Виды электроды: Какие существуют виды электродов? Типы и виды электродов

Содержание

Сварочные электроды — классификация, состав, назначение, руководство по выбору

Сварка металла — это основной процесс при создании различных металлоконструкций, изделий и деталей. Сварка производится также при их ремонте и восстановлении. Она представляет собой сложный технический процесс, требующий специального оборудования.

Основные расходники при сварке — это сварочные электроды. Они позволяют сделать шов, соединяющий части изделий, которые расплавляются и соединяются на молекулярном уровне. Для разных металлов требуются разные электроды. Поэтому их важно подбирать в соответствии с технологическими параметрами.

Содержание статьи:

Назначение электродов

Электроды используются как на больших производствах, так и в частных хозяйствах. Их виды при этом никак не отличаются. Нужно только знать какие типы электродов выбрать. Они могут использоваться для следующих целей:

  • соединение;
  • ремонт;
  • устранение трещин;
  • наплавка металла;
  • резка металла.

В зависимости от назначения, электроды могут отличаться между собой по толщине, составу, материалам, покрытию и другим параметрам, которые мы рассмотрим далее.

Классификация сварочных электродов

Сейчас можно найти очень много электродов для ручной дуговой сварки. Классифицировать всю эту продукцию по всем параметрам очень сложно. Однако можно выделить основные характеристики, по которым можно разделить расходники.

По маркам

Марки электродов отражают их основное назначение. К примеру, УОНИ широко применяются для работы при низких температурах; ЛЭЗ часто используются для наплавки металла на поврежденные и изношенные детали; МР-3 нужны для сварки ответственных и рядовых конструкций.

По диаметру

Диаметр электродов отличается в зависимости от толщины свариваемых деталей. Чем они толще, тем больший диаметр стержня используется при работе. Номинальный диаметр, также включает толщину покрытия.

В зависимости от назначения

Разные электроды применяются для разных работ: наплавки, сварки, установки прихваток и т. д. Наибольшим спросом пользуются универсальные изделия, которые могут применяться для любых видов работ. Это значительно ускоряет и упрощает процесс.

По типу обмазки

Данный параметр очень важен при выборе электродов для конкретных материалов. Обмазка влияет на технологические свойства шва и сам процесс сварки. Покрытие бывает основным, кислым, рутиловым и пр.

По виду и полярности питающего тока

С разными электродами нужно использовать разный вид тока — постоянный и переменный. Трансформатор должен выдавать разные виды тока и иметь минимальное значение напряжения на холостом ходу в 50 В.

По величине действующего тока в сети

Очень часто электроды можно подключать к аппаратам, способным работать от обычной домашней сети. Это значительно упрощает работу, особенно если вы работаете дома.

По длине стержня

Обычно, длина стержня увеличивается вместе с его диаметром. Это связано с расходом, который увеличивается вместе с толщиной свариваемого металла.

Состав и характеристики

Технологические свойства электродов определяет их химический состав. В зависимости от состава, стержни обеспечивают качественное соединение при работе со сталями и конструкциями, использующимися в определенных условиях. Основными компонентами, содержащимися в электродах, являются:

  • углерод;
  • марганец;
  • фтор;
  • сера;
  • фосфор и т. д.

Электроды могут содержать такие элементы как ванадий, медь и др. Они придают стержням нужные качества, для обеспечения надежного соединения металлов.

Основными характеристиками электродов, на которые следует обращать внимание при работе, являются такие параметры как коэффициент наплавки, производительность, расход, тип покрытия, текучесть и сопротивление. Ознакомившись с этими характеристиками, опытные мастера могут сделать вывод, насколько эффективны электроды будут в работе.

Руководство по выбору электродов

Для новичков сварочного дела, выбор электрода может стать большой проблемой. Появятся вопросы, как выбрать диаметр, какой ток нужно использовать и какому покрытию отдать предпочтение. Давайте разберемся, как правильно выбрать сварочные электроды.

Начнем с простого. Электрод представляет собой сердечник, имеющий специальную обмазку, защищающую его от проникновения кислорода и ненужных примесей. Во время работы, сердечник плавится, а покрытие защищает шов от внешнего воздействия. При сварке образуется шлаковый слой, защищающий соединение.

При выборе расходников, обращайте внимание на состав сердечника. Он должен быть похож на материал, с которым вы собираетесь работать. Разновидностей металлов и сплавов существует очень много. Говорить о каждом мы не будем, остановимся на том, который часто встречается в быту.

В домашнем хозяйстве чаще всего можно встретить конструкционную сталь небольшой толщины. Для нее отлично подойдут электроды МР-3. Их можно использовать как от постоянного, так и от переменного тока. Имея рутиловое покрытие, они обеспечивают небольшое разбрызгивание металла, что экономит материал и защищает сварщика от ожогов, а также легко зажигаются, что облегчает работу.

Следующий момент — подключение электродов. Большинство аппаратов работает с постоянным током. Здесь есть два способа подключения — обратная и прямая полярность.

Прямая полярность — к “+” подключается масса, а к “-” держак. Обратная полярность — к “-” подключается масса, а к “+” держатель.

При сварке на “+” выделяется много тепла. Это значит, что массивные детали лучше варить на обратной полярности, а тонкие на прямой.

Диаметр электрода подбирается в зависимости от толщины изделий, которые вы будете варить.

При подборе тока сварки, нужно знать, что на 1 мм диаметра электрода, требуется порядка 20 — 30 А. Таким образом, если электрод имеет диаметр 3 мм, понадобится примерная сила тока в 80 — 110 А.

Точных значений силы тока не бывает. Каждый сварщик подбирает их самостоятельно. Производители электродов, указывают приблизительный ток — вилку, в которой можно подобрать наиболее комфортное значение.

Чем больший ток подается на электрод, тем более жидкой и неуправляемой получается ванна. Мастер должен настраивать ток так, чтобы ему было удобно работать.

В зависимости от типов свариваемых материалов, нужно подбирать подходящие по составу и диаметру электроды. В противном случае добиться качественного соединения не получится.

Заключение

Сварочные электроды применяются при выполнении работ по соединению конструкций или деталей изделия. Они создают шов, имеющий такие же свойства, что и основной металл. Электроды являются расходными материалами при проведении сварочных работ и могут использоваться как в промышленном производстве, так и в частном хозяйстве.

Купить стержни можно в различных хозяйственных и интернет-магазинах. Их цены могут отличаться в зависимости от производителя, качества и назначения. Главной задачей покупателя является правильный подбор электродов и их параметров. Тогда получится сделать надежное соединение, которое будет служить долго.

 

Неплавящиеся электроды — советы по использованию

В этой статье мы рассмотрим такой класс расходников, как неплавящиеся электроды, их виды, назначения и основные характеристики.

С момента изобретения приемлемого способа сваривания металлов прошло чуть более ста лет и сегодня наименований приспособлений и материалов для варки насчитывают очень и очень много.

В этой статье мы рассмотрим такой класс расходников, как неплавящиеся электроды, их виды, назначения и основные характеристики.

Виды неплавящихся электродов


В сварочных работах используют три основных типа электродов:

  • Угольные.
  • Графитовые.
  • Вольфрамовые.

Все они относятся к классу неплавящихся, однако назначение их различное.

Угольные типы расходников применяют в основном в воздушно-дуговой резке металла, а также устранения различных дефектов на поверхности изделий. Сварочные работы с использованием угольных стержней проводят на токах силой максимум 580 Ампер. Существует три основных разновидности электродов:

  • Круглые марки для воздушно-дуговой резки (ВДК).
  • Плоские виды для воздушно-дугового разрезания (ВДП).
  • Круглые типы для сварки (СК).

Воздушно-дуговая резка — это способ реза металла электрической дугой, когда расплавленный металл удаляется с помощью струи сжатого воздуха.

В сваривании угольные электроды используют при соединениях тонкостенных конструкций из стали и цветных металлов, а также заварки браков на поверхности литых деталей.

Сваривание угольными стержнями можно проводить как без присадки, так и с присадочным материалом, уложенным по линии варки или подающимся в сварочную ванну.

Электроды графитового типа используют для сварки цветных металлов и их сплавов (алюминия и меди). Такой тип расходников более доступен, в отличие от угольных аналогов.


Наиболее часто используют графитовые стержни при сварке медных проводов.

Такие стержни обладают массой преимуществ: они лучше переносят температурное воздействие и имеют меньший износ, а также лучше обрабатываются (режутся).

Вольфрамовые неплавящиеся электроды — это наиболее широко применяемые типы в производстве и домашних мастерских. С их помощью можно сваривать различные металлы, в том числе и с использованием защиты из газа. Вольфрамовые электроды для аргонодуговой сварки бывают различного состава и, в зависимости от этого, их делят на такие группы:

  • Лантанированные.
  • Иттрированные.
  • Торированные.
  • Обычные.

Изготавливаются они в виде прутка диаметром от 1 миллиметра до 4 мм. Вольфрамовый электрод очень тугоплавкий и имеет температуру плавления намного выше, чем температура самой электрической дуги, что позволяет использовать его для сварки различных типов металла (стали, но чаще алюминия, меди, нержавейки и прочих).

