Электрическая проводимость алюминий: Серебро, Медь, Алюминий, Железо, Золото, Никель, Вольфрам, Ртуть.

Содержание

Серебро, Медь, Алюминий, Железо, Золото, Никель, Вольфрам, Ртуть.

Автор: Серков Павел


  • 1.  Проводники: Серебро, Медь, Алюминий, Железо, Золото, Никель, Вольфрам, Ртуть.

  • 2.  Проводники: Углерод, нихромы, термостабильные сплавы, припои, прозрачные проводники.

  • 3.  Неорганические диэлектрики: Фарфор, стекло, слюда, керамики, асбест, элегаз и вода

  • 4.  Органические полусинтетические диэлектрики.

  • 5.  Синтетические диэлектрики на базе фенолформальдегидных смол.

  • 6.  Пластики. История использования пластиков.

  • 7.  Изоляционные ленты и трубки



Проводники

Двадцатый век — век пластмасс. До появления широкого спектра синтетических полимерных материалов, человек использовал в конструировании металлы и материалы природного происхождения — дерево, кожу и т.д. Сегодня мы завалены пластмассовыми изделиями, начиная от одноразовой посуды, заканчивая тяжелонагруженными деталями двигателей автомобилей. Пластмассы во многом превосходят металлы, но никогда не вытеснят их полностью, поэтому рассказ начнется с металлов. Металлам посвящены сотни книг, дисциплина, посвященная им, называется «металловедение».

Нас интересуют металлы с точки зрения электронной техники. Как проводники, как часть электронных приборов. Все остальные применения — например такие, как конструкционные материалы, в данное пособие пока не вошли.

Главное для электронной техники свойство металлов — это способность хорошо проводить электрический ток. Посмотрим на таблицу удельного сопротивления различных чистых металлов:


МеталлУдельное сопротивление Ом*мм2
Серебро0,0159
Медь0,0157
Золото0,023
Алюминий0,0244
Иридий0,0474
Вольфрам0,053
Молибден0,054
Цинк0,059
Никель0,087
Железо0,098
Платина0,107
Олово0,12
Свинец0,192
Титан0,417
Висмут1,2

Видим лидеров нашего списка: Ag, Cu, Au, Al.


Серебро

Ag — Серебро. Драгоценный металл. {Понятие «драгоценный металл» означает в том числе особые условия по работе с металлом, устанавливаемые законодательством.}Серебро — самый дешевый из драгоценных металлов, но, тем не менее, слишком дорог, чтобы массово делать из него провода. На 5% лучшая электропроводность по сравнению смедью, при разнице в цене почти в 100 раз.


Примеры применения

В виде покрытий проводников в СВЧ технике. Ток высокой частоты, из-за скин-эффекта в большей части течет по поверхности проводника, а не в его толще, поэтому тонкое покрытие высокочастотного волновода серебром дает бОльший прирост проводимости, чем покрытие серебром проводника для постоянного тока.


Волновод для СВЧ излучения, покрытый изнутри слоем серебра.

В сплавах контактных групп. Контакты силовых, сигнальных реле, рубильников, выключателей чаще всего изготовлены из сплава с содержанием серебра. Переходное сопротивление такого контакта получается ниже медного, он меньше подвержен окислению. Так как контакт обычно миниатюрен, вклад этой малой добавки серебра в стоимость всего изделия незначителен. Хотя при утилизации большого количества реле, стоимость серебра делает целесообразным работу по отделению контактов в кучку для последующего аффинажа.

 


Согласно документации производителя контакты содержат серебро и кадмий.


Различные реле. Верхнее реле имеет даже посеребренный корпус с характерной патиной. Содержание драгметаллов в изделиях, выпущенных в СССР было указано в паспортах на изделия.

В качестве присадки в припоях. Качественные припои (как твёрдые так и мягкие) часто содержат серебро.

Проводящие покрытия на диэлектриках. Например, для получения контактной площадки на керамике, на неё наносится суспензия из серебряных частиц с последующим запеканием в печи (метод «вжигания»).

Компонент электропроводящих клеев и красок.

Электропроводящие чернила часто содержат суспензию серебряных частиц. По мере высыхания таких чернил, растворитель испаряется, частицы в растворе оказываются всё ближе, слипаясь и создавая проводящие мостики, по которым может протекать ток. Хорошее видео с рецептом по созданию таких чернил.


Недостатки

Несмотря на то, что серебро благородный металл, оно окисляется в среде с содержанием серы:

4Ag,+,2H2S,+,O2,->,2Ag2S,+,2H2O

Образуется темный налет — «патина». Также источником серы может служить резина, поэтому провод в резиновой изоляции и посеребренные контакты — плохое сочетание.

Потемневшее серебро можно очистить химически. В отличии от чистки абразивными пастами (в том числе зубной пастой) это самый нежный способ чистки, не оставляющий царапин.


Медь

Cu — медь. Основной металл проводников тока. Обмотки электродвигателей, провода в изоляции, шины, гибкие проводники — чаще всего это именно медь.

Медь нетрудно узнать по характерному красноватому цвету. Медь достаточно устойчива к коррозии.


Примеры применения

Провода. Основное применение меди в чистом виде. Любые добавки снижают электропроводность, поэтому сердцевина проводов обычно чистейшая медь.


Гибкие многожильные провода различного сечения.

Гибкие тоководы. Если проводники для стационарных устройств можно в принципе изготовить из любого металла, то гибкие проводники делают почти всегда только из меди, алюминий для этих целей слишком ломкий. Содержат множество тоненьких медных жилок.

Теплоотводы. Медь не только на 56\% лучше алюминия проводит ток, но ещё имеет почти вдвое лучшую теплопроводность. Из меди изготавливают тепловые трубки, радиаторы, теплораспределяющие пластины. Так как медь дороже алюминия, часто радиаторы делают составными, сердцевина из меди, а остальная часть из более дешевого алюминия.


Радиаторы охлаждения процессора. Центральный стержень изготовлен из меди,он хорошо отводит тепло от кристалла процессора, а алюминиевый радиатор сразвитым оребрением уже охлаждает сам стержень.

При изготовлении фольгированных печатных плат. Печатные платы, в любом электронном устройстве изготовлены из пластины диэлектрика, на который наклеена медная фольга. Все соединения между элементами печатной платы выполнены дорожками из медной фольги.

Техника сверхвысокого вакуума. Из металлов и сплавов только нержавеющая сталь и медь пригодны для камер сверхвысокого вакуума в таких приборах, как ускорители элементарных частиц или рентгеновские спектрометры. Все остальные металлы в вакууме слегка испаряются и портят вакуум.

Аноды рентгеновских трубок. В рентгеноструктурном анализе требуется монохроматическое рентгеновское излучение. Его источником зачастую является облучаемая электронами медь (спектральная линия Cu Kα), которая к тому же прекрасно отводит тепло. Если же требуется другое излучение (Co или Fe), его получают от маленького кусочка соответствующего металла на массивном медном теплоотводе. Такие аноды всегда охлаждаются проточной водой.


Интересные факты о меди



Алюминий

Al — Алюминий. «Крылатый металл» четвертый по проводимости после серебра, золота и меди. Алюминий хоть и проводит ток почти в полтора раза хуже меди, но он легче в 3,4 раза и в три раза дешевле. А если посчитать проводимость, то эквивалентный медному проводник из алюминия будет дешевле в 6,5 раз! Алюминий бы вытеснил медь как проводник везде, если бы не пара его противных свойств, но об этом в недостатках.

Чистый алюминий, как и чистое железо, в технике практически не применяется. Любой «алюминиевый» предмет состоит из какого-нибудь сплава алюминия. Сплавы могут содержать кремний, магний, медь, цинк и другие металлы. Их свойства отличаются очень сильно, и это необходимо учитывать при обработке. Ниже перечислены несколько самых распространенных марок алюминия: (Даны марки сплавов согласно номенклатуре Американской Алюминиевой Ассоциации (АА), Первая цифра — серия марок сплава, в зависимости от того, какой легирующей добавки больше, остальные цифры обычно не соотносятся с концентрацией и необходимо обращение к справочнику.

)



  • 1199. Чистый 99,99% алюминий. Бывает почти исключительно в виде фольги.

  • 1050 и 1060. Чистый алюминий 99,5% и 99,6% соответственно. Из-за высокой теплопроводности иногда используется как материал для радиаторов. Мягок, легко гнется. Провода, пищевая фольга, посуда.

  • 6061 и 6082. Сплавы: 6061: Si 0,6%, Mg 1,0%, Cu 0,28%, 6082: Si, Mg, Mn. Первый более распространен в США, второй — в Европе. Легко точить, фрезеровать. Наилучший материал для самоделок. Прочен. Легко поддается сварке, паяется твердыми припоями. Легко анодируется. Плохо гнется. Не годится для литья.

  • 6060. Состав: Mg, Si. Более мягок, чем 6061 и 6082, при обработке резанием слегка «пластилиновый», за что его не любят токари. Распространен и дешев, других особых преимуществ не имеет. Дешевый алюминиевый профиль из непонятного сплава имеет хорошие шансы оказаться им.

  • 5083. Сплав с магнием (>4% Mg). Отличная коррозионная стойкость, устойчив в морской воде. Один из лучших вариантов для деталей, работающих под дождем. Тоже может встретиться в магазине стройматериалов, наряду с другими подобными марками.

  • 44400, он же «силумин». Сплав с большим процентом кремния (Si >8%). Литейный. Низкая температура плавления, при пайке твердыми припоями риск расплавить саму деталь. Хрупок, при изгибе ломается. На изломе видны характерные кристаллы.

  • 7075. 2,1–2,9% Mg, 5,1–6,1% Zn, 1,2–1,6% Cu. Очень своеобразный сплав, отличается даже цветом (пленка окислов слегка золотистая). Неожиданно твердый для алюминия, по твердости сравним с мягкой сталью. Плохо анодируется. Не паяется вообще. Не предназначен для сварки. Не гнется и не куется вообще. Не годится для литья. Резанием обрабатывается отлично, прекрасно полируется. Хорош для ответственных деталей. Используется для винтов в велосипедах, в оружии (материал многих деталей винтовки M16).

Относительно невысокая температура плавления (660°С у чистого, меньше 600°С у литейных сплавов) алюминия делает возможным отливку деталей в песочные формы в условиях гаража/мастерской. Однако многие марки алюминия не годятся для литья.


Примеры применения

Провода. Алюминий дешев, поэтому толстые силовые кабели, СИП, ЛЭП выгодно делать из алюминия. В старых домах квартирная проводка сделана алюминиевым проводом (с 2001 года ПУЭ запрещает в квартирах использовать алюминиевый провод, только медный, см ниже. (Правила устройства электроустановок, 7-е издание, п. 7.1.34). Также алюминий не используется как проводник в ответственных применениях.


Слева старый алюминиевый провод. Справа алюминиевые кабели различного сечения, пригодные для укладки в грунт. В частности, кабелем справа был подключен к электроэнергии целый этаж здания. Кабель помимо наружной резиновой оболочки имеет бронирующую стальную ленту для защиты нижележащей изоляции от повреждений, к примеру, лопатой при раскопке.

Теплоотводы. Не только домашние батареи делают из алюминия, но и радиаторы у микросхем, процессоров.


Различные алюминиевые радиаторы.

