных комнат

Любой, кто владел старым автомобилем, видел коррозию на стыках между частями кузова и под пленкой краски. Вы также заметили, что как только начинается коррозия, она начинает питаться сама собой. Одна из причин этого заключается в том, что одним из продуктов реакции восстановления O 2 является ион гидроксида. Высокий pH, возникающий в этих катодных областях, имеет тенденцию разрушать защитную оксидную пленку и может даже смягчить или ослабить пленки краски, так что эти участки могут стать анодными.Большее количество электронов способствует более интенсивному катодному действию, которое порождает еще больше анодных участков и т. Д.

Рисунок \ (\ PageIndex {4} \): Ржавый автомобиль. Сильно проржавевшие половицы Chrysler New Yorker 1990 года выпуска. Автомобиль был поврежден до такой степени, что управлять им стало небезопасно. Под ржавым участком между двумя отверстиями были две тормозные магистрали (Public Domain; Bige1977 через Википедию).

Очень распространенной причиной коррозии является контакт двух разнородных металлов, что может произойти рядом с крепежным элементом или в сварном шве.Влага собирается в точке соединения, действуя как электролит и образуя ячейку, в которой два металла служат электродами. {-}}.\]

Метод защиты 1: Жертвенные покрытия

Один из способов снабжения этого отрицательного заряда — нанесение покрытия из более активного металла. Таким образом, очень распространенный способ защиты стали от коррозии — покрытие ее тонким слоем цинка; Этот процесс известен как цинкование. Цинковое покрытие, которое менее благородно, чем железо, имеет тенденцию к избирательной коррозии. Растворение этого жертвенного покрытия оставляет после себя электроны, которые концентрируются в железе, делая его катодным и, таким образом, препятствуя его растворению.

Рисунок \ (\ PageIndex {5} \): Жертвенные покрытия (CC BY 3.0 Unported; Стивен Лоуэр)

Эффект покрытия железа менее активным металлом обеспечивает интересный контраст. Обычная луженая банка (справа) — хороший тому пример. Пока оловянное покрытие остается неповрежденным, все в порядке, но воздействие влажной атмосферы даже на крошечную часть лежащего под ним железа вызывает коррозию. Электроны, высвобождаемые из железа, перетекают в олово, делая его более анодным, поэтому теперь олово активно способствует коррозии железа! Вы, наверное, наблюдали, как жестяные банки очень быстро разрушаются, когда их оставляют на открытом воздухе.

Метод защиты 2: катодная защита

Более сложная стратегия заключается в поддержании постоянного отрицательного электрического заряда на металле, чтобы предотвратить его растворение в виде положительных ионов. Поскольку вся поверхность приводится в катодное состояние, этот метод известен как катодная защита . Источником электронов может быть внешний источник постоянного тока (обычно используемый для защиты нефтепроводов и других подземных сооружений), или это может быть коррозия другого, более активного металла, такого как кусок цинка или алюминия, закопанный в землю поблизости. , как показано на иллюстрации подземного резервуара для хранения пропана ниже.

Рисунок \ (\ PageIndex {6} \): Катодная защита (CC BY 3.0, без порта; Стивен Лоуэр)

Chem1 Электрохимическая коррозия

Вероятно, не существует электрохимического процесса, который был бы более широко распространен, приводил бы к большим экономическим потерям и был бы более скрыт от глаз, чем коррозия металлов. И все же на вводных курсах химии о нем редко упоминается больше, чем вкратце. Этот урок пытается помочь преодолеть этот недостаток.

Коррозию можно определить как разрушение материалов химическими процессами.Из них наиболее важной на сегодняшний день является электрохимическая коррозия металлов, в которой процесс окисления M → M n + + n e n облегчается наличием подходящего акцептора электронов, в коррозионной науке иногда называют деполяризатором .

В некотором смысле коррозию можно рассматривать как самопроизвольное возвращение металлов в свои руды; Огромное количество энергии, затраченной на добычу, очистку и производство металлов в полезные объекты, рассеивается множеством различных маршрутов.

Хороший справочник по этой теме — Corosion and Corrosion Control: An Introduction to Corrosion Science and Engineering (4 Ed), R.W. Revie and H.H. Uhlig. Ограниченные ее части можно увидеть на этом сайте Google Книг.

Экономические аспекты коррозии намного важнее, чем думает большинство людей; Согласно отчету 2001 года, стоимость коррозии только в США составила 276 миллиардов долларов в год. Из этой суммы около 121 миллиарда долларов было потрачено на борьбу с коррозией, а разница в 155 миллиардов долларов осталась чистой убытком для экономики.Коммунальные предприятия, особенно системы питьевого водоснабжения и канализации, несут наибольший экономический ущерб. на втором месте — автомобили и транспорт.

На этом изображении показана внутренняя часть торгового центра Algo Center в Эллиот-Лейк, Онтарио после того, как в июне 2012 года часть парковочной площадки на крыше обрушилась на первый этаж, в результате чего погибли два человека. Основной причиной обрушения этого и очень большого количества других парковочных сооружений в холодном климате было попадание дорожной соли в настил, что привело к электрохимической коррозии стальных арматурных стержней, встроенных в бетон.Однако, настоящая причина была человеческая неудача ; Проблемы с утечкой через настил крыши возникали почти с момента постройки конструкции в 1970-х годах, но стоимость надлежащей обработки этих утечек (например, нанесение защитного покрытия на палубу) удерживала владельцев торговых центров от таких инвестиций. (Подробнее здесь)

1 Ячейки коррозии и реакции

Особенностью большинства процессов коррозии является то, что стадии окисления и восстановления происходят в разных местах металла.Это возможно, потому что металлы являются проводящими, поэтому электроны могут течь через металл из анодной области в катодную. Присутствие воды необходимо для переноса ионов к металлу и от него, но может быть достаточно тонкой пленки адсорбированной влаги.

Коррозионная система может рассматриваться как короткозамкнутый электрохимический элемент, в котором анодный процесс представляет собой что-то вроде

Fe (т.) → Fe 2+ (водн.) + 2 e

, а катодные ступени могут быть любыми из

.

O 2 + 2 H 2 O + 4 e → 4 OH

H + + e → ½ H 2 (г)

M 2+ + 2 e → M (с)

где М — металл.

Коррозия часто начинается в месте ( 1 ), где металл находится под напряжением (на изгибе или сварке) или изолирован от воздуха (где два куска металла соединены или находятся под неплотно приставшей пленкой краски). ионы металлов растворяются в пленке влаги, а электроны мигрируют в другое место ( 2 ), где они захватываются деполяризатором . Кислород — самый распространенный деполяризатор; образующиеся гидроксид-ионы реагируют с Fe 2+ с образованием смеси водных оксидов железа, известной как ржавчина .

Какие части металла служат анодами и катодами, может зависеть от многих факторов, как видно из обычно наблюдаемых нерегулярных структур коррозии. Атомы в областях, которые подверглись напряжению, которое может быть получено при формовании или механической обработке, часто имеют более высокую свободную энергию и, следовательно, имеют тенденцию становиться анодными.

[ссылка]

Если одна часть металлического объекта защищена от атмосферы так, что O 2 недостаточно для создания или поддержания оксидной пленки, эта «защищенная» область часто будет местом, на котором коррозия наиболее активна.Тот факт, что такие участки обычно скрыты от глаз, во многом объясняет сложность обнаружения и контроля коррозии.

Большинство металлов покрыто тонкой оксидной пленкой, препятствующей анодному растворению. Когда происходит коррозия, иногда в металле появляется узкое отверстие или углубление или . Дно этих ям, как правило, лишено кислорода, что способствует дальнейшему врастанию ямы в металл.

Тенденция к анодированию мест, лишенных кислорода, является причиной многих часто наблюдаемых структур коррозии

В отличие от анодных участков, которые обычно локализуются в определенных областях поверхности, катодная часть процесса может происходить практически где угодно.Поскольку оксиды металлов обычно являются полупроводниками, большинство оксидных покрытий не препятствуют потоку электронов к поверхности, поэтому почти любая область, которая подвергается воздействию O 2 или какого-либо другого акцептора электронов, может действовать как катод.

Ржавые пятна от автомобилей и ванных комнат

Любой, кто владел старым автомобилем, видел коррозию на стыках между частями кузова и под пленкой краски. Вы также заметили, что как только начинается коррозия, она начинает питаться сама собой.Одна из причин этого заключается в том, что одним из продуктов реакции восстановления O 2 является ион гидроксида. Высокий pH, возникающий в этих катодных областях, имеет тенденцию разрушать защитную оксидную пленку и может даже смягчить или ослабить пленки краски, так что эти участки могут стать анодными. Большее количество электронов способствует более интенсивному катодному действию, которое порождает еще больше анодных участков и т. Д.