Стрежни с добавлением тория (торированные) радиоактивны и, хотя величина излучения невелика, крупные промышленные предприятия их уже не используют.

Использование вольфрамовых электродов


Сегодня мало кто использует в домашних условиях графитовые и угольные стержни для сварки и резки, это просто нецелесообразно. А вот вольфрамовые прутки очень часто используют в бытовом хозяйстве при сварке алюминия и других цветных металлов и нержавейки. Именно такими расходниками происходит соединение

Режимы сварки неплавящимся электродом в защитных газах определяются многими факторами: видом металла, его толщиной, защитной атмосферой и другими.

В таблице собраны основные виды вольфрамовых стержней, их использование и соответствующий режим.

Это западная классификация вольфрамовых стержней. Отечественные производители выпускают неплавящиеся электроды под обозначением ЭВЛ и ЭВИ (лантановые и иттриевые стержни). Также производятся прутки из чистого вольфрама ЭВЧ.

Торцы также отмечают цветом в зависимости от назначения расходника. Сила тока и режим зависит от металла и характеристик заготовки. Так, например, алюминий вариться обязательно на переменном токе, а стали — в том или другом режимах. Нержавейку сваривают на постоянном токе, как и медные изделия.


Важно также при использовании неплавящихся электродов установить полярность. Прямая полярность — кабель горелки ставят на минус, а массу на плюс, обратная — держатель на плюсе, а масса на минусе.

Режим полярности определяет форму проваренного металла. При прямой полярности и постоянном токе провар глубокий и узкий, при постоянном с обратной — широкий поверхностный провар, а с переменным — овальный.

Если используют стержни с маркировкой ЭВЧ (чистые), то сварку можно проводить только на переменном токе, все остальные (ЭВИ, ЭВЛ, ЭВТ) на том или ином режиме с требуемой полярностью.

В процессе сварочных работ вольфрам затупляется и его нужно заточить. Угол острия выдерживают в 30 градусов при длине 2-3-х диаметров электрода. Сам кончик притупляют на 0,5 миллиметра.

Несмотря на название, такие электроды все равно имеют свою степень расхода, хоть и незначительную. Например, при бесперебойной работе в течение 5 часов вольфрамовый стержень теряет около 10 мм своей длины. Чтобы сократить этот показатель, сварку нужно начинать с подачи газа, а потом поджигания дуги. Также нельзя стучать кончиком неплавящегося стержня непосредственно по заготовкам. Дугу зажигают на графите и переносят на место сварки.

А что Вы можете добавить к материалу этой статьи? Какие типы неплавящихся электродов чаще приходиться использовать в домашних условиях? Поделитесь своим опытом по подбору такого типа расходника и его использования в блоке комментариев к этой статье.

маркировка и виды, работа с чугуном

Сварка чугунных изделий является одним из самых непростых процессов в этой области. Это объясняется особыми качествами этого материала. Облегчить труд и получить надежное крепкое соединение помогут специально изготовленные для этого электроды для сварки чугуна.

Работа с чугуном

Чугун — это вид металла, в котором имеется железо, углерод и небольшое количество других элементов. Такое сочетание определяет его характеристики и особенности. В частности, технология получения чугуна приводит к появлению в нем такого качества, как повышенная хрупкость. Поэтому его не используют для изготовления изделий, работающих под высокими нагрузками.

Однако, чугун имеет широкое распространение в черной металлургии и машиностроении. Его преимущества заключаются в том, что он легче стали, хотя и менее прочный. Чугун относится к чистым материалам в области экологии, проявляет стойкость к кислотно-щелочным средам, не теряет свои качества при длительном использовании. Имеются некоторые различия между серым и белым чугуном. Белому чугуну свойственна хрупкость, а серому — небольшая пластичность.

Трудоемкость сваривания чугунных изделий объясняется тем, что в этом металле повышено образование трещин и пор, при накаливании приобретается текучесть. Для получения качественное соединение изделий, изготовленных из чугуна, требуется некоторый опыт. Снизить образование дефектов также помогут сварочные электроды для чугуна, разработанные специально для этой цели.

Чтобы разобраться, какими электродами варить чугун, следует знать, что существуют разнообразные марки электродов для сварки чугуна. Из их числа необходимо сделать грамотный выбор для осуществления конкретной работы. Имеется ограничение — чугун, длительное время находившийся в неблагоприятных условиях, подвергавшийся воздействию кислой среды, масла и влажности, обработке не подлежит, то есть чугун является металлом, имеющим ограничение по сварке.

При соединении деталей из чугуна могут произойти некоторые неприятности:

  • при нарушении температурного режима в месте образования шва возможно появление дефектов;
  • низкая текучесть чугуна при слишком высокой температуре может привести к увеличению внутренних напряжений в месте соединения;
  • при плавлении металла возможно образование тугоплавких окислов, имеющих температуру плавления более высокую, чем у чугунных деталей;
  • выгорание углерода может привести к образованию в сварном шве пор;
  • при остывании после окончания сварочного процесса на сварном шве могут появиться трещины, что объясняется наличием в металле графита.

Поскольку чугун является жидкотекучим материалом, сварку следует проводить в нижнем горизонтальном положении. Грамотно выбранные электроды по чугуну помогут решить эти проблемы.

Подготовка к сварке

Электроды для чугуна могут применяться профессионалами и домашними мастерами. В любом случае необходима предварительная подготовка изделий к этому процессу. Она заключается в очистке соединяемых поверхностей от загрязнений, ржавчины, пятен жира и краски. Также необходимо убрать оксидную пленку.

Свариваемые кромки необходимо подвергнуть шлифовке. При наличии на поверхностях трещин, неровностей, сколов существует опасность того, что в процессе сварочного процесса расплавленная масса начнет вытекать из этих трещин и других дефектов.

Наиболее значимой частью предварительной подготовки, когда используются чугунные электроды, является прогревание заготовок перед началом сварки. Чугун начинает плавиться при достаточно низкой температуре, достигающей 1200-1250 градусов. Из этого следует, что и предварительный нагрев изделий не должен превышать 500-700 градусов. Прогревать следует не только место будущего соединения, но и небольшую зону вокруг него. Такие действия позволят максимально снизить вероятность растрескивания чугуна.

Если сварка производится в промышленных условиях, то для предварительного прогревания используются особые тигли. Когда работы проводятся в домашних условиях, то можно применить газовую горелку, а работы производить в гараже.

Технология сварки

Существуют различные способы соединения чугунных изделий, при каждом из которых применяется своя марка электродов по чугуну. В промышленности наиболее часто применяется горячая сварка. При ее использовании необходим предварительный разогрев чугунных деталей до температуры 650 градусов. Этого трудно добиться в бытовых условиях, поскольку для таких действий потребуется специальное оборудование.

Сварочные электроды по чугуну при работе в обычных условиях используются в полугорячем виде сварочного процесса. Нагрев при этом не превышает 450 градусов. При холодном виде сварки предварительного нагрева не происходит вовсе. В этом случае применяются электроды для холодной сварки чугуна.

Существует большое количество различных методов осуществления чугунных соединений способом холодной сварки, но среди них можно выделить три основных:

  • сварка стальными электродами;
  • соединение электродами из цветных металлов и особых сплавов;
  • сварка электродами из чугуна.

Однако, следует учитывать, что соединения, выполненные методом холодной сварки особым качеством не отличаются.

Маркировка

Электроды по чугуну имеют характерную маркировку. Конкретно, в ней указываются основные составляющие химического состава, например, «М» — медь, «Н» — никель. Третья буква обозначает металл, для которого эти электроды предназначены. То есть буква «Ч» означает чугун. Следующая за буквами цифра соответствует номеру марки в данной серии. Маркировка осуществляется в зависимости от требований ГОСТа 7293-85.

Виды электродов

Марки электродов для чугуна могут различаться в зависимости от вида внутреннего стержня. Им может быть проволока — медная или состоящая из сплавов, например, железа с никелем, меди с железом, железа с медью и никелем. Особым вариантом является чугунный пруток.

Медно-железные электроды, представителями которых являются ОЗЧ-2 и ОЗЧ-6, представляют собой медные стержни с обмазкой, в состав которой входит порошок из железа. Никелевые и железно-никелевые содержат никеля до 90 процентов, а иногда и больше. Представителями этих марок являются ОЗЧ-3, ОЗЧ-4, ОЗЖН-1. Электроды марки МНЧ-2 — это расходные элементы с содержанием железа, меди и никеля.

Стальные электроды находят применение для сваривания старого чугуна, который уже подвергался высокому температурному воздействию. Для ковкого вида чугуна больше подойдут ферроникелевый вид электродов. Такие марки, как МЧН-2 и ОЗЧ-4 можно отнести к универсальным типам, поскольку ими можно сваривать все имеющиеся виды чугуна.

Электродами МНЧ-2 имеется возможность сваривать изделия, работающие при высокой влажности. Их преимуществом является обеспечение защиты от коррозии. Более узкую область применения имеют электроды ОЗЧ-2. Их используют не для всех видов чугунов, а только для серых и ковких.

Особое внимание заслуживает марка ЦЧ-4, стержнем которой является стальная проволока Св-08. ЦЧ-4 электроды и как варить чугун с их помощью имеет пространный ответ. Этот вид электродов применим, как для горячей сварки, так и для холодного вида соединений, при наплавочных работах для ремонта чугунных изделий, заварки дефектов различных видов чугуна. Также они могут применяться для соединения деталей из чугуна и стали. Технические характеристики ЦЧ-4 позволяют получать качественный и долговечный шов.

Заслуживают особое внимание и Кастолин электроды по чугуну. Они могут использоваться для соединения чугунных изделий совсем без подогрева или с минимальным подогревом, то есть методом холодной сварки. Электроды этого вида могут иметь стержень исключительно из одного никеля, или с примесями в виде железа и меди. Покрытие на основе графита сводит к минимуму возможность перемешивания с основным материалом, и, как следствие, образование трещин.

Действия после окончания сварки

После удачного соединения деталей из чугуна необходимо проведение их правильного охлаждения. Сваренные чугунные части следует засыпать мелким древесным углем или песком. Это будет способствовать их медленному остыванию. Чем оно будет длительнее, тем будет меньше образовываться трещин в полученном шве.

После того, как будет окончена работа и осуществится остывание, следует на место шва нанести специальный состав, увеличивающий срок службы.

Интересное видео

Типы и марки сварочных электродов

Сварка металлов при помощи вольтовой дуги появилась в XIX веке и стала технологией, позволившей изготавливать объекты огромных размеров — от океанских кораблей до небоскребов. Сварные соединения и сегодня остаются наиболее распространенным видом создания неразъемных соединений.

 

Однако сварочные работы требуют специальных инструментов — прежде всего электродов, которые должны обеспечить надежное скрепление металлов «намертво». Поскольку в промышленности используется большое количество сортов стали и сплавов цветных металлов, для проведения сварочных работ требуется большое количество разных сортов электродов, приспособленных для разных материалов и видов сварки.

Сварочные работы делятся на несколько основных видов:

     — электроды для сварки конструкционных сталей;

     — электроды для сварки легированной стали;

     — электроды для сварки высоколегированных видов стали с особенными свойствами;

     — электроды для сварки чугуна;

     — электроды для наплавки металла;

     — электроды для сварки цветных металлов;

В общем, вариантов сварки много, и подборка необходимых для сварочных работ электродов – это ответственное дело, к которому нужно относиться внимательно. Итак…

Что требуется от электрода?

При сварке от всякого электрода прежде всего требуется:

     -устойчивое горение вольтовой дуги,

     -равномерное плавление металла и стабильный перенос его в сварочную ванну;

     -защита свариваемых металлов от воздействия воздуха;

     -получение прочного шва с нужным химическим составом и механическими свойствами;

     -минимальные потери металла при сварке на угар и брызги; -чтобы шлак легко удалялся с поверхности шва;

     -минимальную токсичность газов, выделяющихся при сварке.

Данные требования обеспечиваются благодаря подбору компонентов покрытия электрода.

Конструкция электродов

Самыми распространенными являются плавящиеся электроды для дуговой сварки. Такой электрод — это стержень из сварочной проволоки с нанесенным на его поверхность специальным покрытием. Его работа проста — проволока под воздействием высокой температуры плавится в вольтовой дуге и образует «тело» сварочного шва… а зачем нужно покрытие электрода?

Прежде всего для того, чтобы обеспечить газовую защиту зоны сварки от окружающего воздуха. При нагревании покрытие электрода разлагается с выделением газов, которые вытесняют воздух.

Кроме того, при сварке покрытие электрода выделяет химические вещества, которые вступают в химические реакции с расплавленным металлом шва, придавая ему особые качества или образуют на поверхности шва шлаковую корку.

Из чего состоит покрытие электрода?

Поэтому, по назначению в покрытии электрода можно выделить:

Газообразующие компоненты, которые при нагревании они разлагаются на газы вытесняющие воздух. К ним относятся некоторые минералы (мрамор, магнезит) или органические вещества (мука, крахмал, декстрин).

-Шлакообразующие компоненты, которые обеспечивают защиту кристаллизующегося металла от воздейцствия кислорода из воздуха. При высокой температуре они формируют шлак, всплывающий на поверхности шва. К ним относятся окислы кремния, титана, алюминия, кальция, марганца и др. Они содержатся в мраморе, граните, гематите, кварцевом песке, рудах, ильменитовом и рутиловом концентрате.

-Раскисляющие компоненты, которые могут восстановить до полноценного металла часть окислов. К раскислителям относят железосодержащие соединения – ферромарганцы, ферротитаны и ферросилиции.

-Стабилизирующие компоненты, которые облегчают горение вольтовой дуги. Они содержатся в мраморе, меле, полевом шпате, кальцинированной соде, поташе.

-Легирующие компоненты, которые придают шву дополнительную прочность и устойчивость к коррозии. В покрытии электрода присутствуют в виде сплавов – феррохрома, ферротитана, феррованадия.

Все эти элементы измельчаются в порошок и связываются в однородную массу при помощи натриевого или калиевого жидкого стекла.

Некоторые материалы покрытия выполняют несколько функций. Например, мрамор является газообразующим, шлакообразующим и стабилизирующим минералом.

Поэтому виды электродов для сварки различают по толщине покрытия:

 

Отношение диаметра с покрытием (D)

к  диаметру электрода

без покрытия (d)

Буквенное обозначение  по  ГОСТ 9466-75

Международное обозначение

Тонкое покрытие

менее 1,2

А

А

Среднее покрытие

от 1,2 до 1,45

С

В

Толстое покрытие

от 1,45 до 1,8

Д

R

Особо толстое покрытие

более 1,8

Г

С

Маркировка покрытия сварочных электродов

В одних покрытиях электродов могут преобладать газообразующие элементы, в других – шлакообразующие. При этом для газообразования могут использоваться минералы или углеводородные органические соединения. Различные добавки могут выполнять очистку шовного металла шва от посторонних ключений — фосфора и серы.

В зависимости от этого покрытия электродов делятся на

Основные

Создаются на основе фтористых соединений (плавиковый шпат), и карбонатов кальция и магния (мрамор, магнезит и доломит). Газовая защита осуществляется за счет углекислого газа, который выделяется при их разложении. С помощью кальция металл шва очищается от серы и фосфора.

Электроды с подобным видом покрытия используются для сварки легированных сталей и работы на ответственных конструкциях, подверженных большим нагрузкам и отрицательным температурам до -70°C.

Кислые

Создаются на основе естественных руд. В качестве шлакообразующих компонентов используются оксиды, газообразующих – органические составляющие. При плавлении покрытия в расплавленном металле и в зоне горения дуги выделяется большое количество кислорода. Поэтому в покрытие добавляют много раскислителей – марганца и кремния.

Подобное покрытие обладает определенными токсичными характеристиками.

Область применения электродов с кислым покрытием – сварка неответственных конструкций из низкоуглеродистых сталей.

Целлюлозные

В состав таких покрытий входят ферросплавы, органическая смола, целлюлоза, и др. вещества, обеспечивающих газовую защиту. На сварном шве образуют тонкий слой шлака.

Металл шва по химическому составу соответствует полуспокойной или спокойной стали.

Электроды для сварки этого вида отличаются удобством в использовании, однако шов характеризуется невысокой пластичностью.

Рутиловые

Они создается на базе рутилового концентрата, а также алюмосиликатов (полевой шпат, слюда, каолин) и карбонатов (мрамор, магнезит). Газовую защиту обеспечивают карбонаты, а шлаковую — алюмосиликаты. В качестве легирующего компонента и раскислителя используется ферромарганец, в некоторые покрытия вводится железный порошок (обозначаются по ГОСТ 9466-75 буквами «РЖ»). С помощью кальция, присутствующего в карбонате, из шовного металла удаляются сера и фосфор.

Используются при сварке и смешанные покрытия: кислорутиловое (обозначается буквами «АР»), рутилово-основное («РБ»), рутилово-целлюлозное («РЦ»), рутиловое с желдезным порошком («РЖ») и прочие («П»).

Маркировка стержней электродов

Тем не менее покрытие электрода — это именно покрытие. Оно может защитить или укрепить поверхность сварного шва, но главные его свойства будут определяться все-таки тем самым металлом, из которого этот шов сделан — то есть из стержня электрода.

Для конструкционных сталей главные свойства швов — это прежде всего их механические механические свойства (то есть сопротивление разрыву, ударная вязкость, относительное удлинение и т.д.).

Эти качества регламентируются в маркировках, определенных в ГОСТ 9467-75 и ГОСТ 10052-75. В них обозначение типа электрода содержит букву «Э», после которой ставится показатель временного сопротивления шва на разрыв.

Например, маркировка «Э46А» означает, что металл, наплавленный этими электродами, имеет прочность 46 кг/кв.мм (460 МПа) и улучшенные (об этом говорит литера «А») пластические свойства. Для сварки легированных конструкционных сталей повышенной и высокой прочности тип электрода может быть Э70, Э85, Э100, Э125, Э150.

