Аргоном это: Аргонодуговая сварка: что это такое

Содержание

Газ аргон – химические свойства и сфера применения

В переводе с греческого «argon» означает «медленный» или «неактивный». Такое определение газ аргон получил благодаря своим инертным свойствам, позволяющим широко его использовать во многих промышленных и бытовых целях.

 

Химический элемент Ar

Ar – 18-й элемент периодической таблицы Менделеева, относящийся к благородным инертным газам. Данное вещество является третьим после N (азота) и O (кислорода) по содержанию в атмосфере Земли. В обычных условиях – бесцветен, не горюч, не ядовит, без вкуса и запаха.

 

Другие свойства газа аргона:

  • атомная масса: 39,95;
  • содержание в воздухе: 0,9% объема и 1,3% массы;
  • плотность в нормальных условиях: 1,78 кг/м³;
  • температура кипения: -186°С.

 

На рисунке название химического элемента и его свойства

 

Данный элемент был открыт Джоном Стреттом и Уильямом Рамзаем при исследовании состава воздуха. Несовпадение плотности при различных химических испытаниях натолкнуло ученых на мысль, что в атмосфере помимо азота и кислорода присутствует инертный тяжелый газ. В итоге в 1894 г. было сделано заявление об открытии химического элемента, доля которого в каждом кубометре воздуха составляет 15 г.

 

Как добывают аргон

Ar не поддается изменениям в процессе его использования и всегда возвращается в атмосферу. Поэтому ученые считают данный источник неисчерпаемым. Он добывается как сопутствующий продукт при разделении воздуха на кислород и азот посредством низкотемпературной ректификации.

 

Для реализации этого метода применяются специальные воздухоразделительные аппараты, состоящие из колонн высокого, низкого давления и конденсатора-испарителя. В результате процесса ректификации (разделения) получается аргон с небольшими примесями (3-10%) азота и кислорода. Чтобы произвести очистку, примеси убираются с помощью дополнительных химических реакций. Современные технологии позволяют достичь 99,99% чистоты данного продукта.

 

Представлены установки по производству данного химического элемента

 

Хранится и транспортируется газ аргон в стальных баллонах (ГОСТ 949-73), которые имеют серый окрас с полосой и соответствующей надписью зеленого цвета. При этом процесс наполнения емкости должен полностью соответствовать технологическим нормам и правилам безопасности. Детальную информацию о специфике заполнения газовых баллонов можно прочитать в статье: баллоны со сварочной смесью – технические особенности и правила эксплуатации.

 

Где применяется газ аргон

Данный элемент имеет достаточно большую сферу применения. Ниже приведены основные области его использования:

  1. заполнение внутренней полости ламп накаливания и стеклопакетов;
  2. вытеснение влаги и кислорода для долгого хранения пищевых продуктов;
  3. огнетушащее вещество в некоторых системах тушения пожара;
  4. защитная среда при сварочном процессе;
  5. плазмообразующий газ для плазменной сварки и резки.

 

В сварочном производстве он применяется как защитная среда в процессе сварки редких металлов (ниобия, титана, циркония) и их сплавов, легированный сталей разных марок, а также алюминиевых, магниевых и хромоникелевых сплавов. Для черных металлов, как правило, применяют смесь Ar с другими газами – гелием, кислородом, углекислотой и водородом.

 

Вид защитной среды при сварочном процессе, которую создает аргон

 

Являясь тяжелее воздуха, аргоновая струя надежно защищает металл во время сварки. Инертный газ на протяжении длительного времени является защитой для расплавленной и нагретой металлической поверхности. Больше о сварочном процессе с применением аргоновой защитной среды читайте в статье: сварка аргоном – технология и режимы работы оборудования.

 

Меры предосторожности при эксплуатации

Данный химический элемент не представляет абсолютно никакой опасности для окружающей среды, но при большой концентрации оказывает удушающее воздействие на человека. Он нередко скапливается в районе пола в недостаточно проветриваемых помещениях, а при значительном уменьшении содержание кислорода может привести к потере сознания и даже смертельному исходу. Поэтому важно следить за концентрацией кислорода в закрытом помещении, которая не должна падать ниже 19%.

 

Еще мы советуем посмотреть третью часть обучения сварке в защитной среде аргона:

 

Жидкий Ar способен вызвать обморожение участков кожи и повредить слизистую оболочку глаз, поэтому в процессе работы важно использовать спецодежду и защитные очки. При работе в атмосфере этого газа с целью предотвращения удушения необходимо применять изолирующий кислородный прибор или шланговый противогаз.

 

Заправить баллоны аргоном можно в компании «Промтехгаз», где соблюдается правильная технология заправки и предоставляется качественное обслуживание.

Если вы интересуетесь другими техническими газами, информацию можете найти здесь.

Аргон — это… Что такое Аргон?

Внешний вид простого вещества
Свойства атома
Имя, символ, номер

Арго́н / Argon (Ar), 18

Атомная масса
(молярная масса)

39,948 а. е. м. (г/моль)

Электронная конфигурация

[Ne] 3s2 3p6

Радиус атома

? (71)[1]пм

Химические свойства
Ковалентный радиус

106[1]пм

Радиус иона

154[1]пм

Электроотрицательность

4,3 (шкала Полинга)

Электродный потенциал

0

Степени окисления

0

Энергия ионизации
(первый электрон)

1519,6(15,75) кДж/моль (эВ)

Термодинамические свойства простого вещества
Плотность (при н. у.)

1,784·10−3 г/см³

Плотность при т. п.

1,40 г/см³

Температура плавления

83,8 К (-189,35 °C)

Температура кипения

87,3 К (-185,85 °C)

Теплота испарения

6,52 кДж/моль

Молярная теплоёмкость

20,79[2] Дж/(K·моль)

Молярный объём

24,2 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

кубическая гранецентрированая

Параметры решётки

5,260 Å

Температура Дебая

85 K

Прочие характеристики
Теплопроводность

(300 K) 0,0177 Вт/(м·К)

Арго́н — элемент главной подгруппы восьмой группы, третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 18. Обозначается символом Ar (лат. Argon). Третий по распространённости элемент в земной атмосфере (после азота и кислорода) — 0,93 % по объёму. Простое вещество аргон (CAS-номер: 7440-37-1) — инертный одноатомный газ без цвета, вкуса и запаха.

История

История открытия аргона начинается в 1785 году, когда английский физик и химик Генри Кавендиш, изучая состав воздуха, решил установить, весь ли азот воздуха окисляется. В течение многих недель он подвергал воздействию электрического разряда смесь воздуха с кислородом в U-образных трубках, в результате чего в них образовывались все новые порции бурых окислов азота, которые исследователь периодически растворял в щёлочи. Через некоторое время образование окислов прекратилось, но после связывания оставшегося кислорода остался пузырек газа, объём которого не уменьшался при длительном воздействии электрических разрядов в присутствии кислорода. Кавендиш оценил объём оставшегося газового пузыря в 1/120 от первоначального объёма воздуха

[3][4][5]. Разгадать загадку пузыря Кавендиш не смог, поэтому прекратил свое исследование, и даже не опубликовал его результатов. Только спустя много лет английский физик Джеймс Максвелл собрал и опубликовал неизданные рукописи и лабораторные записки Кавендиша.

Дальнейшая история открытия аргона связана с именем Рэлея, который несколько лет посвятил исследованиям плотности газов, особенно азота. Оказалось, что литр азота, полученного из воздуха, весил больше литра «химического» азота (полученного путём разложения какого-либо азотистого соединения, например, закиси азота, окиси азота, аммиака, мочевины или селитры) на 1,6 мг (вес первого был равен 1,2521, а второго 1,2505 г). Эта разница была не так уж мала, чтобы можно было её отнести на счет ошибки опыта. К тому же она постоянно повторялась независимо от источника получения химического азота

[3].

Не придя к разгадке, осенью 1892 года Рэлей в журнале «Nature» опубликовал письмо к учёным, с просьбой дать объяснение тому факту, что в зависимости от способа выделения азота он получал разные величины плотности. Письмо прочли многие учёные, однако никто не был в состоянии ответить на поставленный в нём вопрос[3][4].

У известного уже в то время английского химика Уильяма Рамзая также не было готового ответа, но он предложил Рэлею свое сотрудничество. Интуиция побудила Рамзая предположить, что азот воздуха содержит примеси неизвестного и более тяжелого газа, а Дьюар обратил внимание Рэлея на описание старинных опытов Кавендиша (которые уже были к этому времени опубликованы)

[4].

Пытаясь выделить из воздуха скрытую составную часть, каждый из учёных пошел своим путём. Рэлей повторил опыт Кавендиша в увеличенном масштабе и на более высоком техническом уровне. Трансформатор под напряжением 6000 вольт посылал в 50-литровый колокол, заполненный азотом, сноп электрических искр. Специальная турбина создавала в колоколе фонтан брызг раствора щёлочи, поглощающих окислы азота и примесь углекислоты. Оставшийся газ Рэлей высушил, и пропустил через фарфоровую трубку с нагретыми медными опилками, задерживающими остатки кислорода. Опыт длился несколько дней

[3].

Рамзай воспользовался открытой им способностью нагретого металлического магния поглощать азот, образуя твёрдый нитрид магния. Многократно пропускал он несколько литров азота через собранный им прибор. Через 10 дней объём газа перестал уменьшаться, следовательно, весь азот оказался связанным. Одновременно путём соединения с медью был удален кислород, присутствовавший в качестве примеси к азоту. Этим способом Рамзаю в первом же опыте удалось выделить около 100 см³ нового газа[3].

Итак, был открыт новый элемент. Стало известно, что он тяжелее азота почти в полтора раза и составляет 1/80 часть объёма воздуха. Рамзай при помощи акустических измерений нашёл, что молекула нового газа состоит из одного атома — до этого подобные газы в устойчивом состоянии не встречались. Отсюда следовал очень важный вывод — раз молекула одноатомна, то, очевидно, новый газ представляет собой не сложное химическое соединение, а простое вещество

[3].

Много времени затратили Рамзай и Рэлей на изучение его реакционной способности по отношению ко многим химически активным веществам. Но, как и следовало ожидать, пришли к выводу: их газ совершенно недеятелен. Это было ошеломляюще — до той поры не было известно ни одного настолько инертного вещества

[3].

Большую роль в изучении нового газа сыграл спектральный анализ. Спектр выделенного из воздуха газа с его характерными оранжевыми, синими и зелёными линиями резко отличался от спектров уже известных газов. Уильям Крукс, один из виднейших спектроскопистов того времени, насчитал в его спектре почти 200 линий. Уровень развития спектрального анализа на то время не дал возможности определить, одному или нескольким элементам принадлежал наблюдаемый спектр. Несколько лет спустя выяснилось, что Рамзай и Рэлей держали в своих руках не одного незнакомца, а нескольких — целую плеяду инертных газов[3].

7 августа 1894 года в Оксфорде, на собрании Британской ассоциации физиков, химиков и естествоиспытателей, было сделано сообщение об открытии нового элемента, который был назван

аргоном. В своём докладе Рэлей утверждал, что в каждом кубическом метре воздуха присутствует около 15 г открытого газа (1,288 вес. %)[3][4]. Слишком невероятен был тот факт, что несколько поколений ученых не заметили составной части воздуха, да еще и в количестве целого процента! В считанные дни десятки естествоиспытателей из разных стран проверили опыты Рамзая и Рэлея. Сомнений не оставалось: воздух содержит аргон[3].

Через 10 лет, в 1904 году, Рэлей за исследования плотностей наиболее распространённых газов и открытие аргона получает Нобелевскую премию по физике, а Рамзай за открытие в атмосфере различных инертных газов — Нобелевскую премию по химии

[3].

Происхождение названия

По предложению доктора Медана (председателя заседания, на котором был сделан доклад об открытии) Рэлей и Рамзай дали новому газу имя «аргон» (от др.-греч. ἀργός — ленивый, медленный, неактивный). Это название подчеркивало важнейшее свойство элемента — его химическую неактивность[3].

Распространённость

Во Вселенной

Содержание аргона в мировой материи оценивается приблизительно в 0,02 % по массе[6].

Аргон (вместе с неоном) наблюдается на некоторых звездах и в планетарных туманностях. В целом его в космосе больше, чем кальция, фосфора, хлора, в то время как на Земле существуют обратные отношения

[7].

Земная кора

Аргон — третий по содержанию после азота и кислорода компонент воздуха, его среднестатистическое содержание в атмосфере Земли составляет 0,934 % по объему и 1,288 % по массе[4][7], его запасы в атмосфере оцениваются в 4·1014 т[2][4]. Аргон — самый распространённый инертный газ в земной атмосфере, в 1 м³ воздуха содержится 9,34 л аргона (для сравнения: в том же объеме воздуха содержится 18,2 см³ неона, 5,2 см³ гелия, 1,1 см³ криптона, 0,09 см³ ксенона)[4][7].

Содержание аргона в литосфере — 4·10−6 % по массе[2]. В каждом литре морской воды растворено 0,3 см³ аргона, в пресной воде его содержится 5,5·10

−5 — 9,7·10−5 %. Его содержание в Мировом океане оценивается в 7,5·1011 т, а в изверженных породах земной оболочки — 16,5·1011 т[7].

Определение

Качественно аргон обнаруживают с помощью эмиссионного спектрального анализа, основные характеристические линии — 434,80 и 811,53 нм. При количественном определении сопутствующие газы (O2, N2, H2, CO2) связываются специфичными реагентами (Ca, Cu, MnO, CuO, NaOH) или отделяются с помощью поглотителей (например, водных растворов органических и неорганических сульфатов). Отделение от других инертных газов основано на различной адсорбируемости их активным углём. Используются методы анализа, основанные на измерении различных физических свойств (плотности, теплопроводности и др.), а также масс-спектрометрические и хроматографические методы анализа[2].

Физические свойства

Аргон — одноатомный газ с температурой кипения (при нормальном давлении) −185,9 °C (немного ниже, чем у кислорода, но немного выше, чем у азота). В 100 мл воды при 20 °C растворяется 3,3 мл аргона, в некоторых органических растворителях аргон растворяется значительно лучше, чем в воде. Плотность при нормальных условиях составляет 1,7839 кг/м3

Химические свойства

Пока известны только 2 химических соединения аргона — гидрофторид аргона и CU(Ar)O, которые существуют при очень низких температурах. Кроме того, аргон образует эксимерные молекулы, то есть молекулы, у которых устойчивы возбужденные электронные состояния и неустойчиво основное состояние. Есть основания считать, что исключительно нестойкое соединение Hg—Ar, образующееся в электрическом разряде, — это подлинно химическое (валентное) соединение. Не исключено, что будут получены другие валентные соединения аргона с фтором и кислородом, которые тоже должны быть крайне неустойчивыми. Например, при электрическом возбуждении смеси аргона и хлора возможна газофазная реакция с образованием ArCl. Также со многими веществами, между молекулами которых действуют водородные связи (водой, фенолом, гидрохиноном и другими), образует соединения включения (клатраты), где атом аргона, как своего рода «гость», находится в полости, образованной в кристаллической решётке молекулами вещества-хозяина.

Соединение CU(Ar)O получено из соединения урана с углеродом и кислородом CUO[8]. Вероятно существование соединений со связями Ar-Si и Ar-C: FArSiF3 и FArCCH.

Изотопы

Аргон представлен в земной атмосфере тремя стабильными изотопами: [4][7]. Почти вся масса тяжёлого изотопа 40Ar возникла на Земле в результате распада радиоактивного изотопа калия 40K (содержание этого изотопа в изверженных породах в среднем составляет 3,1 г/т). Распад радиоактивного калия идёт по двум направлениям одновременно:

Первый процесс (обычный β-распад) протекает в 88 % случаев и ведет к возникновению стабильного изотопа кальция. Во втором процессе, где участвуют 12 % атомов, происходит электронный захват, в результате чего образуется тяжёлый изотоп аргона. Одна тонна калия, содержащегося в горных породах или водах, в течение года генерирует приблизительно 3100 атомов аргона. Таким образом, в минералах, содержащих калий, постепенно накапливается 40Ar, что позволяет измерять возраст горных пород; калий-аргоновый метод является одним из основных методов ядерной геохронологии.

Вероятные источники происхождения изотопов 36Ar и 38Ar — неустойчивые продукты спонтанного деления тяжёлых ядер, а также реакции захвата нейтронов и альфа-частиц ядрами лёгких элементов, содержащихся в урано-ториевых минералах.

Подавляющая часть космического аргона состоит из изотопов 36Ar и 38Ar. Это вызвано тем обстоятельством, что калий распространён в космосе примерно в 50 000 раз меньше, чем аргон (на Земле калий преобладает над аргоном в 660 раз). Примечателен произведенный геохимиками подсчёт: вычтя из аргона земной атмосферы радиогенный 40Ar, они получили изотопный состав, очень близкий к составу космического аргона[7].

Получение

В промышленности аргон получают как побочный продукт при крупномасштабном разделении воздуха на кислород и азот. При температуре −185,9 °C аргон конденсируется, при −189,4 °C — кристаллизуется.

Применение

Заполненная аргоном и парами ртути газоразрядная трубка

Ниже перечислены области применения аргона:

  • в аргоновых лазерах
  • в лампах накаливания и при заполнении внутреннего пространства стеклопакетов
  • в качестве защитной среды при сварке (дуговой, лазерной, контактной и т. п.) как металлов (например, титана), так и неметаллов
  • в качестве плазмаобразователя в плазматронах при сварке и резке
  • в пищевой промышленности аргон зарегистрирован в качестве пищевой добавки E938, в качестве пропеллента и упаковочного газа
  • в качестве огнетушащего вещества в газовых установках пожаротушения
  • в медицине во время операций для очистки воздуха и разрезов, так как аргон почти не образует химических соединений
  • в качестве составной части атмосферы эксперимента Марс-500[9] с целью снижения уровня кислорода для предотвращения пожара на борту космического корабля при путешествии на Марс
  • из-за низкой теплопроводности аргон применяется в дайвинге для поддува сухих гидрокостюмов, однако есть ряд недостатков:
  • высокая цена газа (кроме этого нужна отдельная система для аргона)

Биологическая роль

Аргон не играет никакой биологической роли.

Физиологическое действие

Инертные газы обладают физиологическим действием, которое проявляется в их наркотическом воздействии на организм. Наркотический эффект от вдыхания аргона проявляется только при барометрическом давлении свыше 0,2 МПа[10].

Содержание аргона в высоких концентрациях во вдыхаемом воздухе может вызвать головокружение, тошноту, рвоту, потерю сознания и смерть от асфиксии (в результате кислородного голодания)[11].

Примечания

Ссылки

аргоная сварка Томск, сварка аргоном Томск,сварка аргоном Томск цена



Сварка аргоном. Аргонная сварка. Сварка в аргоне.

Это все обиходные народные названия. Так что же это все-таки такое: «сварка аргоном», «аргоновая сварка», «аргонодуговая сварка»?

Термин аргонная сварка указывает лишь на то, что в процессе сварки в качестве защитной среды применяют инертные газы — аргон или гелий, и это является общим определением. 

Технически правильное название данной операции — аргонодуговая сварка. Или дуговая сварка, при которой в качестве защитного газа используется аргон. 

Немного истории.

 Впервые возможность сварки в среде инертных газов исследовал американец Чарльз Л. Коффин (Charles L. Coffin) в конце 19 века. Однако, даже в начале 20 века сварка таких материалов, как алюминий и магний была затруднена из-за их высокой активности в кислороде воздуха.

В начале 1930-х годов в США для сварки начали применять инертные газы, наполняемые в сосуды. Немного позднее в авиастроении был внедрен процесс сварки магния на постоянном токе. Этот процесс усовершенствовал и доработал Рассел Мередит (Russel Meredith) из Нортроп Эйркрафт (Northrop Aircraft).

Рассел Мередит разработал конструкцию горелки и запатентовал процесс Heli-Arc welding под номеро 2274631 для сварки магния и его сплавов. Таким образом, 1941 год является годом рождения TIG сварки. Позднее Рассел Мередит продал все права на использования патента и торговой марки HELIARC компании Линде Дивижн (Linde Division).

 Наиболее распространенный вид сварки — это дуговая сварка в защитном газе, при которой используют неплавящийся электрод из чистого или активированного вольфрама, а дугу и сварочную ванну защищают инертным газом, также может добавляться присадочный металл.

 Принцип действия аргонодуговой сварки.

Во время сварки процесс плавления происходит в газовой среде аргона. Главное орудие – это электрическая дуга. Именно в этой дуге происходит преобразование электрической энергии в тепловую. Потому что плотность именно тепловой энергии способна расплавить металл. На открытом воздухе зона сплавления металлов должна быть закрытой от кислорода, так как воздух очень плохо влияет на качество сплавки металлических швов. Во время сварки через сопло подаются специальные газы, которые как бы вытесняют кислород и азот, таким образом, защищая швы металла во время сваривания. Как упоминалось ранее, зачастую аргонная сварка производится с помощью вольфрамового электрода, т.е. TIG (GTAW). Но также дополнительно можно применять такие газы как гелий, азот, водород или на крайний случай углекислый газ. Но в углекислоте сварку нужно производить уже не вольфрамовым, а угольным электродом или плавящимся электродом (MIG, GMAW). 

Применение аргонодуговой сварки.

Среди всех видов сварки, наиболее востребованной является аргонодуговая сварка. Это связано с тем, что по качеству она наиболее полно удовлетворяет все запросы и требования. Она гарантирует высокое качество и прочность швов. Свою целевую аудиторию аргонная сварка нашла как в промышленности, так и в быту. В большинстве случаев применение аргоновой сварки используют для создания строений каркасов. Это связано с тем, что в каркасах швы должны выдерживать большую и постоянную нагрузку.

Если вам предстоит работа с металлами, которые плохо свариваются между собой или очень тонкими металлическими изделиями, то тут лучшим помощником также станет аргонодуговая сварка. Очень широкое использование аргонной сварки также можно отметить и в автомобильной промышленности.

С появлением аргонной сварки сложность при орбитальных швах также исчезла, так как с помощью различных автоматов можно отлично сварить между собой неповоротные стыки труб.

Аргонная сварка

Аргон применяют во многих производственных процессах, в том числе и в сварке. Аргон при сварке применяют в качестве защитного газа и часто называют это как аргоновая сварка или аргонодуговая сварка. Существует два популярных вида аргонодуговой сварки.

Аргоновую сварку можно разделить на сварку автоматическую и ручную. А так же разделяют сварку еще на два подвида это плавящимся электродом и неплавящимся электродом.

Не стоит забывать что аргон это всего лишь защитный газ при сварке. А сама сварка электрическая. По этому сварку еще называют аргонно дуговой сваркой что на самом деле у обоих названий суть одна.

Вот как это выглядит графически.

Автоматическая аргонно-дуговая сварка

Вот как работает автоматическая аргонно-дуговая сварка плавящимся электродом.

Почему плавящимся электродом. На видео видно как на кончике сопла торчит проволока которая и называется электродом. В процессе сварки она подается автоматически. Тоже самое есть на сварочных автоматах которые называются полуавтоматами но с таким отличием что проволока подается автоматически, а все остальное выполняет не робот а человек.

А теперь рассмотрим как работает автоматическая аргонно дуговая сварка только теперь неплавящимся электродом. В качестве электрода который не плавится применяют чаще всего вольфрам или графит, а в качестве защитного газа используют аргон. Всю работу выполняют роботы которые запрограммированные на определенные действия.

Ручная аргонодуговая сварка

Ручная аргоновая сварка плавящимся электродом. В качестве защитного газа используют аргон. А в качестве электрода используют как правило проволоку которая подается автоматически и называют ее электродом. Смотрим видео о том как работает данная сварка.

Ручная аргоновая сварка неплавящимся электродом. Электрод здесь не плавится, а материал для сварки подается непосредственно сварщиком.

Давайте посмотрим видео о том как можно аргоновой сваркой заварить чугун алюминий или нержавейку.

Как вы убедились что аргонная сварка это довольно не сложный способ соеденения металлов, но требует большого опыта от сварщика чтобы действительно качественно выполнять сварочные работы на различном сварочном оборудовании с различными металлами. Если у вас остались вопросы мы вам рекомендуем статью «Какие металлы можно варить аргонной сваркой.»

 


получение и применение газа – Статьи – Aйр Техник в Москве

Аргон – это простой одноатомный бесцветный, безвкусный газ, не имеющий запаха. Аргон тяжелее воздуха (плотность 1,78 кг/м 3 ), обладает низким потенциалом ионизации (15,7 В), не вступает в химические взаимодействия с другими элементами.

По объему и массе, после азота и кислорода, аргон самый распространенный газ в атмосфере: аргон в достаточных количествах содержится в свободном виде (0,9325% об., или 0,00007% вес.), что позволяет получать его из воздуха ректификационными методами.

Криогенный способ

Большую часть аргона в современной промышленности получают криогенным способом разделения сжиженного воздуха. При этом происходит разделение его на составляющие газы. Принцип работы криогенной ректификационной колонны основывается на разнице в температурах кипения газов, составляющих атмосферный воздух. Легкокипящие вещества, такие как гелий и неон, скапливаются в виде пара в верхней части колонны. Труднокипящие криптон и ксенон остаются в виде жидкости внизу. Аргон вместе с кислородом и азотом относится к средней фракции, поэтому примерно на уровне одной трети высоты основной колонны располагается патрубок, через который в специальную колонну выводится фракция аргона, содержащая примерно десять – двенадцать процентов этого газа. Здесь производится повторная ректификация. Азот, как более летучее вещество уходит вверх колонны, а более «тяжелый» кислород опускается вниз.

После частичного отделения кислорода и азота, остается смесь, содержание аргона в которой колеблется от 85% до 94%. Такой «сырой» аргон подлежит доочистке. Примеси азота удаляются ректификацией. А три – десять процентов кислорода убираются адсорбцией или химическим способом. В результате чистота полученного аргона достигает 99,99%.

Побочный продукт при производстве аммиака

Еще один источник получения аргона – это аммиачное производство. В данном случае газообразный аргон является отходом – примесью, извлекаемой из азота, который необходим для синтеза аммиака. После взаимодействия азота и водорода с образованием аммиака, аргон просто остается как не прореагировавший остаток.

Применение аргона

Аргон широко используют для создания инертной и защитной атмосферы, прежде всего при термической обработке легко окисляющихся металлов (аргоновая плавка, аргоновая сварка и другие). В атмосфере аргона получают кристаллы полупроводников и многие другие сверхчистые материалы. Аргоном часто заполняют электрические лампочки (для замедления испарения вольфрама (W) со спирали). При пропускании электрического разряда через стеклянную трубку, заполненную аргоном, наблюдается сине-голубое свечение, что широко используется, например, в светящейся рекламе. В геохронологии по определению соотношения изотопов 40Ar/40К устанавливают возраст минералов.

Аргон успешно применяется в пищевой промышленности как упаковочный газ, в качестве вещества для тушения пожаров, в медицине для очистки воздуха и в качестве наркоза и в аргоновых лазерах. Однако наибольшее и наилучшее применение этот газ получил в сварочных работах. Сварка в защитных газах (аргон или многокомпонентные газовые смеси на основе аргона) применяется практически для всех металлов, включая углеродистую сталь, алюминий, медь, нержавейку и титан.

Электровакуумная техника

  • Подавляющее большинство ламп накаливания заполняют смесью аргона (86%) и азота (14%).
  • Используется аргон и в современных люминесцентных лампах для облегчения зажигания, лучшей передачи тока и предохранения катодов от разрушения.

Пищевая промышленность

  • Аргон – упаковочный газ.
  • Аргон незаменим при хранении овощей.
  • Аргон при определенных условиях способен замедлять метаболические реакции и значительно сокращать газообмен.
  • Аргон является зарегистрированной пищевой добавкой E938.

Производство стекла, цемента и извести

  • Заполнение стеклопакетов аргоном обеспечивает превосходную тепловую изоляцию.

Металлургия

В последние десятилетия наибольшая часть получаемого аргона идет в металлургию, металлообработку. В среде аргона ведут процессы, при которых нужно исключить контакт расплавленного металла с кислородом, азотом, углекислотой и влагой воздуха. Аргонная среда используется при горячей обработке титана, тантала, ниобия, бериллия, циркония, гафния, вольфрама, урана, тория, а также щелочных металлов. В атмосфере аргона обрабатывают плутоний, получают некоторые соединения хрома, титана, ванадия и других элементов (сильные восстановители).

Аргон используется для предупреждения контакта и последующего взаимодействия между расплавленным металлом и окружающей атмосферой.

Использование аргона позволяет оптимизировать такие производственные процессы, как перемешивание расплавленных веществ, продувка поддонов реакторов для предупреждения повторного окисления стали и обработка стали узкого применения в вакуумных дегазаторах, включая вакуумно-кислородное обезуглероживание, окислительно-восстановительных процессы и процессы открытого сжигания. Однако наибольшую популярность аргон приобрел в процессах аргоно-кислородного обезуглероживания нерафинированной высокохромистой стали, позволяя минимизировать окисление хрома.

Лабораторные исследования и анализы

  • В чистом виде и в соединениях с другими газами аргон используется для проведения промышленных и медицинских анализов и испытаний в рамках контроля качества.
  • В частности, аргон выполняет функцию газовой плазмы в эмиссионной спектрометрии индуктивно-связанной плазмой (ICP), газовой подушки в атомно-абсорбционной спектроскопии в графитной печи (GFAAS) и газа-носителя в газовой хроматографии с использованием различных газоанализаторов.
  • В соединении с метаном аргон используется в счетчиках Гейгера и детекторах рентгеновского флуоресцентного анализа (XRF), где он выполняет функцию гасящего газа.
  • В аргоновых лазерах.

Сварка, резка и нанесение покрытия

Все шире применяется дуговая электросварка в среде аргона. Продуваемый вдоль столба дуги аргон (в смеси с водородом) предохраняет кромки разреза и вольфрамовый электрод от образования окисных, нитридных и иных пленок. Одновременно он сжимает и концентрирует дугу на малой поверхности, отчего температура в зоне резки достигает 4000-6000°С. К тому же эта газовая струя выдувает продукты резки. При сварке в аргонной струе нет надобности во флюсах и электродных покрытиях, а стало быть, и в зачистке шва от шлака и остатков флюса.

Аргон используется в качестве защитной среды в процессах дуговой сварки, при поддуве защитного газа и при плазменной резке.

Электроника

Сверхчистый аргон служит в качестве газа-носителя для химически активных молекул, а также в качестве инертного газа для защиты полупроводников от посторонних примесей (например, аргон обеспечивает необходимую среду для выращивания кристаллов силикона и германия).

В ионном состоянии аргон используется в процессах металлизации напылением, ионной имплантации, нормализации и травления при производстве полупроводников и высокоэффективном производстве материалов.

Автомобильная и транспортная отрасль

  • Аргон применяют для наполнения подушек безопасности в автомобилях.

Медицина

  • Очистка воздуха в операционных.
  • Приготовление наркоза.
  • Аргоноплазменная коагуляция.

Противопожарная безопасность

  • Аргон используется в качестве огнетушащего вещества в газовых противопожарных установках.

Аргон: факты и фактики

А. Мотыляев
«Химия и жизнь» №7, 2015

Как аргон поставил в тупик Д. И. Менделеева и других именитых химиков? Первым аргон открыл Генри Кавендиш в 1795 году: он несколько недель пропускал электрический разряд сквозь воздух, при этом кислород реагировал с азотом (их тогда называли «дефлогистонный воздух» и «флогистонный воздух» соответственно) и давал азотистую кислоту, которую поглощал поташ. Объем газа в сосуде уменьшался, однако газ не исчезал полностью: оставалось что-то, не вступающее в реакцию. Никто на открытие Кавендиша особого внимания не обратил. Но вот в 1882 году лорд Рэлей начал серию нудных опытов по измерению плотности газов. И все время у него получалось, что соотношение веса водорода и изучаемого газа немного меньше целочисленного. Физикам же, еще не подозревавшим о существовании изотопов, очень хотелось, чтобы оно было целочисленным. Желая найти источник ошибки, Рэлей решил получить чистый, не атмосферный, азот. Для этого он прогнал над раскаленной медью смесь аммиака с кислородом: аммиак разлагался, давая азот и воду. Такой азот оказался на полпроцента легче, нежели атмосферный. А в 1894 году Уильям Рамзай обнаружил, что азот поглощается раскаленным магнием. Он-то и решил выделить обнаруженную Рэлеем тяжелую примесь к азоту. Вскоре в руках Рамзая оказалось 40 мл газа, который не поглощался магнием. Измерения показали, что его молекулярный вес равен 40. Поскольку все известные на тот момент газы были двухатомными, получался атомный вес 20, что выглядело странно — тяжелее фтора, легче натрия. Одноатомный же газ был бы слишком тяжелым и никак не вписывался в Периодическую таблицу — такой элемент следовало поставить между двумя металлами — калием и кальцием. Поэтому возникла гипотеза, что Рамзай обнаружил трехатомный азот, благо 40 примерно в три раза больше, чем 14. Вот как Менделеев пишет об этом в «Дополнении к 5-й главе» шестого издания «Основ химии»: «Гипотеза А=40 вовсе не дает места аргону в периодической системе… Мне кажется более простым предположение, что аргон содержит N3, особенно потому, что аргон содержится в азоте…» Рэлей, огорченный неприятием его нового газа, больше химией не занимался и Нобелевскую премию получил в 1904 году по физике за исследование плотностей газов и открытие в связи с этим аргона. А Рамзай за открытие и исследование элементов нулевой группы получил в том же году премию по химии.

Почему аргон с весом 39,9 стоит в таблице перед калием, вес которого 39,1? У аргона есть три устойчивых изотопа с весами 36, 38 и 40. Во Вселенной больше легких изотопов, а аргона-40 очень мало. При этом аргона в планетарных туманностях и в веществе звезд много, он преобладает над такими распространенными на Земле элементами, как калий, кальций, фтор и хлор. А вот на нашей планете и самого-то аргона немного, и его легких изотопов ничтожно мало — видимо, они улетели на периферию Солнечной системы. Аргон-40 мы не унаследовали из протопланетного облака; он образуется здесь и сейчас — в результате радиоактивного превращения калия-40. Обычно у этого изотопа, обеспечивающего основную часть природного фона излучений, нейтрон становится протоном с испусканием позитрона, и получается следующий элемент — кальций-40. Но в каждом пятом случае происходит так называемый К-захват: электрон с нижней орбитали падает в ядро, один из протонов становится нейтроном с испусканием нейтрино, атом же уходит на предыдущую клетку Периодической системы. Именно из-за недостатка легких изотопов аргона на Земле его вес, измеренный химиками, оказался больше, чем у следующего за ним калия, представленного всеми изотопами.

Есть ли на Земле радиоактивный аргон? В природе радиоактивного аргона почти нет, поскольку самый долгоживущий — аргон-39 — имеет период полураспада 269 лет. Однако высокоактивный аргон-41 с периодом полураспада 1,85 часа непрерывно образуется в атомном реакторе, а при неисправностях в системе вентиляции может попасть и за его пределы. После запуска термоядерного реактора проблема усложнится. Согласно расчету Владимира Хрипунова из Курчатовского института (Fusion Engineering and Design, 2015, DOI:10.1016/j.fusengdes.2015.02.058), при массированной нейтронной бомбардировке — напомним, что именно за счет торможения нейтронов стенками токамака планируется снимать тепло, выделяющееся при термоядерном синтезе, — начнет образовываться аргон-39 в достаточном количестве, чтобы вызвать беспокойство за здоровье работников термоядерной станции.

Как аргоном измеряют время? Калий — один из самых распространенных элементов на Земле и других каменистых планетах, а период полураспад калия-40 — 1,3 млрд лет. Постоянно образующийся аргон-40 оказывается заключенным в любую горную породу, и его количество растет начиная со времени ее затвердевания. Соответственно по соотношению аргона-40 и калия-40 можно узнать, когда эта порода (как правило, речь идет о базальте) была извержена из недр планеты. Измерения проводят, бомбардируя аргон-40 потоком нейтронов: получается короткоживущий аргон-41, его распад легко заметить. Аргоном удается мерить время в масштабе от сотен миллионов до десятков тысяч лет, то есть когда углеродный метод работает уже неточно. За разработку метода профессор Э. К. Герлинг получил в 1963 году Ленинскую премию. В частности, аргоновым методом по возрасту окружающих камешков были датированы первые, найденные в Олдувейском ущелье в Кении, останки человека умелого Homo habilis, его возраст оказался 1,7 млн лет (см. «Химию и жизнь», 1967, №6). В числе последних достижений — новая датировка Деканских траппов (Journal of Asian Earth Sciences, 2014, 84, 9–23, DOI:10.1016/j.jseaes.2013.08.021), крупнейшего разлива лавы, занимающего треть Индостана с западной его стороны. Как оказалось, возраст наиболее объемных разливов статистически неотличим от даты катастрофы, погубившей динозавров. Падение же метеорита в районе Юкатана, создавшее кратер Чиксулуб, по новейшим данным произошло на 300 тысяч лет раньше массового вымирания. Вообще, деканская гипотеза давно конкурирует с чиксулубской.

В какие реакции вступает аргон? Не имея свободных электронов и потому будучи химически инертным, аргон образует химические соединения неохотно и в весьма экзотических условиях. Однако он формирует так называемые клатратные соединения: атом аргона может оказаться заключенным в полость, образованную какой-то молекулой, либо в кристаллической решетке другого вещества. Подобно ксенону, аргон способен образовывать и соединения с белками; в результате при повышенном давлении аргон-кислородная смесь вызывает потерю сознания — аргоновый наркоз.

Чем опасен аргон? При работе с установками, заполненными аргоном, следует соблюдать меры предосторожности: аргон — тяжелый газ, он скапливается во всевозможных углублениях, например колодцах, вытесняя оттуда кислород, то есть может создать атмосферу, непригодную для дыхания. Если рабочий, потеряв сознание, упадет в такое углубление, он задохнется. Материаловеды, работающие с аргоном, говорят: «Аргон дырочку найдет», а изготовители оборудования это обстоятельство учитывают. Рассказывают такой случай. На одном предприятии ставили новый шведский газостат. Это огромная установка высотой с пятиэтажный дом, в которой можно подвергать детали нагреву и высокому давлению для устранения внутренних полостей в металле, образующихся при изготовлении. Чтобы избежать окисления детали, газостат заполняют инертным газом — аргоном. Поскольку копать вниз проще, чем строить вверх, газостат хотели заглубить, но изготовители категорически это запретили именно потому, что вытекающий из установки аргон нигде не должен скапливаться. А вот на растения аргон влияет хорошо: в атмосфере из 98% аргона и 2% кислорода семена лука, моркови и салата прорастают вполне успешно.

Зачем заполняют аргоном стеклопакет? Для повышения звукоизоляции и снижения теплопроводности — у аргона выше модуль упругости и ниже теплопроводность, чем у воздуха. Правда, с учетом правила «аргон дырочку найдет», не ясно, как долго этот газ будет находиться внутри стеклопакета.

Как получают аргон? При разделении воздуха на кислород и азот в колоннах высокого давления. Летучесть аргона больше, чем у кислорода, и меньше, чем у азота, — его и забирают из верхней трети колонны. Отделяют аргон также из отхода производства аммиака — того азота, что не израсходовался на реакцию с водородом; он сам собой оказывается обогащенным аргоном.

Как аргон применяют в технике? Будучи самым распространенным инертным газом — все-таки третий по значимости компонент атмосферы Земли после азота и кислорода, — аргон очень востребован, прежде всего в качестве вещества, не способного к химическим реакциям. Заполнив установку или весь цех аргоном, можно не бояться, что нагретая металлическая деталь или заготовка окислится либо насытится азотом с последующим выделением нитридов. Склонны к окислению, например, молибден и вольфрам: многие могли наблюдать мгновенное превращение спирали лампы накаливания в синеватый порошок при попадании в нее воздуха. В среде аргона обрабатывают титан, тантал, ниобий, бериллий, гафний, цирконий, а также уран, торий и плутоний. Продувая аргон через сталь в конвертере, из нее удаляют газовые включения. Революцию в технике совершил метод аргонно-дуговой сварки: поток аргона, подаваемый в то место, где горит электрическая дуга, вытесняет воздух и не дает металлу окисляться — оксиды снижают прочность шва, а то и вовсе делают сварку материалов невозможной. Таким методом сваривают легированные стали и цветные металлы, режут их толстые листы. Еще одно серьезное направление — распыление всевозможных материалов для получения чистого от оксидов порошка.

Что такое аргоновые кластеры? Пучки ионизированных кластеров — новый метод обработки поверхности до атомной гладкости. Его суть — бомбардировка не отдельными ионами (это называется «ионное травление»), а гораздо более тяжелыми частицами, состоящими из десятков, а то и тысяч атомов. Пучки аргоновых кластеров получили широкое распространение из-за инертности газа и его относительной дешевизны. Кластеры формируют, подавая газ под высоким давлением через узкое сопло. Проходя сквозь него, газовый поток резко расширяется и охлаждается; атомы аргона слипаются в твердое вещество, где их удерживают силы Ван-дер-Ваальса. Когда поверхность бомбардируют кластерами с высокой энергией, образуются кратеры размером в нанометры; такой будет и гладкость всей поверхности. Повторяя сканирование пучком менее энергичных кластеров, гладкость увеличивают. Таким методом обрабатывают полупроводники, тонкие пленки, поверхность дисков для компьютеров и многое другое. Кластерными пучками можно и создавать наноузоры на поверхностях. Они же позволяют, не нагревая образец, проводить послойное изучение его состава, постепенно забираясь все глубже и глубже; этот метод применяют для анализа строения органических веществ.

Как аргон работает в нанотехнологиях? Аргоновая плазма либо добавка аргона к плазме другого газа — важнейший метод получения всяческих наноструктур: сферических наночастиц, нанолезвий, наноигл. Суть плазменного метода состоит в том, что разделенное на ионы и электроны вещество обладает способностью активировать химические реакции и даже делает возможными те, что в нормальных условиях запрещены термодинамически. Аргон — прекрасный активатор: сам в реакцию не вмешивается, а продукты реакции либо конденсируются в равноосные частицы, либо оседают на поверхности, давая неравноосные структуры. Он же может служить разбавителем плазмы другого, реакционного газа — таким способом меняют параметры процесса. Наконец, высокотемпературную плазму аргона применяют для распыления металлической мишени и получения из нее нанопорошков с частицами заданного размера. Другие инертные газы — неон, ксенон — дают свои размеры. Применяют аргон и как охладитель: он выдувает порошок из зоны плазмы, что опять же позволяет регулировать размер частиц, поскольку тот зависит от времени нахождения материала в зоне плазмы.

Кому нужна пена с аргоном? С помощью аргона можно делать пористые шаблоны из желатина для последующего их заселения клетками при выращивании искусственных органов. Преимущество аргона здесь очевидно — его химическая инертность.

Что такое аргоновый лазер? В этом лазере, изобретенном в 1964 году, генератором света служит трубка, заполненная аргоном. Электроды создают в ней плазму с большой плотностью ионов аргона, а катушка, обмотанная вокруг трубки, формирует магнитное поле, еще больше увеличивающее плотность плазмы. Этот лазер дешевле твердотельных аналогов, дает мощное — 20–30 ватт — излучение в сине-зеленой части спектра, причем его цвет можно переключать между 14-ю спектральными линиями. Такие лазеры применяют для накачки других лазеров, для световых шоу, а также для стимулирования флуоресценции при химическом анализе сложных органических веществ. С его помощью, например, находят следы РНК в количестве пикограмм, то есть столько, сколько есть в одной клетке (Electrophoresis, 2015, DOI:10.1002/elps.201500117). Применяют аргоновый лазер и при лечении слепоты, вызванной диабетом, — она появляется из-за чрезмерного развития кровеносных сосудов в глазу, а лазером их можно безболезненно проредить.

Как аргоном проводят стерилизацию? Для уничтожения бактерий используют холодную аргоновую плазму. В такой плазме есть горячие электроны, а температура ионов равна комнатной, то есть она не может обжечь, но сохраняет способность активировать реакции. Реакции же эти зависят и от способа получения плазмы (от температуры ее электронов), и от добавок других газов. Например, облучение клеток млекопитающих в физиологическом растворе чистым или влажным аргоном давало прежде всего гидроксил-радикал, который угнетал развитие клеток. А вот плазма из аргона с добавками 1% кислорода или 1% воздуха давала, скорее всего, атомарный кислород. Реагируя с хлорид-ионом, он порождал радикалы Cl2 или ClO, убийственно действующие на клетки, причем никакие ферменты-антиоксиданты вроде супероксиддисмутазы с ними справиться не могли. Время жизни таких радикалов оказалось на уровне получаса (Biointerphases, 2015, 10, 2: 029518; DOI:10.1116/1.4919710). Итог понятен: аргоновой плазмой можно проводить «холодную» дезинфекцию. Так, кишечную палочку на образце удается извести за 10 минут (Applied Biochemistry & Biotechnology, 2013, 171, 7; DOI:10.1007/s12010-013-0430-9), а с добавкой 0,5% кислорода — уже за 30 секунд (International Journal of Radiation Biology, 2009, 85, 4; DOI:10.1080/09553000902781105). Вообще, холодная плазма из различных газов очищает поверхность мяса, птицы, овощей, фруктов от таких микробов, как кишечная палочка, листерия, сальмонелла, золотистый стафилококк, за считаные секунды. И никакой антимикробной «химии», пугающей потребителя. Однако технология эта новая, оборудование не стандартизировано, каждый генератор дает свою плазму, и результаты опытов сравнивать трудно. Также неизвестно, как такая обработка повлияет на качество пищи при ее массовой обработке (Annual Review of Food Science & Technology. 2012, 3, 125-42; DOI:10.1146/annurev-food-022811-101132).

Как аргон применяют в медицине? Разными способами. Например, плазма может пригодиться для той же дезинфекции ран, хотя в случае с трофическими язвами результаты вышли неоднозначными: вроде бы число бактерий уменьшалось не так быстро, как при применении лекарства, однако язвы заживали с той же скоростью. Возможно, дело в том, что плазмой можно обрабатывать язвы меньшего размера и они заживают быстрее (Journal of Wound Care, 201, 24, 5; DOI:10.12968/jowc.2015.24.5.196). Плазменное лечение не вызывает таких побочных действий, как лекарственные средства, поэтому авторы рекомендуют продолжить исследования с разными источниками плазмы, тем более что устойчивости к ней не может развиться по определению, чего о лекарствах не скажешь.

С помощью специально придуманной плазменной щетки удается уничтожать и бактерии, вызывающие кариес. Но здесь есть нюансы. Так, основными вредителями зубов считаются Streptococcus mutans и Lactobacillus acidophilus, которые образуют на эмали бактериальные маты и выделяют много кислоты. У стрептококка клетки маленькие, и они разрушаются всего за 13 секунд. А у лактобактерии — большие, образующие толстые слои, и, чтобы избавиться от них, нужны уже минуты (Journal of Dentistry, 2011, 39, 1; DOI:10.1016/j.jdent.2010.10.002). Вряд ли такая щетка появится в быту, а вот стоматологу для дезинфекции свежеобработанного дупла пригодится. К тому же плазма изменяет поверхность вещества зуба, что увеличивает прочность ее соединения с пломбой на 60%. Тут главное — не перестараться: эффект дает обработка в течение 30 секунд, а несколько минут, наоборот, ухудшают сцепление (European Journal of Oral Science. 2010, 118, 5; DOI:10.1111/j.1600-0722.2010.00761). Аргоновой плазмой можно быстро остановить кровь при внутреннем кровотечении. Вдыхание аргона защищает нейроны, пострадавшие от ишемического удара или вследствие травмы (PLoS One, 2014, 9, 12:e115984, DOI:10.1371/journal.pone.0115984).

Как работает аргоновая криохирургия? Криохирургия — это уничтожение больных тканей в результате их быстрого замораживания. Ее применяют по самым разным показаниям, от сведения бородавок и сглаживания шрамов до удаления опухолей. Если бородавки замораживают снаружи ваткой, смоченной в жидком азоте, то шрамы и опухоли — изнутри, вводя в них полую иглу — криозонд, через которую прокачивают холодное вещество. Используют еще и криоаппликаторы — их на замораживаемый объект накладывают. Установка с жидким азотом — гораздо проще и дешевле, но в ней применяют толстые, диаметром 6 мм, зонды. Аргоновая же устроена гораздо сложнее, требует высокой квалификации персонала, в частности специальных знаний по работе с высоким давлением, но позволяет очень точно замораживать ткань: диаметр иглы может быть величиной с миллиметр, такая игла легко проходит сквозь кожу. Заморозку проводят газообразным аргоном. Газ хранят под давлением 400 атмосфер, а, проходя через узкое сопло и затем резко расширяясь, он вследствие эффекта Джоуля—Томсона охлаждает до –140°С. Если термодатчики, воткнутые рядом с местом заморозки, показывают, что температура слишком упала и могут пострадать здоровые ткани, в зонд подают гелий, который отогревает замерзшую ткань. Так можно проводить циклы контролируемого замораживания-размораживания, что увеличивает эффективность процедуры, да и примерзший криозонд проще извлекать.

Как аргоновый резак используют хирурги? С помощью аргонового плазменного резака можно проводить удивительные по виртуозности операции — подрезать стенты, вставленные в кишечник, или тонкие протоки пищеварительной системы, например те, что доставляют желчь и секрет поджелудочной железы. В силу разных причин (опухоль, камни и подобное) проток может перекрыться. Для лечения туда вставляют трубочку — стент, например, из интерметаллида NiTi — нитинола. Изначально ее диаметр невелик, а попав на место и нагревшись, изделие, в силу эффекта памяти формы нитинола, увеличивается в размере и расширяет просвет сосуда. Однако может получиться так, что размер стента выбран неверно либо со временем из-за изменений в организме становится неподходящим. Кроме того, стент может зарасти или сдвинуться с места и так перекрыть канал, что к нему не подберешься с тем эндоскопом, которым этот стент размещали. Тогда вводят плазменный резак мощностью в несколько десятков ватт и подрезают стент. Во многих случаях эта операция проходит вполне успешно, никаких повреждений сосудов и кровотечения не вызывает (а если и вызовет, той же плазмой можно остановить кровь), но для самочувствия пациента она гораздо лучше, нежели изъятие старого стента и установка нового (Endoscopy, 2005, 37, 5,434–438). Это важно, поскольку возраст пациента может быть преклонным.

Аргон. Аспекты его применения в сварочном процессе технического газа аргона

Аргон – это инертный газ с одноатомной структурой, который имеет температуру кипения в условиях нормального давления ниже, чем у кислорода. Средняя температура кипения аргона составляет около ста восьмидесяти градусов по Цельсию. Аргон достаточно хорошо растворяется в воде, но лучше для этих целей использовать органические растворители.

Производство аргона не составляет особого труда и не требует значительных затрат. Он в большом количестве содержится в земной атмосфере. При этом следует учитывать, что в процессе использования аргон не претерпевает совершенно никаких структурных и химических изменений. Он возвращается в атмосферу в своем первоначальном виде. В настоящее время учеными открыты только два соединения, в которых участвует аргон. Оба эти соединения могут образовываться только под воздействием критически низких температур.

Технический газ аргон получают в качестве побочного продукта производственного процесса, в ходе которого кислород отделяют от азота. Для этого применяются специальные камеры с использованием воздухоразделительных аппаратов с двукратной ректификацией. Аргон обладает большими летучими свойствами, чем кислород, и меньшими, чем азот. Поэтому в процессе разделения воздуха на кислород и азот аргон остается в средней фракции. Из средней точки верхней колонны аппарата аргон направляют в специальные камеры для сжатия и хранения.

При первичном отборе массовая доля аргона в отобранной фракции составляет ничтожно малые показатели, всего около пяти процентов. Это так называемый сырой аргон. После последующей конденсации и очистки удается получить чистый аргон с массовой долей содержания его во фракции около 99,99 процентов. Практикуется так же способ извлечения аргона в процессе утилизации отходов аммиачного производства. В этом случае аргон получают из азота, оставшегося после связывания его с молекулами водорода.

Транспортировка и хранение аргона допускается только в специализированных емкостях, газовых баллонах. В большинстве случаев для этого применяются сорокалитровые газовые баллоны. Баллоны с аргоном окрашиваются в серый цвет. Поперек баллона наносится зеленая полоса и надпись аналогичного цвета. Стандартное давление в баллонах с аргоном составляет сто пятьдесят атмосфер. В ряде случаев для снижения затрат на перевозку, аргон транспортируется в сжиженном состоянии. При этом его закачивают в специализированные ёмкости и сосуды Дюара. Также можно использовать и специализированные цистерны. Аргон не является взрывоопасным веществом. Меры предосторожности при его транспортировке в основном сводятся к тому, чтобы обеспечить сохранность самого технического газа, так как он обладает большой летучестью.

Технический газ аргон широко используется в самых разнообразных сферах производства. Наибольшее применение он нашел в производстве металлов и их обработке. В металлургической промышленности аргон используется для получения высококачественных видов стали. Для этого аргон пропускают через расплавленную массу, предназначенную для проката стального листа. При этом аргон полностью освобождает сталь от присутствия в ней молекул кислорода, водорода и других газов, содержащихся в воздухе.

В сварочных процессах аргон применяется при сварке ответственных узлов и агрегатов, которые нуждаются в повышенной защите от коррозийных процессов. Есть также такие сплавы и металлы, которые без применения аргона не могут быть обработаны при помощи сварочных операций. В частности, такие металлы, как тантал, ниобий, цирконий, гафний, вольфрам, уран, торий, титан, не могут подвергаться обработке без дополнительной защиты их при помощи инертного газа аргона.

В настоящее время использование электрической дуги в аргонной среде дает колоссальные возможности для производства работ с самыми различными металлами и деталями из них. В частности, сварка в аргоне дает возможность нагрева металлических поверхностей до температуры выше шести градусов по Цельсию. Это дает уникальную возможность при помощи простейшего сварочного аппарата резать металлы самой различной толщины.

При сварке в аргоне не применяются различные флюсы и электродные покрытия. Сварочные швы после такой обработки получаются совершенно чистыми и ровными. Они не нуждаются в дополнительной обработке в виде зачистки от остатков сварочного материала и шлаков. В ходе работ струя аргона полностью удаляет не только воздух из места сварки, но и все остаточные продукты.

Применение технического газа аргона не требует специальных мер предосторожности. Этот газ обладает высокими экологическими свойствами. Это природный газ, который не претерпевает никаких технологических изменений. При этом аргон не отличается повышенной взрывоопасностью. Технология транспортировки и хранения газовых баллонов, наполненных аргоном, соответствует требованиям, применяемым для остальных технических газов.

ИТ-услуги — Аргон

Argon IT Services, используя набор технических навыков своей опытной команды и более широкую инфраструктуру и ресурсы Argon, предлагает широкий спектр услуг для предприятий как на острове Мэн, так и за его пределами. Решения Argon признают, что успешная работа современного бизнеса зависит от бесперебойной работы ИТ-систем, и наша философия заключается в том, чтобы действовать на опережение, а не реагировать, и мы постоянно интересуемся вашими ИТ и эксплуатационными потребностями.

Argon предлагает ряд облачных решений, размещенных на двух площадках, устойчивую инфраструктуру центра обработки данных, все они хранятся локально на острове Мэн. Эти услуги включают в себя Hosted Desktop, обеспечивающую удаленную работу с постоянным доступом ко всем вашим данным и приложениям, при условии, что ваши файлы защищены и имеют резервные копии с отличной доступной ИТ-поддержкой.

Argon предлагает надежную размещенную почтовую платформу для вашего бизнеса, а размещенный на сервере Exchange сервер Argon позволяет большим и малым организациям воспользоваться преимуществами использования Microsoft Exchange в сочетании с Outlook без необходимости владения, управления или обслуживания внутренних почтовых серверов.Предоставляется полная возможность Exchange, поэтому вы можете делиться своими календарями, контактами, почтовыми ящиками и использовать свой смартфон, планшет или любой интернет-браузер для доступа к своему почтовому ящику в дороге.

Argon предоставляет ряд услуг, предоставляемых ИТ-специалистами с обширными техническими знаниями и опытом проектирования, установки и поддержки самых сложных сред ИТ-инфраструктуры. Эти услуги могут быть предоставлены как отдельная услуга или как дополнительная часть общего решения для решения общих и сложных проблем.Мы предоставляем контракты на поддержку оборудования предприятиям во всех секторах рынка, обеспечивая непрерывную работу их компьютерных систем. Argon может сделать это, вложив средства в запасные части и оборудование взаймы, чтобы обеспечить полную поддержку наших контрактов на техническое обслуживание. Эти контракты могут охватывать весь спектр офисного оборудования для обеспечения непрерывной работы вашего бизнеса. Какими бы ни были ваши требования, Argon может предоставить всю техническую поддержку для обеспечения бесперебойной работы ваших систем и бизнеса.Мы также поставляем IT-оборудование от крупных производителей по конкурентоспособным ценам. Сообщите нам, если у вас возникнут проблемы с ИТ-поддержкой или вы хотите оформить договоренности с одним поставщиком услуг — мы будем рады помочь.

Argon — Информация об элементе, свойства и использование

Расшифровка:

Химия в ее элементе: аргон

(Promo)

Вы слушаете Химию в ее элементе, представленную вам Chemistry World , журналом Королевского химического общества.

(Конец промо)

Крис Смит

Привет, на этой неделе элемент настолько ленив, что ученые одно время думали, что он ни с чем не отреагирует, но в химическом мире лень может иметь свое преимущества, особенно если вам нужны сверхтихие автомобильные шины или безопасный химикат, которым можно накачать гидрокостюм.

Вот Джон Эмсли.

Джон Эмсли

Ленивый, трудолюбивый, бесцветный, красочный — это аргон!

Название Аргона происходит от греческого слова argos , означающего «ленивый», и действительно, более ста лет после его открытия химики не могли заставить его соединяться с любыми другими элементами.Но в 2000 году химики из Хельсинкского университета во главе с Маркку Рясяненом объявили о первом в истории соединении: фторгидриде аргона. Они сделали это путем конденсации смеси аргона и фтороводорода на иодид цезия при -265 o C и воздействия ультрафиолетового света. При нагревании выше -246 o C он снова превратился в аргон и фтористый водород. И никакой другой процесс никогда не заставлял аргон реагировать — [действительно ленивый элемент].

В атмосфере Земли циркулирует 50 триллионов тонн аргона, и он медленно накапливается в течение миллиардов лет, почти все это происходит в результате распада радиоактивного изотопа калия-40 с периодом полураспада 12. .7 миллиардов лет. Хотя аргон составляет 0,93% атмосферы, он не был открыт до 1894 года, когда его идентифицировали физик лорд Рэлей и химик Уильям Рамзи. В 1904 году Рэлей получил Нобелевскую премию по физике, а Рамзи получил Нобелевскую премию по химии за свои работы.

История его открытия началась, когда Рэлей обнаружил, что азот, извлеченный из воздуха, имеет более высокую плотность, чем полученный при разложении аммиака. Разница была небольшой, но реальной. Рамзи написал Рэли, предлагая поискать более тяжелый газ в азоте, полученном из воздуха, в то время как Рэли должен искать более легкий газ из аммиака.Рамзи удалил весь азот из своего образца, многократно пропуская его над нагретым магнием, с которым азот реагирует с образованием нитрида магния. Ему оставили один процент, который не вступил в реакцию, и он обнаружил, что он плотнее азота. В его атомном спектре появились новые красные и зеленые линии, подтверждающие, что это новый элемент. Хотя на самом деле в нем были следы и других благородных газов.

Аргон был впервые выделен Генри Кавендишем в 1785 году в Клэпхэме, Южный Лондон. Он пропустил электрические искры через воздух и поглотил образующиеся газы, но был озадачен тем, что остался нереактивный 1%.Он не осознавал, что наткнулся на новый газообразный элемент.

Большая часть аргона идет на производство стали, где он продувается через расплавленное железо вместе с кислородом. Аргон перемешивает, а кислород удаляет углерод в виде диоксида углерода. Он также используется, когда необходимо исключить доступ воздуха для предотвращения окисления горячих металлов, например, при сварке алюминия и производстве титана, чтобы исключить доступ воздуха. Сварка алюминия выполняется с помощью электрической дуги, для которой требуется поток аргона со скоростью 10-20 литров в минуту.Топливные элементы атомной энергии защищены атмосферой аргона во время очистки и переработки.

Ультратонкие металлические порошки, необходимые для изготовления сплавов, получают путем направления струи жидкого аргона на струю расплавленного металла.

Некоторые плавильные заводы предотвращают утечку токсичной металлической пыли в окружающую среду, выбрасывая ее через плазменную горелку с аргоном. При этом атомы аргона электрически заряжаются до температуры 10 000 ° C, а частицы токсичной пыли, проходящие через них, превращаются в сгусток расплавленного лома.

Для газа, который является химически ленивым, аргон оказался в высшей степени применимым. Световые знаки светятся синим цветом, если они содержат аргон, и ярко-синим, если также присутствует небольшое количество паров ртути. Двойное остекление еще более эффективно, если зазор между двумя стеклами заполнен аргоном, а не только воздухом, потому что аргон является худшим проводником тепла. Теплопроводность аргона при комнатной температуре (300 K) составляет 17,72 мВт · м -1 K -1 (милливатт на метр на градус), тогда как для воздуха она составляет 26 мВт · м -1 K -1 . По той же причине аргон используется для надувания водолазных костюмов. Старые документы и другие вещи, подверженные окислению, можно защитить, храня их в атмосфере аргона. Лазеры на синем аргоне используются в хирургии для сварки артерий, разрушения опухолей и исправления дефектов глаз.

Наиболее экзотично аргон используется в шинах роскошных автомобилей. Он не только защищает резину от воздействия кислорода, но и снижает шум в шинах при движении автомобиля на высокой скорости. В случае с этим элементом может пригодиться лень.В его высоких технологиях используются самые разные технологии — от двойного остекления и лазерной хирургии глаза до освещения вашего имени.

Крис Смит

Джон Эмсли раскрывает секреты благородного газа аргона тяжелее воздуха. На следующей неделе вы бы вышли замуж за этого человека?

Steve Mylon

Практически никогда не бывает таких популярных элементов из-за их полезности и интересного химического состава. Но для золота и серебра все так поверхностно. Они более популярны, потому что красивее.Моя жена, например, не химик, и не мечтала носить медное обручальное кольцо. Возможно, это связано с тем, что оксид меди имеет неприятную привычку окрашивать вашу кожу в зеленый цвет. Но если бы она только нашла время, чтобы узнать о меди, узнать немного о ней; может быть, тогда она отвернется от других и с гордостью наденет его.

Крис Смит

Стив Майлон спиной, чтобы скрестить вашу ладонь с медью на следующей неделе «Химия в ее элементе». Надеюсь, вы присоединитесь к нам.Я Крис Смит, спасибо за внимание и до свидания.

(Промо)

(Окончание промо)

Общая информация и предметы повседневного обихода



Забавно, что ученым понадобилось до 1894 года, чтобы открыть самый распространенный благородный газ на Земле. Правильно, аргон (Ar) составляет чуть более одного процента нашей атмосферы. Лорд Рэлей и сэр Уильям Рамзи обнаружили и выделили аргон, но мы шутим о том, сколько времени это заняло.Они никогда не смогли бы сделать это раньше, потому что технологии не были доступны. Мы говорим, что современные ученые находятся на переднем крае и открывают элементы, атомные номера которых будут больше 120. Столетие назад методы, используемые для открытия аргона, были самыми передовыми. Поскольку он инертен, вы найдете аргон в лампах, сварочных и электронных лампах (хотя вы, вероятно, не знаете, что это такое).

После выделения аргон не был чем-то особенным. У него нет ни запаха, ни цвета.Он оказался последним элементом в третьем периоде на позиции номер восемнадцать. Как обычно, последним элементом в ряду является благородный газ. Аргон находится в том же семействе , что и гелий (He) и неон (Ne). Долгое время ученые считали, что аргон не сочетается ни с какими другими элементами. Они были не правы. Видеть? Даже ученые не всегда получают правильный ответ!

Сварка
Если вы видите, что кто-то сваривает, знайте, что иногда они используют аргон.Аргон не вступает в реакцию, поэтому он является хорошим элементом при очень высоких температурах. Это делает вещи безопаснее.
Growing Crystals
Аргон используется для выращивания кристаллов кремния. Когда ученые выращивают кристаллы кремния, это должно происходить в чистой окружающей среде. Никаких других элементов, которые могли бы сочетаться с кремнием, быть не может. Аргон используется потому, что он не вступает в реакцию с кремнием.
Лампочки
Когда смотришь в лампочку, кажется, что там ничего нет.Но есть! Аргон — это газ, который ученые помещают в лампочки, чтобы улучшить их работу.
Вакуумные трубки
Когда смотришь в радио, они очень маленькие. Много лет назад радиоприемники были намного больше и имели внутри большие стеклянные трубки. Эти радиолампы были заполнены газом аргоном.





Chem4Kids Разделы

Сеть сайтов по науке и математике Рейдера


Лучшие виды использования аргона

Выбрать продуктColeman B / P C250170g Газовый баллончик с бутаном / пропаном — 2175POWERSOURCE 445G B / P MIX CARTRIDGE350G BUTANE PROPAN MIX GAS CARTRIDGE227GM BAYONET BUTANE CARTRIDGECAMPINGAZ C206 Газовый баллончик с газовым баллоном CV4 Пропатер Газовый баллончик с газовым баллоном CV6 Сборка 35 дюймов ST POL x W2012622, Пигтейл шланг в сборе 20 дюймов ST POL x W20 Шланг высокого давления оранжевого цвета — диаметр 8 мм, змеевик 3 м Шланг высокого давления оранжевого цвета — отверстие 8 мм, змеевик 2 м Шланг высокого давления оранжевого цвета — диаметр отверстия 8 мм, шланг высокого давления змеевика 1 м — 4 .Диаметр 8 мм, бухта 3 м Оранжевый шланг высокого давления — диаметр 4,8 мм, бухта 2 м Шланг высокого давления оранжевого цвета — диаметр 4,8 мм, бухта 1 м 15527, Снегирь 233P Пропановый комплект для автоматической горелки (рычаг зажигания) 14850, Снегирь № 404 Паяльная паяльная горелка Снегирь № 404, Снегирь № 21479 135/01 Расширенный комплект резака с регулятором 11325, Форсунка для газового шланга Fulham — сжатие 15 мм x 10 мм 8992, Сопло для газового шланга Fulham — сжатие 5/16 дюйма x 10 мм 12572, Стандартный комплект горелки на пропане Bullfinch — 140P12571, Стандартный комплект горелки на пропане Bullfinch — 110P8196, высокое давление Насадка для шланга — 3/8 дюйма BSP TM x 10 мм.d.8870, сопло для шланга высокого давления — 1/4 «BSP TM x 8,35 мм OD8869, сопло для шланга высокого давления — 1/4» BSP TM x 6,85 мм od8873, сопло для газового шланга Fulham — 1/2 «BSP F x 10 мм 8872, форсунка для газового шланга Fulham — 3/8 «BSP F x 10 мм 6244, форсунка для газового шланга Fulham — 1/4» BSP F x 10 мм 8009, форсунка для газового шланга Fulham — 1/8 «BSP F x 10 мм 6247, форсунка для газового шланга Fulham — 1 / 2 «BSP TM x 10 мм 8871, форсунка для газового шланга Fulham — 3/8» BSP TM x 10 мм 6246, форсунка для газового шланга Fulham — 1/4 «BSP TM x 10 мм 6245, форсунка для газового шланга Fulham — 1/8″ BSP TM x 10 мм 8843, ФОРСУНКА С ТРЕХХОДНЫМ ШЛАНГОМ — 90 ° 8842, ФОРСУНКА С ТРЕХХОДНЫМ ШЛАНГОМ — 60 ° 8844, ФОРСУНКА С 4-Х ХОДОВЫМ ШЛАНГОМ 8862, КОЛЬЦО КОЛЬЦА ДВОЙНОЙ ГОРЕЛКИ24035, КОЛЬЦО БОЛЬШОГО КОЛЬЦА ТРОЙНАЯ ГОРЕЛКА 19537, БОЛЬШОЙ КОЛЬЦО BOILER BOILING RING SINGLE88 BOILING RING 22 КОЛЬЦЕВАЯ ОДИНАРНАЯ ГОРЕЛКА 12679, КОМПЛЕКТ ДЛЯ РУЧНОЙ ЗАМЕНА ДВУХ ПАКЕТОВ 21000, КОМПЛЕКТ ДЛЯ АВТОМАТИЧЕСКОЙ ЗАМЕНА ЧЕТЫРЕ ПАКОВ С OPSO13493, Комплект для автоматической смены из двух пакетов 11725, Гаечный ключ POL из кованой стали — черный 11724, Гаечный ключ POL из штампованной стали — оцинкованный 23142, 12 мм ЗАЖИМ НА РЕГУЛЯТОРЕ БУТАНА С МАНОМЕТРОМ 23143, РЕГУЛЯТОР ПРОПАНА 37 мбар С МАНОМЕТРОМ 8810, РЕГУЛЯТОР ПРОПАНА 0.5-4 БАР С НАПРАВЛЯЮЩЕЙ 8810, РЕГУЛЯТОР ПРОПАНА ВЫСОКОГО ДАВЛЕНИЯ 1 БАР (ФИКСИРОВАННАЯ) 8800, РЕГУЛЯТОР ПРОПАНА LP 50 мбар SMALL8800, РЕГУЛЯТОР ПРОПАНА LP 37 мбар МАЛЫЙ 8802, 37 мбар ЗАЖИМ НА ПРОПАНЕ REG15163, ГАЗОПАН 8 8802, ГАЗОПАН 8802 ГЛУБИНА ПРОПАНА, 37 мбар РЕГУЛЯТОР СВАРОЧНОГО ГАЗА LP8807, РЕГУЛЯТОР БУТАНА (БУТЫЛКА КАЛОРА 4,5 кг) 8805, ЗАЖИМ 21 мм НА РЕГУЛЯТОРЕ БУТАНА ‘CP3622 СВАРОЧНОЕ ОХЛАЖДЕНИЕ 2M X 2M 600’ CP3621 СВАРОЧНОЕ ОХЛАЖДЕНИЕ 2M X 1M 600’CFR-EXT УДЛИНИТЕЛЬ СТАЛЬНОЙ РАМЫ 0.6mP3630 СВАРОЧНОЕ ОХЛАЖДЕНИЕ 50M X 1M 600’CP3886FR СТАЛЬНАЯ РАМА 2.4 × 1.8MP3666FR СТАЛЬНАЯ РАМА 1.8 × 1.8MP3886CG ЗЕЛЕНЫЙ КАНВАС СВАРОЧНАЯ ЗАВЕСА 2.4 X 1.8MP ) P3886G ЗЕЛЕНАЯ СВАРОЧНАЯ ЗАВЕСА ПВХ 2,4 X 1.8MP3666G ЗЕЛЕНАЯ СВАРОЧНАЯ ЗАВЕСА ПВХ 1,8 X 1,8MP3646G ЗЕЛЕНАЯ СВАРОЧНАЯ ЗАВЕСА ПВХ 1,2 X 1,8MP3886O ОРАНЖЕВАЯ СВАРОЧНАЯ ЗАВЕСА ПВХ 2.4MX 1.8MP3466O ОРАНЖЕВАЯ СВАРОЧНАЯ ЗАВЕСА ПВХ 1,8462М Х 1.8MP3590 ЕАР DEFENDERSP3266 BROW GUARDP3261 СБРОС VISORP3261-5 Шейд 5 VISORP3260-5 Шейд 5 VISORP3260-3 Шейд 3 VISORP3390 4,5 х 2» FLIP UP СВАРКИ GOGGLESP3310 SKI ТИП СВАРКИ GOGGLESXR270 ВЕЛКРО SWEATBANDXR1017 CHARGERXR1016 BATTERYXR1014 лицевым уплотнителем и FIXINGSXR1013 головной убор ФИКСАЦИИ KITXR1012 ПОТ ДИАПАЗОН для головы GEARXR1011 головной убор INC AIR DUCTXR1010 FR шланг COVERXR1009 шланг для подачи воздуха и CONNECTORSXR1008 поясному ремню & ПЛЕЧЕ HARNESSXR1007 Р3 НЕРА FILTERXR1006 Активированный уголь PRE FILTERXR1005 СПАРК ARRESTORXR1004 ФИЛЬТР крышка с CATCHXR1001 продающие BAG18 / 90 Набор для резки — Plugged INC СЛУЧАЙ КОНТРАКТАНТЫ SET BC18 / 90 ОБРАБОТКА НАБОР — НАБОР ПОДРЯДЧИКА С ЗАГЛУШКАМИ Набор для резки оксиена / пропана — Набор с пробкой — Набор для подрядчиков 4 20MT764620-PR 6 мм 20 м 1/4 «пропановый шланг 761020-OX 20 мм 10 м 3/8» фитинги кислородный шланг 761005-OX 5 мм 10 м 3/8 «кислородный шланг 760620 -OX 6 мм 20 м 1/4 дюйма кислородный шланг 7606 10 OX 6 мм 10 м 1/4 дюйма кислородный шланг 761620-OX 6 мм 20 м 3/8 дюйма кислородный шланг 761605-OX 6 мм 5 м 3/8 дюйма установлен Кислород Hose760805-ОХ 8 мм 5m 3/8» встроен кислород hoseHeating Насадка 5 705105Heating Насадка 4 705104Heating Насадка 3 705103Heating Насадка 2 705102SWAGED Форсунка 25 704225SWAGED СОПЛО 18 704218SWAGED СОПЛО 13 704213SWAGED СОПЛО 10 704210SWAGED СОПЛО 7 704207Lightwieght Насадка 13 704113Lightwieght Насадка 10 704110Lightwieght Насадка 7 704107swaged Насадка 5 704205VVC ФОРСУНКА 5.5 703113VVC ОБРАБОТКА СОПЛО-703112VVC ОБРАБОТКА СОПЛО-703111VVC ОБРАБОТКА СОПЛО-703110VVC ОБРАБОТКА СОПЛО 2.5 703109VVC ОБРАБОТКА СОПЛО-703108VVC ОБРАБОТКА СОПЛО 1.5 703107VVC ОБРАБОТКА СОПЛО-703106VVC ОБРАБОТКА СОПЛО 0,5 703105VVC ОБРАБОТКА СОПЛО-703104VVC ОБРАБОТКА СОПЛО 00 703103VVC ОБРАБОТКИ СОПЛО 3/0 703102VVC Резка сопло Размер 4/0 703101VVC Режущее сопло Размер 5/0 703100PNME ФОРСУНКА 1/8 «3,2 мм 702332PNME ФОРСУНКА 3/32» 2,4 мм 702324PNME ФОРСУНКА 5/64 «2,0 мм 702320PNME ФОРСУНКА 1/16» 1 ФОРСУНКА.6MM 702316PNME РЕЖУЩАЯ СОПЛА 3/64 «1.2MM 702312PNME РЕЖУЩАЯ СОПЛА 1/32» 0.8MM 702308PNM РЕЖУЩАЯ СОПЛА 1/8 «3.2MM 702132PNM РЕЖУЩАЯ ФОРСУНКА 3/32» 2.4MM 702124PNZM NOZM ФРЕЗЕРНАЯ ФОРСУНКА 1/32 «702124PNZM / 8 «3,2 мм 712332APACHI РЕЖУЩАЯ СОПЛА 3/32» 2,4 мм 712324РЕЖУЩАЯ СОПЛА APACHI 1/16 «1,6 мм 712316APACHI РЕЖУЩАЯ СОПЛА 3/64» 1,2 ММ 712312APACHI РЕЗНАЯ СОПЛО 1/32 «0,8 ММ 712308 ФОРСУНКА 1 УЗЕЛ 1 / 16 «1,6 мм 705203AFNM СОПЛО 3/64» 1,2 мм 705202AFNM СОПЛО 1/32 «0.8MM 705201AGNM РАЗМЕР ИЗГИБНОЙ РЕЗКИ ФОРСУНКИ 25 702225AGNM РАЗМЕР ИЗГИБНОЙ РЕЗКИ 19 702219AGNM РАЗМЕР ИЗГИБНОЙ РЕЗКИ 13 702213 ANME ФОРСУНКА 1/8 ″ / 3,2 мм 701232ANME ФОРСУНКА ФРЕЗЕРНАЯ ФОРСУНКА 3/2 1232,4 / ДЮЙМ ФОРСУНКА 1/16 дюйма / 1,6 мм 701216ANME ФОРСУНКА 3/64 дюйма / 1,2 мм 701212ANM ФОРСУНКА 5/64 дюйма / 2,0 мм ФОРСУНКА 701120ANM 1/32 дюйма / 1,6 мм 701116CSS1010 Плоские сверхтонкие режущие диски 230 мм, нержавеющая сталь 1,0 Плоские сверхтонкие отрезные диски CSS1210 x 22 мм (9 ″), нержавеющая сталь 125 x 1.0 x 22 мм (5 ″) Плоские сверхтонкие отрезные диски CSS1010, нержавеющая сталь 115 x 1,0 x 22 мм (4,5 ″) Плоские сверхтонкие отрезные диски CSS1010, нержавеющие 100 x 1,0 x 16 мм (4 дюйма) Parweld PRO3600-30ER Pro-Grip 360A Welding Горелка, с кабелем 5 м и фитингами Euro Parweld PRO3600-30ER Pro-Grip 360A, с кабелем 4M и фитингами Euro Parweld PRO2500-30ER Pro-Grip 250A Сварочная горелка, с кабелем 5M и фитингом Euro Parweld PRO2500-30ER Pro-Grip 250A Сварочная горелка с кабелем 4M и фитингом EuroParweld PRO1500-40ER Pro-Grip 150A Сварочная горелка, включая кабель 5M и фитинг EuroParweld PRO1500-40ER Pro-Grip 150A Сварочная горелка, включая кабель 4M и фитинг EuroP3788 Parweld Panther Welding Jacket (размер XXL) P3788 Сварочная куртка Parweld Panther (размер XL) P3788 Сварочная куртка Parweld Panther (размер M) P3829 Алюминированный защитный экран для рук P3810 Перчатка для механика P3840 Латексная перчатка с термозахватом P3824 Panther Pro GauntletXR938H / R Parweld True Color Light Reactive Welding & Parweld Helding Col наш светореактивный сварочный и шлифовальный шлем (синий) XR938H / S Parweld True Color Light реактивный сварочный и шлифовальный шлем (серебристый) XR938H / E Parweld True Color Light реактивный сварочный и шлифовальный шлем (дизайн американского орла) XR938H / F Parweld True Color Light Reactive Сварочно-шлифовальный шлем (пламя) СОПЛО ANME CUT 1/32 ″ / 0.РЕЖУЩАЯ СОПЛА 8ММ 701208ANM РЕЖУЩАЯ СОПЛА 1/32 ″ / 0,8 ММ ММ 3/32 ″ / 2,4 ММ НАПРАВЛЯЮЩАЯ СОПЛА 3/64 ″ / 1,2 ММ РЕЖУЩАЯ СОПЛА 1/8 ″ / 3,2 ММ РЕГУЛЯТОР ОДНОСТУПЕНЧАТЫЙ СОЕДИНИТЕЛЬ СО2 СОЕДИНИТЕЛЬНЫЙ ПЕРЕХОДНИК 2 СТУПЕНЧАТЫЙ МАНОМЕТР 300 ДАТЧИК ARGONREGULATOR 300 бар одноступенчатый 2 ДАТЧИК OXYGENREGULATOR 25 бар одноступенчатый ДАТЧИК ACETYLENEREGULATOR одноступенчатый ДАТЧИК ARGONREGULATOR 25 бар одноступенчатый ПОДСОЕДИНЕН PROPANEREGULATOR 300 бар 0-10 одноступенчатый ПОДСОЕДИНЕН OXYGENREGULATOR 25 бар одноступенчатый ПОДСОЕДИНЕН ACETYLENEPARWELD XTM 2001 МИГ ИНВЕРТОР 200AMP ПАКЕТ 1PARWELD TIG INVERTER XTT ДИАПАЗОН 200P P1 PACKAGEPARWELD XTS 163 MMA ИНВЕРТОР ДИАПАЗОН P1 PACKAGEPARWELD XTS 403 MMA INVERTER RANGE P1 PACKAGEParweld XTE201C Автомобильная компактная миграционная машина — P1 PackageParweld XTE 171 Автомобильная компактная мигрирующая машина 100 мм Комплект Grweld Disc 6 * Parw 100 мм * Parw Disc 6 * Parw Disc 1GS1060.0 мм (одиночные) XR938H / P Сварочный шлем Parweld True Color Light для реактивной сварки и шлифовки Перчатка Gripper LiteP3860 Перчатка Parweld PU Gripper GloveP3855 Перчатка Parweld Panther Drivers GloveP3854 Перчатка Parweld Panther Mesh Back Drivers GloveP3845 Перчатка Parweld ISO с вырезом CP3839 Перчатка Parweld Panther Pro TIGP3838 Перчатка Parweld Panther Fingertip Partid35 Перчатка TIGP38 P3828 Перчатка / перчатка Parweld Panther с алюминизированным покрытиемP3826 Двусторонняя перчатка / перчатка Parweld Panther (одиночные) P3825 Перчатка / перчатка Parweld Panther Перчатка Риггера arweld XR940A Power Air Purifying Сварочный защитный шлемParweld XR937H Extra Large View Weld & Grind HelmetParweld E7018 Электроды для дуговой сварки MMA с низким содержанием водорода, 4.0 мм * 350 мм, 5 кг в упаковке Parweld E7018 Электроды для дуговой сварки MMA с низким содержанием водорода, 3,2 мм * 350 мм, 5 кг УПАКОВКА Электроды для дуговой сварки MMA для низкоуглеродистой стали E6013, упаковка 4,0 мм * 350 мм, 5 кг Электроды для дуговой сварки MMA для стали, 3,2 мм * 350 мм, 5 кг в упаковкеParweld E6013 Электроды для дуговой сварки MMA для низкоуглеродистой стали, упаковка 2,5 мм * 350 мм, 2,5 кг Parweld E6013 Электроды для дуговой сварки MMA для низкоуглеродистой стали, упаковка 2,5 мм * 350 мм, 5 кгParweld E6013 Электроды для сварки MMA ARC для мягкой стали, 2 мм * 300 мм, 5 кг PackParweld PRO20-12S1BW PRO-Grip20 Сварочная горелка TIG 250A с водяным охлаждением, доступна с кабелем 12 футов или 25 футовParweld PRO18-12S1BW PRO-Grip18 350A Сварочная горелка TIG с водяным охлаждением, доступна с кабелем 12 футов или 25 футов Parweld XTT 503-P1 Импульсный AC / DC Инверторный сварочный аппарат для сварки TIG на 500 А, 400 В, инверторный сварочный агрегат Parweld XTT 353P-P1, 350 А, переменный / постоянный ток, 400 В, импульсный, инверторный сварочный аппарат TIG, 200 А, переменный / постоянный ток, 200 А, 230 В, инверторный агрегат для сварки TIG, инвертор Parweld XTT 200DC-P1, 200 А, 230 В Сварочный агрегат Parweld XTT 182DV-P1 180A, 230V Инверторный сварочный аппарат TIGParweld PR17-25S1BG Pro-Grip Max 150A TIG Сварочная горелка, доступная с кабелями 4 м или 8 м -30ER Pro-Grip 501W Сварочная горелка с водяным охлаждением, длина кабеля 3 м, 4 м и 5 м Сварочная горелка Parweld PRO3600-30ER Pro-Grip 360A, с кабелем 3M и фитингами Euro Parweld PRO2500-30ER Pro-Grip 250A Сварочная горелка, с 3M Сварочная горелка Parweld PRO1500-30ER Pro-Grip 150A, включая кабель 3M и евро-фитинг Инвертор XTS 202 MMA, 200 А, 240 В, Инвертор Parweld XTS162, MMA, 160 А, 240 В, с дополнительным пусковым током с нуля, горелка для сварки TIG TorchParweld XTS162, MMA, инвертор, 160 А, 240 В, Инвертор Parweld XTS 142, MMA, 140 А, 240 В, с выходом O Плазменный резак Parweld XTS 142 MMA, 140 А, 240 В и сварочный комплект, включая корпус Легковесный комплект для кислородно-ацетиленовой сварки и пайки, в том числе комплект для резки Case 18/90 Oygen / ацетилен — 2 манометра, включая комплект кейса — Комплект для кислородно-пропановой резки вставлен, комплект подрядчиков 2CParweld XTE 181 Автомобильная компактная машина MIG — 180 А — 240 В — Комплектация 1 Автомобильная компактная сварочная машина Parweld XTE 171 — 170 А — 240 В — Упаковка 1 Инвертор Parweld XTM 503I Synergic MIG — 500 А — 400 В — Упаковка 1 Инвертор Parweld XTM 254I Synergic — 250 А — 400 В — Упаковка 1 Parweld XTMAMP 252I Synergic 250 — упаковка 1 XTM 403S MIG Transformer Machine — 350 AMP — Пакет 1 Parweld XTM301C MIG Трансформаторная машина — 300 А — Комплект 1 Parweld XTM 301S MIG Трансформаторная машина 300 А — Комплект 1 Инвертор Parweld XTM 182I MIG, 180 А — Комплект 1 Инвертор Parweld XTM 160I MIG, 160 А — Комплект 1Parweld XTM 252I 250 AMRAIGHTPOU, синергетический инвертор MIG ARC3 TORCHESEV010215101 SAMSON 150A EU ДЕРЖАТЕЛЬ ЭЛЕКТРОДА / СТЕРЖНЯEW1625PW РАЗЪЕМ ТИПА DIN 16-25MMEW200C ЗАЖИМ ЗАЗЕМЛЕНИЯ КРОКОДИЛ 200 AMPTX50025010 СВАРОЧНЫЕ ПРУТКИ ДЛЯ ЧУГУНА.NI99 CI 2,5 мм 1.0KGRC3082540 СТЕРЖЕНЬ ДЛЯ ДУГОВОЙ СВАРКИ SIFCHROME 308L 2,5 ММ 4KGRWN41V33 ЗАПЧАСТИ ДЛЯ ГОРЕЛКИ TIG — КОРОТКАЯ ЗАДНЯЯ КОЛПАЧКА (9 20) (41V PK5) (45V42) RWN13N26 ЗАПЧАСТИ ДЛЯ ГОРЕЛКИ TIG — 0,040 ЦАНЖИ (PK 5) (13N21) RWN13N21 ЗАМЕНА ЦАНЖИ ДЛЯ TIG ФАЗА 0,040 (PK 5) (13N21) RWN13N08 WCF — КЕРАМИКА — СОПЛО 1/4 ALUMIGINA NOZZLE (PK810) (13N21) СВАРКА — Вольфрам SUPERSTRIKE 1,6 ММ ПРОДАН КАЖДОЙ ЗОЛОТОЙ НАКОНЕЧНИК HP16616 TUGSTEN — 1.6 мм 1,5% лантанового вольфрама 1/16 ЗОЛОТА ПРОДАНА EACHHA16516 BLACK TIP TIG Вольфрам — 1,6 мм 1% лантанат вольфрама 1/16 продано каждый TIG TUNGSTON — ЦИРКОН-ВОЛЬФРАМ 1,6 ММ ПРОДАН 1/16 КАЖДЫЙHP16110 — Вольфрам с КРАСНЫМ НАКОНЕЧНИКОМ — ТОР Вольфрам 1,0 мм 2% .040 EARO961250 ТИГ-БРОНЗОВЫЙ БРАЗИНГ — SIFSILCOPPER NO 968 СТАЛЬНАЯ БРОНЗОВАЯ НЕРЖАВЕЮЩАЯ СТАЛЬНАЯ ПЕРЕДАЧА НЕРЖАВЕЮЩЕЙ СРЕДЫ НЕРЖАВЕЮЩЕЙ СРЕДЫ НЕТ 968 1,2 ММ 650 СТАЛЬНОВАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ АЛЮМИНИЕВЫЕ ШТАНГИ ​​ДЛЯ TIG — СИФАЛУМИНОВЫЙ NO 15 4043A 1.6MM 2.5KGRA151225 SIF низкоуглеродистая сталь TIG удилища — SIFSTEEL A15 1.2MM 2.5кг STEELSW120573 PLASMA CUTTER SPARE PART — Электрод HAFNIUMSW020382 PLASMA CUTTER SPARE PART — Электрод ССЫЛ MAX 20SWPC801ZR Плазменная резка ЗАПЧАСТИ — Электрод ZIRCONIUMSWPC306 Электрод ZR х 14.5мм для Binzel PSB30 Совместимость плазмотронов .Qh350405W НАКОНЕЧНИК НАКОНЕЧНИКА 250A M6 PACK 5Qh280320W MIG WIRE LINER 3M 0,6MM — 0,8MMQh280301W КОНУСНОЕ СОПЛО 180AQh280306W MIG WELDING CONTACT TIP 0,6MM 180A M6 — PACK DISL 10TWWMO-GAMMO GROSN20 AR 10TWM 180A M6 — УПАКОВКА ARGOSN20 AR 10TGOSN080 100 GRITSC60100GKW ЗАСЛОННЫЙ ДИСК 100X22MM 60 GRIT — CERIM40DCGM DPC ШЛИФОВАЛЬНЫЙ ДИСК (100X6.4X16MM) Гелиевый баллонный насос — Premium Гелиевый баллонный насос — Стандартный VZFC08045 Безгазовая сварочная проволока MIG 0,8 мм 0,45 кг в рулоне WO330840 SifMIG 308LSi Металлическая проволока MIG 0,8 мм 3,75 кг MIG WireDZ10001 Газовый баллон с кислородом и ацетиленом TrollyDZ10004 Портативная тележка для газового баллона SmallPC600630T Комплект сварочного стола 600 мм * 630 мм P3410 НЕЙЛОНОВЫЕ ЧЕРНЫЕ ОФРАМЫ — CLEARP3420 Ясные спецификации безопасности ЛИНЗЫ ШЛЕМА — 1.0 DIOPTER MAGES11060SP ЗАМЕНА 110 мм X 60 мм POLYCARB CLAER WELDING HELMET LENSES442000G СМЕННАЯ КРЫШКА ДЛЯ ПРОЗРАЧНОГО СТЕКЛА ЛИНЗА 4 1/4 «* 2» ДЛЯ СВАРОЧНОГО ШЛЕМА HW1109010 ЗОЛОТАЯ ЗАМЕНА ЛИНЗЫ 1020 мм X10 GOLD ЗАМЕНА ЗОЛОТА 1020 мм. ЛИНЗЫ CE ДЛЯ СВАРКИ HELMETEHW442009G СМЕННОЕ СТЕКЛО 4 1/4 X 2 9EW ЛИНЗЫ CE ДЛЯ СВАРКИ HW442008G СМЕННОЕ СТЕКЛО 4 1/4 X 2 8EW ЛИНЗЫ CE ДЛЯ СВАРКИ HELMETEHW442006G ЗАМЕНА СТЕКЛА HEL 4 1/4 X2 6EW 1/4 X 2 5EW ЛИНЗЫ CE ДЛЯ СВАРКИ РАСХОДОМЕР HELMETAU300 0 — 40 л / мин TWN001COMP КОНВЕРСИОННЫЙ ШЛАНГ MINI MIG (QF — 38BSP RH) AE3005LX РЕГУЛЯТОР ГАЗА ЗАЩИТЫ ДЛЯ СВАРКИ MIG И TIG Жидкий углекислый газ сорт углекислого газа Диоксид углерода 34 кг Заправка газа CO2 15 кг Отвод жидкости для замораживания стекла Пищевой диоксид углерода Заправка газа CO2 6.Отвод 35 кг жидкости для замораживания стекла МЕДНЫЙ БЕСПЛАТНЫЙ ПРОВОД VZ181215LSG3 1,2 ММ SG3 (15 кг) REELVZ181015LSG3 1,0 ММ ПРОВОД SG3 MIG (15 кг) REELVZ180815LSG3 0,8 ММ SG3 MIG WIRE (15 кг) REELVZ181215LW2ПРОВОД A18 С СЛОЕМ 0 ММ, ПРОВОД 15 КГ VZ1808050L SG2 ПРОВОД С СЛОЕМ A18 1,0 ММ, ПРОВОД 5 КГ REELVZ180650L SG2 0,6 мм A18 MIG WIRE (5 кг) REELVZ160607L SG2 0,6 мм A18 MIG WIRE (0,7 кг) REELFXTIPDIP50 Sif Tip Dip Anti-Splatter Paste 500gEG1001w Распылитель для защиты от разбрызгивания на водной основе 400 млAU300 Расходомер ArGBNA на 0-40 л Адаптер для аргона На объекте Комплект для резки кислородом / пропаном — с пробкой — Комплект подрядчиков 2OP1000w Свариваемость Sif Toolbox Только кейс FO010022 Sifbronze Fux 225gDZ205001 Tri Flint Spark LighterDA4003838RH 3/8 дюйма на 3/8 дюйма R / H муфта для шланга DA4003838LH 3/8 дюйма на 3/8 дюйма Левая муфта для шланга DA4003814RH От 1/4 «до 3/8» Правая муфта для шлангаDA4001414RH 1/4 «Правая муфта для равномерного шлангаDA4001414LH 1/4» Левая муфта для равномерного шланга Легкая насадка 1 704101 с обжимной насадкой 3 704203 с обжимной насадкой 2 704202 с обжимной насадкой N M 1 704201 ФОРСУНКА NG 5/64 «2.0MM 702120PNM РЕЖУЩАЯ ФОРСУНКА 1/16 «1,6 мм 702116PNM РЕЖУЩАЯ ФОРСУНКА 3/64″ 1,2 мм 702112 Легкое сопло 5 704105 Легкое сопло 3 704103 Легкое сопло 2 704102CCANM04W Сопло ANM04W свариваемость 3/64 100 мм Тип 5/64 W Свариваемость ANM8 100 мм Тип 5/64 установленный ацетиленовый шланг BW8001038PFT 8 мм 10 м 3/8 дюйма установленный пропановый шланг 760810-OX 8 мм 10 м 3/8 дюйма установлен Кислородный шланг BW600538PFT 6 мм 5 м 3/8 дюйма установленный пропановый шланг BW600514RFT 6 мм 5 м 1/4 дюйма установленный ацетиленовый шланг 764605-PR 6 мм 5 м 1/4 » установленный пропановый шланг 760605-OX 6 мм 5 м 1/4 дюйма установленный кислородный шланг761610-OX 6 мм 10 м 3/8 дюйма установленный кислородный шланг 764610-PR 6 мм 10 м 1/4 дюйма установленный пропановый шланг BW6002038BFT 6 мм 10 м 3/8 дюйма ацетиленовый шланг с резьбой 10 мм 20 м BW10002038RF Ацетиленовый шланг с фитингом 764120-PR 10 мм 20 м 3/8 дюйма с фитингом для пропана 760820-OX 8 мм 20 м 3/8 дюйма кислородный шланг с фитингом 10 мм 10 м 3/8 дюйма ацетиленовый шланг 10 мм BW10001038PF 10 мм 10 м 3/8 дюйма с фитингом для пропана 761010-OX 761010-OX 8-дюймовый кислородный шланг BG111 LPG Нагревательная горелка 60 ммBG105-45L LP G Отопление Факел 45мм с leverBB6002 LW Режущий AttachmentBB6003 LW MixerBB6001 LW ShankBB5003 HD MixerBB5002 HD Режущий AttachmentBB5001 HD сварщиков ShankAU2001 Сбрасываемая петелька, OXYGEN FLASH НАЗАД ARRESTORAU2001 СБРОСОМ петелька, ТОПЛИВО ГАЗ FLASH НАЗАД ARRESTORAU11107 DGN Barrel, топливный газ, FLASH НАЗАД ARRESTORAU111002 DGN Barrel, кислородные FLASH ЗАДНЯЯ СТУПЕНЬ AE3004LX ПЕРВАЯ СТУПЕНЬ, ДВОЙНОЙ КИСЛОРОДНЫЙ РЕГУЛЯТОР AE2004LX ПЕРВАЯ СТУПЕНЬ, ОДИНАРНАЯ СТУПЕНЬ, ПРОПАН / ПРОПИЛЕН СЕРИИ LX Одноразовые баллоны с гелиевым газом собственной торговой марки с 50 баллонами и баллонами с ленточным газом 30 оптовых баллонов с баллонами без баллонов Воздушные шары и лента.Канистра с гелием с 50 и 100 воздушными шарами и лентойFill’N’Away Одноразовая канистра с гелием с 30 воздушными шарами и лентой Оптовая торговля, Fill’N’Away цилиндр + 50 воздушных шаров и лента.Fill’N’Away Одноразовые баллоны с гелием для заполнения 50 9-дюймовых воздушных шаровFill’N Одноразовый баллон с гелием для заполнения 30 9-дюймовых воздушных шаров Азот 9,4 л 137 бар — Только заправка — для гоночных команд Азот 9,4 л 137 бар — Депозит и заправка — для гоночных команд Азот 2 л 200 бар — Только заправка — для гоночных команд Азот 2 л 200 бар — Депозит и заправка — для гонок Команды Азот 20 л 200 бар — Только заправка — для гоночных команд Азот 20 л 200 бар — Депозит и заправка — для гоночных команд Пищевой азот 9.4 л 137 бар — Только заправка — для консервирования и розлива Пищевой азот 9,4 л 137 бар — Депозит и заправка — для хранения и разлива вина Пищевой азот 2 л 200 бар — Только заправка — для консервирования и розлива Пищевой азот 2 л 200 бар — Депозит и заправка — для вина Пищевой азот 20 л 200 бар — Только заправка — для консервирования и розлива Пищевой азот 20 л 200 бар — Депозит и заправка — для консервирования и розлива вина Бескислородный азот 20 л 200 бар — Только заправка — для кондиционирования воздуха и продувки трубопровода Бескислородный азот 2 л 200 бар — Депозит и заправка — для кондиционирования воздуха и продувки трубопровода Бескислородный азот 2 л 200 бар — Только заправка — для кондиционирования воздуха и продувка трубопровода Бескислородный азот 50 л 200 бар — Только заправка — для кондиционирования воздуха и продувка трубопровода Бескислородный азот 9 л 137 бар — Депозит и заправка — для кондиционирования воздуха и продувки трубопроводов Бескислородный азот 9 л, 137 бар — только заправка — для кондиционеров ng & Очистка трубопровода Бескислородный азот 20 л 200 бар — Депозит и заправка — для кондиционирования воздуха и продувка трубопровода Принадлежит клиенту, заправка огнетушителя CO2, цена за килограмм, пищевой класс, без аренды, 1.5 кг углекислого газа для гидропоники и роста водных растений — только для заправки, пищевой, без арендной платы, 1,5 кг газа CO2 для гидропоники и роста водных растений — депозит и пополнение, пищевой, без аренды, 6,35 кг газа CO2 для гидропоники и роста водных растений — только заправка , Без аренды, 34 кг газа CO2 для гидропоники и роста водных растений — только заправка, пищевой, без аренды, 3,15 кг газа CO2 для гидропоники и выращивания водных растений — только заправка, пищевой сорт, без аренды, 3,15 кг газа CO2 для гидропоники и роста водных растений — Депозит и пополнение продовольственного качества, без аренды, заправка 15 кг газа CO2 для гидропоники и роста водных растений — Депозит и пополнение продовольственного качества, без аренды, 15 кг газа CO2 для гидропоники и роста водных растений — только заправка для пищевых продуктов, без аренды 6.35 кг газа CO2 для гидропоники и роста водных растений — Депозит и пополнение Пищевой сорт, без аренды 34 кг газа CO2 для гидропоники и роста водных растений — Депозит и заправка Заправка газа CO2 6,35 кг для наполнения баллонов для пейнтбола — Только заправка Заправка газового диоксида углерода 34 кг, идеально подходит для заполнения больших Количество баллонов для пейнтбола — Только заправка Углеродный диоксидный газ 34 кг, идеально подходит для заполнения большого количества пейнтбольных баллонов — Депозит и заправка Углеродный диоксид CO2 Заправка 6,35 кг Отвод жидкости для пейнтбола — Только заправка Заправка углекислого газа CO2 Заправка 15 кг, идеально подходит для использования дома или бизнеса — Только заправка Углеродный диоксид CO2 Заправка газа 6.35 кг Отвод жидкости для пейнтбола — Депозит и заправка Углеродный диоксид CO2 Газ 15 кг, идеально подходит для использования дома или бизнеса пейнтбольными шарами — Депозит и заправка Внутренний дворик с калорийным газом 5 кг — Только заправка Патио с калорийным газом 13 кг — Только заправка Бутан с калорийным газом 7 кг — Только заправка Бутан с калорийным газом 4,5 кг — Заправка OnlyCalor Gas Butane 15KG — Только заправка Калорный газ Пропан 6KG — Только заправка Калорный газ Пропан 6KG Легкий вес — Только заправка Пропан калорийного газа 47KG — Только заправка Пропан для калорийного газа 3,9 кг — Только заправка Пропан для калорийного газа 19 кг — Только заправка Пропан для пропана 13 кг — Только заправка 907 — Только заправка OnlyCamping Gaz 904 — Только заправкаCamping Gaz 901 — Только заправка Калорийный газ Пропан 18 кг Автогаз — Только заправка Калорийный газ Пропан 12 кг Автогаз — Только заправка 9.4 л многоразового газа для гелиевых баллонов — только заправка — только торговля — идеально подходит для флористов, магазинов открыток и вечеринок. 9,4 л многоразового газа для гелиевых баллонов — внесение и пополнение — только торговля — без заправочного адаптера — идеально подходит для флористов, магазинов открыток и вечеринок. Баллонный газ — только заправка — розничная торговля — идеальные вечеринки и юбилеи 9,4 л многоразового гелиевого шара — депозит и пополнение — розничная торговля — идеальные вечеринки и юбилеи 50 л многоразовый гелиевый баллон с газом — только заправка — только торговля — идеально подходит для флористов, магазинов открыток и вечеринок 50 л Многоразовый газовый баллон с гелием — Депозит и заправка — Только торговля — без заправочного адаптера — идеально подходит для флористов, магазинов открыток и вечеринок 2L Многоразовый баллон с гелиевым шаром — только заправка — идеальные вечеринки и юбилеи 2L Многоразовый баллон с гелиевым баллоном — Депозит и заправка — идеальны вечеринки и юбилеи: 20 л многоразового гелиевого шара с газом — только заправка — только торговля — идеально подходит для флористов, магазинов открыток и вечеринок. Депозит и пополнение — только торговля — без заправочного адаптера — идеально подходит для флористов, магазинов открыток и вечеринок 20 л многоразового гелиевого шара — только заправка — розничная торговля — идеальные вечеринки и юбилеи 20 л многоразового гелиевого шара газ — депозит и пополнение — идеальные вечеринки и юбилеи ПортаГаз, аренда Свободный углекислый газ CO2 1.5 кг — Депозит и заправка Porta Gas, бесплатно, чистый аргон 2 л 200 бар — только заправка Porta Gas, аренда бесплатно, чистый аргон 2 л 200 бар — Депозит и заправка Porta Gas, аренда бесплатно, кислородный газ 2 л 200 бар — только заправка Porta Gas, аренда бесплатно, кислород Gas 2L 200bar — Депозит и заправкаPorta Gas, без арендной платы, без кислорода (OFN), азот 2L 200bar — только заправка, Porta gas, без аренды, без кислорода (OFN), азот 2L 200bar — Депозит и заправкаPorta Gas, без арендной платы, углекислый газ CO2 1.5 кг — Только заправка Porta Gas, без аренды, 5% CO2 / смесь аргона 2 л 200 бар — Только заправка Porta Gas, без аренды, смесь 5% CO2 / аргона 2 л 200 бар — Депозит и заправка Бесплатно, чистый аргон 20 л 200 бар — Только заправка, чистый аргон 20 л 200 бар — Депозит и пополнениеАренда, кислородный газ 20 л 200 бар — Только пополнениеАренда, кислородный газ 20 л 200 бар — залог и пополнениеАренда, бескислородный (OFN) азот 20 л 200 бар — только пополнениеАренда, бескислородный (OFN) азот 20 л 200 бар — залог и RefillRent Free, 5% CO2 в смеси аргона, 20 л, 200 бар — Депозит nd RefillRent Free, 20% CO2 в смеси аргона 20 л 200 бар — без депозита и пополнения, 20% CO2 в смеси аргона (20 л) — только заправка Торговый газ, без аренды 5% CO2 в смеси аргона 20 л 200 бар — только заправка 20 л пропиленовый топливный газ для сварки , Пайка, нагрев и резка — только заправка: без аренды 34 кг CO2-газа — только заправка без аренды, чистый аргон 50 л 200 бар — только заправка без аренды, кислородный газ 50 л 200 бар — только заправка без аренды, без кислорода (OFN) азот 50 л 200 бар — только заправка без аренды, 20 % CO2 в смеси аргона (50 л) — только заправка 5% CO2 в смеси аргона 50 л 200 бар — только заправка Хобби газ 10 л Баллоны с кислородным газом 200 бар — только заправка Хобби-газ, аренда бесплатно, чистый аргон 10 л 200 бар — только заправка Хобби-газ, аренда бесплатно , Чистый газ аргона 10 л 200 бар — Депозит и заправка Хобби-газ, аренда бесплатно, кислородный газ 10 л 200 бар — Депозит и заправка Хобби-газ, без аренды, бескислородный азот (OFN) 9 л 137 бар — Депозит и заправка Хобби-газ, без ренты, без кислорода (OFN) Азот 9 л 137 бар — только заправка Хобби-газ, без аренды, углекислый газ CO 2 Газ 6.35 кг — только заправка Хобби-газ, без аренды, углекислый газ CO2 3,15 кг — только заправка Хобби-газ, бесплатная аренда, 20% CO2 / аргонная смесь Заправка 10 л 200 бар — только заправка Хобби-газ, аренда 20% CO2 / аргон 10 л 200 бар — депозит и заправка Хобби-газ, бесплатная аренда углекислый диоксод CO2 газ 6,35 кг — Депозит и заправка Хобби Газ, без ренты Газ диоксида углерода CO2 3,15 кг — Депозит и заправка 2 л Пропиленовый топливный газ для сварки, пайки, нагрева и резки — Только заправка Заправка диоксида углерода CO 2 6.35 кг для домашнего бара — только заправка Заправка углекислого диоксида CO2 заправка 1,5 кг для домашнего бара — только заправка Углеродный диоксид CO2 1,5 кг для домашнего бара — депозит и заправка Углеродный диоксид CO2 6,35 кг для домашнего бара — депозит и заправка Углекислый газ 3,15 кг для домашнего бара — залог и заправка углекислого газа 3,15 кг газа для домашнего бара — только заправка 2 литра погреб / пивной газ 60/40 смесь для домашнего бара — только заправка 2 литра погреб / пивной газ 70/30 смесь, для домашнего бара — только заправка 2 литра погреб / пивной газ 70/30 смесь для Домашний бар — Депозит и пополнение Погреб 2 л / Пивной газ 60/40 смесь для домашнего бара — Депозит и пополнение Углеродный диоксид СО2 газ 6.35 кг — только заправка Углеродный диоксид CO2 34 кг Для торговых пользователей — Только заправка Углеродный диоксид CO2 15 кг Для торговых пользователей — только заправка Углекислый газ 3,15 кг Газ для торговых пользователей — только заправка 50 л Погреб / пивной газ 60/40 Смесь для торговых пользователей — только заправка 50 л Погреб / Смесь для пивного газа 30/70 для торговых пользователей — только для пополнения Погреб 20 л / смесь для пивного газа 60/40 для торговых пользователей — только для пополнения Смесь для пивного газа 20 л / 30/70 для торговых пользователей — только для пополнения Смесь 10 л погреб / пивной газ 60/40 для торговли Пользователи — только заправка Смесь 10 л погреб / пивной газ 50/50 Для торговых пользователей — только заправка Смесь 10 л погреб / пивной газ 30/70 для торговых пользователей — только заправка Пропан 19 кг калорийного газа — только заправка

Преимущества окон для газа аргона

Когда дело доходит до окон, есть много вариантов, из которых можно выбирать.От стилей и цветов до окон с газообразным аргоном — домовладельцы могут выбирать, что лучше всего подойдет для их дома. Прочтите наше Руководство по замене Windows для конечного покупателя, чтобы узнать больше о некоторых из этих вариантов.

В этой статье мы сосредоточимся на особом варианте, который есть у домовладельцев, когда дело доходит до их окон: наполнение их газообразным аргоном. Эти окна создаются, когда газ аргон вводится между двумя или тремя стеклами. Они более экономичны, звуконепроницаемы и энергоэффективны, чем обычные окна.В этой статье мы рассмотрим преимущества окон с газом аргона и почему вам стоит подумать о их покупке.

Плюсы аргона

Газ аргон безопасен

Аргон — это тот же газ, который используется в люминесцентном освещении. Без запаха и цвета. Хотя это звучит пугающе, газ аргон безвреден! Фактически, помимо кислорода и водорода, это самый распространенный газ в атмосфере. Если окно с газом аргона треснет или протечет, угрозы заболеть или умереть нет.Кроме того, он не горюч, поэтому можно не беспокоиться о возгорании окон.

Обеспечение хорошей теплоизоляции вашего дома

Окна из аргона создаются, когда газ аргон запечатан между двумя стеклянными панелями. Окна с двойным остеклением более изолированы, чем обычные окна. У вас также есть возможность получить окно с тройным стеклом, которое содержит газ аргон между всеми тремя панелями. Аргон — более плотный газ, чем обычный воздух, и отражает больше тепла.

Что все это значит? Это означает, что вы защищаете свой дом от непогоды.Поскольку аргон является более плотным газом, ваши окна лучше изолированы. Эта изоляция уменьшит сумму, которую вы платите за отопление и электроэнергию, потому что ваши системы отопления и охлаждения будут работать более эффективно.

Защита от постороннего шума

Изоляция не просто снижает ваши счета. Двойные или тройные окна уже звукоизолируют ваш дом больше, чем одинарное. Кроме того, добавление газообразного аргона между стеклами создает подушку, которая также может смягчить внешний шум.

Газообразный аргон уменьшает количество конденсата и инея в окнах

Попадание влаги в окно может вызвать конденсацию влаги или наледь, что может привести к повреждению окна. Окна с газом аргоном могут предотвратить попадание влаги в окно. Согласно информации о двойном остеклении, это связано с тем, что молекулы аргона более обезвожены и меньше двигаются. Это отсутствие движения также вызывает меньшую теплопередачу и не позволяет влаге скапливаться.Другими словами, именно аргон предотвращает накопление влаги в ваших окнах.

Не жалейте ни гроша, если можете сэкономить сотни

При покупке окон на замену всегда важно учитывать цену. На первый взгляд окна с газом из аргона на самом деле на 30-40 долларов дороже. Это изменится, поскольку дополнительная изоляция и меньшее количество тепла, передаваемого окнами из аргона, экономят ваши деньги на счетах за отопление и электроэнергию круглый год. Ваши системы отопления и охлаждения будут работать более эффективно.Вы окупите 30-40 долларов в течение нескольких месяцев.

Кроме того, окна с двойным и тройным стеклопакетом для газа аргона обладают большей устойчивостью к ультрафиолетовым лучам. УФ-лучи могут выцветать и повредить мебель. Эти наполненные аргоном окна защитят мебель, коврики и шторы от повреждения солнцем и снизят частоту замены или обслуживания предметов домашнего обихода. В результате вы сэкономите немного лишних денег в кармане.

Повышенная ценность R

Газовые окна с аргоном имеют повышенное значение R, которое является мерой устойчивости к нагреванию.Это означает, что окна с газом из аргона более устойчивы к нагреванию, поэтому зимой они теряют меньше тепла. Как упоминалось выше, повышенное значение R связано с тем, что молекулы обезвоживаются и меньше двигаются.

Двойная панель против тройной

Газовые окна с аргоном выпускаются в двух вариантах: двойное и тройное. Окна с двойным остеклением состоят из двух оконных стекол с газообразным аргоном между ними, в то время как окна с тройным остеклением имеют три стекла с газом между ними. При этом окна с тройным остеклением также дороже, чем окна с двойным остеклением.

Расход аргона

Рассеивается

Газообразный аргон со временем будет вытекать из вашего окна. Говорят, что за 20 лет происходит потеря около 10% газообразного аргона, если ваши окна не герметизированы должным образом. Даже при 10% -ной потере со временем энергоэффективность вашего окна будет незначительно снижена. Однако без должным образом герметичных окон потеря газообразного аргона может быть значительной.

Не расширяется

Еще один недостаток аргона в том, что он не расширяется.Поэтому, когда ваше окно расширяется в летние месяцы, газ аргон между стеклами не делает то же самое. Это может привести к потере газообразного аргона, если ваши окна не закрыты должным образом.

Альтернативы газу аргон

Газ аргон в окнах, хотя и самый популярный вариант, не единственный вариант, который можно рассматривать. Существуют и другие альтернативные газы, которые можно перекачивать между оконными стеклами, чтобы обеспечить изоляцию и энергоэффективность.

Криптон газ

Как и аргон, газ криптон нетоксичен и стабилен, что делает его идеальным для изоляции между оконными стеклами.Однако, поскольку криптон является более плотным газом, чем аргон, известно, что он является лучшим изолятором. Благодаря своей плотности он обеспечивает отличную изоляцию и максимальную энергоэффективность.

Кроме того, криптон является стандартом при покупке окон с тройным остеклением, поскольку газ работает лучше, чем аргон, в небольших помещениях. Он наиболее эффективен в окнах с промежутком от 1/4 до 3/8 дюймов между стеклами.

Обратной стороной газонаполненных криптоновых окон является цена. Поскольку этот газ почти не встречается в атмосфере, он имеет более высокую цену.

Смесь газов аргона и криптона

Существует также вариант смеси газов аргона и криптона. Это решение предлагает домовладельцам преимущества обоих газов. Вы получаете выгоду от дополнительной энергоэффективности, которую обеспечивает газ криптон, при доступной стоимости окон, работающих на газе аргоне.

Теперь вы эксперт по окнам с аргоновым газом! Если вы ищете энергоэффективное и экономичное окно, не ищите ничего, кроме окон, заполненных аргоном. Нет ничего подобного!

Argon — обзор | Темы ScienceDirect

3.7.3.4 Изотопы аргона

Аргон состоит из трех изотопов: 36 Ar, 38 Ar и 40 Ar. Первые два изотопа имеют изначальное происхождение и не вносят значительного вклада в производство на Земле: 40 Ar, однако образуется при распаде 40 K ( t ı / 2 = 1,40 × 10 9 лет). Исходное (или изначальное) соотношение 40 Ar / 36 Ar солнечной системы находится между 10 — 4 и 10 — 3 (Бегеманн и др., 1976). Напротив, земная атмосфера имеет отношение 40 Ar / 36 Ar, равное 296, а все другие земные материалы имеют более высокие значения. Наземные 40 Ar / 36 Соотношения Ar, следовательно, по существу являются результатом смешения радиогенного 40 Ar с исходным 36 Ar.

Большой диапазон отношений 40 Ar / 36 Ar был измерен в MORB. Изменение обычно интерпретируется как результат смешивания различных пропорций атмосферного аргона (с 40 Ar / 36 Ar = 296) с одним, гораздо более радиогенным составом мантии.Минимальное значение для этого состава мантии представлено наивысшими измеренными значениями от 2,8 × 10 4 (Staudacher et al., 1989) до 4 × 10 4 (Burnard et al., 1997). Из корреляций между 20 Ne / 22 Ne и 40 Ar / 36 Ar в результатах ступенчатого нагрева богатого газом образца MORB максимальное значение 40 Ar / 36 Ar = 4,4 × 10 4 было получено (Moreira, Allègre, 1998). Этот (изотопный) состав является важным ограничением дегазации мантии (см. Раздел 3.7.4.2 ).

Трудно определить, существуют ли какие-либо изотопные вариации аргона в верхней мантии из-за повсеместного загрязнения образцов мантийного происхождения атмосферным аргоном. Это важная тема, поскольку диапазон значений в мантии 40 Ar / 36 Ar может потенциально использоваться для отслеживания воздействия либо переменной дегазации / загрязнения, либо других процессов, таких как субдукция аргона. Было высказано предположение, что действительно существуют неоднородности в соотношении 40 Ar / 36 Ar источника MORB на основе корреляции между изотопами свинца и отношениями 40 Ar / 36 Ar для образцов с 3 He / 4 He ≤ 9.5 R A (Сарда и др., 1999). Это было приписано субдукции компонента с относительно радиогенным свинцом и низким содержанием 40 Ar / 36 Ar, что предполагает значительный поток аргона с поверхности в верхнюю мантию. Однако Бернард (1999) указал, что изотопный состав свинца, как известно, более радиогенный в мелководных эруптивных средах, и что более низкие значения 40 Ar / 36 Ar одинаково хорошо коррелируют с глубиной извержения. Следовательно, более мелкие образцы могут иметь более низкие отношения 40 Ar / 36 Ar из-за большего истощения газа и, соответственно, большего загрязнения воздуха.Кроме того, Баллентин и Барфод (2000) показали, что количество загрязнения воздуха связано с везикулярностью базальта, которая, в свою очередь, связана с глубиной извержения и содержанием летучих веществ, дополнительно объясняя корреляцию атмосферных благородных газов с радиогенным свинцом (Сарда и др. , 1999). В целом, дискуссия высветила сложность отделения истинной мантии 40 Ar / 36 Ar от эффектов загрязнения, которые происходят либо внутри магматического очага (Burnard et al., 1994; Farley and Craig, 1994), путем ассимиляции материала земной коры во время перехода расплава на поверхность (Hilton et al., 1993a), путем уравновешивания с морской водой во время извержения (Patterson et al., 1990) или за счет везикулярности образца (Ballentine and Barfod , 2000).

Значительные усилия были также затрачены на определение того, имеют ли OIB — с отличительным 3 He / 4 He (> 10 R A ) 40 Ar / 36 отношения Ar, которые можно отличить от те из источника MORB.Обычно ожидается, что высокие отношения 3 He / 4 He, отражающие высокие отношения 3 He / (U + Th) в области (ах) источника, будут сопровождаться низкими значениями 40 Ar / 36 Отношения Ar / K , что соответствует столь же высоким отношениям 36 Ar / K. Неожиданно было обнаружено, что первые значения 40 Ar / 36 Ar, указанные для стекол Loihi Seamount, аналогичны значениям для воздуха, что наводит на мысль о дополнительной взаимосвязи между аргоном в источнике OIB и атмосферой (Allègre et al., 1983; Канеока и др., 1986; Staudacher et al., 1986). В то время идеи о загрязнении воздуха (например, Fisher, 1985; Patterson et al., 1990) были отклонены. Однако исследование базальтов Хуана Фернандеса (Farley and Craig, 1994) показало, что компонент атмосферного аргона находился во вкрапленниках — наблюдение, согласующееся с введением воздушного аргона в магматический очаг. Это исследование дало готовое объяснение распространенности загрязнения воздуха OIB. Более поздние измерения образцов Loihi показали значительно более высокие значения 40 Ar / 36 Ar: от 2600 до 2800 (Hiyagon et al., 1992; Valbracht et al., 1997) и до 8000 (Trieloff et al., 2000) — все на образцах с 3 He / 4 He до 24 R A (и, следовательно, на полпути между MORB и самый высокий OIB). Кроме того, Poreda и Farley (1992) обнаружили значения 40 Ar / 36 Ar ≤ 1,2 × 10 4 в ксенолитах Самоа, которые имеют промежуточные отношения 3 He / 4 He (9–20 R А ). Другие попытки, характеризующие OIB 40 Ar / 36 Ar имеет используемые связанные неоновые вариации изотопных и (спорно) предположение о том, что загрязняющее отношении Н / Ar является постоянная в стратегии, направленной для устранения влияния загрязнения воздуха.Используя этот подход, Sarda et al. (2000) сообщили, что 40 Ar / 36 отношения Ar в высоком источнике OIB 3 He / 4 He> 3000, но все же значительно ниже, чем у источника MORB (см. Также Matsuda and Marty, 1995 ). Следовательно, необходимо сделать вывод, что из-за трудностей отделения атмосферного загрязнения аргоном современные оценки отношений OIB 40 Ar / 36 Ar представляют только нижний предел.

Установки с жидким аргоном | Нейтринная физика

Главный испытательный стенд с жидким аргоном расположен в здании Proton Assembly Building и состоит из пяти криостатов с жидким аргоном, три из которых могут быть зарезервированы для испытаний.Он также предлагает рабочие зоны для небольших временных установок, включая несколько открытых дьюаров. Для бронирования доступны три испытательных стенда:

  • Люк, также известный как стенд для испытаний материалов, в основном используется для изучения влияния материалов на время жизни электронов.
  • TallBo, в основном используется для разработки технологий сбора сцинтилляционного света.
  • Blanche, многоцелевой криостат, используемый в основном для исследования высоковольтного пробоя в благородных жидкостях.

Менеджер объекта (в настоящее время Флор де Мария Блащик) является контактным лицом по любым вопросам, касающимся объекта, как стать пользователем и какие процедуры необходимо соблюдать, чтобы сделать запрос.Перед отправкой TSW обязательно свяжитесь с менеджером объекта, чтобы убедиться, что объект действительно соответствует вашим потребностям. Запросы на время на любом из этих испытательных стендов могут быть сделаны в соответствии с этими инструкциями.


Здание сборки протонов, или PAB, является домом для Люка (также известного как Стенд для испытаний материалов), TallBo, Blanche, ICEBERG и NIR. Все постоянные установки в PAB имеют доступ к набору газоанализаторов, которые могут определять концентрации кислорода и воды на уровне частей на миллиард (частей на миллиард) и концентрации азота на уровне частей на миллион.Система подачи жидкого аргона в PAB включает 2 встроенных фильтра для дальнейшего удаления воды и кислорода из аргона перед его поступлением на различные испытательные стенды. Жидкий аргон, подаваемый в различные криостаты, считается сверхчистым.

Стенд для испытаний материалов (MTS) используется для проверки материалов, которые потенциально могут быть использованы в эксперименте TPC с жидким аргоном. Стенд имеет аргоновый затвор, через который можно получить доступ к камере для образцов. Подаваемый в криостат аргон был отфильтрован на предмет загрязнения кислородом и водой и является сверхчистым.MTS имеет собственный фильтр для удаления кислорода или воды, попавших в пробу. Он также имеет конденсатор, охлаждаемый азотом, что позволяет работать в закрытом режиме без испарения аргона. Внутри криостата имеется монитор чистоты для контроля влияния любого материала на время жизни электронов в жидком аргоне.

Размер образца для тестирования ограничен размером отверстия для помещения образца в корзину, используемую для перемещения образца через пространство для пара и жидкости. Открытие — 3.75 дюймов на 4,75 дюйма, а корзина имеет цилиндрическую форму диаметром 5,5 дюйма и высотой 10 дюймов. Очень маленькие образцы можно протестировать, поместив их в перфорированный ящик из нержавеющей стали

.

Образец будет очищен в соответствии с предпочтениями пользователя. Способы очистки могут включать любую комбинацию: без очистки; протирание образца спиртом; ультразвуковая чистка спиртом; запекание образца на воздухе; откачивание образца при комнатной температуре; откачивание образца при повышенной температуре.

Воздушный шлюз откачивается перед тем, как какие-либо образцы помещаются в корзину. После того, как образец вставлен, его можно продуть газообразным аргоном или откачать воздух в зависимости от предпочтений пользователя.

С этой системой возможно три теста. Первый — это испытание при комнатной температуре, когда образец остается в воздушной пробке, а клапан криостата открывается. Во время этого теста внутренний фильтр с жидким аргоном выключен. Этот тест может длиться от одного до нескольких дней в зависимости от предпочтений пользователя. После испытания при комнатной температуре клапан криостата закрывается и включается внутренний фильтр для очистки жидкого аргона.Второй тест — это жидкий тест, когда образец опускается в жидкость и внутренний фильтр выключается. Этот тест может длиться от одного до нескольких дней в зависимости от предпочтений пользователя. Последним испытанием является испытание на пар, при котором образец помещается в паровое пространство при температуре 120–220 К. Опять же, этот тест может длиться от одного до нескольких дней в зависимости от предпочтений пользователя. Для всех испытаний измеряется время дрейфа электронов и контролируется уровень воды в паре. Результаты тестов и изображения образца будут храниться в базе данных образца на DocDB.

Если вы хотите протестировать материалы в MTS, отправьте электронное письмо с указанием материала для тестирования и того, какой эксперимент или проект поддерживает тест. Пожалуйста, также укажите, как будет подготовлен материал и какие тесты будут проводиться.

Пожалуйста, не отправляйте материалы, не связавшись предварительно с учреждением по адресу электронной почты, указанному выше.

TallBo — это цилиндрический криостат, который в основном используется для разработки технологий сбора сцинтилляционного света для детекторов LArTPC.Он имеет внутренний диаметр 56 см и глубину жидкости до 183 см при общем объеме жидкого аргона 451 литр. Криостат имеет вакуумную рубашку для изоляции жидкого аргона. Чертежи для TallBo доступны в базе данных LArTPC Doc-DB. Аргон, используемый для заполнения TallBo, фильтруется для удаления кислорода и воды. TallBo имеет конденсатор, охлаждаемый азотом, чтобы обеспечить замкнутую систему без испарения жидкого аргона.

Вертикальный движитель доступен для использования в TallBo.Он имеет длину 6 футов и состоит из канала с прорезью и винта, способного перемещать объект, установленный на винте, вверх и вниз. За пределами TallBo движитель управляется вращающимся колесом. К колесу прикреплен счетчик для отслеживания положения. Устройство «Ленивая Сьюзан» также доступно для установки в TallBo. Устройство прикреплено к вращающейся трубке длиной 6 футов и имеет два 3,5-дюймовых диска, которые могут быть разнесены на расстояние до 54 дюймов. На этих дисках можно установить до 12 устройств.Диски можно легко отсоединить и заменить на специальные крепления. Управление устройством осуществляется с помощью вращающегося колеса вне криостата.

Хотя TallBo в первую очередь служил в качестве испытательной установки для сбора света, в TallBo можно было также тестировать другие виды систем, такие как электроника и небольшие TPC.

Blanche — это цилиндрический криостат, который в основном используется для понимания проблем, связанных с пробоем высокого напряжения в жидком аргоне. Его высота 152 см, внутренний диаметр 76 см; на практике он заполняется только на глубину 122 см при общем объеме жидкого аргона 556 литров.Криостат имеет вакуумную рубашку для изоляции жидкого аргона. Чертежи Бланш доступны в базе данных LArTPC Doc-DB. Аргон, используемый для наполнения Blanche, фильтруется для удаления кислорода и загрязнения воды. Blanche имеет конденсатор, охлаждаемый азотом, чтобы обеспечить замкнутую систему без испарения жидкого аргона.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *