Характеристика вольфрама
Характеристика вольфрамаВольфрам (W) располагается в 6 периоде, в VI группе, побочной подгруппе, имеет порядковый номер 74.
Массовое число: A = 184
Число протонов: P = 74
Число электронов: ē = 74
Число нейтронов: N = A — Z = 184 — 74 = 110
74W 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d4 6s2 |
Валентные электроны
74W | ↑ | ↑ | ↑ | ↑ | ↑↓ | |||||||
5d | 6s |
74W* | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ||||||
5d | 6s | 6p |
Вольфрам – d-элемент, металл.
Степени окисления
минимальная: 0
максимальная: +6
Высший оксид: WO3 – оксид вольфрама (VI).
Высший гидроксид: H2
Проявляет кислотные свойства:
H2WO4 + 2NaOH + H2O ⟶ Na2WO4 + H2O
Вольфрам и его характеристики
Общая характеристика вольфрама
По распространенности в земной коре [0,007% (масс.)] вольфрам уступает хрому, но превосходит молибден. Природные соединения вольфрама в большинстве случаев представляют собой вольфраматы – соли вольфрамовой кислоты H2WO4. Так, важнейшая вольфрамовая руда – вольфрамит – состоит из вольфраматов железа и марганца. Часто встречается также минерал шеелит CaWO4.
Вольфрам – тяжелый белый металл (рис. 1) плотностью 19,3 г/см 3. Его температура плавления (около 3400
Рис. 1. Вольфрам. Внешний вид.
Атомная и молекулярная масса вольфрама
Поскольку в свободном состоянии вольфрам существует в виде одноатомных молекул W, значения его атомной и молекулярной масс совпадают. Они равны 183,84.
Изотопы вольфрама
Известно, что в природе вольфрам может находиться в виде пяти стабильных изотопов 180W, 182W, 183W, 184W и 186W.Их массовые числа равны 180, 182, 183, 184 и 186 соответственно. Ядро атома изотопа вольфрама 180W содержит семьдесят четыре протона и сто шесть нейтронов, а остальные отличаются от него только числом нейтронов.
Существуют искусственные нестабильные изотопы вольфрама с массовыми числами от 158-ми до 192-х, а также одиннадцать изомерных состояния ядер.
Ионы вольфрама
На внешнем энергетическом уровне атома вольфрама имеется шесть электронов, которые являются валентными:
1s22s22p63s23p63d104s24p64d104f145s25р 65d46s2.
В результате химического взаимодействия вольфрам отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:
Wo -2e → W2+;
Wo -3e → W3+;
Wo -4e → W4+;
Wo -5e → W5+;
Wo -6e → W6+.
Молекула и атом вольфрама
В свободном состоянии вольфрам существует в виде одноатомных молекул W. Приведем некоторые свойства, характеризующие атом и молекулу вольфрама:
Энергия ионизации атома, эВ |
7,98 |
Относительная электроотрицательность |
2,3 |
Радиус атома, нм |
0,141 |
Сплавы вольфрама
Большая часть добываемого вольфрама расходуется в металлургии для приготовления специальных сталей и сплавов. Быстрорежущая инструментальная сталь содержит до 20% вольфрама и обладает способностью самозакаливаться. Такая сталь не теряет своей твердости даже при нагревании докрасна.
Кроме быстрорежущих широко применяются другие вольфрамовые и хромовольфрамовые стали. Например, сталь, содержащая от 1 до 6% вольфрама и до 2% хрома, применяется для изготовления пил, фрез, штампов.
Как самый тугоплавкий металл вольфрам входит в состав ряда жаропрочных сплавов. В частности, его сплавы с кобальтом и хромом – стеллиты – обладают высокими твердостью, износоустойчивостью, жаростойкостью. Сплавы вольфрама с медью сочетают в себе высокие электрическую проводимость, теплопроводность и износоустойчивость. Они применяются для изготовления рабочих частей рубильников, выключателей, электродов для точечной сварки.
Примеры решения задач
Химические свойства вольфрама. Характеристики и применение вольфрама
Вольфрам – это химический элемент периодической системы Менделеева, который принадлежит к VI группе. В природе вольфрам встречается в виде смеси из пяти изотопов. В своем обычном виде и при обычных условиях он представляет собой твердый металл серебристо-серого цвета. Он также является самым тугоплавким из всех металлов.
Основные свойства вольфрама
Вольфрам – это металл, обладающий замечательными физическими и химическими свойствами. Практически во всех отраслях современного производства применяется вольфрам. Формула его обычно выражается в виде обозначения оксида металла – WO3. Вольфрам считается самым тугоплавким из металлов. Предполагается, что лишь сиборгий может быть еще более тугоплавок. Но точно пока этого утверждать нельзя, так как сиборгий имеет очень малое время существования.
Этот металл имеет особые физические и химические свойства. Вольфрам имеет плотность 19300 кг/м3, температура плавления его составляет 3410 °С. По этому параметру он занимает второе место после углерода – графита или алмаза. В природе вольфрам встречается в виде пяти стабильных изотопов. Их массовые числа находятся в интервале от 180 до 186. Вольфрам обладает 6-й валентностью, а в соединениях она может составлять 0, 2, 3, 4 и 5. Металл также имеет достаточно высокий уровень теплопроводности. Для вольфрама этот показатель составляет 163 Вт/(м*град). По этому свойству он превышает даже такие соединения, как сплавы алюминия. Масса вольфрама обусловлена его плотностью, которая равна 19кг/м3. Степень окисления вольфрама колеблется от +2 до +6. В высших степенях своего окисления металл имеет кислотные свойства, а в низших – основные.
При этом сплавы низших соединений вольфрама считаются неустойчивыми. Самыми стойкими являются соединения со степенью +6. Они проявляют и наиболее характерные для металла химические свойства. Вольфрам имеет свойство легко образовывать комплексы. Но металлический вольфрам обычно является очень стойким. Он начинает взаимодействовать с кислородом лишь при температуре +400 °С. Кристаллическая решетка вольфрама относится к типу кубических объемноцентрированных.
Взаимодействие с другими химическими веществами
Если вольфрам смешать с сухим фтором, то можно получить соединение под названием «гексафторид», который плавится уже при температуре 2,5 °С, а закипает при 19,5 °С. Похожее вещество получают при соединении вольфрама с хлором. Но для такой реакции необходима достаточно высокая температура – порядка 600 °С. Однако вещество легко противостоит разрушительному действию воды и практически не подвергается изменениям на холоде. Вольфрам – металл, который без кислорода не производит реакции растворения в щелочах. Однако он легко растворяется в смеси HNO3 и HF. Самые главные из химических соединений вольфрама – это его трехокись WO3, Н2WO4 – вольфрамовая кислота, а также ее производные – соли вольфраматы.
Можно рассмотреть некоторые химические свойства вольфрама с уравнениями реакций. Например, формула WO3 + 3H2 = W+3H2O. В ней металл вольфрам восстанавливается из оксида, проявляется его свойство взаимодействия с водородом. Это уравнение отражает процесс получения вольфрама из его триоксида. Следующей формулой обозначается такое свойство, как практическая нерастворимость вольфрама в кислотах: W + 2HNO3 + 6HF = WF6 + 2NO + 4h3O. Одним из наиболее примечательных веществ, содержащих вольфрам, считается карбонил. Из него получают плотные и ультратонкие покрытия из чистого вольфрама.
История открытия
Вольфрам – металл, получивший свое название из латинского языка. В переводе это слово означает «волчья пена». Такое необычное название появилось из-за поведения металла. Сопровождая добытую оловянную руду, вольфрам мешал выделению олова. Из-за него в процессе выплавки образовывались только шлаки. Об этом металле говорили, что он «поедает олово, как волк ест овцу». Для многих интересно, кто открыл химический элемент вольфрам?
Это научное открытие было сделано одновременно в двух местах разными учеными, независимо друг от друга. В 1781 году химик из Швеции Шееле получил так называемый «тяжелый камень», проводя опыты с азотной кислотой и шеелитом. В 1783 году братья-химики из Испании по фамилии Элюар также сообщил об открытии нового элемента. Точнее, ими был открыт оксид вольфрама, растворявшийся в аммиаке.
Сплавы с другими металлами
В настоящее время различают однофазные и многофазные вольфрамовые сплавы. Они содержат один или несколько посторонних элементов. Самое известное соединение – это сплав вольфрама и молибдена. Добавление молибдена придает вольфраму прочность при его растяжении. Также к категории однофазных сплавов принадлежат соединения вольфрама с титаном, гафнием, цирконием. Самую большую пластичность вольфраму придает рений. Однако практически применять такой сплав – довольно трудоемкий процесс, так как рений очень тяжело добыть.
Так как вольфрам является одним из самых тугоплавких материалов, то получать вольфрамовые сплавы – непростая задача. Когда этот металл только начинает закипать, другие уже переходят в жидкость или состояние газа. Но современные ученые умеют получать сплавы при помощи процесса электролиза. Сплавы, содержащие вольфрам, никель и кобальт, используются для нанесения защитного слоя на непрочные материалы.
В современной металлургической промышленности также получают сплавы, используя вольфрамовый порошок. Для его создания необходимы особенные условия, включая создание вакуумной обстановки. Из-за некоторых особенностей взаимодействия вольфрама с другими элементами металлурги предпочитают создавать сплавы не двухфазной характеристики, а с применением 3, 4 и более составляющих. Эти сплавы особенно прочны, но при четком соблюдении формул. При малейших отклонениях процентных составляющих сплав может получиться хрупким и непригодным к использованию.
Вольфрам – элемент, применяющийся в технике
Из этого металла изготавливают нити накаливания обыкновенных лампочек. А также трубки для рентгеновских аппаратов, составляющие вакуумных печей, которые должны использоваться при крайне высоких температурах. Сталь, в состав которой входит вольфрам, имеет очень высокий уровень прочности. Такие сплавы используются для изготовления инструментов в самых различных областях: для бурения скважин, в медицине, машиностроении.
Главное преимущество соединения стали и вольфрама – износоустойчивость, маловероятность повреждений. Самый известный в строительстве вольфрамовый сплав носит название «победит». Также этот элемент широко используется в химической промышленности. С его добавлением создают краски, пигменты. Особенно широкое применение в этой сфере получил оксид вольфрама 6. Его применяют для изготовления карбидов и галогенидов вольфрама. Другое название этого вещества – триоксид вольфрама. Оксид вольфрама 6 используется как желтый пигмент в красках для керамики и изделий из стекла.
Что такое тяжелые сплавы?
Все сплавы на основе вольфрама, которые обладают высоким показателем плотности, называют тяжелыми. Их получают только при помощи методов порошковой металлургии. Вольфрам всегда является основой тяжелых сплавов, где его содержание может составлять до 98 %. Кроме этого металла, в тяжелые сплавы добавляется никель, медь и железо. Однако в них могут входить и хром, серебро, кобальт, молибден. Самую большую популярность получили сплавы ВМЖ (вольфрам – никель – железо) и ВНМ (вольфрам – никель – медь). Высокий уровень плотности таких сплавов позволяет им поглощать опасное гамма-излучение. Из них изготавливают маховики колес, электрические контакты, роторы для гироскопов.
Карбид вольфрама
Около половины всего вольфрама применяется для изготовления прочных металлов, особенно вольфрамового карбида, который имеет температуру плавления 2770 С. Карбид вольфрама представляет собой химическое соединение, в котором содержится равное количество атомов углерода и вольфрама. Этот сплав имеет особые химические свойства. Вольфрам придает ему такую прочность, что по этому показателю он превосходит сталь в два раза.
Карбид вольфрама широко используется в промышленности. Из него изготавливают режущие предметы, которые должны быть очень устойчивы к высоким температурам и истиранию. Также из этого элемента изготавливают:
- Детали самолетов, двигатели автомобилей.
- Детали для космических кораблей.
- Медицинские хирургические инструменты, которые применяются в сфере полостной хирургии. Такие инструменты дороже обычной медицинской стали, однако они более производительны.
- Ювелирные изделия, особенно обручальные кольца. Такая популярность вольфрама связана с его прочностью, которая для венчающихся символизирует прочность взаимоотношений, а также внешним видом. Характеристики вольфрама в отполированном виде таковы, что он в течение очень длительного времени сохраняет зеркальный, блестящий вид.
- Шарики для шариковых ручек класса люкс.
Победит – сплав вольфрама
Приблизительно во второй половине 1920-х годов во многих странах начали выпускаться сплавы для режущих инструментов, которые получали из карбидов вольфрама и металлического кобальта. В Германии такой сплав назывался видиа, в Штатах – карбола. В Советском Союзе такой сплав получил название «победит». Эти сплавы оказались прекрасными для обработки чугунной продукции. Победит является металлокерамическим сплавом с чрезвычайно высоким уровнем прочности. Он изготавливается в виде пластинок различных форм и размеров.
Процесс изготовления победита сводится к следующему: берется порошок карбида вольфрама, мелкий порошок никеля или кобальта, и все перемешивается и прессуется в специальных формах. Спрессованные таким образом пластины подвергаются дальнейшей температурной обработке. Это дает очень твердый сплав. Эти пластины используются не только для резки чугуна, но и для изготовления бурильных инструментов. Пластинки из победита напаиваются на бурильное оборудование при помощи меди.
Распространенность вольфрама в природе
Этот металл очень мало распространен в окружающей среде. После всех элементов он занимает 57-е место и содержится в виде кларка вольфрама. Также металл образует минералы – шеелит и вольфрамит. Вольфрам мигрирует в подземные воды либо в виде собственного иона, либо в виде всевозможных соединений. Но его наибольшая концентрация в подземных водах ничтожно мала. Она составляет сотые доли мг/л и практически не меняет их химические свойства. Вольфрам также может попадать в природные водоемы из стоков заводов и фабрик.
Влияние на человеческий организм
Вольфрам практически не поступает в организм с водой или пищей. Может существовать опасность вдыхания вольфрамовых частиц вместе с воздухом на производстве. Однако, несмотря на принадлежность к категории тяжелых металлов, вольфрам не токсичен. Отравления вольфрамом случаются лишь у тех, кто связан с вольфрамовым производством. При этом степень влияния металла на организм бывает разной. Например, вольфрамовый порошок, карбид вольфрама и такое вещество, как ангидрит вольфрамовой кислоты, могут вызывать поражение легких. Его главные симптомы – общее недомогание, лихорадка. Более сильные симптомы возникают при отравлении сплавами вольфрама. Это происходит при вдыхании пыли сплавов и приводит к бронхитам, пневмосклерозу.
Металлический вольфрам, попадая внутрь человеческого организма, не всасывается в кишечнике и постепенно выводится. Большую опасность могут представлять вольфрамовые соединения, относящиеся к растворимым. Они откладываются в селезенке, костях и коже. При длительном воздействии вольфрамовых соединений могут возникать такие симптомы, как ломкость ногтей, шелушение кожи, различного рода дерматиты.
Запасы вольфрама в различных странах
Самые большие ресурсы вольфрама находятся в России, Канаде и Китае. По прогнозам ученых, на отечественных территориях располагается около 943 тысяч тонн этого металла. Если верить этим оценкам, то подавляющая часть запасов расположена в Южной Сибири и на Дальнем Востоке. Очень незначительной является доля разведанных ресурсов – она составляет всего лишь порядка 7 %.
По количеству разведанных залежей вольфрама Россия уступает лишь Китаю. Большая их часть расположена в районах Кабардино-Балкарии и Бурятии. Но в этих месторождениях добывается не чистый вольфрам, а его руды, содержащие также молибден, золото, висмут, теллур, скандий и другие вещества. Две трети получаемых объемов вольфрама из разведанных источников заключены в труднообогатимых рудах, где главным вольфрамосодержащим минералом является шеелит. На долю легкообогатимых руд приходится всего лишь треть всей добычи. Характеристики вольфрама, добываемого на территории России, ниже, чем за рубежом. Руды содержат большой процент триоксида вольфрама. В России очень мало россыпных месторождений металла. Вольфрамовые пески также являются низкокачественными, с большим количеством оксидов.
Вольфрам в экономике
Глобальное производство вольфрама начало свой рост примерно с 2009 года, когда стала восстанавливаться азиатская промышленность. Крупнейшим производителем вольфрама остается Китай. Например, в 2013 году на долю производства этой страны приходился 81 % от мирового предложения. Около 12 % спроса на вольфрам связано с производством осветительных приборов. По прогнозам экспертов, использование вольфрама в этой сфере будет сокращаться на фоне применения светодиодных и люминесцентных ламп как в бытовых условиях, так и на производстве.
Считается, что будет расти спрос на вольфрам в сфере производства электронной техники. Высокая износостойкость вольфрама и его способность выдерживать электричество делают этот металл наиболее подходящим для производства регуляторов напряжения. Однако по объему этот спрос пока остается довольно незначительным, и считается, что к 2018 году он вырастет лишь на 2 %. Однако согласно прогнозам ученых, в ближайшее время должен произойти рост спроса на цементированный карбид. Это связано с ростом автомобильного производства в США, Китае, Европе, а также увеличением горнодобывающей промышленности. Считается, что к 2018 году спрос на вольфрам увеличится на 3,6 %.
Вольфрам — свойства и область применения
Из всех известных сегодня металлов вольфрам самый тугоплавкий. Он занимает 74-ю позицию периодической системы, имеет ряд схожих свойств с молибденом и хромом, находящимися с ним в одной группе. На вид вольфрам представляет твердое вещество серого цвета, с характерным серебристым блеском.
Основные характеристики вольфрама
Для практического применения наиболее важны высокие показатели следующих характеристик:
- электрическое сопротивление;
- коэффициент линейного расширения;
- температура плавления.
Чистый вольфрам обладает высокой пластичностью, не растворяется в специальном кислотном растворе без предварительного нагрева хотя бы до 5000С. Он легко вступает в реакцию с углеродом, следствием которой является образование карбида вольфрама известного высокой прочностью. Также металл известен своими оксидами, наиболее распространенный из них вольфрамовый ангидрид. Его главное преимущество над остальными, возможность восстановления порошка к состоянию компактного металла, с побочным образованием низших оксидов.
Режущие пластины фирмы Sandvik Coromant с применением карбида вольфрама
Среди основных характеристик, делающих применение вольфрама затруднительным называют следующие:
- высокая плотность;
- ломкость и склонность к окислению при низких температурах.
Кроме того, высокая температура кипения, а также точка испарения затрудняют добычу компактного материала.
к содержанию ↑Сплавы, содержащие вольфрам
Сегодня различают однофазные сплавы вольфрама. Это подразумевает внедрение одного или нескольких элементов. Наиболее известны соединения вольфрама с молибденом. Легирование этим элементом повышает прочность вольфрама при его растяжении. Также к однофазным сплавам относятся системы: вольфрам-титан/цирконий, ниобий, гафний.
Однако большей пластичности придает вольфраму рений, сохраняя остальные показатели на характерном ему высоком уровне. Но практическое применение таких соединений ограничено трудностями при добыче Re.
Поскольку вольфрам наиболее тугоплавкий материал, получить его сплавы трудно традиционным способом. При температуре плавления вольфрама другие металлы уже кипят или даже переходят в газообразную фазу. Современные технологии позволяют получать ряд сплавов с помощью электролиза. Например, вольфрам — никель — кобальт, который используется не для изготовления целых деталей, а с целью нанесения защитного слоя на менее прочные металлы.
Также в промышленности все еще остается актуальным способ получения вольфрамовых сплавов, используя методы порошковой металлургии. При этом требуется создание особых условий технологического процесса, который включает в себя наличие вакуума. Особенности взаимодействия металлов с вольфрамом делают предпочтительными соединения не парного характера, а с использованием 3, 4-х и более компонентов. Такие сплавы отличаются особенной твердостью, однако малейшее отклонение от процентного содержания того или иного элемента приводит к повышению хрупкости готового сплава.
к содержанию ↑Вольфрам, как многие другие элементы редкой группы, не встречается в природе. Поэтому добыча металла не сопровождается строительством крупных промышленных комплексов. Сам процесс получения материала условно делят на такие этапы:
- Добыча руды, содержащей редкий металл.
- Создание условий для возможного выделения вольфрама от перерабатываемой массы.
- Концентрирование материала в виде раствора или осадка.
- Очищение полученного химического соединения.
- Получение чистого вещества.
Вольфрамовая руда
Более сложным оказывается процесс изготовления компактного металла, к примеру, вольфрамовой проволоки. Основная трудность заключается в том, что нельзя допустить даже малейшего попадания примесей, резко ухудшающих плавкие и прочностные свойства.
к содержанию ↑Область применения вольфрама
С помощью этого металла изготавливают нити накаливания, рентгеновские трубки, нагреватели, экраны вакуумных печей, предназначающихся для использования в высокотемпературном режиме.
Рентгеновская трубка с нитью из вольфрама
Сталь, легированная вольфрамом имеет высокие прочностные качества. Продукция из таких видов сплава используется для изготовления инструментов широкого предназначения: медицина, бурение скважин, изделия для обработки материалов в машиностроении (режущие пластины, как на фото выше). Преимуществом соединения считается устойчивость к истиранию, маловероятность появления трещин в процессе эксплуатации. Наиболее известная в строительстве марка стали с использованием вольфрама называется «победит».
Лом вольфрама
Химическая промышленность также нашла применение вольфраму. Из него делают краски, катализаторы, пигменты.
Атомная промышленность использует тигли из этого металла, а также специальные контейнера для хранения радиоактивных отходов.
О нанесении покрытий из вольфрама уже вкратце упоминалось. Оно применяется для нанесения на материалы, работающие при высоких температурах в восстановительных и нейтральных средах, как защитная пленка.
Также известны прутки, используемые при дуговой сварке. Поскольку вольфрам неизменно остается тугоплавким металлом при выполнении сварочных работ он используется с присадочными проволоками.
Вольфрам — Википедия
Внешний вид простого вещества | |
---|---|
Тугоплавкий прочный металл, стального цвета или белый | |
Свойства атома | |
Название, символ, номер | Вольфра́м / Wolframium (W), 74 |
Атомная масса (молярная масса) | 183,84(1)[1] а. е. м. (г/моль) |
Электронная конфигурация | [Xe] 4f14 5d4 6s2 |
Радиус атома | 141 пм |
Химические свойства | |
Ковалентный радиус | 170 пм |
Радиус иона | (+6e) 62 (+4e) 70 пм |
Электроотрицательность | 2,3 (шкала Полинга) |
Электродный потенциал | W ← W3+ 0,11 В W ← W6+ 0,68 В |
Степени окисления | 6, 5, 4, 3, 2, 0 |
Энергия ионизации (первый электрон) | 769,7 (7,98) кДж/моль (эВ) |
Термодинамические свойства простого вещества | |
Плотность (при н. у.) | 19,25[2] г/см³ |
Температура плавления | 3695 K (3422 °C, 6192 °F)[2] |
Температура кипения | 5828 K (5555 °C, 10031 °F)[2] |
Уд. теплота плавления | 285,3 кДж/кг 52,31[3][4] кДж/моль |
Уд. теплота испарения | 4482 кДж/кг 824 кДж/моль |
Молярная теплоёмкость | 24,27[5] Дж/(K·моль) |
Молярный объём | 9,53 см³/моль |
Кристаллическая решётка простого вещества | |
Структура решётки | кубическая объёмноцентрированная |
Параметры решётки | 3,160 Å |
Температура Дебая | 310 K |
Прочие характеристики | |
Теплопроводность | (300 K) 162,8[6] Вт/(м·К) |
Номер CAS | 7440-33-7 |
74 | Вольфрам |
4f145d46s2 |
Вольфра́м — химический элемент с атомным номером 74 в Периодической системе химических элементов Д. И. Менделеева, обозначается символом W (лат. Wolframium). При нормальных условиях представляет собой твёрдый блестящий серебристо-серый переходный металл[5].
Вольфрам — самый тугоплавкий из металлов. Более высокую температуру плавления имеет только неметаллический элемент — углерод, но он существует в жидком виде только при высоких давлениях. При стандартных условиях вольфрам химически стоек.
История и происхождение названия
Название Wolframium перешло на элемент с минерала вольфрамит, известного ещё в XVI в. под названием лат. Spuma lupi («волчья пена») или нем. Wolf Rahm («волчьи сливки», «волчий крем»
В настоящее время в США, Великобритании и Франции для вольфрама используют название «tungsten» (швед. tung sten — «тяжелый камень»).
В 1781 году знаменитый шведский химик Шееле, обрабатывая азотной кислотой минерал шеелит, получил жёлтый «тяжёлый камень» (триоксид вольфрама)[источник не указан 2094 дня].
В 1783 году испанские химики братья Элюар сообщили о получении из саксонского минерала вольфрамита как растворимой в аммиаке жёлтой окиси нового металла, так и самого металла
Нахождение в природе
Кларк вольфрама земной коры составляет (по Виноградову) 1,3 г/т (0,00013 % по содержанию в земной коре). Его среднее содержание в горных породах, г/т: ультраосновных — 0,1, основных — 0,7, средних — 1,2, кислых — 1,9.
Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трёхокисью вольфрама WO3 с оксидами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Промышленное значение имеют вольфрамит (вольфрамат железа и марганца nFeWO4 · mMnWO4 — соответственно, ферберит и гюбнерит) и шеелит (вольфрамат кальция CaWO4). Вольфрамовые минералы обычно вкраплены в гранитные породы, так что средняя концентрация вольфрама составляет 1—2 %.
Месторождения
Наиболее крупными запасами обладают Казахстан, Китай, Канада и США; известны также месторождения в Боливии, Португалии, России, Узбекистане и Южной Корее. Мировое производство вольфрама составляет 49—50 тысяч тонн в год, в том числе в Китае 41, России 3,5; Казахстане 0,7, Австрии 0,5. Основные экспортёры вольфрама: Китай, Южная Корея, Австрия. Главные импортёры: США, Япония, Германия, Великобритания.
Также есть месторождения вольфрама в Армении и других странах.
Получение
Вольфрамовый порошокПроцесс получения вольфрама проходит через подстадию выделения триоксида WO3 из рудных концентратов и последующем восстановлении до металлического порошка водородом при температуре ок. 700 °C. Из-за высокой температуры плавления вольфрама для получения компактной формы используются методы порошковой металлургии: полученный порошок прессуют, спекают в атмосфере водорода при температуре 1200—1300 °C, затем пропускают через него электрический ток. Металл нагревается до 3000 °C, при этом происходит спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.
Физические свойства
Вольфрам — блестящий светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения (предполагается, что сиборгий ещё более тугоплавок, но пока что об этом твёрдо утверждать нельзя — время существования сиборгия очень мало). Температура плавления — 3695 K (3422 °C), кипит при 5828 K (5555 °C)[2]. Плотность чистого вольфрама составляет 19,25 г/см³[2]. Обладает парамагнитными свойствами (магнитная восприимчивость 0,32·10−9). Твёрдость по Бринеллю 488 кг/мм², удельное электрическое сопротивление при 20 °C — 55·10−9 Ом·м, при 2700 °C — 904·10−9 Ом·м. Скорость звука в отожжённом вольфраме 4290 м/с.
Вольфрам является одним из наиболее тяжёлых, твёрдых и самых тугоплавких металлов[5]. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 °C хорошо поддаётся ковке и может быть вытянут в тонкую нить. Металл обладает высокой устойчивостью в вакууме[9].
Химические свойства
Проявляет валентность от 2 до 6. Наиболее устойчив 6-валентный вольфрам. 3- и 2-валентные соединения вольфрама неустойчивы и практического значения не имеют.
Вольфрам имеет высокую коррозионную стойкость: при комнатной температуре не изменяется на воздухе; при температуре красного каления медленно окисляется в оксид вольфрама (VI). Вольфрам в ряду напряжений стоит сразу после водорода, и в соляной, разбавленной серной и плавиковой кислотах почти нерастворим. В азотной кислоте и царской водке окисляется с поверхности. Растворяется в перекиси водорода.
Легко растворяется в смеси азотной и плавиковой кислот[10]:
- 2W+4HNO3+10HF⟶WF6+WOF4+4NO↑+7h3O{\displaystyle {\mathsf {2W+4HNO_{3}+10HF\longrightarrow WF_{6}+WOF_{4}+4NO\uparrow +7H_{2}O}}}
Реагирует с расплавленными щелочами в присутствии окислителей[11]:
- 2W+4NaOH+3O2⟶2Na2WO4+2h3O{\displaystyle {\mathsf {2W+4NaOH+3O_{2}\longrightarrow 2Na_{2}WO_{4}+2H_{2}O}}}
- W+2NaOH+3NaNO3⟶Na2WO4+3NaNO2+h3O{\displaystyle {\mathsf {W+2NaOH+3NaNO_{3}\longrightarrow Na_{2}WO_{4}+3NaNO_{2}+H_{2}O}}}
Поначалу данные реакции идут медленно, однако при достижении 400 °C (500 °C для реакции с участием кислорода) вольфрам начинает саморазогреваться, и реакция протекает достаточно бурно, с образованием большого количества тепла.
Растворяется в смеси азотной и плавиковой кислоты, образуя гексафторвольфрамовую кислоту H2[WF6]. Из соединений вольфрама наибольшее значение имеют: триоксид вольфрама или вольфрамовый ангидрид, вольфраматы, перекисные соединения с общей формулой Me2WOX, а также соединения с галогенами, серой и углеродом. Вольфраматы склонны к образованию полимерных анионов, в том числе гетерополисоединений с включением других переходных металлов.
Применение
Главное применение вольфрама — как основа тугоплавких материалов в металлургии.
Металлический вольфрам
Нить накаливания- Тугоплавкость и пластичность вольфрама делают его незаменимым для нитей накаливания в осветительных приборах, а также в кинескопах и других вакуумных трубках.
- Благодаря высокой плотности вольфрам является основой тяжёлых сплавов, которые используются для противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий, сердечников бронебойных пуль и сверхскоростных роторов гироскопов для стабилизации полёта баллистических ракет (до 180 тыс. об/мин).
- Вольфрам используют в качестве электродов для аргонно-дуговой сварки.
- Сплавы вольфрама, ввиду его высокой температуры плавления, получают методом порошковой металлургии. Сплавы, содержащие вольфрам, отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию. Из них изготовляют хирургические инструменты (сплав «амалой»), танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей, контейнеры для хранения радиоактивных веществ. Вольфрам — важный компонент лучших марок инструментальных сталей.
- Вольфрам применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов. Сплав вольфрама и рения применяется в таких печах в качестве термопары.
- Высокая плотность вольфрама делает его удобным для защиты от ионизирующего излучения. Несмотря на бо́льшую плотность по сравнению с традиционным и более дешёвым свинцом, защита из вольфрама оказывается менее тяжёлой при равных защитных свойствах[12] или более эффективной при равном весе[13]. Из-за тугоплавкости и твёрдости вольфрама, затрудняющих его обработку, в таких случаях используются более пластичные сплавы вольфрама с добавлением никеля, железа, меди и др.[14] либо взвесь порошкообразного вольфрама (или его соединений) в полимерной основе[15].
Соединения вольфрама
- Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки — ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам.
- Сульфид вольфрама WS2 применяется как высокотемпературная (до 500 °C) смазка.
Другие сферы применения
Искусственный радионуклид 185W используется в качестве радиоактивной метки при исследованиях вещества. Стабильный 184W используется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).
Рынок вольфрама[16]
Цены на металлический вольфрам (содержание элемента порядка 99 %) на конец 2010 года составляли около 40—42 долларов США за килограмм, в мае 2011 года составляли около 53—55 долларов США за килограмм. Полуфабрикаты от 58 USD (прутки) до 168 (тонкая полоса). В 2014 году цены на вольфрам колебались в диапазоне от 55 до 57 USD.
Биологическая роль
Вольфрам не играет значительной биологической роли. У некоторых архебактерий и бактерий имеются ферменты, включающие вольфрам в своем активном центре. Существуют облигатно-зависимые от вольфрама формы архебактерий-гипертермофилов, обитающие вокруг глубоководных гидротермальных источников. Присутствие вольфрама в составе ферментов может рассматриваться как физиологический реликт раннего архея — существуют предположения, что вольфрам играл роль в ранних этапах возникновения жизни[17].
Пыль вольфрама, как и большинство других видов металлической пыли, раздражает органы дыхания.
Изотопы
Природный вольфрам состоит из смеси пяти изотопов (180W — 0,12(1)%, 182W — 26,50(16) %, 183W — 14,31(4) %, 184W — 30,64(2) % и 186W — 28,43(19) %)[18].
На 2016 год известно ещё 36 искусственно созданных и идентифицированных радионуклидов вольфрама (массовые числа 157…179, 181, 185, 187…197)[18]. В 2003 открыта[19] чрезвычайно слабая радиоактивность природного вольфрама (примерно два распада на грамм элемента в год), обусловленная α-активностью 180W, имеющего период полураспада 1,8·1018 лет[20].
Интересные факты
- Вольфрам — самый тугоплавкий металл. Температура плавления — 3422 °C, кипения — 5555 °C[2]. Примерно такую же температуру имеет фотосфера Солнца[21]. Критическая температура вольфрама равняется 13 610 °C. Это та температура, при которой вольфрам не может быть сконденсирован в виде жидкости из газа ни при каком давлении. [22]
- Плотность вольфрама почти равняется плотности золота: 19,25 г/см³ против 19,32 г/см³ соответственно[2].
- Существуют публикации в блогах о мошенничестве, при котором настоящие слитки золота якобы подменяются на слитки с заменой внутренней части на вольфрам[23][24]). Подобные подделки гипотетически могли бы пройти тесты, анализирующие лишь поверхность слитка, например, XRF, и близки к слиткам из драгоценного металла по размеру и весу благодаря высокой плотности вольфрама. Однако подделка отличается по плотности и имеет немного более низкую электропроводность, также она будет обнаружена при переплавке слитков, которая производится достаточно регулярно.[25][26].
Примечания
- ↑ Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2013. — Vol. 85, no. 5. — P. 1047-1078. — DOI:10.1351/PAC-REP-13-03-02.
- ↑ 1 2 3 4 5 6 7 Tungsten: physical properties (англ.). WebElements. Проверено 17 августа 2013.
- ↑ CRC Handbook of Chemistry and Physics / D. R. Lide (Ed.). — 90th edition. — CRC Press; Taylor and Francis, 2009. — P. 6-134. — 2828 p. — ISBN 1420090844.
- ↑ См. обзор измерений в: Tolias P. (2017), «Analytical expressions for thermophysical properties of solid and liquid tungsten relevant for fusion applications», arΧiv:1703.06302
- ↑ 1 2 3 4 Редкол.:Кнунянц И. Л. (гл. ред.). Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1988. — Т. 1. — С. 418. — 623 с. — 100 000 экз.
- ↑ Теплофизические свойства вольфрама
- ↑ О. Д. Липшиц, Карманный немецко-русский словарь, М:»Русский язык»-Leipzig^»VEB Verlag Enzyklopädie» 1983, с.211, 296
- ↑ Rahm on Google
- ↑ Титан — металл будущего (рус.).
- ↑ Рипан Р., Четяну И. Неорганическая химия. Химия металлов. — М.: Мир, 1972. — Т. 2. — С. 347.
- ↑ Рипан Р., Четяну И. Неорганическая химия. Химия металлов. — М.: Мир, 1972. — Т. 2. — С. 348.
- ↑ Brian Wheeler. Tungsten Shielding Helps at Fukushima Daiichi. Power Engineering Magazine (01 Jul 2011).
- ↑ Murata Taisuke, Miwa Kenta, Matsubayashi Fumiyasu, Wagatsuma Kei, Akimoto Kenta, Fujibuchi Toshioh, Miyaji Noriaki, Takiguchi Tomohiro, Sasaki Masayuki, Koizumi Mitsuru. Optimal radiation shielding for beta and bremsstrahlung radiation emitted by 89Sr and 90Y: validation by empirical approach and Monte Carlo simulations // Annals of Nuclear Medicine. — 2014. — 10 мая (т. 28, № 7). — С. 617—622. — ISSN 0914-7187. — DOI:10.1007/s12149-014-0853-6. [исправить]
- ↑ Kobayashi S., Hosoda N., Takashima R. Tungsten alloys as radiation protection materials // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. — 1997. — Май (т. 390, № 3). — С. 426—430. — ISSN 0168-9002. — DOI:10.1016/S0168-9002(97)00392-6. [исправить]
- ↑ Soylu H. M., Yurt Lambrecht F., Ersöz O. A. Gamma radiation shielding efficiency of a new lead-free composite material // Journal of Radioanalytical and Nuclear Chemistry. — 2015. — 17 марта (т. 305, № 2). — С. 529—534. — ISSN 0236-5731. — DOI:10.1007/s10967-015-4051-3. [исправить]
- ↑ по данным «Цены на вольфрам»
- ↑ Федонкин М. А. Сужение геохимического базиса жизни и эвкариотизация биосферы: причинная связь // Палеонтологический журнал. — 2003. — № 6. — С. 33—40
- ↑ 1 2 Audi G., Kondev F. G., Wang M., Huang W. J., Naimi S. The Nubase2016 evaluation of nuclear properties (англ.) // Chinese Physics C. — 2017. — Vol. 41, iss. 3. — P. 030001-1—030001-138. — DOI:10.1088/1674-1137/41/3/030001. — Bibcode: 2017ChPhC..41c0001A.
- ↑ F. A. Danevich et al. (2003). «α activity of natural tungsten isotopes». Phys. Rev. C 67. DOI:10.1103/PhysRevC.67.014310.
- ↑ C. Cozzini et al. (2004). «Detection of the natural α decay of tungsten». Phys. Rev. C 70. DOI:10.1103/PhysRevC.70.064606.
- ↑ Справочник химика / Редкол.: Никольский Б.П. и др.. — 3-е изд., испр. — Л.: Химия, 1971. — Т. 2. — 1168 с.
- ↑ C. R. Hammond. The Elements, in Handbook of Chemistry and Physics 81st edition. — CRC press, 2004. — ISBN 0-8493-0485-7.
- ↑ Tungsten Filled 1 kilo Gold Bar Discovered in UK March 26, 2012, по материалам “Gold Finger — A New Take On Operation Grand Slam With A Tungsten Twist” Nov 12, 2009
- ↑ Salted Gold or a Fishy Tale..? (UPDATED + Graphics) (AGAIN) — Screwtape Files blog, March 25, 2012
- ↑ The Drilled Gold Bars Filled With Tungsten — Forbes, MAR 26, 2012 (англ.)
- ↑ The problem of fake gold bars, Felix Salmon blog, March 25, 2012 (англ.)
Ссылки
Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu, |
применение, свойства и химические характеристики
Природа-мать обогатила человечество полезными химическими элементами. Некоторые из них скрыты в ее недрах и содержатся в относительно малом количестве, но их значение очень существенно. Одним из таких является вольфрам. Применение его обусловлено особыми свойствами.
История происхождения
XVIII век – век открытия таблицы Менделеева — стал основополагающим и в истории этого металла.
Ранее принималось существование некоего вещества, входящего в состав минеральных пород, которое мешало выплавке из них нужных металлов. К примеру, получение олова было затруднено, если в руде содержался такой элемент. Разность температур плавления и химические реакции приводили к образованию шлаковой пены, что уменьшало количество оловянного выхода.
В VIII веке металл был последовательно открыт шведским ученым Шееле и испанцами братьями Элюар. Произошло это вследствие химических экспериментов по окислению минеральных пород — шеелита и вольфрамита.
Зарегистрирован в периодической системе элементов в соответствии с атомным номером 74. Редкий тугоплавкий металл с атомной массой 183,84 – это вольфрам. Применение его обусловлено необычными свойствами, открытыми уже в течение XX века.
Где искать?
По количеству в недрах земли он является «малонаселяющим» и занимает 28-е место. Является компонентом около 22 различных минералов, однако существенное значение для его добычи имеют только 4 из них: шеелит (содержит около 80 % триоксида), вольфрамит, ферберит и гюбнерит (имеют в составе по 75-77 % каждый). В составе руд чаще всего содержатся примеси, в некоторых случаях производится параллельное «извлечение» таких металлов, как молибден, олово, тантал и проч. Наибольшие залежи находятся в Китае, Казахстане, Канаде, США, также есть в России, Португалии, Узбекистане.
Как получают?
В связи с особыми свойствами, а также малым содержанием в породах, технология получения чистого вольфрама достаточно сложная.
- Магнитная сепарация, электростатическая сепарация или флотация с целью обогащения руды до 50-60 % концентрации вольфрамового оксида.
- Выделение 99 % окиси путем химических реакций со щелочными или кислотными реагентами и поэтапного очищения получаемого осадка.
- Восстановление металла с помощью углерода или водорода, выход соответствующего металлического порошка.
- Изготовление слитков или порошковых спеченных брикетов.
Одним из важных этапов получения металлургической продукции является порошковая металлургия. Она основана на смешивании порошкообразных тугоплавких металлов, их прессовании и последующем спекании. Таким образом получают большое количество технологически важных сплавов, в том числе карбид вольфрама, применение которому найдено в основном в промышленном производстве режущих инструментов повышенной мощности и стойкости.
Физические и химические свойства
Вольфрам – тугоплавкий и тяжелый металл серебристого цвета с объёмно-центрированной кристаллической решеткой.
- Температура плавления — 3422 ˚С.
- Температура кипения — 5555 ˚С.
- Плотность — 19,25 г/см3.
Является хорошим проводником электрического тока. Не магнитится. Некоторые минералы (например, шеелит) люминесцентные.
Стоек к влиянию кислот, агрессивных веществ в среде высоких температур, коррозии и старению. Деактивации влияния отрицательных примесей в сталях, улучшению ее жаропрочности, коррозионной стойкости и надежности также способствует вольфрам. Применение таких железоуглеродистых сплавов оправдано их технологичностью и износостойкостью.
Механические и технологические свойства
Вольфрам – твердый, прочный металл. Его твердость составляет 488 НВ, предел прочности – 1130-1375 МПа. В холодном состоянии не пластичен. При температуре 1600 ˚С повышается пластичность до состояния абсолютной податливости к обработке давлением: ковке, прокатке, волочению. Известно, что 1 кг этого металла позволяет изготавливать нить общей длиной до 3 км.
Обработка резанием затруднена в силу чрезмерной твердости и хрупкости. Для сверления, точения, фрезерования используются твердосплавные вольфрамокобальтовые материалы, изготовленные методом порошковой металлургии. Реже, при низких скоростях и особых условиях, применяются инструменты из быстрорежущей легированной вольфрамсодержащей стали. Стандартные принципы резки неприменимы, так как оборудование чрезвычайно быстро изнашивается, а обрабатываемый вольфрам растрескивается. Применяются следующие технологии:
- Химическая обработка и пропитка поверхностного слоя, в том числе использование с этой целью серебра.
- Нагрев поверхности с помощью печей, газового пламени, электрического тока силой 0,2 А. Допустимая температура, при которой происходит некоторое повышение пластичности и, соответственно, улучшается резка, – 300-450 ˚С.
- Резание вольфрама с применением легкоплавких веществ.
Заточку и шлифование целесообразно проводить с помощью алмазных и эльборовых инструментов, реже – корундовых.
Сварка данного тугоплавкого металла производится в основном под действием электрической дуги, вольфрамовых или угольных электродов в среде инертных газов или жидких защит. Также возможно применение контактной сварки.
Этот особенный химический элемент обладает характеристиками, которые отличают его в общей массе. Так, к примеру, характеризуясь высокой теплостойкостью и износостойкостью, он повышает качество и режущие свойства легированных вольфрамсодержащих сталей, а высокая температура плавления позволяет изготавливать нити накала для лампочек и электроды для сварки.
Применение
Редкость, необычность и важность обуславливают широкое использование в современной технике металла под названием Tungsten – вольфрам. Свойства и применение оправдывают высокую стоимость и востребованность. Высокие показатели температуры плавления, твердости, прочности, жаростойкости и стойкости к химическим воздействиям и коррозии, износостойкости и резальных особенностей – вот основные его козыри. Варианты использования:
- Нити накаливания.
- Легирование сталей с целью получения быстрорежущих, износостойких, жаростойких и жаропрочных железоуглеродистых сплавов, находящих применение для производства сверл и других инструментов, пуансонов, пружин и рессор, рельс.
- Изготовление «порошковых» твердых сплавов, применяемых в основном в качестве особо износостойких режущих, буровых или прессовочных инструментов.
- Электроды для аргонодуговой и контактной сварки.
- Изготовление деталей для рентгеновской и радиотехники, различных технических ламп.
- Специальные светящиеся краски.
- Проволока и детали для химической промышленности.
- Различная практичная мелочевка, к примеру, мормышки для рыбалки.
Приобретают популярность различные сплавы, в состав которых входит вольфрам. Область применения таких материалов порой удивляет – начиная от тяжелого машиностроения и заканчивая легкой промышленностью, где изготавливаются ткани с особыми свойствами (например, огнестойкие).
Универсальных материалов не существует. Каждый известный элемент и созданные сплавы отличаются своей уникальностью и необходимостью для определенных сфер жизни и промышленности. Однако некоторые из них обладают особыми свойствами, делающими ранее неосуществимые процессы возможными. Одним из таких металлов является вольфрам. Применение его недостаточно широко, как у стали, но каждый из вариантов предельно полезен и необходим человечеству.
Вольфрам, свойства атома, химические и физические свойства
Вольфрам, свойства атома, химические и физические свойства.
W 74 Вольфрам
183,84(1) 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d4 6s2
Вольфрам — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 74. Расположен в 6-й группе (по старой классификации — побочной подгруппе шестой группы), шестом периоде периодической системы.
Атом и молекула вольфрама. Формула вольфрама. Строение вольфрама
Изотопы и модификации вольфрама
Свойства вольфрама (таблица): температура, плотность, давление и пр.
Физические свойства вольфрама
Химические свойства вольфрама. Взаимодействие вольфрама. Реакции с вольфрамом
Получение вольфрама
Применение вольфрама
Таблица химических элементов Д.И. Менделеева
Атом и молекула вольфрама. Формула вольфрама. Строение вольфрама:
Вольфрам (лат. Wolframium, от нем. Wolf Rahm – «волчья пена») – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением W и атомным номером 74. Расположен в 6-й группе (по старой классификации – побочной подгруппе шестой группы), шестом периоде периодической системы.
Вольфрам – металл. Относится к группе переходных металлов. Вольфрам — самый тугоплавкий из металлов.
Как простое вещество вольфрам при нормальных условиях представляет собой твёрдый блестящий серебристо-серый металл.
Молекула вольфрама одноатомна.
Химическая формула вольфрама W.
Электронная конфигурация атома вольфрама 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d4 6s2. Потенциал ионизации атома вольфрама равен 7,98 эВ (769,7 кДж/моль).
Строение атома вольфрама. Атом вольфрама состоит из положительно заряженного ядра (+74), вокруг которого по шести оболочкам движутся 74 электрона. При этом 72 электрона находятся на внутреннем уровне, а 2 электрона – на внешнем. Поскольку вольфрам расположен в шестом периоде, оболочек всего шесть. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлена s- и р-орбиталями. Третья и пятая – внутренние оболочки представлены s-, р- и d-орбиталями. Четвертая – внутренняя оболочка представлена s-, р-, d- и f-орбиталями. Шестая – внешняя оболочка представлена s-орбиталью. На внутреннем энергетическом уровне атома вольфрама на 5d-орбитали находятся четыре неспаренных электрона. На внешнем энергетическом уровне атома вольфрама – на s-орбитали находятся два спаренных электрона. В свою очередь ядро атома вольфрама состоит из 74 протонов и 109 нейтронов. Вольфрам относится к элементам d-семейства.
Радиус атома вольфрама составляет 141 пм.
Атомная масса атома вольфрама составляет 183,84(1) а. е. м.
При стандартных условиях вольфрам химически стоек.
Изотопы и модификации вольфрама:
Свойства вольфрама (таблица): температура, плотность, давление и пр.:
Общие сведения | |
Название | Вольфрам/ Wolframium |
Символ | W |
Номер в таблице | 74 |
Тип | Металл |
Открыт | Карл Вильгельм Шееле, Швеция, 1781 г. |
Внешний вид и пр. | Тяжёлый твёрдый блестящий металл серебристо-серого цвета |
Содержание в земной коре | 0,00011 % |
Содержание в океане | 1,2×10-8 % |
Свойства атома | |
Атомная масса (молярная масса) | 183,84(1) а. е. м. (г/моль) |
Электронная конфигурация | 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d4 6s2 |
Радиус атома | 141 пм |
Химические свойства | |
Степени окисления | +6, +5, +4, +3, +2, 0 |
Валентность | (+2), (+3), (+4), (+5), +6 |
Ковалентный радиус | 170 пм |
Радиус иона | (+6e) 62 (+4e) 70 пм |
Электроотрицательность | 2,3 (шкала Полинга) |
Энергия ионизации (первый электрон) | 769,7 кДж/моль (7,98 эВ) |
Электродный потенциал | 0,11 В, 0,68 В |
Физические свойства | |
Плотность (при нормальных условиях) | 19,25 г/см3 |
Температура плавления | 3422 °C (3695 K) |
Температура кипения | 5555 °C (5828 K) |
Уд. теплота плавления | 52,31 кДж/моль |
Уд. теплота испарения | 774 кДж/моль |
Молярная теплоёмкость | 24,27 Дж/(K·моль) |
Молярный объём | 9,53 см³/моль |
Теплопроводность (при 300 K) | 162,8 Вт/(м·К) |
Электропроводность в твердой фазе | 20х106 См/м |
Сверхпроводимость при температуре | |
Твёрдость | 7,5 по шкале Мооса, 3430 МПа по Виккерсу |
Структура решётки | кубическая объёмноцентрированная |
Параметры решётки | 3,160 Å |
Температура Дебая | 310 |
Физические свойства вольфрама:
Химические свойства вольфрама. Взаимодействие вольфрама. Реакции с вольфрамом:
Получение вольфрама:
Применение вольфрама:
Таблица химических элементов Д.И. Менделеева
- 1. Водород
- 2. Гелий
- 3. Литий
- 4. Бериллий
- 5. Бор
- 6. Углерод
- 7. Азот
- 8. Кислород
- 9. Фтор
- 10. Неон
- 11. Натрий
- 12. Магний
- 13. Алюминий
- 14. Кремний
- 15. Фосфор
- 16. Сера
- 17. Хлор
- 18. Аргон
- 19. Калий
- 20. Кальций
- 21. Скандий
- 22. Титан
- 23. Ванадий
- 24. Хром
- 25. Марганец
- 26. Железо
- 27. Кобальт
- 28. Никель
- 29. Медь
- 30. Цинк
- 31. Галлий
- 32. Германий
- 33. Мышьяк
- 34. Селен
- 35. Бром
- 36. Криптон
- 37. Рубидий
- 38. Стронций
- 39. Иттрий
- 40. Цирконий
- 41. Ниобий
- 42. Молибден
- 43. Технеций
- 44. Рутений
- 45. Родий
- 46. Палладий
- 47. Серебро
- 48. Кадмий
- 49. Индий
- 50. Олово
- 51. Сурьма
- 52. Теллур
- 53. Йод
- 54. Ксенон
- 55. Цезий
- 56. Барий
- 57. Лантан
- 58. Церий
- 59. Празеодим
- 60. Неодим
- 61. Прометий
- 62. Самарий
- 63. Европий
- 64. Гадолиний
- 65. Тербий
- 66. Диспрозий
- 67. Гольмий
- 68. Эрбий
- 69. Тулий
- 70. Иттербий
- 71. Лютеций
- 72. Гафний
- 73. Тантал
- 74. Вольфрам
- 75. Рений
- 76. Осмий
- 77. Иридий
- 78. Платина
- 79. Золото
- 80. Ртуть
- 81. Таллий
- 82. Свинец
- 83. Висмут
- 84. Полоний
- 85. Астат
- 86. Радон
- 87. Франций
- 88. Радий
- 89. Актиний
- 90. Торий
- 91. Протактиний
- 92. Уран
- 93. Нептуний
- 94. Плутоний
- 95. Америций
- 96. Кюрий
- 97. Берклий
- 98. Калифорний
- 99. Эйнштейний
- 100. Фермий
- 101. Менделеевий
- 102. Нобелий
- 103. Лоуренсий
- 104. Резерфордий
- 105. Дубний
- 106. Сиборгий
- 107. Борий
- 108. Хассий
- 109. Мейтнерий
- 110. Дармштадтий
- 111. Рентгений
- 112. Коперниций
- 113. Нихоний
- 114. Флеровий
- 115. Московий
- 116. Ливерморий
- 117. Теннессин
- 118. Оганесон
Таблица химических элементов Д.И. Менделеева
Найти что-нибудь еще?
Похожие записи:
карта сайта
вольфрам атомная масса степень окисления валентность плотность температура кипения плавления физические химические свойства структура теплопроводность электропроводность кристаллическая решетка
атом нарисовать строение число протонов в ядре строение электронных оболочек электронная формула конфигурация схема строения электронной оболочки заряд ядра состав масса орбита уровни модель радиус энергия электрона переход скорость спектр длина волны молекулярная масса объем атома
электронные формулы сколько атомов в молекуле вольфрама вольфрам
сколько электронов в атоме свойства металлические неметаллические термодинамические
Коэффициент востребованности 565
фактов о вольфраме | Живая наука
Вольфрам считается одним из самых твердых материалов в природе. Он очень плотный, и его практически невозможно растопить. Чистый вольфрам — это серебристо-белый металл, который в мелкодисперсном порошке может гореть и самовоспламеняться. Природный вольфрам содержит пять стабильных изотопов и 21 другой нестабильный изотоп.
Вольфрам используется по-разному, потому что он очень прочный и долговечный. Он очень устойчив к коррозии, имеет самую высокую температуру плавления и самый высокий предел прочности на разрыв среди всех элементов.Однако его сила приходит, когда он превращается в соединения. Чистый вольфрам очень мягкий.
Только факты
Вот свойства вольфрама по данным Лос-Аламосской национальной лаборатории:
- Атомный номер: 74
- Атомный символ: W
- Атомный вес: 183,84
- Точка плавления: 6192 F. (3422 C)
- Точка кипения: 10 030 F (5555 C)
История
Первое использование вольфрама было более 350 лет назад.По данным Королевского химического общества, китайские производители фарфора использовали вольфрамовый пигмент уникального персикового цвета.
Намного позже, в 1779 году, Питер Вулф исследовал минерал из Швеции и обнаружил, что он содержит новый тип металла, но на этом исследования закончились. В 1781 году Вильгельм Шееле продолжил исследования этого нового металла и выделил кислый белый оксид. Однако ни одному из этих людей не приписывают открытие элемента.
Хуан и Фаусто Эльхуяр удостоены этой чести.В семинарии в Вергаре в Испании они исследовали этот загадочный металл. В 1783 году они выделили оксид металла из вольфрамита, а затем, в отличие от других, восстановили его до металлического вольфрама, нагревая его углеродом.
Источники
Большинство ресурсов вольфрама находится в Китае, Южной Корее, Боливии, Великобритании, России и Португалии, а также в Калифорнии и Колорадо. По данным BBC, хотя его можно найти во многих местах, 80 процентов мировых поставок контролируется Китаем.
Элемент естественным образом встречается в минералах шеелит, вольфрамит, хуэбнерти и ферберит. Его получают из минералов путем восстановления оксида вольфрама водородом или углеродом.
После получения вольфрам часто добавляют в сплавы. Для формования самых твердых сплавов используются алмазы. Только алмазы тверже некоторых вольфрамовых сплавов.
Использует
Одним из наиболее распространенных и самых твердых соединений вольфрама является карбид вольфрама. Из-за своей прочности при изготовлении смесей вольфрам используется для упрочнения пильных полотен и изготовления сверл.По данным BBC, для вырезания всего одного сверла из вольфрама с использованием системы алмазной резки может потребоваться около 10 минут. Некоторые ювелиры также используют карбид вольфрама для изготовления обручальных колец и других колец.
Еще одно соединение вольфрама, которое особенно полезно, — это дисульфид вольфрама. По данным лаборатории Джефферсона, он используется в качестве сухой смазки при температурах до 932 градусов по Фаренгейту (500 градусов по Цельсию).
Некоторые другие применения вольфрама включают в себя работу по испарению металла, производство красок, изготовление уплотнений стекло-металл и создание электронных и телевизионных трубок.
Военные используют вольфрам для изготовления пуль и ракет, используемых для «кинетической бомбардировки». Этот тип атаки использует сверхплотный материал для пробивания брони вместо взрывчатки.
Его устойчивость к нагреванию полезна при использовании в нагревательных элементах для электрических печей, космических аппаратов, сварки и других высокотемпературных применений. По этой же причине он также использовался при создании различных типов освещения. Чем горячее может стать нить накала без плавления, тем ярче лампа.В 1908 году изобретатель Уильям Д. Кулидж обнаружил, что вольфрам является идеальным материалом для нити накала. Однако сегодня в большинстве ламп используются более энергоэффективные материалы. Однако он все еще используется в рентгеновских волокнах и в электрических контактах различной электроники.
Биологически некоторые бактерии используют вольфрам для восстановления карбоновых кислот до альдегидов.
Кто знал?
Этот элемент используется для обмана. «Вольфрам может не иметь блеска золота, но у него есть его плотность (в пределах 0,36 процента), что означает, что если вы покроете кирпич из вольфрама золотым покрытием — и вы проверите кирпич, чтобы узнать, весит ли он столько же, сколько золото, — это будет почти правильно », — сказала Live Science Аманда Симсон, доцент кафедры химического машиностроения Университета Нью-Хейвена.«Таким образом, вольфрам был обнаружен в поддельных золотых кирпичах».
Вольфрам происходит от шведского слова tungsten , что означает «тяжелый камень».
Химический символ вольфрама — буква W, что может показаться странным, поскольку в этом слове нет буквы W. На самом деле буква W происходит от другого названия элемента, вольфрама. Название вольфрам происходит от минерала, в котором элемент был обнаружен, вольфрамита. Вольфрамит означает «пожиратель олова», что вполне уместно, поскольку минерал мешает плавлению олова.
Дополнительные ресурсы
Эта статья была обновлена 3 февраля 2020 г. с целью корректировки точки кипения вольфрама.
.Вольфрам — Википедия, бесплатная энциклопедия
Внешний вид | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
серовато-белый, блестящий | |||||||||||||||
Общая недвижимость | |||||||||||||||
Наименование, символ, номер | вольфрам, Вт, 74 | ||||||||||||||
Произношение | / ˈtʌŋstən /; или / wʊlfrəm / WOOL -frəm | ||||||||||||||
Категория элемента | переходный металл | ||||||||||||||
Группа, период, блок | 6, 6, д | ||||||||||||||
Стандартный атомный вес | 183.84 | ||||||||||||||
Электронная конфигурация | [Xe] 4f 14 5d 4 6s 2 [1] | ||||||||||||||
Электронов на оболочку | 2, 8, 18, 32, 12, 2 (Изображение) | ||||||||||||||
Физические свойства | |||||||||||||||
Фаза | цельный | ||||||||||||||
Плотность (около комнатной) | 19,25 г · см −3 | ||||||||||||||
Плотность жидкости при т.пл. | 17,6 г · см −3 | ||||||||||||||
Температура плавления | 3695 К, 3422 ° С, 6192 ° F | ||||||||||||||
Точка кипения | 5828 К, 5555 ° С, 10031 ° F | ||||||||||||||
Критическая точка | 13892 К, МПа | ||||||||||||||
Теплота плавления | 35.3 кДж · моль −1 | ||||||||||||||
Теплота испарения | 806,7 кДж · моль −1 | ||||||||||||||
Молярная теплоемкость | 24,27 Дж · моль −1 · K −1 | ||||||||||||||
Давление пара | |||||||||||||||
| |||||||||||||||
Атомные свойства | |||||||||||||||
Степени окисления | 6 , 5, 4, 3, 2, 1, 0, -1, -2 (слабокислый оксид) | ||||||||||||||
Электроотрицательность | 2.36 (шкала Полинга) | ||||||||||||||
Энергии ионизации | 1-я: 770 кДж · моль −1 | ||||||||||||||
2-я: 1700 кДж · моль -1 | |||||||||||||||
Атомный радиус | 139 вечера | ||||||||||||||
Ковалентный радиус | 162 ± 19 часов | ||||||||||||||
Разное | |||||||||||||||
Кристаллическая структура | объемно-центрированная кубическая | ||||||||||||||
Магнитный заказ | парамагнитный [2] | ||||||||||||||
Удельное электрическое сопротивление | (20 ° С) 52.8 нОм · м | ||||||||||||||
Теплопроводность | 173 Вт · м −1 · K −1 | ||||||||||||||
Тепловое расширение | (25 ° C) 4,5 мкм · м −1 · K −1 | ||||||||||||||
Модуль Юнга | 411 ГПа | ||||||||||||||
Модуль сдвига | 161 ГПа | ||||||||||||||
Модуль объемной упругости | 310 ГПа | ||||||||||||||
Коэффициент Пуассона | 0,28 | ||||||||||||||
Твердость по Моосу | 7.5 | ||||||||||||||
Твердость по Виккерсу | 3430 МПа | ||||||||||||||
Твердость по Бринеллю | 2570 МПа | ||||||||||||||
Регистрационный номер CAS | 7440-33-7 | ||||||||||||||
Наиболее стабильные изотопы | |||||||||||||||
Основная статья: Изотопы вольфрама | |||||||||||||||
· г |
Вольфрам / ˈtʌŋstən /, также известный как wolfram / ˈwʊlfrəm / ( WUUL -frəm ), представляет собой химический элемент с химическим символом W и атомным номером 74.Слово tungsten происходит от шведского языка tungsten , которое напрямую переводится как тяжелый камень , [3] , хотя на шведском его обычно называют вольфрам .
Вольфрам — твердый и редкий металл в обычных условиях, когда он не соединен. В природе на Земле он встречается только в химических соединениях. Он был идентифицирован как новый элемент в 1781 году и впервые выделен как металл в 1783 году. Его важные руды включают вольфрамит и шеелит. Свободный элемент отличается своей прочностью, особенно тем, что он имеет самую высокую температуру плавления среди всех нелегированных металлов и второй по величине из всех элементов после углерода.Также примечательно его высокая плотность, в 19,3 раза превышающая плотность воды, сравнимая с плотностью урана и золота и намного выше (примерно в 1,7 раза), чем у свинца. [4] Вольфрам с незначительным содержанием примесей часто бывает хрупким [5] и твердым, что затрудняет работу. Однако очень чистый вольфрам, хотя и твердый, более пластичен, и его можно разрезать ножовкой из твердой стали. [6]
Нелегированная элементная форма используется в основном в электротехнике. Многие сплавы вольфрама находят множество применений, в первую очередь в нити накаливания ламп накаливания, рентгеновских трубках (в качестве нити накала и мишени), электродах при сварке TIG и суперсплавах.Твердость и высокая плотность вольфрама позволяют использовать его в военных целях для создания проникающих снарядов. Соединения вольфрама чаще всего используются в промышленности в качестве катализаторов.
Вольфрам — единственный металл из третьей переходной серии, который, как известно, встречается в биомолекулах, где он используется в некоторых видах бактерий. Это самый тяжелый элемент, используемый любым живым организмом. Вольфрам мешает метаболизму молибдена и меди и в некоторой степени токсичен для животных. [7] [8]
.Вольфрам (Вт) История элемента
История элемента — краткий обзор
Вольфрам — это тяжелый металлический элемент , член третьей группы переходных металлов. Он имеет символ W , его атомный номер составляет 74 , а его атомный вес равен 183,85 . Название происходит от шведского слова tungsten, что означает «тяжелый камень». Вольфрам также известен как вольфрам от ВОЛЬФРАМИТА, минерала, из которого элемент был впервые обнаружен английским химиком Питером Вулфом в 1779 году.Металл был впервые выделен в 1783 году испанскими учеными Хосе и Фаусто д’Эльхуяром путем восстановления с помощью древесного угля вольфрамовой кислоты, содержащейся в вольфрамите.
Вольфрам встречается в основном в минералах шеелит , вольфрамит , уебнерит и ферберит . В Соединенных Штатах эти минералы встречаются, прежде всего, в Калифорнии и Колорадо. В других регионах они встречаются в Китае, Бурятской республике России, Казахстане, Южной Корее, Боливии и Португалии.Металл получают в промышленных масштабах восстановлением оксида вольфрама водородом или углеродом. Чистый металл имеет цвет от серого стального до белого олова. Его физические свойства включают в себя наивысшую температуру плавления из всех металлов, 3410 ° C (6170 ° F) , точку кипения 5660 ° C (10220 ° F) и плотность 19,3 г / куб.см .
Чистый вольфрам Металл легко поддается ковке, формованию, вытяжке и экструзии, тогда как в загрязненном состоянии он хрупкий и его трудно изготовить.Вольфрам окисляется на воздухе, особенно при более высоких температурах, но он устойчив к коррозии и лишь незначительно подвергается воздействию большинства минеральных кислот. В соответствии с другими переходными элементами , он отображает диапазон степеней окисления : 0, +1, +2, +3, +4, +5 и +6. Этим объясняется множество сложных ионов и координационных комплексов, в которых можно найти вольфрам. Вольфрам не имеет биологического значения.
Поскольку heat вызывает расширение вольфрама примерно с той же скоростью, что и стекло, этот металл широко используется для изготовления уплотнений стекло-металл.Вольфрам или его сплавы используются для изготовления нитей для электрических ламп, электронных и телевизионных трубок, точек электрического контакта для автомобильных распределителей, нагревательных элементов для электрических печей, а также для космических, ракетных и высокотемпературных приложений.
Карбид вольфрама — важное соединение в металлообрабатывающей, горнодобывающей и нефтяной промышленности. Сплавы, такие как быстрорежущая сталь, кристит и стеллит, используемые в быстрорежущих инструментах, содержат вольфрам. Другими важными соединениями вольфрама являются вольфраматы кальция и магния, которые используются в люминесцентном освещении, и дисульфид вольфрама, который используется в качестве высокотемпературной смазки при температурах до 500 ° C.Соединения вольфрама также находят применение в химической, лакокрасочной и кожевенной промышленности.
. . .
Библиография и ссылки:
- Беус, А.А., изд., Геология вольфрама (1986)
- Коттон, Ф. А., Уилкинсон, Г., Расширенная неорганическая химия, 5-е изд. (1988)
- Элвелл, У. Т. и Вуд, Д. Ф., Аналитическая химия молибдена и вольфрама (1971).
- Харрис П. М. и Хамфрис Д. С., Вольфрам (1984)
- Йих, С.Х., Ван, Т. К., Вольфрам (1979)
. . .
Дополнительные ресурсы:
Подробная история: вольфрам и вольфрамовая проволока
Для чего используется вольфрам?
Вольфрамовые изделия
. . .
Звоните нам по телефону 1-800-626-0226 или заполните нашу контактную форму, если у вас есть конкретные вопросы по заявлению.
.Что такое вольфрам?
Вольфрам (произносится как / tʌŋstən /), также известный как вольфрам (/ wlfrəm /), представляет собой химический элемент с химическим символом W и атомным номером 74. Вольфрам известен как самый тяжелый материал из природных ресурсов, за исключением золота. , для плотности вольфрама составляет 19,25 г • см − 3 (около rt). По той же причине продуктов, связанных с вольфрамом , сплавы (связующее никель-медь-ферро), другие легированные элементы (легированные алюминием, легированные торием, легированные La, легированные Ce и K) и карбиды (карбонизированные порошок вольфрама с кобальтовой или никелевой связкой) имеет особые характеристики как чистый вольфрам , тогда его всегда называли тяжелым камнем.
Вольфрам является типичным элементом переходной группы VI, имеет степени окисления от +6 до -2 и, особенно в его оксидах, образует множество нестехиометрических соединений. Химия водных ресурсов незначительна, за исключением сложных оксианионов и некоторых сложных галогенидов. Гексагалогениды являются молекулярными, но низшие галогениды являются полимерными, а низшие галогениды демонстрируют обширные связи W-W (больше, чем Mo). Производные карбонила и фосфина являются типичными соединениями с низкой степенью окисления.Комплексы образуются, в частности, O- и S-лигандами в более высоких степенях окисления и P-лигандами в низких степенях окисления. Сложные цианиды хорошо известны.
Вольфрам является одним из цветных металлов, а также молибденом и редкоземельными металлами , которые являются тугоплавкими металлами, в современное индустриальное время это наиболее важные стратегические металлы для ИТ-промышленности и военной промышленности.
В чем проблема с вольфрамом? Вольфрам легко растворяется в воде и является подвижным в некоторых полевых условиях, что ставит под сомнение первоначальные предположения относительно судьбы и транспортных характеристик вольфрама.Другие проблемы включают данные (профессиональные исследования, исследования на животных, кластеры рака), указывающие на неблагоприятные, не связанные с раком и раком, последствия для здоровья и исходы риска.
Как используется вольфрам? Сплавы вольфрама являются хорошими проводниками электричества и используются в основном для повышения ударной вязкости и прочности стали. Самый распространенный продукт из вольфрама, цементированный карбид вольфрама, используется для изготовления шлифовальных кругов и режущих или формовочных инструментов. Вольфрамовый порошок используется в качестве замены свинца в пулях.Однако при стрельбе пулей из вольфрама / нейлона в окружающую среду попадают вольфрам и другие металлы, относящиеся к снарядам.
Как воздействие вольфрама влияет на здоровье человека?
Токсикология вольфрама зависит от пути введения, растворимости компонента и продолжительности воздействия. Профессиональное воздействие через ингаляционный путь выявило повышенный уровень легочного фиброза (рубцевание легочной ткани) и других эффектов, включая астму и воспаление тканей носа.Исследования также показывают, что сочетание вольфрама и других веществ может быть связано с развитием рака легких. Некоторые данные на животных предполагают, что вольфрам может вызывать неблагоприятные эффекты на развитие и репродуктивную функцию (включая почки как орган-мишень). Информация из Невады привлекла внимание к потенциальной токсичности вольфрама, проявленной в онкологическом кластере Фаллон, штат Невада.
.