Очень распространенной причиной коррозии является контакт двух разнородных металлов, что может произойти рядом с крепежным элементом или в сварном шве.Влага собирается в точке соединения, действуя как электролит и образуя ячейку, в которой два металла служат электродами. Влага и проводящие соли на внешних поверхностях обеспечивают внешний токопроводящий путь, эффективно замыкая элемент накоротко и вызывая очень быструю коррозию; Вот почему автомобили так быстро ржавеют в местах, где на дорогах кладут соль для растапливания льда.

Коррозия разнородных металлов может произойти, даже если два металла изначально не находятся в прямом контакте.Например, в домах, где для водопровода используются медные трубы, в воде всегда присутствует небольшое количество растворенного Cu 2+ . Когда эта вода сталкивается со стальными трубами или сливом для раковины, покрытым хромом e-, благородная медь more- откладывается на другом металле, создавая новую коррозионную ячейку, контактирующую с металлами. В случае хромированной арматуры для раковины это приводит к образованию солей Cr 3+ , которые выпадают в осадок в виде зеленоватых пятен.

2 Контроль коррозии

Поскольку для возникновения коррозии должны иметь место как катодный, так и анодный этапы, предотвращение любого из них остановит коррозию. Наиболее очевидная стратегия — остановить оба процесса, нанеся на объект краску или другое защитное покрытие. Даже если это будет сделано, вероятно, останутся места, где покрытие сломано или не проникает, особенно если есть отверстия или резьба.

Более сложный подход состоит в том, чтобы приложить к металлу небольшой отрицательный заряд, тем самым затрудняя протекание реакции M → M 2+ + 2 e .

Как защитные покрытия контролируют коррозию

Один из способов снабжения этого отрицательного заряда — нанесение покрытия из более активного металла. Таким образом, очень распространенный способ защиты стали от коррозии — покрытие ее тонким слоем цинка; этот процесс известен как цинкование.Цинковое покрытие, менее благородное, чем железо, склонно к избирательной коррозии. Растворение этого жертвенного покрытия оставляет после себя электроны, которые концентрируются в железе, делая его катодным и, таким образом, препятствуя его растворению.

видео по электрохимической коррозии:

Химия ржавчины и коррозии (Джейсон Гуди, 12½ м)

Инфраструктурная коррозия и разложение (Геоканал, 43 м)

Эффект покрытия железа менее активным металлом обеспечивает интересный контраст.Обычная луженая банка (справа) — хороший тому пример. Пока оловянное покрытие остается неповрежденным, все в порядке, но воздействие влажной атмосферы даже на крошечную часть лежащего под ним железа вызывает коррозию. Электроны, высвобождаемые из железа, перетекают в олово, делая его более анодным, поэтому теперь олово активно способствует коррозии железа! Вы, наверное, наблюдали, как жестяные банки очень быстро разрушаются, когда их оставляют на открытом воздухе.

Катодная защита для контроля коррозии

Более изощренная стратегия — поддерживать постоянное отрицательное электрический заряд на металле, так что его растворение в виде положительных ионов заблокирован.Поскольку вся поверхность вдавливается в катодный Состояние этот метод известен как катодная защита . Источником электронов может быть внешний источник питания постоянного тока. (обычно используется для защиты нефтепроводов и других подземных сооружений), или это может быть коррозия другого, просто кусок более активного металла, такого как цинк или алюминий, закопанный в земле поблизости.

3 Галерея ужасов коррозии

Коррозия гвоздя

Ногти погружают в агар, который образует влажный твердый гель.Агар также содержит фенолфталеин и гексацианоирон (III). Fe (CN6) — образует темно-синий цвет («берлинскую лазурь») в присутствии Fe2 +. Синие цвета явно связаны с теми частями ногтя, которые подверглись нагрузке, что способствует анодному высвобождению Fe2 + из металла. Розовым цветом показаны катодные области, которые стали щелочными в результате реакции. O2 + 2 h3O + 4e– → 4 OH– Это ясно показывает разделение анодного и катодного процессов при коррозии.

Внутренняя часть водопровода 4>

Если вы живете в старой части города, где возрасту 50-100 лет, вода, которую вы пьете, вполне могла пройти через трубу в таком состоянии! Подобная сильная коррозия чаще встречается в районах с кислой водой. Такая вода поступает из горных снеготаяний и сточных вод и обычно приобретает кислотность за счет растворенного в атмосфере углекислого газа.

Воды из рек, озер и особенно подземные воды из колодцев обычно достаточно долго находились в контакте с карбонатсодержащими отложениями, чтобы их можно было нейтрализовать.Администраторы гидротехнических сооружений любят делать воду слегка щелочной и слегка перенасыщенной карбонатом кальция, чтобы поддерживать тонкий слой твердого карбоната на внутренней части трубы, который защищает ее от коррозии.

Стальные арматурные стержни в бетоне

Все большие бетонные конструкции содержат стальные арматурные стержни («арматуру»), которые помогают обеспечить структурную целостность при различных условиях нагрузки и особенно во время землетрясений.Попадание воды, даже в виде тумана или тумана, может привести к серьезным коррозионным повреждениям, как видно на этом снимке этой колонны, которая поддерживает путепровод на шоссе. \\

Коррозия металлических стыков

На рисунке показаны два стальных конструктивных элемента, соединенных чугунными фланцами, скрепленными вместе болтами. По какой-то причине одна из частей стала более анодной, чем другая, что привело к сильной коррозии верхней части.

Коррозия, вызванная почвенными бактериями

Эта газовая труба была похоронена в красной почве, содержащей железный колчедан (FeS). Бактерия thiobacillus ferrooxidans получает энергию, окисляя Fe2 + до более растворимого Fe3 +, передавая электроны O2. Он также окисляет серу, образуя серную кислоту. Образовавшийся химический коктейль прорезал трубу.

Эти оцинкованные болты использовались для соединения деревянных балок.Последующее перемещение балок из-за различных условий нагрузки привело к истиранию цинкового покрытия. Недостаток кислорода около центров болтов также, вероятно, способствовал коррозии, предотвращая образование защитной оксидной пленки.

Коррозия из-за недостатка кислорода

Эти оцинкованные болты использовались для соединения деревянных балок. Последующее перемещение балок из-за различных условий нагрузки привело к истиранию цинкового покрытия. Недостаток кислорода около центров болтов также, вероятно, способствовал коррозии, предотвращая образование защитной оксидной пленки.

Питтинговая коррозия поверхности

Точечная коррозия имеет тенденцию к образованию узких, но глубоких отверстий («ямок») на поверхности, которые трудно обнаружить, особенно когда они покрыты продуктами коррозии. Как только яма образуется, она имеет тенденцию копать глубже из-за более медленной диффузии кислорода в узкое дно ямы.

Нержавеющая сталь не полностью защищена от коррозии

Стальные сплавы, содержащие 13–26 мас.% Хрома, образуют тонкий, хорошо прилипающий поверхностный слой Cr 2 O 3 при контакте с воздухом, тем самым становясь пассивированным и устойчивым к коррозии.Но для того, чтобы сохранить это сопротивление, кислород должен оставаться доступным для поверхности.

Если это условие не соблюдается, пассивирующая пленка может разрушиться, как это произошло с этим фланцем, который подвергся сильной точечной коррозии. Хлорид-ионы также могут нарушить защитную пленку, хотя существуют специальные сорта нержавеющей стали, доступные для использования в морских условиях, которые более устойчивы к этому эффекту.

Следует проявлять особую осторожность при соединении нержавеющих сталей с другими конструкциями.Излишнее затягивание гаек на этом кронштейне могло повредить пленку Cr 2 O 3 ; использование крепежных винтов и гаек не из нержавеющей стали гарантирует обычную гальваническую коррозию.

Что вы должны уметь

Убедитесь, что вы полностью понимаете следующие основные концепции, представленные выше.

  • Электрохимическая коррозия металлов происходит, когда электроны от атомов на поверхности металла переносятся на подходящий акцептор электронов или деполяризатор .Должна присутствовать вода, чтобы служить средой для переноса ионов.
  • Наиболее распространенными деполяризаторами являются кислород, кислоты и катионы менее активных металлов.
  • Поскольку электроны проходят через сам металлический объект, анодная и катодная области (две половины электрохимической ячейки) могут находиться на значительном расстоянии друг от друга.
  • Анодные области имеют тенденцию развиваться в местах, где металл подвергается напряжению или защищен от кислорода.
  • Контакт с другим металлом, прямой или косвенный, может привести к коррозии более активного металла.
  • Коррозию стали можно предотвратить путем цинкования , то есть путем покрытия ее цинком, более активным металлом, растворение которого оставляет на металле отрицательный заряд, который препятствует дальнейшему растворению Fe 2+ .
  • Катодная защита с использованием внешнего источника напряжения широко используется для защиты подземных сооружений, таких как резервуары, трубопроводы и опоры.Источником может быть расходуемый анод из цинка или алюминия, либо сетевой или фотоэлектрический источник питания.

Список литературы

Отличное иллюстрированное руководство по коррозии и катодной защите

Хорошие схематические иллюстрации различных причин коррозии

Обзор различных форм коррозии (с фотографиями)

Проблемы, связанные с коррозией железобетона

Почему нержавеющая сталь нержавеющая?

Концептуальная карта

Коррозия металлов

Теория коррозии металлов

Коррозия определяется как повреждение материала в результате химическая, часто электрохимическая реакция с окружающей средой.Согласно этому определению термин «коррозия» может применяться ко всем материалы, в том числе неметаллы. Но на практике слово коррозия в основном используется в в сочетании с металлическими материалами.

Почему металлы корродируют? Помимо золота, платины и некоторых других, в чистом виде металлы в природе не встречаются. Они обычно химически связаны с другими веществами в рудах, такими как сульфиды, оксиды и т. д.Энергия должна быть затрачена (например, в доменной печи) для извлечения металлов из сульфиды, оксиды и т. д. для получения чистых металлов.

Чистые металлы содержат больше связанной энергии, представляя собой более высокое энергетическое состояние, чем в природе в виде сульфидов или оксидов.


Энергетическое состояние металла в различных формах

Поскольку весь материал во Вселенной стремится вернуться к своему низкому уровню энергетическое состояние, чистые металлы также стремятся вернуться к своему самому низкому энергетическому состоянию которые у них были в виде сульфидов или оксидов.Один из способов, которыми металлы могут возврат к низкому уровню энергии происходит за счет коррозии. Продукты коррозии металлы часто представляют собой сульфиды или оксиды.

Химическая и электрохимическая коррозия

Химическая коррозия может рассматриваться как окисление и происходит под действием сухих газов, часто при высоких температурах. С другой стороны, имеет место электрохимическая коррозия. электродными реакциями, часто во влажной среде, т.е.е. влажная коррозия.

Все металлы в сухом воздухе покрыты очень тонким слоем оксида, мощностью около 100 (10 -2 м). Этот слой образован химическими веществами. коррозия кислородом воздуха. При очень высоких температурах реакция с кислородом в воздухе может продолжаться без ограничений, и металл быстро превратится в оксид.


Окисление металла при разных температурах

При комнатной температуре реакция останавливается, когда слой становится тонким.Эти тонкие слои оксида могут защитить металл от продолжительного воздействия, например в водный раствор. На самом деле именно эти слои оксида и / или продукты коррозии, образующиеся на поверхности металла, защищающие металл от продолжающегося воздействия в гораздо большей степени, чем коррозия сопротивление самого металла.

Эти слои оксида могут быть более или менее прочными в вода, например.Мы знаем, что обычная углеродистая сталь быстрее корродирует в воде. чем нержавеющая сталь. Разница зависит от состава и проницаемость их соответственно оксидных слоев. Следующее описание явление коррозии касается только электрохимической коррозии, т.е. влажная коррозия.

Ячейки коррозии

Как металлы корродируют в жидкостях? Проиллюстрируем это, используя явление коррозии, называемое биметаллической коррозией или гальванической коррозией.Биметаллическая коррозионная ячейка может, например, состоят из стальной пластины и медной пластины в электрическом контакте друг с другом и погружены в водный раствор (электролит).

Электролит содержит растворенный кислород из воздуха. и растворенная соль. Если лампа подключена между стальной пластиной и медная пластина, она загорится. Это указывает на то, что ток течет между металлические пластины.Медь будет положительным электродом, а сталь — быть отрицательным электродом.


Ток течет через лампу от медной пластины к стальной

Движущей силой тока является разница в электрическом потенциал между медью и сталью. Цепь должна быть замкнута и следовательно, ток будет течь в жидкости (электролите) от стального листа. к медной пластине.Ток протекает через положительно заряженный атомы железа (ионы железа) покидают стальную пластину, и стальная пластина подвергается коррозии.

Корродирующая металлическая поверхность называется анодом. Кислород и вода расходуются на поверхности медной пластины, а гидроксильные ионы (ОН-), которые имеют отрицательный заряд, образуются. Отрицательные ионы гидроксила «нейтрализовать» положительно заряженные атомы железа.Ионы железа и гидроксила образуют гидроксид железа (ржавчина).

В описанной выше коррозионной ячейке металлическая медь называется катодом. Обе металлические пластины называются электродами, а определение анода и катода дано ниже.

Анод : Электрод, от которого течет положительный ток. в электролит.
Катод : Электрод, через который проходит положительный электрический ток. ток уходит из электролита.

Когда положительные атомы железа переходят в раствор из стальной пластины, электроны остаются в металле и переносятся в обратном направлении, в сторону положительный ток.

Предпосылки для К формированию биметаллической ячейки относятся:
1.Электролит
2. Анод
3. Катод
4. Окислительная среда, например растворенный кислород (O 2 ) или ионы водорода. (H + ).

Электродный потенциал — гальваническая серия

В приведенном выше примере было показано, что движущая сила для протекания тока и, следовательно, Коррозия — это разность электродных потенциалов.Электродный потенциал металл — это показатель склонности металла к растворению и коррозии. в определенном электролите.

Также упоминается «благородство» металла. Более благородный металла, чем выше потенциал, тем меньше у него тенденция к раствориться в электролите.

Электродные потенциалы различных металлов могут быть указаны в отношение друг к другу в гальваническом ряду для разных электролитов.В гальванический ряд различных металлов в морской воде показан ниже.

Золото +0,42
Серебристый +0,19

Нержавеющая сталь (AISI 304), пассивное состояние

+0.09
Медь +0,02
Олово -0,26

Нержавеющая сталь (AISI 304), активное состояние

-0,29
Свинец -0,31
Сталь -0.46
Кадмий -0,49
Алюминий -0,51
Оцинкованная сталь -0,81
цинк -0,86
Магний -1,36

Учитывая сталь-медь Например, из приведенной выше таблицы будет отмечено, что медь имеет более высокий потенциал ( благороднее), чем обычная углеродистая сталь.Сталь будет анодом и корродирует, тогда как медь будет катодом и не подвергнется коррозии.

Коррозия в микроячейках

Сталь-медь пример показал, как происходит коррозия, когда два разных материала соединен в водном растворе. Как происходит коррозия на поверхности из цельного металла? Когда поверхность металла исследуется под микроскопом, будет видно, что это не один однородный металл.Различия в структура и размер зерна возникают на поверхности. Химический состав может варьируются, и могут присутствовать различные примеси.

Если потенциал электрода измеряется на очевидном однородной поверхности, будет обнаружено, что она значительно варьируется в пределах только доли квадратного миллиметра. Итак, катоды и аноды, возможно, маленькие, но достаточно большой, чтобы вызвать коррозию, может быть сформирован на той же металлической поверхности.В результате анодной и катодной реакций образовалась коррозионная микроячейка. описано ниже.


Анодная часть поверхности корродирована

В случае низкого pH катодная реакция будет: 2e + 2H + → H 2 . Поверхность катода может быть примеси, такие как оксидные включения, усиление графита или более благородная фаза.

Измерения электрохимической коррозии — Гальваническая коррозия

Обзор электрохимических основ коррозии

Большая часть коррозии металлов происходит в результате электрохимических реакций на границе раздела между металлом и раствором электролита. Например, тонкая пленка влаги на поверхности металла образует электролит для атмосферной коррозии. Второй пример — это когда влажный бетон является электролитом для коррозии арматурных стержней в мостах.Хотя большая часть коррозии происходит в воде, коррозия в неводных системах известна.

Коррозия обычно происходит со скоростью, определяемой равновесием противоположных электрохимических реакций. Одна из реакций — это анодная реакция, при которой металл окисляется, высвобождая электроны в металл. Другой — катодная реакция, в которой частицы раствора (часто O 2 или H + ) восстанавливаются, удаляя электроны из металла. Когда эти две реакции находятся в равновесии, поток электронов от каждой реакции уравновешен, и чистый поток электронов (электрический ток) не возникает.Две реакции могут происходить на одном металле или на двух разнородных металлах (или участках металла), которые электрически связаны.

На рисунке 1 показан этот процесс. По вертикальной оси отложен электрический потенциал, а по горизонтальной оси — логарифм абсолютного тока. Теоретический ток анодной и катодной реакций представлен прямыми линиями. Кривая линия — это полный ток: сумма анодного и катодного токов. Это ток, который вы измеряете, когда проверяете потенциал металла своим потенциостатом.Острая точка на кривой на самом деле является точкой, в которой ток меняет полярность, когда реакция меняется с анодной на катодную или наоборот. Острый момент вызван нанесением графика по логарифмической оси. Использование логарифмической оси необходимо из-за широкого диапазона значений тока, которые необходимо регистрировать во время эксперимента по коррозии. Из-за явления пассивности ток часто изменяется на шесть порядков во время эксперимента по коррозии.

Рисунок 1. Процесс коррозии, проявляющий анодную и катодную составляющие тока.

Потенциал металла — это средство, с помощью которого анодная и катодная реакции поддерживаются в равновесии. См. Рисунок 1. Обратите внимание на то, что ток каждой полуреакции зависит от электрохимического потенциала металла. Предположим, что анодная реакция высвобождает в металл слишком много электронов. Таким образом, избыток электронов смещает потенциал металла в более отрицательную сторону, что замедляет анодную реакцию и ускоряет катодную реакцию.Это противодействует начальному возмущению системы.

Равновесный потенциал, принимаемый металлом при отсутствии электрических соединений с металлом, называется потенциалом холостого хода E oc . В большинстве экспериментов по электрохимической коррозии первым шагом является измерение E oc .

Значение анодного или катодного тока при E oc называется током коррозии, I corr . Если бы мы могли измерить I или , мы могли бы использовать его для расчета скорости коррозии металла.К сожалению, I corr нельзя измерить напрямую. Однако его можно оценить с помощью электрохимических методов. В любой реальной системе I , Corr и скорость коррозии являются функцией многих параметров системы, включая тип металла, состав раствора, температуру, движение раствора, историю металла и многие другие.

Приведенное выше описание процесса коррозии ничего не говорит о состоянии металлической поверхности. На практике многие металлы образуют оксидный слой на своей поверхности при коррозии.Если оксидный слой препятствует дальнейшей коррозии, говорят, что металл пассивируется. В некоторых случаях локальные участки пассивной пленки разрушаются, что приводит к значительной коррозии металла на небольшой площади. Это явление называется точечной коррозией или просто точечной коррозией.

Поскольку коррозия происходит в результате электрохимических реакций, электрохимические методы идеально подходят для изучения процессов коррозии. В электрохимических исследованиях образец металла с площадью поверхности в несколько квадратных сантиметров используется для моделирования металла в корродирующей системе.Металлический образец погружают в раствор, характерный для окружающей среды металла в исследуемой системе. Дополнительные электроды погружаются в раствор, и все электроды подключаются к устройству, называемому потенциостатом. Потенциостат позволяет изменять потенциал металлического образца контролируемым образом и измерять протекающий ток в зависимости от приложенного потенциала.

Полезны поляризации как с регулируемым потенциалом (потенциостатическая), так и с регулируемым током (гальваностатическая).Когда поляризация выполняется потенциостатически, измеряется ток, а когда это делается гальваностатически, измеряется потенциал. Это обсуждение будет сосредоточено на методах с контролируемым потенциалом, которые гораздо более распространены, чем гальваностатические методы. За исключением зависимости потенциала холостого хода от времени, электрохимического шума, гальванической коррозии и некоторых других, потенциостатический режим используется для нарушения равновесного процесса коррозии. Когда потенциал металлического образца в растворе отклоняется от E oc , это называется поляризацией образца.Отклик (то есть результирующий ток) металлического образца измеряется по мере его поляризации. Отклик используется для разработки модели коррозионного поведения образца.

Количественная теория коррозии

В предыдущем разделе мы указали, что I corr нельзя измерить напрямую. Во многих случаях вы можете оценить это по данным зависимости тока от напряжения. Вы можете измерить логарифмическую кривую зависимости тока от потенциала в диапазоне около половины вольта. Сканирование напряжения сосредоточено на E oc .Затем вы подгоняете измеренные данные к теоретической модели процесса коррозии.

Модель, которую мы используем для процесса коррозии, предполагает, что скорость как анодного, так и катодного процессов контролируется кинетикой реакции переноса электрона на поверхности металла. Обычно это характерно для коррозионных реакций. Электрохимическая реакция под кинетическим контролем подчиняется уравнению. 1, уравнение Тафеля.

В этом уравнении

Я

— ток реакции

I 0

— это константа, зависящая от реакции, называемая током обмена

.

E

— потенциал электрода

E 0

— равновесный потенциал (константа для данной реакции)

β

— постоянная Тафеля реакции (постоянная для данной реакции, с единицами измерения вольт / декада.

Уравнение Тафеля описывает поведение одной изолированной реакции. В системе коррозии мы имеем две противоположные реакции: анодную и катодную.

Уравнения Тафеля для анодных и катодных реакций в системе коррозии могут быть объединены для создания уравнения Батлера-Фольмера (уравнение 2).

где

Я

— измеренный ток от ячейки в амперах

И корр

— ток коррозии в амперах

E

— потенциал электрода

E корр.

— потенциал коррозии в вольтах

β а

— анодная постоянная β Тафеля в вольтах на декаду

β с

— катодная постоянная Тафеля β в вольтах на декаду

Что означает уравнение.2 предсказать кривую зависимости тока от напряжения? В E или каждый экспоненциальный член равен единице. Следовательно, ток ячейки равен нулю, как и следовало ожидать. Вблизи E или оба экспоненциальных члена вносят вклад в общий ток. Наконец, поскольку потенциал перемещается далеко от E или потенциостатом, преобладает один экспоненциальный член, а другой член можно игнорировать. Когда это происходит, график зависимости логарифмического тока от потенциала становится прямой линией.

График зависимости логарифма I от E называется графиком Тафеля.График Тафеля на рисунке 1 был построен непосредственно из уравнения Батлера-Фольмера. Обратите внимание на линейные участки кривой тока ячейки.

На практике многие системы коррозии контролируются кинетически и, таким образом, подчиняются уравнению. 2. Кривая логарифмического тока в зависимости от потенциала, которая является линейной по обе стороны от E или , указывает на кинетическое управление исследуемой системой. Однако могут быть сложности, такие как:

  • Концентрационная поляризация, где скорость реакции контролируется скоростью, с которой реагенты достигают поверхности металла.Часто катодные реакции демонстрируют концентрационную поляризацию при более высоких токах, когда диффузия иона кислорода или водорода не достаточно быстра для поддержания кинетически контролируемой скорости.
  • Образование оксида, которое может привести или не привести к пассивации. Этот процесс может изменить поверхность исследуемого образца. Исходная поверхность и измененная поверхность могут иметь разные значения констант в формуле. 2.
  • Другие эффекты, изменяющие поверхность, такие как преимущественное растворение одного компонента сплава, также могут вызывать проблемы.
  • Смешанный процесс управления, при котором одновременно происходит более одной катодной или анодной реакции, может усложнить модель. Примером смешанного управления является одновременное восстановление ионов кислорода и водорода.
  • Наконец, падение потенциала в результате протекания тока ячейки через сопротивление раствора ячейки вызывает ошибки в кинетической модели. Этот последний эффект, если он не слишком серьезен, можно исправить с помощью ИК-компенсации в потенциостате.

В большинстве случаев сложности, подобные перечисленным выше, вызывают нелинейность графика Тафеля.С осторожностью используйте результаты, полученные на графике Тафеля без четко определенной линейной области.

Классический анализ Тафеля выполняется путем экстраполяции линейных частей графика зависимости логарифмического тока от потенциала обратно на их пересечение. См. Рисунок 2 (который представляет собой рисунок 1, перепечатанный с аннотациями, демонстрирующими анализ). Значение анодного или катодного тока на пересечении составляет I corr . К сожалению, многие реальные системы коррозии не обеспечивают достаточной линейной области для точной экстраполяции.Наиболее современное программное обеспечение для испытаний на коррозию, такое как программное обеспечение Corrosion Techniques от Gamry Instruments, выполняет более сложную численную аппроксимацию уравнения Батлера-Фольмера. Измеренные данные соответствуют формуле. 2 путем корректировки значений E corr , I corr , β a и β c . Преимущество метода аппроксимации кривой состоит в том, что он не требует полностью развернутого линейного участка кривой.

Рис. 2. Классический анализ Тафеля.

Сопротивление поляризации

Ур. 2 можно дополнительно упростить, ограничив потенциал очень близким к E или . Вблизи E или кривая зависимости тока от напряжения приближается к прямой линии. Наклон этой линии выражен в единицах сопротивления (Ом). Наклон, следовательно, называется сопротивлением поляризации, R p . Значение R p может быть объединено с оценкой коэффициентов β для получения оценки тока коррозии.

Если мы аппроксимируем экспоненциальные члены в уравнении. 2 с первыми двумя членами разложения в степенной ряд () и упрощением, мы получаем одну форму уравнения Штерна-Гири:

В эксперименте с поляризационным сопротивлением вы записываете кривую зависимости тока от напряжения как напряжение ячейки. колеблется в небольшом диапазоне потенциалов, который очень близок к E oc (обычно ± 10 мВ). Числовая аппроксимация кривой дает значение поляризационного сопротивления R p .Данные о сопротивлении поляризации не дают никакой информации о значениях коэффициентов β. Таким образом, чтобы использовать уравнение. 3 необходимо указать значения β. Их можно получить из графика Тафеля или оценить, исходя из вашего опыта работы с системой, которую вы тестируете.

Расчет скорости коррозии по току коррозии

Численный результат, полученный путем подгонки данных коррозии к модели, обычно представляет собой ток коррозии. Нас интересуют скорости коррозии в более полезных единицах скорости проникновения, таких как миллиметры в год.Как ток коррозии используется для увеличения скорости коррозии? Предположим, что в реакции электролитического растворения участвует химическое вещество, S:

S ® S n + + n e–

. Вы можете связать текущий поток с массой с помощью закона Фарадея.

Q = nFM Ур. 4

где

Q

— заряд в кулонах, полученный в результате реакции S

п.

— количество электронов, перенесенных на молекулу или атом S

.

Факс

— постоянная Фарадея = 96 485 кулонов / моль

м

— количество молей S, реагирующих

Более полезная форма уравнения.4 требует концепции эквивалентного веса. Эквивалентный вес (EW) — это масса разновидностей S, которые будут реагировать с одним зарядом Фарадея. Для атомарного компонента EW = AW / n (где AW — атомный вес компонента).

Вспоминая, что M = m / AW и подставляя в уравнение. 4 получаем:

, где м — масса прореагировавшего вещества S.

В случаях, когда коррозия происходит равномерно по всей поверхности металла, скорость коррозии может быть рассчитана в единицах расстояния в год.Будьте осторожны: этот расчет действителен только для равномерной коррозии; он резко недооценивает проблему, возникающую при локальной коррозии!

Для сложного сплава, который подвергается равномерному растворению, эквивалентный вес представляет собой средневзвешенное значение эквивалентных весов компонентов сплава. В качестве весового коэффициента используется мольная доля, а не массовая доля. Если растворение неоднородно, возможно, придется измерить продукты коррозии для расчета EW.

Преобразование потери веса в скорость коррозии (CR) несложно.Нам нужно знать плотность d и площадь образца A. Заряд определяется как Q = It, где t — время в секундах, а I — ток. Мы можем подставить значение постоянной Фарадея. Изменение уравнения. 5,

где

Я корр

Ток коррозии в амперах

К

Константа, определяющая единицы скорости коррозии

EW

Эквивалентный вес в граммах / эквивалент

д

Плотность в г / см 3

А

Площадь образца в см 2

Таблица 1.Константы скорости коррозии

Единицы скорости коррозии

К

Шт.

мм / год (мм / год)

3272

мм (А-см-год)

миллидюймов в год (mpy)

1,288 × 10 5

миллидюймов (А-см-год)

ИК-компенсация

Когда вы пропускаете ток между двумя электродами в проводящем растворе, в растворе всегда есть области с разными потенциалами.Большая часть общего изменения потенциала происходит очень близко к поверхности электродов. Здесь градиенты потенциала в значительной степени вызваны градиентами ионной концентрации, возникающими вблизи металлических поверхностей. Кроме того, всегда существует разность потенциалов (падение потенциала), вызванная протеканием тока через сопротивление в объеме раствора.

В электрохимическом эксперименте потенциал, который вы хотите контролировать или измерять, — это потенциал металлического образца (так называемого рабочего электрода) по сравнению с электродом сравнения.Обычно нас не интересуют падения потенциала, вызванные сопротивлением раствора, потому что они незначительны в типичных растворах электролитов, таких как 1 M H 2 SO 4 или 5% NaCl.

Потенциостаты Gamry Instruments, как и все современные электрохимические инструменты, представляют собой трехэлектродные потенциостаты. Они измеряют и регулируют разность потенциалов между нетоковедущим электродом сравнения и одним из двух токоведущих электродов (рабочим электродом).Падение потенциала возле другого токоведущего электрода (противоэлектрода) не имеет значения при использовании трехэлектродного потенциостата.

Тщательное размещение электрода сравнения может компенсировать некоторое падение ИК-излучения, возникающее из-за тока ячейки I, протекающего через сопротивление раствора R. Вы можете думать об электроде сравнения как о измерении потенциала где-то вдоль сопротивления раствора. Чем ближе он к рабочему электроду, тем ближе вы к измерению потенциала без ИК-ошибок.Однако на практике полная ИК-компенсация не может быть достигнута путем размещения электрода сравнения из-за конечных физических размеров электрода. Часть сопротивления ячейки, которая остается после размещения электрода сравнения, называется нескомпенсированным сопротивлением, R и .

Потенциостаты Gamry могут использовать прерывание по току или компенсацию IR с положительной обратной связью для динамической коррекции нескомпенсированных ошибок сопротивления. В технике прерывания тока ток ячейки периодически отключается на очень короткое время.При отсутствии тока, протекающего через сопротивление раствора, падение ИК-излучения мгновенно исчезает. Падение потенциала на поверхности электрода остается постоянным в быстром масштабе времени. Разница потенциалов при текущем и отсутствии тока является мерой нескомпенсированного падения ИК-излучения.

Потенциостат выполняет измерение прерывания тока сразу после получения каждой точки данных. Потенциостат фактически снимает три показания потенциала: E 1 до отключения тока, E 2 и E 3 , когда он выключен (см. Рисунок 3).Обычно последние два используются для экстраполяции разности потенциалов ∆E обратно к точному моменту, когда ток был прерван. Время прерывания зависит от тока ячейки. Время прерывания составляет 40 мкс для более высоких диапазонов тока. В более низких диапазонах тока прерывание длится дольше.

Рисунок 3 . Потенциал прерывания тока в зависимости от времени.

В режимах с контролируемым потенциалом приложенный потенциал можно динамически корректировать с учетом измеренной ИК-погрешности одним из нескольких способов.В простейшем из них ИК-ошибка из предыдущего пункта применяется как поправка к приложенному потенциалу. Например, если требуется потенциал без ИК-излучения 1 В, а измеренная ошибка ИК-излучения составляет 0,2 В, потенциостат применяет 1,2 В. Поправка всегда на одну точку ниже, поскольку ИК-ошибка из одной точки применяется для исправления приложенного потенциал для следующей точки. В дополнение к этому нормальному режиму потенциостат Gamry Instruments предлагает более сложные режимы обратной связи, в которых две точки на кривой затухания усредняются.

По умолчанию в режимах с управляемым потенциалом потенциальная ошибка, измеренная с помощью прерывания по току, используется для корректировки приложенного потенциала. В режимах регулируемого тока коррекция не требуется. Если выбрана ИК-компенсация, измеренная ИК-ошибка вычитается из измеренного потенциала. Таким образом, все сообщаемые потенциалы не содержат ИК-ошибки.

Подробное теоретическое обсуждение нескомпенсированной устойчивости см. В Keith B. Oldham, et al., Analytical Chemistry, 72 (2000), 3972 и 3981.

Условные обозначения по току и напряжению

Полярность тока при электрохимических измерениях может быть несовместимой. Значение тока -1,2 мА может означать разные вещи для работников разных отраслей электрохимии или в разных странах или даже для разных потенциостатов. Для электрохимика-аналитика это составляет 1,2 мА анодного тока. Для исследователя коррозии это означает катодный ток 1,2 мА. Потенциостат Gamry Instruments в режиме по умолчанию следует соглашению о коррозии для тока, в котором положительные токи являются анодными, а отрицательные — катодными.Для удобства наших пользователей по всему миру потенциостаты Gamry Instruments могут предоставить текущую полярность в соответствии с вашими предпочтениями с помощью простой программной команды.

Полярность потенциала также может быть источником путаницы. При измерении электрохимической коррозии равновесный потенциал, принимаемый металлом при отсутствии электрических соединений с металлом, называется потенциалом разомкнутой цепи, E oc . Мы используем термин «потенциал коррозии», E или , для обозначения потенциала в электрохимическом эксперименте, при котором ток не протекает, что определяется численной аппроксимацией данных зависимости тока от потенциала.В идеальном случае значения для E oc и E corr идентичны. Одна из причин, по которой два напряжения могут различаться, заключается в том, что во время сканирования на поверхности электрода произошли изменения.

В большинстве современных потенциостатов все потенциалы указываются или сообщаются как потенциал рабочего электрода относительно электрода сравнения или потенциала холостого хода. Первый всегда помечен как «vs. E ref », а последний — как« vs. E oc ».Уравнения для преобразования одной формы потенциала в другую:

E против E
oc = (E против E ref ) — E oc
E против E
ref = (E vs. E oc ) + E oc

Независимо от того, соответствуют ли потенциалы E ref или E oc , используется одно знаковое соглашение. Чем более положительный потенциал, тем он более анодный. Более высокие анодные потенциалы ускоряют окисление на рабочем электроде.И наоборот, отрицательный потенциал ускоряет восстановление на рабочем электроде.

Некоторые источники по теории коррозии и испытаниям на электрохимическую коррозию

Методы электрохимических испытаний на постоянном токе, N.G. Томпсон и Дж. Плательщик, Национальная ассоциация инженеров-коррозионистов. ISBN: 1-877914-63-0.

Принципы и предотвращение коррозии, Денни А. Джонс, Прентис-Холл, 1996. ISBN 0-13-359993-0.

Метод поляризационного сопротивления для определения мгновенных скоростей коррозии, J.R. Scully, Corrosion, 56 (2000), 199.

Некоторые методы электрохимической коррозии одобрены ASTM (Американское общество испытаний и материалов, 100 Barr Harbor Drive, West Conshohocken, PA 19428. Их можно найти в томе 3.02). стандартов ASTM:

G 5: Потенциостатические и потенциодинамические измерения анодной поляризации

G 59: Измерения поляризационного сопротивления

G 61: Циклические измерения поляризации для определения локализованной коррозионной восприимчивости сплавов на основе железа, никеля и кобальта

G 100: Циклическая поляризация гальвано-лестничной клетки

G 106: Проверка алгоритма и оборудования для измерения электрохимического импеданса

G 108: Электрохимическая потенциокинетическая реактивация (ЭПР) для обнаружения сенсибилизации

G 150: Электрохимическая критическая питтинговая коррозия стали 2

Температурные испытания нержавеющей стали 9000 Методы в инженерии коррозии, Национальная ассоциация Corrosio Русские инженеры, 1986.

Испытания и оценка коррозии, STP 1000, Ed. Р. Бабоян, С.В. Декан, Американское общество испытаний и материалов, Вест Коншохокен, Пенсильвания, 1991. ISBN 0-8031-1406-0.

Электрохимические испытания на коррозию, СТП 727, Под ред. Ф. Мансфельд и У. Берточчи, Американское общество испытаний и материалов, Вест Коншохокен, Пенсильвания, 1979.

Коррозия и контроль коррозии, 3-е изд., Герберт Х. Улиг, Джон Вили и сыновья, Нью-Йорк, 1985.

Что такое коррозия?

Консервационная инфраструктура

Способность электрохимических процессов расщеплять соединения на элементы или создавать новые соединения может быть как разрушительной, так и продуктивной.Коррозия — это очень распространенный результат электрохимических реакций между материалами и веществами в окружающей их среде.

Коррозия — одно из самых разрушительных и дорогостоящих природных явлений, наблюдаемых сегодня.

Что такое коррозия?

Коррозия — опасная и очень дорогостоящая проблема. Из-за этого могут обрушиться здания и мосты, прорвутся нефтепроводы, протечка химических заводов и затопление ванных комнат. Корродированные электрические контакты могут вызвать возгорание и другие проблемы, корродированные медицинские имплантаты могут привести к заражению крови, а загрязнение воздуха вызвало коррозию произведений искусства по всему миру.Коррозия угрожает безопасному удалению радиоактивных отходов, которые должны храниться в контейнерах в течение десятков тысяч лет.

Наиболее распространенные виды коррозии возникают в результате электрохимических реакций. Общая коррозия возникает, когда большинство или все атомы на одной и той же металлической поверхности окисляются, повреждая всю поверхность. Большинство металлов легко окисляются: они склонны терять электроны из-за кислорода (и других веществ) в воздухе или в воде. Когда кислород восстанавливается (приобретает электроны), он образует оксид с металлом.

Процесс восстановления и окисления различных металлов, контактирующих друг с другом, называется гальванической коррозией. При электролитической коррозии, которая чаще всего встречается в электронном оборудовании, вода или другая влага попадает в ловушку между двумя электрическими контактами, между которыми прикладывается электрическое напряжение. Результат — непредусмотренная электролитическая ячейка.

Возьмите металлическую конструкцию, такую ​​как Статуя Свободы. Выглядит прочно и прочно.Однако, как почти все металлические предметы, он может стать нестабильным, поскольку вступает в реакцию с веществами в окружающей среде и портится. Иногда эта коррозия безвредна или даже полезна: зеленоватая патина, покрывающая медную кожу статуи, защищает находящийся под ней металл от погодных повреждений. Однако внутри статуи коррозия за эти годы нанесла серьезный ущерб. Его железный каркас и медная обшивка действовали как электроды огромного гальванического элемента, так что почти половина каркаса заржавела к 1986 году, к столетнему юбилею статуи.

Естественная защита

Некоторые металлы приобретают естественную пассивность или устойчивость к коррозии. Это происходит, когда металл вступает в реакцию с кислородом воздуха или разъедает его. В результате образуется тонкая оксидная пленка, которая блокирует склонность металла к дальнейшей реакции. Примерами этого являются патина, образующаяся на меди, и выветривание некоторых скульптурных материалов. Защита не работает, если тонкая пленка повреждена или разрушена структурным напряжением — например, мостом — или царапинами или царапинами.В таких случаях материал может повторно пассивироваться, но если это невозможно, только части объекта подвергаются коррозии. Тогда ущерб часто еще больше, потому что он сосредоточен в этих местах.

Вредную коррозию можно предотвратить множеством способов. Электрические токи могут образовывать пассивные пленки на металлах, которые обычно не имеют их. Некоторые металлы более стабильны в определенных средах, чем другие, и ученые изобрели сплавы, такие как нержавеющая сталь, для улучшения характеристик в определенных условиях.Некоторые металлы можно обрабатывать лазером, чтобы придать им некристаллическую структуру, устойчивую к коррозии. При гальванике железо или сталь покрывают более активным цинком; это образует гальванический элемент, в котором коррозирует цинк, а не железо. Другие металлы защищены гальваническим покрытием инертным или пассивирующим металлом. Неметаллические покрытия — пластмассы, краски и масла — также могут предотвратить коррозию.

границ | Основные задачи исследования электрохимической коррозии

Коррозия — это процесс разрушения или разрушения материала в результате химической реакции между материалом и окружающей средой.Это незаменимая область исследований в области материаловедения и инженерии, поскольку коррозионная стойкость характеризует стабильность или долговечность материала, что является одним из наиболее важных характеристик материала при применении.

По сравнению с другими материалами металлы относительно активны и могут быть подвержены коррозии. Таким образом, исследования коррозии в основном связаны с механизмом повреждения и поведением различных металлов, включая черные и цветные, монокристаллические или нанокристаллические, литые или деформируемые, а также конструкционные или функциональные сплавы.Он естественным образом превратился в различные отрасли на основе сплава (Shreir et al., 1994), такие как коррозия стали, коррозия алюминиевого сплава, коррозия никелевого сплава и т. Д. Состав и микроструктура всегда являются наиболее решающими факторами в определении коррозионной стойкости. сплав. В этом аспекте критический вопрос, который необходимо решить, заключается в том, как на процесс коррозии влияет фазовый состав матрицы, сегрегированный легирующий элемент, структура решетки, кристаллический дефект, ориентация кристаллов, размер зерна, составляющая вторичной фазы, межметаллическое распределение частиц, пористость, микро- плотность трещин, уровень примесей и состояние поверхности.

Другой важный аспект исследования коррозии — сложное влияние факторов окружающей среды на коррозию. Чувствительность коррозионного поведения к факторам окружающей среды привела к разным степеням и формам повреждения металлов в различных условиях эксплуатации (Cramer and Covino, 2006). В зависимости от среды, в которой подвергаются металлы, коррозию можно легко разделить на различные типы, такие как водная или неводная коррозия, коррозия при температуре окружающей среды или при высоких температурах, кислотная или щелочная коррозия и т. Д.В естественной среде атмосферная коррозия, коррозия морской водой и подземная коррозия обычно воздействуют на металлы по-разному. О разнообразных проблемах коррозии, связанных с эксплуатационной средой, также часто сообщалось в химической, нефтегазовой, трубопроводной, гражданской, автомобильной, аэрокосмической, военной, ядерной и медицинской отраслях. Как и большинство факторов окружающей среды, таких как температура, давление, химический состав, концентрация компонентов, значение pH, электрическая или теплопроводность, вязкость и т. Д., могут прямо или косвенно взаимодействовать, а также постоянно или непостоянно влиять на процесс коррозии, прогнозировать долговременное поведение при коррозии довольно сложно. Выявление ключевого влияющего фактора и понимание его влияния на кинетику коррозии должно стать предметом исследования этого аспекта.

Основное внимание в исследованиях коррозии уделяется механизму реакции материала и окружающей среды. Именно фундаментальное понимание подробных процессов, процедур и этапов реакций, а также их влияющих факторов лежит в основе науки о коррозии.Большинство проблем коррозии в окружающей среде можно отнести к электрохимическим реакциям (Kaesche, 2003), поскольку влага и водная жидкость широко присутствуют в естественной среде, а электрохимическая реакция обычно протекает быстрее, чем реакции окисления-восстановления в условиях окружающей среды. Коррозионное разрушение, вызванное напряжением, во многих случаях является результатом сложных взаимодействий между напряжением и электрохимическими реакциями; напряжение значительно облегчает электрохимический процесс, а последний значительно усиливает разрушающий эффект первого.Даже при высоких температурах коррозию солевого расплава можно также описать как электрохимический процесс. Следовательно, электрохимия — одна из наиболее актуальных тем в исследованиях коррозии (Mansfeld and Bertocci, 2005). Чтобы получить представление об основной области науки о коррозии, следует уделять первоочередное внимание изучению подробных электрохимических механизмов и созданию моделей поверхности раздела металл-электролит.

Изучив основные аспекты и суть науки о коррозии, никогда не следует забывать, что конечная цель исследований коррозии — минимизировать коррозионные повреждения.В связи с этим большой интерес представляют все методы, которые могут препятствовать реакции металл – окружающая среда и эффективно замедлять процесс коррозии. Фактически, катодная защита (Baeckmann et al., 1997), нанесение покрытий (Swaraj, 1996), обработка / модификация поверхности (Biestek and Weber, 1976) и ингибиторы (Braford, 1993), замедляющие коррозию с помощью различных механизмов, имеют свои преимущества. долгая история успешного устранения коррозионных повреждений на практике. Они создали важное расширение науки о коррозии, которое более или менее совпадает с наукой о поверхности и покрытиях, технологиями и инженерными разработками.Хотя технологические инновации являются центральной темой в этой области, научные открытия очень желательны. Инновации в предотвращении коррозии часто появляются, когда новые идеи, методы и результаты из других дисциплин вводятся в эту прикладную область исследований коррозии.

Из приведенного выше краткого введения можно выделить следующие основные характеристики, которые фактически отличают исследования коррозии от других дисциплин материаловедения и инженерии:

(1) Коррозия возникает в сложной системе, на которую одновременно влияют факторы окружающей среды и металлургические параметры.Эти взаимодействующие факторы чрезвычайно усложняют систему коррозии. Таким образом, ключевой фактор влияния и этап, определяющий скорость, который регулирует фундаментальную кинетику процесса коррозии, не могут быть четко определены. Следовательно, многие явления коррозии нельзя интерпретировать теоретически. В некоторых случаях исследования коррозии должны опираться на значительный объем эмпирических знаний.

(2) Коррозия — процесс, чувствительный ко времени. Поскольку большинство факторов окружающей среды могут заметно меняться со временем, коррозионные характеристики металла могут быть невероятно разными на разных стадиях.Даже в коррозионной системе с постоянными факторами окружающей среды и строго контролируемыми начальными и граничными условиями состояние корродирующей поверхности может изменяться со временем из-за растворения металла или осаждения продуктов коррозии. Следовательно, меняющиеся параметры окружающей среды в сочетании со сложным влиянием факторов окружающей среды чрезвычайно затрудняют теоретическое предсказание коррозии.

(3) Отсутствуют методы in situ с высоким разрешением для выявления механизма коррозии.Из-за зависимости коррозии от условий окружающей среды измерения ex situ могут не дать существенной информации о процессе коррозии или могут исказить информацию. В настоящее время большинство современных инструментов, широко используемых для определения микроструктуры и состава металлической поверхности на наноуровне, должны работать в высоком вакууме, или требовать тщательной предварительной обработки / подготовки образца, или добавления некоторых вспомогательных веществ в провоцируют дополнительные реакции в системе коррозии.Они не могут производить настоящие на месте результатов на ненарушенной корродирующей поверхности в агрессивных средах. Ожидается, что некоторые новые появляющиеся методы высокого разрешения in situ , например, специально разработанная электролитическая ячейка, которая может быть установлена ​​в SEM или TEM, станут доступными для большинства исследователей коррозии при исследовании микроструктуры и состава корродирующей поверхности в жидкие среды.

Помимо этих основных характеристик исследования коррозии и связанных с этим трудностей, необходимо решить множество сложных вопросов, некоторые из которых стали существенными препятствиями, критически препятствующими дальнейшему развитию науки о коррозии.Успешное решение этих критических проблем может значительно продвинуться в этой области. Например, следующие темы являются особенно сложными, которые могут заинтересовать исследователей, ведущих науку о коррозии.

(1) Коррозия метастабильных металлов: в то время как материаловедение распространяется на нанотехнологии и метастабильные микроструктуры, такие как аморфные и нанокристаллические сплавы, современные принципы коррозии, вытекающие из традиционных кристаллических металлов, начинают сталкиваться с новыми проблемами.Понимание реакции коррозии на поверхности, состоящей из чрезвычайно высокой плотности дефектов, — новая область в коррозионной науке. Чтобы расширить и углубить знания о коррозии и сделать возможным практическое применение инновационных материалов, в первую очередь необходимо решить задачу разработки новых теорий коррозии для высокоактивированной металлической поверхности.

(2) Коррозия и защита металлов в передовых конструкциях: по мере роста спроса на материалы с некоторыми очень желательными свойствами, несколько сплавов, которые изначально считались непригодными для некоторых применений, теперь становятся кандидатами в окончательный список.Например, сплавы Mg изначально были слишком активными, чтобы быть популярными конструкционными материалами, но теперь высокое соотношение прочности и веса делает их привлекательными в автомобильной промышленности в качестве материалов-кандидатов для следующего поколения автомобилей. Эти виды материалов обычно имеют коррозионное поведение, отличное от традиционных сплавов, и существующие знания и технологии в области коррозии и защиты не могут быть непосредственно применены к ним. Дальнейшее развитие существующих принципов и методов коррозии для покрытия этих передовых технических сплавов является важным и трудным делом.

(3) Подробный механизм влияния наноструктуры на коррозию: коррозионная стойкость сплава в основном определяется его поверхностными «слабыми местами». Эти активные центры на поверхности на самом деле являются кристаллическими дефектами, такими как дислокации, двойники, границы зерен, границы раздела фаз, сегрегированные легирующие элементы, выделившиеся интерметаллиды или примесные включения. Понимание деталей реакции коррозии на этих участках, очевидно, является неизбежным шагом в решении центральной проблемы науки о коррозии.К сожалению, эти дефекты обычно имеют наномасштаб. Выявление механизма микрокоррозии в этих дефектных участках является большой проблемой до того, как специалисты по коррозии освоят экспериментальные методы с высоким разрешением in situ .

(4) Механизм и технология предотвращения коррозии в экстремальных условиях: экстремальные условия относятся к чрезвычайно сильным помехам электрических и магнитных полей, облучению, давлению, температуре и т. Д. Коррозионные повреждения в этих тяжелых условиях были обнаружены в ядерной, аэрокосмической, газовая / нефтяная и химическая промышленность.Однако до того, как исследователи будут вооружены методами in situ с высоким разрешением , специально разработанными для этих экстремальных условий, их понимание этого вида коррозии не может быть таким же всеобъемлющим, как коррозия окружающей среды. Кроме того, из-за суровых условий эксплуатации и ограничений промышленных методов эксплуатации эти отрасли отчаянно нуждаются в эффективных с точки зрения затрат мерах по предотвращению коррозии. Поскольку такой вид коррозии может в конечном итоге угрожать общественной безопасности, ученый-коррозионист должен принять вызов, чтобы улучшить понимание коррозии в экстремальных условиях и разработать более эффективные методы предотвращения.

(5) In vivo понимание, мониторинг и моделирование коррозии: человеческое тело представляет собой сложную самоподдерживающуюся коррозионную систему. In vivo Коррозия — это процесс биоразложения, происходящий в очень хорошо контролируемой окружающей среде. Измерение или мониторинг коррозии in situ в реальном времени или мониторинг без нарушения физиологических реакций внутри человеческого тела затруднены. Сложное влияние физиологических реакций и компонентов биологических жидкостей на коррозию является еще одним препятствием для понимания механизма коррозии in vivo .Также маловероятно точно смоделировать реальную среду in vivo посредством имитации жидкости организма и физиологических реакций в лаборатории. Таким образом, исследование механизма биоразложения и процесса коррозии in vivo в лаборатории останется сложной задачей при исследовании коррозии.

(6) Прогнозирование коррозии в реальном мире: в естественной среде условия самопроизвольной коррозии не контролируются. Более того, существует множество изменений факторов окружающей среды, которые могут повлиять на коррозию, что в значительной степени усложняет процесс коррозии.Хуже того, неизбежная жизнедеятельность в реальном мире также может повлиять на процесс коррозии, что делает поведение коррозии почти непредсказуемым. Например, заселение микробио / бактерий в канализационных системах, образование биопленки на морских объектах инфраструктуры, загрязнение воздуха выхлопными газами автомобилей и загрязнение почвы / подземных вод бытовыми отходами могут неожиданно ускорить коррозию открытых объектов. . Непредвиденная коррозия инфраструктуры под землей, в бетоне или в воде при определенных обстоятельствах может привести к катастрофе.Чтобы снизить риск, прогнозирование коррозионных характеристик в естественных условиях считается большой проблемой в исследованиях коррозии. В этом аспекте создание долгосрочной базы данных по коррозии является важной задачей, и вычислительное моделирование может быть подходом, который может привести к прорыву в прогнозировании коррозии.

(7) Механизм перехода поверхностного состояния: начало пассивации, возникновение точечной коррозии и разрушение поверхностной пленки являются примерами перехода поверхностного состояния. На практике таких поверхностных изменений гораздо больше.Переход от исходной поверхности к новому устойчивому состоянию — это временный процесс. Новое состояние обычно зависит от начальных условий поверхности, которые в конечном итоге могут повлиять на общее коррозионное повреждение. Например, разрыв первоначально сформированной пленки может в значительной степени повлиять на поведение пленки на более поздней стадии; распространение точечной коррозии на металлической поверхности на ранней стадии повлияет на окончательную морфологию коррозии; исходная чистота поверхности стали иногда может определять пассивность стали.Очень интересно узнать, как, когда и где внезапно начинается переход. Предсказать возникновение перехода на металлической поверхности сложно, но это непростая задача, которую необходимо решить при исследовании коррозии.

(8) Разработка коррозионно-стойких функциональных покрытий: покрытия могут полностью изменить свойства металлической поверхности, что открывает множество новых областей применения металлов. Повышение коррозионной стойкости или защиты традиционно является важным требованием для разработки покрытий в технике защиты от коррозии.Вообще говоря, коррозионная стойкость покрытия является функцией стабильности материала покрытия, целостности и толщины слоя покрытия и адгезии покрытия к металлам. Это также зависит от того, как покрытие реагирует на температуру, нагрузку и истирание в процессе эксплуатации. Коррозионно-стойкое покрытие обычно является компромиссом для многих требований. Если новое покрытие можно сделать электрическим или теплоизолирующим или проводящим, противоскользящим или самосмазывающимся, супергидрофобным или гидрофильным, избирательно адсорбирующим и абсорбирующим по отношению к определенным видам и т. Д., он найдет гораздо более широкое применение, а также значительно расширит область применения металлических компонентов / деталей в промышленности. Однако такое покрытие будет иметь слишком много противоречащих друг другу требований, чтобы идти на компромисс. Его изобретение и разработка не только увлекательны, но и увлекательны.

Таким образом, коррозия как процесс деградации материала, вызываемый реакцией материала с окружающей средой, интенсивно и всесторонне исследовалась. Было сделано много достижений в отношении состава сплава и эффекта микроструктуры, влияния факторов окружающей среды, механизма коррозии и методов защиты.Однако подробный механизм коррозии in situ , на который влияют многочисленные различные факторы, не был полностью раскрыт из-за отсутствия методов in situ с высоким разрешением. В настоящее время самая большая трудность в исследованиях коррозии состоит в том, чтобы получить глубокое понимание процесса разложения in situ на корродирующей поверхности, которая скрыта агрессивными средами. В связи с этим существует по крайней мере восемь серьезных проблем, стоящих на переднем крае исследований коррозии.Решение этих актуальных тем может привести к прорыву в передовой науке о коррозии.

Список литературы

Бэкманн В., Швенк В. и Принц В. (1997). Справочник по катодной защите от коррозии , 3-е изд. Хьюстон, Техас: Издательство Gulf Professional Publishing.

Биестек Т. и Вебер Дж. (1976). Электролитические и химические конверсионные покрытия . Редхилл: Portcullis Press Limited.

Брэфорд, С.А. (1993). Контроль коррозии . Лондон: Ван Рейнхольд.

Крамер С. Д. и Ковино Б. С. Младший (редакторы) (2006). ASM Handbook-Volume 13C: Corrosion: Environment and Industries . Парк материалов, Огайо: ASTM International.

Кэше, Х. (2003). Коррозия металлов, физико-химические основы и современные проблемы . Берлин: Springer.

Mansfeld, F., and Bertocci, U. (ред.) (2005). Коррозионные испытания и стандарты , 2-е изд.Вест Коншохокен, Пенсильвания: ASTM International.

Шрейр Л. Л., Джарман А. А. и Бурштейн Г. Т. (редакторы) (1994). Коррозия-Том 1: Реакции металла / окружающей среды . Бостон, Массачусетс: Баттерворт Хайнеманн.

Сварадж, П. (1996). Покрытия поверхностей: наука и технологии , 2-е изд. Чичестер: Джон Уайли и сыновья.

Гальваническая коррозия | Американская ассоциация гальванизаторов

Дом » Коррозия » Процесс коррозии » Гальваническая коррозия

Существует два основных типа гальванических элементов, вызывающих коррозию: биметаллическая пара и концентрационная ячейка.Биметаллическая пара похожа на батарею, состоящую из двух разнородных металлов, погруженных в раствор электролита. Электрический ток (поток электронов) генерируется, когда два электрода соединены внешним проводящим путем.

Концентрационная ячейка состоит из анода и катода из одного и того же металла или сплава и пути обратного тока. Электродвижущая сила обеспечивается разницей в концентрации поверхностей на внешнем пути.

Для возникновения коррозии в гальваническом элементе необходимы четыре элемента:

  • Анод — Электрод, в котором гальваническая реакция (-ы) генерирует электроны — отрицательные ионы разряжаются и образуются положительные ионы.На аноде возникает коррозия.
  • Катод — Электрод, который принимает электроны — положительные ионы разряжаются, отрицательные ионы образуются. Катод защищен от коррозии.
  • Электролит Проводник, по которому проходит ток. Электролиты включают водные растворы или другие жидкости.
  • Путь обратного тока — Металлический путь, соединяющий анод с катодом. Часто это нижележащая металлическая подложка.

Все четыре элемента (анод, катод, электриолит и обратный ток) необходимы для возникновения коррозии. Удаление любого из этих элементов остановит прохождение тока и не произойдет гальванической коррозии. Замена анода или катода на другой металл может привести к изменению направления тока на противоположное, что приведет к переключению на электрод, подверженный коррозии.

Гальваническая серия металлов (справа) перечисляет металлы и сплавы в порядке убывания их электрической активности.Металлы, расположенные ближе к вершине таблицы, являются менее благородными металлами и имеют большую тенденцию к потере электронов, чем более благородные металлы, находящиеся ниже в списке.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *