Углеродистая и легированная сталь: классификация по химии
23 апреля 2021, 09:17Химический состав сталей:
- Углеродистая (нелегированная)
- Легированная
Углеродистая сталь
Углеродистая сталь — сплав железа с углеродом. Содержание углерода варьируется от 0,02 до 2,14%, дополнительные примеси: марганец Mn до 0,9%, кремний Si до 0,5%, сера S до 0,06%, фосфора P до 0,07%. Главной составляющей, определяющей свойства стали, является углерод.
Основа такого сплава — высокое содержание углерода. В зависимости от его процентного соотношения, сталь разделяют на виды:
- низкоуглеродистую = углерода до 0,25%
- среднеуглеродистую = углерода от 0,25 до 0,6%
- высокоуглеродистую = углерода от 0,6% до 2,0%
Зачем потребовалась дополнительное разделение по степени содержания углерода? Такой выбор обусловлен последующей технологической обработкой. Взаимодействие углерода с железом в составе стали определяет эксплуатационные и технологические свойства. Однако, если в сплаве содержание углерода меньше 0,05%, то такой сплав относят к технически чистому железу. Максимальное значение углерода теоретически может достигать 2%, а практически — редко встречается больше 1%.
Дополнительные элементы сплава называют легирующими добавками.Легированная сталь
Легированная сталь — углеродистый сплав, в состав которого введены дополнительные элементы и специальные добавки для придания определенных механических, физических, химических свойств.
Стоит отметить, что в основу состава легированной стали входят все элементы углеродистой стали с добавлением специальных добавок, таких как: азот, хром, ванадий, вольфрам, никель, кобальт и др. Выделяют соотношение влияния легирующих элементов на углерод и разделяют их на две группы: образующие с углеродом химические соединения – карбиды (хром, марганец, титан, ванадий, вольфрам, молибден и др.) и не образующие карбидов (никель, алюминий, кремний и др.). Легированные карбидообразующие сплавы имеют высокое сопротивление к износу.
В зависимости от легирующих элементов, входящих в легирующие сплавы, сталь подразделяют на виды:
- низколегированную = добавок не более 2,5%
- среднелегированную = добавки от 2,5% до 10%
- высоколегированную = добавок более 10%
Если суммарное количество легирующих элементов превысит 50%, то такой сплав нельзя отнести к сплаву с основой из железа и его нельзя назвать сталью. Добавки же менее 1%, как правило, не могут серьезно повлиять на состав сплава — такой вид не будет отнесен к легированным сталям. Присутствие некоторых элементов (бор, ниобий) в сотых, тысячных долях процента заметно меняет свойства стали. Такую сталь называют микролегированной. Легирующие добавки повышают прочность, коррозийную стойкость стали, снижают опасность хрупкого разрушения.
— Осколкова Анастасия, контент-менеджер «ОНИКС»
Нержавеющая и углеродистая сталь: кому и для чего нужны оба вида
В этом материале не решается вопрос о том, какая сталь «лучше». Это устаревшая формулировка, которой не один десяток лет, и она некорректна: для каждого случая выбор свой. Поэтому мы просто и непредвзято рассмотрим характеристики обеих сталей и их пригодность для конкретных целей.
Здесь мы будем употреблять единый термин «углеродистая сталь» для средне- и высокоуглеродистых видов. Между собой они отличаются, но при сравнении с так называемой нержавейкой эта разница нам не важна.
Просто и доступно про углеродку и нержавейку
Начнем с разъяснения, что устоявшаяся терминология не очень точно отражает саму суть противостояния: название «углеродистая» говорит о составе стали, а «нержавеющая» – о ее способности противостоять коррозии, то есть понятия, в принципе, не очень сравнимые.
Нож Hiroo Itou, выполненный по технологии «дамаск» из нержавеющего сплава. Не подвержен коррозии, но его режущие свойства не так хороши, как у углеродки
Что имеем по факту?
- Любая сталь содержит какое-то количество углерода. Соответственно, углеродистая – в большей степени, но и в так называемой нержавейке этот элемент тоже присутствует.
- Почти любая сталь ржавеет. Нержавеющая – тоже (при совсем суровых условиях).
Почему названные материалы ржавеют с разной скоростью?
- Железо в составе углеродистой стали быстро окисляется
- В нержавеющей стали есть присадки (хром, молибден), которые делают ее более устойчивой к окислению и, соответственно, коррозии.
Способность или неспособность сопротивляться коррозии (ржавчине) – это главное и принципиальное отличие одной стали от другой. Но есть и другие, не менее важные для выбора.
Нож Santoku Всемогущий из углеродистой стали Shirogami: требует чуть более тщательного ухода, но обладает отличными режущими свойствами
Сравнение углеродной стали с нержавеющей
Способность впитывать запахи
Углеродистая сталь сама по себе имеет приятный запах (особенно чистая и свежезаточенная), но при этом она быстро впитывает посторонние запахи. Если мы строгаем ножом из углеродки дерево, это даже здорово, а вот для нарезки продуктов не очень хорошо: от «аромата» лука или копченой рыбы инструмент придется отмывать довольно долго. С нержавеющей сталью таких проблем нет; сама по себе она также не имеет запаха. Для кухонных ножей это однозначный плюс.
Заточка
При равном количестве углерода клинки из коррозионностойких сталей будут сложнее в заточке за счет повышенной износостойкости. Поэтому и правка клинков из высокоуглеродистой коррозионностойкой стали потребует специального инструмента: мелкозернистого водного камня или керамического доводочного стержня. Клинки из углеродистой стали, напротив, можно править даже обычным поварским мусатом. Достигаемая при этом острота, по мнению практиков, намного превосходит остроту ромок из коррозионностойких аналогов, хотя и несколько уступает им в долговечности и износостойкости. Проще говоря, клинок из углеродки точится легче, правится проще и режет лучше нержавеющего аналога, но уступает ему в стойкости к коррозии и длительности удержания остроты.
Простота в уходе
Обе стали однозначно требуют регулярной чистки, правки, заточки и правильного хранения. Причем если делать это действительно постоянно, то уход в обоих случаях будет простым; но чувствительнее к «невниманию» все-таки углеродистая сталь. Бросьте одновременно уход за высокоуглеродистой и нержавеющей сталями, и первая скорее «отомстит» появлением ржавчины.
Режущие свойства
Тут высокоуглеродистая сталь однозначно выигрывает. За счет более податливой структуры она чувствительнее к заточке, да и режущая кромка из высокоуглеродистой стали может быть куда тоньше, чем из нержавеющей. А это и обусловливает, как говорят, «резучесть».
Эстетическая сторона вопроса
- Нержавеющая сталь не требует дополнительной защиты от коррозии, поэтому часто просто полируется. А вот высокоуглеродистая сталь выглядит в итоге куда разнообразнее, так как к клинкам из нее применяют самые разные способы обработки: назначение у них функциональное, но они же «дарят» стали и индивидуальность. Например, воронение дает клинку элегантный черный цвет, покрытие blackwash – необычный серо-зеленый оттенок и тысячи микроцарапин, порошковые напыления – матовую текстуру. В принципе, то же самое можно сделать и с нержавейкой, но обычно это не практикуется.
- Рано или поздно на углеродке образуется темный равномерный налет, который естественным образом защищает клинок от дальнейшего окисла; нравится нам такая самовольная окраска клинка или нет – вопрос индивидуальный. С нержавеющей сталью ничего подобного не происходит.
По всем перечисленным характеристикам и на форумах, и в литературе есть расхождения (особенно касательно заточки – и трудозатрат на нее, и времени, которое клинок ее держит). Дело в том, что на практике мало кто испытывает чистую сталь того или другого вида: чаще всего клинок обработан каким-либо способом или от коррозии, или от механических повреждений. Это здорово искажает объективную картину.
Важный момент: проблема с коррозией у углеродки решается обработкой клинка, а вот проблема режущих свойств у нержавейки пока никак не решена полностью.
***
Если мы готовы регулярно ухаживать за ножом, то есть держать его в чистоте и сухости, то для многих целей подойдет клинок из углеродистой стали – он подарит нам куда более комфортную работу за счет «резучего» лезвия. Если нам нужен просто надежный кухонный или охотничий нож, которому мы не готовы уделять много времени, стоит выбрать нержавеющую сталь.
Что такое углеродистая сталь
Очень много в интернете самой разной информации по поводу того что такое углеродистая сталь, но мне кажется вопрос раскрыт не полностью и по этой причине я попытаюсь осветить тему простыми словами без употребления различных терминов не понятных обычному пользователю.
Рассмотрим сразу что к чему.
- Железо + железо = Железо
- Железо + углерод = Сталь
Вот теперь вы понимаете разницу и знаете чем отличается железо от стали.
Сталь насыщенная углеродом становится прочней износоустойчивой и приобретает ряд других положительных характеристик.
Железо как известно добывают из руды, а как же добывают углерод?
Углерод может быть разный, но он все же остаётся углеродом. Например алмаз это чистый углерод и графит который добывают это тоже чистый углерод, но как же так вещества разные, а оба углерод?! Все дело в том что они имеют разную кристаллическую решетку как например автомобиль он может быть как грузовым так и легковым, но он все же остаётся автомобилем.
Углерод есть и в человеческом организме и в газах и вообще в самых разнообразных местах на нашей планете, но он все же остаётся углеродом.
Его можно получить и химическим путем, но добыча как оказалось менее затратна и поэтому его просто добывают в виде например угля или графита.
Например из графита можно получить алмаз изменив его кристаллическую решётку как у алмаза, но это уже будет называться искусственный алмаз. Так же можно и наоборот из алмаза получить графит. Контролируют этот процесс с помощью температуры и других технических приёмов.
Как получают углеродистую сталь. Для этого берут например железо и смешивают его с углеродом в итоге получаем углеродистую сталь.
После смешивания у железа появилась прочность и другие полезные характеристики. Чтоб сделать нашу сталь ещё лучше туда начинают понемногу добавлять и другие металлы и это называют легировать то есть сталь становится легированной.
Но не будем далеко отходить от темы и поговорим ещё о углеродистой стали. Стали могут быть не просто углеродистыми, а низко углеродистыми , средне углеродистыми и высоко углеродистыми. От этого будет зависеть то на что эта сталь сгодится.
Сразу скажу что если в стали содержится больше чем 2.14% углерода это уже не углеродистая сталь, а чугун. У чугуна тоже есть свои виды и так далее.
Если сталь содержит определённое количество углерода она может быть конструкционной или инструментальной.
Инструментальная углеродистая сталь применяется как можно понять из названия для изготовления различных инструментов. Изготавливают из этой стали: отвертки, топоры, зубила, сверла, пилы дисковые, фрезы, метчики, плоскогубцы и другие инструменты. (содержит углерода больше чем 0.7%)
Конструкционная углеродистая сталь применяется в самых разных областях. начиная с гвоздей, оси, рессоры и заканчивая разнообразными деталями машин, все зависит от качества углерода в стали и других параметров.
Если вам стало интересно как сталь смешивают с углеродом или правильно сказать вводят его в сталь смотрим видео ниже.
Так же думаю вам будет интересно почитать как выполнить сварку углеродистой стали и Какие свойства придает стали углерод.
И еще даю ссылки ниже, скопировав которые и вставив в новой вкладке в адресную строку вы можете узнать другую полезную информацию касающиеся именно углеродистой стали и не только.
Если у вас остались вопросы прошу не оставляйте этот вопрос открытым и напишите что здесь нужно добавить через форму обратной связи на странице вопросов ответов.
Полезные ссылки:
Тут описано подробно о том как выглядит через микроскоп железо. http://steel-guide.ru/metallografiya-stali/chistoe-zhelezo-mikrostruktura-i-kristallicheskaya-reshetka.html
Госты которые могут помочь в решении ряда задач.
- ГОСТ 380-94 Сталь углеродистая обыкновенного качества. Марки
- ГОСТ 16523-97 Прокат тонколистовой из углеродистой стали качественной и обыкновенного качества общего назначения.
- ГОСТ 1050-88 Прокат сортовой, калиброванный, со специальной отделкой поверхности из углеродистой качественной конструкционной стали.
А теперь можно поговорить как сваривать углеродистые стали.
От обычной стали углеродистая отличается меньшим содержанием примесей и небольшим содержанием марганца, магния и кремния. Углеродистые стали отличаются повышенной прочностью и высокой твердостью. По качеству углеродистая сталь различается на обыкновенную и качественную.
Сталь обыкновенного качества может быть горячекатаной, толстолистовой и холоднокатаной. Конструкционная сталь высокого качества применяется очень широко, потому что из нее изготавливаться прутки и заготовки. Качественная сталь выпускается в таких марках, как 05кп, 08кп, 08пс, 08, 10кп, 10пс, 10, 11кп, 15пс и другие.
Углеродистая сталь может быть разного назначения, например, она может предназначаться статически нагруженного инструмента или для нагрузок, в которых приходится переносить удары.
Для производства инструмента, который подвергается серьезным нагрузкам и выполняет ломовую работу, используется углеродистая сталь. В таком случае используется сталь сорта У7-У9. Материал, изготовленный из такого вида стали, можно спокойно подвергать термической обработке.
Технология сваривания стали предполагает общий или местный или общий подогрев свариваемого изделия и проведение сварочных работ. Термическая обработка деталей позволяет обеспечить отсутствие трещин в сварочном шве, а также исключить диффузию в случае неоднородности сталей.
Нередко сваривание является единственным способом произвести ремонт деталей или кузова автомобиля и любого другого технологического оборудования. Сваривание таких деталей может быть затруднено низкой стойкостью швов к образованию горячих трещин и высокой вероятностью образования холодных трещин, которые разрушают металл шва и всю сваренную деталь.
Углерод, который есть в составе сталей, позволяет уменьшить стойкость швов к образованию горячих трещин, а также усиливает вредное влияние серы и фосфора. Критическое содержание углерода в сварочном шве может зависеть от конструкции узла, а также его формы и содержания в нем элементов и предварительного подогрева.
Существующие способы для повышения стойкости образованию горячих трещин направляются на ограничение содержания в металле шва составляющих, которые послабляют свариваемый металл и понижает его пластические свойства.
Стали, у которых повышено содержание углерода, могут быть менее склонными к образованию структур с малой пластичностью. При воздействии сварочных и структурных напряжений возможно разрушение металла с малой пластичностью. Этому способствует наличие в металле и сварочном шве металла диффузионный водород. Для того чтобы предупредить образование холодных трещин в металле и сварочном шве, применяются способы, которые позволяют устранить факторы, которые способствуют возникновению таких неисправностей.
Легированная сталь: особенности, классификация и характеристики — Метинвест
В век перепроизводства разве что младенец не знает, что существует легированная сталь. Но часто происходит подмена понятий и многие обыватели считают, что единственным достоинством такого материала является его высокая антикоррозионная стойкость. На самом деле, кроме нержавейки, существует колоссальное количество сплавов, содержащих легирующие добавки и имеющих различные механические и эксплуатационные характеристики. Ну а теперь все по порядку.
Легированные стали: определение и классификация
Легированные сплавы имеют сложный состав на основе железа и углерода и содержат различные химические элементы, которые влияют на структурные преобразования металлов на молекулярном уровне. Процентное содержание таких добавок и организация процесса раскисления, легирования и модификации сталей определяют их физико-химические свойства.
Интересный факт. Началом массового производства немагнитных сплавов считается выплавка стали англичанином Робертом Гадфильдом в конце XIX века. Конечно, человечество и раньше знало, что такое легированная сталь, но организовать потоковое производство и оценить все преимущества ее применения люди смогли только в эпоху глобальной индустриализации и, к сожалению, с появлением новых военных технологий. Благодаря высокому сопротивлению износу и ударным нагрузкам сталь Гадфильда вплоть до середины XX века становится наиболее используемым сплавом для производства железнодорожных крестовин, танковых траков, пехотных шлемов и даже тюремных решеток. Она и сейчас применяется при изготовлении зубьев ковшей экскаваторов и других элементов техники, подвергаемых ударным и истирающим нагрузкам во время их эксплуатации.
Отличия от углеродистых сталей
Любая сталь содержит железо и углерод. Причем содержание последнего может составлять 0,02 – 2,14% и напрямую определяет его свойства и марку. Он повышает твердость и прочность, но при увеличении концентрации снижает пластичность. Увеличивает режущую способность, электрическое сопротивление и коэрцитивную силу. Снижает температуру плавления и плотность.
Обыкновенные углеродистые стали, также как и легированные, могут содержать кремний, марганец, медь, серу, хром, фосфор, водород, азот и алюминий, только их количество значительно ниже. При этом Si и Mn вводятся для улучшения прочностных показателей и физико-химических свойств. Другие вещества попадают в расплавленную сталь из шихты или печных газов и соответственно считаются примесями. Некоторые их них (например, сера и фосфор) являются постоянными вредными примесями. При плавке легированных сталей их свойства формируются счет целенаправленного введения модифицирущих элементов.
Легирующие добавки
Наиболее распространенными элементами, использующимися для улучшения физических, химических и механических свойств стали являются: хром, марганец, никель, кремний, вольфрам, молибден, ванадий, титан, медь, кобальт, алюминий, бор, ниобий, цирконий и другие. Но, несмотря на такой обширный список, все же наиболее используемыми являются лишь несколько из вышеперечисленных элементов.
Таблица 1 – Легирущие добавки
Элемент |
Химическое обозначение |
Обозначение в маркировке СНГ |
Типичное содержание, % |
Особенности применения |
Марганец |
Mn |
Г |
0,8 – 13 |
Аустенитобразующее вещество, улучшает прокаливаемость и увеличивает порог жидкотекучести металла. Повышает сопротивление истиранию и ударным нагрузкам. |
Кремний |
Si |
С |
0,5 – 14,0 |
Ферритообразующий компонент. Не влияет на вязкостные свойства, при этом повышает предел прочности и текучести, магнитную проницаемость и электропроводимость. Улучшает пластичность, кислотостойкость и прочностные показатели. |
Алюминий |
Al |
Ю |
0,02 – 0,07 |
Минимизирует процессы старения. Повышает пластичность. Связывает кислород |
Фосфор |
P |
П |
0,05 – 0,35 |
Улучшает антикоррозионные свойства и обрабатываемость. В количестве более 0,03% провоцирует хладноломкость. |
Хром |
Cr |
Х |
0,3 – 30 |
Ферритообразующий компонент. Широко используется как самостоятельный легирующий агент, так и в комплексе с другими веществами. Его введение способствует расширению температурного интервала затвердевания, увеличивает прочность и твердость без изменения показателей пластичности. Содержание 1% улучшает механические свойства. С повышением концентрации хрома до 5% увеличивается теплостойкость, а кислотостойкие и жаропрочные сплавы уже содержат более высокий процент хрома, который может достигать 28%. |
Никель |
Ni |
Н |
0,3 – 25 |
Аустенитообразующий компонент. Улучшает ударную вязкость и термоокислительную стабильность. Повышает прокаливаемость и окалиностойкость. |
Молибден |
Mo |
М |
0,2 – 6,5 |
Значительно повышает показатели твердости, прочности и прокаливаемости. В наибольшей концентрации содержится в жаропрочных и быстрорежущих сталях, а в конструкционных марках его количество обычно не превышает 0,4%. |
Вольфрам |
W |
В |
1,0 – 18,0 |
Карбидообразующая присадка, повышающая пределы прочности и твердости. Вводится в быстрорежущие инструментальные сплавы до 18% и оптимизирует термопрочность и сопротивление ударным нагрузкам. |
Ванадий |
V |
Ф |
0,09 – 2,0 |
Карбидообразующий агент, который увеличивает прочность и повышает вязкость. Ванадийсодержащие сплавы демонстрируют отличную ударную стойкость и инертность к напряжениям, но очень дорого стоят. |
Титан |
Ti |
Т |
0,03 – 0,15 |
Связывая углерод в прочные карбиды, измельчает зерна аустенита и снижает склонность к межкристаллической коррозии. Повышает кислотоустойчивость и, наряду с другими карбидообразующими, способствует самозакалке стали. |
Ниобий |
Nb |
Б |
0,01 – 1,5 |
Сильный карбидообразующий элемент. В нержавеющие сплавы вводится для минимизации межкристаллической коррозии, в марганцовистую – для снижения отпускной хрупкости. |
Медь |
Cu |
Д |
0,03 – 4,0 |
Ее присадка увеличивает предел текучести, пластичность, сопротивляемость коррозионным процессам. В судостроении позволяет эффективно решить проблему обрастания подводной части корпуса водорослями и ракушками. |
Бор |
B |
Р |
0,0008 – 0,005 |
Увеличивает прокаливаемость. Является лучшей альтернативой для замены дорогостоящего молибдена и никеля. |
Кобальт |
Co |
К |
5,0 – 30,0 |
Используется для жаростойких и быстрорежущих марок. Его присадка позволяет режущей плоскости сохранять свои свойства даже при температурах красного каления и защищает конструктивные части теплогенерирующих элементов от окисления при воздействии агрессивных сред и критических температур. |
Редко-земельные металлы (РЗМ) |
Ce, La и др. |
Ч |
0,02 – 0,05 |
Одновременно выступают дегазаторами и десульфураторами. В значительной мере оптимизирующее влияют на обрабатываемость и физико-механические свойства. Улучшают жидкотекучесть, свариваемость и ковкость. |
Сера |
S |
— |
0,03 – 0,3 |
Несмотря на то, что наличие серы активизирует процессы ржавления и охручивания стали, она используется в автоматных марках для облегчения станочной обработки. |
На заметку. Даже в составе технически чистого железа обязательно присутствуют около 20 химических примесей. Но их суммарное количество не превышает 0,25 процента.
Общая классификация легированных сталей
Она основывается на том, в каком количестве добавка введена в состав сплава, и определяет основные группы, исходя из химической структуры, целевого назначения и уникальных свойств. Таким образом, различают следующие категории.
Классификация стальных сплавов по процентному содержанию всех легирующих компонентов:
- не более 2,5 % — низколегированные;
- в интервале от 2,5 до 10,0% – среднелегированные;
- более 10% — высоколегированные.
Классификация легированных сталей по назначению:
- конструкционные. Используются для изготовления металлоконструкций, деталей машин, агрегатов и механизмов;
- инструментальные. Применяются при изготовлении высококачественного мерительного и режущего инструмента и ударо-штамповочной оснастки;
- с особыми свойствами (жаростойкие, нержавеющие и прочие).
В своей профессиональной деятельности металлурги и инженеры часто прибегают к более широкой номенклатуре. Например, профессионалами используется классификация таких сплавов по их микроструктуре в нормализованном состоянии (перлитные, аустенитные, карбидные и мартенситные) или в равновесном состоянии (доэвтектоидные, эвтектоидные, заэвтектоидные).
Характеристика легированных сталей
Фазовые превращения в твердых растворах железа определяются общими законами взаимной растворимости и межатомных взаимодействий всех элементов, включая углерод и легирующие добавки. Поэтому легированная сталь имеет одновременно схожие и уникальные характеристики:
- химические: жаростойкость, кислотостойкость, коррозионная стойкость;
- физические: тепловые, магнитные, электрические;
- специальные: износостойкость, сопротивляемость ползучести.
Среди преимуществ и достоинств, которыми обладает данный металлопрокат, следует выделить повышенное сопротивление хладостойкости, ударным и пластическим деформациям, улучшенная прокаливаемость, повышенная вязкость. При этом для большинства сплавов, содержащих разное количество легирующих присадок, характерно:
- наличие остаточного аустенита после закалки;
- склонность к образованию флокенов;
- механическая прочность;
- тугоплавкость.
На заметку. В зависимости от химической природы вводимых элементов легированная сталь изменяет свойства жидкотекучести и поверхностного натяжения. А также снижает температуру плавления следующим образом:
Элемент |
Снижение T для 1% элемента в жидком р/р, ˚С |
Элемент |
Снижение T для 1% элемента в жидком р/р, ˚С |
Элемент |
Снижение T для 1% элемента в жидком р/р, ˚С |
Углерод |
90 |
Кремний |
6 |
Никель |
2,9 |
Сера |
40 |
Фосфор |
28 |
Титан |
17 |
Марганец |
1,7 |
Медь |
2,6 |
Бор |
100 |
Хром |
1,8 |
Молибден |
1,5 |
Вольфрам |
1 |
Алюминий |
5 |
Ванадий |
1,3 |
Кобальт |
1,5 |
Данные таблицы показывают, что по сравнению с малоуглеродистым нелегированным сплавом у высоколегированной марки, содержащей около 50% присадок, температура ликвидуса ниже почти на 100˚С.
Маркировка легированных сплавов и основные марки
В мировой практике используется несколько документов, регламентирующих маркировку легированных сталей. Но в любом случае они все предполагают использование буквенно-цифровых обозначений.
Стандарты стран СНГ
При обозначении легированной конструкционной стали процентная величина массовой доли углерода маркируется первыми двумя цифрами без использования буквенного обозначения. Далее в порядке уменьшения указываются легирующие компоненты и их доля в сплаве в среднем эквиваленте. Буквенные обозначения химических элементов указаны в таблице 1. Легирующие присадки, количество которых менее 1,0% указываются только в расшифрованной номенклатуре, так как обозначение тогда бы приняло очень громоздкий вид.
Учитывая обширный сортамент, также марка стали может включать дополнительные симвноменклатуре, так как обозначение тогда бы приняло очень громоздкий вид.олы, более расширенно описывающие свойства или особенности: А – автоматные, Е – магнитные, Ж – нержавеющие, Р – режущие, Х – хромистые, Ш – шарикоподшипниковые, Э — электротехнические, Я – хромоникелевые. Также маркировка может предполагать исключения от общих правил обозначения. Так в зависимости от химического состава конструкционные сплавы разделяют на качественные и высококачественные. Например, в конце маркировки буква «А» указывает, что сплав является особо чистым в части содержания фосфора и серы, а буква «Ш» относит их к высококачественным.
Маркировка легированных сталей для речного и морского судостроения часто осуществляется в соответствии с ГОСТ 5521-86 и требованиями Международной ассоциации классификационных обществ. Это означает, что такие сплавы классифицируют на категории A, B, D и Е с учетом предела текучести, показателям прочности, хрупкости и сопротивления ударным нагрузкам.
Европейские стандарты
EN 10027 определяет порядок обозначения всех сталей. Легированные сплавы имеют маркировку 1.20ХХ – 1.89ХХ, где первая цифра определяет, что данный материал относится к сталям, вторая и третья цифра определяют номер группы сталей и две последние — порядковый номер сплава в этой группе. Например, категория инструментальных сталей идентифицируется как 1.20ХХ – 1.28ХХ, а нержавеющих как 1.40ХХ – 1.45ХХ.
Североамериканские стандарты ASTM/ASME и AISI
В США действует наиболее обширная система маркировки сталей. Например, маркировка ASTM предполагает обозначение основных химических элементов, предел прочности и форму проката. В системе AISI используют 4 цифры, где первые две указывают номер группы, две последующие – процентное количество углерода. Буквенные символы демонстрируют наличие соответствующих присадок.
Марки, наиболее востребованные в инжиниринге
- 09Г2С – низколегированная сталь, сочетающая механическую прочность, хорошую обрабатываемость и доступную стоимость;
- 40Х и ее аналог AISI 5135 – основной конструкционный материал для изготовления деталей и оборудования промышленного сектора и трубопроводной арматуры;
- 10Г2С1 – кремнемарганцевая марка, демонстрирующая хладостойкость, неплохую свариваемость и повышенную коррозионную стойкость, благодаря чему востребована при сооружении мостов, газопроводов и объектов повышенной надежности;
- 10Х11Н23Т3МР – жаропрочный сплав аустенитного класса, использующийся для производства пружин, деталей крепежа, работающих при температурах до 700ºС.
Использование легированных сталей
Сегодня практически невозможно перечислить все сферы, где применяется легированная сталь. Это тракторостроение и машиностроение, химико-технологический и промышленно-производственный комплекс, нефтегазодобывающая отрасль и сельское хозяйство. Например:
- из хромосодержащих сплавов изготавливают детали для оборудования, эксплуатируемого в условия прямого или вероятного контакта с агрессивными средами: плунжеры и шлицы, валы и зубчатые колеса, поршневые пальцы и карданные крестовины;
- низколегированные конструкционные сплавы чаще всего востребованы в строительстве, массово используются при сооружении каркасных металлоконструкций и для изготовления труб, сортового и фасонного металлопроката. Несмотря на обширный сортамент, легированная сталь марки 09Г2С является наиболее популярной в этой сфере;
- инструментальный сплав – универсальный материал для клейм, пресс-форм, эталонных калибров и штампов, ручного инструиента. А из ледебуритных марок изготавливаются быстрорежущий инструмент и шарошечные долота.
Также не стоит забывать, что физические особенности легированных сплавов проявляются в термообработанном состоянии. Именно поэтому их широко используют для термонапрягаемых деталей, высокоскоростных и тяжелонагруженных пар трения.
В связи с интенсивным развитием современных технических отраслей, легированная сталь находит применение в гражданской и военной авиации, в турбостроении и в альтернативной электроэнергетике. Так же можно купить металл в Украине, а именно легированную сталь для изготовления мультикоптеров и беспилотников, ядерных реакторов, ракетно-космических систем. В то же время стремительное расширение сферы применения легированных сталей обуславливает ужесточение требований к их качеству и мотивирует к разработке новых сплавов.
Конструкционная сталь: Типы и свойства сплавов
Сталь используется в различных отраслях человеческой деятельности. Благодаря широкому спектру ее применения, различают конструкционную, инструментальную сталь, и стали особого назначения. Каждый вид был разработан для специального назначения, поэтому отличается своим химическим составом и формой обработки, что позволяет получать заданные характеристики. Конструкционные стали и сплавы активно используются в машиностроении и строительной сфере, как технологичные, качественные и дешевые материалы, обладающие всем необходимым набором свойств при производстве конструкций.
Общие характеристики
В составе сплавов присутствует некоторый процент полезных добавок, к которым можно отнести медь, марганец, кремний и так далее, однако главным элементом, который определяет свойства конструкционной стали, является углерод. Увеличение его содержания приводит к усилению прочности и устойчивости к низким температурам, что дает возможность создавать конструкции, работающие даже в условиях сурового климата, при этом выдерживать большие нагрузки.
Изначально конструкционные стали классифицируют на:
- легированные;
- углеродистые.
Качество углеродистых конструкционных сталей зависит от присутствия в их химическом составе фосфора и серы. Первый наделяет металл способностью к растрескиванию в процессе холодной механической обработки. Второй вызывает трещинообразование при горячей (термической) обработке под воздействием высокого давления. Применение сталей конструкционных с большим процентом серы и фосфора обосновано при изготовлении деталей с высокой степенью обрабатываемости способом резки. На основании процентного содержания данных примесей, металл классифицируется следующим образом:
- Сталь обыкновенного качества – состав содержит около 0,5% добавок (маркируется как «Ст»).
- Качественная сталь – до 0,0З5% примесей (качественная углеродистая сталь маркируется «Сталь»). Качественная конструкционная сталь широко используется в машиностроении.
- Высококачественная – количество серы и фосфора в пределах 0,025% (маркируется буквой «A» в конце).
- Сталь особо высокого качества – 0,015% вредных примесей (высокого качества углеродистая сталь маркируется в конце «Ш»).
Кроме этого, в процессе производства, металлы классифицируют в соответствии с их физико-механическими свойствами.
Типы и свойства сплавов
В зависимости от свойств, стали можно разделить на физические и механические. К физическим свойствам относят объемную плотность = 7850 кг / м3, коэффициент теплового расширения a, коэффициент Пуассона v = 0,3 и коэффициент продольной упругости E = 210 000 Н / мм2.
К механическим свойствам: прочность, ударную вязкость и пластичность.
Прочностные свойства конструкционной стали связаны со способностью металла переносить нагрузки. Мера прочности – предел текучести и предел прочности. Прочность на растяжение – напряжение, соответствующее наибольшему усилию, полученному во время испытания на растяжение.
Ударная вязкость – способность поглощать энергию, которая передается при ударной нагрузке Пластичность – способность стали деформироваться. Минимальная пластичность обеспечивается, если отношение предела прочности к пределу текучести составляет 1,10, относительное удлинение при разрушении составляет не менее 15%, а отношение деформации при разрушении к деформации при достижении предела текучести составляет ≥ 15.
Конкретную область применения металлопроката определяют механические и физико-химические характеристики:
- Низколегированный сплав – содержит до 0,22% углерода и используется при возведении мостов и других конструкций, работающих при высоких и часто изменяющихся нагрузках, а также способных выдерживать постоянные перепады температур. Применяется при производстве сельскохозяйственной техники, железнодорожных вагонов, локомотивов и так далее.
- Теплоустойчивая сталь – изготовление деталей, испытывающих постоянные нагрузки при очень высоких температурах.
- Арматурная – после обработки показывает высокую твердость. Используется для армирования бетона, повышая его износоустойчивость и прочность.
- Пружинная – содержит большой процент кремния и используется при изготовлении пружин, рессор и торсионных стержней, и иных подобных деталей. Для особо нагружаемых пружин в сплав добавляют ванадий и хром.
- Машиностроительная – благодаря способности хорошо сопротивляться ударному воздействию и высокой механической прочности используется при производстве автомобилей.
- Автоматная – используется при производстве мелких крепежных деталей, которые выпускаются на автоматических станках большими партиями (шурупы, шайбы, гайки и так далее).
- Шарикоподшипниковая – материал, обладающий высокой твердостью и сопротивляемостью к контактной усталости. При изготовлении небольших деталей чаще всего используют высокоуглеродистую хромистую сталь, для производства деталей с большим сечением применяется хромомарганцевая сталь, прокаливающаяся на большую глубину.
Особняком стоит котельный углеродистый сплав, который применяется при изготовлении:
- Толстолистового металла – толщина листов более 4 мм.
- Тонколистового материала – толщина до 4 мм.
Котельные листы отличаются хорошей свариваемостью и имеют высокую прочность, поэтому используются в производстве паровых котлов, паропроводов и труб, работающих под давлением до 98Мпа, при температуре до 450 градусов. В маркировке обозначаются буквой «K» в конце.
Конструкционная углеродистая качественная сталь, марки, ГОСТы. стандарты | ||
Россия, ГОСТ 1050-88 | США, AISI | Евросоюз, DIN |
Сталь 08 кп | А622 | Fe P04/St 14 |
Сталь 10 | А1010 | 1.0301 |
Сталь 15 | А1015 | 1.0401 |
Сталь 25 | А1025 | 1.1158 |
Сталь 20К | А285-А | Р265GH |
Зарубежные производители аналогичной продукции производят маркировку по собственным стандартам.
Дефекты конструкционных сталей
Наиболее распространенными дефектами конструкционных сталей являются:
- Дендритная ликвация. Из-за наличия в металле легирующих элементов повышается температурный интервал кристаллизации. Диффузные процессы в легированной стали протекают медленно, поэтому материал становится склонным к дендритной ликвации и полосатости в структуре. Ликвидировать такой дефект можно диффузным отжигом.
- Флокеныю. Наличие газов пагубно сказывается на свойствах сталей, приводя к возникновению такого дефекта как флокены, которые представляют собой трещины, которые становятся заметными при макротравленни. На извилинах флокены выглядят как округлые пятна. Чаще всего флокены появляются при быстром охлаждении металла после ковки или прокатки. Такой дефект связан с наличием в сплаве водорода, который в процессе плавки растворяется в жидком металле. Чаще всего флокены появляются в хромовых и хромоникелевых сплавах.
Сварка углеродистых и легированных сталей
Сварка низколегированных и среднелегированных конструкционных сталей
Свариваемость таких сталей зависит от содержания углерода и легирующих компонентов и ухудшается с ростом содержания углерда и легирующих компонентов. Стали кремнемарганцевой группы 15ГС, 18Г2С и 25Г2С сваривают электродами типа Э60А марки УОНИ-13/65. Перед сваркой кромки тщательно зачищают от грязи, ржавчины и окалины.
Сварку выполняют предельно короткой дугой. Изделие перед сваркой подогревают до температуры 200 С, электроды перед сваркой прокаливают при 400°С в течение одного часа.
Кремнемарганцемедистые стали 10Г2СД, 10ХГСНД, 15ХСНД и 12ХГ сваривают электродами типа Э50А марки УОНИ-13/55. Изделие перед сваркой не подогревают.
Сварка низколегированных и среднелегированных конструкционных сталей
Особенности сварки высоколегированных сталей
К высоколегированным относят стали, суммарный состав легирующих элементов в которых составляет не менее 10%, при содержании одного из них не менее 8%. При этом содержание железа должно составлять не менее 45%. В основном это стали, обладающие повышенной коррозионной стойкостью или жаростойкостью. Легирование сталей выполняют углеродом, марганцем, кремнием, молибденом, алюминием, ванадием, вольфрамом, титаном и ниобием, бором, медью, серой и фосфором. Введение легирующих элементов меняет физические и химические особенности стали.
Так, углерод способствует повышению прочности стали и снижению ее пластичности. Окисление углерода в процессе сварки способствует появлению пор. Кремний является раскислителем и содержание его в стали более 1% приводит к снижению свариваемости. Хром также снижает свариваемость, способствуя созданию тугоплавких окислов. Никель повышает прочность и пластичность сварочного шва, не снижая свариваемость стали. Молибден увеличивает прочность и ударную вязкость стали, ухудшая свариваемость. Ванадий в процессе сварочных работ сильно окисляется, поэтому его содержание в стали предусматривает введение раскислителей. Вольфрам тоже сильно окисляется при повышенных температурах, ухудшает свариваемость стали.
Титан и ниобий предотвращают межкристаллитную коррозию. Бор повышает прочность, но затрудняет свариваемость. Медь повышает прочность, ударную вязкость и коррозийную стойкость стали, но снижает ее свариваемость. Повышенное содержание в стали серы приводит к образованию горячих трещин, а фосфор способствует образованию холодных трещин.
Содержание тех или иных легирующих элементов определяют по маркировке стали. Первые две цифры в маркировке означают содержание углерода в сотых долях процента; легирующие элементы обозначают буквенными символами, а стоящие за ними цифры указывают на примерное содержание этих элементов, при этом единицу и меньше не ставят. Символ «А», установленный в конце маркировки, указывает, что сталь высококачественная, с пониженным содержанием серы и фосфора. Наиболее широкое применение получили коррозионно-стойкие хромоникелевые стали (12Х18Н10Т, 10Х23Н18 и некоторые другие).
Из вышесказанного видно, что, как правило, легирование стали приводит к снижению ее свариваемости, а первостепенную роль при этом играет углерод. Поэтому доля влияния каждого легирующего элемента может быть отнесена к доле влияния углерода. Повышенное содержание углерода и легирующих элементов способствует увеличению склонности стали к резкой закалке в пределах термического цикла, происходящего во время сварки. В результате этого околошовная зона оказывается резко закаленной и теряет свою пластичность.
Поэтому при сварочных процессах высоколегированных сталей, происходящих в зоне плавления металла и околошовной области, возникают горячие трещины и межкристаллитная коррозия, проявляющаяся в процессе эксплуатации. Основной причиной появления трещин является образование крупнозернистой структуры в процессе кристаллизации и значительные остаточные напряжения, полученные при затвердевании металла. Легирование влияет на вязкость металла и коэффициент поверхностного натяжения, поэтому у большинства высоколегированных сталей сварочный шов формируется хуже, чем у низколегированных и даже углеродистых сталей.
Межкристаллитная коррозия характерна для всех видов высоколегированных сталей, имеющих высокое содержание хрома. Под действием нагрева образовавшиеся карбиды хрома выпадают по границам зерен, снижая их антикоррозийные свойства.
Препятствует образованию карбидов хрома легирование стали титаном, ниобием, танталом, цирконием и ванадием. Положительное влияние на качество сварочного шва оказывает дополнительное легирование сварочной проволоки хромом, кремнием, алюминием, ванадием, молибденом и бором.
Для сварки высоколегированных сталей используют как ручную дуговую, так механизированную сварку под флюсом и в среде защитных газов. Сварка выполняется при минимальном тепловложении с использованием термообработки и применением дополнительного охлаждения. Введение легирующих элементов меняет и технологические особенности стали. Так, система легирования снижает теплопроводность стали и повышает ее электрическое сопротивление. Это оказывает влияние на скорость и глубину плавления металла, что требует меньшего вложения энергии, и увеличения скорости подачи сварочной проволоки.
Ручную дуговую сварку высоколегированных сталей выполняют при пониженных тока обратной полярности. Сварку ведут короткой дугой ниточными валиками без поперечных колебаний.
Проволока, применяемая для изготовления электродов, должна соответствовать марке стали с учетом ее свариваемости. Защитное покрытие электродов должно иметь состав, снижающий отрицательное действие повышенной температуры. К примеру, для сварки кислотостойкой стали 12X18HI0T электроды типа Э-04Х20Н9 (марки ЦЛ-11) препятствуют образования горячих трещин и межкристаллитной коррозии. Предварительный и сопутствующий подогрев снижает опасность возникновения трещин. Для защиты сварочной ванны используют инертный газ или аргон и его смеси с гелием, кислородом и углекислым газом.
Сварку в среде углекислого газа можно выполнять только в случаях, когда отсутствует опасность возникновения межкристаллитной коррозии. Сварка плавящимся электродом выполняется при значениях тока, обеспечивающих струйный перенос электродного металла.
При сварке возникает опасность коробления и остаточных сварочных напряжений. Поэтому после сварки часто возникает необходимость в термообработке.
высоко-, низко-, средне-, легированных, нержавеющих, электроды, технология, под флюсом
Углеродистая сталь – сплав железа и углерода с незначительным содержанием полезных примесей: кремний и марганец, вредных примесей: фосфор и сера. Концентрация углерода в сталях данного типа составляет 0,1-2,07%. Углерод выступает в качестве основного легирующего элемента. Именно он определяет сварочно-механические свойства этого класса сплавов.
В зависимости от величины содержания углерода выделяют следующие группы углеродистых сталей:
- менее 0,25% – низкоуглеродистые;
- 0,25-0,6 % – среднеуглеродистые;
- 0,6-2,07 % – высокоуглеродистые.
Сварка низкоуглеродистых сталей
Из-за малого концентрата углерода данный вид имеет следующие свойства:
- высокая упругость и пластичность;
- значительная ударная вязкость;
- хорошо поддается обработке с помощью сварки.
Низкоуглеродистые стали широко применяются в строительстве и при производстве деталей методом холодной штамповки.
Технология сварки низкоуглеродистых сталей
Низкоуглеродистые стали поддаются свариванию лучше всего. Их соединение может проводиться методом ручной дуговой сварки электродами с обмазкой. Применяя данный способ важно правильно подобрать марку электродов, что обеспечит равномерную структуру наплавленного металла. Сваривание должно осуществляться быстро и точно. Перед началом работ нужно подготовить соединяемые детали.
Газовая сварка осуществляется без применения дополнительных флюсов. В качестве присадочного материала используются металлические проволоки с небольшим содержанием углерода. Это поможет предотвратить образование пор.
Для обработки ответственных конструкций применяется газовая сварка в среде аргона.
После сварки готовую конструкцию необходимо подвергнуть термической обработке путем операции нормализации: изделие следует нагреть до температуры примерно в 400°С; выдержать и охладить на воздухе. Данная процедура способствует тому, что структура стали становится равномерной.
Особенности сварки низкоуглеродистых сталей
Хорошая свариваемость таких сталей обеспечивает равнопрочность сварного шва с основным металлом, а также отсутствие дефектов.
Металл шва обладает пониженным содержанием углерода, доля кремния и марганца увеличена.
При ручной дуговой сварке околошовная область подвергается перегреву, что способствует его незначительному упрочнению.
Шов, наплавленный методом многослойной сварки, отличается повышенным уровнем хрупкости.
Соединения обладают высокой стойкостью против МКК из-за низкой концентрации углерода.
Виды сварки низкоуглеродистых сталей
1. Первым методом для соединения низкоуглеродистых сталей является ручная дуговая сварка электродами с покрытием. Для выбора оптимального вида и марки расходников необходимо учитывать следующие требования:
- сварной шов без дефектов: пор, подрезов, непроваренных участков;
- равнопрочное соединение с основным изделием;
- оптимальный химический состав металла шва;
- устойчивость швов при ударных и вибрационных нагрузках, а также повышенных и пониженных температурах.
Наименьший показатель напряжения и деформации исполнитель получает при выполнении сварки в нижнем пространственном положении.
Для сварки рядовых конструкций используются следующие марки электродов:
Сварочные электроды АНО-6
Для сваривания ответственных конструкций применяются следующие марки сварочных материалов:
2. Газовая сварка осуществляется в защитной среде из аргона, без использования флюса, с применением металлической проволоки в качестве присадочного материала.
3. Электрошлаковая сварка осуществляется при помощи флюсов. Проволочные и пластинчатые электроды подбираются с учетом состава основного сплава.
4. Автоматическая и полуавтоматическая сварка осуществляется с защитной среде; применяется чистый аргон или гелий, часто используется углекислый газ. CO2 должен обладать высоким качеством. Если соединение кислорода и углерода будет перенасыщено водородом или азотом, то это приведет к порообразованию.
5. Автоматическая сварка под флюсом выполняется электродной проволокой диаметром 3-5 мм; полуавтоматическая – 1,2-2 мм. Сваривание выполняется постоянным током обратной полярности. Режим сварки варьируется в значительных величинах.
6. Наиболее оптимальным способом является сваривание порошковыми проволоками. Сила тока располагается в диапазоне от 200 до 600 А. Сварку рекомендуется проводить в нижнем положении.
7. Для сварки в защитных газах используется углекислый газ, а также смеси инертного газа с кислородом или CO2.
Соединение изделий толщиной менее 2 мм. осуществляется в атмосфере инертных газов вольфрамовым электродом.
Чтобы повысить стабильность дуги, улучшить формирование шва и понизить чувствительность наплавленного металла к пористости следует применять смеси газов.
Сваривание в атмосфере углекислого газа предназначено для работ со сплавами толщиной более 0,8 мм. и менее 2,0 мм. В первом случае используется плавящийся электрод, во втором – графитовый или угольный. Вид тока постоянный, полярность обратная. Следует отметить, что данный способ отличается повышенным уровнем разбрызгивания.[ads-pc-2][ads-mob-2]
Сварка среднеуглеродистых сталей
Среднеуглеродистые стали используются в тех случаях, когда необходимы высокие механические свойства. Данные сплавы могут подвергаться ковке.
Также они применяются для деталей, производимых методом холодной пластической деформации; характеризуются как спокойные, что позволяет использовать их в машиностроении.
Стали с содержанием углерода от 0,4 до 0,6 % отлично подойдут для изготовления вагонных колес и осей, железнодорожных рельсов.
Технология сварки среднеуглеродистых сталей
Сваривание данных сплавов выполняется не так хорошо, как соединение низкоуглеродистых сталей. Обусловлено это несколькими трудностями:
- отсутствие равнопрочности основного и наплавленного металлов;
- высокий уровень риска образования больших трещин и непластичных структур в околошовной зоне;
- малый показатель стойкости к формированию кристаллизационных дефектов.
Однако, эти проблемы довольно легко решаются посредством выполнения следующих рекомендаций:
- применение электродов и проволоки с небольшим содержанием углерода;
- сварочные стержни должны обладать повышенным коэффициентом наплавки;
- для обеспечения наименьшей степени проплавления основного металла следует производить разделку кромок, устанавливать оптимальный режим сварки, использовать присадочную проволоку;
- предварительный и сопутствующий подогрев заготовок.
Технология сварки углеродистой стали при выполнении вышеперечисленных рекомендаций не обнаруживает появление проблем и затруднений.
Особенности сварки среднеуглеродистых сталей
Перед свариванием изделие необходимо очистить от грязи, ржавчины, масла, окалины и других загрязнений, которые являются источником водорода и могут поспособствовать образованию пор и трещин в шве. Очищению подвергаются кромки и прилегающие к ним участки шириной не более 10 мм. Это гарантирует прочность соединения при нагрузках различного рода.
Сборка деталей под сварку подразумевает соблюдение зазора, ширина которого зависит от толщины изделия и должна быть на 1-2 мм. больше, чем при работе с хорошо свариваемыми материалами.
Если толщина изделия из среднеуглеродистой стали превышает 4 мм., нужно выполнить разделку кромок.
Для наименьшей проплавки основного металла и оптимального уровня охлаждения следует верно подбирать режим сваривания. Правильность выбора можно подтвердить, осуществив замер твердости наплавленного металла. При оптимальном режиме, она не должна быть выше 350 HV.
Ответственные узлы соединяются в два и более прохода. Не допускаются частые разрывы дуги, ожог (прижег) основного металла и вывод на него кратера.
Сваривание ответственных конструкций осуществляется с предварительным подогревом от 100 до 400°С. Чем больше содержание углерода и толщина деталей, тем выше должна быть температура.
Охлаждение должно быть медленным, изделие помещается в термостат или накрывается теплоизоляционным материалом.
Виды сварки среднеуглеродистых сталей
Сварка среднеуглеродистых сталей может проводиться несколькими способами, которые мы рассмотрим далее.
1. Ручная дуговая сварка выполняется электродами с основным типом покрытия, обеспечивающие малое содержание водорода в наплавленном металле. Чаще всего исполнители используют следующие электроды для сварки углеродистых сталей:
Особое покрытие сварочных материалов УОНИ гарантирует увеличение стойкости соединения к образованию трещин, а также обеспечивает прочность шва.
Следует учитывать следующие нюансы:
- вместо поперечных перемещений нужно выполнять продольные;
- необходимо производить заварку кратеров, иначе увеличивается степень риска формирования трещин;
- рекомендуется осуществлять термообработку шва.
2. Газовая сварка углеродистых сталей тонколистового формата выполняется левым способом с помощью проволоки, также используется нормальное сварочное пламя. Средний расход ацетилена составляет 120-150 л/ч на 1 мм. толщины свариваемого сплава. С целью уменьшения риска образования кристаллизационных трещин, следует применять сварочные материалы с содержанием углерода не более 0,2-0,3 %.
Толстостенные изделия следует соединять правым способом газовой сварки, который характеризуется более высокой производительностью. Расчет ацетилена также равен 120-150 л/ч. Чтобы избежать перегрева рабочей зоны, расход нужно уменьшать.
Сварка углеродистых сталей газовой сваркой также включает следующие особенности:
- уменьшение окисления в сварочной ванне достигается пламенем с небольшим переизбытком ацетилена;
- положительное влияние на процесс оказывает применение флюсов;
- для избежания хрупкости в околошовной зоне применяют замедление охлаждения с помощью предварительного нагрева до 200-250°С или последующий отпуск при температуре 600-650°С.
После сваривания можно провести термическую обработку или проковку изделия. Эти операции существенно улучшают свойства.
Технология газовой сварки углеродистых сталей разработана с целью получения соединений, обладающих необходимыми механическими свойствами. Поэтому для исполнителя важно учитывать данные специфические черты.
3. Технология сварки под флюсом углеродистых сталей подразумевает применение сварочной проволоки и плавленых флюсов: АН-348-А и ОСЦ-45. Сваривание осуществляется на малых величинах тока. Это позволяет “насытить” наплавленный металл необходимым уровнем кремния и марганца. Данные элементы интенсивно переходят из флюса в металл шва.
Достоинства данного метода: высокая производительность; наплавляемый металл надежно защищен от взаимодействия с воздухом, что обеспечивает высокое качество соединения; экономичность процесса достигается за счет малого разбрызгивания и благодаря сокращению потерь металла на угар; стабильность горения дуги гарантирует получение мелкочешуйчатой поверхности шва.
4. Исполнители часто используют метод аргонодуговой сварки неплавящимся электродом. Основная трудность при сварке среднеуглеродистых сталей данным способом – сложно избежать образования пор из-за небольшого раскисления основного металла. Для решения этой проблемы нужно снизить долю основного металла в наплавленном. Для этого необходимо верно подобрать режимы сварки аргоном углеродистой стали. Сваривание осуществляется постоянным током прямой полярности.
Величина напряжения устанавливается в зависимости от толщины конструкции при однопроходной сварке и исходя из высоты валика, которая составляет 2,0-2,5 мм – при многопроходной. Ориентировочные показатели тока можно определить таким образом: 30-35 А на 1 мм. вольфрамового прутка.[ads-pc-3][ads-mob-3]
Сварка высокоуглеродистых сталей
Демонстрационная сварка стали от рессор электродом Zeller 655
Высокое содержание углерода в сталях данного вида делает их, как правило, непригодными для изготовления сварных конструкций. Они характеризуются низкой пластичностью, поэтому имеют ограниченное применение.
Потребность в высокоуглеродистых сталях возникает при проведении ремонтных работ, при производстве пружин, режущих, бурильных, деревообрабатывающих и других инструментов, высокопрочной проволоки, а также в тех изделиях, которые должны обладать высокой износостойкостью и прочностью.
Технология сварки высокоуглеродистых сталей
Сваривание возможно, как правило, с предварительным и сопутствующим подогревом до 150-400°С, а также последующей термообработкой. Обусловлено это склонностью данного типа сплавов к хрупкости, чувствительностью к горячим и холодным трещинам, химической неоднородностью шва.
К сведению! Исключения возможны, если использовать специализированные электроды для разнородных сталей. См. фото и подпись к нему ниже.
- После подогрева необходимо произвести отжиг, который нужно проводить до тех пор, пока изделие не остынет до температуры 20°С.
- Важным условием является недопустимость осуществления сварки на сквозняках и при температуре окружающей среды ниже 5°С.
- Для повышения прочности соединения необходимо создавать плавные переходы от одного до другого свариваемого металла.
- Хорошие результаты достигаются при сваривании узкими валиками, с охлаждением каждого наплавленного слоя.
- Исполнителю следует также соблюдать правила, предусмотренные для соединения среднеуглеродистых сплавов.
Данный демонстрационный образец (сварены воедино рессора, напильники, подшипник и пищевая нержавейка). Если не обращать внимания на качество швов, варили не профессиональные сварщики, фото подтверждает, что вполне возможна сварка “несвариваемых” сталей.
Видео
Особенности сварки высокоуглеродистых сталей
Рабочую поверхность необходимо очистить от загрязнений различного рода: ржавчина, окалина, механические неровности и грязь. Присутствие загрязнений может привести к образованию пор.
Охлаждать конструкции из высокоуглеродистых сталей нужно медленно, на воздухе, для нормализации структуры.
Предварительный подогрев ответственных изделий до 400°С позволяет достичь необходимого показателя прочности.
Виды сварки высокоуглеродистых сталей
1. Оптимальным вариантом проведения сварочного процесса является ручная дуговая сварка с помощью покрытых электродов. Работа с высокоуглеродистыми сталями обладает большим количеством специфических характеристик. Поэтому сварка высокоуглеродистой стали проводится специально разработанными электродами, например, НР-70. Сваривание осуществляется постоянным током обратной полярности.
2. Сварка под флюсом также используется для соединения сплавов данного типа. Равномерно покрыть флюсом рабочую зону в ручном режиме довольно сложно. Поэтому, в большинстве случаев, используется автоматическая технология. Расплавленный флюс образует плотную оболочку и предотвращает воздействие вредных атмосферных факторов на сварочную ванну. Для сваривания под флюсом используются трансформаторы, выдающие переменный ток. Данные аппараты позволяют создавать устойчивую дугу. Главное достоинство данного метода – небольшие потери металла вследствие малого разбрызгивания.
Важно отметить, что не рекомендуется применять метод газовой сварки. Процесс характеризуется выгоранием большого количества углерода, в результате чего образуются закалочные структуры, которые отрицательно сказываются на качестве шва.
Однако, если свариванию подвергаются рядовые конструкции, то применение данного способа возможно. Соединение производится на нормальном или незначительном пламени, мощность которого не превышает 90 м3 ацетилена в час. Изделие нужно подогреть до 300°С. Сварка осуществляется левым способом, что дает возможность уменьшить время нахождения металла в расплавленном состоянии и продолжительность его перегрева.
Сварка нержавейки и углеродистой стали
Сварка коррозионностойких и углеродистых сталей является ярким примером соединения разнородных материалов.
Предварительный и сопутствующий нагревы изделий до температуры примерно в 600°С позволят получить шов с более однородной структурой. После работ нужно произвести термическую обработку, это поможет избежать образование трещин.
Для сваривания нержавейки и низкоуглеродистых сталей на практике применяются два метода, которые подразумевают использование сварочных стержней:
- электроды из высоколегированной стали или электроды на никелевой основе заполняют сварочный шов;
- кромки изделия из низкоулегродистой стали наплавляется легированными электродами, затем плакированный слой, кромки из нержавейки свариваются специальными электродами для нержавейки.
Сварку нержавеющих и углеродистых сталей также можно проводить аргонодуговым методом. Однако, такая технология используется крайне редко и только для работы с особо ответственными конструкциями.
Также исполнитель может произвести соединение методом полуавтоматической сварки с помощью металлического электрода в защитной среде инертных газов.
Сварка углеродистых и легированных сталей
Сварка и наплавка углеродистых и низколегированных сталей выполняется с помощью электродов типов Э42 и Э46.
Сварка углеродистых сталей легированных сталей электродуговым методом выполняется электродными материалами, которые обеспечивают необходимые механические характеристики и теплоустойчивость металла шва:
Электроды ЦЛ-39
Основная проблема – закалка околошовной зоны для предотвращения образования холодных трещин. Для решения этой задачи необходимо:
- для замедления охлаждения нужно подогреть изделия до температуры в 100-300°С;
- вместо однослойной сварки использовать многослойную, при этом сваривание выполняется небольшого сечения по неостывшему предыдущему слою;
- электроды и флюсы прокаливать;
- соединение производится постоянным током обратной полярности;
- для повышения пластичности следует проводить отпуск изделий до 300°С, сразу после сварки.
Разница между легированной сталью и углеродистой сталью
Основное различие — легированная сталь и углеродистая сталь
Сталелитейная промышленность — одна из крупнейших в мире. Сталь производится в основном путем смешивания железа с другими металлическими или неметаллическими элементами. Целью производства стали является получение различных свойств путем смешивания железа с другими элементами. Легированная сталь и углеродистая сталь — это два типа стали, которые отличаются друг от друга своим составом. Основное различие между легированной сталью и углеродистой сталью состоит в том, что легированная сталь имеет большое количество других элементов, кроме железа и углерода , тогда как углеродистая сталь имеет следовые количества других элементов, помимо железа и углерода.
Основные зоны покрытия
1. Что такое легированная сталь
— Определение, свойства, использование
2. Что такое углеродистая сталь
— Определение, свойства, использование
3. В чем разница между легированной сталью и углеродистой сталью
— Сравнение основных отличий
Ключевые термины: легированная сталь, углерод, углеродистая сталь, железо, сталь
Что такое легированная сталь
Легированная сталь — это металлические сплавы железа, углерода и большого количества других элементов.Другие элементы, присутствующие в нем, обычно включают марганец, кремний, никель, титан, медь и хром. Эти элементы называются элементами сплава, потому что эти элементы смешиваются вместе, образуя сплав. Целью добавления этих элементов является улучшение свойств стали. Легированные стали можно разделить на две категории следующим образом.
- Низколегированная сталь
- Высоколегированная сталь
Низколегированные стали содержат небольшое количество легирующих элементов, тогда как высоколегированные стали содержат большое количество легирующих элементов.Обычно легирующие элементы добавляются для повышения твердости и долговечности стали. Легированная сталь также устойчива к коррозии из-за наличия значительного количества других элементов, таких как хром.
Например, нержавеющая сталь — это легированная сталь. Он содержит около 10% хрома вместе с железом и углеродом в смеси элементов. Благодаря своей коррозионной стойкости нержавеющая сталь используется для изготовления кухонных предметов.
Рисунок 1: Поворотный обратный клапан из нержавеющей стали (легированной стали).
Что такое углеродистая сталь
Углеродистая сталь состоит из железа и углерода. Элементы сплава присутствуют в следовых количествах. Некоторые из этих элементов — кремний, марганец, сера и фосфор. Углеродистая сталь также делится на две группы, как показано ниже.
- Высокоуглеродистая сталь
- Низкоуглеродистая сталь
Из-за большого количества углерода, присутствующего в углеродистой стали, она проявляет такие свойства, как твердость, меньшая пластичность, пониженная свариваемость и низкая температура плавления.Мягкая сталь — это тип низкоуглеродистой стали, содержащей от 0,05% до 0,25% углерода. Из-за высокого содержания железа он агрессивен во влажной среде. Высокоуглеродистые стали содержат от 0,6% до 1,0% углерода. Эта высокоуглеродистая сталь очень прочная. Поэтому углеродистые стали используются в качестве строительных материалов.
Рисунок 2: Углеродистая сталь, используемая в качестве строительного материала
Разница между легированной сталью и углеродистой сталью
Определение
Легированная сталь : Легированная сталь — это тип стали с высоким процентным содержанием других элементов, кроме железа и углерода.
Углеродистая сталь : Углеродистая сталь — это сталь с высоким содержанием углерода и низким содержанием других элементов.
Коррозионная стойкость
Легированная сталь : Легированные стали устойчивы к коррозии.
Углеродистая сталь: Углеродистые стали менее устойчивы к коррозии.
Прочность
Легированная сталь : Легированная сталь имеет более низкую прочность по сравнению с углеродистой сталью.
Углеродистая сталь : Углеродистая сталь обладает высокой прочностью.
Свариваемость
Легированная сталь : Свариваемость легированной стали высокая.
Углеродистая сталь: Свариваемость углеродистой стали низкая.
Точка плавления
Легированная сталь : Легированные стали имеют высокие температуры плавления.
Углеродистая сталь : Углеродистые стали имеют низкие температуры плавления.
Пластичность
Легированная сталь : Пластичность легированной стали высокая.
Углеродистая сталь: Пластичность углеродистой стали низкая.
Заключение
Состав стальных элементов различается от одного типа стали к другому. Таким образом, стали классифицируются в основном по их составу. Легированная сталь и углеродистая сталь являются такими двумя типами стали. Основное различие между легированной сталью и углеродистой сталью заключается в том, что легированная сталь содержит большое количество других элементов, кроме железа и углерода, тогда как углеродистая сталь имеет следовые количества других элементов, помимо железа и углерода.
Ссылки:
1.«Информация об углеродистых и легированных сталях». Информация об углеродистой и легированной стали | Инженерное дело360. N.p., n.d. Интернет. Доступно здесь. 16 июня 2017 г.
2. «Легированная сталь». Metal Supermarkets N.p., n.d. Интернет. Доступно здесь. 16 июня 2017.
Изображение предоставлено:
1. «Поворотный обратный клапан из нержавеющей стали» от Goodwin Steel Castings (CC BY-SA 2.0) через Flickr
2. «Опора крыши станции Стратфорд» Хизер Смит — фотогалерея The Alloy Valve Stockist. (CC BY 3.0) через Commons Wikimedia
и углеродистая сталь: различия
В мире насчитывается около 36 миллионов различных марок стали.Однако трудно разделить каждую из них по отдельности. Поэтому в этой статье мы познакомим вас с двумя основными типами стали: легированной сталью и углеродистой сталью. Углеродистая сталь — это железо с добавлением углерода (включая следы других элементов), в то время как легированная сталь также включает другие элементы.
Легированная сталь:
Легированные стали имеют высокий процент других элементов, кроме железа и углерода. Другие элементы, такие как марганец, кремний, никель, титан, медь и хром, также называют элементами сплава, потому что они образуют сплав.Добавляются легирующие элементы для повышения твердости и долговечности стали. Кроме того, он улучшает коррозионную стойкость из-за большого количества других элементов, таких как хром. В зависимости от пропорции каждого компонента свойства легированной стали меняются.
Обычно легированная сталь имеет сравнительно низкую прочность, высокую свариваемость, высокую температуру плавления, высокую пластичность и высокую коррозионную стойкость.
Кроме того, есть общие элементы сплава и признаки:
— Марганец:
- Добавлен для точной настройки требований к термообработке.
- Требуется быстрая закалка от высокой температуры до очень низкой температуры для затвердевания. Однако быстрая закалка имеет высокий риск растрескивания.
- Более низкая скорость охлаждения. Его можно закалить в теплом масле, воде, воздухе комнатной температуры. Пример стали для закалки на воздухе: инструментальная сталь A4 с содержанием марганца от 1,8% до 2,2%.
— Хром:
- Из более чем 11% хрома получается нержавеющая сталь, которая значительно снижает коррозию.
- Существенно влияет на прочность, твердость и термическую обработку.
- Комбинация кобальта и хрома дает очень высокую износостойкость.
- Обычно используется для резки штампов, формовки, ножниц для шин и пуансонов.
— молибден:
- Повышение коррозионной стойкости. Работает с марганцем для снижения требуемой скорости закалки.
- Повышение ударной вязкости и прочности на разрыв. Приложение с большой нагрузкой.
- 4140 Сталь является наиболее распространенной комбинацией молибдена и хрома. Также называется хромомолибденовой сталью.
- Применяется в тяжелых передачах, больших валах, «рабочая лошадка» в мире стали.
— Ванадий:
- Во время термообработки помогает контролировать размер зерна металла. Тяжелее и сильнее.
- Стали, такие как O1 и D2.
— Никель:
- См. Нержавеющая сталь, например нержавеющая сталь 304.
- Из 18% или более хрома и 8% или более никеля получается аустенитная нержавеющая сталь.
- Повышает коррозионную стойкость, что увеличивает ударную вязкость.
Углеродистая сталь:
Углеродистые стали содержат высокий процент других элементов, кроме железа и углерода. Другие небольшие количества элементов включают кремний, марганец, серу и фосфор. Обычно углеродистая сталь имеет высокую прочность, низкую свариваемость, низкие температуры плавления, низкую пластичность и низкую коррозионную стойкость.
Углеродистая стальтакже подразделяется на высокоуглеродистую, среднеуглеродистую и низкоуглеродистую сталь. Однако, в отличие от легированной стали, это основное различие между типами углеродистой стали.Вот подробная информация по каждому типу:
— Низкоуглеродистая сталь:
- с содержанием углерода от 0,05% до 0,25% с максимальным содержанием марганца 0,4%
- относительно дешевле
- Самый распространенный вид стали, не требующий особых требований.
- Хорошо свариваются и обрабатываются (относительно). Легко работать.
- Отвердить можно только цементной закалкой (термообработкой). Это добавляет углерод к поверхности — более твердый внешний слой и более мягкое ядро.
— Сталь среднеуглеродистая:
- с содержанием углерода от 0,29% до 0,54% с содержанием марганца от 0,6% до 1,65%
- Более прочная сталь с хорошей износостойкостью, но более толстая при формовании, сварке и резке.
- Может подвергаться термообработке и отпуску.
— Высокоуглеродистая сталь:
- с содержанием углерода от 0,55% до 0,95% с содержанием марганца от 0,3% до 0,9%
- Обычно специализированный. Используется не обычный материал.
- Очень прочная, обычная сталь для пружин и проволоки.Большое количество сжатий для получения пластической деформации
- Подходит для термообработки, но трудно поддается механической обработке и сварке. Перед механической резкой требуется отжиг.
We are Steel Available, онлайн-платформа для управления отношениями с поставщиками и поиска поставщиков. Мы стремимся соединить поставщиков и покупателей из тяжелой промышленности. Мы разрабатываем первую экосистему в тяжелой промышленности, которая позволит клиентам эффективно управлять и автоматизировать свои цепочки поставок с помощью веб-инструментов и сервисов.Наша цель — снизить скрытый риск в цепочках создания стоимости. Мы делаем это, предоставляя важную информацию, от соблюдения нормативных требований до обеспечения качества, создавая ценность для всех заинтересованных сторон.
Для получения дополнительной информации загрузите нашу брошюру.
Углерод против сплава и нержавеющей стали: марки стали, которые можно купить в Китае
В основном, при производстве продукции используются 3 марки стали (типа стали):
- Углеродистая сталь
- Легированная сталь
- Нержавеющая сталь
Каждая из этих марок стали состоит из различного количества железа и углерода (основных элементов стали), а также в некоторых случаях из дополнительных сплавов.Давайте подробно рассмотрим эти виды стали…
Какие марки стали выбрать?
При выборе металла, подходящего для вашей работы, необходимо учитывать несколько факторов:
- Твердость — способность противостоять истиранию, но также трудности при резке или просверливании
- Прочность — величина силы, необходимая для деформации металла
- Toughness — способность противостоять нагрузкам (и не ломаться)
- Ковкость — способность металла деформироваться
- Свариваемость — свариваемость (зависит от температуры плавления, теплопроводности и т. Д.))
Загрузите подробную таблицу, в которой подробно описаны популярные марки стали.
Давайте рассмотрим 3 типа: углерод, сплав и углерод:
1. Углеродистая сталь (низкое и высокое качество)
Углеродистая сталь (сплав стали и углерода) подвергается коррозии, но она твердая — чем больше содержание углерода, тем тверже сталь. Низкоуглеродистая сталь прочная и вязкая, при необходимости ее можно цементировать. Высокоуглеродистая сталь может быть подвергнута термообработке, чтобы сделать ее намного более твердой, однако в этом состоянии она становится более хрупкой и с ней труднее работать.
Общие области применения углеродистой стали:
- Трубы, пластины, болты, знаки, мебель, ограждения и многие другие обычные металлические детали изготавливаются из низкоуглеродистой стали (также известной как «низкоуглеродистая сталь»).
- Профессиональные кухонные ножи, режущие инструменты на станках с ЧПУ, сверла, пилы, гвозди для кирпичной кладки — все это сделано из высокоуглеродистой стали . Высокая твердость дает лезвиям и режущим инструментам острую кромку, которая остается прочной, однако с этой твердостью приходит хрупкость, что означает, что изделия имеют тенденцию к более легкому разрушению.
Недостатком высокоуглеродистой стали является то, что она дороже и труднее обрабатывается, чем сплавы с меньшим содержанием углерода. Это уместно, когда ржавчина не вызывает беспокойства и когда продукт не должен выдерживать растягивающее напряжение (на самом деле он не изгибается и легче ломается).
2. Легированная стальЛегированная сталь (в которую добавлены дополнительные химические элементы для улучшения определенных свойств) — некоторые из наиболее распространенных легирующих элементов — марганец, никель, хром, молибден, ванадий, кремний и бор.
Улучшенные свойства легированной стали по сравнению с углеродистой сталью:
- Прочность,
- Твердость,
- Прочность,
- Износостойкость,
- Коррозионная стойкость,
- и закаливаемость.
Общие области применения легированных сталей:
- Строительство и архитектура, где прочность, ударная вязкость и коррозионная стойкость являются предпосылками для материала.
- Ювелирные изделия, предметы домашнего обихода, столовые приборы, кухонные принадлежности — все изготовлено из легированной стали.
Стальные сплавы можно разделить на две категории: низколегированные стали и высоколегированные стали. Низколегированные стали содержат менее 8% легирующих элементов в составе, эти стали имеют лучшую твердость и износостойкость по сравнению с углеродистой сталью, но, как правило, имеют меньшую прочность на разрыв.
Высоколегированные стали содержат более 8% легирующих элементов и обладают лучшими свойствами, чем низколегированные стали.
Посмотрите это видео с нашего дочернего сайта Sofeast, чтобы получить более подробное объяснение об углеродистых и легированных сталях:
3.Нержавеющая сталь
Нержавеющая сталь (сплав стали и хрома) не подвержен коррозии, но и не такой твердый.
Любой продукт, который будет постоянно контактировать с жидкостями, является хорошим кандидатом в качестве стального сплава с высоким содержанием хрома. Нержавеющая сталь — это сплав стали с содержанием хрома от 10,5% до 30%, что придает этой стали ее уникальные свойства.
Нержавеющая сталь делится на пять категорий:
a) Аустенитные — Аустенитные нержавеющие стали классифицируются как серии 200 и 300, а легирующие элементы в основном представляют собой сталь с 18% хрома и 8% никеля и с низким содержанием углерода.Наиболее распространенной сталью является нержавеющая сталь 304, которая обычно используется для изготовления трубопроводов, горнодобывающего оборудования, продуктов питания и напитков, кухонной посуды и архитектуры.
b) Ферритные — Ферритные нержавеющие стали — это гладкие хромистые нержавеющие стали, в которых содержание хрома может варьироваться от 12% до 18%, они также имеют низкое содержание углерода, аналогичное аустенитному диапазону. Классифицируются как серия 400. Этот диапазон нержавеющих сталей является магнитным, обладает хорошей пластичностью и коррозионной стойкостью.Типичные области применения — теплообменники, автомобильные крепежные детали, детали печей, детали нагревателей.
c) Дуплекс — Дуплексные нержавеющие стали содержат высокий уровень хрома от 18% до 28%, а также никеля от 4% до 8%. Этот двухуровневый элемент дает смесь аустенитной и ферритной структуры, отсюда и название дуплексной нержавеющей стали.
Дуплексная нержавеющая сталь обычно в два раза тверже, чем простая аустенитная или ферритная нержавеющая сталь. У них немного лучшая ударная вязкость и пластичность, чем у ферритных марок, но не такие хорошие показатели по сравнению с аустенитными марками.Дуплексные сорта имеют более высокую прочность, хорошую свариваемость, хорошую вязкость и высокую стойкость к коррозионному растрескиванию под напряжением. Типичные области применения — резервуары для горячей воды, пивоваренные резервуары, технологическое оборудование, конструкции бассейнов.
d) Мартенситные — Мартенситные нержавеющие стали — это гладкие хромистые стали, содержащие от 12% до 18%, а также имеющие относительно высокое содержание углерода до 1,2%. Мартенситные сорта имеют лучшую коррозию (не такую большую, как аустенитные) и износостойкость, чем другие сорта нержавеющей стали, и могут подвергаться термообработке для достижения высоких значений твердости.Эти марки являются магнитными в отожженном и закаленном состоянии. Типичные области применения: столовые приборы, кухонная одежда, хирургические и стоматологические инструменты, пружины, ножницы, промышленные лезвия, штамповки транспортных средств, отвертки, плоскогубцы и пистолеты для скоб.
e) Осадительное упрочнение — Осадочное упрочнение Нержавеющие стали (PHSS) — это хром и никель, по крайней мере, с одним другим легирующим элементом (медью, алюминием, титаном, ниобием или молибденом). Марки PHSS обеспечивают оптимальное сочетание как мартенситных, так и аустенитных свойств.Как и мартенситные сорта, они известны своей способностью приобретать высокую прочность за счет термической обработки, а также обладают коррозионной стойкостью, присущей аустенитной нержавеющей стали.
Самая известная нержавеющая сталь с дисперсионным твердением — 17-4 PH. Название происходит от добавок 17% хрома и 4% никеля. Он также содержит 4% меди и 0,3% ниобия. 17-4 PH также известна как нержавеющая сталь марки 630. Типичные области применения включают стоматологические сверла и развертки, компоненты самолетов, бритвенные головки, хирургические иглы и аэрокосмическую промышленность.
Опять же, посмотрите это видео от Sofeast, чтобы глубоко погрузиться в нержавеющие стали и их различные свойства:
Обычные марки нержавеющей стали
Вы можете получить диаграмму об этих сортах, их основных характеристиках и примерах общего применения, щелкнув здесь: Таблица нержавеющей стали.
Три наиболее распространенных марки стали, с которыми мы сталкиваемся в Китае:
- 201 — недорогой и очень распространенный
- 304 — самая распространенная марка нержавеющей стали
- 316 — более дорогой сорт, с большей устойчивостью к коррозии
4.Несколько слов о нержавеющем чугуне
Также иногда используется нержавеющее железо. Основное отличие этого материала заключается в том, что он содержит менее 0,6% Ni или в нем отсутствует элемент Ni, например 403 (12Cr12). Широко используется в химической и строительной промышленности. Любой магнитный железный сплав, содержащий более 12% хрома и имеющий объемно-центрированную кубическую структуру, также известен как нержавеющее железо.
Наиболее распространенные процессы термообработки
Термическая обработка — это процесс нагрева и охлаждения металла без изменения его физической формы.Существуют различные процессы термообработки, которые при применении к разным сталям могут изменять свойства этой стали, такие как ее твердость, ударная вязкость и даже разупрочнение, которые определяются изменением микроструктуры стали.
Закалка — Сталь с достаточным содержанием углерода может быть упрочнена путем ее нагрева с последующей быстрой закалкой. Этот процесс создает микроструктуру аустенита, которая может быть ферритом, мартенситом или цементитом.
Закалка — Этот процесс выполняется на углеродистых сталях, закаленных для снижения хрупкости стали.Температура отпуска будет зависеть от желаемого результата для функции стального изделия, чем ниже температура отпуска, тем лучше прочность и твердость.
Отжиг — Отжиг стали заключается в нагреве стали выше критической температуры с последующим очень медленным охлаждением. Это приводит к тому, что сталь становится более обрабатываемой с точки зрения формовки.
Нормализация — Это процесс, аналогичный отжигу, при котором сталь нагревается и охлаждается медленно, обычно просто оставляя охлаждаться на воздухе комнатной температуры.Это придает стали микроструктура из феррита и цементита, которая имеет более высокую прочность и твердость, но более низкую пластичность.
Науглероживание — Науглероживание также известно как цементация, которая представляет собой процесс введения дополнительного углерода на поверхность низкоуглеродистой стали с последующим ее закалкой. Внешняя углеродистая сталь будет иметь более высокую твердость, тогда как внутренний стержень останется жестким.
Как проверить металл нужного качества?
Лучше всего проводить как физические испытания, так и химический анализ.
Наиболее распространенные физических испытаний :
- Испытание на растяжение (с приложением напряжения до разрушения)
- Испытание на твердость (или твердость), которое можно проводить разными способами
Химический анализ обычно выполняется с помощью рентгенофлуоресцентного тестера.
Все это было объяснено в этой статье, которую я недавно опубликовал на ChinaImportal: Производство стальных деталей в Китае: ЧПУ, литье под давлением и марки стали.
Окончательное руководство по поиску поставщиков из Китая и развитию ваших поставщиков [электронная книга]
Эта БЕСПЛАТНАЯ электронная книга начинается с самого начала, обсуждая, нужно ли вам нанять агента по поиску поставщиков, и отслеживает процесс поиска вплоть до повышения качества и производительности надежного поставщика.
Есть 15 глав на более чем 80 страницах для изучения, в которых дается исчерпывающее руководство по всему процессу поиска поставщиков и развития от начала до конца, в том числе:
- Определение поставщиков,
- переговоров,
- Контроль качества,
- Развивающиеся китайские поставщики,
- Повышение качества и производительности предприятия,
- и многое другое…
Разница между углеродистой сталью и легированной сталью
Сталь — это сплав, в основном содержащий железо.Но его свойства можно изменить в соответствии с конкретными требованиями, добавив некоторые другие элементы. Это объясняет различия между легированной сталью и углеродистой сталью. Как видно из названия, в легированную сталь добавлены другие элементы, тогда как углеродистая сталь — это сталь с более высоким содержанием углерода. Есть и другие отличия, о которых пойдет речь в этой статье.
Углеродистая сталь
Углеродистая сталь также известна как железоуглеродистый сплав, содержащий менее 2% углерода WC.
Обычно также содержат небольшое количество кремния, марганца, серы, фосфора и углеродистой стали, в дополнение к использованию углерода можно разделить на углеродистую сталь и углеродистую конструкционную сталь, углеродистую инструментальную сталь и легкость резки конструкционной стали на три категории. Углеродистая конструкционная сталь делится на строительную конструкционную сталь и конструкционную сталь двух видов для машиностроения.
В соответствии с углеродистой сталью, содержание углерода можно разделить на низкоуглеродистую сталь (WC ≤ 0.25%), среднеуглеродистую сталь (WC0,25% — 0,6%) с содержанием фосфора, серы и высокоуглеродистую сталь (WC> 6%) можно разделить на обычные углеродистые стали (содержащие фосфор, сера выше), высококачественные углеродистые. сталь (содержащая фосфор, с низким содержанием серы) и высококачественная сталь (фосфор, меньше серы), как правило, чем выше содержание углерода, тем выше твердость, выше прочность, но ниже пластичность.
Легированная сталь
Легированная сталь — это сталь, в которой кроме железа и углерода присутствуют некоторые другие элементы.Обычно в легированную сталь добавляют марганец, кремний, бор, хром, ванадий и никель. Количество этих металлов в легированной стали в первую очередь зависит от использования такой стали. Обычно легированная сталь изготавливается для достижения желаемых физических характеристик стали.
Легированные стали делятся на низколегированные и высоколегированные. Когда процент добавленных элементов превышает 8 (по весу), сталь считается высоколегированной. В случаях, когда количество добавленных элементов остается ниже 8% от веса стали, это низколегированная сталь.В промышленности более распространены низколегированные стали. Как правило, добавление одного или нескольких таких элементов к стали делает ее более прочной и долговечной. Такая сталь также устойчива к коррозии и прочнее, чем обычная сталь. Чтобы изменить свойства стали, она требует термической обработки при добавлении к ней элементов.
Чтобы легированная сталь оставалась свариваемой, необходимо снизить содержание углерода. При этом содержание углерода снижается до 0,1–0,3%, а количество легирующих элементов также уменьшается в пропорции.Эти сплавы стали известны как высокопрочные низколегированные стали. Вы будете удивлены, узнав, что нержавеющая сталь также является легированной сталью с минимум 10% хрома по весу.
Вкратце Легированная сталь и углеродистая сталь:
- Существует много типов сталей, таких как легированная и углеродистая сталь .
- Как следует из названия, легированная сталь — это сталь, полученная путем добавления различных других элементов в сталь посредством термической обработки.
- , с другой стороны, представляет собой сталь, которая в основном содержит углерод и не требует какого-либо минимального процентного содержания других элементов.
- Углеродистая сталь — это тип стали, преимущественно используемый в США.
- Нержавеющая сталь — это разновидность легированной стали
Что такое легированная сталь | Легированная сталь VS Углеродистая сталь
Прежде чем мы исследуем все о легированной стали, давайте поразимся несколькими фактами о стали, держу пари, о которых вы никогда раньше не слышали.
- Сталь примерно в тысячу раз прочнее самого чистого железа, и ее можно перерабатывать без потери прочности.
- Сталелитейная промышленность открывает дома для более чем 2 миллионов человек по всему миру по мере роста занятости.
- 25% среднего компьютера состоит из стали.
- При нагревании сталь и железо расширяются. Это свойство стали увеличивает высоту Эйфелевой башни летом на шесть дюймов. Ежегодно из стали производится
- 200 миллиардов банок.
- Ежегодно в Северной Америке перерабатывается более восьмидесяти миллионов тонн стали.
- Кровли из стали служат более пятидесяти лет, в то время как традиционные крыши служат всего семнадцать лет.
Довольно интересно, правда? В этой статье мы обсудим легированную сталь и ее связь с нержавеющей и углеродистой сталью.
Что такое легированная сталь?
Каждый наверняка слышал о нержавеющей стали раньше. Это лучший материал для посуды, такой как кастрюли и сковороды.Но знаете ли вы, из чего состоит нержавеющая сталь? Это смесь железа, хрома, кремния, углерода и марганца (все они добавлены разными порциями). Любая смесь металлов называется сплавом. Другой пример сплава, который мы сегодня обсудим, — это легированная сталь. Это тип стали, в которой смешаны различные уровни одного или нескольких из следующих элементов: марганец, кремний, никель, титан, медь, хром и алюминий. Разница между нержавеющей сталью и легированной сталью состоит в том, что легированная сталь состоит из таких элементов, как никель и медь.
- Марганец упрочняет сталь при более высоких температурах, поскольку он устраняет образование ненужных соединений, таких как сульфид железа.
- Никель и медь повышают прочность и твердость стали, а также поддерживают устойчивость к коррозии и окислению.
- Медь добавляется в очень небольших количествах, но она также увеличивает прочность и коррозионную стойкость стали.
- Алюминий ограничивает образование и рост любых примесей, таких как зерна аустенита.
- Хром — ключевой легирующий элемент, обладающий значительной устойчивостью к коррозии и износу. Это также способствует затвердеванию стали, поскольку она положительно реагирует на термическую обработку.
Давайте посмотрим на некоторые свойства легированной стали: теплопроводность (способность материала проводить тепло) легированной стали составляет около 26-48,6 Вт / м · К, что считается низким. Поскольку большинство легированных сталей содержат титан и никель, которые обладают низкой теплопроводностью. Предел прочности легированных сталей составляет 758–1882 МПа, что выше, чем предел прочности нержавеющей стали.Сталь смешивается с другими элементами для улучшения их механических свойств, упрочнения стали, что делает легированную сталь более прочной и устойчивой к коррозии.
Существует два типа легированной стали: высоколегированная и низколегированная. Это зависит от процентного содержания легирующих элементов; высоколегированная сталь имеет более высокий процент. Низколегированная сталь обычно содержит 1-5% легирующих элементов, что делает ее более подходящей для применений, требующих механических свойств. Самый распространенный пример высоколегированной стали — нержавеющая сталь.Уровень хрома варьируется, что приводит к появлению различных типов нержавеющей стали. По крайней мере, 12% хрома, а в некоторых сталях оно может увеличиваться до 27%; в зависимости от их использования. Интересный факт: знаете ли вы, что нержавеющая сталь может удалять запахи с поверхности кожи! Низколегированная сталь обладает повышенной твердостью и износостойкостью, но не имеет такой же прочности на разрыв, как высоколегированная сталь. Высоколегированная сталь также может противостоять износу даже при высоких температурах.
Для чего нужна легированная сталь?
Легированная сталь— одна из наиболее часто используемых сталей.Существует широкий спектр применения легированной стали, в том числе:
- Трубы, используемые в приложениях, связанных с энергетикой, таких как бурение нефтяных и газовых скважин. Они обладают способностью противостоять нагрузкам и давлению, которые будут применяться в этих частях машины.
- Подшипники изготовлены из легированной стали, так как она придает им прочность, позволяющую противостоять растрескиванию или усталости при качении.
- Architecture использует легированную сталь, чтобы избежать коррозии, в строительстве используется высоколегированная сталь.
- Железные дороги, сейфы безопасности и броня — другие распространенные применения легированной стали.Марганец и никель, содержащиеся в легированной стали, в основном ответственны за это применение.
- Предметы домашнего обихода, такие как посуда, столовые приборы, столешницы и т. Д., Изготовлены из нержавеющей стали, так как им легко придать форму при высоких температурах.
- Artwork включает стальные сплавы как средство для изобразительного искусства. Художники используют его как основу холста, чтобы придать произведению искусства блеск.
Легированная сталь используется практически во всех отраслях промышленности. В дополнение к перечисленным выше применениям сталь может использоваться в транспорте, жилищном строительстве, энергетике и машиностроении.
Легированная сталь VS Углеродистая сталь
«Стойкость для характера человека, как углерод для стали», Наполеон Хилл.
Другой тип стали, которую следует представить в этой статье, — углеродистая сталь. Основным элементом в этой стали является не железо, а углерод. Чем выше количество углерода, тем легче вы можете закалить металл при его нагревании. Также существует сталь с низким, средним и высоким содержанием углерода. В низкоуглеродистой стали содержание углерода не превышает 0.25% смешано с 0,4% марганца. Это самая дешевая углеродистая сталь, но их можно использовать во многих областях, поскольку им легко придать форму. Среднеуглеродистая сталь состоит максимум из 0,54% углерода и 1,65% марганца. Более высокое содержание углерода делает этот тип стали более прочным, а также придает ей устойчивость к износу. Однако это снижает их способность легко формоваться. В то время как высокоуглеродистая сталь имеет содержание углерода, которое может достигать 0,9%.
Углеродистая сталь этого типа является самой прочной и трудно поддается формованию, поэтому ее используют только тогда, когда это действительно необходимо.Некоторые из его применений — пружины, проволока и ножи. Если вы любитель химии, то наверняка знаете, что различные формы углерода очень сильны. Алмазы, которые являются самым прочным материалом на Земле, на самом деле сделаны из углерода. Таким образом, это может объяснить, почему, когда углерод смешивается с железом, этого достаточно без каких-либо дополнительных элементов для его усиления.
Теперь, когда мы создали хорошую основу для того, что такое углеродистая сталь, давайте погрузимся в различия между углеродистой сталью и легированной сталью.Их состав сильно отличается друг от друга. Углеродистая сталь состоит максимум из 2,1% углерода (очень высокоуглеродистая сталь) и железа. Любой другой элемент, содержащийся в этой стали, считается примесью.
Однако легированная сталь не была бы легированной без дополнительных элементов, добавленных для улучшения их свойств. Это делает легированную сталь более устойчивой к коррозии, более высокой прочностью на разрыв и твердостью. Чем выше содержание легирующих элементов, тем шире используется легированная сталь.С другой стороны, чем выше содержание углерода, тем тверже и труднее становится сталь. Тем не менее углеродистая сталь занимает достойное место в ценовой категории. Углеродистая сталь относительно дешевле, особенно из-за более низкого содержания углерода. Легированная сталь может стать очень дорогой из-за добавленных легирующих элементов и их количества.
Сколько это стоит?
Прежде чем сделать покупку, давайте рассмотрим плюсы и минусы легированных сталей. Легированные стали обладают высоким удельным весом.Они также имеют низкую плотность, что снижает их вес, поэтому они могут выдерживать нагрузку и давление. С помощью тепла им можно придать любую необходимую форму, что расширяет возможности их применения. С другой стороны, по сравнению с нержавеющей сталью, легированная сталь в целом имеет более низкую прочность (особенно при более высоких температурах), а также более высокую вероятность коррозии.
Когда вы смотрите на легированную сталь, необходимо учитывать несколько факторов: форму легированной стали, толщину, ширину и длину стальных труб.А также марка трубы, то есть процентное содержание легирующих элементов. Двумя основными местами поставок легированной стали являются Индия и Китай. На третьем месте Соединенные Штаты. По данным глобальных торговых интернет-сайтов (таких как Alibaba.com и made in-China), цена на легированную сталь начинается от 450 долларов и может достигать 2800 долларов за тонну. Минимальный вес для заказа — одна тонна.
В заключение, куда бы вы ни посмотрели, вы найдете сталь в любом виде. Он был интегрирован практически во все аспекты жизни.В зависимости от элементов, с которыми смешано железо, образуются разные типы стали. Каждый тип стали, будь то легированная, углеродистая или нержавеющая сталь, имеет свой собственный набор свойств, которые делают их более подходящими для конкретных применений. Но общие свойства, которые они все разделяют, — это их прочность, твердость и способность принимать желаемую форму. Использование стали широко варьируется от кухонной посуды до промышленности, строительства и сельского хозяйства.
Руководство по выбору углеродистых и легированных сталей
Углеродистые стали — это стали, в которых основной легирующей добавкой является углерод.Легированные стали легируют не только углеродом, но и другими металлами или материалами для улучшения свойств.
Углеродистые стали классифицируются на основе содержания углерода в стали. Четыре основных класса углеродистой стали: мягкая и низкоуглеродистая сталь, среднеуглеродистая сталь, высокоуглеродистая сталь и сверхвысокуглеродистая сталь.
Мягкие и низкоуглеродистые стали содержат 0,16–0,29% углерода. Они являются наиболее распространенной формой стали, поскольку имеют относительно низкую стоимость и обладают свойствами материала, приемлемыми для многих областей применения.Они не хрупкие и не пластичные, но податливые. Поверхностную твердость можно повысить за счет науглероживания.
Среднеуглеродистые стали содержат примерно 0,30–0,59% углерода. Они уравновешивают пластичность и прочность и обладают хорошей износостойкостью. Они используются в ковке, а также для изготовления крупных промышленных и автомобильных компонентов.
Углеродистая стальHigh содержит примерно 0,6–0,99% углерода. Они очень прочные и используются для пружин и высокопрочных проволок.
Ультравысокие углеродистые стали содержат примерно 1-2% углерода. Эти стали можно закалять до высокой твердости и использовать для изготовления специализированных изделий, таких как ножи, оси или пробойники. Стали с содержанием углерода выше 1,2% обычно получают методом порошковой металлургии. Стали с содержанием углерода более 2% считаются чугунными.
Легированные стали содержат разное количество различных металлов и материалов, что определяет их свойства. Некоторые из наиболее часто добавляемых материалов включают хром, молибден, никель и кремний.
Хром добавляется в меньших количествах (0,5–2%) для повышения прокаливаемости и в больших количествах (4–18%) для повышения коррозионной стойкости.
Молибден добавляют в количестве 0,25-0,40% для повышения ударной вязкости стали.
Никель добавляется в меньших количествах (2-5%) для повышения ударной вязкости и в больших количествах (12-20%) для повышения коррозионной стойкости.
Кремний добавляют в сталь в меньших количествах (0.2-0,7%) для увеличения прочности и в больших количествах (> 2%) для улучшения его магнитных свойств.
Технические характеристики
Выбор металлических сплавов требует анализа требуемых размеров и технических характеристик. Размеры, которые следует учитывать, включают внешний диаметр (OD), внутренний диаметр (ID), общую длину и общую толщину.
Другие важные технические характеристики (в зависимости от области применения) включают:
- Форма изделия
- Прочность на разрыв
- Предел текучести
- Температура плавления
- Проводимость
- Коррозионная стойкость
- Пластичность
- Ковкость
Эти свойства различаются в зависимости от метода формования и состава сплава.
Приложения
Углеродистая сталь — это недрагоценный металл, который сегодня широко используется в производстве во всем мире почти во всех отраслях промышленности, включая аэрокосмическую, авиационную, автомобильную, химическую и оборонную. Различные свойства легированных сталей могут применяться во многих областях, в том числе в конструкции зубчатых колес, труб, опор и других компонентов инфраструктуры.
Стандарты
AISC 360 — Спецификация для зданий из конструкционной стали.
АИСТ ПБ-334 — Производство, обработка и обработка стали.
ASTM F541 — Стандартная спецификация для рым-болтов из легированной стали.
Кредит изображения:
Фото Jatinsanghvi / CC BY-SA 3.0 | Фото Билла Эбботта / CC BY-SA 2.0
Читайте мнения пользователей об углеродистых и легированных сталях Углеродистая сталь
и легированная сталь — Сравнение — Плюсы и минусы
Углеродистая сталь
Углеродистые стали — это железоуглеродистые сплавы, которые могут содержать значительные концентрации других легирующих элементов. Простые углеродистые стали — это железоуглеродистые сплавы, свойства которых в первую очередь обусловлены присутствием углерода. Некоторые случайные элементы, такие как марганец, кремний, сера и фосфор, присутствуют в небольших количествах из-за метода производства стали, а не для изменения механических свойств. Добавление небольшого количества неметаллического углерода в железо обменивает его с высокой пластичностью на с большей прочностью . Благодаря своей очень высокой прочности, но все же значительной ударной вязкости и способности сильно изменяться при термообработке , сталь является одним из наиболее полезных и распространенных сплавов на основе черных металлов в современном использовании.Существуют тысячи сплавов, которые имеют различный состав и / или термообработку. Механические свойства чувствительны к содержанию углерода, которое обычно составляет менее 1,0 мас.%. Согласно классификации AISI углеродистая сталь делится на четыре класса в зависимости от содержания углерода:
- Низкоуглеродистые стали . Низкоуглеродистая сталь, также известная как низкоуглеродистая сталь, в настоящее время является наиболее распространенной формой стали, поскольку ее цена относительно невысока, а свойства материала приемлемы для многих областей применения.Низкоуглеродистая сталь содержит примерно 0,05–0,25% углерода, что делает ее ковкой и пластичной. Низкоуглеродистая сталь имеет относительно низкую прочность на разрыв, но она дешевая и ее легко формовать; твердость поверхности можно повысить за счет науглероживания.
- Среднеуглеродистые стали . Среднеуглеродистая сталь содержит примерно 0,3–0,6% углерода. Уравновешивает пластичность и прочность, обладает хорошей износостойкостью. Этот сорт стали в основном используется в производстве деталей машин, валов, осей, шестерен, коленчатых валов, муфт и поковок, а также может использоваться в рельсах и железнодорожных колесах.
- Высокоуглеродистые стали . Высокоуглеродистая сталь содержит примерно от 0,60 до 1,00% углерода. Твердость выше, чем у других марок, но пластичность снижается. Высокоуглеродистые стали могут использоваться для изготовления пружин, канатной проволоки, молотков, отверток и гаечных ключей.
- Ультра-высокоуглеродистая сталь . Ультра-высокоуглеродистая сталь содержит примерно 1,25–2,0% углерода. Стали, которые можно улучшать до высокой твердости. Этот сорт стали может использоваться для изделий из твердой стали, таких как пружины грузовых автомобилей, металлорежущие инструменты и другие специальные цели, такие как (непромышленные) ножи, оси или пуансоны.Большинство сталей с содержанием углерода более 2,5% производится методом порошковой металлургии.
Легированные стали
Сталь представляет собой сплав железа и углерода, но термин легированная сталь обычно относится только к сталям, которые содержат другие элементы, такие как ванадий, молибден или кобальт, в количествах, достаточных для изменения свойств базовой стали. Как правило, легированная сталь представляет собой сталь, легированную различными элементами в общем количестве между 1.0% и 50% по весу для улучшения его механических свойств. Нержавеющие стали представляют собой особую группу высоколегированных сталей, которые содержат минимум 11% хрома по массе и максимум 1,2% углерода по массе. Легированные стали делятся на две группы:
- Стали низколегированные . Низколегированные стали представляют собой категорию черных металлов, которые демонстрируют механические свойства, превосходящие простые углеродистые стали, в результате добавления таких легирующих элементов, как никель, хром и молибден, марганец и кремний.Роль легирующих элементов заключается в повышении прокаливаемости с целью оптимизации механических свойств и ударной вязкости после термообработки. Однако в некоторых случаях добавки сплава используются для уменьшения ухудшения состояния окружающей среды при определенных условиях эксплуатации.
- Высоколегированные стали . Стали с содержанием легирования более 5 мас.% Обычно классифицируются как высоколегированные. Нержавеющие стали являются основными типами высоколегированных сталей, но два других типа — это сверхвысокопрочные никель-кобальтовые стали и мартенситностареющие стали .Нержавеющая сталь определяется как низкоуглеродистая высоколегированная сталь с содержанием хрома не менее 10,5% с другими легирующими элементами или без них.
Сталь 41xx — Хромомолибденовая сталь — Среднеуглеродистая сверхвысокопрочная сталь
Хромолибденовая сталь — это среднеуглеродистая сверхвысокопрочная низколегированная сталь, получившая свое название от сочетания слов «хром» и «молибден» — двух основных легирующих элементов. Хромолибденовая сталь часто используется, когда требуется большая прочность, чем у низкоуглеродистой стали, хотя это часто приводит к удорожанию.Хромомолибден подпадает под обозначение стали AISI 41xx (ASTM A519). Примеры применений для 4130, 4140 и 4145 включают в себя конструкционные трубы, велосипедные рамы, коленчатые валы, звенья цепи, утяжеленные бурильные трубы, газовые баллоны для транспортировки сжатых газов, детали огнестрельного оружия, компоненты сцепления и маховика, а также каркасы безопасности.
Свойства углеродистой стали по сравнению с легированной сталью
Свойства материала — это интенсивных свойств , это означает, что они не зависят от количества массы и могут изменяться от места к месту в системе в любой момент.В основе материаловедения лежит изучение структуры материалов и их соотнесение с их свойствами (механическими, электрическими и т. Д.). Как только специалист по материалам узнает об этой корреляции структура-свойство, он может перейти к изучению относительных характеристик материала в данном приложении. Основными определяющими факторами структуры материала и, следовательно, его свойств являются составляющие его химические элементы и способ, которым он был переработан в свою окончательную форму.
Плотность углеродистой стали по сравнению с легированной сталью
Плотность типичной стали составляет 8.05 г / см 3 .
Плотность типичной легированной стали составляет 7,85 г / см 3 . (4150 хромомолибден)
Плотность определяется как масса на единицу объема . Это интенсивное свойство , которое математически определяется как масса, разделенная на объем:
ρ = м / В
Проще говоря, плотность (ρ) вещества — это общая масса (m) этого вещества, деленная на общий объем (V), занимаемый этим веществом.Стандартная единица СИ — килограммов на кубический метр ( кг / м 3 ). Стандартная английская единица — фунтов массы на кубических футов ( фунтов / фут 3 ).
Поскольку плотность (ρ) вещества — это общая масса (m) этого вещества, деленная на общий объем (V), занимаемый этим веществом, очевидно, что плотность вещества сильно зависит от его атомной массы, а также на плотность атомов (N; атом / см 3 ),
- Атомный вес .Атомная масса переносится атомным ядром, которое занимает только около 10 -12 от общего объема атома или меньше, но оно содержит весь положительный заряд и не менее 99,95% от общей массы атома. Следовательно, оно определяется массовым числом (числом протонов и нейтронов).
- Плотность атомного числа . Плотность атомного числа (N; атомов / см 3 ), которая связана с атомными радиусами, представляет собой количество атомов данного типа в единице объема (В; см 3 ) материала.Плотность атомного числа (N; атомы / см 3 ) чистого материала, имеющего атомную или молекулярную массу (М; граммы / моль) и плотность материала (; грамм / см 3 ) легко определяется вычисляется из следующего уравнения с использованием числа Авогадро ( N A = 6,022 × 10 23 атомов или молекул на моль):
- Кристаллическая структура. На плотность кристаллического вещества существенно влияет его кристаллическая структура. ГЦК-структура, наряду со своим гексагональным родственником (ГПУ), имеет наиболее эффективный фактор упаковки (74%).Металлы, содержащие структуры FCC, включают аустенит, алюминий, медь, свинец, серебро, золото, никель, платину и торий.
Механические свойства углеродистой стали и легированной стали
Материалы часто выбирают для различных применений, потому что они имеют желаемое сочетание механических характеристик. Для структурных применений свойства материалов имеют решающее значение, и инженеры должны их учитывать.
Сопротивление углеродистой стали и легированной стали
В механике материалов сила материала — это его способность выдерживать приложенную нагрузку без разрушения или пластической деформации. Прочность материалов в основном рассматривает взаимосвязь между внешними нагрузками , приложенными к материалу, и результирующей деформацией или изменением размеров материала. Прочность материала — это его способность выдерживать эту приложенную нагрузку без разрушения или пластической деформации.
Предел прочности на разрыв
Предел прочности при растяжении низкоуглеродистой стали составляет 400 — 550 МПа.
Предел прочности на разрыв сверхвысокоуглеродистой стали составляет 1100 МПа.
Предел прочности при растяжении стали 41хх — хромистой стали зависит от марки, но составляет около 700 МПа.
Предел прочности при растяжении является максимумом на инженерной кривой зависимости напряжения от деформации. Это соответствует максимальному напряжению , которое может выдержать конструкция при растяжении. Предел прочности на разрыв часто сокращают до «прочности на разрыв» или даже до «предела». Если это напряжение приложить и поддерживать, в результате произойдет разрушение. Часто это значение значительно превышает предел текучести (на 50–60 процентов больше, чем предел текучести для некоторых типов металлов).Когда пластичный материал достигает предела прочности, он испытывает образование шейки, где площадь поперечного сечения локально уменьшается. Кривая «напряжение-деформация» не содержит напряжения, превышающего предел прочности. Несмотря на то, что деформации могут продолжать увеличиваться, напряжение обычно уменьшается после достижения предела прочности. Это интенсивное свойство; поэтому его значение не зависит от размера испытуемого образца. Однако это зависит от других факторов, таких как подготовка образца, наличие или отсутствие поверхностных дефектов и температура испытательной среды и материала. Предел прочности на разрыв варьируется от 50 МПа для алюминия до 3000 МПа для очень высокопрочных сталей.
Предел текучести
Предел текучести низкоуглеродистой стали 250 МПа.
Предел текучести сверхвысокоуглеродистой стали 800 МПа.
Предел текучести стали 41хх — хромомолибденовой стали зависит от марки, но составляет около 500 МПа.
Предел текучести — это точка на кривой напряжения-деформации, которая указывает предел упругого поведения и начало пластического поведения. Предел текучести или предел текучести — это свойство материала, определяемое как напряжение, при котором материал начинает пластически деформироваться, тогда как предел текучести — это точка, в которой начинается нелинейная (упругая + пластическая) деформация. До достижения предела текучести материал будет упруго деформироваться и вернется к своей исходной форме, когда приложенное напряжение будет снято. После достижения предела текучести некоторая часть деформации будет постоянной и необратимой. Некоторые стали и другие материалы демонстрируют поведение, называемое явлением предела текучести.Предел текучести варьируется от 35 МПа для алюминия с низкой прочностью до более 1400 МПа для высокопрочных сталей.
Модуль упругости Юнга
Модуль упругостидля низкоуглеродистой стали составляет 200 ГПа.
Модуль упругостиСталь 41хх — хромомолибденовая сталь составляет 205 ГПа.
Модуль упругости Юнга представляет собой модуль упругости для растягивающего и сжимающего напряжения в режиме линейной упругости при одноосной деформации и обычно оценивается с помощью испытаний на растяжение.С точностью до предельного напряжения тело сможет восстановить свои размеры при снятии нагрузки. Приложенные напряжения заставляют атомы в кристалле перемещаться из положения равновесия. Все атомы смещаются на одинаковую величину и по-прежнему сохраняют свою относительную геометрию. Когда напряжения снимаются, все атомы возвращаются в исходное положение, и остаточная деформация не происходит. Согласно закону Гука , напряжение пропорционально деформации (в упругой области), а наклон равен модулю Юнга .Модуль Юнга равен продольному напряжению, деленному на деформацию.
Твердость углеродистой стали по сравнению с легированной сталью
Твердостьпо Бринеллю для низкоуглеродистой стали составляет примерно 120 МПа.
Твердостьпо Бринеллю высокоуглеродистой стали составляет примерно 200 МПа.
Твердость по Бринеллюсталь 41хх — хромистая сталь составляет примерно 200 МПа.
Тест на твердость по Роквеллу — один из наиболее распространенных тестов на твердость при вдавливании, разработанный для определения твердости.В отличие от теста Бринелля, тестер Роквелла измеряет глубину проникновения индентора при большой нагрузке (большая нагрузка) по сравнению с проникновением при предварительной нагрузке (незначительная нагрузка). Незначительная нагрузка устанавливает нулевое положение. Основная нагрузка прикладывается, затем снимается, сохраняя при этом второстепенную нагрузку. Разница между глубиной проникновения до и после приложения основной нагрузки используется для расчета числа твердости по Роквеллу . То есть глубина проникновения и твердость обратно пропорциональны.Основным преимуществом твердости по Роквеллу является ее способность отображать значения твердости напрямую . Результатом является безразмерное число, обозначенное как HRA, HRB, HRC и т. Д., Где последняя буква — соответствующая шкала Роквелла.
Тест Rockwell C проводится с пенетратором Brale (, алмазный конус 120 ° ) и основной нагрузкой 150 кг.
Термические свойства углеродистой стали по сравнению с легированной сталью
Термические свойства материалов относятся к реакции материалов на изменения их температуры и на приложение тепла.Поскольку твердое тело поглощает энергию в виде тепла, его температура повышается, а его размеры увеличиваются. Но различных материалов реагируют на приложение тепла по-разному, .
Теплоемкость, тепловое расширение и теплопроводность — это свойства, которые часто имеют решающее значение при практическом использовании твердых тел.
Точка плавления углеродистой стали по сравнению с легированной сталью
Температура плавления низкоуглеродистой стали составляет около 1450 ° C.
Температура плавления хромомолибденовой стали 41хх составляет около 1427 ° C.
В общем, плавление представляет собой фазовый переход вещества из твердой фазы в жидкую. Температура плавления вещества — это температура, при которой происходит это фазовое изменение. Точка плавления также определяет состояние, при котором твердое вещество и жидкость могут существовать в равновесии.
Теплопроводность углеродистой стали по сравнению с легированной сталью
Теплопроводность типичной стали составляет 20 Вт / (м · К).
Теплопроводность стали 41хх — хромомолибденовой стали составляет около 41 Вт / (м.К).
Характеристики теплопередачи твердого материала измеряются свойством, называемым теплопроводностью , k (или λ), которое измеряется в Вт / м · K . Это мера способности вещества передавать тепло через материал за счет теплопроводности. Обратите внимание, что закон Фурье применяется ко всем веществам, независимо от их состояния (твердое, жидкое или газообразное), поэтому он также определен для жидкостей и газов.
Коэффициент теплопроводности большинства жидкостей и твердых тел зависит от температуры.Для паров это также зависит от давления. Всего:
Большинство материалов почти однородны, поэтому обычно можно записать k = k (T) . Подобные определения связаны с теплопроводностью в направлениях y и z (ky, kz), но для изотропного материала теплопроводность не зависит от направления переноса, kx = ky = kz = k.
.