Схемы включения электродвигателей: Схемы подключения трехфазных электродвигателей

Содержание

Подключение электродвигателя по схеме звезда и треугольник

Схемы подключения электродвигателя. Звезда, треугольник, звезда — треугольник.

Асинхронные двигатели, имея ряд таких неоспоримых достоинств, как надежность в эксплуатации, высокая производительность, способность выдерживать большие механические перегрузки, неприхотливость и невысокая стоимость обслуживания и ремонта, обусловленные простотой конструкции, имеют, конечно и свои определенные недостатки.

На практике применяются основные способы подключения к сети трёхфазных электродвигателей: «подключение звездой» и «подключение треугольником».

При соединении трёхфазного электродвигателя звездой, концы его статорных обмоток соединяются вместе, соединение происходят в одной точке, а на начала обмоток подаётся трехфазное напряжение (рис 1).

При соединении трёхфазного электродвигателя по схеме подключения «треугольником» обмотки статора электродвигателя соединяются последовательно таким образом что конец одной обмотки соединяется началом следующей и так далее (рис 2).

Не вдаваясь в технические и теоретические основы электротехники известно, что электродвигатели у которого обмотки, соединенные звездой работают плавнее и мягче, чем электродвигатели с соединенными обмотками треугольником, необходимо отметить, что при соединении обмоток звездой электродвигатель не может развить полную мощность. При соединении обмоток по схеме треугольник электродвигатель работает на полную паспортную мощность (что составляет в 1,5 раз больше по мощности, чем при соединении звездой), но при этом имеет очень большие значения пусковых токов.

 В связи с этим для снижения пусковых токов целесообразно (особенно для электродвигателей с большей мощностью) подключение по схеме звезда — треугольник; первоначально запуск осуществляется по схеме «звезда», после этого (когда электродвигатель «набрал обороты»), происходит автоматическое переключение по схеме «треугольник».

 Схема управления :

Еще вариант схемы управления двигателем

 Подключение напряжения питания через контакт NC (нормально закрытый) реле времени К1 и контакт NC К2, в цепи катушки пускателя К3.

 После включения пускателя К3, своими нормально-замкнутыми контактами размыкает цепи катушки пускателя К2 контактами К3 (блокировка случайного включения) и замыкает контакт К3, в цепи питания катушки магнитного пускателя К1, который совмещен с контактами реле времени.

 При включении пускателя К1 происходит замыкание контактов К1 в цепи катушки магнитного пускателя К1 и одновременно включается реле времени, размыкается контакт реле времени К1 в цепи катушки пускателя К3, замыкает контакт реле времени К1 в цепи катушки пускателя К2.

 Отключение обмотки пускателя К3, замыкается контакт К3 в цепи катушки магнитного пускателя К2. После включение пускателя К2, размыкает своими контактами К2 в цепи катушки питания пускателя К3.

(Начало обмоток статора: U1; V1; W1. Концы обмоток: U2; V2; W2. На клеммной доске шпильки начала и концов обмоток расположены в строгой последовательности: W2; U2; V2; под ними расположены: U1; V1; W1. При подключении двигателя в «треугольник» шпильки соединяются перемычками: W2-U1; U2-V1; V2-W1.)

На начала обмоток U1, V1 и W1 через силовые контакты магнитного пускателя К1 подаётся трехфазное напряжение. При срабатывании магнитного пускателя К3 с помощью его контактов К3, происходит замыкание, соединяя концы обмоток U2, V2 и W2 между собой обмотки двигателя соединены звездой.

 Через некоторое время срабатывает реле времени, совмещённое с пускателем К1, отключая пускатель К3 и одновременно включая К2, замыкаются силовые контакты К2 и происходит подача напряжение на концы обмоток электродвигателя U2, V2 и W2. Таким образом электродвигатель включается по схеме треугольник.

Для запуска двигателей по схеме звезда-треугольник разными производителями выпускаются так называемые пусковые реле, название они могут иметь разные «Пусковые реле времени» , реле «старт-дельта» и др., но назначение у них одно и тоже:

РВП-3, ВЛ-32М1, D6DS (Австрия) , ВЛ-163 (Украина), CRM-2T  (Чехия), TRS2D (Чехия),  1SVR630210R3300 (ABB), 80 series (Finder) и другие.

Типовая схема с пусковым реле времени (реле «звезда/треугольник») для управления запуском трехфазного асинхронного двигателя:

Вывод:  Для снижения пусковых токов запускать двигатель необходимо в следующей последовательности: сначала включенным по схеме «звезда» на пониженных оборотах, далее переключаться на «треугольник».

Запуск сначала треугольником создает максимальный момент, а уже переключение на звезду (пусковой момент в 2 раза меньше) с дальнейшей работой в номинальном режиме, когда электродвигатель «набрал обороты», происходит автоматическое переключение на схему треугольник, стоит учитывать какая нагрузка на валу перед запуском, ведь вращающий момент при звезде ослаблен, поэтому такой способ запуска вряд ли подойдет для очень загруженных двигателей, может выйти из строя.

Схемы Подключения Трехфазного Асинхронного Электродвигателя и Описание

Подключение трехфазного асинхронного электродвигателя

Трехфазный асинхронный электродвигатель и подключение его к электрической сети часто вызывает массу вопросов. Поэтому в нашей статье мы решили рассмотреть все нюансы, связанные с подготовкой к включению, определением правильного способа подключения и, конечно, разберём возможные варианты схем включения двигателя. Поэтому не будем ходить вокруг да около, а сразу приступим к разбору поставленных вопросов.

Подготовка асинхронного электродвигателя к включению

Виды электродвигателей

На самом первом этапе нам следует определиться с типом двигателя, который мы собрались подключать. Это может быть трехфазный асинхронный двигатель с короткозамкнутым или фазным ротором, двух- или однофазный двигатель, а может быть и вовсе синхронная машина.

Помочь в этом может бирка на электродвигателе, на которой указана нужная информация. Иногда это можно сделать чисто визуально — так как мы рассматриваем подключение трехфазных электрических машин, то двигатель с короткозамкнутым ротором не имеет коллектора, а машина с фазным ротором имеет таковой.

Определение начала и конца обмотки

Трехфазный асинхронный электродвигатель имеет шесть выводов. Это три обмотки, каждая из которых имеет начало и конец.

Для правильного подключения мы должны определить начало и конец каждой обмотки. Существует множество вариантов того, как это сделать — мы остановимся на наиболее простых из них, применимых в домашних условиях.

Обмотки статора электродвигателя

  • Для того чтоб определить начало и конец обмотки трехфазного двигателя своими руками, мы должны для начала определить выводы каждой отдельной обмотки, то есть определить каждую отдельную обмотку.
  • Сделать это достаточно просто. Между концом и началом одной обмотки у нас обязательно будет цепь. Определить цепь нам помогут либо двухполюсный указатель напряжения с соответствующей функцией, либо обычный мультиметр.
  • Для этого один конец мультиметра подключаем к одному из выводов и другим концом мультиметра касаемся поочередно остальных пяти выводов. Между началом и концом одной обмотки у нас будет значение близкое к нулю, в режиме измерения сопротивления. Между остальными четырьмя выводами значение будет практически бесконечным.
  • Следующим этапом будет определение их начала и конца.

ЭДС при различных вариантах соединения обмоток электродвигателя

  • Для того чтоб определить начало и конец обмотки, давайте немного погрузимся в теорию. В статоре электродвигателя имеется три обмотки. Если подключить конец одной обмотки к концу другой обмотки, а на начало обмоток подать напряжение, то в месте подключения ЭДС будет равен или близок к нулю. Ведь ЭДС одной обмотки компенсирует ЭДС второй обмотки. При этом в третьей обмотке ЭДС не будет наводиться.
  • Теперь рассмотрим второй вариант. Вы соединили один конец обмотки с началом второй обмотки. В этом случае ЭДС наводится в каждой из обмоток, в результате получается их сумма. За счет электромагнитной индукции ЭДС наводится в третьей обмотке.

Схема определения начала и конца обмоток электродвигателя

  • Используя этот метод, мы можем найти начало и конец каждой из обмоток. Для этого к выводам одной обмотки подключаем вольтметр или лампочку. А любых два вывода других обмоток соединяем между собой. Два оставшихся вывода обмоток подключаем к электрической сети в 220В. Хотя можно использовать и меньшее напряжение.
  • Если мы соединили конец и конец двух обмоток, то вольтметр на третьей обмотке покажет значение близкое к нулю. Если же мы подключили начало и конец двух обмоток правильно, то, как говорит инструкция, на вольтметре появится напряжение от 10 до 60В (данное значение является весьма условным и зависит от конструкции электродвигателя).
  • Подобный опыт повторяем еще дважды, пока точно не определим начало и конец каждой из обмоток. Для этого обязательно подписывайте каждый полученный результат, дабы не запутаться.

Выбор схемы подключения электродвигателя

Практически любой асинхронный электродвигатель имеет два варианта подключения – это звезда или треугольник. В первом случае обмотки подключаются на фазное напряжение, во втором на линейное напряжение.

Электродвигатель асинхронный трехфазный и подключение звезда–треугольник зависит от особенностей обмотки. Обычно оно указано на бирке двигателя.

Номинальные параметры на бирке электродвигателя

  • Прежде всего, давайте разберемся, в чем отличие этих двух вариантов. Наиболее распространенным является соединение «звезда». Оно предполагает соединение между собой всех трех концов обмоток, а напряжение подается на начала обмоток.
  • При соединении «треугольник» начало каждой обмотки соединятся с концом предыдущей обмотки. В результате каждая обмотка у нас получается стороной равностороннего треугольника – откуда и пошло название.

Разница между схемами соединения «звезда» и «треугольник»

  • Отличие этих двух вариантов соединения состоит в мощности двигателя и условий пуска. При соединении «треугольником» двигатель способен развивать большую мощность на валу. В то же время момент пуска характеризуется большой просадкой напряжения и большими пусковыми токами.
  • В бытовых условиях выбор способа подключения обычно зависит от имеющегося класса напряжения. Исходя из этого параметра и номинальных параметров, указанных на табличке двигателя, выбирают способ подключения к сети.

Подключение асинхронного электродвигателя

Электродвигатель асинхронный трехфазный и схема подключения зависят от ваших потребностей. Наиболее распространенным вариантом является схема прямого включения, для двигателей, подключенных схемой «треугольника», возможна схема включения на «звезде» с переходом на «треугольник», при необходимости возможен вариант реверсивного включения.

В нашей статье мы рассмотрим наиболее популярные схемы прямого включения и прямого включения с возможностью реверса.

Схема прямого включения асинхронного электродвигателя

В предыдущих главах мы подключили обмотки двигателя, и вот теперь пришло время включения его в сеть. Двигатели должны включаться в сеть при помощи магнитного пускателя, который обеспечивает надежное и одновременное включение всех трех фаз электродвигателя.

Пускатель в свою очередь управляется кнопочным постом – те самые кнопки «Пуск» и «Стоп» в одном корпусе.

Трехполюсный автоматический выключатель

Но прежде чем приступать непосредственно к подключению, давайте разберем, какое электрооборудование нам для этого необходимо. Прежде всего, это автоматический выключатель, номинальный ток которого соответствует, либо немного выше номинального тока электродвигателя.

Номинальные параметры пускателей

Следующим коммутационным аппаратом является уже упоминавшийся нами пускатель. В зависимости он номинального тока пускатели разделяются на изделия 1, 2 и т. д. до 8-ой величины. Для нас важно, чтобы номинальный ток пускателя был не меньше, чем номинальный ток электродвигателя.

Кнопочный пост на две кнопки

Пускатель управляется при помощи кнопочного поста. Он может быть двух видов. С кнопками «Пуск» и «Стоп» и с кнопками «Вперед», «Стоп» и «Назад». Если у нас не используется реверс, то нам необходим кнопочный пост на две кнопки и наоборот.

Таблица выбора сечения провода

Кроме указанных аппаратов нам потребуется кабель соответствующего сечения. Так же желательно, но не обязательно, установка амперметра хотя бы на одну фазу, для контроля тока двигателя.

Обратите внимание! Вместо автомата вполне возможно применение предохранителей. Только их номинальный ток должен соответствовать номинальному току двигателя. А также должен учитывать пусковой ток, который у разных типов двигателей колеблется от 6 до 10 крат от номинального.

  1. Теперь приступаем непосредственно к подключению. Его условно можно разделить на два этапа. Первый это подключение силовой части, и второй — подключение вторичных цепей. Силовые цепи – это цепи, которые обеспечивают связь двигателя с источником электрической энергии. Вторичные цепи необходимы для удобства управления двигателем.
  2. Для подключения силовых цепей нам достаточно подключить вывода двигателя с первыми выводами пускателя, выводы пускателя с выводами автоматического выключателя, а сам автомат с источником электрической энергии.

Обратите внимание! Подключение фазных выводов к контактам пускателя и автомата не имеют значения. Если после первого пуска мы определим, что вращение неправильное, мы сможем легко его изменить. Цепь заземления двигателя подключается помимо всех коммутационных аппаратов.

Схема подключения первичных и вторичных цепей схемы включения электродвигателя

Теперь рассмотрим более сложную схему вторичных цепей. Для этого нам, прежде всего, как на видео, следует определиться с номинальными параметрами катушки пускателя. Она может быть на напряжение 220В или 380В.

  • Так же следует разобраться с таким элементом, как блок-контакты пускателя. Данный элемент имеется практически на всех типах пускателей, а в некоторых случаях он может приобретаться отдельно с последующим монтажом на корпус пускателя.

Расположение элементов пускателя

  • Эти блок-контакты содержат набор контактов – нормально закрытых и нормально открытых. Сразу предупредим – не пугайтесь в этом нет нечего сложного. Нормально закрытым называется контакт, который при отключенном положении пускателя – замкнут. Соответственно нормально открытый контакт в этот момент разомкнут.
  • При включении пускателя нормально закрытые контакты размыкаются, а нормально открытые контакты замыкаются. Если мы говорим за электродвигатель трехфазный асинхронный и подключение его к электрической сети, то нам необходим нормально открытый контакт.

Нормально закрытые и нормально открытые контакты

  • Такие контакты есть и на кнопочном посту. Кнопка «Стоп» имеет нормально закрытый контакт, а кнопка «Пуск» нормально открытый. Сначала подключаем кнопку «Стоп».
  • Для этого соединяем один провод с контактами пускателя между автоматическим выключателем и пускателем. Его подключаем к одному из контактов кнопки «Стоп». От второго контакта кнопки должно отходить сразу два провода. Один идет к контакту кнопки «Пуск», второй к блок-контактам пускателя.

Подключение кнопки «Пуск» и «Стоп»

  • От кнопки «Пуск» прокладываем провод к катушке пускателя, туда же подключаем провод от блок-контактов пускателя. Второй конец катушки пускателя подключаем либо ко второму фазному проводу на силовых контактах пускателя, при использовании катушки на 380В, либо он подключается к нулевому проводу, при использовании катушки на 220В.
  • Все, наша схема прямого включения асинхронного двигателя готова к использованию. После первого включения проверяем направление вращения двигателя и если вращение неправильное, то просто меняем местами два силовых провода на выводах пускателя.

Схема реверсивного включения электродвигателя

Распространенным вариантом подключения асинхронного электродвигателя является вариант с использованием реверса. Такой режим может потребоваться в случаях, когда необходимо изменять направление вращения двигателя в процессе эксплуатации.

  • Для создания такой схемы нам потребуются два пускателя из-за чего цена такого подключения несколько возрастает. Один будет включать двигатель в работу в одну сторону, а второй в другую. Тут очень важным моментом является недопустимость одновременного включения обоих пускателей. Поэтому нам необходимо во вторичной схеме предусмотреть блокировку от таких включений.
  • Но сначала давайте подключим силовую часть. Для этого, как и приведенном выше варианте, подключаем от автомата пускатель, а от пускателя — двигатель.
  • Единственным отличием будет подключение еще одного пускателя. Его подключаем к вводам первого пускателя. При этом важным моментом будет поменять местами две фазы, как на фото.

Схема реверсивного подключения электродвигателя с катушкой пускателя на 220В

  • Вывода второго пускателя просто подключаем к выводам первого. Причем здесь уже ничего не меняем местами.
  • Ну, а теперь, переходим к подключению вторичной схемы. Начинается все опять с кнопки «Стоп». Ее подключаем к одному из приходящих контактов пускателя – неважно первого или второго. От кнопки «Стоп» у нас вновь идут два провода. Но теперь один к контакту 1 кнопки «Вперед», а второй к контакту 1 кнопки «Назад».

Схема реверсивного подключения электродвигателя с катушкой пускателя на 220В

  • Дальнейшее подключение приводим по кнопке «Вперед» — по кнопке «Назад» оно идентично. К контакту 1 кнопки «Вперед» подключаем контакт нормально открытого контакта блок-контактов пускателя. Каламбур, но точнее не скажешь. К контакту 2 кнопки «Вперед» подключаем провод от второго контакта блок-контактов пускателя.
  • Туда же подключаем провод, который пойдет к нормально закрытому контакту блок-контактов пускателя номер два. А уже от этого блок-контакта он подключается к катушке пускателя номер 1.  Второй конец катушки подключается к фазному или нулевому проводу в зависимости от класса напряжения.
  • Подключение катушки второго пускателя производится идентично, только ее мы подводим к блок-контактам первого пускателя. Именно это обеспечивает блокировку от включения одного пускателя, при подтянутом положении второго.

Вывод

Способы подключения асинхронного трехфазного электродвигателя зависят от типа двигателя, схемы его соединения и задач, которые стоят перед нами. Мы привели лишь самые распространенные схемы подключения, но существуют и еще более сложные варианты. Особенно это касается асинхронных машин с фазным ротором, которые имеют функцию торможения.

однофазные и трёхфазные электродвигатели, возможность подключить

Принципом работы любого электрического двигателя является способность трансформировать электрическую энергию в механическую. Независимо от конструкции, каждая электрическая машина устроена одинаково: в неподвижной части (статор или индуктор) вращается подвижная часть (ротор или якорь). Для продолжительной бесперебойной эксплуатации оборудования необходимо правильное подключение электродвигателя.

Основные разновидности

Электрические двигатели обладают рядом очевидных достоинств. Они гораздо меньше по размеру, чем их тепловые аналоги идентичной мощности. Поэтому они отлично подходят для размещения в общественном электротранспорте или на заводских станках. Во время работы они не вредят окружающей среде выделением продуктов распада и паровыми испарениями.

Электрические двигатели можно разделить на две основных группы:

  1. Двигатели постоянного тока. Применяются для регулируемых электроприводов с эксплуатационными показателями высокого качества, такими как готовность к перезагрузке и вращательная равномерность. Ими оснащают вспомогательные агрегаты экскаваторов, полимерного оборудования, бурильных станков. Электродвигатели массово применяются в электротранспорте. Преобразователи постоянного тока дополнительно подразделяются на коллекторные и вентильные.
  2. Двигатели переменного тока. Являются более дешевыми и долговечными, с простым и надёжным конструкторским решением. Подавляющее большинство бытовой домашней техники укомплектовано этими электродвигателями. В промышленности они применяются в заводских станках, вентиляторах, компрессорах, насосах, лебёдках для поднятия и перемещения груза. По принципу работы эти механизмы делятся на синхронные и асинхронные.

Способы подключения

Электрические двигатели любой конструкции устроены одинаково. В статичной обмотке (статоре) осуществляется вращение ротора. В нём происходит возбуждение магнитного поля, отталкивающее его полюсы от статора. Бесперебойная работа этой конструкции обусловлена правильным подключением электродвигателя, зависящим от используемого вида.

Однофазный асинхронный

Этот двигатель получил такое название потому, что у него всего одна рабочая обмотка. Его мощность может составлять от пяти до десяти киловатт. Рабочая и пусковая обмотки располагаются между собой под прямым углом.

К цепи необходимо подключить фазовращающий элемент. Такая схема подключения однофазного электродвигателя с конденсатором отличается оптимальными пусковыми свойствами. Используя конденсатор, электрический двигатель может быть оснащен следующими видами этого двухполюсника:

  • рабочим;
  • пусковым;
  • рабочим и пусковым.

На практике чаще всего применяется пусковой конденсатор. Применить этот вариант можно, используя реле времени или замкнув электрическую цепь через пусковую кнопку.

В случае выбора схемы подключения электродвигателя 220 В через конденсатор пусковые характеристики заметно ухудшаются. Третий вариант с пусковым и рабочим двухполюсником считается промежуточным.

Коллекторный вариант

Универсальность этого двигателя заключается в том, что он имеет возможность получать энергию от преобразователей переменной или постоянной разновидности тока. Он находит применение в швейных или стиральных машинах, бытовых электрических инструментах.

Однофазные коллекторные двигатели отличаются такими недостатками:

  1. Сложность ремонтных работ, невозможность их самостоятельного проведения.
  2. Высокий уровень шума.
  3. Сложное управление.
  4. Высокая стоимость.

Сначала необходимо убедиться, что параметры электрической сети соответствуют допустимым напряжению и частоте, указанным на корпусе электродвигателя. Система должна быть предварительно обесточена.

Для подключения коллекторного двигателя следует последовательно соединить статор и якорь. Клеммы 2 и 3 необходимо соединить, а 1 и 4 замкнуть в цепь 220 В. Включение без регулятора перепада давления может спровоцировать образование пускового тока значительной мощности, что приведёт к искрению в коллекторе.

Также стоит рассмотреть схему подключения электродвигателя через магнитный пускатель:

  1. Следует удостовериться, что контактная система пускателя выдержит эксплуатационные условия электрического двигателя. Есть восемь категорий величины нагрузочного тока от 6,3 А до 250 A. Величина в этом случае обозначает силу тока, которую в состоянии пропустить через рабочие контакты электромагнитный пускатель.
  2. Катушка управления может быть рассчитана на 36 В, 220 В, 380 В. Следует выбрать вариант 220 вольт.
  3. После сбора схемы электромагнитного пускателя следует подключить силовую часть. На выходе силовых контактов происходит включение электрического двигателя, параллельно присоединяется вход на 220 вольт.
  4. Затем следует подключить кнопки «Стоп» и «Пуск».
  5. На второй вывод электромагнитного пускателя необходимо присоединить «ноль».

Подключение «звездой»

Такой способ подходит для схемы подключения трёхфазного электродвигателя на 380 В. К началу обмоток (С 1, С 2, С 3) подсоединяются фазные проводники (А, В, С) через аппарат коммутации. Концы обмоток необходимо совместить в одной точке.

Такая схема электродвигателя не позволит развить всю его мощность, потому что на каждой обмотке напряжение будет равняться 220 В. Возможность подключить электрический двигатель по схеме «звезда» подтверждается на табличке символом Y.

Эту схема подключения двигателя можно без труда различить в клеммной коробке из-за перемычки, расположенной посреди выводов обмоток.

Соединение «треугольник»

Чтобы трёхфазная электромашина смогла развить максимально предусмотренную мощность, следует применять схему подключения асинхронного двигателя способом «треугольник».

Выводы обмоток необходимо соединить в следующем порядке:

  • С 2 с С 4;
  • С 3 с С 5;
  • С 6 с С 1.

Между проводами в трёхфазных сетях линейное напряжение будет равняться 380 В. С таким вариантом подключения может не справиться проводка, потому что она способствует возникновению пусковых токов. Такое соединение возможно в случае наличия на табличке двигателя значка Δ.

Для полного понимания того, как подключить электродвигатель с 3 проводами, следует знать о комбинированном подключении. В таком случае сперва применяется схема соединения «звездой», затем в рабочем режиме обмотки переключается на «треугольник».

Всегда нужно помнить в процессе работы с электрическими приборами о строгом соблюдении правил техники безопасности. Все действия необходимо производить лишь в режиме обесточенного оборудования.

Схемы включения электродвигателя звездой и треугольником

  1. Главная
  2. Электрические машины
  3. Подключение ЭД звездой и треугольником

Если Вас направят к электродвигателю, чтобы правильно подключить кабель к клеммной коробке, то эта статья поможет не растеряться.

Главной подсказкой будет табличка на корпусе ЭД (не спутайте с аналогичной шильдой на насосе, который находится на одном валу). На «электрической» бирке нас будут интересовать напряжение и схема подключения.

Рассмотрим двигатели напряжением до 1кВ — это может быть машина напряжением 660, 380, 220 или 127 вольт с возможностью подключения звездой «У» или треугольником «Д».

Будьте внимательны и осторожны. Ведь тут речь идет о линейных напряжениях, то есть величинах между двумя фазами. Подключиться на 380 В — значит подать три фазы от сборки напряжением 380 В, где линейное напряжение между любыми двумя фазами будет 380 В, а напряжение между фазой и нулем будет 220 В.

А подключить ЭД на 220 В — это аналогично значит найти силовую сборку, на которой между фазами линейное будет 220В, а между фазой и нулем будет в корень из трех раз меньше — то есть 127 В. То есть, если есть 220/380 Д/Y, 380/660 Д/Y, а сеть мы имеем 0,4 кВ — то нам подойдут первый вариант с соединением звездой и второй с соединением треугольником. А вот в чем разница между звездой и треугольником при подключении электродвигателя с точки зрения эксплуатации — тема отдельной беседы.

Читайте также: Как подключить двигатель на фазное напряжение 220 В через конденсатор

Понять, на какое напряжение будет подключаться движок, можно, посмотрев в проект. На электрической схеме будет показано, что кабель идет от двигателя на силовую сборку. На сборке мы увидим например 380В и 3-5 жил (три фазы, ноль и PE).

Далее можно подойти к сборке и воочию убедиться в наличии кабеля, нужного количества жил, величины питающего напряжения на щитовом вольтметре. Жилы кабеля необходимо прозвонить — это необходимо, чтобы понять, что мы будет сажать и испытывать именно нужный кабель, а не другой, который сейчас разделывает монтажник. Вообще всегда перед испытаниями необходимо прозванивать жилы кабеля, чтобы не натворить дел.

Главное, что мы берем с таблички — это именно порядок символов, для примера: «треугольник»/»звезда» и уровень напряжений «380/660». На треугольник всегда будет меньшее напряжение.

В ходе процедуры допуска к работе, убедившись, что напряжение на двигатель не будет подано, можно открывать крышку клеммной коробки или брно.

Если Вы не понимаете, что такое брно или борно, то сейчас растолкую.

БРНО — блок распределительный (расключения) начала обмоток электродвигателя. Пишут в интернете, что именно так. А почему тогда в данной коробке присутствуют как начала, так и концы обмоток? Что-то уже не сходится. Также на форумах пишут о чешском городе Брно.

Борны (иначе называемые клеммами) — в электротехнике, означают на динамо электрических машинах и других электрических приборах медные зажимы для закрепления проводов (проводников, проволок).

А вот такое определение из словаря Брокгауза-Ефрона от 1891 года

Здесь нам говорят, что борно — медные зажимы для крепления проводов. Получается у нас коробка с клеммами — блок борно с выводами обмоток.

А давайте не гадать, а возьмем паспорт на движок и посмотрим как этот объект называют заводчане. Я нашел в интернете, посмотрел, и скажу Вам, что называется это клеммной коробкой, внутри которой клеммная панель, а снаружи крышка клеммной коробки.

Так вот, открыв крышку, предварительно убедившись в отсутствии напряжения и предприняв меры для невозможности его подачи, мы увидим эти самые клеммы, выводы начала и конца обмоток, а также перемычки (опционально).

Если двигатель “старик”, то вывода обмоток будут называться согласно старого ГОСТ 183-74:

  • первая фаза начало С1- конец С4
  • вторая С2 — С5
  • третья С3 — С6

Если же ЭД более молодой, то по действующему ГОСТ 26772-85:

  • первая фаза начало U1- конец U2
  • вторая V1 — V2
  • третья W1 — W2

Цифры 1 и 2 пишут, когда говорят об открытой схеме (без перемычек), если же схема собрана, то называют обозначения фаз без цифровых индексов для действующего ГОСТ (U, V, W) и обозначением начал фаз для не действующего ГОСТа (С1, С2, С3).

Но всегда лучше посмотреть в паспорт на движок и прозвонить выводы обмоток.

Именно на основе этих данных нам и предстоит произвести подключение.

Следующая подсказка будет находиться на крышке борно и дублироваться в паспорте на изделие. Там мы увидим как следует устанавливать перемычки для различных схем соединения.

Для соединения электродвигателя звездой нам понадобится одна-две пластины, которую мы ставим на начала обмоток.

При подключении движка треугольником необходимо взять три пластины и рассадить их между началами и концами обмоток.

  • Звезда — одна пластина
  • Треугольник — три пластины

Начала и концы обмоток должны быть подписаны. Чтобы определить, где какая обмотка, достаточно со снятыми перемычками вызвонить попарно ну и промаркировать, чтобы не забыть.

Но в реальности просто посадить концы недостаточно, необходимо произвести замеры:

После испытаний, в случае соответствия полученных результатов нормам и объемам испытаний электрооборудования вашего региона, собираем схему с пластинами, сажаем кабель, прикручиваем крышку.