В то же время, для легированных сталей важен и химический состав металла. Содержание этих элементов в стержне электрода будет по ГОСТу обозначаться так:

     «Э 09 Х2 М» — значит в шовном металле будет 0,09% углерода, 2% хрома, 1% молибдена

     или

     «Э 10 Х25 Н13 Г2 Б» — это значит, что в металле шва будет содержится примерно 0,1% углерода, 25% хрома, 13% никеля, 2% марганца, 1% ниобия.

Также стержни электродов маркируются в зависимости от того, для сварки какого материала они должны использоваться, обозначаются буквами:

У — сварка углеродистой и низколегированной стали

Т — сварка легированных теплоустойчивых сталей

Л— сварка легированных конструкционных сталей

В— сварка высоколегированной стали

Н — наплавка поверхностных слоев

Типы и марки электродов — как в них разобраться?

Общих правил для маркировки электродов в целом не существует. Поэтому марка электрода (например — АНО-3 , ОЗС-6 , УОНИ 13/45 и т.д.) сопровождается целым рядом числовых и буквенных индексов, которые должны определить их качества и назначение.

Эти индексы будут определять не только марку и тип электрода, но и целый ряд других показателей, включая толщину центрального стержня, сварочный ток и ориентацию электрода при сварке.

Последняя может определяться цифрами от 1 до 4, которые означают:

     1– допустимы все возможные положения;

     2– допустимы все положения, кроме вертикального сверху вниз;

     3– допустимо нижнее, горизонтальное и вертикальное сверху вниз;

     4– только нижнее положение;

В итоге, полная маркировка электрода марки УОНИ 13/45 будет выглядеть так:

Также это очень важно помнить еще и потому что если Вы сварите изделие не подходящим видом электродов, то Вам никто не даст гарантию, что оно доживет до завтра. Правильно относиться к выбору электродов Вам помогут и прайс-листы наших заводов-изготовителей.

Видео по теме:

какие бывают, где какие используются, схожие и отличительные характеристики

Сварочный электрод представляется металлическим или неметаллическим стержнем, изготовленным из токопроводящего материала, предназначен для подвода электричества к свариваемым элементам. Стержни выпускаются плавящимися и неплавящимися.

Последние выполняются из тугоплавкого сырья — вольфрама, синтетического графита либо электротехнического угля.

Плавящие же делают из сварочных прутков, нитей, покрытых защитным слоем. Обмазка защищает сердечник от негативного атмосферного воздействия, обеспечивает стабильное горение электрической дуги.

Содержание статьиПоказать

Общие сведения

Ручная электродуговая сварка применяется на всех промышленных и ремонтных предприятиях. Стержневые продукты походят на металлические пруты различного диаметра — 1,0-6,0 мм и длины — 25-45 см.

Предназначены для соединения элементов выполненных из чугуна, сталей, цветного металла, не требуют больших энергетических, материальных затрат.

Отрицательными сторонами термического процесса считается зависимость операции от квалификации сварщика, низкий КПД относительно более современных видов сварки, вредные испарения при исполнении работы.

Применение

Стержневые продукты используются для стыковки чугунных, стальных деталей, конструкций из цветных металлов, резки материалов.

Современные электроды разных видов позволяют проводить сварочные операции в любом пространственном положении.

Продукты для термических работ выполняются под определенные задачи, что делит их на конкретные виды и классы.

Марки

Плавящиеся стержни передают ток к деталям, образуют химическую реакцию с расплавленным материалом, чем обеспечивается соединение конструкций.

Неплавящиеся виды только осуществляют подвод разряда к сочленяемым элементам, присадочные же проволоки, прутки подводят отдельно.

Угольные, графитовые стержни обладают хорошей проводимостью, предназначены для сварки-резки, наплавочных работ, благодаря высокой температуре расплава.

Используются совместно с присадками, подаваемыми на участок дуги в процессе сварки либо предварительно уложенными на соединяемые области.

Главными их особенностями являются возможность многократного использования, неприлипание к поверхностям сочленяемых элементов.

Сердечник плавящегося электрода защищен обмазкой, которая обеспечивает высокое качество валика, улучшает эксплуатационные данные обработанной конструкции, предотвращает проникновение вредных примесей к сварочной ванне.

Газообразующий слой включает крахмал, диоксид марганца и др.

Защитное напластование также повышает скорость операции вследствие подачи большой силы напряжения, формирования предохранительной пленки на металлической плоскости, препятствующей попаданию в зону атмосферного воздуха.

Классификация

Электропроводные стержни обусловливаются различными характеристиками, куда входит толщина продукта. Это необходимо для правильного выбора при работе с конструкцией определенной толщины.

Маркировка, диаметр, описание вида электрода обычно присутствует на упаковке или коробке.

Электрод должен обеспечить следующие позиции:

  • стабильное горение электрической дуги, быстрое зажигание;
  • непрерывное расплавление обмазки;
  • равномерное наслоение шлака на валик;
  • легкое удаление шлака со сварочного валика;
  • отсутствие углублений, трещин, эффекта непроваривания.

Назначение продукта главным образом зависит от структуры металлического сердечника. При его изготовлении принимается во внимание группа факторов, которые позитивно влияют на формирование шва.

Таковыми являются:

  1. Классификация токопроводящего стержня по назначению.
  2. Размещение детали в конкретном месте, ее характеристика.
  3. Пространственное положение конструкции, факторы проведения работ.
  4. Толщина обрабатываемых элементов.
  5. Рабочие характеристики сварочного валика — изгибающий момент, устойчивость к разрыву, концентрация кислорода и др.

Токопроводящие стержни должны соответствовать типу обрабатываемого материала, что так же указывается на коробке. Для сваривания сталей используются следующие электроды:

  • углеродистых, низколегированных конструкционных, с кратковременной устойчивостью к разрыву до 600 МПа — «У»;
  • легированных конструкционных, с приведенной выше устойчивостью — «Л»;
  • легированных теплоустойчивых — «T»;
  • высоколегированных — «B»;
  • наплавки слоев, обусловленных особыми свойствами — «H»;.

Кроме буквенной классификации используется цифровая, указывающая наименьшую временную устойчивость к разрыву в ПМа.

Стоящий за цифрами символ A говорит о повышенных пластических свойствах, вязкости, некоторому ограничению химического состава.

Сварочная проволока

Проволоки насчитывают четыре вида:

  • алюминиевые;
  • омедненные нити;
  • нержавеющие;
  • трубчатые порошковые.

Первый тип используется для сварки алюминия и кремния либо марганца. Омедненные практикуются при соединении низкоуглеродистых сталей с низколегированными.

Прутки подобного состава повышают качество валика, содействуют горению электрической дуги, ограничивают распыление расплавленного металла.

Нержавеющие нити спаивают никелированные и хромированные стали, нержавейку. Трубчатая же проволока нашла применение в судостроении, там, где не рекомендуется использование иных видов стержней.

Последние производят операции в облаке защитных газов, порошковая ими не обладает.

Не последнюю роль играет обмазка электрода — покрытие, которое обеспечивает устойчивое горение дуги, формирование металла на валике с заданными показателями.

Таковыми представляются способность материала поглощать механическую энергию, сопротивление коррозии, пластичность и прочность.

Шлак предупреждает попадание кислорода с азотом в сварочную ванну, которые могут нарушить технологичность конструкции. Он также способствует уменьшению скорости затвердевания валика, позволяет выходить из него неметаллическим и газовым примесям.

Компонентами обмазки являются марганцевая руда, осадочная карбонатная горная порода, обогащенные титановые руды, кварцевый песок и др.

Легирование

Легирование сварочного валика совершается для повышения физических, механических свойств сочленения. Улучшение производится за счет добавочных компонентов — хрома, вольфрама, молибдена, никеля, марганца.

Легированная проволока так же содержит необходимые элементы, которые диффундируются в обрабатываемый металл, делаясь частью его состава.

Поможет повысить производительность процесса и увеличить слой наплавляемого металла, включенный в обмазку металлический порошок.

Он улучшает технологические параметры стержня, снижает скорость остывания материала, облегчает зажигание электрической дуги, проведение операции в условиях низких температур.

Электропроводные изделия покрываются следующими типами обмазки:

  1. A — кислотосодержащая, с включением оксидов марганца, железа, титана и кремния. Используется при операциях со сталями, не имеет пространственных локализаций.
  2. Б — основа содержит фторид кальция и соль угольной кислоты с кальцием. Не применяется при вертикальной сварке.
  3. Ц — целлюлозное покрытие с органическими добавками, которые защищают дугу и образуют тонкий пласт шлака.
  4. P — рутиловая обмазка уменьшает рассеивание горячего металла, стабилизирует горение разряда, формирует любые пространственные швы.
  5. Ж — указывает на железную 20%-ю добавку пудры.
  6. П — относится к прочим видам обмазки.

Существующие продукты со смешанным видом оболочки обозначаются по Государственному стандарту 946675 двойными символами:

  • кислое-рутиловое — AP;
  • рутиловое-основное — PБ;
  • рутиловое-целлюлозное — PЦ;
  • рутиловое с железной пудрой — PЖ.

Электроды подразделяются для работы в определенных пространственных позициях. Они маркируются цифровыми символами:

  • 1) — универсальный тип;
  • 2) — подходит для всех пространственных раскладов кроме вертикали;
  • 3) — допустим для вертикали-горизонтали, но не потолка.

Цифра 4 указывает только на горизонтальное положение.

Условия использования

Работа со сварочными продуктами обусловлена соблюдением некоторых правил. Одним из первых является целостность стержней.

Коробка с электродами не должна быть разрушена, весовые данные должны совпадать с этикеткой на упаковке, а шлаковый слой легко отставать от шва.

Не допускается попадание в контейнер воды, другой влаги, которая приводит к ухудшению сварочных операций за счет сырого покрытия. В случае отсыревания продукта, его следует высушить в специализированной печи не менее 60 мин. при температуре 260° C.

После термообработки электроды необходимо тщательно упаковать для предотвращения последующего увлажнения. Стержни повторно сушить не рекомендуется вследствие потери ими технологических свойств.

Остатки влаги могут сказаться негативным образом на качестве валика, привести к сильному разбрызгиванию плавящегося металла.

Образование углублений, трещин и раковин так же является следствием намокания. В работу не допускаются погнутые стержни, имеющие поврежденную обмазку.

Подробная классификация электродов, описание маркировки и области применения

Для формирования качественного сварного шва необходимо правильно подобрать марку электродов. Это возможно только после ознакомления с основными нормативными документами – ГОСТами. В них подробно описываются характеристики электродов, их эксплуатационные и технические параметры.

Маркировка

Электроды предназначены для поступления тока к заготовке для формирования соединительного или ремонтного шва. Они различаются по материалу изготовления, области применения и специфике работы.

Сначала предварительно следует разобраться с особенностями классификации и маркировки электродов. При умении правильно распознавать символы можно подобрать оптимальную марку.

Маркировка состоит из нескольких разделов:

  • Прочностная характеристика, Мпа.
  • Уникальная марка – числовое и буквенное обозначение.
  • Диаметр, мм.
  • Область применения – указание контентных видов сталей или других металлов.
  • Толщина покрытия.
  • Специальный индекс, по которому можно определить характеристики металлов. Это указывается в ГОСТ 10051-75, 10052-75 и 9467-75.
  • Эксплуатационные параметры. Вид покрытия, пространственное положение при сварке и режим работы аппарата – ток (постоянный или переменный), его полярность.

Каждая из этих характеристик указывает на область применения электрода, его эксплуатационные качества. Поэтому нужно рассмотреть их подробнее.

Назначение

Наиболее важной характеристикой является область применения электродов относительно материалов сваривания. Некоторые модели могут успешно формировать соединительные и ремонтные швы у металлов различных видов. Но чаще всего существуют ограничения по определенному виду.

Схема сварки

Главным критерием является марка металла и виды работы с ним. Согласно этому параметру существует 5 классов электродов, в каждом из которых есть несколько типов:

  • «У» — работа с углеродистыми и низкоуглеродистыми марками сталей, которые характеризуются временным сопротивлением разрыва более 600 Мпа.
  • «Л» — сварочные работы с высоколегированными металлами и сопротивлением разрыва свыше 600 Мпа.
  • «Т» — для теплоустойчивых сортов стали.
  • «В» — работа с металлами, обладающими особыми свойствами.
  • «Н» — для наплавки поверхностных слоев.

В таблице указаны некоторые марки электродов по области назначения.

Точное назначение указывается производителем на упаковке. Но кроме него необходимо правильно подобрать модель в зависимости от типа выполняемых работ.

Таким образом можно подобрать оптимальную марку расходных материалов для сварки.

Характеристики покрытия

Покрытие электродов определяет параметры будущего сварочного шва. Оно наносится в процессе производства и в большинстве случаев необходимо для формирования оптимальной газовой среды в ванной.

Различают 5 типов покрытия:

  1. Рутиловое.
  2. Кислое.
  3. Основное.
  4. Целлюлозное.
  5. Смешанный тип.

Каждый из них предназначен для выполнения определенной работы. Также они напрямую влияют на возможные направления сварки.

Кроме этого, следует обращать внимание на толщину покрытия. От этого будет зависеть объем газовой среды. Основной характеристикой является соотношение диаметров стального стержня и покрытия.

Важно – при выборе следует руководствоваться не только общим диаметром электрода, но и толщиной его покрытия и составом.

Положение электрода

Перед проведением сварочных работ необходимо правильно выбрать расположение электрода относительно детали. Не все модели могут работать в нижнем или вертикальном положении. В особенности это важно при сварке в труднодоступных местах стальных конструкций.

Узнать возможные положения можно из данных маркировки. Они могут быть как цифирные, так и в виде графического изображения. Последнее удобно, так как наглядно можно увидеть рекомендуемое положение электрода относительно плоскости детали.

Положение сварки

Стоит отметить, что от положения сварки зависит трудоемкость работ. Чем меньше вариантов для конкретной марки электродов – тем труднее будет сделать сварной шов.

Режимы работы сварочного аппарата

Важно учитывать допустимые режимы работы сварочного аппарата. К ним относятся значение холостого хода и полярность. Также необходимо знать допустимые отклонения этих характеристик.

Зная вышеописанные параметры, можно подобрать оптимальную марку электродов, тем самым обеспечив качественный сварной шов. Но нужно помнить, что это во многом зависит от квалификации и опыта рабочего.

Справка по назначению

типов электродов | Растворы электролитов | Справка по базовой химии

9.12 Типы электродов

В электрохимической ячейке есть два электрода, положительный и отрицательный. Каждый электрод представляет собой половину ячейки или одиночный электрод. Хотя возможно несколько электродов, наиболее важные из этих электродов подразделяются на следующие типы:

( i ) Электроды с ионами металлов

( ii ) Электроды с нерастворимой солью металлов

( iii ) Электроды металл-амальгама

( iv ) Газо-ионные электроды

( v ) Окислительно-восстановительные или окислительно-восстановительные электроды.

Обозначим эти электроды как правые, т.е. электродные реакции соответствовали бы восстановлению.

( i ) Электроды с ионами металлов : Эти электроды состоят из чистого металла (M), контактирующего с раствором его катиона (Mn +). Например, серебряный стержень, погруженный в раствор ионов Ag +, или медный стержень в растворе сульфата меди. Электрод представлен как Mn +, а реакция электрода может быть записана как

Mn + (a) + ne– M

Поскольку электрод обратим по отношению к катиону металла, его электродный потенциал может быть выражен как

и зависит от активности катиона металла в растворе.

( ii ) Электроды с нерастворимой солью металла и металла : Такие электроды важны и часто используются в электрохимических работах. Они состоят из металла (M), покрытого слоем труднорастворимой соли (MX), погруженной в раствор, содержащий обычный анион (X–). Примерами таких электродов являются сульфат ртути в контакте с раствором сульфата калия или серебряная проволока, покрытая хлоридом серебра, погруженная в раствор хлорида калия. Эти электроды представлены как

. Общая электродная реакция равна

, а потенциал электрода равен

. Электрод обратим по отношению к аниону малорастворимой соли, X–.

( iii ) Электроды из металлической амальгамы : Иногда, когда металл обладает высокой реакционной способностью, удобнее использовать металл в форме амальгамы. Активность металла снижается при разбавлении ртутью. Эти электроды обычно устанавливают, помещая амальгаму металла в контакт с раствором иона металла. Эти электроды представлены как

, а реакция электродов —

Электродный потенциал задается

( iv ) Газо-ионные электроды : Газовый электрод состоит из инертного металла, обычно золота. или платина, погруженная в раствор, содержащий ионы, к которым газ обратим.Через раствор непрерывно барботируют ток чистого газа. Электрод из инертного металла не участвует в реакции электрода, а просто помогает установить электрический контакт. Газовый электрод (X2) обозначается как

Реакция электрода может быть записана как

( v ) Окислительно-восстановительные или окислительно-восстановительные электроды : это электроды, в которых ЭДС возникает из-за присутствия ионы вещества в двух различных степенях окисления.Эти электроды устанавливаются путем погружения инертного металла, такого как золото или платина, в раствор, содержащий ионы в двух различных степенях окисления вещества. Например, платиновая проволока, погруженная в раствор ионов двухвалентного и трехвалентного железа или ионов двухвалентного олова и олова, образует окислительно-восстановительный электрод. Эти электроды представлены как

, а реакция электродов —

, где — более высокая степень окисления, а — более низкая степень окисления.

Помощь в назначении по электронной почте в типах электродов

Мы являемся ведущим поставщиком онлайн-справки по выполнению заданий.Найдите ответы на все свои сомнения относительно типов электродов в химии. Мы в assignmenthelp.net предоставляем домашние задания и помощь в выполнении заданий студентам школы, колледжа или университета. Наши опытные онлайн-наставники помогут вам разобраться в типах электродов. Наши услуги ориентированы на своевременную доставку, высшее качество, творческий подход и оригинальность.

Чтобы запланировать сеанс химии Типы электродов обучающей сессии Живой чат
Чтобы отправить химию Типы назначения электродов нажмите здесь.

Ниже приведены некоторые из тем в электрохимии, по которым мы предоставляем помощь:

Что такое электрод ЭКГ? (с иллюстрациями)

Электрокардиограмма (ЭКГ или ЭКГ, от немецкого «электрокардиограмма») — это медицинский тест, используемый для оценки и диагностики возможных проблем с сердцем. Электрод ЭКГ — это устройство, прикрепляемое к коже на определенных частях тела пациента — обычно на руках, ногах и груди — во время процедуры электрокардиограммы; он обнаруживает электрические импульсы, производимые каждый раз, когда сердце бьется.Количество и расположение электродов на теле могут быть разными, но функция остается прежней.

Пациентам, которым необходимо находиться на кардиомониторе в течение длительного периода времени, может потребоваться периодически пополнять запас электродов ЭКГ.

Каждый электрод ЭКГ, размещенный на теле, прикреплен с помощью провода к аппарату ЭКГ.Электричество, обнаруживаемое электродом, передается по этому проводу на устройство, которое преобразует результаты в волнистые линии, которые затем устройство записывает на листе бумаги. ЭКГ записывается настолько детально, что по результатам можно диагностировать очень широкий спектр сердечных заболеваний.

Каждый электрод ЭКГ, размещенный на теле, подсоединяется с помощью провода к аппарату ЭКГ.

Электрокардиограмма безболезненна. Процедура обычно завершается быстро, в течение пяти-десяти минут. В очень редких случаях у пациента может развиться локальное раздражение из-за клея, используемого для прикрепления электродов к коже, но других рисков, связанных с этой процедурой, нет. ЭКГ — это просто записывающее устройство.Через тело не проходит электричество, поэтому оно не мешает работе электрических устройств, таких как кардиостимуляторы, и не вызывает поражения электрическим током.

Электричество, которое обнаруживает электрод ЭКГ, передается на устройство, которое преобразует результаты в волнистые линии, которые устройство записывает на листе бумаги.

Электроды бывают разных видов, но основа та же. Электрод ЭКГ обычно состоит из небольшой металлической пластинки, окруженной липкой подушечкой, которая покрыта проводящим гелем для передачи электрического сигнала. Провод, который соединяет электрод ЭКГ с аппаратом ЭКГ, прикрепляется к задней части электрода. Некоторые электроды можно использовать повторно, а другие типы предназначены для одноразового использования после однократного использования.

Во время электрокардиограммы на кожу накладывают электроды для отслеживания электрических импульсов внутри сердца.

ЭКГ обычно выполняются и интерпретируются медицинскими работниками, поэтому обычному человеку не нужно покупать собственные электроды.Однако некоторым пациентам, например тем, кто может оставаться дома, но должен находиться на кардиомониторе в течение длительного периода времени, может потребоваться периодически пополнять запас электродов. Для этих пациентов медицинские поставщики существуют как онлайн, так и вне дома, и их можно использовать для покупки запасных электродов. Эти пациенты должны помнить, что разные типы аппаратов ЭКГ используют разное количество электродов, а иногда и разное расположение. Эти пациенты должны получить от своих врачей соответствующие инструкции для обеспечения точных записей.

Во многих случаях пациенты в отделении интенсивной терапии будут постоянно находиться под наблюдением с помощью аппарата ЭКГ.

Типы электродов — Биоинформатика — BHU

Описано

типов электродов

Комментарии

  • Пожалуйста, войдите или зарегистрируйтесь, чтобы оставлять комментарии.

Текст для превью

ВИДЫ ЭЛЕКТРОДОВ Биоэлектрические сигналы поступают от одного из трех видов электродов:  Электроды на поверхности тела,  Игольчатые электроды  Микроэлектроды ПОВЕРХНОСТНЫЕ ЭЛЕКТРОДЫ КУЗОВА Существует четыре различных типа записывающих электродов на поверхности тела; 1. Колоночные электроды 2. Электроды всасывания 3. Плавающие электроды 4. Гибкие электроды Колоночные электроды  Электрод состоит из металлической контактной кнопки из серебра и хлорида серебра в верхней части полая колонка, заполненная проводящим гелем или пастой. Этот узел удерживается на месте поролоновым диском с клеевым покрытием.  Используйте заполненную гелем или пастой колонку, которая удерживает настоящий металлический электрод поверхность уменьшает артефакты движения.  По этой причине электроды колонки предпочтительнее для наблюдения за больными. пациенты.  Меньшие диаметры.  Используется для ЭКГ, ЭМГ и ЭЭГ.  Восприимчив к артефактам движения  одноразовая поролоновая прокладка.  Очень дешево  используется для долгосрочной записи (а): Металлический электрод, используемый для приложения к конечностям.(b): Металлический дисковый электрод с хирургической лентой. (c): электроды колонки, часто используемые при ЭКГ. Электроды всасывания  Ремни или клеи не требуются.  Часто используется для ЭКГ грудной клетки (грудной клетки).  Только на короткое время. (a): Электрод из силиконовой резины с углеродным наполнением, (b): Гибкий тонкопленочный электрод для новорожденных. (c): вид в разрезе тонкопленочного электрода в (b). ИГЛОВЫЕ ЭЛЕКТРОДЫ  Этот тип электродов вводится в ткань непосредственно под кожей с помощью прокалывание кожи под большим косым углом (т.е., близкой к горизонтальной по отношению к поверхность кожи).  Игольчатый электрод используется только для очень плохой кожи, особенно под анестезией. пациенты, и в ветеринарных ситуациях.  Конечно, в этих случаях может возникнуть инфекция, поэтому игольчатые электроды могут быть одноразовыми. (одноразовое использование) или повторно стерилизованы в газообразном оксиде этилена. (а) Изолированный игольчатый электрод, (б) Коаксиальный игольчатый электрод, (c) Биполярный коаксиальный электрод, (d) Тонкопроволочный электрод, подсоединенный к игле для подкожных инъекций перед введением, (e) Вид в разрезе кожи и мышц, показывающий электрод из тонкой проволоки на месте, (f) Поперечное сечение кожи и мышц, показывающее установленный спиральный электрод из тонкой проволоки.МИКРОЭЛЕКТРОДЫ Микроэлектрод — это ультратонкое устройство, которое используется для измерения биопотенциалов в клетках. уровень. На практике микроэлектрод проникает в ячейку, погруженную в бесконечную жидкость (такую как физиологический раствор), который, в свою очередь, подключается к электроду сравнения. Заполненные жидкостью электроды  Стеклянный микроэлектрод, заполненный жидкостью, показан на рис.  В этом типе электрода стеклянная пипетка заполнена раствором хлорида калия. (KCI), а большой конец закрыт пробкой из хлорида серебра и серебра (Ag-Ag Cl). Маленький конец не нужно закрывать, потому что отверстие в 1 мкм достаточно мало, чтобы вместить жидкость.  Электрод сравнения также заполнен хлоридом калия (KCI), но сильно больше, чем у микроэлектрода.  Платиновая пробка содержит жидкость на конце интерфейса, в то время как серебро-хлорид серебра (Ag- Ag Cl) закрывает другой конец.

Основы металлических микроэлектродов | Хирургические инструменты, инструменты для исследований, лабораторное оборудование

Типы металлических электродов

WPI предлагает широкий выбор металлических электродов трех основных типов (профилей).Следующее руководство по выбору ссылается на три профиля электродов. Кроме того, обсуждаются концентрические биполярные электроды, а также некоторые варианты, предлагаемые для металлических электродов.

ПРИМЕЧАНИЕ : Диаграммы электродов, приведенные ниже, не показаны в масштабе.

Профиль A

Профиль B

Профиль C

Концентрические биполярные электроды

Эти электроды отлично подходят для экранированной макросъемки, а также вызванных потенциалов.Они особенно хорошо подходят для биполярной стимуляции. Вольфрамовый электрод заострен до острия и имеет диаметр 75 мкм. Внешний проводник из нержавеющей стали изолирован полиимидной трубкой с точностью до 0,2 мм от конца трубки из нержавеющей стали. Этот электрод также доступен без внешней полиимидной изоляции.

На этом рисунке показан изолированный металлический проводник с открытой концентрической поверхностью.


Варианты металлических электродов

Размеры открытого наконечника (номинальные)

Электроды

WPI изготовлены из различных металлов и имеют разные диаметры наконечников, чтобы обеспечить требуемый номинальный импеданс.Воспользуйтесь приведенной ниже таблицей, чтобы определить, какой тип электрода соответствует вашим критериям.

Номинальное
Импеданс
Вольфрам
Эльгилой

Платина
Иридий

Чистый
Иридий
0,1 М Ом 100µ 120µ 60µ 45µ
0.5 МОм 55µ 66µ 18µ 14µ
1,0 МОм 30µ 36µ 10µ 10µ
2,0 МОм 12µ 15µ
5,0 МОм 2.5µ

Каптон (KT) Трубка

Каптоновая трубка

*, обозначенная «KT» в номере детали, простирается от соединителя до кончика в пределах 5 мм, обеспечивая жесткость и дополнительную изоляцию стержня электрода. Электроды в оболочке из каптона-
рекомендуются, когда электрод вводится через канюлю для дополнительного глубокого проникновения.

Наконечник с термообработкой

Наконечник с термообработкой (см. Изображение ниже) идеально подходит для проникновения через прочные мембраны.(Не рекомендуется для хронической имплантации.) Этот процесс выполняется с использованием микроволокна, в котором нагревательный элемент расположен в непосредственной близости от наконечника, чтобы расплавить парилен-C дистальнее обнаженного металла. Он обеспечивает плавный переход и лучшую адгезию парилена-С к металлу.

Электроды КТ и не КТ подлежат термообработке. Термообработка применяется только к париленовому покрытию. Тепло расплавляет парилены, так что они оперяются близко к голеностопу рядом с обнаженным кончиком.Таким образом удаляется резкий край, на котором был удален парилен, чтобы создать видимость наконечника. Цель состоит в том, чтобы предотвратить отслаивание парилена от электрода во время имплантации в ткань, которая может зацепиться за край. Термическая обработка плохо работает при длительном применении, потому что край пера со временем чувствителен к проникновению жидкости, что неблагоприятно изменит характеристики импеданса электрода.

Для термообработки электродов просто добавьте суффикс «H» к любому из номеров «KT» на лицевой странице.Это лечение требует дополнительных затрат. Пожалуйста, позвоните, чтобы узнать цены.

* Parylene — торговая марка Union Carbide. Kapton — торговая марка DuPont. Эльгилой — торговая марка ООО «Эльгилой»

.

Позолоченные штифты

Позолоченные контакты (WPI # 5482 ) и гнезда (WPI # 5483 ) могут быть прикреплены к проводу 24, 26 или 28.

Дополнительные аксессуары

300102 Держатель микроманипулятора, 4 дюйма., Гнездо от 2 мм до 0,031
5468 Гнездо 2 мм для гнезда 0,031 дюйма (для Omega-TipZ
5469 Адаптирует мини-штекер типа банан (DAM80) к розетке 0,031 дюйма (металлический микроэлектрод)
5470 домкрат 0,031 дюйма, 28 ga. провод, 12 дюймов (упаковка из 4 шт.)
5482 Штифты, 0,031 дюйма, позолоченные (50 шт.)
5483 Розетки, 0.031 дюйм, позолоченный (упаковка из 50 шт.)

Семь основных источников электричества, о которых вы должны знать

Само думать о мире без электричества кажется невозможным. Это один из величайших даров, которые наука дала человечеству. Почти все в нашем мире сегодня зависит от электроэнергии.

Ожидается, что электрическая зависимость со временем будет только расти. По оценкам, в 2018 году мировой спрос на электроэнергию вырос до 23000 ТВт-ч, и это число, вероятно, будет увеличиваться с каждым годом.Этот стремительно растущий спрос отвечает за половину роста потребностей в энергии и составляет 20% доли от общего потребления энергии во всем мире.

СВЯЗАННЫЕ: 3+ РАЗЛИЧНЫХ ТИПА ЭЛЕКТРОСТАНЦИЙ, ГЕНЕРИРУЮЩИХ ЭЛЕКТРОЭНЕРГИЮ ДЛЯ США

Эти статистические данные ясно показывают, что электричество — генератор будущего. Тем не менее, как мы можем генерировать такое ошеломляющее количество электроэнергии для удовлетворения постоянно растущих потребностей? Давайте узнаем!

Определение электричества

Электричество можно определить как форму энергии, которая вырабатывается в результате потока электронов из положительных и отрицательных точек внутри проводника.Мы рассматриваем электричество как вторичный источник энергии.

Это связано с тем, что он не поставляется в виде готового продукта, а должен быть получен из первичных источников, таких как ветер, солнечный свет, уголь, природный газ, реакции ядерного деления и гидроэнергетика.

Вот несколько основных способов, с помощью которых мы можем производить электричество, и как это можно сделать!

1. Электричество через трение

Первые наблюдения электрических явлений были сделаны в Древней Греции.Это произошло, когда философ Фалес Милетский (640–546 гг. До н.э.) обнаружил, что когда янтарные бруски натирают о загорелую кожу, они приобретают привлекательные характеристики, которыми раньше не обладали.

Это тот же эксперимент, который теперь можно провести, протерев пластиковый стержень тканью. Поднося его ближе к маленьким кусочкам бумаги, он притягивает их, как это характерно для наэлектризованных тел.

Все мы знакомы с эффектами статического электричества. Некоторые люди более подвержены влиянию статического электричества, чем другие.Некоторые пользователи автомобилей ощущают его воздействие при нажатии на ключ или прикосновении к пластине автомобиля.

Мы создаем статическое электричество, когда протираем ручку одеждой. То же самое происходит, когда мы натираем стекло о шелк или янтарь с шерсти.

Следовательно, понятия заряда и подвижности необходимы при изучении электричества, и без них электрический ток не мог бы существовать.

2. Электричество за счет химического воздействия

Все батареи состоят из электролита (который может быть жидким, твердым или полутвердым), положительного и отрицательного электрода.Электролит — это ионный проводник.

Один из электродов производит электроны, а другой электрод их принимает. Когда электроды подключены к питаемой цепи, они производят электрический ток.

Батареи, в которых химическое вещество не может вернуться в свою первоначальную форму после преобразования химической энергии в электрическую, называются первичными или гальваническими батареями.

Батареи или аккумуляторы двусторонние.В этих типах батарей химическое вещество, которое реагирует в электродах с образованием электрической энергии, может быть восстановлено путем пропускания через него электрического тока в направлении, противоположном нормальному режиму работы батареи.

3. Электричество под действием света

Когда солнечный свет становится более интенсивным, напряжение, генерируемое между двумя слоями фотоэлектрического элемента, увеличивается. Но как работает фотоэлемент?

При отсутствии света система не вырабатывает энергию.Когда солнечный свет попадает на пластину, клетка начинает функционировать. Фотоны солнечного света взаимодействуют с доступными электронами и увеличивают их энергетические уровни.

Таким образом, электричество вырабатывается за счет солнечной энергии.

4. Тепловая электроэнергия за счет теплового воздействия

Тепловая генерирующая установка — это тип установки, в которой турбина, приводимая в действие паром под давлением, используется для перемещения оси электрогенераторов. Обычные тепловые электростанции и атомные тепловые электростанции используют энергию, содержащуюся в сжатом паре.

Самый простой пример — подключить чайник, полный кипятка, к лопастному колесу, которое, в свою очередь, соединено с генератором. Струя пара из котла перемещает ротор.

Следовательно, мы можем получать пар разными способами, например, сжигая уголь, нефть, газ, городские отходы или используя большое количество тепла, выделяемого реакциями ядерного деления. Вы даже можете производить пар, концентрируя энергию солнца.

Не будет ошибкой сказать, что тепловая энергия — один из самых распространенных способов производства электроэнергии.

5. Электричество за счет магнетизма

В 1819 году датский физик Ганс Кристиан Эрстед сделал необычайное открытие, обнаружив, что можно отклонить магнитную стрелку с помощью электрического тока. Это открытие, которое показало связь между электричеством и магнетизмом, было разработано французским ученым Андре Мари Ампером.

Ампер изучал силы между проводами, по которым циркулируют электрические токи. В том же духе французский физик Доминик Франсуа Араго, как известно, намагнитил железо, поместив его рядом с кабелем, по которому проходит ток.

После этого, в 1831 году, британский ученый Майкл Фарадей обнаружил, что движение магнита вблизи кабеля индуцирует в нем электрический ток. Этот эффект был противоположен обнаруженному Эрстедом.

Таким образом, Эрстед продемонстрировал, что электрический ток может создавать магнитное поле. С другой стороны, Фарадей продемонстрировал, что мы можем использовать магнитное поле для создания электрического тока. Оба открытия являются новаторскими.

В этом контексте полное смешение теорий магнетизма и электричества произошло благодаря британскому физику Джеймсу Клерку Максвеллу.Максвелл предсказал существование электромагнитных волн и определил свет как электромагнитное явление.

Очевидно, что потребовалось много ученых и исследователей, чтобы сделать вывод, что электричество также может быть произведено с помощью магнетизма.

6. Электроэнергия, вырабатываемая за счет давления

Давление, создаваемое подземными водными потоками, — это процесс, используемый на больших судах в качестве альтернативной энергии для основной системы. В плотинах электричество вырабатывается путем выпуска контролируемого потока воды под высоким давлением через принудительный трубопровод.

Вода приводит в движение турбины, которые приводят в движение генераторы и, таким образом, вырабатывают электрический ток. Затем этот высокий ток низкого напряжения проходит через усилитель напряжения, который преобразует его в электричество.

7. Гидравлическое электричество за счет действия воды

Из всех перечисленных выше способов производства энергии магнитная энергия чаще всего используется для производства электроэнергии в больших количествах. Его производство основано на том, что при перемещении проводника в присутствии магнита в проводнике происходит упорядоченное движение электронов.

Это происходит в результате сил притяжения и отталкивания, вызванных магнитным полем. Работа генераторов переменного тока, двигателей и динамо-машин основана на этой форме производства электроэнергии.

Примечательно, что гидроэлектроэнергия вырабатывает около 9% электроэнергии в США. Более того, он является возобновляемым и может производиться с очень небольшим количеством выбросов.

СВЯЗАННЫЕ С: 21 ТОП-21 ПЛОТИНА В МИРЕ, ПОЛУЧАЮЩИЕ ВЫСОКОЕ КОЛИЧЕСТВО ЭЛЕКТРОЭНЕРГИИ

Производство электроэнергии имеет богатую историю и еще более светлое будущее.Согласно прогнозам, сделанным Институтом энергетических исследований, ископаемое топливо продолжит сохранять свой статус ведущего источника производства электроэнергии в США до 2040 года.

Электроды заземления для домашнего обслуживания — InterNACHI®

Ника Громико, CMI® и Кентона Шепарда

Системы электрического заземления отводят потенциально опасные электрические токи, обеспечивая путь между распределительной коробкой здания и землей. Молния и статическое электричество являются наиболее распространенными источниками опасных или разрушительных зарядов, которые могут рассеиваться через систему заземления.Заземляющие электроды подключаются к электрической системе здания через проводники заземляющих электродов, также известные как заземляющие провода. В качестве заземляющих электродов может использоваться ряд различных металлических сплавов, наиболее распространенным из которых и будет уделено внимание в данной статье.

Требования к электродам и проводам заземления:

  • Алюминий имеет тенденцию к коррозии, и его не следует использовать в проводах заземления, если они не изолированы. Влага и минеральные соли из кирпичной кладки — частые причины коррозии неизолированного алюминия.Это также более плохой проводник, чем медь. Использование алюминиевых проводов в системах заземления в Канаде запрещено.
  • Поскольку заземляющие электроды не изолированы, их нельзя делать из алюминия.
  • Если присутствует более одного электрода, они должны быть соединены друг с другом перемычкой.

Общие типы заземляющих электродов Заземляющие стержни

Самая распространенная форма заземляющего электрода — это металлический стержень, который вбивается в землю таким образом, что он полностью погружен в воду.InterNACHI рекомендует вставлять стержень вертикально и цельным, но это не всегда возможно в каменистых местах. Если стержень забить в подповерхностные породы, он может поцарапаться и потерять покрытие. Ржавчина может накапливаться на обнаженном железе или стали и снижать проводящую способность стержня. К сожалению, эта ржавчина редко будет заметна инспектору.

Электрики, как известно, разрезали стержень, когда им было трудно вставить всю его длину под землю.Такая практика нарушает кодекс и может представлять угрозу безопасности. Инспекторам следует обратить внимание на следующие признаки, указывающие на укорочение стержня заземления:

  • Ржавчина на верхней части стержня. Стержни заземления имеют антикоррозийное покрытие, но обычно изготавливаются из стали или железа и подвержены коррозии в любом месте, где стержень порезан.
  • У большинства стержней есть выгравированная этикетка на вершине. Если эта этикетка отсутствует, вероятно, стержень порезан.

Инспекторам следует иметь в виду, что коммунальные предприятия иногда разрешают укорачивать заземляющие стержни.Квалифицированный электрик может проверить, подходит ли укороченный стержень для заземления.

Если возможно, инспекторы должны проверить состояние зажима, который соединяет стержень заземления с проводом заземления. Хомуты должны быть из бронзы или меди и плотно прилегать. Требования к длине, толщине стержня и защитному покрытию изложены в Международном жилищном кодексе 2006 г. (IRC) следующим образом:

Стержневые и трубчатые электроды длиной не менее 8 футов (2438 мм) должны быть рассмотрены из следующих материалов. в качестве заземляющего электрода:

  1. Электроды трубы или кабелепровода должны быть не меньше товарного размера ¾ (метрическое обозначение 21), а в случае из железа или стали — внешняя поверхность должна быть оцинкована или иметь другое металлическое покрытие для защиты от коррозии.
  2. Электроды из стержней из железа или стали должны иметь диаметр не менее 5/8 дюйма (15,9 мм). Стержни из нержавеющей стали диаметром менее 5/8 дюйма (15,9 мм), стержни из цветных металлов или их эквиваленты должны быть указаны в списке и должны быть не менее 1⁄2 дюйма (12,7 мм) в диаметре.
Примечания
  • Хотя IRC 2006 года не упоминает, можно ли вращать штангу под углом, электрические нормы Калифорнии 1998 года допускают максимальный угол наклона 45 градусов от вертикали.
  • При необходимости электрик может установить два заземляющих стержня.Они должны находиться на расстоянии не менее 6 футов друг от друга.
  • В Канаде заземляющие стержни должны быть 10 футов в длину и требуются два.

Электроды в бетонном корпусе (Ufer Grounds)

Этот метод электрического заземления был изобретен во время Второй мировой войны в Аризоне и обычно называется «Ufer» в честь его создателя, Герберта Г. Уфера. Армия Соединенных Штатов была обеспокоена тем, что молния или статическое электричество могут вызвать случайный взрыв взрывчатых веществ, которые хранились в хранилищах в форме иглу.Климат пустыни ограничивал полезность заземляющих стержней, которые должны были быть вбиты на сотни футов в сухую землю, чтобы быть эффективными. Уфер посоветовал военным подключить заземляющие провода к стальным арматурным стержням (арматуре) с бетонной оболочкой в ​​бомбоубежищах, чтобы эффективно рассеивать электричество в земле. Испытания подтвердили его теорию о том, что относительно высокая проводимость бетона позволяет электрическому току рассеиваться на большой площади поверхности земли.Метод Уфера чаще встречается в новом жилом строительстве и требует металлического каркаса. Инспектору может быть сложно обнаружить электрод этого типа. В IRC 2006 г. указывается следующее:

Электрод, заключенный в бетон толщиной не менее 2 дюймов (51 мм), расположенный внутри и около дна бетонного фундамента или основания, находящегося в прямом контакте с землей, состоящего из не менее 20 футов (6096 мм) одного или нескольких оголенных или оцинкованных или трех стальных арматурных стержней или стержней с электропроводящим покрытием не менее 1/2 дюйма (12.77 мм) или состоящий из не менее 20 (6096 мм) футов неизолированного медного проводника сечением не менее 4 AWG, считается заземляющим электродом. Арматурные стержни разрешается соединять вместе с помощью обычных стяжек или других эффективных средств.

Металлические подземные водопроводные трубы

Водопроводная система здания может быть подключена к заземляющему проводу и функционировать как заземляющий электрод. В течение некоторого времени это был единственный тип обязательного заземляющего электрода, который в целом предпочитался другим методам.Однако с 1987 года этот метод стал единственным, который необходимо дополнить электродом другого типа. Этот переход связан с возросшей популярностью непроводящих диэлектрических муфт и пластиковых труб. Когда водопровод заменен пластиковыми трубами, на сервисной панели электрооборудования необходимо разместить уведомление о том, что имеется неметаллическое водоснабжение. Инспекторы не смогут определить, заменены ли наружные водопроводные трубы, идущие к уличному водопроводу, пластиковыми деталями.

Инспекторы должны проверить следующее:

  • Провода заземления должны быть надежно прикреплены к водопроводным трубам рядом с точкой входа в здание. Заземляющий провод, свободно обвязанный вокруг трубы, не подходит.
  • Газовые трубы никогда не должны использоваться в качестве заземляющих проводов. Обычно они сделаны из пластика снаружи дома и несут горючие газы, которые могут воспламениться при воздействии электрического тока.
IRC 2006 года утверждает следующее об электродах для водопроводных труб:

Металлическая подземная водопроводная труба, которая находится в прямом контакте с землей на расстоянии 10 футов (3048 мм) или более, включая любые обсадные трубы, эффективно прикрепленные к трубе, и что является электрически непрерывным путем соединения вокруг изоляционных стыков или изоляционной трубы с точками соединения проводника заземляющего электрода и проводов заземления, следует рассматривать как заземляющий электрод.Внутренние металлические водопроводные трубы, расположенные на расстоянии более 5 футов (1524 мм) от входа в здание, не должны использоваться как часть системы заземляющих электродов или как проводник для соединения электродов, которые являются частью системы заземляющих электродов.

Редкие заземляющие электроды

Вышеупомянутые заземляющие электроды составляют подавляющее большинство систем заземления, с которыми сталкиваются инспекторы. Два описанных ниже электрода встречаются гораздо реже, хотя они признаны IRC.Инспекторы могут не иметь возможности проверить их присутствие. IRC 2006 объясняет их следующим образом:


Пластинчатые электроды

Пластинчатые электроды, которые подвергают воздействию внешней почвы не менее 2 квадратных футов (0,186 м2) поверхности, должны рассматриваться как заземляющие электроды. Электроды из железных или стальных пластин должны иметь толщину не менее 1⁄4 дюйма (6,4 мм). Электроды из цветного металла должны иметь толщину не менее 0,06 дюйма (1,5 мм). Пластинчатые электроды должны быть установлены на глубине не менее 30 дюймов (762 мм) от поверхности земли.

Кольцевые электроды заземления

Кольцо заземления, окружающее здание или сооружение, находящееся в прямом контакте с землей на глубине ниже поверхности земли не менее 2,5 футов, состоящее из не менее 20 футов неизолированного медного проводника не меньше чем № 2, следует рассматривать как заземляющий электрод.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *