Что такое прочность металла: Удельная прочность металлов: таблица. Механические свойства металлов

Содержание

Удельная прочность металлов: таблица. Механические свойства металлов

Использовать металлы в повседневной жизни начали еще вначале развития человечества. Медь – это первый их представитель. Она доступна в природе и прекрасно обрабатывается. При археологических раскопках часто находят изготовленные из нее предметы домашнего обихода и разные изделия.

В процессе развития человек обучался объединять разные металлы, производя сплавы большей прочности. Из них делали орудия труда, а позже использовали для изготовления оружия. Опыты продолжаются и в наше время, создаются сплавы с удельной прочностью металлов, пригодные для возведения современных конструкций.

Виды нагрузок

К механическим свойствам металлов и сплавов относятся такие, которые способны оказывать сопротивление действию на них внешних сил или нагрузок. Они могут быть самыми разнообразными и по своему воздействию различают:

  • статические, которые неспешно возрастают от нулевого значения до максимума, а затем остаются постоянными или незначительно меняются;
  • динамические – возникают вследствие удара и действуют короткий промежуток.

Виды деформации

Деформация – это видоизменение конфигурации твердого тела под воздействием прилагаемых к нему нагрузок (внешних сил). Деформации, после которых материал возвращается в прежнюю форму и сохраняет первоначальные размеры, считают упругими, в противном случае (форма изменилась, материал удлинился) – пластическими или остаточными. Существует несколько видов деформации:

  • Сжатие. Уменьшается объем тела в результате действия на него сдавливающих сил. Такую деформацию испытывают фундаменты котлов и машин.
  • Растяжение. Увеличивается длина тела, когда к его концам прилагаются силы, направление которых совпадает с его осью. Растяжению подвергаются тросы, приводные ремни.
  • Сдвиг или срез. В этом случае силы направлены навстречу друг другу и при определенных условиях наступает срез. Примером служат заклепки и болты стяжки.
  • Кручение. Пара сил, противоположно направленных, действует на закрепленное одним концом тело (валы двигателей и станков).
  • Изгиб. Изменение кривизны тела при воздействии внешних сил. Такое действие характерно для балок, стрел подъемных кранов, железнодорожных рельсов.

Определение прочности металла

Одно из основных требований, которое предъявляют к металлу, применяемому для производства металлических конструкций и деталей, является прочность. Для ее определения берется образец металла и растягивается на испытательной машине. Эталон становится тоньше, площадь поперечного сечения уменьшается с одновременным увеличением его длины. В определенный момент образец начинает растягиваться лишь в одном месте, образуя «шейку». А через некоторое время происходит разрыв в области самого тонкого места. Так ведут себя исключительно вязкие металлы, хрупкие: твердая сталь и чугун растягиваются незначительно и у них не образуется шейка.

Нагрузка на образец определяется специальным прибором, который носит название силоизмеритель, он вмонтирован в испытательную машину. Для вычисления основной характеристики металла, называемой пределом прочности материала, надо максимальную нагрузку, выдержанную образцом до разрыва, разделить на величину площади поперечного сечения до растяжения. Эта величина необходима конструктору для того, чтобы определиться с размерами изготовляемой детали, и технологу назначить режимы обработки.

Самые прочные металлы в мире

К высокопрочным металлам можно отнести следующие:

Титан находит применение в медицине, военной промышленности, кораблестроении, авиации.

  • Уран. Самый известный и прочный металл в мире, является слабым радиоактивным материалом. Встречается в природе в чистом виде и в соединениях. Он относится к тяжелым металлам, гибкий, ковкий и относительно пластичный. Широко используется в производственных сферах.
  • Вольфрам. Расчет прочности металла показывает, что это самый прочный и тугоплавкий металл, не поддающийся химическому воздействию. Хорошо куется, его можно вытянуть в тонкую нить. Используется для нити накаливания.
  • Рений. Тугоплавкий, имеет высокую плотность и твердость. Очень прочный, не подвержен перепадам температуры. Находит применение в электронике и технике.
  • Осмий. Твердый металл, тугоплавкий, стойкий к механическим повреждениям и агрессивным средам. Применяют в медицине, используют для ракетной техники, электронной аппаратуры.
  • Иридий. В природе в свободном виде встречается редко, чаще – в соединениях с осмием. Механической обработке поддается плохо, имеет высокую стойкость к химическим веществам и прочность. Сплавы с металлом: титаном, хромом, вольфрамом, используют для изготовления ювелирных изделий.
  • Бериллий. Высокотоксичный металл с относительной плотностью, имеющий светло-серый цвет. Находит применение в черной металлургии, атомной энергетике, лазерной и аэрокосмической технике. Имеет высокую твердость и используется для легирования сплавов.
  • Хром. Очень твердый металл с высокой прочностью, бело-голубого цвета, обладает стойкостью к щелочам и кислотам. Прочность металла и сплавов позволяют их использовать для изготовления медицинского и химического оборудования, а также для металлорежущих инструментов.
  • Тантал. Металл серебристого цвета, имеет высокую твердость, прочность, обладает тугоплавкостью и стойкостью к коррозии, пластичен, легко обрабатывается. Находит применение при создании ядерных реакторов, в металлургии и химической промышленности.
  • Рутений. Принадлежит к металлам платиновой группы. Обладает высокой прочностью, твердостью, тугоплавкостью, химической стойкостью. Из него изготовляют контакты, электроды, острые наконечники.

Как определяют свойства металлов?

Для испытания металлов на прочность применяют химические, физические и технологические методы. Твердость определяет, как сопротивляются материалы деформациям. Стойкий металл имеет большую прочность и детали, изготовленные из него, меньше снашиваются. Для определения твердости вдавливают шарик, алмазный конус или пирамидку в металл. Значение твердости устанавливают по диаметру отпечатка или по глубине вдавливания предмета. Более крепкий металл меньше деформируется, и глубина отпечатка будет меньше.

А вот образцы на растяжение испытываются на разрывных машинах с плавно нарастающей при растягивании нагрузкой. Эталон может иметь в сечении круг или квадрат. Для проверки металла противостоять нагрузкам ударного характера проводят испытания на удар. В середине специально изготовленного образца делают надрез и устанавливают его напротив ударного устройства. Разрушение должно происходить там, где слабое место. При испытании металлов на прочность структуру материала исследуют рентгеновскими лучами, ультразвуком и при помощи мощных микроскопов, а также используют травление химическими веществами.

К технологическим относятся самые простые виды испытаний на разрушение, пластичность, ковку, сварку. Испытание на выдавливание дает возможность определить, способен ли листовой материал подвергаться холодной штамповке. С помощью шарика в металле выдавливают лунку, пока не появится первая трещина. Глубина ямки до появления разрушения и будет характеризовать пластичность материала. Испытание на изгиб дает возможность определить способность листового материала принимать нужную форму. Это испытание используют для оценки качества швов при сварке. Для оценки качества проволоки используется проба на перегиб. Трубы испытывают на расплющивание и изгиб.

Механические свойства металлов и сплавов

К механическим свойствам материалов из металла относятся следующие:

  1. Прочность. Она заключается в способности материала оказывать сопротивление разрушению под воздействием сил извне. Вид прочности зависит от того, как действуют внешние силы. Ее разделяют на: сжатие, растяжение, кручение, изгиб, ползучесть, усталость.
  2. Пластичность. Это способность металлов и их сплавов под воздействием нагрузки менять форму, не подвергаясь разрушению, и сохранять ее после окончания воздействия. Пластичность материала из металла определяют при его растяжении. Чем больше происходит удлинение, при одновременном уменьшении сечения, тем пластичнее металл. Материалы, обладающие хорошей пластичностью, прекрасно обрабатываются давлением: ковке, прессованию. Пластичность характеризуют двумя величинами: относительное сужение и удлинение.
  3. Твердость. Такое качество металла заключается в способности оказывать сопротивление проникновению в него инородного тела, имеющего более значительную твердость, и не получить при этом остаточных деформаций. Износоустойчивость и прочность – это основные характеристики металлов и сплавов, которые тесно связаны с твердостью. Материалы с такими свойствами находят применение для изготовления инструментов, применяемых для обработки металлов: резцы, напильники, сверла, метчики. Нередко по твердости материала определяют его износоустойчивость. Так твердые стали при эксплуатации изнашиваются меньше, чем более мягкие сорта.
  4. Ударная вязкость. Особенность сплавов и металлов сопротивляться влиянию нагрузок, сопровождающихся ударом. Это одна из важных характеристик материала, из которого изготовлены детали, испытывающие ударную нагрузку, во время работы машины: оси колес, коленчатые валы.
  5. Усталость. Это состояние металла, который находится под постоянным воздействием нагрузок. Усталость металлического материала происходит постепенно и может закончиться разрушением изделия. Способность металлов оказывать сопротивление разрушению от усталости называют выносливостью. Это свойство находится в зависимости от природы сплава или металла, состояния поверхности, характера обработки, условий работы.

Классы прочности и их обозначения

Нормативными документами по механическим свойствам крепежных изделий введено понятие класс прочности металла и установлена система обозначения. Каждый класс прочности обозначается двумя цифрами, между которыми ставится точка. Первое число означает предел прочности, уменьшенный в 100 раз. Например, класс прочности 5.6 означат, что предел прочности будет 500. Второе число увеличено в 10 раз – это отношение предела текучести к временному сопротивлению, выраженному в процентах (500х0,6=300), т. е. 30 % составляет минимальный предел текучести от предела прочности на растяжение. Все изделия, используемые для крепежа, классифицируются по назначению применения, форме, используемому материалу, классу прочности и покрытию. По назначению использования они бывают:

  • Лемешные. Их используются для сельскохозяйственных машин.
  • Мебельные. Применяются в строительстве и мебельном производстве.
  • Дорожные. Ими крепят металлоконструкции.
  • Машиностроительные. Применяют в машиностроительной промышленности и приборостроении.

Механические свойства крепежных изделий зависят от стали, из которой они изготовлены и качества обработки.

Удельная прочность

Удельная прочность материала (формула ниже) характеризуется отношением предела прочности к плотности металла. Эта величина показывает прочность конструкции при данной его массе. Наибольшую важность она представляет для таких отраслей, как авиастроение, ракетостроение и производство космических аппаратов.

По величине удельной прочности сплавы из титана самые прочные из всех применяемых технических материалов. Титановые сплавы вдвое превышают удельную прочность металлов, относящихся к легированным сталям. Они не поддаются коррозии на воздухе, в кислотной и щелочной среде, не боятся морской воды и обладают хорошей теплоустойчивостью. При высоких температурах их прочность выше, чем у сплавов с магнием и алюминием. Благодаря этим свойствам их применение, как конструкционного материала, все время увеличивается и находит широкое использование в машиностроении. Недостаток титановых сплавов заключается в их низкой обрабатываемости резанием. Это связано с физическими и химическими свойствами материала и особой структурой сплавов. Выше приведена таблица удельной прочности металлов.

Использование пластичности и прочности металлов

Очень важными свойствами металла являются пластичность и прочность. Эти свойства находятся в прямой зависимости друг от друга. Они не позволяют металлу изменять форму и препятствуют макроскопическому разрушению при воздействии на него внешних и внутренних сил.

Металлы, обладающие высокой пластичностью, под воздействием нагрузки разрушаются постепенно. Вначале у них появляется изгиб и только затем он начинает постепенно разрушаться. Пластичные металлы легко меняют форму, поэтому их широко используют для изготовления кузовов автомобилей. Прочность и пластичность металлов зависит от того, как направлены приложенные к нему силы и в каком направлении проводилась прокатка при изготовлении материала. Установлено, что при прокатке кристаллы металла удлиняются в ее направлении больше, чем в поперечной направленности. У листовой стали прочность и пластичность значительно больше в направлении прокатки. В поперечном же направлении прочность уменьшается на 30 %, а пластичность на 50 %, по толщине листа эти показатели еще ниже. Например, появление излома на стальном листе при сваривании можно объяснить параллельностью оси шва и направления прокатки. По пластичности и прочности материала устанавливают возможность его использования для изготовления различных деталей машин, сооружений, инструментов, приборов.

Нормативное и расчетное сопротивление металла

Одним из основных параметров, которые характеризуют сопротивление металлов воздействиям силы, является нормативное сопротивление. Оно устанавливается по нормам проектирования. Расчетное сопротивление получается в результате деления нормативного на соответствующий коэффициент надежности по данному материалу. В некоторых случаях учитывают еще и коэффициент условий работы конструкций. В вычислениях, имеющих практическое значение, в основном используют расчетное сопротивление металла.

Пути повышения прочности металла

Существует несколько способов повышения прочности металлов и сплавов:

  • Создание сплавов и металлов, имеющих бездефектную структуру. Имеются разработки по изготовлению нитевидных кристаллов (усов) в несколько десятков раз превышающих прочность обыкновенных металлов.
  • Получение объемного и поверхностного наклепа искусственным путем. При обработке металла давлением (ковка, волочение, прокатка, прессование) образуется объемный наклеп, а накатка и дробеструйная обработка дает поверхностный наклеп.
  • Создание легированного металла, используя элементы из таблицы Менделеева.
  • Очищение металла, от имеющихся в нем примесей. В результате этого улучшаются его механические свойства, распространение трещин значительно уменьшается.
  • Устранение с поверхности деталей шероховатости.

Интересные факты

  • Сплавы из титана, удельный вес которых превышает алюминиевые примерно на 70 %, прочнее их в 4 раза, поэтому, по удельной прочности сплавы, содержащие титан, выгоднее использовать для самолетостроения.
  • Многие алюминиевые сплавы превышают удельную прочность сталей, содержащих углерод. Сплавы из алюминия имеют высокую пластичность, коррозийную стойкость, прекрасно обрабатываются давлением и резанием.
  • У пластмасс удельная прочность выше, чем у металлов. Но из-за недостаточной жесткости, механической прочности, старения, повышенной хрупкости и малой термостойкости ограничены в применении слоистые пластики, текстолиты и гетинаксы, особенно в крупногабаритных конструкциях.
  • Установлено, что по выносливости к коррозии и удельной прочности, металлы черные, цветные и многие их сплавы уступают стеклопластикам.
Механические свойства металлов являются важнейшим фактором использования их в практических нуждах. Проектируя какую-то конструкцию, деталь или машину и подбирая материал, обязательно рассматривают все механические свойства, которыми он обладает.

Прочность — это… Что такое Прочность?

        твёрдых тел, в широком смысле — свойство твёрдых тел сопротивляться разрушению (разделению на части), а также необратимому изменению формы (пластической деформации) под действием внешних нагрузок. В узком смысле — сопротивление разрушению.

         В зависимости от материала, вида напряжённого состояния (растяжение, сжатие, изгиб и др.) и условий эксплуатации (температура, время действия нагрузки и др.) в технике приняты различные меры П. (предел текучести, временное сопротивление, предел усталости и др.). Разрушение твёрдого тела — сложный процесс, зависящий от перечисленных и многих др. факторов, поэтому технические меры П. — условные величины и не могут считаться исчерпывающими характеристиками.

         Физическая природа прочности. П. твёрдых тел обусловлена в конечном счёте силами взаимодействия между атомами и ионами, составляющими тело. Эти силы зависят главным образом от взаимного расположения атомов. Например, сила взаимодействия двух соседних атомов (если пренебречь влиянием окружающих атомов) зависит лишь от расстояний между ними (

рис. 1). При равновесном расстоянии ro Прочность 10 нм эта сила равна нулю. При меньших расстояниях сила положительна и атомы отталкиваются, при больших — притягиваются. На критическом расстоянии rk сила притяжения по абсолютной величине максимальна и равна Fт. Например, если при растяжении цилиндрического стержня с поперечным сечением
S
o действующая сила Р, направленная вдоль его оси, такова, что приходящаяся на данную пару атомов внешняя сила превосходит максимальную силу притяжения Fт, то последние беспрепятственно удаляются друг от друга. Однако, чтобы тело разрушилось вдоль некоторой поверхности, необходимо, чтобы все пары атомов, расположенные по обе стороны от рассматриваемой поверхности, испытывали силу, превосходящую Fт. Напряжение, отвечающее силе Fт, называется теоретической прочностью на разрыв σττ ≈ 0,1 Е, где Е — модуль Юнга). Но на опыте наблюдается разрушение при нагрузке
Р*
, которой соответствует напряжение σ = P*/S, в 100—1000 раз меньшее στ. Расхождение теоретической П. с действительной объясняется неоднородностями структуры тела (границы зёрен в поликристаллическом материале, посторонние включения и др.), из-за которых нагрузка Р распределяется неравномерно по сечению тела.

         Механизм разрушения. Зарождению микротрещин при напряжении ниже στ способствуют термической Флуктуации. Если на участке поверхности S малых размеров (но значительно превышающем сечение одного атома) локальное напряжение окажется больше σ
τ
, вдоль этой площадки произойдёт разрыв. Края разрыва разойдутся на расстояние, большее rk, на котором межатомные силы уже малы, и образуется трещина (рис. 2). Локальные напряжения особенно велики у края образовавшейся трещины, где происходит Концентрация напряжений, причём они тем больше, чем больше её размер. Если этот размер больше некоторого критического rc, на атомы у края трещины действует напряжение, превосходящее σт, и трещина растет дальше по всему сечению тела с большой скоростью — наступает разрушение.
rc определяется из условия, что освободившаяся при росте трещины упругая энергия материала покрывает затраты энергии на образование новой поверхности трещины: rc Еγ / σ2 (где γ энергия единицы поверхности материала). Прежде чем возрастающее внешнее усилие достигнет необходимой для разрушения величины, отдельные группы атомов, особенно входящие в состав дефектов в кристаллах, обычно испытывают перестройки, при которых локальные напряжения уменьшаются («релаксируют»). В результате происходит необратимое изменение формы тела — пластическая деформация; ей также способствуют термической флуктуации. Разрушению всегда предшествует большая или меньшая пластическая деформация. Поэтому при оценке
r
c в энергию γ должна быть включена работа пластической деформации γР, которая обычно на несколько порядков больше истинной поверхностной энергии γ. Если пластическая деформация велика не только вблизи поверхности разрушения, но и в объёме тела, то разрушение вязкое. Разрушение без заметных следов пластической деформации называется хрупким. Характер разрушения проявляется в структуре поверхности излома, изучаемой фрактографией (См. Фрактография). В кристаллических телах хрупкому разрушению отвечает скол по кристаллографическим плоскостям спайности, вязкому — слияние микропустот (на фрактограммах выявляются в виде чашечек) и скольжение. При низкой температуре разрушение преимущественно хрупкое, при высокой — вязкое. температура перехода от вязкого к хрупкому разрушению называется критической температурой хладноломкости.

         Поскольку разрушение есть процесс зарождения и роста трещин, оно характеризуется скоростью или временем τ от момента приложения нагрузки до момента разрыва, т. е. долговечностью материала. Исследования многих кристаллических и аморфных тел показали, что в широком интервале температур Т (по абсолютной шкале) и напряжений σ
,
приложенных к образцу, долговечность τ при растяжении определяется соотношением

                 где τ0 — приблизительно равно периоду тепловых колебаний атомов в твёрдом теле (10-12сек), энергия U0 близка к энергии сублимации (См. Сублимация) материала, активационный объём V составляет обычно несколько тысяч атомных объёмов и зависит от структуры материала, сформировавшейся в процессе предварительной термической и механической обработки и во время нагружения, k = 1,38 ․10-16эрг/град — постоянная Больцмана. При низких температурах долговечность очень резко падает с ростом напряжения, так что при любых важных для практики значениях τ существует почти постоянное предельное значение напряжения σ
0
, выше которого образец разрушается практически мгновенно, а ниже — живёт неограниченно долго. Это значение σ0 можно считать пределом прочности (см. табл.).

         Некоторые значения прочности на растяжение, σ0 в кгс/мм2 (1 кгс/мм2= 10 Мн/м2)

        ———————————————————————————————————————————————-

        | Материалы                                                                                | σ0                 | σ0/Е            |

        |———————————————————————————————————————————————|

        | Графит (нитевидный кристалл)                                                   | 2400             | 0,024          |

        | Сапфир (нитевидный кристалл)                                                  | 1500             | 0,028          |

        | Железо (нитевидный кристалл)                                               

   | 1300             | 0,044          |

        | Тянутая проволока из высокоуглеродистой стали                       | 420               | 0,02            |

        | Тянутая проволока из вольфрама                                              | 380               | 0,009          |

        | Стекловолокно                                                                           | 360               | 0,035          |

        | Мягкая сталь                                                                           

  | 60                | 0,003          |

        | Нейлон                                                                                      | 50                |                   |

        ———————————————————————————————————————————————-

        

         Время τ затрачивается на ожидание термофлуктуационного зарождения микротрещин и на их рост до критического размера rc.
Когда к образцу прикладывают напряжение σ, он деформируется сначала упруго, затем пластически, причём около структурных неоднородностей, имевшихся в исходном состоянии или возникших при пластической деформации, возникают большие локальные напряжения (в кристаллах в голове заторможенных сдвигов — скоплений дислокаций (См. Дислокации)). В этих местах зарождаются микротрещины. Их концентрация может быть очень большой (например, в некоторых ориентированных полимерах до 1015 трещин в 1 см3). Однако при этом их размеры, определяемые масштабом структурных неоднородностей, значительно меньше rc. Трещины не растут, и тело не разрушается, пока случайно, например благодаря последовательному слиянию близко расположенных соседних микротрещин, одна из них не дорастет до критического размера. Поэтому при создании прочных материалов следует заботиться не столько о том, чтобы трещины не зарождались, сколько о том, чтобы они не росли.

         Случайное распределение структурных неоднородностей по объёму образца, по размерам и по степени прочности и случайный характер термических флуктуаций приводят к разбросу значений долговечности (а также предела П. σ0) при испытаниях одинаковых образцов при заданных значениях σ и Т. Вероятность встретить в образце «слабое» место тем больше, чем больше его объём. Поэтому П. (разрушающее напряжение) малых образцов (например, тонких нитей) выше, чем больших из того же материала (т. н. масштабный эффект). Участки с повышенным напряжением, где легче зарождаются микротрещины, встречаются чаще у поверхности (выступы, царапины). Поэтому полировка поверхности и защитные покрытия повышают П. Напротив, в агрессивных средах П. понижена.

         Меры повышения прочности. При создании высокопрочных материалов стремятся в первую очередь повысить сопротивление пластической деформации. В кристаллических телах это достигается либо за счёт снижения плотности дефектов (П. нитевидных кристаллов, лишённых подвижных дислокаций, достигает теоретической), либо за счёт предельно большой плотности дислокаций в мелкодисперсном материале. Второе требование — большое сопротивление разрушению — сводится к выбору материала с высокой теоретической П. σт = 0,1 Е. Создать материалы с модулем Юнга Е, превышающим максимальные встречающиеся в природе значения, можно искусственно, путем применения высоких давлений; однако в этом направлении делаются лишь первые шаги. Большие значения σт затрудняют зарождение микротрещин. Чтобы предотвратить их рост, материал должен быть достаточно пластичным. Тогда у вершины трещины необходимые для её роста высокие напряжения рассасываются за счёт пластической деформации. Сочетание высокой П. и пластичности достигается в сплавах термомеханической обработкой, в композитах — подбором материала волокон и матрицы, объёмной доли и размера волокон. Трещина, возникшая в прочной (обычно хрупкой) фазе сплава или в волокне композита, останавливается у границы с пластичной матрицей. Поэтому важной характеристикой высокопрочных материалов является сопротивление распространению трещины, или вязкость разрушения. При механическом измельчении материалов требуется пониженная П. Она достигается воздействием поверхностно-активных сред (органические вещества, вода).

         Лит.: Разрушение, пер. с англ., под ред. А. Ю. Ишлинского, т. 1, М., 1973; Работнов Ю. Н., Сопротивление материалов, М., 1962; Гуль В. Е., Структура и прочность полимеров, 2 изд., М., 1971; Механические свойства новых материалов, пер. с англ., под ред. Г. И. Баренблатта, М., 1966; Инденбом В. Л., Орлов А. Н., Проблема разрушения в физике прочности, «Проблемы прочности», 1970, № 12, с. 3; Регель В. Р., Слуцкер А. И., Томашевский Э. Е., Кинетическая природа прочности твердых тел, М., 1974.

         А. Н. Орлов.

        

        Рис. 1. Зависимость силы взаимодействия двух атомов от расстояния между ними.

        

        Рис. 2. Трещина Гриффита. Стрелки указывают направление растяжения; заштрихована область, в которой сняты напряжения.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

разрушающий метод и неразрушающие методы контроля

Прочность – это способность материала, деталей машин, элементов строительных конструкций и т. д., сопротивляться внутренним напряжениям, возникающим под действием внешней нагрузки. В данной статье обязательно еще поговорим о внутренних напряжениях, как они определяются и какими должны быть, чтобы прочность материала, была обеспечена. В рамках данной статьи, я расскажу более подробно о том, что такое прочность, какие существуют виды и способы расчета на прочность при простейших видах деформации: растяжении и сжатии, кручении и изгибе. Расскажу о понятии – «коэффициент запаса прочности». Дам информацию по теориям прочности и современным способам расчета деталей и конструкций на прочность с помощью ЭВМ, в частности, программных продуктов для решения инженерных задач CAE.

Что такое прочность?

Ответ на этот вопрос неоднозначен и нужно рассмотреть несколько аспектов, чтобы понять ее природу.  Прежде всего, это свойство твердого тела, характеризующее его способность противодействовать разрушению, под действием внутренних напряжений, возникающих от действия внешней нагрузки.

Природа прочности в физическом понимании, основана на силе микро взаимодействия между атомами и ионами, из которых состоит любой элемент и обусловлена не столько самим материалом, сколько типом напряжения, воздействующего на него (растяжение, изгиб, сжатие или кручение), а также условиями эксплуатации (температура, влажность).

При проведении испытаний на статические нагрузки, прочность измеряется тестированием шаблонных образцов (прямоугольной или круглой формы) с построением диаграммы, которая показывает зависимость напряжения и деформации образца. При построении такого графика определяются важные прочностные характеристики материала: предел текучести, предел упругости и предел прочности (временное сопротивление).

Специальные расчеты, такие, как выявление предельных напряжений под влиянием постоянных нагрузок, и расчет усталостной нагрузки под воздействием циклических нагрузок, показывают насколько прочен определенный материал.

Существует понятие общей прочности, которое означает устойчивость к разрушению всей системы связей, в целом. Ее нарушение приводит к поражениям различного рода, характер их может иметь хрупкую или вязкую природу. При хрупкости, любая поверхность теряет свою целостность, появляются надломы, трещины. При вязких состояниях поверхность натягивается, имеет вяжущую структуру. Наиболее прочные структуры имеют минимальные показатели пластичности и вязкости, хотя на эти свойства может оказывать серьезное влияние температурный режим, например, при более низких температурах некоторые сплавы металлов становятся более прочными.

Методы определения прочности материалов

На практике применяют два метода определения прочности изделий, с их помощью осуществляется контроль качества как отдельных элементов, так и уже готовых конструкций.

Разрушающий метод

Разрушающий метод — обнаружение предельно допустимых базовых способностей объекта, с применением испытаний на контрольных образцах, до абсолютного разрушения последних. Проводится данное тестирование путем выделения ряда образцов, произведенных по аналогичной технологии и из тех же составляющих компонентов, отбор производится как из готового сооружения или изделия, так и специально изготавливается для тестирования.

Такой метод обладает наибольшей достоверностью и результаты, полученные при его выполнении максимально, подлинно отражают физические свойства материала, но на практике такой анализ требует дополнительных затрат и не всегда имеется возможность его провести.

Неразрушающие методы контроля

Второй способ — это неразрушающие испытания, которые позволяют сохранить рабочие характеристики объектов в неизменном виде, без каких-либо конструктивных изменений, что удобно при инспекции готовых конструкций.

Неразрушающие методики основаны на определении параметров, но только косвенным образом, и проводятся несколькими способами:

Капиллярный

Производится капиллярное проникновение жидкостей или газов в полости исследуемых элементов, затем регистрируются индикаторные следы либо при помощи преобразователя, либо визуально. Таким образом, обнаруживаются поверхностные и сквозные дефекты, однако, это требует больших временных затрат, особенно при тщательных осмотрах поверхности с применением инструментов увеличения (дефектоскопа).

Механические свойства

Механические свойства характеризуют поведение материалов под действием нагрузки. В рамках данной статьи рассмотрим 5 основных механических свойств материалов: прочность, упругость, пластичность, хрупкость и твердость.

Что такое Прочность?

Прочностью называется способность разнообразных материалов без разрушения воспринимать напряжение под внешним воздействием различных сил. Прочность зависит не только от того, какой материал, но и имеет зависимость от типа состояния напряжения — например, это может быть сжатие, растяжение или изгиб. Также непосредственное влияние на прочность оказывают условия, при которых материал эксплуатируется — воздействия извне, температура окружающей среды.

Испытания на прочность

Существует понятие предела прочности, который является основной количественной характеристикой прочности и численно равен разрушающему напряжению для конкретного материала. Предел прочности для каждого материала определяется средним результатом серии испытаний, так как основные материалы, используемые в строительстве, характеризуются неоднородностью.

Если происходит статическая нагрузка для выявления прочности проводится испытание образцов определенного стандарта (как правило речь идет об образцах, имеющих сечение круглой формы, реже прямоугольной), диаграмма таким образом отражает зависимость относительного удлинения от величины действующего на образец напряжения.
Прочность материала различных конструкций обосновывается при сравнении тех напряжений, которые возникают в конструкции при внешнем воздействии, также с учетом таких показателей как пределы прочности и текучести.
О так называемой усталости материала (в частности, металла) говорят если при большом числе циклически повторяющихся внешних напряжений разрушение происходит даже при напряжениях меньших чем предел прочности. В этом случае рассчитывается циклическая прочность, т.е. обоснование прочности материала, проводящееся с учетом нагрузки, которая меняется с определенным циклом.

Упругость

Если материал самопроизвольно восстанавливает форму, после того как внешняя сила прекращает действовать, то такое механическое свойство называется упругостью материала. Если после снятия внешней нагрузки, деформация полностью исчезает, то следует говорить об обратимой упругой деформации.

От чего зависит упругость?

Упругость материала непосредственно связана с силами взаимодействия, происходящими между отдельными атомами. В твёрдых телах при температуре равной абсолютному нулю и при отсутствии какого-либо внешнего воздействия атомы занимают положения, называемые равновесными. Потенциальная энергия тела увеличивается при воздействии внешнего напряжения, и атомы смещаются из равновесного положения. Соответственно, когда прекращается внешнее напряжение, конфигурация неравновесных атомов деформированного материала постепенно становится неустойчивой и возвращается в равновесное состояние. Помимо силы притяжения и отталкивания, которые действуют на каждый атом материала со стороны остальных, существуют и угловые силы, они непосредственно связаны с валентными углами, наблюдающимися между прямыми, которые соединяют атомы между собой. Естественно, это характерно исключительно для макроскопических тел и молекул, содержащих много атомов. Угловые силы уравновешиваются при равновесных значениях валентных углов. Когда говорят о количественной характеристике упругости материала, то используется модуль упругости, зависящий от напряжения воздействующего на материал и определяется производной зависимости напряжения от деформации, что применимо для области упругой деформации.

Пластичность

Пластичностью называется механическое свойство материалов под влиянием внешней нагрузки изменять форму и размер, а после того как нагрузка перестает действовать — сохранять ее в измененном виде.
Пластичность является важным свойством, учитывающееся когда происходит выбор материала несущей конструкции, либо же определения технологии (методики) изготовления разнообразных изделий. Для конструкций важно сочетание высокой пластичности материала и большого показателя упругости. Эта комбинация свойств предотвращает внезапное разрушение материала. В целом пластичность в физике материалов противопоставляется как упругости, так и хрупкости — пластичный материал сохраняет форму, которую придают ему внешние воздействия.

Пластичность — важное механическое свойство

Изучение пластичности важно при прогнозировании долговечности и прочности какой-либо конструкции, так как пластичность зачастую предшествует разрушению и важно рассмотреть деформационные процессы, возникающие в материале. Измерение пластичности, являющейся важным свойством металлов, очень важно при обработке под давлением — ковке и прокатке. Это свойство металлов непосредственно зависит от тех условий, в которых происходит деформирование — температуры, давления и т.д. Пластичность металлов влияет на такие характеристики как удлинение (абсолютное и относительное) и сужение материала. При удлинении происходит увеличение длины образца под воздействием происходящего растяжения, а при сужении, соответственно, от растяжения образца происходит уменьшение площади поперечного сечения.

Хрупкость

Хрупкость относится к механическим свойствам материалов противоположным пластичности. Те процессы, которые повышают пластичность, соответственно, снижают хрупкость, и наоборот. Материалы, отличающиеся хрупкостью при статическом испытании разрушаются без пластической деформации. Это характерно, например, для стекла. Если при статическом испытании материал характеризуется пластичностью, но при динамическом испытании разрушается, то речь идет о так называемой ударной хрупкости. Причиной ударной хрупкости могут быть пределы текучести (то есть зависимость скорости деформации и сопротивления) и пределы прочности (изменение сопротивления разрушению). Хрупкое разрушение материала происходит если сопротивление деформации равно или больше сопротивления отрыву. Соответственно, пластичность материала уменьшается, если рост сопротивления деформации происходит быстрее роста сопротивления разрушению.

Фактором, от которого непосредственно зависит хрупкое состояние материала является однородность напряженного состояния. Материал переходит от пластичности к хрупкости при неоднородном напряженном состоянии. Расчет сопротивления хрупкому разрушению является важным обоснованием прочности конструкци

Твердость, вязкость, усталость и другие свойства сталей

Сталь имеет уникальные механические свойства. В ней сочетаются вязкость с прочностью и гибкостью. Сталь может «уставать» — даже не специалисту известно такое явление, как «усталость металла». Чтобы установить технические характеристики стали, ее подвергают тестам и испытаниям. Механические свойства стали можно оценить, имея показатели предела прочности, удлинения и предела текучести.

Прочность материала

У стали есть одно важное свойство — прочность. Чтобы установить прочность материала, производятся испытания. Стержень из стали выбранной марки растягивают, а потом проверяют, как изменился образец после прикладываемых усилий. По итогам испытаний составляют график, где указывают приложенное усилие (напряжение) и уровень деформации.

У металла есть такой важный параметр, как предел текучести. Обнаружить предел текучести образца можно в результате тестирования. Если к заготовке были приложены незначительные нагрузки, то ее форма будет восстановлена. Когда напряжение, прикладываемое к заготовке, перейдет за предел текучести, образец получит необратимые изменения.

Цель испытаний — определить максимальное напряжение, которое может выдержать образец. Поэтому тесты продолжаются до тех пор, пока образец не разорвется. При этом испытатели узнают, какова у стали прочность на растяжение.

Твердость изделия

Сталь обладает твердостью, которую измеряют с помощью индентора. Индентор — это материал, который внедряют в сталь до тех пор, пока не останется отпечаток. Разумеется, он должен быть прочнее и тверже стали. Лучший материал для такого инструмента — алмаз. Твердость измеряют по шкале Роквелла, также можно определить твердость заготовки по Бриннелю и Викерсу. Измеряя твердость по Роквеллу, устанавливают глубину следа от индентора на заготовке. Между твердостью и прочностью есть соотношение в закаленных сталях при правильном отпуске.

Пластичность металла

Сталь отличается пластичностью, это свойство нельзя недооценивать. Благодаря пластичности из стали можно создавать любые заготовки и изделия. Не все стали являются пластичными. Если материал не пластичен, то он хрупок, а хрупкие стали уязвимы. Изделия из таких материалов могут разрушиться в результате механических воздействий. Если пластичная сталь при механическом воздействии сгибается, то хрупкая — ломается.

Проверить пластичность (или хрупкость) можно путем уже описанного выше теста на растяжение. Пластичная заготовка после достижения предела текучести начнет хорошо растягиваться. Хрупкий образец просто сломается. Аналогичным образом можно испытать материал на сужение, прикладывая усилие в обратном направлении.

Вязкость стали

Вязкость — еще одно важное свойство стали, которое связано с пластичностью и хрупкостью. Вязкость можно наглядно продемонстрировать на примере ферритных сталей. У этих сталей есть один интересный недостаток: при низких температурах они теряют вязкость и пластичность, а при высоких становятся пластичными и обретают вязкость. В результате при низких температурах ферритные стали разрушаются, как хрупкие.

Усталость металлов

Усталость металлов — свойство, которым описывают разрушение сталей под влиянием циклических нагрузок. Усталостное разрушение происходит следующим образом. Для примера можно взять деталь, которая подвергается растягивающим нагрузкам в одной части и сжимающим — в другой. Происходит циклическое напряжение, однако оно ниже предела текучести. Деталь будет работать долго, пока на ее поверхности не появится точка концентрации напряжений. Это может быть незначительная царапина или задир.

После появления задира напряжение в точке концентрации будет превышать предел текучести. Это приведет к появлению трещин и более серьезных дефектов. В результате деталь разрушится. Аналогичные нагрузки испытывают валы, пружины, колесные оси. Они подвержены циклическим нагрузкам.

Усталость металла свойственна и тем деталям, которые постоянно испытывают вибрирующие нагрузки. Например, это происходит с деталями на крыльях самолетов. Предотвратить разрушение практически невозможно, единственный способ — регулярная проверка и профилактика. Если на детали есть повреждение, то безопаснее ее заменить. Подвергаются усталости стали клапаны в автомобильных двигателях. При малейших повреждениях производится замена комплектующих.

 

05 декабря 2017

Поделиться с друзьями:

что такое в Большой советской энциклопедии

ПРОЧНОСТЬ твёрдых тел, в широком смысле — свойство твёрдых тел сопротивляться разрушению (разделению на части), а также необратимому изменению формы (пластич. деформации) под действием внешних нагрузок. В узком смысле — сопротивление разрушению.

В зависимости от материала, вида напряжённого состояния (растяжение, сжатие, изгиб и др. ) и условий эксплуатации (темп-pa, время действия нагрузки и др.) в технике приняты различные меры П. (предел текучести, временное сопротивление, предел усталости и др.).

Разрушение твёрдого тела — сложный процесс, зависящий от перечисленных и мн. др. факторов, поэтому технич. меры П.- условные величины и не могут считаться исчерпывающими характеристиками.

Физическая природа прочности. П. твёрдых тел обусловлена в конечном счёте силами взаимодействия между атомами и ионами, составляющими тело. Эти силы зависят гл. обр. от взаимного расположения атомов. Напр., сила взаимодействия двух соседних атомов (если пренебречь влиянием окружающих атомов) зависит лишь от расстояний между ними (рис. 1). При равновесном расстоянии rо~10 нм (1 А) эта сила равна нулю. При меньших расстояниях сила положительна и атомы отталкиваются, при больших — притягиваются. На критич. расстоянии rк сила притяжения по абс. величине максимальна и равна Fт. Напр., если при растяжении цилиндрич. стержня с поперечным сечением So действующая сила Р, направленная вдоль его оси, такова, что приходящаяся на данную пару атомов внешняя сила превосходит макс. силу притяжения FT, то последние беспрепятственно удаляются друг от друга. Однако, чтобы тело разрушилось вдоль нек-рой поверхности, необходимо, чтобы все пары атомов, расположенные по обе стороны от рассматриваемой поверхности, испытывали силу, превосходящую FT. Напряжение, отвечающее силе Fт, наз. теоретич. прочностью на разрыв отт ~ 0,1 E, где Е- модуль Юнга). Но на опыте наблюдается разрушение при нагрузке Р*, к-рой соответствует напряжение o=P*/S, в 100-1000 раз меньшее oт. Расхождение теоретич. П. с действительной объясняется неоднородностями структуры тела (границы зёрен в поликристаллич. материале, посторонние включения и др.), из-за к-рых нагрузка Р распределяется неравномерно по сечению тела.

Рис. 1. Зависимость силы взаимодействия двух атомов от расстояния между ними.

Механизм разрушения. Зарождению микротрещин при напряжении ниже от способствуют термич. флуктуации. Если на участке поверхности S малых размеров (по значительно превышающем сечение одного атома) локальное напряжение окажется больше от, вдоль этой площадки произойдёт разрыв.

Рис. 2. Трещина Гриффита. Стрелки указывают направление растяжения; заштрихована область, в к-рой сняты напряжения.

Края разрыва разойдутся на расстояние, большее rк, на к-ром межатомные силы уже малы, и образуется трещина (рис. 2). Локальные напряжения особенно велики у края образовавшейся трещины, где происходит концентрация напряжений,

причём они тем больше, чем больше её размер. Если этот размер больше нек-рого критич. rc, на атомы у края трещины действует напряжение, превосходящее от, и трещина растёт дальше по всему сечению тела с большой скоростью — наступает разрушение. rc определяется из условия, что освободившаяся при росте трещины упругая энергия материала покрывает затраты энергии на образование новой поверхности трещины: rс ~ Еy/o2(где у — энергия единицы поверхности материала). Прежде чем возрастающее внешнее усилие достигнет необходимой для разрушения величины, отдельные группы атомов, особенно входящие в состав дефектов в кристаллах, обычно испытывают перестройки, при к-рых локальные напряжения уменьшаются («релаксируют»). В результате происходит необратимое изменение формы тела — пластич. деформация; ей также способствуют термич. флуктуации. Разрушению всегда предшествует большая или меньшая пластич. деформация. Поэтому при оценке rcв энергию у должна быть включена работа пластич. деформации уp, к-рая обычно на неск. порядков больше истинной поверхностной энергии у. Если пластич. деформация велика не только вблизи поверхности разрушения, но и в объёме тела, то разрушение вязкое. Разрушение без заметных следов пластич. деформации наз. хрупки м. Характер разрушения проявляется в структуре поверхности излома, изучаемой фрактографией. В кристаллич. телах хрупкому разрушению отвечает скол по кристаллографич. плоскостям спайности, вязкому — слияние микропустот (на фрактограммах выявляются в виде чашечек) и скольжение. При низкой темп-ре разрушение преим. хрупкое, при высокой — вязкое. Темп-ра перехода от вязкого к хрупкому разрушению наз. критич. темп-рой хладноломкости.

Поскольку разрушение есть процесс зарождения и роста трещин, оно характеризуется скоростью или временем t от момента приложения нагрузки до момента разрыва, т. е. долговечностью материала. Исследования многих кристаллич. и аморфных тел показали, что в широком интервале темп-р Т (по абс. шкале) и напряжений o, приложенных к образцу, долговечность t при растяжении определяется соотношением

где to — приблизительно равно периоду тепловых колебаний атомов в твёрдом теле (10-12сек), энергия Uoблизка к энергии сублимации материала, активац. объём V составляет обычно несколько тысяч атомных объёмов и зависит от структуры материала, сформировавшейся в процессе предварительной термич. и механич. обработки и во время нагружения, k = l,38 .10-16эрг/град — постоянная Больцмана. При низких темп-рах долговечность очень резко падает с ростом напряжения, так что при любых важных для практики значениях т существует почти постоянное предельное значение напряжения oо, выше к-рого образец разрушается практически мгновенно, а ниже — живёт неограниченно долго. Это значение 0о можно считать пределом прочности (см. табл.).

Время t затрачивается на ожидание термофлуктуационного зарождения микротрещин и на их рост до критич. размера rc. Когда к образцу прикладывают напряжение o, он деформируется сначала упруго, затем пластически, причём около структурных неоднородностей, имевшихся в исходном состоянии или возникших при пластич. деформации, возникают большие локальные напряжения (в кристаллах в голове заторможенных сдвигов — скоплений дислокаций), В этих местах зарождаются микротрещины. Их концентрация может быть очень большой (напр., в нек-рых ориентированных полимерах до 1015 трещин в 1 cм3). Однако при этом их размеры, определяемые масштабом структурных неоднородностей, значительно меньше rc. Трещины не растут, и тело не разрушается, пока случайно, напр. благодаря последовательному слиянию близко расположенных соседних микротрещин, одна из них не дорастёт до критич. размера. Поэтому при создании прочных материалов следует заботиться не столько о том, чтобы трещины не зарождались, сколько о том, чтобы они не росли.

Некоторые значения прочности на растяжение, oо в кгс/мм2 (1 кгс/мм2 = 10 Мн/м2)

Материалы

oо

oo

Графит (нитевидный кристалл)

2400

0,024

Сапфир (нитевидный кристалл)

1500

0,028

Железо (нитевидный кристалл)

1300

0,044

Тянутая проволока из высокоуглеродистой стали

420

0,02

Тянутая проволока из вольфрама

380

0,009

Стекловолокно

360

0,035

Мягкая сталь

60

0,003

Нейлон

50

Случайное распределение структурных неоднородностей по объёму образца, по размерам и по степени прочности и случайный характер термич. флуктуации приводят к разбросу значений долговечности (а также предела П. оо) при испытаниях одинаковых образцов при заданных значениях а и Г. Вероятность встретить в образце «слабое» место тем больше, чем больше его объём. Поэтому П. (разрушающее напряжение) малых образцов (напр., тонких нитей) выше, чем больших из того же материала (т. н. масштабный эффект). Участки с повышенным напряжением, где легче зарождаются микротрещины, встречаются чаще у поверхности (выступы, царапины). Поэтому полировка поверхности и защитные покрытия повышают П. Напротив, в агрессивных средах П. понижена.

Меры повышения прочности. При создании высокопрочных материалов стремятся в первую очередь повысить сопротивление пластич. деформации. В кристаллич. телах это достигается либо за счёт снижения плотности дефектов (П. нитевидных кристаллов, лишённых подвижных дислокаций, достигает теоретической), либо за счёт предельно большой плотности дислокаций в мелкодисперсном материале. Второе требование — большое сопротивление разрушению — сводится к выбору материала с высокой теоретич. П. от = 0,1 Е. Создать материалы с модулем Юнга Е, превышающим максимальные встречающиеся в природе значения,

можно искусственно, путем применения высоких давлений; однако в этом направлении делаются лишь первые шаги. Большие значения от затрудняют зарождение микротрещин. Чтобы предотвратить их рост, материал должен быть достаточно пластичным. Тогда у вершины трещины необходимые для её роста высокие напряжения рассасываются за счёг пластич. деформации. Сочетание высокой П. и пластичности достигается в сплавах термомеханич. обработкой, в композитах — подбором материала волокон и матрицы, объёмной доли и размера волокон. Трещина, возникшая в прочной (обычно хрупкой) фазе сплава или в волокне композита, останавливается у границы с пластичной матрицей. Поэтому важной характеристикой высокопрочных материалов является сопротивление распространению трещины, или вязкость разрушения. При механич. измельчении материалов требуется пониженная П. Она достигается воздействием поверхностно-активных сред (органические вещества, вода).

Лит.: Разрушение, пер. с англ., под ред. А. Ю. Ишлинского, т. 1, М., 1973; Работнов Ю. Н., Сопротивление материалов, М., 1962; Гуль В. Е., Структура и прочность полимеров, 2 изд., М., 1971; Механические свойства новых материалов, пер. с англ., под ред. Г. И. Баренблатта, М., 1966; Инденбом В. Л., Орлов А. Н., Проблема разрушения в физике прочности, «Проблемы прочности», 1970, № 12, с. 3; Регель В. Р., Слуцкер А. И., ТомашевскийЭ. Е., Кинетическая природа прочности твердых тел, М., 1974. Л. Н. Орлов.


Прочность и жесткость металла: в чем разница?

*

Выберите страну / regionUnited StatesCanadaAfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийский океан TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCape VerdeCayman IslandsCentral африканских RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongoCongo, Демократическая Республика ofCook IslandsCosta RicaCote D’IvoireCroatiaCubaCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEast TimorEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland (Мальвинские) острова Фарерские IslandsFijiFinlandFmr Югославская Республика МакедонияФранцияФранцузская ГвианаФранцузская ПолинезияФранцузские Южные ТерриторииГабонГамбияГрузияГерманияГанаГибралтарГрецияГренландияГренадаГваделупаГуамГватемалаГвинеяГвинея-БисауГайанаГаити Херд и Макдональд IslandsHoly Престол (Ватикан) HondurasHong KongHungaryIcelandIndiaIndonesiaIran (Исламская Республика) IraqIrelandIsraelItalyJamaicaJapanJordanKazakstanKenyaKiribatiKorea, Корейские Народно-Демократической RepKorea, Республика ofKuwaitKyrgyzstanLao Народный Демократической RepLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacauMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesia, Федеративные StatesMoldova, Республика ofMonacoMongoliaMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorthern Mariana IslandsNorwayOmanPakistanPalauPanamaPapua Нового GuineaParaguayPeruPhilippinesPitcairnPolandPortugalPuerto RicoQatarReunionRomaniaRussian FederationRwandaSaint HelenaSaint Киттс и НевисСент-ЛюсияСент-Пьер и МикелонСамоаСан-МариноСао-Томе и ПринсипиСаудовская АравияСенегалСейшельские островаСьерра-ЛеонеСингапурСловакия iaSloveniaSolomon IslandsSomaliaSouth AfricaSpainSri LankaSth Georgia & Sth Sandwich Институт социальных Винсент и GrenadinesSudanSurinameSvalbard и Ян MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwan, провинция ChinaTajikistanTanzania, Объединенная Республика ofThailandTogoTokelauTongaTrinidad и TobagoTunisiaTurkeyTurkmenistanTurks и Кайкос IslandsTuvaluUgandaUkraineUnited арабских EmiratesUnited KingdomUruguayUS Minor Отдаленные IslandsUzbekistanVanuatuVenezuelaVietnamVirgin острова (Британские) Виргинские острова (U.S.) Острова Уоллис и ФутунаЗападная СахараЙеменЮгославияЗамбияЗимбабве

металл | Определение, характеристики, типы и факты

Металл , любой из класса веществ, характеризующихся высокой электрической и теплопроводностью, а также пластичностью, пластичностью и высокой отражательной способностью света.

слиток золота

слиток металлического золота.

© Jupiterimages Corporation

Британская викторина

Металлы: факт или вымысел?

Железо — самый распространенный металл в земной коре? Калий — твердый металл? Откройте эту сокровищницу викторины, наполненной серебром, платиной и другими металлами.

Примерно три четверти всех известных химических элементов — металлы. Наиболее распространенные разновидности в земной коре — это алюминий, железо, кальций, натрий, калий и магний. Подавляющее большинство металлов находится в рудах (минеральных веществах), но некоторые из них, такие как медь, золото, платина и серебро, часто встречаются в свободном состоянии, потому что они не вступают в реакцию с другими элементами.

Металлы обычно представляют собой твердые кристаллические вещества. В большинстве случаев они имеют относительно простую кристаллическую структуру, отличающуюся плотной упаковкой атомов и высокой степенью симметрии.Обычно атомы металлов содержат менее половины полного набора электронов в своей внешней оболочке. Из-за этой характеристики металлы не склонны образовывать соединения друг с другом. Однако они легче соединяются с неметаллами (например, кислородом и серой), которые обычно имеют более половины максимального количества валентных электронов. Металлы широко различаются по своей химической активности. Наиболее реакционноспособными являются литий, калий и радий, тогда как низкоактивными являются золото, серебро, палладий и платина.

Высокую электрическую и теплопроводность простых металлов (т.е. непереходных металлов периодической таблицы) лучше всего объяснить с помощью теории свободных электронов. Согласно этой концепции, отдельные атомы в таких металлах потеряли свои валентные электроны в твердом теле, и эти свободные электроны, которые вызывают проводимость, перемещаются как группа по всему твердому телу. В случае более сложных металлов (то есть переходных элементов) проводимость лучше объясняется зонной теорией, которая учитывает не только наличие свободных электронов, но и их взаимодействие с так называемыми электронами d .

Получите эксклюзивный доступ к контенту нашего 1768 First Edition с подпиской. Подпишитесь сегодня

Механические свойства металлов, такие как твердость, способность противостоять повторяющимся нагрузкам (усталостная прочность), пластичность и пластичность, часто приписывают дефектам или несовершенствам их кристаллической структуры. Например, отсутствие слоя атомов в его плотно упакованной структуре позволяет металлу пластически деформироваться и предотвращает его хрупкость.

Список сильных и слабых сторон

Этот список сильных и слабых сторон поможет вам распознать те, которые подходят вам.Знайте, как наилучшим образом представить этих сильных и слабых сторон сотрудников, отвечая на вопросы собеседования.

Определите свои главные передаваемые компетенции из вашей предыдущей работы и жизненного опыта и дайте правильный ответ на часто задаваемый вопрос собеседования «Каковы ваши сильные стороны?»

Над какими навыками и поведением вам нужно работать и улучшать?

У всех их изрядное количество! Работодатели хотят знать, как вы справиться со слабостью, и признание слабости является первым важным шаг к правильному управлению.

Список сильных и слабых сторон
17 хороших примеров сильных сторон

Этот полный список сильных и слабых сторон и того, как они проявляются на рабочем месте, поможет вам определить свои собственные сильные и слабые стороны.

Прочность

Как это работает на работе


Связь

  • навыки письменного общения, проявляющиеся в отчетах, переписке.
  • Навыки вербального общения проявляются в презентациях, управлении конфликтами, продажах, работе с клиентами, активном слушании, участии во встречах и переговорах.

Сильная трудовая этика / усердие

  • Трудолюбив, работает сверхурочно, выполняет проекты раньше срока.
  • Берет на себя больше, чем другие, делает больше, чем требуется, поддерживает высокое качество работы.
  • Устанавливает собственные стандарты качества, работает без присмотра, следит самостоятельно.

Организационные навыки и навыки планирования

  • Четкое управление временем, расстановка приоритетов, эффективное использование ресурсов, соблюдение сроков, многозадачность, работа с конкурирующими требованиями.
  • Достижение целей и задач, постановка задач.
  • Ведение расписаний и календарей, координация ресурсов для выполнения проектов.

Гибкость и адаптируемость

  • Способен изменять деятельность и приоритеты в соответствии с новыми требованиями.
  • Готовность изучать новые навыки и знания, готовность решать новые задачи, прилагает позитивные усилия, чтобы принять изменения.
  • Умеет работать и эффективно общаться с разными людьми, желает работать в разных средах.

Принятие решений и суждение

  • Соберите необходимую информацию, чтобы принять правильное решение, придумайте жизнеспособные альтернативы.
  • Обдумайте плюсы и минусы каждого, полностью сделайте все возможное, чтобы выполнить решение.

Решение проблем

  • Умеет выявлять и определять проблемы, анализировать проблемы, находить причины, находить возможные решения, рассматривать возможные результаты каждого решения.
  • Определитесь с лучшим решением и внедрите его.

Сбор, анализ и управление информацией

  • Эффективно собирайте необходимую информацию из разных источников, объединяйте информацию и объединяйте ее в логический формат.
  • Обработка информации, выявление тенденций и закономерностей, правильное распределение и передача информации.
  • Эффективное хранение и обслуживание информации.

Коучинг и наставничество

  • Готовность и способность обучать других, способствовать обучению, делиться знаниями, помогать людям определять и достигать того, на что они способны.
  • Оценить потребности в обучении и обучении, разработать соответствующие учебные мероприятия, адаптировать стиль преподавания / коучинга к потребностям сотрудников.

Работа в команде

  • Эффективно работайте в команде, содействуйте достижению целей команды, эффективно общайтесь с членами команды, уважайте, слушайте и поощряйте членов команды, вносите свой вклад.
  • Ставьте успех команды выше индивидуального успеха.

Надежность и надежность

  • Стабильное выполнение работ, выполнение проектов точно и в срок.
  • Прибытие в срок, выполнение обязательств, исполнение взятых на себя обязательств.
  • Проверяет свою работу, корректирует свою работу, соблюдает правила и процедуры на рабочем месте, несет ответственность за свои действия.

Самостоятельность и самоуправление

  • Полностью использует собственные ресурсы, навыки и способности, отвечает за свою деятельность, прогресс и успех, управляет собой для достижения целей.
  • Самостоятельно выполняет проекты и деятельность, получает помощь и поддержку от себя.
  • Имеет внутреннюю мотивацию и не ищет внешнего вознаграждения за хорошую работу.

Самодисциплина

  • Контролирует собственное поведение, целеустремлен, готов много работать для достижения целей, ставит собственные цели.
  • Избегают отвлечения, упорствуют с трудными задачами и деятельностью, не медлить, по-прежнему с проектами в условиях препятствий и проблем.

Устойчивый и отказоустойчивый

  • Справляться с разочарованием, эффективно справляться с отказом, сохранять энтузиазм после неудачи, поддерживать производительность труда, несмотря на трудности.
  • Принимайте критику, быстро приходите в норму, преодолевайте препятствия, чтобы достичь, продолжайте попытки, пока задача не будет завершена.

Убедительный

  • Очевидно в продажах, управлении клиентами, переговорах, разрешении возражений, получении согласия / обязательств от коллег / руководства, представлении идей.
  • Мотивация людей, завоевание доверия других.

Целостность

  • Соблюдайте конфиденциальность, предоставляйте полную и точную информацию.
  • Соблюдайте политику и процедуры компании, соблюдайте правила, соблюдайте ценности и этику перед лицом сопротивления и давления.

Энергетик

  • Работает много часов, поддерживает быстрый темп работы, решает сложные задачи, сохраняет позитивный настрой.
  • Берется за дополнительные задачи, поддерживает высокий уровень продуктивности, настойчив в достижении целей.

Инициатива

  • Проактивные попытки разобраться в проблемах и проблемах, предложить идеи по улучшению, в полной мере использовать возможности.
  • Определите потребности и предложите решения, примите меры, чтобы улучшить вашу работу и компанию.

Как вы ответите — В чем ваша самая большая сила? »

  • Определите сильные стороны, которые будут способствовать успешной работе производительность
  • Используя список сильных и слабых сторон, опишите вашу сила
  • Поддержите свой ответ примерами того, как эта сила очевидны в вашей работе

Примеры ответов на собеседование

Определите свои сильные стороны с помощью средства поиска сильных сторон в What ваши сильные стороны?

Каковы ваши слабые стороны?

Этот полный список слабых мест на рабочем месте позволяет легко определить наши собственные слабые места и перечисляет шаги, которые необходимо предпринять, чтобы исправить свои недостатки.

Как успешно ответить на вопрос о слабых сторонах собеседования — отличные примеры в вопросах на собеседовании Слабые стороны

Лучшие образцы ответов на собеседовании на вопрос «Каковы ваши сильные и слабые стороны?»

Какой пример слабости относится к вам?

Найдите пример слабых мест, который лучше всего относится к вам, и используйте образцы ответов на собеседовании на вопрос «Какая ваша самая большая слабость?»

Не пропустите эти страницы

Готовы ли вы к этим вопросам собеседования?

Мы предоставляем отличные образцы ответов на эти вопросы интервью.

Добавить комментарий

Ваш адрес email не будет опубликован.