Естественно пластины должны быть идентичными — один материал, площадь, сечение. Это на случай, если в процессе установки вы их потеряли. Хотя разница в омических сопротивлениях будет невелика, но это может привести к неравномерному нагреву этих пластин.

В высоковольтных двигателях на напряжение 6 или 10кВ в коробке выводов концы обмоток будут выходить из корпуса и сидеть на изоляторах, опнах. Туда же будет подсаживаться и питающий кабель.

Схемы подключения электродвигателей к сети переменного тока 220 вольт

Для того чтобы разобраться, как подключить электродвигатель конкретного типа, необходимо понимать принципы его работы и особенности конструкции. Существует множество электродвигателей разных типов. По способу подключения к сети переменного тока они бывают трехфазные, двухфазные или однофазные. По способу питания обмотки ротора делятся на синхронные и асинхронные.

Принцип действия

Принцип действия электродвигателя демонстрирует простейший опыт, который всем нам показывали в школе — вращение рамки с током в поле постоянного магнита.

Рамка с током — это аналог ротора, неподвижный магнит — статор. Если в рамку подать ток, она повернется перпендикулярно направлению магнитного поля и застынет в этом положении. Если заставить магнит крутиться, рамка будет вращаться с той же скоростью, то есть синхронно с магнитом. У нас получился синхронный электродвигатель. Но у нас магнит — это статор, а он по определению неподвижен. Как заставить вращаться магнитное поле неподвижного статора?

Для начала заменим постоянный магнит катушкой с током. Это обмотка нашего статора. Как известно из той же школьной физики, катушка с током создает магнитное поле. Последнее пропорционально величине тока, а полярность зависит от направления тока в катушке. Если подать в катушку переменный ток, получим переменное поле.

Магнитное поле — векторная величина. Переменный ток в питающей сети имеет синусоидальную форму.

Нам поможет очень наглядная аналогия с часами. Какие векторы вращаются постоянно перед нашими глазами? Это часовые стрелки. Представим, что в углу комнаты висят часы. Секундная стрелка вращается, делая один полный оборот в минуту. Стрелка — вектор единичной длины.

Тень, которую стрелка отбрасывает на стену, меняется как синус с периодом в 1 минуту, а тень, отбрасываемая на пол — как косинус. Или синус, сдвинутый по фазе на 90 градусов. Но вектор равен сумме своих проекций. Другими словами, стрелка равна векторной сумме своих теней.

Двухфазный синхронный электродвигатель

Расположим на статоре две обмотки под углом в 90 градусов, то есть взаимно перпендикулярно. Подадим в них синусоидальный переменный ток. Фазы токов сдвинем на 90 градусов. Имеем два вектора взаимно перпендикулярных, меняющихся по синусоидальному закону со сдвигом фаз на 90 градусов. Суммарный вектор будет вращаться подобно часовой стрелке, делая один полный оборот за период частоты переменного тока.

У нас получился двухфазный синхронный электродвигатель. Откуда взять токи, сдвинутые по фазе для питания обмоток? Наверное, не всем известно, что вначале распределительные сети переменного тока были двухфазными. И лишь позднее, не без борьбы, уступили место трехфазным. Если бы не уступили, то наш двухфазный электромотор можно было подключить напрямую к двум фазам.

Но победили трехфазные сети, для которых были разработаны трехфазные электродвигатели. А двухфазные электромоторы нашли свое применение в однофазных сетях в виде конденсаторных двигателей.

Трехфазный синхронный двигатель

Современные распределительные сети переменного тока выполнены по трехфазной схеме.

  • По сети передаются сразу три синусоиды со сдвигом фаз на треть периода или на 120 градусов относительно друг друга.
  • Трехфазный двигатель отличается от двухфазного тем, что у него не две, а три обмотки на статоре, повернутых на 120 градусов.
  • Три катушки, подключенные к трем фазам, создают в сумме вращающееся магнитное поле, которое поворачивает ротор.

Трехфазный асинхронный двигатель

Ток в ротор синхронного двигателя подается от источника питания. Но мы знаем из той же школьной физики, что ток в катушке можно создать переменным магнитным полем. Можно просто замкнуть концы катушки на роторе. Можно даже оставить всего один виток, как в рамке. А ток пусть индуцирует вращающееся магнитное поле статора.

  1. В момент старта ротор неподвижен, а поле статора вращается.
  2. Поле в контуре ротора меняется, наводя электрический ток.
  3. Ротор начнет догонять поле статора. Но никогда не догонит, так как в этом случае ток в нем перестанет наводиться.
  4. В асинхронном двигателе ротор всегда вращается медленнее магнитного поля.
  5. Разница скоростей называется скольжением. Подключение асинхронного двигателя не требует подачи тока в обмотку ротора.

У синхронных и асинхронных электродвигателей есть свои достоинства и недостатки, но факт состоит в том, что большинство двигателей, применяемых в промышленности на сегодняшний день — это асинхронные трехфазные двигатели.

Однофазный асинхронный электродвигатель

Если оставить на роторе короткозамкнутый виток, а на статоре одну катушку, то мы получим удивительную конструкцию — асинхронный однофазный двигатель.

На первый взгляд кажется, что такой двигатель работать не должен. Ведь в роторе нет тока, а магнитное поле статора не вращается. Но если ротор рукой толкнуть в любую сторону, двигатель заработает! И вращаться он будет в ту сторону, в которую его подтолкнули при пуске.

Объяснить работу этого двигателя можно, представив неподвижное переменное магнитное поле статора как сумму двух полей, вращающихся навстречу друг другу. Пока ротор неподвижен, эти поля уравновешивают друг друга, поэтому однофазный асинхронный двигатель не может стартовать самостоятельно. Если же ротор внешним усилием привести в движение, он будет вращаться попутно с одним вектором и навстречу другому.

Попутный вектор будет тянуть ротор за собой, встречный — тормозить.

Можно показать, что из-за разности встречной и попутной скоростей влияние попутного вектора будет сильнее, и двигатель будет работать в асинхронном режиме.

Схема включения

Возможно подключение нагрузок к трехфазной сети по двум схемам — звездой и треугольником. При подключении звездой начала обмоток соединяются между собой, а концы подключаются к фазам. При включении треугольником конец одной обмотки подключается к началу другой.

В схеме включения звездой обмотки оказываются под фазным напряжением 220 В., при включении треугольником — под линейным 380 В.

При включении треугольником двигатель развивает не только большую мощность, но и большие пусковые токи. Поэтому иногда используют комбинированную схему — старт звездой, затем переключение в треугольник.

Направление вращения определяется порядком подключения фаз. Для изменения направления достаточно поменять местами любые две фазы.

Подсоединение к однофазной сети

Трехфазный двигатель можно включать в однофазную сеть, хотя и с потерей мощности, если одну из обмоток подключить через фазосдвигающий конденсатор. Однако при таком включении двигатель сильно теряет в своих параметрах, поэтому этот режим использовать не рекомендуется.

Подключение на 220 вольт

В отличие от трехфазного, двухфазный мотор изначально предназначен для включения в однофазную сеть. Для получения сдвига фаз между обмотками включается рабочий конденсатор, поэтому двухфазные двигатели называют еще конденсаторными.

Емкость рабочего конденсатора рассчитывается по формулам для номинального рабочего режима. Но при отличии режима от номинального, например, при пуске баланс обмоток нарушается. Для обеспечения пускового режима на время старта и разгона параллельно рабочему подключается дополнительный пусковой конденсатор, который должен отключаться при выходе на номинальные обороты.

Как включить однофазный асинхронный двигатель

Если не нужен автоматический запуск, асинхронный однофазный двигатель имеет самую простую схему включения. Особенностью этого типа является невозможность автоматического старта.

Для автоматического пуска используется вторая пусковая обмотка как в двухфазном электромоторе. Пусковая обмотка подключается через пусковой конденсатор только для старта и после этого должна быть отключена вручную или автоматически.

Звезда или треугольник. Оптимальное подключение асинхронного электродвигателя | RuAut

Двигатели асинхронного типа имеют целый набор безусловных достоинств. Среди плюсов асинхронных двигателей в первую очередь хочется назвать высокую производительность и надежность их эксплуатации, совсем небольшую стоимость и неприхотливость ремонта и обслуживания двигателя, а также способность переносить достаточно высокие перегрузки механического типа. Все эти достоинства, которыми обладают асинхронные двигатели, обусловлена тем, что данный тип двигателей имеет очень простую конструкцию. Но, не смотря на большое число достоинств, асинхронным двигателям присущи и их определенные отрицательные моменты.

В практической работе принято использовать два основных способа подключения трёхфазных электродвигателей к электросети. Эти способы подключения носят названия: «подключение методом звезды» и «подключение методом треугольника».

Когда выполняется соединение трёхфазного электродвигателя по типу подключения «звезда», тогда соединение концов обмоток статора электродвигателя происходит в одной точке. При этом трехфазное напряжение подают на начала обмоток. Ниже, на рисунке 1, наглядно проиллюстрирована схема подключения асинхронного двигателя «звездой».

Когда выполняется соединение трёхфазного электродвигателя по типу подключения «треугольник», тогда обмотки статора электродвигателя присоединяются последовательно друг за другом. При этом начало последующей обмотки соединяется с концом предыдущей обмотки и так далее. Ниже, на рисунке 2, наглядно проиллюстрирована схема подключения асинхронного двигателя «треугольником».



Если не вдаваться в теоретические и технические основы электротехники, то можно принять на веру тот факт, что работа тех электродвигателей, у которых обмотки подключены по схеме «звезда», является более мягкой и плавной, чем у электродвигателей, обмотки которых соединены по схеме «треугольник». Но тут же стоит обратить внимание на ту особенность, что электродвигатели, обмотки которых подключены по схеме «звезда», не способны развить полную мощность, заявленную в паспортных характеристиках. В том случае, если соединение обмоток выполнено по схеме «треугольник», то электродвигатель работает на максимальную мощность, которая заявлена в техническом паспорте, но при этом имеют место быть очень высокие значения пусковых токов. Если произвести сравнение по мощности, то электродвигатели, чьи обмотки будут соединены по схеме «треугольник», способны выдавать мощность в полтора раза выше, чем те электродвигатели, обмотки которых подключены по схеме «звезда».

Основываясь на всем вышеописанном, для того, чтобы снизить токи при запуске, целесообразно применять подключение обмоток по комбинированной схеме «треугольник-звезда». Особенно такой тип подключения актуален для электродвигателей, обладающих большей мощностью. Таким образом, в связи с соединением по схеме «треугольник- звезда» изначально запуск выполняется по схеме «звезда», а после того, как электродвигатель «набрал обороты», выполняется переключение в автоматическом режиме по схеме «треугольник».

Схема управления электродвигателем представлена на рисунке 3.


Рис. 3 Схема управления 

Еще один вариант схемы управления электродвигателем заключается в следующем (рис. 4).


Рис. 4 Схема управления двигателем

На контакт NC (нормально закрытый) реле времени K1, а также на контакт NC реле K2, в цепи катушки пускателя КЗ, подаётся напряжение питания.

После того, как произойдет включение пускателя КЗ, нормально закрытыми контактами КЗ расцепляются цепи катушки пускателя K2 (запрет случайного включения). Контакт КЗ в цепи питания катушки пускателя K1 замыкается.

Когда запускается магнитный пускатель K1, в цепи питания его катушки замыкаются контакты K1. Реле времени включается в то же самое время, контакт этого реле K1 в цепи катушки пускателя КЗ размыкается. А в цепи катушки пускателя K2 – замыкается.

При отключении обмотки пускателя КЗ, замкнётся контакт КЗ в цепи катушки пускателя K2. После того, как пускатель K2 включится, он размыкает своими контактами K2 цепь питания катушки пускателя КЗ.

Трёхфазное напряжение питания подаётся на начало каждой из обмоток W1, U1 и V1 с помощью силовых контактов пускателя K1. Когда срабатывает магнитный пускатель КЗ, тогда при помощи его контактов КЗ выполняется замыкание, посредством которого между собой соединяются концы каждой из обмоток электродвигателя W2, V2 и U2. Таким образом, выполняется подключение обмоток электродвигателя по схеме соединения «звезда».

Реле времени, объединенное с магнитным пускателем K1, сработает спустя определенное время,. При этом происходит отключение магнитного пускателя КЗ и одновременное включение магнитного пускателя K2. Таким образом силовые контакты пускателя K2 замкнутся и напряжение питания будет подано на концы каждой из обмоток U2, W2 и V2 электродвигателя. Иными словами, электродвигатель включается по схеме подключения «треугольник».

Для того, чтобы электродвигатель запустить по схеме соединения «треугольник-звезда», различные изготовители производят специальные пусковые реле. Данные реле могут носить разнообразные названия, например, реле «старт-дельта» или «пусковое реле времени», а также и некоторые другие. Но назначение всех этих реле заключается в одном и том же.

Типовая схема, выполненная с реле времени, предназначенном для запуска, то есть реле «треугольник-звезда», для осуществления управления запуска трехфазного электродвигателя асинхронного типа представлена на рисунке 5.


Рис.5 Типовая схема с пусковым реле времени (реле «звезда/треугольник») для управления запуском трехфазного асинхронного двигателя.

Итак, подытожим все вышеописанное. Для того, чтобы понизить пусковые токи осуществлять запуск электродвигателя требуется в определенной последовательности, а именно:

  1. сперва электродвигатель запускают на пониженных оборотах соединённым по схеме «звезда»;
  2. затем электродвигатель соединяют по схеме «треугольник».

Первоначальный запуск по схеме «треугольник» создаст максимальный момент, а последующее соединение по схеме «звезда» (для которой в 2 раза меньше пусковой момент) с продолжением работы в номинальном режиме, когда двигатель «набрал обороты», произойдёт переключение на схему соединения «треугольник» в автоматическом режиме. Но не стоит забывать о том, какая нагрузка создается перед запуском на валу, так как вращающий момент при соединении по схеме «звезда» ослаблен. По этой причине маловероятно, что данный метод запуска будет приемлем для электродвигателей с высокой нагрузкой, так как они в таком случае могут потерять свою работоспособность.

Схемы подключения электродвигателя 380 и 220 (фото, видео)

Одним из ключевых моментов, обеспечивающих нормальную работу привода, является правильная схема подключения электродвигателя – ключевого звена цепи. Соблюдение всех соединений гарантирует отсутствие нештатных ситуаций, повреждения обмоток, долговечную работу и прогнозируемую агрегата. Важно понимать, что существуют общепринятые решения для включения эл. моторов одно- и трехфазных (220 и 380 В), с потреблением постоянного/переменного тока, с пускателем и защитой теплового реле, а также специфические схемы, например, моторы с фазным ротором, или П 41, работающие на 110/220 В, выходящие за привычные рамки.

Классические варианты подключения

Большинство эл. моторов для современных электроприводах работают от переменной трехфазной линии (каждая из трех фаз подается отдельным проводником). Соответственно, клеммная коробка содержит выводы (входной и выходной) трех обмоток. Между собой и с сетью они могут соединяться по двух классическим схемам: «звезда» и «треугольник».

Схема подключения Звездой и Треугольником

Для первой характерной особенностью является замыкание концевых выводов каждой катушки в одну точку (на практике это одну нейтраль). На входные вывода между тем подается напряжение сети. Подобная схема характеризуется более мягким ходом, но к сожалению, не позволяет развить полную мощность.

Второй вариант с треугольником характеризуется последовательным соединением выводов обмоток: конец первой соединяется с началом второй и т. д. Такой вариант пуска гарантирует достижение паспортной мощности, но во время включения возможно возникновение больших по значению токов, которые могут термически повредить обмоточные выводы.

Если снять крышку клеммной коробки, то оба варианта подключения будут выглядеть следующим образом:

Применение магнитного контактора

Для организации плавного пуска приходится внедрять в цепь питания специальное коммутирующее устройство – пускатель. Это один из вариантов коннектора, который можно дополнить опциональными элементами, например, тепловым реле. Огромным преимуществом такой схемы является возможность организации не только пуска эл. двигателя, но и его остановки, реверса, а также защиты соединений от повреждения избыточными токами. Кроме того, сердечник или катушка может иметь номинал по напряжению 380 или 220В, что позволяет включать мотор в силовую и бытовую сеть.

Классические электросхемы подключения моторов через пускатель можно разделить на два типа:

  1. Нереверсивная. Соединение агрегата и сети без необходимости/возможности организации его обратного хода. В этом случае есть возможность интеграции, как в силовую, так и бытовую (220В) сеть,

Нереверсивная схема подключения

  1. Реверсивная. Электросхема, которая объединяет два пускателя (блок) с прерывателем цепи. Менять направление вращения роторного узла можно также для силовых и бытовых (220В) сетей.

Реверсивная схема подключения

Как можно судить по иллюстрациям, отличия между «сетевыми» вариантами заключаются в точках подключения выводов контактора:

  • для 380 вольт контакты замыкаются на 2 из 3 фаз,
  • для 220 вольт один из контактов соединяется с крайней фазой, а второй – с нулем.

Тепловое реле

Кроме того, во всех четырех вариантах присутствует элемент, обозначенный, как «Р». Это не что иное, как тепловое реле. Оно подключается в цепь последовательно с катушкой контактора и служит для обеспечения защиты двигателя от превышения токовых нагрузок.

По принципу действия тепловое реле является ключом, то есть при достижении критических для работоспособности агрегата и контактора токовых значений, происходит временный разрыв цепи питания. Некоторые виды теплового реле или «теплушки» используют для цепей постоянного тока или специфических режимах (затянутый пуск, выпадение фазы и т. п).

Постоянное включение магнитного пускателя приводит к механическому износу контактов, чего лишена тиристорная или бесконтактная схема. Разрыв цепи происходит не механическим путем (разведение контактной группы), а электронным – за счет диодных мостов.

Работа устройств со специфической подвижной частью

Привычным вариантом роторного узла трехфазного асинхронного электродвигателя является короткозамкнутый типа «беличья клетка», который набирается из стальных пластин. Когда существует необходимость снизить номинал пусковых токов с возможностью регулирования частоты вращения, тогда используется фазный ротор. Характерной его особенностью являются две группы выводов:

  1. Статорная. Классический клеммный блок, на который подводится напряжение сети (380 или 220В),
  2. Роторная. Дополнительный клеммник для выводов обмоток фазного ротора, к которым подключаются контакты реостата (блока сопротивлений).

Последний необходим для плавного пуска с постепенным включением/отключением отдельных сопротивлений в обмоточной цепи фазного ротора.

Работа ДПТ типа П 41

Электрическая машина, питание которой осуществляется постоянным током 220 В, имеет более сложную конструкцию в сравнении с вышеописанными агрегатами. Специфика работы, например, модели П 41, требует наличия коллекторно-щеточного узла, катушки якоря, вспомогательных полюсов статора (индуктора). Двигатели данного типоразмера модели относятся к машинам с электромагнитным индуктором. То есть, для подключения и пуска П 41 используется не постоянный магниты, а независимая или смешанная обмотка возбуждения на 110 или 220В.

Как можно судить, работа трехфазных (380 В) и однофазных (220 В) машин переменного тока или ДПТ типа П 41 может быть организована самыми разными способами, от классических до специфических, учитывающих реальные условия эксплуатации.

Двигатели постоянного тока

в приложениях дистанционного управления и переключения мощности

Большинство приложений переключения питания или управления предоставляют возможности как ручного, так и дистанционного управления оператором. Для этих функций дистанционного переключения двигатели постоянного тока играют жизненно важную роль в качестве удаленных приводов двигателей. Двумя приложениями дистанционного управления, в которых используются двигатели постоянного тока, являются переключатели цепей на передающих и распределительных подстанциях в коммунальной отрасли и стрелочные переводы рельсов в транспортной отрасли.

Коммутаторы электрических цепей

Коммунальная подстанция — это высоковольтная электрическая установка, которая используется для переключения, подключения или отключения генераторов, оборудования и других цепей в энергосистеме или отключенных от них.Существует четыре типа электрических подстанций: повышающие, понижающие, распределительные и подземные распределительные передающие подстанции. В этих приложениях переключатели цепи используются для переключения напряжения переменного тока до 1100 кВ и напряжения постоянного тока до 500 кВ.

Коммутаторы цепи представляют собой электромеханические узлы, обычно состоящие из подузла прерывателя, разъединителя, датчика неисправностей и защиты и моторного привода. Моторный привод используется для дистанционного переключения или когда функция «разъединителя» интегрирована в комплексный системный монитор и схему работы, такую ​​как система диспетчерского управления и сбора данных (SCADA).”

Мотор-привод обычно представляет собой двигатель постоянного тока с постоянными магнитами (щеточный или бесщеточный), который имеет высокий крутящий момент и крутящий момент. Обычно это двигатель с номиналом NEMA, 48 или 125 В постоянного тока, с характеристиками, которые могут включать шарикоподшипники с постоянной смазкой, защиту от перегрузки и динамическое торможение. Электропривод «может питаться либо от аккумуляторной батареи подстанции, либо через вход от вспомогательного источника переменного тока». Для нескольких операций переключения некоторые моторные приводы «имеют свои собственные внутренние батареи, которые могут питаться от вспомогательного A.Источник C. через зарядное устройство переменного тока в постоянный ток для аварийных операций в случае потери вспомогательного источника питания переменного тока ».

Переключатели железнодорожных путей

Переключение железных дорог является неотъемлемой частью безопасной и нормальной эксплуатации железнодорожных перевозок. Это влечет за собой ручное или дистанционное перемещение стрелочных переводов, которые перемещаются в поперечном направлении из одного положения в другое, чтобы изменить точку железнодорожного узла или подъездную ветку, чтобы железнодорожное движение могло двигаться по запланированному маршруту.

Функция переключения рельсов может выполняться вручную или удаленно.Ручное переключение рельсов выполняется оператором стрелочного перевода, который перемещает рычаг, железнодорожный оператор или ручной насос для изменения положения рельсового пути. Дистанционное управление осуществляется через стрелочный переводчик, которым дистанционно управляет компьютер. Этот компьютерный контроллер может определять, когда поезд находится на рельсовом пути определенной длины, выдавать предупреждающие сигналы и инициировать операцию переключения рельсов путем подачи питания на электродвигатель, который перемещает путь из одного положения в другое. Рельсовый переключатель, приводной двигатель обычно представляет собой бесщеточный двигатель постоянного тока с постоянными магнитами.«Контроллер имеет схему управления для включения и выключения полевых катушек [бесщеточного двигателя постоянного тока] последовательно по мере вращения якоря».

Другой тип стрелочных переводов — электрогидравлический стрелочный перевод. В этом типе используется электрогидравлический блок питания, обеспечивающий перемещение переключаемого рельса. Гидравлический блок питания включает в себя коллектор, регулирующие клапаны, реле давления, насос и электродвигатель постоянного тока. Движущая сила обеспечивается гидравлическим цилиндром, включая датчик положения, который обеспечивает обратную связь для управления движением цилиндра или привода.Этот тип переключения рельсов может питаться от источника постоянного тока, аккумуляторной батареи или солнечных элементов для работы переключателя рельсов даже в отдаленных районах. В случае потери электроэнергии доступен ручной насос для переключения рельса вручную.

Двигатели постоянного тока и шаговые двигатели, используемые в качестве приводов

Электрические двигатели постоянного тока — это исполнительные механизмы непрерывного действия, которые преобразуют электрическую энергию в механическую. Двигатель постоянного тока достигает этого за счет непрерывного углового вращения, которое можно использовать для вращения насосов, вентиляторов, компрессоров, колес и т. Д.

Наряду с обычными ротационными двигателями постоянного тока доступны также линейные двигатели, которые способны производить непрерывное движение футеровки. В основном доступны три типа обычных электродвигателей: двигатели переменного тока, двигатели постоянного тока и шаговые двигатели.

Типичный малый двигатель постоянного тока

Двигатели переменного тока обычно используются в мощных одно- или многофазных промышленных системах, где постоянный крутящий момент и скорость требуются для управления большими нагрузками, такими как вентиляторы или насосы.

В этом руководстве по электродвигателям мы рассмотрим только простые легкие двигатели постоянного тока и Шаговые двигатели , которые используются во многих различных типах электронных схем, схем позиционного управления, микропроцессоров, PIC и роботизированных схем.

Базовый двигатель постоянного тока

Двигатель постоянного тока или двигатель постоянного тока , чтобы дать ему свое полное название, является наиболее часто используемым приводом для обеспечения непрерывного движения, скорость вращения которого можно легко контролировать, что делает его идеальным для использования в приложениях, где регулирование скорости, требуется сервоуправление и / или позиционирование.Двигатель постоянного тока состоит из двух частей: «статора», который является неподвижной частью, и «ротора», который является вращающейся частью. В результате существует три основных типа двигателей постоянного тока.

  • Щеточный двигатель — Этот тип двигателя создает магнитное поле в намотанном роторе (вращающейся части), пропуская электрический ток через коллектор и узел угольной щетки, отсюда и термин «щеточный». Магнитное поле статора (неподвижная часть) создается либо с помощью намотанной обмотки возбуждения статора, либо с помощью постоянных магнитов.Обычно щеточные электродвигатели постоянного тока дешевы, компактны и просты в управлении.
  • Бесщеточный двигатель — Этот тип двигателя создает магнитное поле в роторе с помощью прикрепленных к нему постоянных магнитов, а коммутация осуществляется электронным способом. Как правило, они меньше, но дороже обычных щеточных двигателей постоянного тока, поскольку в статоре используются переключатели с эффектом Холла для обеспечения требуемой последовательности вращения поля статора, но они имеют лучшие характеристики крутящего момента / скорости, более эффективны и имеют более длительный срок службы. чем эквивалентные матовые типы.
  • Серводвигатель
  • — Этот тип двигателя в основном представляет собой щеточный двигатель постоянного тока с некоторой формой позиционного управления с обратной связью, подключенной к валу ротора. Они подключаются к контроллеру типа PWM и управляются им и в основном используются в системах позиционного управления и радиоуправляемых моделях.

Нормальные двигатели постоянного тока имеют почти линейные характеристики: их скорость вращения определяется приложенным напряжением постоянного тока, а их выходной крутящий момент определяется током, протекающим через обмотки двигателя.Скорость вращения любого двигателя постоянного тока может варьироваться от нескольких оборотов в минуту (об / мин) до многих тысяч оборотов в минуту, что делает их пригодными для применения в электронике, автомобилестроении или робототехнике. Соединяя их с коробками передач или зубчатыми передачами, их выходная скорость может быть уменьшена, в то же время увеличивая выходной крутящий момент двигателя на высокой скорости.

«Матовый» двигатель постоянного тока

Обычный щеточный двигатель постоянного тока состоит в основном из двух частей: неподвижного корпуса двигателя, называемого статором , и внутренней части, которая вращается, вызывая движение, называемое ротором или «якорем» для машин постоянного тока.

Двигатель с обмоткой статора представляет собой цепь электромагнита, которая состоит из электрических катушек, соединенных вместе в круговой конфигурации для получения необходимого северного полюса, затем южного полюса, затем северного полюса и т. Д., Типа стационарной системы магнитного поля для вращения, в отличие от машин переменного тока. поле статора которого постоянно вращается с приложенной частотой. Ток, протекающий в этих катушках возбуждения, известен как ток возбуждения двигателя.

Эти электромагнитные катушки, которые образуют поле статора, могут быть электрически соединены последовательно, параллельно или вместе (составные) с якорем двигателя.В двигателе постоянного тока с последовательной обмоткой обмотки возбуждения статора серии соединены с якорем. Аналогичным образом, обмотки возбуждения статора двигателя постоянного тока с шунтовой обмоткой соединены по параллельно с якорем, как показано.

Электродвигатель постоянного тока серии

и шунтирующий двигатель

Ротор или якорь машины постоянного тока состоит из токоведущих проводов, соединенных вместе на одном конце с электрически изолированными медными сегментами, называемыми коммутатором .Коммутатор позволяет выполнять электрическое соединение через угольные щетки (отсюда и название «щеточный двигатель») к внешнему источнику питания во время вращения якоря.

Магнитное поле, устанавливаемое ротором, пытается выровняться со стационарным полем статора, заставляя ротор вращаться вокруг своей оси, но не может выровняться из-за задержек коммутации. Скорость вращения двигателя зависит от силы магнитного поля ротора, и чем больше напряжения приложено к двигателю, тем быстрее будет вращаться ротор.Изменяя это приложенное напряжение постоянного тока, можно также изменять скорость вращения двигателя.

Обычный (щеточный) двигатель постоянного тока

Щеточный электродвигатель постоянного тока с постоянным магнитом (PMDC), как правило, намного меньше и дешевле, чем его аналогичные аналоги электродвигателей постоянного тока с обмоткой статора, поскольку они не имеют обмотки возбуждения. В двигателях постоянного тока с постоянными магнитами (PMDC) эти катушки возбуждения заменены сильными редкоземельными магнитами (например, самарий-коболт или неодим-железо-бор), которые имеют очень высокие магнитные поля.

Использование постоянных магнитов дает двигателю постоянного тока гораздо лучшую линейную характеристику скорости / крутящего момента по сравнению с эквивалентными двигателями с обмоткой из-за постоянного, а иногда и очень сильного магнитного поля, что делает их более подходящими для использования в моделях, робототехнике и сервоприводах.