 

Корпуса приборов. Корпус жёсткого диска в вашем компьютере отлит из алюминиевого сплава. Небольшая добавка кремния улучшает прочностные качества алюминия, сплав силумин: это корпуса жёстких дисков, бытовых приборов, редукторов и т. д. Анодированный алюминий (алюминий, у которого электрохимическим путем окисная

пленка на поверхности сделана потолще и прочнее) хорошо окрашивается и просто красив. Окисная пленка (Al2O3 — из того же вещества состоят драгоценные
камни рубины и сапфиры) достаточно твёрдая и износостойкая, но, к сожалению, алюминий под ней мягок, и при сильном воздействии ломается как лёд на воде.

Экраны. Электромагнитное экранирование часто делается из алюминиевой фольги или тонкой алюминиевой жести. Можете провести простой эксперимент, мобильный телефон завернутый в фольгу потеряет сеть — он будет заэкранирован.

Отражающее покрытие у зеркал. Тонкая пленка алюминия на стекле отражает 89% (значения примерные, точное значение зависит от длины волны и типа покрытия) падающего света (Серебро 98%, но на воздухе темнеет из-за сернистых соединений). Любой лазерный принтер содержит вращающееся зеркало, покрытое тонким слоем алюминия.


Зеркала от оптической системы планшетного сканера. Обратите внимание, оптические зеркала имеют металлизацию стекла снаружи, в отличии от привычных бытовых зеркал, где отражающее покрытие для защиты за стеклом. Бытовые зеркала дают двойное отражение — от поверхности стекла и от отражающего покрытия, что не так критично в быту, как защищенность отражающего покрытия.

Электроды обкладок конденсаторов. Алюминиевая фольга, разделенная слоем диэлектрика и туго свернутая в цилиндр — часть электрических конденсаторов (впрочем, для уменьшения габаритов конденсаторов фольгу заменяют алюминиевым напылением). Тот факт, что пленка оксида алюминия тонкая, прочная и не проводит ток, используется
в электролитических конденсаторах, обладающими огромными для своих габаритов электрическими емкостями.

Микропровод. Тончайшей проволокой из алюминия подключают кристаллы микросхемы к выводам корпуса. Также может использоваться медная и золотая проволока.


Недостатки

Алюминий — металл активный, но на воздухе покрывается оксидной пленкой, которая предохраняет металл от разрушения и скрывает его активную натуру. Если не дать алюминию формировать стабильную защитную пленку, например капелькой ртути, алюминий активно реагирует с водой. В щелочной среде алюминий растворяется, попробуйте залить алюминиевую фольгу средством для прочистки труб — реакция будет бурная, с выделением взрывоопасного водорода. Химическая активность алюминия, в паре с большой
разницей в электроотрицательности с медью делает невозможным прямое соединение проводов из этих двух металлов. В присутствии влаги (а она в воздухе есть почти всегда)
н

Удельное сопротивление проводников: таблица удельного сопротивления меди, алюминия и других металлов

Медно-никелевые термостойкие провода были созданы в результате научного исследования, ставящего цель получить проводник с очень высокой электропроводимостью из доступных металлов и с не сложной технологией производства.

Технология производства

Для получения сверхпроводника на медный провод в вакууме по всему периметру наносят токопроводящий слой, состоящий из сплава никеля и меди, с диффузией в поверхностный слой проволоки-основы.

Снаружи наносится защитный слой металла. После чего полученный провод проходит отжиг в вакууме в течение 30 — 180 мин при 850-950 o С. Для создания медно-никелевого провода применяется чистые (99,99) медь и никель.

Эффект повышенной проводимости образуется в состоящем из двух металлов слое сплава, который представляет собой тонкостенную токопроводящую трубку-прослойку. Благодаря диффузионному взаимодействию слоев металла, примыкающих к трубке прослойке с обеих сторон, поверхность получается почти идеальной.

Нанесение слоев провода происходит в вакуумном оборудовании для исключения окисления проводящего слоя. Следовательно длина зависит от возможностей вакуумного оборудования.

Чертеж медно-никелевого проводника

  • 1 – медная или никелевая проволока основа
  • 2 – токопроводящий слой из сплава меди и никеля. Толщина слоя делается достаточной для обеспечения неразрывности слоя
  • 3 – защитный слой. Толщина выбирается достаточной для обеспечения защиты от механических воздействий

Расчет удельного сопротивления медно-никелевого провода

Высокая электропроводимость у меди и алюминия, а также у золота и серебра. В других металлах электропроводность существенно ниже.

  1. Таблица удельного электрического сопротивления металлов
  2. В связи с тем, что существует два типа электрических сопротивлений —
  3. В связи с электромагнитными явлениями, возникающими в проводниках при прохождении через него переменного тока в них возникает два важных для их электротехнических свойств физических явления.

Два последних явления делают неэффективным применение проводников радиусом больше характерной глубины проникновения электрического тока в проводник. Эффективный диаметр проводников (2RБхар): 50Гц -7 Ом.

Используя микроомметры, можно определить качество электрических контактов, сопротивление электрических шин, обмоток трансформаторов, электродвигателей и генераторов, наличие дефектов и инородного металла в слитках (например, сопротивление слитка чистого золота вдвое ниже позолоченного слитка вольфрама).

  • Для расчета длины провода, его диаметра и необходимого электрического сопротивления, необходимо знать удельное сопротивление проводников ρ.
  • В международной системе единиц удельное сопротивление ρ выражается формулой:
  • Оно означает: электрическое сопротивление 1 метра провода (в Омах), сечением 1 мм 2 , при температуре 20 градусов по Цельсию.

Таблица удельных сопротивлений проводников

Материал проводника Удельное сопротивление ρ в
Серебро Медь Золото Латунь Алюминий Натрий Иридий Вольфрам Цинк Молибден Никель Бронза Железо Сталь Олово Свинец Никелин (сплав меди, никеля и цинка) Манганин (сплав меди, никеля и марганца) Константан (сплав меди, никеля и алюминия) Титан Ртуть Нихром (сплав никеля, хрома, железа и марганца) Фехраль Висмут Хромаль 0,015 0,0175 0,023 0,025. 0,108 0,028 0,047 0,0474 0,05 0,054 0,059 0,087 0,095. 0,1 0,1 0,103. 0,137 0,12 0,22 0,42 0,43. 0,51 0,5 0,6 0,94 1,05. 1,4 1,15. 1,35 1,2 1,3. 1,5

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм 2 обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро.

1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм 2 . Серебро — лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм 2 обладает сопротивлением 0,0175 Ом.

Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r — сопротивление проводника в омах; ρ — удельное сопротивление проводника; l — длина проводника в м; S — сечение проводника в мм 2 .

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм 2 .

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм 2 .

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм 2 . Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм 2 и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

Сравнение медного и алюминиевого провода таблица. Выбор проводов и способа прокладки

При протекании тока по кабелю существуют потери энергии. Эти потери выражаются в виде нагрева самих проводов и вызваны сопротивлением электронов протеканию тока в проводах. Чем меньше внутреннее сопротивление кабеля, чем больше мощности по нему можно передать. Наименьшим сопротивлением обладает сверхпроводник, но на сегодняшний день по техническим условиям он не подходит. Следующим среди металлов с маленьким сопротивлением идет серебро, но оно дорогое, поэтому наиболее приемлемыми являются медь и алюминий.

Алюминий — легкий металл, дешевле меди, но ломкий и с более высоким внутренним сопротивлением. В советском союзе большинство внутридомовых сетей были протянуты алюминием, логика проектантов была понятна – дешево и раз все штукатурили и прятали в стены, то никаких проблем с дальнейшей эксплуатацией не было, о заземлении бытовых приборов вообще не задумывались.

С развитием электроники в дальнем зарубежье и до нас стали доходить приборы и аппараты, нуждающиеся в большой электрической мощности. При этом стали меняться нормы и правила прокладки сетей электроснабжения. Теперь мало кто выполняет электроснабжение дома алюминиевыми проводами. Все стремятся проложить толстый медный кабель, заштробить все в стены или упаковать всю электрику в стальные трубы. Вариантов много.

Суть выбора проводов в том, чтобы не переплатить и не потерять в благах, которые сулит удобство электроснабжения дома. Провода и кабели покрыты слоями изоляции. В проводах вокруг жилы металла идет пластиковое покрытие, а в кабелях вокруг нескольких сплетенных проводов идет слой защитной оболочки.

Ток, протекая по проводу, нагревает его. Температура плавления алюминия и меди большая. Например, медная проволока диаметром 1,16 мм плавится, если по ней пропустить ток 100 ампер, а вот провод диаметром 1,13 мм — только 15 ампер. Это объясняется тем, что пластиковая изоляция провода плавится при нагреве провода свыше 65°C. Следовательно, выбор сечения проводов и кабеля необходимо производить, исходя из температуры нагрева провода длительным током.

При выборе провода проще перейти от диаметра провода к величине квадратного сечения провода. Провод в своем сечении не обязательно является кругом, так же он может быть и квадратом и прямоугольником и даже треугольником. При треугольном сечении провода тяжело определить диаметр, поэтому принято считать провода как площадь поперечного сечения.

Площадь круглой жилы: S=п*r 2 =пd 2 /4

Площадь треугольной жилы при трех проводах в кабеле: S=п*r 2 /3

Площадь треугольной жилы при четырех проводах в кабеле: S=п*r 2 /4

Площадь квадратной жилы: S=a*а

Площадь прямоугольной жилы: S=a*b

где S — площадь;

r — радиус круглой жилы;

d — диаметр круглой жилы;

а — длина сечения жилы;

b — ширина сечения жилы;

Провода, проложенные вместе, греются и подогревают друг друга, поэтому для выбора провода или кабеля по таблице «Допустимые длительные токи для проводов и кабелей» выбираем тип провода или кабеля, находим соответствующую мощность (первая цифра) и ток (вторая цифра), находим сечение жилы провода или кабеля.

Ток не зависит от напряжения, а только от мощности потребителя. Поэтому, не имеет значения напряжение, которым питается потребитель. Только ток.

Не нужно учитывать провод, по которому при нормальном режиме работы оборудования ток не течет — провод заземления. Если в таблице значится ток при прокладке трех ПВ-1, то третий провод не провод заземления, а еще одна фаза или нуль. В таблицах приведены предельно допустимые мощность и токи. Мощность рассчитана для приборов работающих от 220 В (фаза и ноль). Нельзя превышать эти значения. Желательно оставлять небольшой запас по мощности — на всякий случай. Каждое соединение в щитке, в коробке является потребителем энергии, правда очень маленьким, но под него необходимо оставить запас.

В продаже встречаются кабели с маркировкой ГОСТ и ТУ. Обычно ГОСТ — нормальные сечения, т.е сечение соответствует площади, а вот ТУ — заниженного сечения, к примеру кабель ВВГ 3*6 ТУ имеет сечение жилы соответствующей кабелю ВВГ 3*4. Именно поэтому покупать провода лучше со штангенциркулем в руках.

Допустимые длительные токи для проводов и кабелей с медными жилами в зависимости от их количества при прокладке вместе

Сечение, кв.мм

чем отличаются и где применяются

Медные и алюминиевые силовые кабели: чем отличаются и где применяются

Что предпочтительнее — медный либо алюминиевый силовой кабель? Такой вопрос довольно часто поднимается и в кругу квалифицированных специалистов, и обыкновенных пользователей, планирующих заменить устаревшие силовые линии. Для того чтобы принять профессиональное решение, необходимо знать достоинства и недостатки, правила использования, а также базовые различия медной и алюминиевой коммутации.

История развития кабелей

Медь — один из древнейших известных металлов. Ее пластичность и электропроводность были использованы первыми экспериментаторами электричества, Бенджамином Франклином и Майклом Фарадеем. Она была использована в таких изобретениях, как телеграф, телефон и электродвигатель.


Медь является наиболее распространенным металлическим проводником. Международный стандарт отожженной меди (IACS) был принят в 1913 году. Согласно этому мировому стандарту коммерчески чистая отожженная медь характеризуется проводимостью 100% IACS. При этом такая медь, производимая сегодня, имеет более высокие значения проводимости IACS, потому что технология обработки с тех пор значительно улучшилась. Сегодня отожженный медный провод, используемый в электрических цепях, соответствует международным стандартам ASTM B3.


В 1960-х и 1970-х годах из-за высокой цены на медь стали использоваться алюминиевые силовые кабеля для подключения к электрическим сетям промышленных и жилищно-коммунальных объектов. Алюминиевые проводники состоят из различных сплавов, известных как серии AA-1350 и серии AA-8000. Серия AA-1350 содержит, как минимум, 99,5% алюминия. Алюминиевые сплавы серии AA-8000 соответствуют международному стандарту ASTM B800 и были разработаны, чтобы придать алюминию свойства ползучести и удлинения более близкие к характеристикам меди.

Кабель из алюминия или меди: в чем разница

Исключительно два металла — медь и алюминий получили массовое распространение для передачи электричества. Их применение в данном качестве объясняется набором физических параметров и стоимостью. В современных системах электроснабжения для подключения жилых, общественных и промышленных объектов применяется в основном медь. Исключения составляют варианты, когда для подсоединения мощной нагрузки требуется большое сечение жилы — в этом случае используется алюминиевый силовой кабель. Трудно сразу однозначно сказать, что лучше для применения алюминиевый или медный кабель, нужно сравнивать в комплексе все характеристики:

  • Ценовые преимущества;
  • Физические свойства;
  • Условия эксплуатации и безопасности.

Ценовые преимущества

Алюминий практически в три раза дешевле меди. Это делает его более желанным для использования, особенно в мощных проектах, большой протяженностью. Затраты на медь в этих вариантах могут значительно увеличить стоимость проекта электроснабжения.

Сравнительный анализ тенденций роста цен на эти два металла за последние сто лет, отчетливо демонстрирует, что цены на алюминий растут гораздо ниже чем на медь. Специалисты считают, что эта тенденция сохраниться и в ближайшем будущем. С начала 2020 года цена меди на Лондонской бирже достигла до 5 675 долл/тонну, при этом для алюминия — 1 725 долл/тонну. Перечисленное сопряжено с эффективностью производства и ростом выпуска алюминия, при доступном и дешевом сырьевом материале. При производстве кабелей, алюминий в цене окончательного продукта, достигает 25%. 

Для меди — ситуация противоположная. Рудные запасы меди сокращаются, процент меди в руде уменьшается, также бедны чистой медью новые месторождения, которые становятся труднодоступными. По этой причине, затраты на медь в цене конечного продукта уже составляют более 50 % и продолжают расти. Всё перечисленное, говорит в пользу применения алюминия.

Весовые характеристики

Алюминий является легким материалом и очень гибким, что облегчает работу с ним. Эта характеристика полезна для быстрой установки, а при протяженных пролетах линий электропередач проволочные алюминиевые модификации монтируются намного быстрее. В качестве сырья алюминий примерно на 70 процентов легче по весу, чем медь. Это полезно в областях, где требуется снижение веса всех компонентов электрической сети.

Естественно, при использовании в электрических кабелях, меньший вес облегчает их установку. Поэтому высоковольтные линии уже давно прокладывают из алюминия. Низкий вес значительно уменьшает растягивающее усилие, прикладываемое к кабелю и мачте. Для схем электроснабжения, требующих гибких кабельных соединений, медь больше не является преимущественным выбором.

Проводимость кабелей и прочность на разрыв 

Проводимость алюминия по сравнению с медью составляет только 61%, что приводит к тому, что при использовании алюминиевого кабеля требуются токопроводящие жилы большего диаметра, что естественно повышает вес линии.


Медь не подвержена высокому циклическому расширению/сжатию по сравнению с алюминием. Прочность на растяжение у меди позволяет ей выдерживать напряжения на износ длительное время без разрушительных последствий, как у алюминия.


Благодаря своим высоким пластическим свойствам, медь может выпускаться в форме очень тонкой жилы. Это добавляет универсальность медному силовому кабелю. Медь обладает высокой прочностью на разрыв, может подвергаться чрезвычайному напряжению, при этом проявляет минимальные признаки износа, поэтому такой силовой кабель практически не требует обслуживания.

Безопасность кабелей

Для плавления медной жилы требуется высокая температура — 1083 C. Поэтому с точки зрения безопасности, медный силовой кабель является одним из безопасных вариантов организации электроснабжения объектов. Даже если он перегружен, то вряд ли расплавится или сгорит. Это означает, что шансы возникновения пожара, при проблемах с питанием, будут значительно меньше.

Алюминиевый силовой кабель повышает потенциальный риск пожара на объекте, особенно, если не будет смонтирован в соответствие с ПУЭ. Циклы расширения и сжатия присущие алюминию, оказывают большое влияние на безопасность соединений, по сравнению с использованием меди.

Алюминий также подвержен окислению, особенно, когда он в контакте с влагой и разнородными металлами. В поврежденной зоне возникает сильное сопротивление провода, которое приводит к нагреву, способного расплавить защитную изоляцию и вызвать пожар. 