Хотя щеточные двигатели постоянного тока очень эффективны и дешевы, проблемы, связанные с щеточными двигателями постоянного тока, заключаются в том, что в условиях большой нагрузки между двумя поверхностями коллектора и угольных щеток возникает искрение, что приводит к самогенерированию тепла, короткому сроку службы и электрическому шуму из-за искрение, которое может повредить любое полупроводниковое переключающее устройство, такое как полевой МОП-транзистор или транзистор.Чтобы преодолеть эти недостатки, были разработаны бесщеточные двигатели постоянного тока .

Бесщеточный двигатель постоянного тока

Бесщеточный двигатель постоянного тока (BDCM) очень похож на двигатель постоянного тока с постоянным магнитом, но не имеет щеток, которые необходимо заменить или изнашивать из-за искрения коллектора. Поэтому в роторе выделяется мало тепла, что увеличивает срок службы двигателей. Конструкция бесщеточного двигателя устраняет необходимость в щетках за счет использования более сложной схемы привода, в которой магнитное поле ротора представляет собой постоянный магнит, который всегда синхронизирован с полем статора, что позволяет более точно регулировать скорость и крутящий момент.

Тогда конструкция бесщеточного двигателя постоянного тока очень похожа на двигатель переменного тока, что делает его истинным синхронным двигателем, но одним недостатком является то, что он более дорогой, чем конструкция эквивалентного «щеточного» двигателя.

Управление бесщеточными двигателями постоянного тока сильно отличается от обычного щеточного двигателя постоянного тока, поскольку этот тип двигателя включает в себя некоторые средства для определения углового положения роторов (или магнитных полюсов), необходимых для создания сигналов обратной связи, необходимых для управления полупроводником. коммутационные устройства.Наиболее распространенным датчиком положения / полюса является «датчик эффекта Холла», но в некоторых двигателях также используются оптические датчики.

Используя датчики на эффекте Холла, полярность электромагнитов переключается схемой управления двигателем. Затем двигатель можно легко синхронизировать с цифровым тактовым сигналом, обеспечивая точное управление скоростью. Бесщеточные двигатели постоянного тока могут иметь внешний ротор с постоянными магнитами и статор внутреннего электромагнита или внутренний ротор с постоянными магнитами и статор внешнего электромагнита.

Преимущества бесщеточного двигателя постоянного тока по сравнению с его «щеточным» собратом — это более высокий КПД, высокая надежность, низкий электрический шум, хорошее управление скоростью и, что более важно, отсутствие щеток или коммутатора, которые изнашиваются, обеспечивая гораздо более высокую скорость. Однако их недостаток в том, что они более дорогие и их сложнее контролировать.

Серводвигатель постоянного тока

Серводвигатели постоянного тока используются в приложениях с замкнутым контуром, где положение выходного вала двигателя передается обратно в схему управления двигателем.Типичные устройства позиционной «обратной связи» включают резольверы, энкодеры и потенциометры, которые используются в моделях радиоуправления, таких как самолеты, лодки и т. Д.

Серводвигатель обычно включает в себя встроенный редуктор для снижения скорости и способен напрямую передавать высокие крутящие моменты. Выходной вал серводвигателя не вращается свободно, как валы двигателей постоянного тока, из-за присоединенной коробки передач и устройств обратной связи.

Блок-схема серводвигателя постоянного тока

Серводвигатель состоит из двигателя постоянного тока, редуктора, устройства обратной связи по положению и некоторой формы коррекции ошибок.Скорость или положение регулируются в зависимости от входного сигнала положения или опорного сигнала, подаваемого на устройство.

Серводвигатель с дистанционным управлением

Усилитель обнаружения ошибок смотрит на этот входной сигнал и сравнивает его с сигналом обратной связи от выходного вала двигателя и определяет, находится ли выходной вал двигателя в состоянии ошибки, и, если это так, контроллер вносит соответствующие корректировки, либо ускоряя двигатель, либо замедляя это. Эта реакция на устройство обратной связи по положению означает, что серводвигатель работает в «замкнутой системе».

Помимо крупных промышленных приложений, серводвигатели также используются в небольших моделях дистанционного управления и робототехнике, при этом большинство серводвигателей могут вращаться примерно на 180 градусов в обоих направлениях, что делает их идеальными для точного углового позиционирования. Однако эти сервоприводы RC-типа не могут постоянно вращаться с высокой скоростью, как обычные двигатели постоянного тока, если не будут внесены специальные изменения.

Серводвигатель состоит из нескольких устройств в одном корпусе, двигателя, коробки передач, устройства обратной связи и коррекции ошибок для управления положением, направлением или скоростью.Они широко используются в робототехнике и небольших моделях, поскольку ими легко управлять с помощью всего трех проводов: Power , Ground и Signal Control .

Коммутация и управление двигателями постоянного тока

Малые двигатели постоянного тока могут быть включены или выключены с помощью переключателей, реле, транзисторов или цепей MOSFET, причем простейшей формой управления двигателем является «линейное» управление. Этот тип схемы использует биполярный транзистор в качестве переключателя (транзистор Дарлингтона также может использоваться, если требуется более высокий номинальный ток) для управления двигателем от одного источника питания.

Изменяя величину базового тока, протекающего в транзистор, можно управлять скоростью двигателя, например, если транзистор включен «наполовину», то только половина напряжения питания поступает на двигатель. Если транзистор включен «полностью» (насыщен), то все напряжение питания поступает на двигатель, и он вращается быстрее. Затем для этого линейного типа управления мощность постоянно подается на двигатель, как показано ниже.

Контроль скорости двигателя

Простая схема переключения выше показывает схему для однонаправленной цепи (только в одном направлении) управления скоростью двигателя.Поскольку скорость вращения двигателя постоянного тока пропорциональна напряжению на его выводах, мы можем регулировать это напряжение на выводах с помощью транзистора.

Два транзистора соединены как пара Дарлингтона для управления основным током якоря двигателя. Потенциометр 5 кОм используется для управления величиной базового возбуждения первого контрольного транзистора TR 1 , который, в свою очередь, управляет главным переключающим транзистором TR 2 , позволяя изменять постоянное напряжение двигателя от нуля до Vcc, в этом случае например от 9 до 12 вольт.

Дополнительные диоды маховика подключаются к переключающему транзистору TR 2 и клеммам двигателя для защиты от любой обратной ЭДС, генерируемой двигателем при его вращении. Регулируемый потенциометр может быть заменен сигналом непрерывной логической «1» или логического «0», подаваемым непосредственно на вход схемы для включения двигателя «полностью» (насыщение) или «полностью выключено» (отключение) соответственно. от порта микроконтроллера или ПОС.

Помимо этого базового управления скоростью, та же схема может также использоваться для управления скоростью вращения двигателей.Путем многократного переключения тока двигателя в положение «ВКЛ» и «ВЫКЛ» с достаточно высокой частотой, скорость двигателя можно изменять между неподвижным (0 об / мин) и полной скоростью (100%), изменяя отношение метки к промежутку его поставлять. Это достигается изменением пропорции времени «ВКЛ» (t ON ) к времени «ВЫКЛ» (t OFF ), и это может быть достигнуто с использованием процесса, известного как широтно-импульсная модуляция.

Контроль скорости по ширине импульса

Ранее мы говорили, что скорость вращения двигателя постоянного тока прямо пропорциональна среднему (среднему) значению напряжения на его выводах, и чем выше это значение, вплоть до максимально допустимого напряжения двигателя, тем быстрее двигатель будет вращаться.Другими словами, больше напряжения — больше скорость. Путем изменения соотношения между продолжительностью времени «ВКЛ» (t , ВКЛ ) и длительностью «ВЫКЛ» (t ВЫКЛ ), называемой «Коэффициент заполнения», «Соотношение метки / пространства» или «Рабочий цикл», среднее значение напряжения двигателя и, следовательно, его скорость вращения можно изменять. Для простых униполярных приводов коэффициент заполнения β задается как:

, а среднее выходное напряжение постоянного тока, подаваемое на двигатель, определяется как: Vmean = β x Vsupply. Затем, изменяя ширину импульса a, можно управлять напряжением двигателя и, следовательно, мощностью, подаваемой на двигатель, и этот тип управления называется широтно-импульсной модуляцией или PWM .

Другим способом управления скоростью вращения двигателя является изменение частоты (и, следовательно, периода времени управляющего напряжения), при этом продолжительности включения и выключения остаются постоянными. Этот тип управления называется частотно-импульсной модуляцией или PFM .

При частотно-импульсной модуляции напряжение двигателя регулируется путем подачи импульсов переменной частоты, например, с низкой частотой или с очень небольшим количеством импульсов, среднее напряжение, подаваемое на двигатель, низкое, и поэтому скорость двигателя низкая.При более высокой частоте или при большом количестве импульсов среднее напряжение на клеммах двигателя увеличивается, а также увеличивается скорость двигателя.

Затем транзисторы могут использоваться для управления мощностью, подаваемой на двигатель постоянного тока, с режимом работы, являющимся либо «линейным» (изменение напряжения двигателя), либо «широтно-импульсной модуляцией» (изменение ширины импульса) или «импульсным Частотная модуляция »(изменение частоты импульса).

Изменение направления двигателя постоянного тока

Хотя управление скоростью двигателя постоянного тока с помощью одного транзистора имеет много преимуществ, оно также имеет один главный недостаток: направление вращения всегда одно и то же, это «однонаправленная» схема.Во многих приложениях нам нужно управлять двигателем в обоих направлениях — вперед и назад.

Для управления направлением двигателя постоянного тока полярность мощности постоянного тока, подаваемой на соединения двигателя, должна быть изменена на обратную, позволяя его валу вращаться в противоположном направлении. Один очень простой и дешевый способ контролировать направление вращения двигателя постоянного тока — использовать различные переключатели, расположенные следующим образом:

Управление направлением двигателя постоянного тока

В первой цепи используется одинарный двухполюсный двухпозиционный переключатель (DPDT) для управления полярностью соединений двигателей.При переключении контактов питание на клеммы двигателя меняется на противоположное, и двигатель меняет направление. Вторая схема немного сложнее и использует четыре однополюсных однонаправленных переключателя (SPST), расположенных по схеме «H».

Механические переключатели расположены в парах переключения и должны работать в определенной комбинации, чтобы приводить в действие или останавливать двигатель постоянного тока. Например, комбинация переключателей A + D управляет вращением вперед, а переключатели B + C управляют вращением назад, как показано.Комбинации переключателей A + B или C + D закорачивают клеммы двигателя, вызывая его быстрое торможение. Однако использование переключателей таким образом сопряжено с опасностями, поскольку рабочие переключатели A + C или B + D вместе вызвали бы короткое замыкание источника питания.

Хотя две приведенные выше схемы будут очень хорошо работать для большинства небольших двигателей постоянного тока, действительно ли мы хотим использовать различные комбинации механических переключателей только для изменения направления двигателя, НЕТ !. Мы могли бы изменить ручные переключатели для набора электромеханических реле и иметь одну кнопку или переключатель прямого / обратного хода или даже использовать четырехконтактный твердотельный двусторонний переключатель CMOS 4066B.

Но еще один очень хороший способ добиться двунаправленного управления двигателем (а также его скоростью) — это подключить двигатель к схеме типа Н-образного моста транзистора , как показано ниже.

Базовая двунаправленная H-мостовая схема

Н-мостовая схема , приведенная выше, названа так потому, что базовая конфигурация четырех переключателей, либо электромеханических реле, либо транзисторов, напоминает конфигурацию буквы «H» с двигателем, расположенным на центральной планке.H-мост на транзисторах или полевых МОП-транзисторах, вероятно, является одним из наиболее часто используемых типов двунаправленных схем управления двигателем постоянного тока. Он использует «комплементарные пары транзисторов» как NPN, так и PNP в каждой ветви, при этом транзисторы переключаются попарно для управления двигателем.

Управляющий вход A управляет двигателем в одном направлении, т. Е. Вращением вперед, в то время как вход B управляет двигателем в другом направлении, т. Е. Вращением в обратном направлении. Затем переключение транзисторов в положение «ВКЛ» или «ВЫКЛ» в их «диагональных парах» приводит к направленному управлению двигателем.

Например, когда транзистор TR1 находится в состоянии «ВКЛ», а транзистор TR2 в положении «ВЫКЛ», точка A подключена к напряжению питания (+ Vcc), и если транзистор TR3 находится в состоянии «ВЫКЛ», а транзистор TR4 «ВКЛ», точка B. до 0 вольт (GND). Затем двигатель будет вращаться в одном направлении, соответствующем положительной клемме A двигателя и отрицательной клемме B двигателя.

Если состояния переключения меняются местами, так что TR1 находится в положении «ВЫКЛ», TR2 в положении «ВКЛ», TR3 в положении «ВКЛ» и TR4 в положении «ВЫКЛ», ток двигателя теперь будет течь в противоположном направлении, заставляя двигатель вращаться в противоположное направление.

Затем, применяя противоположные логические уровни «1» или «0» ко входам A и B, можно управлять направлением вращения двигателей следующим образом.

Таблица истинности H-моста

Вход A Вход B Функция двигателя
TR1 и TR4 TR2 и TR3
0 0 Двигатель остановлен (ВЫКЛ)
1 0 Мотор вращается вперед
0 1 Мотор вращается в обратном направлении
1 1 НЕ РАЗРЕШЕНО

Важно, чтобы никакая другая комбинация входов не допускалась, так как это может вызвать короткое замыкание источника питания, т.е. оба транзистора, TR1 и TR2, будут включены одновременно (предохранитель = взрыв!).

Как и в случае однонаправленного управления двигателем постоянного тока, как показано выше, скорость вращения двигателя также можно контролировать с помощью широтно-импульсной модуляции или ШИМ. Затем, комбинируя переключение H-моста с ШИМ-управлением, можно точно контролировать как направление, так и скорость двигателя.

Коммерческие готовые микросхемы декодеров, такие как микросхема с четырьмя полумостами SN754410 или L298N, имеющая 2 Н-моста, доступны со всеми необходимыми встроенными логическими схемами управления и безопасности, специально разработаны для управления двигателем с двухсторонним мостом схемы.

Шаговый двигатель постоянного тока

Подобно двигателю постоянного тока, описанному выше, шаговые двигатели также являются электромеханическими приводами, которые преобразуют импульсный цифровой входной сигнал в дискретное (инкрементное) механическое движение, широко используемое в промышленных системах управления. Шаговый двигатель — это тип синхронного бесщеточного двигателя, в котором он не имеет якоря с коллектором и угольными щетками, но имеет ротор, состоящий из многих, некоторые типы имеют сотни постоянных магнитных зубцов и статор с отдельными обмотками.

Шаговый двигатель

Как следует из названия, шаговый двигатель не вращается непрерывно, как обычный двигатель постоянного тока, а движется дискретными «шагами» или «приращениями», причем угол каждого вращательного движения или шага зависит от количества полюсов статора и зубья ротора шагового двигателя.

Поскольку шаговые двигатели работают с дискретным шагом, их можно легко вращать на конечную долю оборота за один раз, например, 1,8, 3,6, 7,5 градуса и т. Д.Так, например, предположим, что шаговый двигатель совершает один полный оборот (360 o ровно за 100 шагов.

Тогда угол шага двигателя определяется как 360 градусов / 100 шагов = 3,6 градуса на шаг. Это значение обычно известно как шаговые двигатели , Угол шага .

Существует три основных типа шаговых двигателей: с переменным сопротивлением , постоянный магнит и гибридный (своего рода комбинация обоих). Шаговый двигатель особенно хорошо подходит для приложений, требующих точного позиционирования и повторяемости с быстрой реакцией на запуск, остановку, реверсирование и управление скоростью, а еще одной ключевой особенностью шагового двигателя является его способность удерживать нагрузку стабильно, когда это необходимо. позиция достигнута.

Обычно шаговые двигатели имеют внутренний ротор с большим количеством «зубцов» постоянного магнита с рядом «зубцов» электромагнита, установленных на статоре. Электромагниты статоров поляризованы и деполяризованы последовательно, заставляя ротор вращаться на один «шаг» за раз.

Современные многополюсные шаговые двигатели с несколькими зубьями способны обеспечивать точность менее 0,9 градуса на шаг (400 импульсов на оборот) и в основном используются для высокоточных систем позиционирования, подобных тем, которые используются для магнитных головок в дисководах гибких / жестких дисков. , принтеры / плоттеры или роботизированные приложения.Наиболее часто используемый шаговый двигатель — это шаговый двигатель с 200 шагами на оборот. Он имеет ротор с 50 зубьями, 4-фазный статор и угол шага 1,8 градуса (360 градусов / (50 × 4)).

Конструкция и управление шаговым двигателем

В нашем простом примере шагового двигателя с регулируемым сопротивлением, приведенном выше, двигатель состоит из центрального ротора, окруженного четырьмя катушками электромагнитного поля, обозначенными A, B, C и D. Все катушки с одной и той же буквой соединены вместе, так что подача питания, скажем, катушки, помеченные буквой A, заставят магнитный ротор выровняться с этим набором катушек.

Подавая мощность на каждый набор катушек по очереди, ротор можно заставить вращаться или «шагать» из одного положения в другое на угол, определяемый его конструкцией угла шага, и путем последовательного включения катушек ротор будет производить вращательное движение.

Драйвер шагового двигателя управляет как углом шага, так и скоростью двигателя, запитывая катушки возбуждения в заданной последовательности, например, «ADCB, ADCB, ADCB, A…» и т. Д., Ротор будет вращаться в одном направлении (вперед) и при изменении последовательности импульсов на «ABCD, ABCD, ABCD, A…» и т. д. ротор будет вращаться в противоположном направлении (в обратном направлении).

Итак, в нашем простом примере, приведенном выше, шаговый двигатель имеет четыре катушки, что делает его четырехфазным двигателем с числом полюсов на статоре, равным восьми (2 x 4), которые разнесены с интервалом 45 градусов. На роторе шесть зубьев, разнесенных на 60 градусов.

Тогда есть 24 возможных положения (6 зубцов x 4 витка) или «ступеней», чтобы ротор совершил один полный оборот. Следовательно, указанный выше угол ступени задается как: 360 o /24 = 15 o .

Очевидно, что чем больше зубцов ротора и / или обмоток статора, тем больше контроль и меньший угол шага. Также при соединении электрических катушек двигателя в различных конфигурациях возможны углы полного, половинного и микрошага. Однако для достижения микрошагового режима шаговый двигатель должен приводиться в действие (квази) синусоидальным током, реализация которого требует больших затрат.

Также можно управлять скоростью вращения шагового двигателя, изменяя временную задержку между цифровыми импульсами, подаваемыми на катушки (частоту), чем больше задержка, тем меньше скорость на один полный оборот.Подавая на двигатель фиксированное количество импульсов, вал двигателя будет вращаться на заданный угол.

Преимущество использования импульсов с задержкой по времени состоит в том, что не потребуется никакой дополнительной обратной связи, поскольку при подсчете количества импульсов, подаваемых на двигатель, будет точно известно конечное положение ротора. Эта реакция на заданное количество входных цифровых импульсов позволяет шаговому двигателю работать в «системе разомкнутого контура», что упрощает и удешевляет управление.

Например, предположим, что наш шаговый двигатель выше имеет угол шага 3,6 градуса на шаг. Чтобы повернуть двигатель на угол, скажем, 216 градусов, а затем снова остановиться в требуемом положении, потребуется всего: 216 градусов / (3,6 градуса / шаг) = 80 импульсов, приложенных к катушкам статора.

Существует множество ИС контроллеров шаговых двигателей, которые могут управлять скоростью шага, скоростью вращения и направлением двигателей. Одной из таких микросхем контроллера является SAA1027, которая имеет все необходимые встроенные счетчики и преобразователи кода и может автоматически управлять 4 полностью управляемыми выходами моста на двигатель в правильной последовательности.

Направление вращения также можно выбрать вместе с пошаговым режимом или непрерывным (бесступенчатым) вращением в выбранном направлении, но это накладывает некоторую нагрузку на контроллер. При использовании 8-битного цифрового контроллера также возможно 256 микрошагов на шаг

SAA1027 Микросхема управления шаговым двигателем

В этом руководстве о поворотных приводах мы рассмотрели щеточный и бесщеточный двигатель постоянного тока , серводвигатель постоянного тока и шаговый двигатель в качестве электромеханического привода, который можно использовать в качестве выходного устройства для позиционного управления или регулирования скорости. .

В следующем руководстве по устройствам ввода / вывода мы продолжим рассмотрение устройств вывода, называемых активаторами , и, в частности, одного устройства, которое снова преобразует электрический сигнал в звуковые волны с помощью электромагнетизма. Тип устройства вывода, который мы рассмотрим в следующем уроке, — это громкоговоритель.

Motors, Motor Circuits and Controllers, Part II: Article 430

Требования к двигателям, компонентам двигателей и контроллерам можно найти в ряде статей Национального электрического кодекса (NEC), но статья 430 конкретно касается двигателей, отрасли двигателей: цепи и фидерные провода и их защита, защита двигателя от перегрузки, цепи управления двигателем, контроллеры двигателей и центры управления двигателями (MCC) [430.1].

В то время как некоторые термины, относящиеся к двигателям, определены в 430.2, Статья 100 определяет другие термины, относящиеся к двигателям, и указывает причину этого в ее объеме. В целом, статья 100 определяет термины, используемые только в двух или более статьях.

Статья 100 определяет эти семь терминов, относящихся к двигателям: привод с регулируемой скоростью, система приводов с регулируемой скоростью, цепь управления, центр управления двигателем, переключатель управления двигателем, тепловая защита (применительно к двигателям) и термическая защита (применительно к двигателям).В статье 430 эти термины не определяются, поскольку они используются по крайней мере в одной дополнительной статье. Согласно Статье 100, MCC — это сборка из одной или нескольких закрытых секций, имеющих общую шину питания и в основном содержащих блоки управления двигателями (см. Рисунок 1).

Статья 430 определяет четыре термина, относящиеся к двигателям: «контроллер», «двигатели с частичной обмоткой», «оборудование для отключения системы» и «узлы двигателя с приводом клапана (VAM)».

Интересно, что и статья 100, и статья 430 определяют «контролер.В Статье 100 контроллер определяется как устройство или группа устройств, которые служат для управления некоторым заранее определенным образом электрической мощностью, подаваемой на устройство, к которому он подключен. «Контроллер» встречается в Кодексе более 500 раз. При использовании в Статье 430 применимо определение из 430.2. Для целей статьи 430 контроллер — это любой переключатель или устройство, которое обычно используется для запуска и остановки двигателя путем включения и отключения тока в цепи двигателя [430.2].

Вместо термина «контроллер» в Кодексе также используется термин «контроллер двигателя».«Определение« контроллер »в 430.2 также применимо к« контроллеру двигателя ». В то время как NEC использует термины «контроллер» или «контроллер двигателя», в данной области обычно используются термины «стартер» или «пускатель двигателя».

Требования к контроллерам двигателей указаны в статье 430 части VII; соответствующие разделы — с 430.81 по 430.90. В соответствии с 430.82 (C) контроллер двигателя для стационарных двигателей мощностью 2 лошадиных силы (л.с.) или меньше и 300 В (В) или меньше может быть переключателем общего назначения или переключателем общего назначения с мгновенным переключением при определенных условиях.Согласно Статье 100, выключатель общего назначения предназначен для использования в общих распределительных и распределительных цепях. Он рассчитан в амперах (A) и способен отключать номинальный ток при номинальном напряжении. В полевых условиях выключатель общего назначения обычно называют «разъединителем», «разъединителем» или «предохранительным выключателем». Статья 100 определяет мгновенные переключатели общего назначения как форму переключателей общего назначения, сконструированных таким образом, чтобы их можно было устанавливать в коробках устройств или на крышках коробок или иным образом использовать в сочетании с системами электропроводки, признанными NEC.Требования к обоим типам переключателей указаны в статье 404.

Если в качестве контроллера мотора установлен выключатель общего назначения или мгновенный выключатель общего назначения, он должен иметь номинальный ток, как указано в 430,82 (C). Для некоторых двигателей контроллер двигателя может быть выключателем общего назначения (разъединителем), если номинальный ток разъединителя как минимум в два раза превышает номинальный ток полной нагрузки (FLC) двигателя [430,82 (C) (1)].

Например, разъединитель или предохранительный выключатель будет установлен в качестве контроллера двигателя для стационарных двигателей мощностью 2 л.с. или меньше и 300 В или меньше.Этот разъединитель будет иметь номинальный ток 30 А. Максимальный ток FLC двигателя, допустимый для этого разъединителя, составляет 15 А (30 ÷ 2 = 15).

Для некоторых двигателей в цепях переменного тока (AC) контроллер двигателя также может быть универсальным переключателем мгновенного действия, если переключатель подходит только для использования на переменном токе (не переключатели постоянного / переменного тока общего назначения) и если двигатель FLC номинальный ток не превышает 80 процентов от номинального тока коммутатора [430,82 (C) (2)].

Например, мгновенный выключатель переменного тока общего назначения будет установлен в качестве контроллера двигателя для стационарного двигателя мощностью 2 л.с. или менее и 300 В или менее.Этот универсальный мгновенный переключатель переменного тока будет иметь номинальный ток 20 А. Максимальный ток FLC двигателя, разрешенный для этого переключателя, составляет 16 А (20 × 80 процентов = 16) (см. Рисунок 2).

Контроллеры двигателей

также могут быть пускателями двигателей, комбинированными пускателями двигателей, ручными пускателями двигателей, автоматическими выключателями с обратнозависимой выдержкой времени и выключателями в литом корпусе. Контроллер мотора должен иметь номинальные характеристики, указанные в 430,83 (A), если иное не разрешено в пунктах 430.83 (B) или (C) или как указано в (D), при определенных условиях. В соответствии с положениями 430,83 (A) (1), контроллеры, кроме автоматических выключателей с обратнозависимой выдержкой времени и переключателей в литом корпусе, должны иметь номинальную мощность в лошадиных силах при напряжении приложения не ниже, чем мощность двигателя.

Некоторые пускатели двигателей имеют выключатель, например выключатель. Статья 100 определяет «выключатель цепи двигателя» как выключатель с номинальной мощностью, который способен отключать максимальный рабочий ток перегрузки двигателя той же мощности, что и выключатель, при номинальном напряжении. В соответствии с 404.13 (D), выключатели цепи двигателя должны быть ножевого типа (см. Рисунок 3).

Промышленная панель управления — это элемент оборудования, который довольно часто используется с двигателями.Согласно Статье 100 промышленная панель управления представляет собой сборку из двух или более компонентов, состоящих из одного из следующих компонентов: (1) только компоненты силовой цепи, такие как контроллеры двигателей, реле перегрузки, разъединители с предохранителями и автоматические выключатели; (2) только компоненты цепи управления, такие как кнопки, контрольные лампы, селекторные переключатели, таймеры, переключатели и реле управления; (3) комбинация компонентов цепи питания и управления. Эти компоненты вместе с соответствующей проводкой и клеммами монтируются на корпусе, содержатся внутри него или монтируются на субпанели.

Определение продолжается, заявляя, что промышленная панель управления не включает управляемое оборудование. Хотя промышленные панели управления могут содержать оборудование (например, контроллеры двигателей), указанное в статье 430, сама промышленная панель управления не упоминается в статье 430. Статья 409 охватывает промышленные панели управления, предназначенные для общего использования и работающие при напряжении 1000 В или ниже ( см. рисунок 4).

Некоторые двигатели и контроллеры не только должны соответствовать применимым положениям статьи 430, но также должны соответствовать применимым положениям другой статьи.Таблица 430.5 помогает определить, нужно ли будет искать дополнительные требования в другой статье из-за типа двигателя, моторного оборудования или типа людей.

Например, снаружи будет установлен кондиционер. Эта установка будет иметь мотор-компрессор и мотор-вентилятор конденсатора. Чтобы узнать, нужно ли искать дополнительные положения в другой статье, изучите Таблицу 430.5. Верхняя строка в таблице 430.5 показывает, что оборудование для кондиционирования воздуха и холодильное оборудование должно соответствовать применимым положениям статьи 440.Следовательно, двигатели в оборудовании для кондиционирования воздуха и холодильном оборудовании должны соответствовать применимым положениям статей 430 и 440. Положения статьи 440 применяются к оборудованию для кондиционирования воздуха и холодильному оборудованию с приводом от электродвигателя, а также к параллельным цепям и контроллерам такого оборудования.

Статья 440 также предусматривает особые соображения для контуров питания герметичных мотор-компрессоров хладагента и для любого оборудования для кондиционирования воздуха или холодильного оборудования, которое питается от параллельной цепи, которая питает герметичный мотор-компрессор хладагента.

В колонке следующего месяца продолжается обсуждение требований к двигателям, цепям двигателей и контроллерам.

Переключатели и кнопки — базовое управление двигателем

Нажмите кнопку воспроизведения на следующем аудиоплеере, чтобы слушать, как вы читаете этот раздел.

Это одни из самых основных устройств управления, которые мы используем для запуска и остановки наших двигателей. Они могут быть снабжены предохранителями для максимальной токовой защиты , и если переключатель рассчитан на мощность в лошадиных силах, он предназначен для включения и отключения линейного тока двигателя.

Кнопки

Кнопки являются мгновенными контактами , которые доступны как нормально разомкнутые (NO) или нормально замкнутые (NC) контакты , хотя многие кнопки поставляются как с нормально разомкнутыми, так и с нормально замкнутыми контактами.

Когда вы нажимаете кнопку, вы меняете состояние контактов, а когда вы отпускаете кнопку, пружина возвращает контакты в исходное состояние.

Идеально подходят для использования в низковольтных цепях управления .

Кнопки

Переключатели

Переключатели

идентифицируются по количеству проводов (полюсов), к которым они подключаются, и количеству позиций (ходов), в которые они могут переключаться. Выключатели также рассчитаны на напряжение и мощность и должны эксплуатироваться в допустимых пределах.

Однополюсный, одноходовой (SPST)

Этот переключатель используется там, где нам нужно отключить только одну линию в однофазном источнике питания 120 В, при условии, что он подключен к незаземленному проводнику.

Однополюсный, двухходовой (SPDT)

Этот переключатель соединяет однолинейный провод с любой из двух возможных ножек переключателя. Типичным примером этого является трехходовой контур переключателя, который позволяет управлять одной нагрузкой (обычно светом) из двух разных мест.

В промышленных условиях он обычно используется как селекторный переключатель «Hand — Off — Auto».

Однополюсный, двухходовой

Двухполюсный, двухходовой (DPDT)

Чаще всего эти устройства используются в качестве 4-позиционного переключателя, который используется в предположении с двумя трехпозиционными переключателями для обеспечения управления из трех или более мест.Как правило, светом можно управлять из любого количества мест, при условии, что вы начинаете и заканчиваете переключение с помощью трехпозиционных переключателей и используете столько четырехпозиционных переключателей между ними, сколько необходимо.

Двухполюсный, двухходовой

Двухполюсный, одноходовой (DPST)

Этот выключатель снаружи выглядит как стандартный выключатель SPST, но внутри, вместо того, чтобы отключать только один проводник с током, он размыкает два. Это делает его пригодным для управления и отключения нагрузок, работающих от однофазной сети 240 В.

Трехполюсный, одноходовой (3PST)

Они используются для прерывания тока в трехфазных цепях и двигателях. С помощью одной внешней ручки можно одновременно открывать или закрывать три токоведущих провода. Выключатели часто поставляются с корпусом для установки предохранителей для защиты от перегрузки по току. Переключатель должен быть рассчитан на мощность в лошадиных силах, если он используется для отключения тока двигателя.

Изолирующий выключатель

Изолирующий выключатель подключен перед силовой цепью и НЕ рассчитан на мощность в лошадиных силах, и поэтому он не предназначен для прерывания протекания тока.Изолирующие выключатели не предназначены для управления нагрузкой двигателя. Скорее, как только двигатель был должным образом отключен, для блокировки можно использовать изолирующий выключатель. Изолирующий выключатель может иметь любое количество полюсных контактов, но для использования в целях блокировки он должен обеспечивать только одно переключение.

Как работают электродвигатели?

Криса Вудфорда. Последнее изменение: 25 июля 2020 г.

Щелкните выключателем и мгновенно получите власть — как бы любили наши предки электродвигатели! Вы можете найти их во всем, начиная с электропоезда с дистанционным управлением автомобили — и вы можете быть удивлены, насколько они распространены.Сколько электрических моторы сейчас есть в комнате с тобой? Наверное, два в вашем компьютере для начала, один круто ездить, а еще один питает охлаждающий вентилятор. Если вы сидите в спальне, вы найдете моторы в фенах и многих других игрушки; в ванной — вытяжки и электробритвы; На кухне моторы есть практически во всех приборах, от стиральных и посудомоечных машин до кофемолок, микроволновых печей и электрических консервных ножей.Электродвигатели зарекомендовали себя среди лучших изобретения всех времен. Давайте разберемся и узнаем, как они работай!

Фото: Даже небольшие электродвигатели на удивление тяжелые. Это потому, что они набиты туго намотанной медью и тяжелыми магнитами. Это мотор от старой электрической газонокосилки. Вещь медного цвета в сторону В передней части оси с прорезями находится коммутатор, удерживающий двигатель вращение в том же направлении (как описано ниже).

Как электромагнетизм заставляет двигатель двигаться?

Основная идея электродвигателя очень проста: вы помещаете в него электричество с одного конца, а ось (металлический стержень) вращается на другом конце, давая вам возможность управлять машина какая то. Как это работает на практике? Как именно ваш преобразовать электричество в движение? Чтобы найти ответ на этот вопрос, у нас есть вернуться во времени почти на 200 лет.

Предположим, вы берете кусок обычного провода, превращаете его в большую петлю, и положите его между полюсами мощной постоянной подковы магнит.Теперь, если вы подключите два конца провода к батарее, провод будет прыгать кратко. Удивительно, когда видишь это впервые. Это прямо как по волшебству! Но есть совершенно научный объяснение. Когда электрический ток начинает течь по проводу, он создает магнитное поле вокруг него. Если разместить провод рядом с постоянным магнит, это временное магнитное поле взаимодействует с постоянным поле магнита. Вы знаете, что два магнита расположены рядом друг с другом. либо притягивать, либо отталкивать.Таким же образом временный магнетизм вокруг провода притягивает или отталкивает постоянный магнетизм от магнит, и это то, что заставляет проволоку подпрыгивать.

Правило левой руки Флеминга

Вы можете определить направление, в котором будет прыгать провод, используя удобная мнемоника (вспомогательная память), называемая правилом левой руки Флеминга (иногда называется Motor Rule).

Вытяните большой, указательный и второй пальцы левой руки. рука так, чтобы все три были под прямым углом.Если вы укажете вторым пальцем в направлении Течения (который течет от положительного к положительному отрицательная клемма АКБ), а Первая палец в направление поля (которое течет с севера на южный полюс магнит), ваш thuMb будет показать направление, в котором провод Движется.

Это …

  • Первый палец = Поле
  • SeCond палец = текущий
  • ЧтМб = Движение

Несколько слов о текущем

Если вас смущает то, что я говорю, что ток течет с положительного на отрицательный, это просто историческая конвенция.Такие люди, как Бенджамин Франклин, помогли разобраться тайна электричества еще в 18 веке, считали, что это поток положительных зарядов, так что она перетекала с положительного на отрицательный. Мы называем эту идею условным током. и до сих пор используют его в таких вещах, как правило левой руки Флеминга. Теперь у нас есть лучшие идеи о том, как электричество работает, мы склонны говорить о токе как о потоке электронов от отрицательного к положительному в направлении , противоположном направлению по отношению к обычному току.Когда вы пытаетесь вычислить вращение двигателя или генератора, обязательно помните, что ток означает условный ток , а не поток электронов.

Как работает электродвигатель — теоретически

Фото: Электрик ремонтирует электродвигатель. на борту авианосца. Блестящий металл, который он использует, может выглядеть как золото, но на самом деле это медь, хороший проводник, который намного дешевле. Фото Джейсона Якобовица любезно предоставлено ВМС США.

Связь между электричеством, магнетизмом и движением изначально была открыт в 1820 году французским физиком Андре-Мари Ампер (1775–1867), и это фундаментальная наука, лежащая в основе электродвигателя. Но если мы хотим превратить это удивительное научное открытие в более практическое Немного технологий для питания наших электрических косилок и зубных щеток, мы должны пойти немного дальше. Изобретателями, которые сделали это, были англичане Майкл Фарадей (1791–1867). и Уильям Стерджен (1783–1850) и американец Джозеф Генри (1797–1878).Вот как они пришли к своему гениальному изобретению.

Предположим, мы сгибаем нашу проволоку в квадратную U-образную петлю, так что эффективно два параллельных провода, проходящие через магнитное поле. Один из них отводит электрический ток от нас по проводам, а другой один возвращает ток обратно. Поскольку ток течет в в противоположных направлениях проводов, Правило левой руки Флеминга говорит нам о том, что два провода будут двигаться в противоположных направлениях. Другими словами, когда мы включите электричество, один из проводов двинется вверх и другой будет двигаться вниз.

Если бы катушка с проволокой могла продолжать двигаться вот так, она бы вращалась непрерывно — и мы будем на пути к созданию электрического мотор. Но этого не может произойти с нашей нынешней настройкой: провода будут быстро запутаться. Не только это, но если бы катушка могла вращаться далеко хватит, что-нибудь еще случится. Как только катушка достигла вертикали положение, он перевернется, и электрический ток будет течь через него в противоположном направлении. Теперь силы на каждого сторона катушки перевернется.Вместо непрерывного вращения в в том же направлении, он двинется назад в том же направлении, в котором только что пришел! Представьте себе электропоезд с таким двигателем: он будет держать перетасовки назад и вперед на месте, даже не идя где угодно.

Как работает электродвигатель — на практике

Есть два способа решить эту проблему. Один из них — использовать своего рода электрический ток, который периодически меняет направление, что известно как переменный ток (AC). В виде небольших батарейных двигатели, которые мы используем дома, лучшее решение — добавить компонент назвал коммутатором концы катушки.(Не беспокойтесь о бессмысленных технических имя: это немного старомодное слово «коммутация» немного похоже на слово «добираться до работы». Это просто означает изменение взад и вперед в одном и том же путь, который ездит на работу, означает путешествовать туда и обратно.) В своей простейшей форме Коммутатор представляет собой металлическое кольцо, разделенное на две отдельные половины и его задача — реверсировать электрический ток в катушке каждый раз, когда катушка вращается на пол-оборота. Один конец катушки прикреплен к каждая половина коммутатора. Электрический ток от аккумулятора подключается к электрическим клеммам двигателя.Они подают электроэнергию в коммутатор через пару незакрепленных разъемы, называемые щетками, сделали либо из кусочков графита (мягкий уголь, похожий на карандаш «свинец») или тонкие отрезки упругого металла, который (как название предполагает) «задела» коммутатор. С коммутатор на месте, когда электричество течет по цепи, катушка будет постоянно вращаться в одном и том же направлении.

Художественное произведение: упрощенная схема деталей в электрическом мотор. Анимация: как это работает на практике.Обратите внимание, как коммутатор меняет направление тока каждый раз, когда катушка поворачивается. наполовину. Это означает, что сила на каждой стороне катушки всегда толкая в том же направлении, что позволяет катушке вращаться по часовой стрелке.

Такой простой экспериментальный двигатель, как этот, не может большая мощность. Мы можем увеличить усилие поворота (или крутящий момент) что двигатель может творить тремя способами: либо у нас может быть больше мощный постоянный магнит, или мы можем увеличить электрический ток протекает через провод, или мы можем сделать катушку так, чтобы в ней было много «витки» (петли) очень тонкой проволоки вместо одного «витка» толстой проволоки.На практике двигатель также имеет постоянный магнит, изогнутый в круглой формы, так что он почти касается катушки с проволокой, которая вращается внутри него. Чем ближе друг к другу магнит и катушка, тем большее усилие, которое может создать двигатель.

Хотя мы описали несколько различных частей, вы можете представить двигатель как имеющий всего два основных компонента:

  • По краю корпуса двигателя находится постоянный магнит (или магниты), который остается статичным, поэтому его называют статором двигателя.
  • Внутри статора находится катушка, установленная на оси, которая вращается с высокой скоростью, и это называется ротором. Ротор также включает в себя коммутатор.

Универсальные двигатели

Такие двигатели постоянного тока

отлично подходят для игрушек с батарейным питанием (таких как модели поездов, радиоуправляемые автомобили или электробритвы), но вы не найдете их во многих бытовых приборах. В небольших бытовых приборах (например, кофемолках или электрических блендерах) обычно используются так называемые универсальные двигатели , которые могут питаться как от переменного, так и от постоянного тока.В отличие от простого двигателя постоянного тока, универсальный двигатель имеет электромагнит вместо постоянного магнита, и он получает энергию от источника постоянного или переменного тока, который вы питаете:

  • Когда вы питаетесь постоянным током, электромагнит работает как обычный постоянный магнит и создает магнитное поле, которое всегда направлено в одном направлении. Коммутатор меняет направление тока катушки каждый раз, когда катушка переворачивается, как в простом двигателе постоянного тока, поэтому катушка всегда вращается в одном и том же направлении.
  • Однако, когда вы подаете переменный ток, ток, протекающий через электромагнит, и ток, протекающий через катушку , как , меняют направление, точно синхронно, поэтому сила, действующая на катушку, всегда в одном и том же направлении, а двигатель всегда вращается либо по часовой стрелке. или против часовой стрелки.А как насчет коммутатора? Частота тока изменяется намного быстрее, чем вращается двигатель, и, поскольку поле и ток всегда синхронизированы, на самом деле не имеет значения, в каком положении находится коммутатор в любой данный момент.

Анимация: Как работает универсальный двигатель: Электроснабжение питает как магнитное поле, так и вращающуюся катушку. С источником постоянного тока универсальный двигатель работает так же, как и обычный двигатель постоянного тока, как указано выше. При питании от сети переменного тока и магнитное поле, и ток катушки меняют направление каждый раз, когда ток питания меняется на противоположное.Это означает, что сила на катушке всегда направлена ​​в одну сторону.

Фото: Типичный универсальный двигатель: основные части двигателя среднего размера из кофемолки, которая может работать как от постоянного, так и от переменного тока. Серый электромагнит по краю — это статор (статическая часть), и он питается от катушек оранжевого цвета. Обратите внимание на прорези в коллекторе и прижимающиеся к нему угольные щетки, которые обеспечивают питание ротора (вращающейся части). Асинхронные двигатели в таких устройствах, как электрические железнодорожные поезда, во много раз больше и мощнее этого, и всегда работают с использованием переменного тока высокого напряжения (AC) вместо постоянного тока низкого напряжения (DC) или переменного тока умеренно низкого напряжения в домашних условиях. который приводит в действие универсальные двигатели.

Электродвигатели прочие

В простых двигателях постоянного тока и универсальных двигателях ротор вращается внутри статора. Ротор представляет собой катушку, подключенную к источнику электропитания, а статор представляет собой постоянный магнит или электромагнит. Большие двигатели переменного тока (используемые в таких вещах, как заводские машины) работают немного иначе: они пропускают переменный ток через противоположные пары магнитов, чтобы создать вращающееся магнитное поле, которое «индуцирует» (создает) магнитное поле в роторе двигателя, вызывая это вращаться.Подробнее об этом вы можете прочитать в нашей статье об асинхронных двигателях переменного тока. Если вы возьмете один из этих асинхронных двигателей и «развернете» его так, чтобы статор фактически превратился в длинную непрерывную дорожку, ротор может катиться по нему по прямой. Эта гениальная конструкция известна как линейный двигатель, и вы найдете ее в таких вещах, как заводские машины и плавучие железные дороги «маглев» (магнитная левитация).

Еще одна интересная конструкция — бесщеточный двигатель постоянного тока (BLDC). Статор и ротор эффективно меняются местами, при этом несколько железных катушек статичны в центре и постоянный магнит вращается вокруг них, а коммутатор и щетки заменяются электронной схемой.Вы можете прочитать больше в нашей основной статье о мотор-редукторах. Шаговые двигатели, которые вращаются на точно контролируемые углы, представляют собой разновидность бесщеточных двигателей постоянного тока.

Самый простой способ изменить направление вращения электродвигателя

Большая часть этого веб-сайта посвящена активным полупроводникам и электронике, управляющим двигателями постоянного тока. Например, у многих роботов есть микроконтроллеры, которые определяют направление вращения двигателя через транзисторный H-мост. Однако иногда вам нужно очень простое решение, в котором человек может напрямую управлять двигателем одним щелчком переключателя.Это легко сделать.

Список деталей:

  • Клейкая лента или клейкая бумага для заметок.

Испытательные детали

Первое, что вам нужно проверить, это аккумулятор и мотор. Это устранит любые проблемы с ними, прежде чем вы усложняете схему одного или нескольких переключателей. Эти тесты проще всего выполнить с зажимами из крокодиловой кожи, если они у вас есть.

Электросхема прямого и обратного хода двигателя и аккумуляторной батареи. Показан красный провод, потому что белый провод не отображается на белом фоне.

  1. Переверните провода от аккумулятора к двигателю, чтобы убедиться, что двигатель вращается в другом направлении (белый провод от положительного конца аккумулятора к отрицательному полюсу двигателя, черный провод от отрицательного конца аккумулятора. к положительной клемме + двигателя).

Если мотор не вращается, проверьте соединения.Также может быть, что напряжение батареи слишком низкое или батарея разряжена. Если двигатель вращается слишком быстро, замените батарею на более низкое напряжение или приобретите двигатель с редуктором.

Прежде чем продолжить, у вас должны быть мотор и аккумулятор, которые прошли этапы 2 и 3 теста.

Подключение центрального выключателя DPDT

Очевидно, вам не захочется каждый раз перетягивать мотор, чтобы выключить его или изменить направление.Мы позволим переключателю сделать это. Внутри переключателя есть металлические полоски, которые либо соединяют провода, либо отключают их, так как рычаг переворачивается вперед и назад.

Электропроводка и тумблер.

Вот назначение проводов:

  • Желтый: положительный полюс двигателя.
  • Синий: отрицательный полюс двигателя.
  • Белый: положительный полюс аккумулятора.
  • Черный: отрицательный полюс аккумуляторной батареи.

Припаяйте белые (плюсовые) провода к переключателю DPDT.

1. Подключите белый провод (положительное питание) к переключателю DPDT, как показано выше. Вам понадобится один длинный провод, идущий от батареи к первой клемме переключателя. И вам понадобится меньший кусок провода, идущий от первой клеммы переключателя к противоположной клемме, как показано.

Припаяйте черные (отрицательные) провода к переключателю DPDT.

2.Подключите черный провод (отрицательное напряжение) к переключателю DPDT, как показано выше. Вам понадобится один длинный провод, идущий от аккумулятора к нижней клемме переключателя. И вам понадобится меньший кусок провода, идущий от нижней клеммы переключателя к противоположной клемме, как показано.

Припаяйте желтый и синий провода двигателя к переключателю DPDT.

3. Подключите желтый и синий провода от двигателя к центральным клеммам переключателя DPDT, как показано выше.

4. Подсоедините желтый и синий провода к клеммам двигателя.

5. Перед подключением аккумулятора убедитесь, что переключатель находится в центральном (выключенном) положении.

6. Подключите белый и черный провода к аккумулятору.

Печатная плата вместо проводов

Электропроводка может быть немного неудобной. Вместо этого вы можете использовать небольшую печатную плату (особенно если вы собираетесь подключить более одного переключателя).

Плата переключателя двигателя DPDT


Управление двунаправленным переключателем двигателя

Давайте рассмотрим, что происходит, когда вы нажимаете переключатель вверх, в центр и вниз …

Отсутствие соединений в переключателе DPDT, приводящее к выключенному двигателю.

Когда рычаг переключателя находится в среднем положении, двигатель выключен, потому что металл внутри переключателя не соединяет провода от средних клемм (двигателя) с какими-либо внешними клеммами (источник питания).Это то же самое, как если бы вы просто отключили провода от аккумулятора. Ничего не случится. Электроэнергия не используется.

Соединения в переключателе DPDT, приводящие в движение двигатель.

Когда рычаг переключателя находится в верхнем положении, двигатель вращается вперед. Если ваш двигатель вращается в противоположном направлении, чем вы ожидали или хотели, просто переориентируйте переключатель в руке так, чтобы рычаг был обращен вниз, а затем переведите рычаг в верхнее положение.В качестве альтернативы вы можете поменять местами провода на или на , клеммы аккумулятора, или , клеммы двигателя.

Внутри переключателя рычаг имеет металлические полосы, так что провода двигателя на средней клемме электрически соединяются с одной парой внешних клемм, ведущих к батарее. Термин «двойной полюс» относится к тому факту, что этот переключатель имеет пару выводов, которые он подключает или отключает одновременно. Если нам нужно было подключить или отключить только один провод, мы могли бы использовать однополюсный (SP) переключатель.

Подключения в переключателе DPDT, приводящие к вращению двигателя в обратном направлении.

Когда рычаг переключателя находится в нижнем положении, двигатель вращается назад.

Внутри переключателя рычаг имеет металлические полосы, так что провода двигателя на средней клемме электрически соединены с другой парой внешних клемм, ведущих к батарее. Обратите внимание, что черный и белый провода аккумулятора находятся на противоположных сторонах на верхней и нижней клеммах переключателя.Вот почему мотор вращается в обратном направлении.

Термин «двойной бросок» относится к тому факту, что этот переключатель можно бросить вверх и бросить вниз (два разных броска). Если бы нам нужно было только, чтобы двигатель двигался вперед или выключался, мы могли бы использовать одинарный переключатель (ST).

Устранение неисправностей

Если ваш двигатель не работает должным образом, дважды проверьте, что провода идут к правильным клеммам переключателя.Также убедитесь, что проводка не ослаблена и не сломана. Используйте увеличительное стекло, чтобы убедиться, что даже крошечная жила провода случайно не коснется другого провода или клеммы.

Альтернативное управление двигателем с автоматическим ограничителем хода

Полезно иметь возможность напрямую управлять двигателем. Но иногда вы не обращаете внимания, и элемент, подключенный к двигателю, врезается в преграду или иным образом выходит за пределы своего максимального положения.

Было бы неплохо добавить пару дополнительных переключателей для автоматической остановки двигателя, когда он зашел слишком далеко, но по-прежнему позволять оператору вернуть двигатель в разрешенное положение.

Схема подключения двигателя, подключенного к DPDT, плюс два переключателя мгновенного действия для управления пользователем с помощью концевых упоров.

Схема подключения выше аналогична показанной ранее. Были вставлены два дополнительных переключателя. Один переключатель подключает (или отключает) белый провод на нижней клемме. Другой переключатель подключает (или отключает) черный провод на верхней клемме.

Переключатели мгновенного действия нашли хорошее применение в моем роботе Flip-Flop.Если вы не знакомы с переключателями этих типов, взгляните на изображения и посмотрите видео.

Идея состоит в том, что каждый переключатель мгновенного действия подключен таким образом, чтобы соответствующий провод был нормально подключен (NC), как это было на более ранних схемах. Это позволяет переключателю DPDT пользователя работать в обычном режиме.

Однако, когда что-то нажимает на переключатель мгновенного действия, он отключает провод, отключая питание только в этом направлении.Если пользователь поворачивает рычаг в противоположном направлении, другой переключатель мгновенного действия не прижимается, и, таким образом, он позволяет двигателю реверсировать.

Если вы установили моторизованное устройство на линейную (прямую) дорожку и поместили каждый переключатель мгновенного действия на противоположных концах дорожки, вы можете повернуть переключатель в одном направлении, и устройство автоматически остановится, когда достигнет конца трека. Затем вы можете повернуть переключатель в противоположном направлении, и устройство переместится на другой конец дорожки, прежде чем остановиться.

Точно так же вы можете добавить к диску штифт или рычаг, который будет давить на переключатель мгновенного действия, когда вал двигателя вращается на желаемый угол.

Куда идти дальше?

В этой статье показано, как изменить направление на небольшом двигателе от источника потребительской батареи с помощью переключателя центрального положения DPDT. Есть много вариантов использования и вариаций такой схемы.

Можно использовать более мощные двигатели и более мощные источники энергии.Самым большим ограничением будет поиск физического переключателя, способного выдерживать достаточный ток и напряжение. Вы должны быть уверены, что производитель оценивает коммутатор как минимум на максимальную мощность, которую вы собираетесь использовать.

Фактически, лучше всего было бы подключить переключатель с низким номиналом и слабым источником питания к реле с более мощным источником питания. Реле — это переключатель с магнитным приводом, который действует как прокси, повторяя действия пользователя с переключателем с низким энергопотреблением.

Со временем выключатель, подключенный к большому двигателю или источнику питания, перегорит из-за электрической дуги при замыкании или разрыве электрических соединений. Еще одна проблема с большими двигателями (особенно когда они подключены к оборудованию) — это внезапный запуск и остановка. Импульс может быть убийцей. Управление скоростью или методы цифровой широтно-импульсной модуляции позволяют плавно увеличивать или уменьшать обороты мощных двигателей.

В целом, самая серьезная проблема с большими двигателями или значительными источниками питания (такими как розетки переменного тока) — это безопасность.Вот почему эти вещи следует оставить на усмотрение профессионального оборудования с надлежащими корпусами, резервными датчиками пределов и независимыми сертифицированными испытаниями.

При этом этот переключатель DPDT должен комфортно работать с небольшими двигателями постоянного тока и источниками батарей, такими как модели, игрушечные поезда и роботы-любители. Чтобы узнать об интеллектуальном управлении двигателем с использованием полупроводников (транзисторов), см. Главы 9 и 10 документа «Промежуточное создание роботов» или просмотрите множество статей на этом сайте.


Двигатель на переключателе на эффекте Холла

Уровень сложности: 2 (простой, но требует использования паяльника)
Включенные комплекты: Комплекты № 6, 8-10

Это простой и, наверное, самый надежный мотор. Вы можете посмотреть, насколько просто собрать этот мотор из комплекта.

В 1879 году Эдвард Холл поместил тонкий слой золота в сильное магнитное поле. Он подключил батарею к противоположным сторонам этой пленки и измерил ток, протекающий через нее.Он обнаружил, что на этой пленке появилось небольшое напряжение. Это напряжение было пропорционально силе магнитного поля, умноженной на ток. Этот эффект носит его имя.

В течение многих лет эффект Холла не использовался на практике, поскольку генерируемое напряжение в золотой пленке было чрезвычайно низким. Однако во второй половине 20 века началось массовое производство полупроводниковых чипов. Микросхемы на основе эффекта Холла стали недорогими и широко доступными.

ИС (интегральная схема) на эффекте Холла — это очень маленькая микросхема, состоящая из множества транзисторов. Он состоит из тонкого слоя кремния в качестве генератора Холла (который работает лучше золота) и нескольких транзисторных схем: для усиления холловского напряжения до необходимого уровня; запускать выходное напряжение при его росте; и обеспечить стабильную работу независимо от изменения напряжения питания. На рисунке ниже показан эффект Холла IC:

.

ИС на эффекте Холла — это твердотельное электронное устройство без механических частей, поэтому оно более надежно, чем геркон.Неудивительно, что сейчас это наиболее широко используемый датчик в промышленных бесщеточных двигателях. Однако обычно они включают в себя множество других компонентов. Стэн разработал двигатель на переключателе на эффекте Холла с минимальным количеством деталей, основанный на той же унифицированной механической конструкции, и он работал очень хорошо. На самом деле его конструкция была настолько простой и понятной, что приведенные ниже схемы были использованы в книге «Электротехника: концепции и приложения », чтобы объяснить, как работают бесщеточные двигатели. Этот учебник используется многими университетами в курсе «Введение в электротехнику» (см. «Ссылки»).

Микросхема на эффекте Холла, используемая в наборах №6 и 8-10 (или доступная как отдельная часть), представляет собой униполярный переключатель. Он включается и выключается, когда южный полюс магнита проходит мимо его фирменной стороны. Северный полюс не влияет на него, если он не приближается с тыльной стороны IC Холла. Эта ИС на эффекте Холла имеет встроенный регулятор напряжения и может работать в диапазоне от 4,5 до 24 В. Однако ИС с эффектом Холла, входящие в комплект, были тщательно протестированы; и выяснилось, что большинство из них начинают работать при 3 В.Типичная ИС на эффекте Холла, изображенная с фирменной стороны:

Выходного тока переключателя на эффекте Холла недостаточно для питания этого двигателя, поэтому для него также требуется силовой транзистор. Вы можете найти информацию об этом компоненте в разделе «Как это работает: двигатель язычкового переключателя с транзистором».

Вот как работает этот мотор:

  1. Когда магнит №1 приближается к ИС Холла, датчик посылает сигнал на базу силового транзистора. Транзистор открывается и пропускает через электромагнит больший ток коллектора.Электромагнит отталкивает магнит №3.

  2. Когда ротор вращается, магнит №1 перестает воздействовать на ИС Холла. Поскольку сигнал на базу силового транзистора был удален, он выключен. Это отключает электромагнит.

  3. Ротор продолжает вращаться из-за инерции, пока магнит № 2 не перейдет в рабочий диапазон ИС Холла. ИС Холла посылает сигнал на базу транзистора. Транзистор открывается и пропускает через электромагнит больший ток коллектора.Электромагнит отталкивает магнит №4. Этот процесс продолжается до отключения питания.

Новинка! Посмотрите видео о бесщеточных двигателях, демистифицированных (как работает двигатель на датчике Холла) на нашем канале YouTube.

Этот двигатель может быть собран из комплектов № 6, 8-10. Если вы решили спроектировать этот двигатель самостоятельно, вы можете заказать только необходимые вам детали (ИС на эффекте Холла, силовой транзистор PNP, магнитный провод, магниты, радиатор).

Добавить комментарий

Ваш адрес email не будет опубликован.