Для предупреждения этих негативных явлений в алюминиевом силовом кабеле используют антиокислительные соединения. Такие линии требуют более высокого уровня обслуживания, чем медные силовые кабеля, что включает в себя проверку проводников на герметичность и наличие окисления.


Наконец, повышенная термотекучесть алюминия — это то, что необходимо учитывать при монтаже. Алюминий является более мягким металлом, чем медь, и имеет тенденцию расширяться или растягиваться с течением времени, особенно при воздействии более высокого давления и температуры. Классические обжимные соединения, страдающие от утечки, теряют прочность и перестают быть надежными.

Как правильно выбрать кабель по ПЭУ

В СССР большая часть жилищного фонда оснащались алюминиевыми силовыми кабелями, это было нормой, действующего стандарта. Это совершенно не означало, что страна бедствовала, и не могла позволить себе массово применять медь в электротехнике, скорее наоборот. Просто проектировщики электросетей решили, что экономически выгодно, применение алюминия, а не меди.  

Надо признаться, что в то время темпы строительства были такими огромными, что электротехническая промышленность была обеспечена заказами на пятилетку вперед. В этот период  были выстроены всем хорошо известные хрущевки, в которых до сих пор проживает значительная часть россиян. Поэтому экономический эффект от такой массового использования алюминиевой кабельной продукции действительно был существенным.  Сегодня совершенно иные реалии, и алюминиевый силовой кабель в новых жилых домах не используют, а только исключительно медную кабельную продукцию, что соответствует п. 7.1.34 ПУЭ.

Для алюминиевого силового кабеля вышеназванный раздел ПУЭ оставил другую область применения. Так  линии питающие  распредсети, предпочтительно, выполнять с алюминиевыми токожилами, в проектах когда их проектное сечение будет равняться 16 мм2 и выше. Кроме того, большая область приемников тока, которая относится к обслуживанию электрооборудования объектов: насосные, вентиляторные и калориферные электроустановки могут запитывать кабеля с алюминиевыми токожилами сечением более 2. 5 мм2.


Подводя итог вышесказанному, можно с уверенностью заявить, что существующие нормы четко разделили области применения алюминиевых и медных силовых кабелей с учетом всех их технических и стоимостных характеристик. Тем не менее, сегодня конструкторы, архитекторы, инженеры электрики, работающие с проектами электроснабжения должны преодолеть тенденциозность по отношению к использованию алюминиевой продукции, тем более что эта технологии шагнули далеко вперед по качеству этого металла. Такой подход даст возможность использовать экономичный алюминий при монтаже, что обеспечит значительную экономию в масштабах всей страны.

<Назад Поделиться

Самый электропроводный металл в мире

Ценность металлов напрямую определяется их химическими и физическими свойствами. В случае с таким показателем, как электропроводимость, эта связь не так прямолинейна. Самый электропроводный металл, если измерять данный показатель при комнатной температуре (+20 °C), — серебро.

Но высокая стоимость ограничивает применение деталей из серебра в электротехнике и микроэлектронике. Серебряные элементы в таких приборах применяются только в случае экономической целесообразности.

Физический смысл проводимости

Использование металлических проводников имеет давнишнюю историю. Ученые и инженеры, работающие в областях науки и техники, использующих электроэнергию, давно определились с материалами для проводов, клемм, контактов, печатных плат и т. д. Определить самый электропроводный металл в мире помогает физическая величина, называемая электрической проводимостью.

Понятие проводимости обратно электрическому сопротивлению. Количественное выражение проводимости связано с единицей сопротивления, которое в международной системе единиц (СИ) измеряется в Омах. Единица электрической проводимости в системе СИ – сименс. Русское обозначение этой единицы – См, интернациональное – S. Электрической проводимостью в 1 См обладает участок электрической сети с сопротивлением в 1 Ом.

Удельная проводимость

Мера способности вещества проводить электроток называется удельной электропроводностью. Самым высоким подобным показателем обладает самый электропроводный металл. Эта характеристика может быть определена для любого вещества или среды инструментально и имеет числовое выражение. Удельная электропроводность цилиндрического проводника единичной длины и единичной площади сечения связана с удельным сопротивлением данного проводника.

Системной единицей удельной проводимости является сименс на метр – См/м. Чтобы выяснить, какой из металлов самый электропроводный металл в мире, достаточно сравнить их удельную проводимость, определенную экспериментально. Можно определить удельное сопротивление при помощи специального прибора – микроомметра. Эти характеристики являются обратнозависимыми.

Проводимость металлов

Само понятие электрического тока как направленного потока заряженных частиц кажется более гармоничным для веществ, основанных на кристаллических решетках свойственных металлам. Носителями зарядов при возникновении электрического тока в металлах являются свободные электроны, а не ионы, как это бывает в жидких средах. Экспериментально установлено, что при возникновении тока в металлах не происходит переноса частиц вещества между проводниками.

Металлические вещества отличаются от других более свободными связями на атомарном уровне. Внутреннее устройство металлов отличается присутствием большого числа «одиноких» электронов. которые при малейшем воздействии электромагнитных сил образуют направленный поток. Поэтому не зря именно металлы являются лучшими проводниками электрического тока, и именно такие молекулярные взаимодействия отличают самый электропроводный металл. На особенностях структуры кристаллической решетки металлов основано еще одно их специфическое свойство — высокая теплопроводность.

Топ лучших проводников — металлов

4 металла, имеющие практическое значение для их применения в качестве электропроводников распределяются в следующем порядке относительно величины удельной проводимости, измеряемой в См/м:

  1. Серебро — 62 500 000.
  2. Медь – 59 500 000.
  3. Золото – 45 500 000.
  4. Алюминий — 38 000 000.

Видно, что самый электропроводный металл – серебро. Но подобно золоту, оно используется для организации электрической сети лишь в особых специфических случаях. Причина – высокая стоимость.

Зато медь и алюминий – самый распространенный вариант для электроприборов и кабельной продукции благодаря низкому сопротивлению электрическому току и ценовой доступности. Другие металлы применяются в качестве проводников редко.

Факторы, влияющие на проводимость металлов

Даже самый электропроводный металл снижает свою проводимость, если в нём присутствуют другие добавки и примеси. У сплавов иная, чем у «чистых» металлов, структура кристаллической решетки. Она отличается нарушением в симметрии, трещинами и другими дефектами. Снижается проводимость и при повышении температуры окружающей среды.

Повышенное сопротивление, присущее сплавам, находит применение в нагревательных элементах. Неслучайно для изготовления рабочих элементов электропечей, обогревателей применяют нихром, фехраль и другие сплавы.

Самый электропроводный металл — это драгоценное серебро, больше используемое ювелирами, для чеканки монет и т. д. Но и в технике и приборостроении его особые химические и физические свойства находят широкое применение. Например, кроме использования в узлах и агрегатах с пониженным сопротивлением, серебряное напыление предохраняет контактные группы от окисления. Уникальные свойства серебра и сплавов на его основе часто делают его применение оправданным, несмотря на высокую стоимость.

Справочная таблица по электропроводности

Elements — Angstrom Sciences Справочная таблица по электропроводности

Elements — Angstrom Sciences

Перейти к навигации

Электропроводность Имя Символ #
5. 0E -24 10 6 / см Ω Сера S 16
1.0E -17 10 6 / см Ω фосфор P 15
8.0E -16 10 6 / см Ω Йод I 53
1.0E -12 10 6 / см Ω Селен SE 34
1.0E -12 10 6 / см Ω Бор B 5
2.52E -12 10 6 / см Ω Кремний Si 14
1.45E -8 10 6 / см Ом Германий Ge 32
2.0E -6 10 6 / см Ω Теллур Te 52
0,00061 10 6 / см Ω Углерод С 6
0. 00666 10 6 / см Ω Плутоний Pu 94
0,00695 10 6 / см Ом Марганец Мн 25
0,00736 10 6 / см Ом Гадолиний Gd 64
0,00822 10 6 / см Ом Нептуний Np 93
0,00867 10 6 / см Ом Висмут Bi 83
0.00889 10 6 / см Ω Тербий Тб 65
0,00956 10 6 / см Ом Самарий см 62
0,0104 10 6 / см Ом Меркурий Hg 80
0,0108 10 6 / см Ом Диспрозий Dy 66
0,0112 10 6 / см Ом Европий Eu 63
0. 0115 10 6 / см Ω Церий CE 58
0,0117 10 6 / см Ом Эрбий Er 68
0,0124 10 6 / см Ом Гольмий Ho 67
0,0126 10 6 / см Ом Лантан La 57
0,0148 10 6 / см Ом празеодим Пр 59
0.015 10 6 / см Ω Тулий Тм 69
0,0157 10 6 / см Ом Неодим Nd 60
0,0166 10 6 / см Ом Иттрий Y 39
0,0177 10 6 / см Ом Скандий SC 21
0,0185 10 6 / см Ом Лютеций Лю 71
0. 0219 10 6 / см Ω Полоний Po 84
0,022 10 6 / см Ом Америций Am 95
0,0234 10 6 / см Ом Титан Ti 22
0,0236 10 6 / см Ом Цирконий Zr 40
0,0288 10 6 / см Ом Сурьма Сб 51
0.03 10 6 / см Ω Франций Fr 87
0,03 10 6 / см Ом Барий Ba 56
0,0312 10 6 / см Ом Гафний Hf 72
0,0345 10 6 / см Ом Мышьяк как 33
0,0351 10 6 / см Ом Иттербий Yb 70
0. 038 10 6 / см Ω Уран U 92
0,0481 10 6 / см Ом Свинец Пб 82
0,0489 10 6 / см Ом Ванадий В 23
0,0489 10 6 / см Ом Цезий CS 55
0,0529 10 6 / см Ом Протактиний Па 91
0.0542 10 6 / см Ω Рений Re 75
0,0617 10 6 / см Ом Таллий Tl 81
0,0653 10 6 / см Ом торий Чт 90
0,067 10 6 / см Ом Технеций Tc 43
0,0678 10 6 / см Ом Галлий Ga 31
0. 0693 10 6 / см Ω Ниобий Nb 41
0,0761 10 6 / см Ом Тантал Ta 73
0,0762 10 6 / см Ом Стронций Sr 38
0,0774 10 6 / см Ом Хром Кр 24
0,0779 10 6 / см Ом Рубидий руб. 37
0.0917 10 6 / см Ω Олово Sn 50
0,095 10 6 / см Ом Палладий Pd 46
0,0966 10 6 / см Ом Платина Pt 78
0,0993 10 6 / см Ом Утюг Fe 26
0,108 10 6 / см Ом Литий Li 3
0. 109 10 6 / см Ом Осмий Os 76
0,116 10 6 / см Ом Индий В 49
0,137 10 6 / см Ом Рутений Ру 44
0,138 10 6 / см Ом Кадмий Кд 48
0,139 10 6 / см Ом Калий К 19
0.143 10 6 / см Ом Никель Ni 28
0,166 10 6 / см Ом Цинк Zn 30
0,172 10 6 / см Ом Кобальт Co 27
0,187 10 6 / см Ом Молибден Пн 42
0,189 10 6 / см Ом Вольфрам Вт 74
0. 197 10 6 / см Ω Иридий Ir 77
0,21 10 6 / см Ом Натрий Na 11
0,211 10 6 / см Ом Родий Rh 45
0,226 10 6 / см Ом Магний мг 12
0,298 10 6 / см Ом Кальций Ca 20
0.313 10 6 / см Ом Бериллий Be 4
0,377 10 6 / см Ом Алюминий Al 13
0,452 10 6 / см Ом Золото Au 79
0,596 10 6 / см Ом Медь Cu 29
0,63 10 6 / см Ом Серебро Ag 47

Электропроводность материалов — Blue Sea Systems

Различия в электропроводности различных материалов, используемых в морских электротехнических изделиях, часто недостаточно понятны. Предположения об электропроводности материала, поскольку он похож на другой проводящий материал с известной допустимой допустимой нагрузкой, может привести к катастрофическим результатам.

Возможно, наиболее распространенной формой этой ошибки является замена меди в электрических устройствах медью из латуни или бронзы. Латунь только на 28% проводит меньше меди. Проводимость некоторых видов бронзы составляет всего 7% от меди!

Медь — это стандарт, в соответствии с которым оцениваются электрические материалы, а значения проводимости выражаются в единицах измерения относительно меди.Эти рейтинги часто обозначаются как «28 МАКО». IACS — это аббревиатура Международного стандарта на отожженную медь, а число перед «IACS» — это процент проводимости материала по отношению к меди, которая считается 100% проводящей. Это не означает, что медь не имеет сопротивления (100% проводимость в абсолютном смысле), а скорее, что это стандарт, по которому измеряются другие материалы. Чем выше% IACS, тем выше проводимость материала. Этот стандарт относится к чистой «стандартной» меди с удельным сопротивлением 1.7241 мкм-см при 20 ° C (68 ° F).

Вооружившись этими знаниями, интересно исследовать значения проводимости IACS некоторых распространенных материалов.


9000 22
Материал IACS % Проводимость
Серебро 105
Медь 100
Золото 70
Алюминий 61
Алюминий 61
Цинк 27
Латунь 28
Железо 17
Олово 15
Фосфор Бронза 15
7 Свинец
Никель Алюминий Бронза 7
Сталь от 3 до 15

Возможно, наиболее интересным фактом, показанным на этой диаграмме, является то, насколько низкими являются материалы из медных сплавов по относительной проводимости. Можно легко предположить, что сплавы, такие как латунь и бронза, поскольку они в основном состоят из меди, обладают почти такой же проводимостью, как и медь. Это не тот случай. Небольшие процентные содержания олова, алюминия, никеля, цинка и фосфора, которые составляют эти сплавы, ухудшают электрические характеристики полученного сплава до гораздо большего процента, чем их процентное содержание в составе сплава.

Однако из этого не следует делать вывод, что латунь никогда не должна использоваться в электрических устройствах.Бывают случаи, когда превосходные характеристики латуни при растяжении и механической обработке делают ее лучшим выбором, чем медь, при условии, что площади поперечного сечения увеличиваются пропорционально для достижения проводимости, которую медная деталь будет иметь при применении. Однако среди материалов, обычно используемых в электротехнике, медь уступает только серебру.

Электропроводность

Электропроводность

На этой странице мы определяем электрическую проводимость. Проводимость — это мера насколько легко электрический ток может протекать через данный материал.То есть, для данного Электрическое поле в материале материал с более высокой проводимостью будет производить больший ток текучести, чем материал с низкой проводимостью.

Если вы разбираетесь в электрических схемах, тогда проводимость аналогична обратной величине сопротивления. Электрическое поле похоже на напряжение, поэтому напряжение на небольшом резисторе (высокая проводимость) будет производить большое количество тока. Напряжение на большом резисторе (низкая проводимость) будет производить меньшее количество электрического тока.

Электропроводность представляет собой потерю мощности в материале. Материал известен как «без потерь», если проводимость равна нулю (= 0). Такие материалы, как воздух и вакуум (космос), не обладают проводимостью.

Когда проводимость не равна нулю, электрическое поле, протекающее через материал вызовет Плотность электрического тока ( Дж ). Отношения между E , J и известен как закон Ома и дается в уравнении [1]:

[Уравнение 1]

Некоторые материалы, такие как медь или сталь (или металлы в целом), имеют очень высокую проводимости, а проводимость часто можно аппроксимировать бесконечной.Это означает, что материал имеет нулевое сопротивление. Для этих материалов из уравнения [1] видно, что электрическая В этих материалах поле должно быть равно нулю. Если он не был нулевым, то из уравнения [1] плотность тока будет бесконечной, но это не так. Следовательно, пока мы можем есть ток, протекающий через металлы или материалы с высокой проводимостью, электрическое поле внутри этих материалов должно быть ноль. В учебниках эти материалы часто называется PEC (идеальные электрические проводники), так что потери проводимости можно игнорировать.

Теперь рассмотрим материалы с проводимостью больше нуля, но также неметаллические. материалы, так что проводимость не очень высока. В этом случае мы можем иметь электрический ток, протекающий в материале, вместе с соответствующим электрическим полем. Когда электрический ток течет через материал, часть энергии преобразуется в тепло (энергия затем теряется из-за электромагнитной волны или тока). Материалы со средней проводимостью известны как материалы с потерями.An Примером материала с потерями и средним значением проводимости является Углерод. [Фактически, углерод используется внутри материалов для поглощения электромагнитных волн. в антенна измерения внутри камеры, известной как безэховая камера.]

Как правило, мы можем разделить материалы на 3 области по их проводимости, как показано ниже:

Рисунок 1. Классификация материалов по их проводимости.

Электропроводность измеряется в сименсах на метр [См / м]. Сименс является обратной величиной Ом или удельного сопротивления.-24 без потерь Вакуум 0 без потерь


Уравнения Максвелла

Страница проводимости защищена авторским правом, в частности приложение к уравнениям Максвелла.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *