Схема подключения трехфазного электродвигателя на 380 через пускатель: Схемы подключения трехфазного двигателя к трехфазной сети – СамЭлектрик.ру

Содержание

Электрическая схема пуска трехфазного электродвигателя » Электродвигатели. Статьи по ремонту. Схемы включения

Трехфазный электродвигатель при пуске контактами магнитного пускателя подключается к трёхфазной сети переменного тока напряжением 380 вольт. На рис 1. показан вариант схемы пуска с питанием катушки магнитного пускателя переменным током напряжением 220 вольт. Напряжение снимается с двух проводов: любого фазного провода и нейтрального провода (на схеме рис.1 провода «C» и «N»).  

Нажмите на картинку чтобы увеличить


При нажатии кнопки «Пуск» напряжение 220 вольт через нормально замкнутые контакты кнопки «Стоп» поступает на обмотку магнитного пускателя. Сердечник обмотки втягивается и замыкает соединенные с ним три группы мощных контактов, подающие трехфазное напряжение (L1, L2, L3) на электродвигатель.

Кроме трёх групп мощных контактов, магнитный пускатель замыкает группу маломощных нормально разомкнутых контактов (К1), включенных параллельно кнопке «Пуск». Контакты замыкаются и последующее отпускание кнопки «Пуск» уже не изменяет состояние схемы. Процесс пуска завершен.

Нейтральный провод (N) не участвует в питании электродвигателя, но, в соответствии с требованиями правил электробезопасности, обязательно подсоединяется к корпусу электродвигателя (при отсутствии заземления). Если корпус электродвигателя по какой-то причине окажется под

Нажмите на картинку чтобы увеличить


напряжением (например, фазная обмотка статора электродвигателя замкнёт на его корпус), то резко возрастёт потребляемый электродвигателем, идущий по цепи «фаза-нейтраль», ток, и сработавшая схема защиты отключит электродвигатель от питающей сети, исключая тем самым поражение электрическим током человека, случайно прикоснувшегося к его корпусу.

Схема пуска может работать с

магнитными пускателями рассчитаными на переменное напряжение напряжение 220 и 380 вольт. Выбор типа магнитного пускателя определен только конкретными условиями монтажа схемы.
Если провод «нейтраль» недоступен, то дешевле применить магнитный пускатель с питающим напряжением обмотки катушки электромагнита пускателя 380 вольт, чем прокладывать дополнительно провод «нейтраль» для питания пускателя с обмоткой на 220 вольт. Такой вариант схемы пуска показан на рисунке 2.

Токовая защита трехфазного электродвигателя

Трехфазный электродвигатель следует защищать от выхода из строя от преренапряжения источника питания, перегрева компонентов конструкции, остановки вращения ротора электродвигателя. Внешнюю электрическую цепь, питающую трехфазный электродвигатель, следует защищать от токовых перегрузок, которые возникают при коротком замыкании электрических проводов схемы между собой или внутреннем замыкании токоведущих компонентов электродвигателя.

Нажмите на картинку чтобы увеличить


Простейшая токовая защита трехфазного электродвигателя выполнена посредством включения в цепь питающих проводов токовых тепловых датчиков, входящих в состав типового устройства токовой защиты.
Превышение тока, потребляемого электродвигателем, в течении небольшого времени времени вызывает размыкание исполнительных контактов датчика тока, последовательно включенных в цепь питания катушки магнитного пускателя.

Существует линейная зависимость времени срабатывания устройства токовой защиты от кратности превышения тока. Токовая защита с паспортным значением 100А сработает через 1,5 минуты после пропускания по любой одной фазе (или по двум или трём фазным проводам сразу) тока в 100 ампер. При превышении тока в два раза, защита сработает в два раза быстрее, чем при номинальном токе, т.е. через 45 секунд и т.д. Устройство токовой защиты имеет возможность регулировки в небольших пределах (в 1.5-2 раза) номинального тока срабатывания защиты.

При срабатывании

устройства токовой защиты размыкаются исполнительные контакты теплового датчика тока, что вызывает обесточивание и отпускание сердечника катушки магнитного пускателя, включенного последовательно с этими контактами (рис. 3) и, соответственно, отключение электродвигателя от источника питающего напряжения. После остывания датчика, для приведения устройства в исходное состояние, нажимается кнопка возврата. При этом исполнительные контакты токового датчика вновь замыкаются. Теперь кнопкой «Пуск» можно вновь запустить электродвигатель.

Автоматический выключатель питания трехфазного электродвигателя

Подключение трехфазного электродвигателя обеспечивается достаточно сложной схемой. Для защиты питающих проводов от перегрева, для защиты помещения от пожара в случае возгорания электропроводки при коротком замыкания, на входе схемы подключения трехфазного электродвигателя применяются автоматические выключатели электропитания.

Нажмите на картинку чтобы увеличить


Автоматические выключатели питания функционально выполнены как обычные выключатели электропитания. Автоматические выключатели осуществляют токовую защиту коммутируемых ими электрических цепей. При превышении тока срабатывает тепловая защита и выключатель размыкает электрическую цепь, в которой произошла неисправность. Срабатывание автомата происходит с точно такой-же токово-временной зависимостью, как и в описанном выше устройстве токовой защиты: чем выше аварийный ток, тем быстрей отключится автомат.

Кроме того, автоматические выключатели питания срабатывают при возникновении в защищаемой цепи, так называемых, экстра-токов (даже кратковременном!). Такие токи возникают при коротких замыканиях электрических цепей. Экстра токи — это такие токи, которые превышают номинальный (для данного конкретного типа выключателя) в 100 раз. Например, для выключателя

SN45 с номинальным током срабатывания в 10А, экстра-током считается ток в 1000А.

  На схеме подключения трехфазного электродвигателя к трехфазной электрической сети 380 вольт, изображенной на рис. 4, выключатель ВА является автоматическим выключателем питания.

Подключение трехфазного двигателя через магнитный пускатель

Схемы подключения трехфазных электродвигателей

ВАЖНО! Перед подключением электродвигателя необходимо убедится в правильности схемы соединения обмоток электродвигателя в соответствии с его паспортными данными.

Условные обозначения на схемах

Магнитный пускатель (далее — пускатель) — коммутационный аппарат предназначенный для пуска и остановки двигателя. Управление пускателем осуществляется через электрическую катушку, которая выступает в качестве электромагнита, при подаче на катушку напряжения она воздействует электромагнитным полем на подвижные контакты пускателя которые замыкаются и включают электрическую цепь, и наоборот, при снятии напряжения с катушки пускателя — электромагнитное поле пропадает и контакты пускателя под действием пружины возвращаются в исходное положение размыкая цепь.

У магнитного пускателя есть силовые контакты предназначенные для коммутации цепей под нагрузкой и

блок-контакты которые используются в цепях управления.

Контакты делятся на нормально-разомкнутые — контакты которые в своем нормальном положении, т.е. до подачи напряжения на катушку магнитного пускателя или до механического воздействия на них, находятся в разомкнутом состоянии и нормально-замкнутые — которые в своем нормальном положении находятся в замкнутом состоянии.

В новых магнитных пускателях имеется три силовых контакта и один нормально-разомкнутый блок-контакт. При необходимости наличия большего количества блок-контактов (например при сборке реверсивной схемы пуска электродвигателя), на магнитный пускатель сверху дополнительно устанавливается приставка с дополнительными блок-контактами (блок контактов) которая, как правило, имеет четыре дополнительных блок-контакта (к примеру два нармально-замкнутых и два нормально-разомкнутых).

Кнопки для управления электродвигателем входят в состав кнопочных постов, кнопочные посты могут быть однокнопочные, двухкнопочные, трехкнопочные и т.д.

Каждая кнопка кнопочного поста имеет по два контакта — один из них нормально-разомкнутый, а второй нормально-замкнутый, т.е. каждая из кнопок может использоваться как в качестве кнопки «Пуск» так и в качестве кнопки «Стоп».

Схема прямого включения электродвигателя

Данная схема является самой простой схемой подключения электродвигателя, в ней отсутствует цепь управления, а включение и отключение электродвигателя осуществляется автоматическим выключателем.

Главными достоинствами данной схемы является дешевизна и простота сборки, к недостаткам же данной схемы можно отнести то, что автоматические выключатели не предназначены для частого коммутирования цепей это, в сочетании с пусковыми токами, приводит к значительному сокращению срока службы автомата, кроме того в данной схеме отсутствует возможность устройства дополнительной защиты электродвигателя.

Схема подключения электродвигателя через магнитный пускатель

Эту схему так же часто называют схемой простого пуска электродвигателя, в ней, в отличии от предыдущей, кроме силовой цепи появляется так же цепь управления.

При нажатии кнопки SB-2 (кнопка «ПУСК») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1, при отпускании кнопки SB-2 ее контакт снова размыкается, однако катушка магнитного пускателя при этом не обесточивается, т.

к. ее питание теперь будет осуществляться через блок-контак KM-1.1 (т.е. блок-контак KM-1.1 шунтирует кнопку SB-2). Нажатие на кнопку SB-1 (кнопка «СТОП») приводит к разрыву цепи управления, обесточиванию катушки магнитного пускателя, что приводит к размыканию контактов магнитного пускателя и как следствие, к остановке электродвигателя.

Реверсивная схема подключения электродвигателя (Как изменить направление вращения электродвигателя?)

Что бы поменять направление вращения трехфазного электродвигателя необходимо поменять местами любые две питающие его фазы:

При необходимости частой смены направления вращения электродвигателя применяется

реверсивная схема подключения электродвигателя:

В данной схеме применяется два магнитных пускателя (KM-1, KM-2) и трехкнопочный пост, магнитные поскатели применяемые в данной схеме кроме нормально-разомкнутого блок-контакта должны так же иметь и нормально замкнутый контакт.

При нажатии кнопки SB-2 (кнопка «ПУСК 1») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1. 1 который шунтирует кнопку SB-2 и размыкает свой блок-контакт KM-1.2 который защищает электродвигатель от включения в обратную сторону (при нажатии кнопки SB-3) до его предварительной остановки, т.к. попытка запуска электродвигателя в обратную сторону без предварительного отключения пускателя KM-1 приведет к короткому замыканию. Что бы запустить электродвигатель в обратную сторону необходимо нажать кнопу «СТОП» (SB-1), а затем кнопку «ПУСК 2» (SB-3) которая запитает катушку магнитного пускателя KM-2 и запустит электродвигатель в обратную сторону.

Примечание: В данной статье понятия пускателя и контактора не разделяются в связи с идентичностью их схем подключения подробнее читайте статью: Контакторы и магнитные пускатели.

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Схема подключения магнитного пускателя от А до Я — советы экспертов по выбору и пошаговая инструкция по монтажу и подключению (145 фото и видео)

Подача электропитания на двигатели осуществляется либо через контактор, либо через магнитный пускатель. По выполняемым функциям эти устройства очень схожи между собой, и нередко в прайс-листах их даже путают. Между ними, тем не менее, существуют и серьезные различия. Виды магнитных пускателей, с фото и примерами, а также схема их подключения будут разобраны в рамках статьи.

Краткое содержимое статьи:

Сходство и различие контакторов и пускателей

Оба устройства служат, чтобы замыкать и размыкать цепь по мере надобности. В основу их конструкции заложен электромагнит, работают они и от переменного, и от постоянного тока. Оснащены силовыми, или основными, а также сигнальными, или вспомогательными, контактами.

Разница заключается в степенях защиты устройств. Контакторы оснащаются камерой для гашения дуги. Благодаря этой особенности они применяются в цепях с большей мощностью, чем пускатели. Кроме того, само устройство более массивное за счет дугогасящих камер. Максимально допустимая сила тока для пускателей составляет до 10 ампер.

Пускатели изготавливают в пластмассовом корпусе и оснащены восемью контактами – шесть для питания трехфазного двигателя, и два для его обеспечения электропитанием после прекращения нажатия кнопки «пуск». Применяют их как для питания электродвигателей, так и приборов, для которых подходит данная схема.

Контакторы нередко изготавливаются без корпуса, поэтому в процессе эксплуатации для них необходимо предусмотреть защитный кожух, предохраняющий его от влаги и загрязнения, и поражения людей током.

Как работает пускатель

Главными частями прибора являются индуктивная катушка и магнитопровод, состоящий из статической и динамической частей Ш-образной формы. Они расположены выводами один к другому. Стационарная часть закреплена на корпусе, а подвижная – не закреплена. Внизу магнитопровода в специальную прорезь вводится катушка индуктивности.

В зависимости от ее параметров, меняется номинальное напряжение работы устройства – от 12 до 380 вольт. Вверху магнитопровода находится две пары контактов – статичные и динамичные.

Когда питания нет, то пружинка удерживает контакты разомкнутыми. Когда питание появляется, в катушке наводится магнитное поле, и верхний сердечник притягивается к нижнему. Контакты в результате замыкаются. После снятия питания, исчезает и электромагнитное поле, а пружина разжимает контакты.

Устройство может работать от источника постоянного тока, и при одно- и трехфазном переменном токе, главное, чтобы его значения не превышали номинал, указанный заводом-изготовителем.

Сеть на 220 вольт

При питании от сети 220 вольт с одной фазой, подключение осуществляется через выводы, которые, как правило, обозначают А1 и А2. Расположены они в верху корпуса пускателя. При подсоединении к ним провода с вилкой, прибор включается в сеть. На выводы, маркированные L1, L2, L3 подается любое напряжение, снимаемое с контактов Т1, Т2 и Т3.

Ноль и фазу при подсоединении к устройству возможно спокойно перебрасывать, это не принципиально. Обычно питание подается через датчик температуры или степени освещения, например, при подсоединении пускателя к автономному отоплению или уличному освещению.

Кнопки «пуск» и «стоп»

При запуске и выключении двигателя при помощи пускателя удобно подключение устройства с кнопками, включенными последовательно с прибором.

Чтобы по окончанию нажатия на кнопку «пуск» работа двигателя не прекратилась, в цепь вводят самоподхват за счет запараллеленных с «пуском» выводов. Благодаря им двигатель работает после того, как на «пуск» уже не нажимают, до того момента, пока не нажмут на кнопку остановки.

На двигатель подают напряжение через любой маркированный буквой L контакт, и снимают его с соответствующего контакта под литерой Т. Данная схема подключения справедлива для однофазной сети.

Трехфазная сеть на 380 В

При подключении к трехфазной сети, задействуется три группы контактов L и Т. Одна из фаз подключается к контакту А1 или А2, ко второму из них подсоединяют «ноль». Для защиты асинхронного двигателя от перегрева в цепь вводится тепловое реле. Больше никаких принципиальных отличий в подключении нет.

Схемы подключения трехфазного электродвигателя

1. Подключение трехфазного электродвигателя – общая схема

Когда электрик устраивается работать на любое промышленное предприятие, он должен понимать, что ему придётся иметь дело с большим количеством трехфазных электродвигателей. И любой уважающий себя электрик (я не говорю о тех, кто делает проводку в квартире) должен чётко знать схему подключения трёхфазного двигателя.

Сразу приношу извинения, что в данной статье я часто контактор называю пускателем, хотя подробно объяснял уже, что пускатель и контактор – это разные вещи. Что поделать, приелось это название.

В статье пойдёт речь о схемах подключения наиболее распространенного асинхронного электродвигателя через магнитный пускатель. Но не только. Расскажу также от способах и принципах защиты двигателя от перегрева и перегрузки.

Будут рассмотрены различные схемы подключения электродвигателей , их плюсы и минусы. От простого к сложному. Схемы, которые могут быть использованы в реальной жизни, обозначены: ПРАКТИЧЕСКАЯ СХЕМА. Итак, начинаем.

Подключение трехфазного двигателя

Имеется ввиду асинхронный электродвигатель, соединение обмоток – звезда или треугольник, подключение к сети 380В.

Для работы двигателя рабочий нулевой проводник N (Neutral) не нужен, а вот защитный (PE, Protect Earth) в целях безопасности должен быть подключен обязательно.

По принципам построения сетей 380В я уже подробно писал в статьях про трехфазный счетчик и реле напряжения.

В самом общем случае схема будет выглядеть таким образом, как показано в начале статьи. Действительно, почему бы двигатель не включить как обычную лампочку, только выключатель будет “трехклавишный”?

2. Подключение двигателя через рубильник или выключатель

Но даже лампочку никто не включает просто так, сеть освещения и вообще любая нагрузка всегда включается только через защитные автоматы.

Подробнее про замену и установку автоматических выключателей – здесь. А про их параметры и выбор – здесь.

Схема подключения трехфазного двигателя в сеть через автоматический выключатель

Поэтому более подробно общий случай будет выглядеть так:

3. Подключение двигателя через автоматический выключатель. ПРАКТИЧЕСКАЯ СХЕМА

На схеме 3 показан защитный автомат, который защищает двигатель от перегрузки по току (“прямоугольный” изгиб питающих линий) и от короткого замыкания (“круглые” изгибы). Под защитным автоматом я подразумеваю обычный трехполюсный автомат с тепловой характеристикой нагрузки С или D.

Напомню, чтобы ориентировочно выбрать (оценить) необходимый тепловой ток уставки тепловой защиты, надо номинальную мощность трехфазного двигателя (указана на шильдике) умножить на 2.

Защитный автомат для включения электродвигателя. Ток 10А, через такой можно включать двигатель мощностью 4 кВт. Не больше и не меньше.

Схема 3 имеет право на жизнь (по бедности или незнанию местных электриков).

Она прекрасно работает, так же, как по многу лет может работать скрутка меди с алюминием. И в один “прекрасный” день сгорит скрутка. Или сгорит двигатель.

Если уж использовать такую схему, надо тщательно подобрать ток автомата, чтобы он был на 10-20% больше рабочего тока двигателя. И характеристику теплового расцепителя выбирать D, чтобы при тяжелом пуске автомат не срабатывал.

Например, движок 1,5 кВт. Прикидываем максимальный рабочий ток – 3А (реальный рабочий может быть меньше, надо измерять). Значит, трехполюсный автомат надо ставить на 3 или 4А, в зависимости от пускового тока.

Плюс этой схемы подключения двигателя – цена и простота исполнения и обслуживания. Например, там, где один двигатель, и его включают вручную на всю смену. Минусы такой схемы с включением через автомат –

А что там свежего в группе ВК СамЭлектрик.ру?

Подписывайся, и читай статью дальше:

  1. Невозможность регулировать тепловой ток срабатывания автомата. Для того, чтобы надежно защитить двигатель, ток отключения защитного автомата должен быть на 10-20% больше номинального рабочего тока двигателя. Ток двигателя надо периодически измерять клещами и при необходимости подстраивать ток срабатывания тепловой защиты. А возможности подстройки у обычного автомата нет(.
  2. Невозможность дистанционного и автоматического включения/выключения двигателя.

Эти недостатки можно устранить, в схемах ниже будет показано как.

Подключение трехфазного двигателя через ручной пускатель

Ручной пускатель, или мотор-автомат – более совершенное устройство. На нём есть кнопки “Пуск” и “Стоп”, либо ручка “Вкл-Выкл”. Его плюс – он специально разработан для пуска и защиты двигателя. Пуск по-прежнему ручной, а вот ток срабатывания можно регулировать в некоторых пределах.

4. Подключение двигателя через ручной пускатель. ПРАКТИЧЕСКАЯ СХЕМА

Поскольку у двигателей обычно большой пусковой ток, то у автоматов защиты двигателей (мотор-автоматов), как правило, характеристика тепловой защиты типа D. Т.е. он выдерживает кратковременные (пусковые) перегрузки примерно в 10 раз больше от номинала.

Ручной пускатель двигателя с дополнительным контрольным контактом.

Вот что у него на боковой стенке:

Автомат защиты двигателя – характеристики на боковой стенке

Ток уставки (тепловой) – от 17 до 23 А, устанавливается вручную. Ток отсечки (срабатывание при КЗ) – 297 А.

В принципе, ручной пускатель и мотор-автомат – это одно и то же устройство. Но пускателем, показанным на фото, можно коммутировать питание двигателя. А мотор-автомат постоянно подает питание (три фазы) на контактор, который, в свою очередь, коммутирует питание двигателя. Короче, разница – в схеме подключения.

Плюс схемы – можно регулировать уставку теплового тока. Минус – тот же, что и в предыдущей схеме, нет дистанционного включения.

Схема подключения двигателя через магнитный пускатель

Этой схеме подключения трехфазного двигателя надо уделить самое пристальное внимание. Она наиболее распространена во всем промышленном оборудовании, выпускавшемся примерно до 2000-х годов. А в новых китайских простеньких станках используется и по сей день.

Электрик, который её не знает – как хирург, не умеющий отличить артерию от вены; как юрист, не знающий 1-ю статью Конституции РФ; так танцор, не отличающий вальс от тектоника.

Три фазы на двигатель идут в этой схеме не через автомат, а через пускатель. А включение/выключение пускателя осуществляется кнопками “ Пуск ” и “ Стоп ” , которые могут быть вынесены на пульт управления через 3 провода любой длины.

Пример такой схемы – в статье про восстановление схемы гидравлического пресса, см. последнюю в статье схему, пускатель КМ0. Про выбор, устройство и характеристики электромагнитных пускателей (контакторов) – прочитайте здесь.

5. Схема подключения двигателя через пускатель с кнопками пуск стоп

Здесь питание цепи управления поступает с фазы L1 (провод 1) через нормально замкнутую (НЗ) кнопку “Стоп” (провод 2).

Если теперь нажать на кнопку “Пуск”, то цепь питания катушки электромагнитного пускателя КМ замкнется (провод 3), его контакты замкнутся, и три фазы поступят на двигатель. Но в таких схемах кроме трёх “силовых” контактов у пускателя есть ещё один дополнительный контакт. Его называют “блокировочным” или “контактом самоподхвата”.

Когда электромагнитный пускатель включается нажатием кнопки SB1 “Пуск”, замыкается и контакт самоподхвата. А если он замкнулся, то даже если кнопка “Пуск” будет отжата, цепь питания катушки пускателя всё равно останется замкнутой. И двигатель продолжит работать, пока не будет нажата кнопка “Стоп”.

Поскольку тема с магнитными пускателями очень обширная, она вынесена в отдельную статью Схемы подключения магнитного пускателя. Статья существенно расширена и дополнена. Там рассмотрено всё – подключение различных нагрузок, защита (тепловая и от кз), реверсивные схемы, управление от разных точек, и т.д. Нумерация схем сохранена. Рекомендую.

Подключение трехфазного двигателя через электронные устройства

Все способы пуска двигателя, описанные выше, называются Пуск прямой подачей напряжения. Часто, в мощных приводах, такой пуск является тяжелым испытанием для оборудования – горят ремни, ломаются подшипники и крепления, и т.д.

Поэтому, статья была бы неполной, если бы я не упомянул современные тенденции. Теперь всё чаще для подключения трехфазного двигателя вместо электромагнитных пускателей применяют электронные силовые устройства. Под этим я подразумеваю:

  1. Твердотельные реле (solid state relay) – в них силовыми элементами являются тиристоры (симисторы), которые управляются входным сигналом с кнопки либо с контроллера. Бывают как однофазные, так и трехфазные. Вот моя статья.
  2. Мягкие (плавные) пускатели (soft starter, устройства плавного пуска) – усовершенствованные твердотелки. Можно устанавливать ток защиты, время разгона/замедления, включать реверс, и др. И на эту тему есть статья. Практическое применение устройств плавного пуска – здесь.
  3. Частотные преобразователи – самое совершенное устройство, что придумало человечество для подключения электродвигателя. Описывать частотники – дело не одной статьи.

Преимущества таких устройств очевидны (прежде всего – отсутствие контактов как таковых), недостаток пока один – цена. А вот как может выглядеть схема их включения:

10. Подключение трехфазного двигателя – общая схема с электронной силой

Двухскоростные электродвигатели

Старый специфический способ подключения двухскоростных двигателей описан в статье Подключение двухскоростных асинхронных двигателей. Ключевые слова – Раритет, Ретро, СССР.

На этом заканчиваю, спасибо за внимание, всего охватить не удалось, пишите вопросы в комментариях!

{SOURCE}

Схема подключения трехфазного вентилятора

Трехфазный электродвигатель должен подключаться к трехфазной сети, напряжение которой должно составлять 380 В. Обычно напряжение для схемы управления снимают с двух проводов: фазного и нейтрального.

Принцип действия такого двигателя: при пуске напряжение через контакты двигателя поступает на обмотку магнитного пускателя. При этом ее сердечник втягивается и замыкает три группы контактов, соединенные с ним. Эти контакты подают трехфазное напряжение на обмоточные выводы электродвигателя. Кроме того, магнитный пускатель замыкает и группу других контактов с меньшей мощностью, которые включены параллельно кнопке пуска. Когда контакты замкнуты, то пусковая кнопка уже не изменит состояние схемы, и процесс пуска можно считать завершенным.


Нейтральный провод, присутствующий в электродвигателе, обычно в его питании не участвует, но если нет заземления, то его необходимо обязательно подсоединить к корпусу двигателя (согласно правилам ТБ). В этом случае, если вдруг корпус окажется под напряжением, то естественно возрастет потребляемый двигателем ток, и схема защиты, сработав, отключит двигатель, чтобы не возникло опасности поражения током человека.

Схема пуска двигателя может работать с магнитными пускателями, которые рассчитаны на переменное напряжение в 220 и 380 Вольт. Выбирать тип пускателя следует согласно условиям монтажа конкретной схемы подключения трехфазного электродвигателя. Если нет нейтрального провода, то лучшим вариантом станет применение магнитного пускателя, который питает напряжением катушечные обмотки электродвигателя.

Схема подключения трехфазного электродвигателя довольно сложна, к тому же трехфазный электродвигатель нуждается а надежной защите от превышения напряжения, от перегрева элементов, от последствий аварийной остановки ротора. Самая простая защитная схема – включение в цепь питающих проводов тепловых датчиков тока, которые являются частью типового защитного устройства.

Также на входе схемы подключения возможно установление автоматических выключателей электропитания. Они осуществляют автоматическую токовую защиту коммутируемых ними электроцепей. Они срабатывают при повышении тока и при возникновении экстра-токов, которые возникают при коротком замыкании в цепи.

Трехфазный электродвигатель должен подключаться к трехфазной сети, напряжение которой должно составлять 380 В. Обычно напряжение для схемы управления снимают с двух проводов: фазного и нейтрального.

Принцип действия такого двигателя: при пуске напряжение через контакты двигателя поступает на обмотку магнитного пускателя. При этом ее сердечник втягивается и замыкает три группы контактов, соединенные с ним. Эти контакты подают трехфазное напряжение на обмоточные выводы электродвигателя. Кроме того, магнитный пускатель замыкает и группу других контактов с меньшей мощностью, которые включены параллельно кнопке пуска. Когда контакты замкнуты, то пусковая кнопка уже не изменит состояние схемы, и процесс пуска можно считать завершенным.


Нейтральный провод, присутствующий в электродвигателе, обычно в его питании не участвует, но если нет заземления, то его необходимо обязательно подсоединить к корпусу двигателя (согласно правилам ТБ). В этом случае, если вдруг корпус окажется под напряжением, то естественно возрастет потребляемый двигателем ток, и схема защиты, сработав, отключит двигатель, чтобы не возникло опасности поражения током человека.

Схема пуска двигателя может работать с магнитными пускателями, которые рассчитаны на переменное напряжение в 220 и 380 Вольт. Выбирать тип пускателя следует согласно условиям монтажа конкретной схемы подключения трехфазного электродвигателя. Если нет нейтрального провода, то лучшим вариантом станет применение магнитного пускателя, который питает напряжением катушечные обмотки электродвигателя.

Схема подключения трехфазного электродвигателя довольно сложна, к тому же трехфазный электродвигатель нуждается а надежной защите от превышения напряжения, от перегрева элементов, от последствий аварийной остановки ротора. Самая простая защитная схема – включение в цепь питающих проводов тепловых датчиков тока, которые являются частью типового защитного устройства.

Также на входе схемы подключения возможно установление автоматических выключателей электропитания. Они осуществляют автоматическую токовую защиту коммутируемых ними электроцепей. Они срабатывают при повышении тока и при возникновении экстра-токов, которые возникают при коротком замыкании в цепи.

Работа трехфазных электродвигателей считается гораздо более эффективной и производительной, чем однофазных двигателей, рассчитанных на 220 В. Поэтому при наличии трех фаз, рекомендуется подключать соответствующее трехфазное оборудование. В результате, подключение трехфазного двигателя к трехфазной сети обеспечивает не только экономичную, но и стабильную работу устройства. В схему подключения не требуется добавление каких-либо пусковых устройств, поскольку сразу же после запуска двигателя, в обмотках его статора образуется магнитное поле. Основным условием нормальной эксплуатации таких устройств является правильное выполнение подключения и соблюдение всех рекомендаций.

Схемы подключения

Магнитное поле, создаваемое тремя обмотками, обеспечивает вращение ротора электродвигателя. Таким образом, электрическая энергия преобразуется в механическую.

Подключение может выполняться двумя основными способами – звездой или треугольником. Каждый из них имеет свои достоинства и недостатки. Схема звезды обеспечивает более плавный пуск агрегата, однако мощность двигателя падает примерно на 30% от номинальной. В этом случае подключение треугольником имеет определенные преимущества, поскольку потеря мощности отсутствует. Тем не менее, здесь тоже есть своя особенность, связанная с токовой нагрузкой, которая резко возрастает во время пуска. Подобное состояние оказывает негативное влияние на изоляцию проводов. Изоляция может быть пробита, а двигатель полностью выходит из строя.

Особое внимание следует уделить европейскому оборудованию, укомплектованному электродвигателями, рассчитанными на напряжения 400/690 В. Они рекомендованы к подключению в наши сети 380 вольт только методом треугольника. В случае подключения звездой, такие двигатели сразу же сгорают под нагрузкой. Данный метод применим только к отечественным трехфазным электрическим двигателям.

В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток. Их количество может составлять три или шесть. В первом случае схема подключения изначально предполагается методом звезды. Во втором случае электродвигатель может включаться в трехфазную сеть обоими способами. То есть, при схеме звезда три конца, расположенные в начале обмоток соединяются в общую скрутку. Противоположные концы подключаются к фазам сети 380 В, от которой поступает питание. При варианте треугольник все концы обмоток последовательно соединяются между собой. Подключение фаз осуществляется к трем точкам, в которых концы обмоток соединяются между собой.

Использование схемы «звезда-треугольник»

Сравнительно редко используется комбинированная схема подключения, известная как «звезда-треугольник». Она позволяет производить плавный пуск при схеме звезда, а в процессе основной работы включается треугольник, обеспечивающий максимальную мощность агрегата.

Данная схема подключения довольно сложная, требующая использования сразу трех магнитных пускателей, устанавливаемых в соединения обмоток. Первый МП включается в сеть и с концами обмоток. МП-2 и МП-3 соединяются с противоположными концами обмоток. Подключение треугольником выполняется ко второму пускателю, а подключение звездой – к третьему. Категорически запрещается одновременное включение второго и третьего пускателей. Это приведет к короткому замыканию между фазами, подключенными к ним. Для предотвращения подобных ситуаций между этими пускателями устанавливается блокировка. Когда включается один МП, у другого происходит размыкание контактов.

Работа всей системы происходит по следующему принципу: одновременно с включением МП-1, включается МП-3, подключенный звездой. После плавного пуска двигателя, через определенный промежуток времени, задаваемый реле, происходит переход в обычный рабочий режим. Далее происходит отключение МП-3 и включение МП-2 по схеме треугольника.

Трехфазный двигатель с магнитным пускателем

Подключение трехфазного двигателя с помощью магнитного пускателя, осуществляется также, как и через автоматический выключатель. Просто эта схема дополняется блоком включения и выключения с соответствующими кнопками ПУСК и СТОП.

Одна нормально замкнутая фаза, подключенная к двигателю, соединяется с кнопкой ПУСК. Во время нажатия происходит смыкание контактов, после чего ток поступает к двигателю. Однако, следует учесть, что в случае отпускания кнопки ПУСК, контакты окажутся разомкнутыми и питание поступать не будет. Чтобы не допустить этого, магнитный пускатель оборудуется еще одним дополнительным контактным разъемом, так называемым контактом самоподхвата. Он выполняет функцию блокировочного элемента и препятствует разрыву цепи при выключенной кнопке ПУСК. Окончательно разъединить цепь можно только с помощью кнопки СТОП.

Таким образом, подключение трехфазного двигателя к трехфазной сети может быть выполнено различными способами. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации.

Трехфазный асинхронный двигатель – подключение на 220 вольт

Для того чтобы разобраться, как подключить электродвигатель конкретного типа, необходимо понимать принципы его работы и особенности конструкции. Существует множество электродвигателей разных типов. По способу подключения к сети переменного тока они бывают трехфазные, двухфазные или однофазные. По способу питания обмотки ротора делятся на синхронные и асинхронные.

Блок: 1/10 | Кол-во символов: 376
Источник: https://tokar.guru/stanki-i-oborudovanie/dvigateli/shema-podklyucheniya-elektrodvigatelya-k-seti-220-volt.html

Схема подключения коллекторного электродвигателя на 220 вольт

Где можно встретить в быту?

Электрические дрели, некоторые стиральные машинки, перфораторы и болгарки имеют синхронный коллекторный двигатель. Он способен работать в сетях с одной фазой даже без пусковых механизмов. Схема такая: перемычкой соединяются концы 1 и 2, первый берет начало в якоре, второй – в статоре. Два кончика, которые остались, необходимо присоединить к питанию в 220 вольт.

Подключение электродвигателя 220 вольт с пусковой обмоткой

Внимание!

  • Такая схема исключает блок электроники, а следовательно – мотор сразу же с момента старта, будет работать на полную мощность – на максимальных оборотах, при запуске буквально срываясь с силой от пускового электротока, который вызывает искры в коллекторе;
  • существуют электромоторы с двумя скоростями. Их можно определить по трем концам в статоре, выходящим из обмотки. В этом случае скорость вала при подключении уменьшается, а риск деформации изоляции при старте – увеличивается;
  • направление вращения можно изменить, для этого следует поменять местами окончания подключения в статоре или якоре.

Блок: 2/4 | Кол-во символов: 1110
Источник: https://bouw.ru/article/kak-podklyuchity-odnofazniy-elektrodvigately-na-220-volyt

Принцип действия

Принцип действия электродвигателя демонстрирует простейший опыт, который всем нам показывали в школе — вращение рамки с током в поле постоянного магнита.

Рамка с током — это аналог ротора, неподвижный магнит — статор. Если в рамку подать ток, она повернется перпендикулярно направлению магнитного поля и застынет в этом положении. Если заставить магнит крутиться, рамка будет вращаться с той же скоростью, то есть синхронно с магнитом. У нас получился синхронный электродвигатель. Но у нас магнит — это статор, а он по определению неподвижен. Как заставить вращаться магнитное поле неподвижного статора?

Для начала заменим постоянный магнит катушкой с током. Это обмотка нашего статора. Как известно из той же школьной физики, катушка с током создает магнитное поле. Последнее пропорционально величине тока, а полярность зависит от направления тока в катушке. Если подать в катушку переменный ток, получим переменное поле.

Магнитное поле — векторная величина. Переменный ток в питающей сети имеет синусоидальную форму.

Нам поможет очень наглядная аналогия с часами. Какие векторы вращаются постоянно перед нашими глазами? Это часовые стрелки. Представим, что в углу комнаты висят часы. Секундная стрелка вращается, делая один полный оборот в минуту. Стрелка — вектор единичной длины.

Тень, которую стрелка отбрасывает на стену, меняется как синус с периодом в 1 минуту, а тень, отбрасываемая на пол — как косинус. Или синус, сдвинутый по фазе на 90 градусов. Но вектор равен сумме своих проекций. Другими словами, стрелка равна векторной сумме своих теней.

Блок: 2/10 | Кол-во символов: 1583
Источник: https://tokar.guru/stanki-i-oborudovanie/dvigateli/shema-podklyucheniya-elektrodvigatelya-k-seti-220-volt.html

Переключение на нужное напряжение

Для начала необходимо убедиться в том, что наш двигатель имеет нужные параметры. Они написаны на бирке, прикрепленной у него сбоку. Там должно быть указано, что один из параметров – 220в. Далее, смотрим подключение обмоток. Стоит запомнить такую закономерность схемы: звезда – для более низкого напряжения, треугольник – для более высокого. Что это означает?

Увеличение напряжения

Предположим, на бирке написано: Δ/Ỵ220/380. Это значит, что нам нужно включение треугольником, так как чаще всего соединение по умолчанию – на 380 вольт. Как это сделать? Если электродвигатель в борне имеет клеммную коробку, то несложно. Там есть перемычки, и все, что нужно – переключить их в нужное положение.

Но что, если просто выведено три провода? Тогда придется аппарат разбирать. На статоре нужно найти три конца, которые между собой спаяны. Это и есть соединение звездой. Провода нужно рассоединить и подключить треугольником.

В данной ситуации это сложностей не вызывает. Главное помнить, что есть начало и конец катушек. К примеру, возьмем за начало концы, которые были выведены в борно электродвигателя. Значит то, что спаяно – это концы. Теперь важно не перепутать.

Подключаем так: начало одной катушки соединяем с концом другой, и так далее.

Как видим, схема простая. Теперь двигатель, который был соединен для 380, можно включать в сеть 220 вольт.

Уменьшение напряжения

Предположим, на бирке написано: Δ/Ỵ 127/220. Это означает, что нужно подсоединение звездой. Опять же, если есть клеммная коробка, то все хорошо. А если нет, и включен наш электродвигатель треугольником? А если еще и концы не подписаны, то как их правильно соединить? Ведь здесь тоже важно знать, где начало намотки катушки, а где конец. Есть некоторые способы решения этой задачи.

Для начала разведем все шесть концов в стороны и омметром найдем сами статорные катушки.

Возьмем скотч, изоленту, еще что-нибудь из того, что есть, и пометим их. Пригодится сейчас, а может быть, и когда-нибудь в будущем.

Берем обычную батарейку и подсоединяем к концам а1-а2. К двум другим концам (в1-в2) подсоединяем омметр.

В момент разрыва контакта с батарейкой стрелка прибора качнется в одну из сторон. Запомним, куда она качнулась, и включаем прибор к концам с1-с2, при этом не меняем полярность батарейки. Проделываем все заново.

Если стрелка отклонилась в другую сторону, тогда меняем провода местами: с1 маркируем как с2, а с2 как с1. Смысл в том, чтобы отклонение было одинаковым.

Теперь батарейку с соблюдением полярности соединяем с концами с1-с2, а омметр – на а1-а2.

Добиваемся того, чтобы отклонение стрелки на любой катушке было одинаковым. Перепроверяем еще раз. Теперь один пучок проводов (например, с цифрой 1) у нас будет началом, а другой – концом.

Берем три конца, например, а2, в2, с2, и соединяем вместе и изолируем. Это будет соединение звездой. Как вариант, можем вывести их в борно на клеммник, промаркировать. На крышку наклеиваем схему соединения (или рисуем маркером).

Переключение треугольник – звезда сделали. Можно подключаться к сети и работать.

Блок: 3/4 | Кол-во символов: 3047
Источник: http://ElectricVDele.ru/elektrooborudovanie/elektrodvigateli/podklyuchenie-asinhronnogo-dvigatelya-na-220.html

Как подключить движок с коллектором

Коллекторные двигатели могут работать и на постоянном и на переменном напряжении. Это один из наиболее распространённых типов движков среди используемых для ручного электроинструмента и некоторых других электроприборов. Во многих из них электродвигатель работает от электронной схемы управления. Но если она сгорела, и электроприбор перестал работать, наверняка движок исправен, и его можно включить в сеть напрямую. Но если двигатель работал с электронной схемой как коллекторный двигатель постоянного тока, скорее всего он не будет развивать такие же обороты, что и в устройстве с электронной схемой управления.

Чтобы такой движок запустить от сети 220 В, надо соединить щётки коллектора и статор последовательно. При этом токи в роторе и статоре получатся меньше чем при работе в составе электронной схемы, и движок будет вращаться медленнее. Но зато не требуется никаких дополнительных элементов кроме самого движка, сетевого кабеля и вилки. Если такой двигатель используется в газонокосилке или иной самоделке с длинным сетевым кабелем, конечно же, потребуется ещё и выключатель расположенный вблизи этого движка. Разбираться с таким движком надо с осторожностью. Особенно если в нём более 4-х точек для соединения, то есть проводов обмотки статора не 2 а 3 или больше.

Это говорит о том, что двигатель переключался на разные скорости с использованием частей обмотки статора. Чтобы выполнить подключение электродвигателя на 220 Вольт к электросети его надо надёжно зажать либо в тисках, либо прижать струбциной. Подключив не полную обмотку статора, обороты могут быть слишком велики, и незакреплённый движок может сорваться с места и натворить бед. Если потребуется изменить вращение ротора на противоположное, надо поменять местами либо клеммы статора, либо клеммы щёток.

Блок: 3/5 | Кол-во символов: 1816
Источник: http://podvi.ru/elektrodvigatel/podklyuchenie-na-220-volt.html

Тип конденсаторов

Специалисты рекомендуют в качестве пускового и рабочего конденсаторов использовать одинаковые модели. Самый простой вариант – это бумажные конструкции в герметичном металлическом корпусе. Правда, есть у них один существенный недостаток – большие габаритные размеры. Поэтому если перед вами стоит вопрос, как подключить небольшой мощности двигатель 380 на 220 вольт, то количество таких конденсаторов будет приличным, и вся конструкция будет смотреться не очень.

Можно использовать для этих целей электролитические приборы, но их схема подключения отличается от предыдущей, потому что в нее придется установить резисторы и диоды. К тому же эти конденсаторы при пробое взрываются. Есть более современные виды – это полипропиленовые модели металлизированного типа. Себя они зарекомендовали хорошо, претензий к ним сейчас у специалистов нет.

Блок: 3/6 | Кол-во символов: 857
Источник: http://OnlineElektrik.ru/eoborudovanie/edvigateli/trexfaznyj-asinxronnyj-dvigatel-podklyuchenie-na-220-volt.html

Это схема обмотки звездой

Красные стрелки — это распределение напряжения в обмотках мотора, говорит о том, что на одной обмотке распределяется напряжение единичной фазы в 220 В, а двух других — линейного напряжения 380 В. Такой двигатель можно приспособить под однофазную сеть по рекомендациям на бирке: узнать для какого напряжения созданы обмотки, можно соединять их звездой или треугольником.

Схема обмотки треугольником проще. По возможности лучше применить ее, так как двигатель будет терять мощность в меньшем количестве, а напряжение по обмоткам всюду будет равно 220 В.

Это схема подключения с конденсатором асинхронного двигателя в однофазную сеть. Включает рабочие и пусковые конденсаторы.

Пример:

  • применяем конденсаторы, ориентируясь на напряжение, минимум 300 или 400 В;
  • емкость рабочих конденсаторов набирается путем параллельного их соединения;
  • вычисляем таким образом: каждые 100 Вт — это еще 7 мкФ, учитывая, что 1 кВт равен 70 мкФ;
  • это пример параллельного соединения конденсаторов
  • емкость для пуска должна превышать в три раза емкость рабочих конденсаторов.

Важно! Если при старте не отключить вовремя пусковые конденсаторы, когда мотор наберет стандартные для него обороты, они приведут к большому перекосу по току во всех обмотках, что попросту заканчивается перегревом электромотора.

После прочтения статьи, рекомендуем ознакомиться с техникой подключения трехфазного двигателя в однофазную сеть:

Блок: 4/4 | Кол-во символов: 1408
Источник: https://bouw.ru/article/kak-podklyuchity-odnofazniy-elektrodvigately-na-220-volyt

Как подключить асинхронный движок

Другим довольно-таки распространённым типом электродвижка является асинхронный двигатель. Наиболее часто его устанавливают в вентиляторах. Если известно, что движок именно оттуда, скорее всего он сконструирован на несколько скоростей. Об этом будут свидетельствовать несколько дополнительных выводов, которые являются ответвлениями основной обмотки статора. В движке, который рассчитан на работу с одной скоростью обмоток две. Поэтому в нём возможны ответвления от обмоток либо как 3, либо как 4 вывода. При трёх выводах обмотки уже соединены последовательно. При четырёх выводах надо разобраться с ними используя тестер.

Обмотки обеспечивают перемещение магнитного поля в пределах 90 градусов. Дополнительная обмотка используется для создания перемещающегося максимума магнитного поля и называется пусковой обмоткой. Поэтому если выводов 3 или больше всегда можно определить, используя тестер, где какая из них. Обмотка как пусковая, так и переключающая обороты имеют более высокое сопротивление. Для подключения асинхронного электродвигателя на 220 Вольт применяются схемы, показанные далее.

В некоторых моделях движков резистор встраивается в корпус и поэтому в них только два вывода. Такой двигатель должен вращаться сразу при подаче напряжения 220 В на эти обмоточные выводы. Но если этого не происходит, а тестер показывает некоторое значение сопротивления, значит, одна из обмоток оборвана. Такой движок уже никак не используешь без ремонта в виде перемотки повреждённой обмотки. Использование конденсатора для получения перемещающего магнитного поля является самым популярным техническим решением. Если необходимо таким способом подключить движок потребуется величина его мощности.

  • Конденсатор для асинхронного двигателя выбирается по мощности. Для каждых ста Ватт мощности движка надо примерно семь микрофарад ёмкости конденсатора.

Блок: 4/5 | Кол-во символов: 1876
Источник: http://podvi.ru/elektrodvigatel/podklyuchenie-na-220-volt.html

Полезные советы

  • Обращаем ваше внимание на тот факт, что при подключении трехфазного двигателя к однофазной сети можно говорить и снижении мощности электрического агрегата. В общем, его фактический показатель не будет превышать номинальный 70-80%. При этом скорость вращения ротора не уменьшится.
  • Если используемый движок имеет схему переключения 380/220, это обязательно указывается на шильдике, то в однофазную сеть его надо подключать только треугольником.
  • В том случае, если на шильдике указаны схема подключения звездой и только трехфазное подключение на 380 вольт, то вам придется вскрыть клеммную коробку и добраться до соединения концов обмоток двигателя. Потому что внутри агрегата уже установлена схема звезда, ее-то и придется разобрать и вывести наружу шесть концов обмотки статора.

Блок: 4/6 | Кол-во символов: 795
Источник: http://OnlineElektrik.ru/eoborudovanie/edvigateli/trexfaznyj-asinxronnyj-dvigatel-podklyuchenie-na-220-volt.html

Переподключение с 380 вольт на 220

Очень важно понимать, как подключается трехфазный электродвигатель к сети 220в. Чтобы трехфазный двигатель подключить к 220в, заметим, что у него есть шесть выводов, что соответствует трем обмоткам. При помощи тестера провода прозванивают, чтобы найти катушки. Их концы соединяем по два – получается соединение «треугольник» (и три конца).

Для начала, два конца сетевого провода (220 в) подключаем к любым двум концам нашего «треугольника». Оставшийся конец (оставшаяся пара скрученных проводов катушки) подсоединяется к концу конденсатора, а оставшийся провод конденсатора также соединяется с одним из концов сетевого провода и катушек.

От того, выберем мы один или другой, будет зависеть в какую сторону начнет вращаться двигатель. Проделав все указанные действия, запускаем двигатель, подав на него 220 в.

Электромотор должен заработать. Если этого не произошло, или он не вышел на требуемую мощность, необходимо вернуться на первый этап, чтобы поменять местами провода, т.е. переподключить обмотки.

Если при включении, мотор гудит, но не крутиться, требуется дополнительно установить (через кнопку) конденсатор. Он будет в момент пуска давать двигателю толчок, заставляя крутиться.

Видео:

Видео: Как подключить электродвигатель с 380 на 220

Прозванивание, т.е. измерение сопротивления, проводится тестером. Если такой отсутствует, воспользоваться можно батарейкой и обычной лампой для фонарика: в цепь, последовательно с лампой, подсоединяют определяемые провода. Если концы одной обмотки найдены – лампа загорается.

Труднее гораздо найти определить начало и концы обмоток. Без вольтметра со стрелкой не обойтись.

Подсоединить потребуется к обмотке батарейку, а к другой — вольтметр.

Разрывая контакт провода с батарейкой, наблюдают, отклоняется ли стрелка и в какую сторону. Те же действия проводят с оставшимися обмотками, изменяя, если нужно, полярность. Добиваются чтобы отклонялась стрелка в ту же сторону, что при первом измерении.

Блок: 2/7 | Кол-во символов: 1985
Источник: https://motocarrello.ru/jelektrotehnologii/1502-shemy-podkljuchenija-trehfaznogo-jelektrodvigatelja.html

БУ движки стиральных машин

Если используется движок от стиральной машинки, он может принадлежать к одному из трёх типов. В старых моделях машин использовалась отдельные ёмкости для стирки и для отжима. Для стирки применялся асинхронный движок, поскольку его оборотов было вполне достаточно для создания движения воды. Для отжима применялась центрифуга с приводом от коллекторного двигателя. Эти типы двигателей можно применять для каких-либо целей, а как сделать подключение для этого, рассмотрено выше.

Но среди более современных машин встречаются такие модели, у которых выполнен прямой привод на вращающийся барабан для стирки. В них применяются специальные двигатели, управляемые от электронного коммутатора. Он создаёт вращение магнитного поля с необходимой скоростью. Без такого коммутатора двигатель работать не будет. Тем более нельзя подключать его к сети 220 В напрямую.

В некоторых моделях двигателей стиральных машин могут использоваться тахометры, встроенные в корпус движка. Поэтому необходимо обязательно выяснить назначение дополнительных выводов в двигателе перед подключением его к сети 220 В. Бывает так, что это возможно сделать, только узнав, как выглядит движок изнутри, разобрав его. Если сложно идентифицировать конструкцию двигателя самостоятельно, лучше обратиться к специалисту. Это поможет сохранить двигатель в исправном состоянии.

Блок: 5/5 | Кол-во символов: 1376
Источник: http://podvi.ru/elektrodvigatel/podklyuchenie-na-220-volt.html

Установка реверса

Иногда возникает необходимость провести подключение так, чтобы трехфазный двигатель, подсоединенный к однофазной сети, вращался то в одну, то в другую стороны. Для этого необходимо установить в схему любой управляющий прибор. Это может быть тумблер, кнопка или ключи управление. Но здесь есть два основных требования:

  1. Обращайте внимание на силу тока, которую этот управляющий прибор может выдержать. Чтобы он был больше нагрузки, создаваемой электродвигателем.
  2. В конструкции управляющего прибора должно быть две пары контактов: нормально замкнутые и нормально разомкнутые.

Вот схема, по которой подключается этот элемент в питание электродвигателя:

Здесь видно, что реверс осуществляется подачей электроэнергии на разные полюса конденсаторов.

Блок: 5/6 | Кол-во символов: 762
Источник: http://OnlineElektrik.ru/eoborudovanie/edvigateli/trexfaznyj-asinxronnyj-dvigatel-podklyuchenie-na-220-volt.html

Заключение по теме

Схема трехфазного асинхронного двигателя с подключением к 220 вольт – дело реальное. Проблем с ним быть не должно. Здесь главное, и это было показано в статье, правильно подобрать конденсаторы (рабочие и пусковые) и правильно выбрать схему подключения. Особое внимание придется уделить правилам соединения, где в основе будет лежать сам двигатель, а, точнее, его возможности.

Блок: 6/6 | Кол-во символов: 421
Источник: http://OnlineElektrik.ru/eoborudovanie/edvigateli/trexfaznyj-asinxronnyj-dvigatel-podklyuchenie-na-220-volt.html

Использование магнитного пускателя

Применение схемы подключения электродвигателя 380 через пускатель хорошо тем, что пуск производить можно дистанционно. Преимущество пускателя перед рубильником (или другим устройством) в том, что пускатель можно разместить в шкафу, а в рабочую зону вынести элементы управления, напряжение и токи при этом минимальны, следовательно, провода подойдут меньшего сечения.

Помимо этого, подключение с использованием пускателя обеспечивает безопасность в случае, если «пропадает» напряжение, поскольку при этом происходит размыкание силовых контактов, когда же напряжение вновь появится, пускатель без нажатия пусковой кнопки его не подаст на оборудование.

Схема подключения пускателя асинхронного двигателя электрического 380в:

На контактах 1,2,3 и пусковой кнопке 1 (разомкнутой) напряжение присутствует в начальный момент. Затем оно подается через замкнутые контакты этой кнопки (при нажатии на «Пуск») на контакты пускателя К2 катушки, замыкая ее. Катушкой создается магнитное поле, сердечник притягивается, контакты пускателя замыкаются, приводя в движение мотор.

Одновременно с этим происходит замыкание контакта NO, с которого подается фаза на катушку через кнопку «Стоп». Получается, что, когда отпускают кнопку «Пуск», цепь катушки остается замкнутой, как и силовые контакты.

Нажав «Стоп», цепь разрывают, возвращая размыкая силовые контакты. С питающих двигатель проводников и NO исчезает напряжение.

Видео: Подключение асинхронного двигателя. Определение типа двигателя.

Блок: 7/7 | Кол-во символов: 1524
Источник: https://motocarrello.ru/jelektrotehnologii/1502-shemy-podkljuchenija-trehfaznogo-jelektrodvigatelja.html

Схема включения

Возможно подключение нагрузок к трехфазной сети по двум схемам — звездой и треугольником. При подключении звездой начала обмоток соединяются между собой, а концы подключаются к фазам. При включении треугольником конец одной обмотки подключается к началу другой.

В схеме включения звездой обмотки оказываются под фазным напряжением 220 В., при включении треугольником — под линейным 380 В.

При включении треугольником двигатель развивает не только большую мощность, но и большие пусковые токи. Поэтому иногда используют комбинированную схему — старт звездой, затем переключение в треугольник.

Направление вращения определяется порядком подключения фаз. Для изменения направления достаточно поменять местами любые две фазы.

Блок: 7/10 | Кол-во символов: 743
Источник: https://tokar.guru/stanki-i-oborudovanie/dvigateli/shema-podklyucheniya-elektrodvigatelya-k-seti-220-volt.html

Как включить однофазный асинхронный двигатель

Если не нужен автоматический запуск, асинхронный однофазный двигатель имеет самую простую схему включения. Особенностью этого типа является невозможность автоматического старта.

Для автоматического пуска используется вторая пусковая обмотка как в двухфазном электромоторе. Пусковая обмотка подключается через пусковой конденсатор только для старта и после этого должна быть отключена вручную или автоматически.

Блок: 10/10 | Кол-во символов: 466
Источник: https://tokar.guru/stanki-i-oborudovanie/dvigateli/shema-podklyucheniya-elektrodvigatelya-k-seti-220-volt.html

Кол-во блоков: 22 | Общее кол-во символов: 24626
Количество использованных доноров: 6
Информация по каждому донору:
  1. https://bouw.ru/article/kak-podklyuchity-odnofazniy-elektrodvigately-na-220-volyt: использовано 2 блоков из 4, кол-во символов 2518 (10%)
  2. https://motocarrello.ru/jelektrotehnologii/1502-shemy-podkljuchenija-trehfaznogo-jelektrodvigatelja.html: использовано 3 блоков из 7, кол-во символов 4005 (16%)
  3. http://ElectricVDele.ru/elektrooborudovanie/elektrodvigateli/podklyuchenie-asinhronnogo-dvigatelya-na-220.html: использовано 2 блоков из 4, кол-во символов 5555 (23%)
  4. http://podvi.ru/elektrodvigatel/podklyuchenie-na-220-volt.html: использовано 3 блоков из 5, кол-во символов 5068 (21%)
  5. https://tokar.guru/stanki-i-oborudovanie/dvigateli/shema-podklyucheniya-elektrodvigatelya-k-seti-220-volt.html: использовано 6 блоков из 10, кол-во символов 4645 (19%)
  6. http://OnlineElektrik.ru/eoborudovanie/edvigateli/trexfaznyj-asinxronnyj-dvigatel-podklyuchenie-na-220-volt.html: использовано 4 блоков из 6, кол-во символов 2835 (12%)

Схема подключения магнитного пускателя 380 в через кнопку


Кнопки управления пускателей

В общем случае потребуется две кнопки: одна для включения и одна для отключения. Обратите внимание, что у них для управления пускателем используются разные по назначению контакты. У кнопки «Стоп» они нормально замкнуты, то есть, если кнопка не нажата, группа контактов замкнута, и размыкается при активации кнопки. У кнопки «Пуск» все наоборот.

Эти устройства могут содержать или только конкретный, нужный для работы элемент, либо быть универсальными, включая в себя и по одному замкнутому и разомкнутому контакту. В этом случае необходимо выбрать правильный.

Производители обычно снабжают свою продукцию символьными обозначениями, позволяющими определить назначение той или оной контактной группы. Стоповую кнопку обычно окрашивают в красный цвет. Цвет пусковой традиционно черный, то приветствуется зеленый, который соответствует сигналу «Включено» или «Включить». Такие кнопки используются, в основном, на дверях шкафов и панелях управления двигателями станков.

Для дистанционного управления используются кнопочные станции, содержащие две кнопки в одном корпусе. Станция соединяется с местом установки пускателя с помощью контрольного кабеля. В нем должно быть не менее трех жил, сечение которых может быть небольшим.


Простейшая рабочая схема пускателя с тепловым реле

Запуск starline А 94 + кнопка старт/стоп, проблемы.

Запуск starline А 94 + кнопка старт/стоп, проблемы.

sergey_kazan » 18 сен 2014, 10:55

Авто максималка на бензине 2014. Сигнализация старлайн А94 + авто на кнопке старт/стоп. Работает, машину прогревает, но! Машину с охраны не снять, пока не заглушишь. Собственно вот ветка вопроса к производителю https://support.starline.ru/topic/505992 . n-dvigatel . Утверждает что это специфика моего автомобиля. Обсуждал это на драйве https://www.drive2.ru/l/4568110 , есть отзывы что аналогичные авто и сигнализация работают без нареканий, то есть при заведенном двигателе без проблем открваются с кнопки на двери. Звонил в автосервис, где ставил — говорят все сделали по карте установки старлайна. Могут подключить центральный замок по аналогу, но не знают что из этого получиться.

В общем наверно тут больше опрос — » а у вас как?» Если есть знатоки, скажите что делать, чтобы вашу информация я смог передать установщикам.

Re: запуск starline А 94 + кнопка старт/стоп, проблемы.

Nikolay0812 » 18 сен 2014, 13:48

Магнитный пускатель

Теперь о том, на что следует обратить внимание, рассматривая сам пускатель перед его подключением. Самое важное – напряжение катушки управления, которое указано либо на ней самой, либо неподалеку. Если надпись гласит 220 В АС (или рядом с 220 стоит значок переменного тока), то для работы схемы управления потребуется фаза и ноль.

Интересное видео о работе магнитного пускателя смотрите ниже:

Если же это 380 В АС (того же переменного тока), то управлять пускателем будут две фазы. В процессе описания работы схемы управления будет понятно, в чем отличие.

При любых других значениях напряжения, наличии знака постоянного тока или букв DC подключить изделие к сети не получится. Оно предназначено для других цепей.

Еще нам потребуется использовать дополнительный контакт пускателя, называемый блок-контактом. У большинства аппаратов он маркируется цифрами 13НО (13NO, просто 13) и 14НО (14NO, 14).

Буквы НО означают «нормально открытый», то есть замыкается он только на притянутом пускателе, что при желании можно проверить мультиметром. Встречаются пускатели, имеющие нормально замкнутые дополнительные контакты, они не годятся для рассматриваемой схемы управления.

Силовые контакты предназначены для подключения нагрузки, которой они и управляют.

У разных производителей их маркировка отличается, но при их определении сложностей не возникает. Итак, крепим пускатель к поверхности или DIN-рейке в месте его постоянной дислокации, прокладываем силовые и контрольные кабели, начинаем подключение.

Схема управления пускателем на 220 В

Один мудрец сказал: есть 44 схемы подключения кнопок к магнитному пускателю, из которых 3 работают, а остальные – нет. Но правильная – только одна. Про нее и поговорим (смотри схему ниже).


Подключение силовых цепей лучше оставить на потом. Так будет проще доступ к винтам катушки, которые всегда перекрываются проводами основной цепи. Для питания цепей управления используем один из фазных контактов, от которой проводник отправляем на один из выводов кнопки «Стоп».

Это может быть или проводник, или жила кабеля.

От кнопки стоп пойдут уже два провода: один к кнопке «Пуск», второй – на блок-контакт пускателя.

Для этого между кнопками ставится перемычка, а к одной из них в месте ее подключения добавляется жила кабеля к пускателю. Со второго вывода кнопки «Пуск» тоже идут два провода: один на второй вывод блок-контакта, второй – к выводу «А1» катушки управления.

При подключении кнопок кабелем перемычка ставится уже на пускателе, к ней подключается третья жила. Второй вывод от катушки (А2) подключается к нулевой клемме. В принципе нет разницы, в каком порядке подключать вывода кнопок и блок-контакта. Желательно только именно вывод «А2» катушки управления соединить с нулевым проводником. Любой электрик ожидает, что нулевой потенциал будет только там.

Теперь можно подключить провода или кабели силовой цепи, не позабыв о том, что рядом с одним из них на входе присутствует провод на схему управления. И только с этой стороны на пускатель подается питание (традиционно – сверху). Попытка подключить кнопки на выход пускателя ни к чему не приведет.

Сигнализация Старлайн для Старт-стоп кнопок

Наконец-то добрался до давно обещанного отчета по установке сигнализации Старлайн. Главный нюанс — Субарик оснащен кнопкой Старт-стоп, а это у меня первая машина с таким функционалом. Исходные данные — автомобиль Subaru Outback 2011 г. на гарантии. Электронный замок, кнопка старт-стоп, т.е. ключа нет, родная сигнализация, система доступа в салон без ключа. Основная задача — обеспечить автопрогрев машины по температуре в тепличных зимних условиях центральной Азии:

Опыт предыдущих лет — Томагавк 9010 на Паджеро 4 и до этого что-то еще совсем древнее.

Выбор места установки

Так как машина находится на гарантии, то первое обращение было сделано прямо к официальным представителям в Субару-центр, откуда по длинной цепочки в конце-концов перенаправили в СТО, которое не официальное, но уполномоченное. Был слегка удивлен, но возражать не стал. Позже мое удивление было разделено некоторыми товарищами, но к этому вернемся.

Выбор сигнализации.

По большому счету из всего богатства систем, представленных на рынке установщиками и читателями сайта, были рекомендованы две: Старлайн и Magic Car. (см. в Блоге пост про Сигнализация для Subaru Outback 2011 — нужен совет) Основная конкурентная борьба разгорелась между ними, но не надолго. Все эксперты рано или поздно склонялись к мнению — хрен редьки не слаще. Поэтому после тщательнейшего анализа выбор сделан был совершенно осознанно и взвешенно — «нууу не знаю, ну возьмите старлайн, что-ли….»

После столь убедительной аргументации в сервисе выбор, конечно же, пал на старлайн. Чем, собственно, я остался на данный момент доволен. Главный вопрос — электронные замки работать будут? Ответ — да. Второй вопрос — электроприборы будут выключены? Ответ — нет.

Поясню, у меня на Паджеро, когда включается автозавод, работает только печка и свет. Ближний свет на ночь отключаю вручную (хотя после выключения зажигания он отрубается сам), а печка молотит на стекло и в салон. Летом, кстати, оставляю в режиме кондиционера и к приходу салон уже остывает от дневного зноя. Однако в ситуации с кнопкой Старт-стоп такой фокус не проходит. В случае запуска машина ведет себя как будто ключ зажигания вставлен и повернут. Т.е. вся электроника запитана, а это значит, что играет музыка, если оставили радио включенным, машут дворники, если сработает датчик дождя. Работают подогревы сидений. Они, правда, включаются по датчику под задницей, но опыт показал, что в Субару, если подогрев включен на автозаводе, то сиденья прогреваются заметно быстрее, чем если он включается при посадке. Видимо какое-то напряжение на попогрейку все-таки идет.

Установка.

Установку планировалось произвести в ноябре, во время служебной командировки в Австрию. Но пока я пил шнапс, ел шницель и штрудель, водитель столкнулся с нерешаемой проблемой и отменил установку. Проблема была проста — нам нужно два пульта, так как два водителя, а стоимость второго пульта оказалась $200! Водитель побоялся тратить такую сумму без согласования, а заодно и почему-то побоялся позвонить. В итоге, к моему возвращению машина оказалась не оборудованной

Со второго раза установка удалась, заняла чуть меньше рабочего дня. Водитель пригнал машину и к вечеру торжественно передал мне пульт. Правда в торжественности имела место некая заминка, мол мы тут пытались разобраться с пультом, но там все сложно, вы уж сами как-нибудь.

На вопрос — как прошла установка, ответил, что все отлично, все сверили, все заводится, открывается, причем пульт от родной сигнализации уже не нужен. На этом мы расстались. Первое подозрение, что сегодняшний день принесет сюрпризы, возникло у меня, когда зашел коллега и увидел пульт от сигналки. Без родного пульта от Субару. И задал провокационный вопрос — а как?

Как же?

Так как человеком он был опытным, эксплуатировал уже не первую машину с кнопками вместо замка зажигания, то доходчиво и на пальцах пояснил проблему. Дело в том, что я предполагал, что установка чипа от иммобилайзера (который вытаскивается из запасного ключа, в моем случае брелка) внутрь машины решает все проблемы, но оказалось все далеко не так. Чип на машинах с кнопкой устанавливается внутрь и запитывается только в момент авто- или дистанционного запуска. Во всех остальных случаях чип не запитан. Если чип иммобилайзера оставить запитанным, угонщику будет достаточно нажать кнопку Старт и машина полностью в его руках. Там, где кнопки нет, мы в любом случае вынуждены таскать ключ зажигания. В случае с кнопкой для запуска машины обязательно нужен брелок с чипом иммобилайзера. А раз установщики сказали, что машину можно завести без фирменного брелка, то это означает одно из двух — либо установщики полные идиоты, и нужно срочно ехать бить им морду, либо …. они этого не говорили.

На этом наш трудовой день и закончился. На всякий случай я позвонил водителю и тот подтвердил — да, машина заводится без родного брелка.

20 часов после полуночи, зима, ветер. Как несложно догадаться, попытка дистанционно завести машину, стоя возле нее, не удалась. — Возможно я неправильно прочел инструкцию, — подумалось мне и я щелкнул сигналкой на открытие замков. Машинка мигнула много раз и двери отворились. Холодный салон встретил настороженным миганием синенького светодиода. Рука привычно потянулась к кнопке пуск, но глаз успел отметить еще до нажатия, что на панели ярко красно горит изображение ключа. Машина не завелась.

Через 30 минут водитель появился на парковке с «родным» брелоком и все заработало. А это значит что: — установщики все сделали правильно; — вместо одного большого брелка теперь придется таскать два!

Остался единственный раздражающий фактор — ярко горящий синий светодиод, который так удачно расположили в углу панели, что он все время светил лучом прямо в глаза. Ну с этой проблемой разберусь завтра, подумалось мне и я прикрыл светодиод перчаткой.

Завтра

Завтра машина не завелась с пульта. Не завелась утром, но времени на эксперименты не было. Не завелась в обед и не завелась к вечеру. На следующее завтра машина была отправлена к установщикам, чтобы вернуться сразу с диагнозом — нечего на нас пенять, коли руки кривые. Было найдено объяснение виноватому лицу водителя в первый день. Шаловливые ручки, поперенажимав на кнопки, воткнули на сигналке аварийный режим, в котором она умела только одно — открывать и закрывать замки. По этой же причине надоедливо горел светодиод в салоне. На этом все проблемы закончились.

Осталось мелкое неудобство — так как один брелок был разобран и чип иммобилайзера засунули в машину, то теперь у нас оказалось два брелка от сигналки, но один брелок от машины.

Подключение теплового реле в схему пускателя

Тепловое реле используется для защиты электродвигателя от перегрузки. Конечно, автоматическим выключателем он защищается при этом все равно, но его теплового элемента для этой цели недостаточно. И его нельзя настроить точно на номинальный ток мотора. Принцип работы теплового реле тот же, что и в автоматическом выключателе.

Ток проходит по греющим элементам, если его величина превысит заданную – отгибается биметаллическая пластинка и переключает контактики.

В этом есть еще одно отличие от автоматического выключателя: само тепловое реле ничего не отключает. Оно просто дает сигнал к отключению. Который нужно правильно использовать.


Силовые контакты теплового реле позволяют подключать его к пускателю напрямую, без проводов. Для этого каждый модельный ряд изделий взаимно дополняет друг друга. Например, ИЭК выпускает тепловые реле для своих пускателей, АВВ – своих. И так у каждого производителя. Но изделия разных фирм не стыкуются друг с другом.

Тепловые реле также могут иметь два независимых контакта: нормально замкнуты и нормально разомкнутый. Нам понадобится замкнутый – как в случае с кнопкой «Стоп». Тем более, что и функционально он будет работать так же, как эта кнопка: разрывать цепь питания катушки пускателя, чтобы он отпал.

Подключение пускателя по схеме звезда — треугольник

Подключение пускателя по схеме звезда — треугольник.

Переключение двигателя со звезды на треугольник применяют для защиты электрических цепей от перегрузок. В основном переключают со звезды на треугольник мощные трехфазные асинхронные двигатели от 30-50 кВт и высокооборотные ~3000 об/мин, иногда 1500 об/мин.

Если двигатель соединен в звезду, то на каждую его обмотку подается напряжение 220 Вольт, а если двигатель соединен в треугольник, то на каждую его обмотку приходится напряжение 380 Вольт. Здесь в действие вступает закон Ома I=U/R: чем выше напряжение, тем выше ток, а сопротивление не изменяется.

Проще говоря, при подключении в треугольник (380) ток будет выше, чем при подключении в звезду (220).

Когда электродвигатель разгоняется и набирает полные обороты, картина полностью меняется. Дело в том, что двигатель имеет мощность, которая не зависит от того, подключен он в звезду или в треугольник. Мощность двигателя зависит в большей степени от железа и сечения провода. Здесь действует другой закон электротехники W=I*U.

Мощность равна силе тока, умноженной на напряжение, то есть чем выше напряжение, тем ниже ток. При подключении в треугольник (380) ток будет ниже, чем в звезду (220). В двигателе концы обмоток выведены на «клеммник» таким образом, что, в зависимости от того, каким образом поставить перемычки, получится подключение в звезду или в треугольник. Такая схема обычно нарисована на крышке. Для того чтобы производить переключения со звезды на треугольник, мы вместо перемычек будем использовать контакты .

Схема подключения трехфазного двигателя к однофазной сети с реверсом и кнопкой для подключения пускового конденсатора.

Схема подключения трехфазного асинхронного двигателя, в пусковом положении которого обмотки статора соединяются звездой, а в рабочем положении — треугольником.

К двигателю подходит шесть концов. Магнитный пускатель КМ служит для включения и отключения двигателя. Контакты магнитного пускателя КМ1 работают как перемычки для включения асинхронного двигателя в треугольник

Обратите внимание, что провода от клеммника двигателя должны быть включены в таком же порядке, как и в самом двигателе. Главное — не перепутать

Магнитный пускатель КМ2 подключает перемычки для включения в звезду к одной половине клеммника, а к другой половине подается напряжение.

При нажатии на кнопку «ПУСК» питание подается на магнитный пускатель КМ. Он срабатывает, и на него подается напряжение через блок-контакт. Теперь кнопку можно отпустить. Далее напряжение подается на РВ, оно отсчитывает установленное время. Также напряжение через замкнутый контакт реле времени подается на магнитный пускатель КМ2, и двигатель запускается в «звезду».

Через установленное время срабатывает реле времени РТ. Магнитный пускатель Р3 отключается. Напряжение через контакт реле времени подается на нормально-замкнутый (замкнутый в отключенном положении) блок-контакт магнитного пускателя КМ2, а оттуда на катушку магнитного пускателя КМ1. И электродвигатель включается в треугольник.

Схема включения нереверсивного пускателя.

Пускатель КМ2 следует также подключать через нормально-замкнутый блок контакт пускателяКМ1 для защиты от одновременного включения пускателей.

Магнитные пускатели КМ1 и КМ2 лучше взять сдвоенные с механической блокировкой одновременного включения.

Кнопкой «СТОП» схема отключается.

Схема состоит:

  1. Автоматический выключатель.
  2. Три магнитных пускателя КМ, КМ1, КМ2.
  3. Кнопка пуск — стоп;- Трансформаторы тока ТТ1, ТТ2;- Токовое реле РТ;- Реле времени РВ.
  4. БКМ, БКМ1, БКМ2– блок-контакты своего пускателя.

Проверка работоспособности схемы

Для того, чтобы понять, правильно собрана схема или нет, нагрузку к пускателю лучше не подключать, оставив его нижние силовые клеммы свободными. Так вы обезопасите коммутируемое оборудование от лишних проблем. Включаем автоматический выключатель, подающий напряжение на испытуемый объект.

Само собой разумеется, пока идет монтаж, он должен быть отключен. А также любым доступным способом предотвращено случайное его включение посторонними лицами. Если после подачи напряжения пускатель не включился самостоятельно – уже хорошо.

Нажимаем на кнопку «Пуск», пускатель должен включиться. Если нет – проверяем замкнутое положение контактов кнопки «Стоп» и состояние теплового реле.

При диагностике неисправности помогает однополюсный указатель напряжения, которым можно легко проверить прохождение фазы через кнопку «Стоп» до кнопки «Пуск». Если при отпускании кнопки «Пуск» пускатель не фиксируется, а отпадает – неправильно подключены блок-контакты.

Проверьте – они должны подключиться параллельно этой кнопке. Правильно подключенный пускатель должен фиксироваться во включенном положении при механическом нажатии на подвижную часть магнитопровода.

Теперь проверяем работу теплового реле. Включаем пускатель и аккуратно отсоединяем любой проводок от контактов реле. Пускатель должен отпасть.

Питание на электродвигатели лучше подавать через магнитные пускатели (называются еще контакторы). Во-первых, они обеспечивают защиту от пусковых токов. Во-вторых, нормальная схема подключения магнитного пускателя содержат органы управления (кнопки) и защиты (тепловые реле, цепи самоподхвата, электрической блокировки и т.п.). С помощью этих устройств можно запустить двигатель в обратном направлении (реверс) нажатием соответствующей кнопки. Все это организуется при помощи схем, причем они не очень сложны и их вполне можно собрать самостоятельно.

Подключение сигнализации в автомобилях с «кнопкой»

После корректной установки авто будет способно проводить удаленный запуск. Дополнительно будет доступен ряд функций для программирования. Старлайн А91 можно настроить на автозапуск по температуре, будильнику, времени или заряду батареи. Ниже представлено видео, в котором объясняется, какие кнопки необходимо нажимать.

Владелец также может запустить мотор удаленно в любой момент, если под рукой имеется брелок. Комбинация клавиш в таком случае – длительное нажатие первой клавиши (до звукового сигнала), а затем короткий клик на третью кнопку. При этом автомобиль должен быть поставлен на нейтраль (для моделей с МКПП обязательно программирование нейтрали), ручной тормоз затянут, а все двери – заблокированы.

Назначение и устройство

Магнитные пускатели встраиваются в силовые сети для подачи и отключения питания. Работать могут с переменным или постоянным напряжением. Работа основана на явлении электромагнитной индукции, имеются рабочие (через них подается питание) и вспомогательные (сигнальные) контакты. Для удобства эксплуатации в схемы включения магнитных пускателей добавляют кнопки Стоп, Пуск, Вперед, Назад.

Так выглядит магнитный пускатель

Магнитные пускатели могут быть двух видов:

  • С нормально замкнутыми контактами. Питание на нагрузку подается постоянно, отключается только когда срабатывает пускатель.
  • С нормально разомкнутыми контактами. Питание подается только в то время, когда пускатель работает.

Более широко применяется второй тип — с нормально разомкнутыми контактами. Ведь в основном, устройства должны работать небольшой промежуток времени, остальное время находится в покое. Потому далее рассмотрим принцип работы магнитного пускателя с нормально разомкнутыми контактами.

Состав и назначение частей

Основа магнитного пускателя — катушка индуктивности и магнитопровод. Магнитопровод разделен на две части. Обе они имеют вид буквы «Ш», установлены в зеркальном отражении. Нижняя часть неподвижная, ее средняя часть является сердечником катушки индуктивности. Параметры магнитного пускателя (максимальное напряжение, с которым он может работать) зависят от катушки индуктивности. Могут быть пускатели малых номиналов — на 12 В, 24 В, 110 В, а наиболее распространенные — на 220 В и на 380 В.

Устройство магнитного пускателя (контактора)

Верхняя часть магнитопровода — подвижная, на ней закреплены подвижные контакты. К ним подключается нагрузка. Неподвижные контакты закреплены на корпусе пускателя, на них подается питающее напряжение. В исходном состоянии контакты разомкнуты (за счет силы упругости пружины, которая удерживает верхнюю часть магнитопровода), питание на нагрузку не подается.

Принцип работы

В нормальном состоянии пружина приподнимает верхнюю часть магнитопровода, контакты разомкнуты. При подачи питания на магнитный пускатель, ток, протекающий через катушку индуктивности, генерирует электромагнитное поле. Сжимая пружину, оно притягивает подвижную часть магнитопровода, контакты замыкаются (на рисунке картинка справа). Через замкнутые контакты питание подается на нагрузку, она находится в работе.

Принцип работы магнитного пускателя (контактора)

При отключении питания магнитного пускателя электромагнитное поле пропадает, пружина выталкивает верхнюю часть магнитопровода вверх, контакты размыкаются, питание на нагрузку не подается.

Подавать через магнитный пускатель можно переменное или постоянное напряжение. Важна только его величина — оно не должно превышать указанный производителем номинал. Для переменного напряжения максимум — 600 В, для постоянного — 440 В.

Смотрите видео

Как подключить магнитный пускатель?

Магнитный пускатель – это электротехническое устройство, позволяющее дистанционно запускать и управлять работой асинхронного электрического двигателя. В этой статье расскажем, как подключить магнитный пускатель по простейшей схеме.

Схема подключения пускателя с катушкой 220 В

В любой схеме подключения магнитного пускателя есть две цепи. Одна силовая, через которую подается питание. Вторая — сигнальная. При помощи этой цепи происходит управление работой устройства. Рассматривать их надо отдельно — проще понять логику.

В верхней части корпуса магнитного пускателя находятся контакты, к которым подключается питание для этого устройства. Обычное обозначение — A1 и A2. Если катушка на 220 В, сюда подается 220 В. Куда подключить «ноль» и «фазу» — без разницы. Но чаще «фазу» подают на А2, так как тут этот вывод обычно продублирован в нижней части корпуса и довольно часто подключать сюда удобнее.

Подключение питания к магнитному пускателю

Ниже на корпусе расположены несколько контактов, подписанных L1, L2, L3. Сюда подключается источник питания для нагрузки. Тип его не важен (постоянное или переменное), важно чтобы номинал не был выше чем 220 В. Таким образом через пускатель с катушкой на 220 В можно подавать напряжение от аккумулятора, ветрогенератора и т.д. Снимается оно с контактов T1, T2, T3.

Назначение гнезд магнитного пускателя

Самая простая схема

Если к контактам A1 — A2 подключить сетевой шнур (цепь управления), подать на L1 и L3 напряжение 12 В с аккумулятора, а к выводам T1 и T3 — осветительные приборы (силовая цепь), получим схему освещения, работающую от 12 В. Это лишь один из вариантов использования магнитного пускателя.

Для того чтобы выполнить подключение пускателя необходимо

1. Контакты, в наличии 3 штук. Благодаря им будет подаваться питание.

2. Катушка, кнопки управления. Благодаря им будет поддерживаться блокировка ошибочных включений магнитного пускателя.

3. Использование схемы с одним пускателем. Для этого понадобится трёхжильный кабель и несколько контактов.

Если использовать схему подключения с катушкой на 380 вольт, то нужно использовать разноимённую фазу красного либо чёрного цвета. Также в контакте будет применяться свободная пара.

Чтобы подключить цепь магнитного пускателя, нужна одна зелёная фаза, которая будет идти к контакту катушки. А со второго контакта будет идти на кнопку «Пуск». С кнопки «Пуск» на кнопку «Стоп».

То есть при нажатии на «Пуск», будет подаваться 220 вольт, которые буду способствовать включению остальных контактов. Для отключения магнитного пускателя необходимо будет разорвать «ноль», а для включения обратно нажать «Пуск».

Для подключения реле необходимо последовательно подключить его, подобрав рабочий ток для конкретного двигателя.

Подключать его следует к магнитному выходу на электродвигатель. после на термореле и на электромотор.

Подключение к трехфазной сети через контактор с катушкой на 220 В

Через стандартный магнитный пускатель, работающий от 220 В, можно подключить трехфазное питание. Такая схема подключения магнитного пускателя используется с асинхронными двигателями. В цепи управления отличий нет. К контактам A1 и A2 подключается одна из фаз и «ноль». Фазный провод идет через кнопки «пуск» и «стоп», также ставится перемычка на NO13 и NO14.

Как подключить асинхронный двигатель на 380 В через контактор с катушкой на 220 В

В силовой цепи отличия незначительные. Все три фазы подаются на L1, L2, L3, к выходам T1, T2, T3 подключается трехфазная нагрузка. В случае с мотором в схему часто добавляют тепловое реле (P), которое не допустит перегрев двигателя. Тепловое реле ставят перед электродвигателем. Оно контролирует температуру двух фаз (ставят на самые нагруженные фазы, третья), размыкая цепь питания при достижении критических температур. Эта схема подключения магнитного пускателя используется часто, опробована много раз. Порядок сборки смотрите в следующем видео.

Схема подключения двигателя с реверсным ходом

Для работы некоторых устройств необходимо вращение двигателя в обе стороны. Смена направления вращения происходит при переброске фаз (надо поменять местами две произвольные фазы). В цепи управления также необходим кнопочный пост (или отдельные кнопки) «стоп», «вперед», «назад».

Схема подключения магнитного пускателя для реверса двигателя собирается на двух одинаковых устройствах. Желательно найти такие, на которых присутствует пара нормальнозамкнутых контактов. Устройства подключаются параллельно — для обратного вращения двигателя, на одном из пускателей фазы меняются местами. Выходы обоих подаются на нагрузку.

Сигнальные цепи несколько сложнее. Кнопка «стоп» — общая. Поле нее стоит кнопка «вперед», которая подключается к одному из пускателей, «назад» — ко второму. Каждая из кнопок должна иметь цепи шунтирования («самоподхвата») — чтобы не было необходимости все время работы держать нажатой одну из кнопок (устанавливаются перемычки на NO13 и NO14 на каждом из пускателей).

Схема подключения двигателя с реверсным ходом с использованием магнитного пускателя

Чтобы избежать возможности подачи питания через обе кнопки, реализуется электрическая блокировка. Для этого после кнопки «вперед» питание подается на нормально замкнутые контакты второго контактора. Аналогично подключается второй контактор — через нормально замкнутые контакты первого.

Если в магнитном пускателе нет нормально замкнутых контактов, их можно добавить, установив приставку. Приставки, при установке, соединяются с основным блоком и их контакты работают одновременно с другими. То есть, пока питание подается через кнопку «вперед», разомкнувшийся нормально замкнутый контакт не даст включить обратный ход. Чтобы поменять направление, нажимают кнопку «стоп», после чего можно включать реверс, нажав «назад». Обратное переключение происходит аналогично — через «стоп».

Прежде чем приступить к практическому подключению пускателя — напомним полезную теорию: контактор магнитного пускателя включается управляющим импульсом, исходящим от нажатия пусковой кнопки, с помощью которой подается напряжение на катушку управления. Удержание контактора во включенном состоянии происходит по принципу самоподхвата – когда дополнительный контакт подключается параллельно пусковой кнопке, тем самым подавая напряжение на катушку, вследствие чего пропадает необходимость удерживать кнопку запуска в нажатом состоянии.

Отключение магнитного пускателя в этом случае возможно только при разрыве цепи управляющей катушки, из чего становится очевидной необходимость использования кнопки с размыкающим контактом. Поэтому кнопки управления пускателем, которые называют кнопочным постом, имеют по две пары контактов – нормально открытые (разомкнутые, замыкающие, НО, NO) и нормально закрытые (замкнутые, размыкающие, НЗ, NC)

Данная универсализация всех кнопок кнопочного поста сделана для того, чтобы предвидеть возможные схемы обеспечения моментального реверса двигателя. Общепринято называть отключающую кнопку словом: «Стоп» и маркировать её красным цветом. Включающую кнопку часто называют пусковой, стартовой, или обозначают словом «Пуск», «Вперёд», «Назад».

Если катушка рассчитана на срабатывание от 220 В, то цепь управления коммутирует нейтраль. Если рабочее напряжение электромагнитной катушки 380 В, то в цепи управления протекает ток, «снятый» с другой питающей клеммы пускателя.

Подключение трехфазного двигателя на 380 вольт

Здесь вообще нет ничего сложного. Есть три фазы, есть три вывода двигателя и рубильник

Нулевую точку (где соединяются три обмотки, началами или концами – как я уже говорил выше, абсолютно неважно, как мы назовём выводы обмоток) при схеме соединения обмоток звездой, подключать к нулевому проводу не надо. То есть, для включения трехфазного двигателя в трехфазную сеть 380 вольт (если двигатель 220/380) нужно соединить обмотки по схеме звезда, и подать на двигатель только три провода с тремя фазами

А если двигатель 380/660 вольт, то схема соединения обмоток будет треугольник, ну а там точно нулевой провод некуда подключать.

Смена направления вращения вала трехфазного двигателя

Независимо от того, будет это конденсаторная схема включения или полноценная трехфазная, для смены вращения вала нужно поменять местами две любые обмотки. Другими словами поменять местами два любых провода.

На чём хочется остановиться более подробно. Когда мы считали ёмкость рабочего конденсатора, то мы использовали номинальный ток двигателя. Проще говоря, такой ток в двигателе будет только тогда, когда он будет полностью нагружен. Чем меньше нагружен двигатель, тем меньше будет ток, поэтому ёмкость рабочего конденсатора, полученная по этой формуле будет МАКСИМАЛЬНО ВОЗМОЖНОЙ ёмкостью для данного двигателя. Чем плохо использовать максимальную емкость для недогруженного двигателя – это вызывает повышенный нагрев обмоток. В общем, чем-то приходится жертвовать: маленькая ёмкость не даёт двигателю набрать полную мощность, большая ёмкость при недогрузке вызывает повышенный нагрев. Обычно в этом случае я предлагаю такой выход – сделать рабочие конденсаторы из четырёх одинаковых конденсаторов с переключателем или набором переключателей (что будет доступнее). Допустим, мы посчитали ёмкость 40 мкФ. Значит, для работы нам надо использовать 4 конденсатора по 10 мкФ (или три конденсатора 10, 10 и 20 мкФ) и в зависимости от нагрузки использовать 10, 20, 30 или 40 мкФ.

Ещё один момент по пусковым конденсаторам. Конденсаторы для переменного напряжения стоят гораздо дороже конденсаторов для постоянного. Использовать конденсаторы для постоянного напряжения в сетях с переменным, крайне не рекомендуется по причине того, что конденсаторы взрываются. Однако, для двигателей существует специальная серия конденсаторов Starter, предназначенная именно для работы, как пусковые. Использовать конденсаторы серии Starter в качестве рабочих тоже запрещено.

И в завершение нужно отметить такой момент – добиваться идеальных значений нет смысла, поскольку это возможно только, если нагрузка будет стабильной, например, если двигатель будет использоваться в качестве вытяжки. Погрешность в 30-40% это нормально. Другими словами, конденсаторы надо подбирать так, чтобы был запас по мощности в 30-40%.

Схема подключения магнитного пускателя на 220 В

Здесь ток на магнитную катушку КМ 1 подается через тепловое реле и клеммы, соединенных в цепь кнопок SB2 для включения — «пуск» и SB1 для остановки — «стоп». Когда мы нажимаем «пуск» электрический ток поступает на катушку. Одновременно сердечник пускателя притягивает якорь, в результате чего происходит замыкание подвижных силовых контактов, после чего напряжение поступает на нагрузку. При отпускании «пуск» не происходит размыкание цепи, поскольку параллельно этой кнопке выполнено подключение блок-контакта КМ1 с замкнутыми магнитными контактами. Благодаря этому на катушку поступает фазное напряжение L3. При нажатии «стоп» питание отключается, подвижные контакты приходят в исходное положение, что приводит к обесточиванию нагрузки. Те же процессы происходят при работе теплового реле Р – обеспечивается разрыв ноля N, питающего катушку.

Схема подключения магнитного пускателя на 380 В

Подключение к 380 В практически не отличается от первого варианта, различие лишь в питающем напряжении магнитной катушки. В данном случае питание осуществляется с использованием двух фаз L2 и L3, тогда как в первом случае — L3 и ноль.

На схеме видно, что катушка пускателя (5) питается от фаз L1 и L2 при напряжении 380 В. Фаза L1 присоединяется напрямую к ней, а фаза L2 – через кнопку 2 «стоп», кнопку 6 «пуск» и кнопку 4 теплового реле, соединенные последовательно между собой. Принцип действия такой схемы следующий: После нажатия кнопки 6 «пуск» через включенную кнопку 4 теплового реле напряжение фазы L2 попадает на катушку магнитного пускателя 5. Происходит втягивание сердечника, замыкающее контактную группу 7 на определенную нагрузку (электродвигатель М), при этом подается ток, напряжением 380 В. В случае выключения «пуск» цепь не прерывается, ток проходит через контакт 3 – подвижный блок, замыкающийся при втягивании сердечника.

При аварии в обязательном порядке должно сработать теплового реле 1, его контакт 4 разрывается, отключается катушка и возвратные пружины приводят сердечник в исходное положение. Контактная группа размыкается, снимая напряжение с аварийного участка.

Популярные схемы подключения МП

Наиболее часто используют монтажную схему с одним устройством. Чтобы соединить ее основные элементы используют 3-жильный кабель и два разомкнутых контакта в случае, если устройство выключено.

Читать также: Станки своими руками чертежи бесплатно

В нормальных обстоятельствах контакт реле Р замкнут. При нажатии клавиши «Пуск» цепь замыкается. Нажатие кнопки «Стоп» разбирает схему. В случае перегрузки тепловой датчик Р сработает и разорвет контакт Р, машина остановится.

При этой схеме большое значение имеет номинальное напряжение катушки. Когда усилие на ней 220 В, двигателя 380 В, в случае соединения в звезду, такая схема не подходит.

Для этого применяют схему с нейтральным проводником. Применять ее целесообразно в случае соединения обмоток двигателя треугольником.

Подключение магнитного пускателя через кнопочный пост

В данную схему включены дополнительные кнопки включения и остановки. Обе кнопки «Стоп» подключены в цепь управления последовательно, а кнопки «Пуск» соединяются параллельно.Такое подключение позволяет производить коммутацию кнопками с любого поста.

Вот ещё вариант. Схема состоит из двухкнопочного поста “Пуск” и “Стоп” с двумя парами контактов нормально замкнутых и разомкнутых. Магнитный пускатель с катушкой управления на 220 В. Питание кнопок взято с клеммы силовых контактов пускателя, цифра 1. Напряжение подходит до кнопки “Стоп” цифра 2. Проходит через нормально замкнутый контакт, по перемычке до кнопки “Пуск” цифра 3.

Нажимаем кнопку “Пуск”, замыкается нормально разомкнутый контакт цифра 4. Напряжение достигает цели, цифра 5, катушка срабатывает, сердечник втягивается под воздействием электромагнита и приводит в движение силовые и вспомогательные контакты, выделенные пунктиром.

Вспомогательный блок контакт 6 шунтирует контакт кнопки “пуск” 4, для того, чтобы при отпускании кнопки “Пуск” пускатель не отключился. Отключение пускателя осуществляется нажатием кнопки “Стоп”, цифра 7, снимается напряжение с катушки управления и под воздействием возвратных пружин пускатель отключается.

Подключение двигателя через пускатели

Нереверсивный магнитный пускатель

Если изменять направление вращения двигателя не требуется, то в цепи управления используются две не фиксируемые подпружиненные кнопки: одна в нормальном положении разомкнутая – «Пуск», другая замкнутая – «Стоп». Как правило, они изготавливаются в едином диэлектрическом корпусе, при этом одна из них красного цвета. Такие кнопки обычно имеют две пары групп контактов – одну нормально разомкнутую, другую замкнутую. Их тип определяется во время монтажных работ визуально или с помощью измерительного прибора.

Провод цепи управления подключается к первой клемме замкнутых контактов кнопки «Стоп». Ко второй клемме этой кнопки подключают два провода: один идет на любой ближайший из разомкнутых контактов кнопки «Пуск», второй – подключается к управляющему контакту на магнитном пускателе, который при отключенной катушке разомкнут. Этот разомкнутый контакт соединяется коротким проводом с управляемой клеммой катушки.

Второй провод с кнопки «Пуск» подключается непосредственно на клемму втягивающей катушки. Таким образом, к управляемой клемме «втягивающей» должно быть подключено два провода – «прямой» и «блокирующий».

Одновременно замыкается управляющий контакт и, благодаря замкнутой кнопке «Стоп», управляющее воздействие на втягивающую катушку фиксируется. При отпускании кнопки «Пуск» магнитный пускатель остается замкнутым. Размыкание контактов кнопки «Стоп» вызывает отключение электромагнитной катушки от фазы или нейтрали и электродвигатель отключается.

Реверсивный магнитный пускатель

Для реверсирования двигателя необходимо два магнитных пускателя и три управляющие кнопки. Магнитные пускатели устанавливаются рядом друг с другом. Для большей наглядности условно отметим их питающие клеммы цифрами 1–3–5, а те, к которым подключен двигатель как 2–4–6.

Для реверсивной схемы управления пускатели соединяются так: клеммы 1, 3 и 5 с соответствующими номерами соседнего пускателя. А «выходные» контакты перекрестно: 2 с 6, 4 с 4, 6 с 2. Провод, питающий электродвигатель, подключается к трем клеммам 2, 4, 6 любого пускателя.

При перекрестной схеме подключения одновременное срабатывание обоих пускателей приведет к короткому замыканию. Поэтому проводник «блокирующей» цепи каждого пускателя должен проходить сначала через замкнутый управляющий контакт соседнего, а потом – через разомкнутый своего. Тогда включение второго пускателя будет вызывать отключение первого и наоборот.

Ко второй клемме замкнутой кнопки «Стоп» подключаются не два, а три провода: два «блокирующих» и один питающий кнопки «Пуск», включаемых параллельно друг другу. При такой схеме подключения кнопка «Стоп» выключает любой из скоммутированных пускателей и останавливает электродвигатель.

Как завести автомобиль с дополнительного брелка

Для сигнализаций Старлайн А 91 имеет значение длительность нажатия клавиш на коммуникаторе:

  1. Кратковременное — один «клик» на кнопку длительностью менее 0,5 с.
  2. Длительное. Пользователь должен зажать и удерживать элемент управления до момента, пока пульт не издаст мелодичный звуковой сигнал.
  3. Двойное. Два быстрых «клика» на одну клавишу на протяжении 0,5 с.
  4. Последовательное. Пользователь дважды нажимает одну или несколько клавиш. Первый «клик» на элемент управления должен быть более длительным, а второй — коротким.


Обозначение элементов управления на главном и дополнительном пультах
Для этого необходимо выполнить несколько условий:

  • автомобиль должен стоять на нейтральной передаче. Это актуально для автомобилей с механикой, на автомате – паркинг;
  • все двери, капот и багажник должны быть закрыты;
  • автомобиль должен быть поставлен на ручник.

Сигнализация Старлайн А91 имеет два пульта. Первый – основной, с ЖК-дисплеем. Чтобы запустить двигатель удаленно, нужно нажимать следующие кнопки: сперва кликается клавиша 1. Ее нужно держать до тех пор, пока не прозвучит мелодичный сигнал. После этого нужно коротко нажать третью кнопку. Подробная инструкция представлена в видео, расположенном ниже.

Автосигнализация имеет запасной пульт, который можно использовать в случае выхода из строя основного брелока. Отличительной особенностью второго брелока является то, что он лишен дисплея, а на нем присутствуют только кнопки. Алгоритм удаленного запуска здесь аналогичен вышеописанному. Сначала длительно жмем первую кнопку до звукового сигнала, а затем один раз нажимаем третью клавишу.

При наличии GSM-модуля автосигнализация Старлайн А91 позволяет произвести удаленный запуск при помощи мобильного телефона. Отдельная сим-карта устанавливается в блок управления сигнализацией. Она должна быть активирована и зарегистрирована при помощи соответствующей команды, отправленной с телефона владельца.

Во время первого звонка можно услышать перечень всех доступных опций, нажав на кнопку 0. Для того, чтобы удаленно завести двигатель есть определенный код, который нужно отослать на сим-карту сигнализации. На своем телефоне владелец должен ввести цифры 21 для активации данной функции. Также можно завести мотор, отправив соответствующее СМС с командой, где должны быть записаны цифры 21. В ответ придет смс с подтверждением активации.

Функция автозапуска имеет несколько различных вариантов, которые владелец может настраивать по своему усмотрению. К примеру, можно настроить автоматический запуск по будильнику. Предварительно стоит убедиться, что время на брелоке установлено правильно для корректного выполнения программы.

Необходимо установить курсор на соответствующую иконку с часами (при помощи третьей кнопки). После надо нажать первую кнопку и услышать мелодичный сигнал. Время на брелоке должно мигать, а автомобиль один раз моргнет габаритами. Теперь на пульте отображается соответствующая иконка, а система начала обратный отсчет до автозапуска. Сами показатели будильника выставляются там же, где и параметр часов.

— первоначально первая кнопка удерживается на протяжении трех секунд, а затем осуществляется короткое нажатие второй клавиши.

Также присутствует возможность выключения двигателя через телефон. Если осуществляется звонок на сим-карту сигнализации, то вводится код 22. Если же отсылается смс, то владелец должен прописать цифры 22 внутри сообщения.

Комплекс автомобильной безопасности starlaine a91 обладает способностью автоматического пуска силового агрегата. Для того, чтобы его осуществить нужно предварительно выполнить некоторые процедуры:

  • Установить селектор КПП в нейтральное положение;
  • Извлечь ключ из замка зажигания;
  • Включить систему ручного тормоза;
  • Закрыть двери, крышку моторного отсека и крышку багажного отделения.

Как установить

Установить дистанционный пуск силового агрегата можно с использованием дополнительного шестиконтактного разъема. Проводка подсоединяется по алгоритму:

  • Провод красного цвета подключается к центральному замку автомобиля;
  • Желтый провод к замку зажигания;
  • Два кабеля черного цвета подключаются к стартеру (большего сечения) и к замку зажигания;
  • Синий и зеленый провода изолируются, оставаясь свободными.

Как подключать разъем автозапуска

Во втором случае и соединение, и сам отвод должны выдерживать 30-40 Ампер. Таковы особенности сигнализации с автозапуском: должна быть возможность поддерживать зажигание. Для авто с АКП, притом, это требование обязательным не будет.

Осталось рассмотреть, как подключить «красный» шнур из разъема X1. Сигнализация модели А91 получает через него питание. В машинах с автоматической коробкой задача упростится опять:

  1. От АКБ всегда идут несколько линий, в каждой из которых есть 30-амперный предохранитель.
  2. Автосигнализацию подключают к любому из таких предохранителей, правда, со стороны, противоположной АКБ. Это верно для машин с «автоматом».
  3. Если коробка – механическая, подключайтесь к той линии, которая находится в цепи зажигания. Нарушать данное правило нельзя.

Для случая с МКП нужно помнить, что «красный» провод будет пропускать значительный ток (30 Ампер). Сама сигналка, в то же время, потребляет не больше нескольких Ватт.

В режиме охраны, когда встроенные реле разомкнуты, система Старлайн А91 расходует не более 40-ка миллиампер. Но лампы поворотников и сирена рассчитаны на много большее значение, а подключают их к блоку сигналки напрямую (см. схему выше).

Два варианта эмуляции кнопки

Допустим, кнопка «Старт/Стоп» переключает «плюсовое» напряжение. Тогда можно обойтись без реле (см. схему).

Осталось рассмотреть одно – как подключить контрольный провод, выходящий из разъема X3. На схеме шнур обозначен, как «серо-черный». Нужно выбрать один из вариантов подключения:

  1. Провод не соединяют ни с чем, контроль работы двигателя ведется по напряжению бортсети;
  2. Шнур подключают к контакту индикатора, получающему потенциал «плюс» либо «масса» после запуска двигателя;
  3. Можно контролировать сигналы таходатчика, подключившись к высоковольтному контакту тахометра.

Как известно, для сигналки Старлайн А91 других вариантов не предусмотрено. По умолчанию в настройках задан «вариант 1».

В разъеме X1 присутствуют 6 клемм. Выше рассматривалось, как подключать 4 шнура: желтый, черно-желтый, синий, красный. Остальные провода, конечно же, нужно заизолировать. Основная сложность состоит не в этом.

Скриншот руководства по эксплуатации

Заметим, что включить «программную нейтраль» без поддержки зажигания нельзя. Но в некоторых случаях это ведет к противоречию. Электроника многих авто, оборудованных кнопкой «Старт/Стоп», не позволяет поддерживать зажигание, когда оно выключено с кнопки.

Систему Starline A91 Dialog нет смысла подключать, если авто соответствует трем критериям: есть кнопка «Старт/Стоп», коробка используется механическая, поддержка зажигания исключается. Перед тем, как пытаться установить сигналку, проведите соответствующие испытания. В инструкциях фирмы Старлайн подобное требование не приводят.

Советы и хитрости установки

  • Перед сборкой схемы надо освободить рабочий участок от тока и проконтролировать, чтобы напряжение отсутствовало тестером.
  • Установить обозначение напряжения сердечника, которое упоминается на нем, а не на пускателе. Оно может быть 220 или 380 вольт. Если оно 220 В, на катушку идет фаза и ноль. Напряжение с обозначением 380 – значит разные фазы. Это является важным аспектом, ведь при неверном подсоединении сердечник может сгореть или не будет запускать полностью нужные контакторы.
  • Кнопка на пускатель (красная)Нужно взять одну красную кнопку «Стоп» с замкнутыми контактами и одну черную либо зеленую кнопку с надписью «Пуск» с неизменно разомкнутыми контактами.
  • Учтите, что силовые контакторы заставляют работать или останавливают только фазы, а нули, которые приходят и отходят, проводники с заземлением всегда объединяются на клеммнике в обход пускателя. Для подсоединения сердечника в 220 Вольт на дополнение с клеммника берется 0 в конструкцию организации пускателя.

А ещё вам понадобится полезный прибор — пробник электрика, который легко можно сделать самому.

В статье подробно рассказано о нескольких способах обновления BIOS на материнской плате Asus.

Теперь вы точно подберете идеальный ноутбук для работы или учебы!

Данная статья описывает преимущества SSD накопителей для приложений и игр. Также здесь выполняется сравнение между достоинств данного накопителя с устаревшим аналогом.


В статье речь идет о том, как отремонтировать пластмассовый китайский электрочайник.

Электронный микроконтроллерно управляемый блок с энкодером, для формирования нужного сопротивления путём переключаемых реле резисторов.

Подключение частотного преобразователя к электродвигателю (схема)

Преобразователь частоты переменного тока уже много лет применяются при строительстве электромеханических приборов и агрегатов. Они позволяют модулировать частоту для того, чтобы регулировать скорость вращения вола электрического двигателя.

Частотники позволили подключать трёхфазный электрический двигатель к однофазной сети питания, при этом, не теряя мощности. При старинном типе подключения, через емкий конденсатор, большая часть мощности двигателя терялась, КПД существенно снижалось, обмотки электрического двигателя сильно перегревались.

Всех этих проблем удалось избежать, применением частотного преобразователя. При этом очень важно соблюдать правильное подключение частотного преобразователя к электрическому двигателю.

Некоторые особенности подключения любого частотника в связку с электрическим двигателем.

Во-первых

Из соображений безопасности эксплуатации прибора, при подключении частотника (или любого иного прибора) к сети питания, обязательно нужно устанавливать защитный автомат. Автомат устанавливается перед частотником.

При этом если частотный преобразователь подключается в сеть с трёхфазным напряжением, то установить необходимо автомат тоже трёхфазный, но с общим рычагом отключения.
Это позволит отключить питание от всех фаз одновременно, если хотя бы на одной фазе будет короткое замыкание или сильная перегрузка.

Если преобразователь частоты подключается в сеть с однофазным напряжением, то соответственно применяется автомат однофазный. Но при этом, в расчет берётся ток одной фазы, умноженный на три.

При подключении трёхфазного автомата, его рабочий ток определяется током одной фазы.

Однозначно запрещено устанавливать защитный автомат в разрыв нулевого кабеля, как при однофазном подключении, так и при трёхфазном. Такое подключение только внешне выглядит идентичным (ошибочно понимать, что цепь одна и не важно, где её разрывать).
На самом деле, в случае разрыва фазовых кабелей, при срабатывании автомата, питание полностью отключается и на цепях прибора не будет фаз вовсе. Это безопасно. А при срабатывании автомата с разорванным нулём, работа прибора прекратиться. Но при этом, обмотки двигателя и цепи частотника останутся под напряжением, что является нарушением правил техники безопасности и опасно для человека.

Также, не при каких условиях не разрывается заземляющий кабель. Как и нулевой, они должны быть подключены к соответствующим шинам напрямую.

Во вторых

Следует подключить фазовые выходы частотного преобразователя к контактам электрического двигателя. При этом обмотки электрического двигателя следует подключить по принципу «треугольник» или «звезда». Тип выбирается исходя из напряжения, которое вырабатывает частотник. Как правило, к каждому инвертеру приложена инструкция, в которой подробно расписано, как соединяются обмотки двигателя для подключения конкретного частотника. Схема подключения частотного преобразователя к 3-х фазному двигателю также должна быть приведена в инструкции.

Обычно на корпусах двигателей приведены оба значения напряжения. Если частотник соответствует меньшему, то обмотки соединяются по принципу треугольника. В других случаях по принципу звезды. Схема подключения частотного преобразователя также должна быть приведена в паспорте частотника. Там же обычно приводятся и рекомендации по подключению.

В третьих

Практически к каждому преобразователю частоты в комплекте прилагается выносной пульт управления. Несмотря на то, что на самом корпусе частотника уже есть интерфейс для ввода данных управления и программирования, наличие выносного пульта управления является очень удобной опцией.

Пульт монтируется в месте, где удобнее всего с ним работать. В некоторых случаях, когда преобразователь частоты несколько уступает в пылевой защите и защите от влаги, сам частотник может быть установлен вдали от двигателя, а пульт управления рядом, для того, чтобы не бегать к шкафу управления и не регулировать обороты там.

Всё зависит от конкретных обстоятельств и требований производства.

Первый пуск и настройка преобразователя частоты

После подключения к преобразователю частоты пульта управления, следует рукоятку скорости вращения вала двигателя перевести в наименьшее положение. После этого нужно включить автомат, тем самым подать питание на частотник. Как правило, после включения питания должны загореться световые индикаторы на частотнике и, при наличии светодиодной панели, на ней должны отобразиться стартовые значения.

Принцип подключения цепей управления частотного преобразователя не является универсальным. Нужно соблюдать указания, указанные в инструкции к конкретному частотнику.

Для первого запуска двигателя потребуется нажать кратковременно клавишу пуска на частотнике. Как правило, эта кнопка запрограммирована на пуск двигателя по умолчанию на фабрике.

После пуска, вал двигателя должен начать медленно вращаться. Возможно, двигатель будет вращаться в противоположную сторону, отличную. От необходимой. Проблему можно решить программированием частотника на реверсное движение вала. Все современные модели преобразователей частоты поддерживают эту функцию. Можно воспользоваться и примитивным подключением фаз в другом порядке фаз. Хотя это долго и не рентабельно по затрате времени и сил электромонтёра.

Дальнейшая настройка предполагает выставления нужного значения оборотов двигателя. Нередко на частотника отображается не частота вращения вала двигателя, а частота питающего двигатель напряжения, выраженная в герцах. Тогда потребуется воспользоваться таблицей, для определения соответствующего значения частоты напряжения частоте вращения вала двигателя.

При монтаже и обслуживании, а также замене преобразователя частоты важно соблюдать ряд рекомендаций.

  • Любое касание рукой или иной частью тела токоведущего элемента может отнять здоровье или жизнь. Это важно помнить при любой работе со шкафом управления. При работе со шкафом управления следует отключить входящее питание и убедиться что именно фазы отключены.
  • Важно помнить, что некоторое напряжение может ещё оставаться в цепи, даже при угасании световых индикаторов. Посему, при работе с агрегатами до 7 кВт, после отключения питания рекомендуется прождать минут пять не меньше. А при работе с приборами более 7 кВт, прождать нужно не менее 15 минут после отключения фаз. Это даст возможность разрядиться всем имеющимся в цепи конденсаторам.
  • Каждый преобразователь частоты должен иметь надёжное заземление. Заземление проверяется согласно правилам профилактических работ.
  • Строго запрещено использовать в качестве заземления нулевой кабель. Заземление монтируется отдельным кабелем отдельно от нулевой шины. Даже при наличии и нулевой шины и шины заземления, при соответствии их нормам электромонтажа, соединять их запрещено.
  • Важно помнить, что клавиша отключения частотника не является гарантией обесточивания цепей. Эта клавиша всего лишь останавливает двигатель, при этом ряд цепей может оставаться под напряжением.

Подключение частотного преобразователя к электродвигателю осуществляется с применением кабелей, сечение которых соответствует тем характеристикам, которые указаны в паспорте частотника. Нарушение норм в меньшую сторону недопустимо. В большую сторону, может быть не целесообразно.

Прежде чем как подключить частотный преобразователь к электродвигателю, важно убедиться в соответствии условий, при которых будет работать преобразователь частоты. Фактически, условия должны соответствовать рекомендациям, приведённым в инструкции.

В каждом конкретном случае, подключение частотника может сопровождаться рядом обязательных условий. Чтобы узнать, как подключить частотник к 3 фазному двигателю схемы, которого есть в наличии. Сначала изучаются схемы. Если в них всё понятно, подключение выполняется при строго следовании инструкции. Если что-то не понятно, не следует выдумывать самостоятельно и полагаться на свою интуицию. Нужно связаться с поставщиком или производителем, для получения соответствующих указаний.

[wpfmb type=’warning’ theme=2]Лучше дождаться помощи специалиста, чем потом ремонтировать сломанную технику. Случай-то не будет гарантийным.[/wpfmb]

Частотный преобразователь.Как подключить трёхфазный электродвигатель от 220В.


Watch this video on YouTube

Как подключить трехфазный двигатель через магнитный пускатель?

Подбираем схему подключения магнитных пускателей по принципу действия

Магнитные пускатели – электромеханические устройства, предназначенные для одновременного подключения потребителя электрической энергии к трем питающим фазам. В основе его действия – эффект возникновения магнитного поля при прохождении электрического тока через индуктивную нагрузку (втягивающую катушку). Они применяются, как правило, для управления трехфазными электрическими двигателями, а также, например, в системах аварийного ввода резерва.

Главное различие в схемах подключения и управления магнитным пускателем заключается в том, какой тип втягивающей катушки в нем используется.

Основные типы втягивающих катушек

Втягивающая катушка магнитного пускателя является его «сердцем», которое инициирует магнитное поле при прохождении через нее электрического тока и втягивает якорь с тремя (иногда пятью) парами подвижных контактов. Тип катушки зависит от величины напряжения срабатывания. Они бывают:

  • Срабатывающими от напряжения 220 V.
  • Рассчитанными на напряжение 380 V.

Клеммы катушки на 220 V подключаются между фазой и нейтралью (заземлением). Трехсот восьмидесяти вольтовые – между фазами. Величина рабочего напряжения катушки обычно написана на ее диэлектрическом выводе рядом с зажимным болтом для провода.

Двухсот двадцати вольтовые катушки при включении между фазами эффектно взрываются.

Как правильно подключить магнитный пускатель

Когда якорь магнитного пускателя втягивается в отверстие электромагнитной катушки, то происходит два действия:

  1. Замыкаются пары подвижных контактов на якоре с неподвижными на корпусе пускателя, за счет чего происходит коммутация питающего напряжения и подключение потребителя (электродвигателя).
  2. Срабатывают группы управляющих контактов (они бывают замыкающимися и размыкающимися), к которым подключены кнопки «Пуск» и «Стоп», а также управляемая клемма электромагнитной катушки.

В зависимости от конструкции магнитного пускателя, управляющие контакты могут располагаться на его корпусе или на свободном конце якоря как дополнительное устройство, но на построение схемы управления это не влияет.

При монтаже магнитного пускателя одна фаза с его питающей клеммы (со стороны электролинии) подается на любую клемму втягивающей катушки. Это соединение постоянное. Вторая клемма электромагнитной катушки подключается к схеме управления.

Трехфазные моторы часто используют в домашних условиях. Для правильного подключения такого устройства необходимо знать его характеристики, преимущества и недостатки, а также принцип работы асинхронного двигателя .

Для установки высокомощных устройств в однофазную сеть достаточно ознакомиться со следующей инструкцией.

Если катушка рассчитана на срабатывание от 220 V, то цепь управления коммутирует нейтраль. Если рабочее напряжение электромагнитной катушки 380 V, то в цепи управления протекает ток, «снятый» с другой питающей клеммы пускателя.

Тип цепи управления зависит от того, собираетесь ли вы реверсировать двигатель или нет.

Цепь управления без реверсирования двигателя

Если изменять направление вращения двигателя не требуется, то в цепи управления используются две не фиксируемые подпружиненные кнопки: одна в нормальном положении разомкнутая – «Пуск», другая замкнутая – «Стоп». Как правило, они изготавливаются в едином диэлектрическом корпусе, при этом одна из них красного цвета.

Такие кнопки обычно имеют две пары групп контактов – одну нормально разомкнутую, другую замкнутую. Их тип определяется во время монтажных работ визуально или с помощью испытательного прибора (тестера), включенного в режиме звуковой сигнализации.

Благодаря светорегуляторам можно не только сэкономить на освещении, но и создать интересный световой дизайн квартиры или дома. Учитывая напряжение рабочей сети, подбирают оптимальную схему подключения диммера. опираясь на его характеристики.

Для организации домашнего освещения используются датчики движения. Как их выбирать, можно прочитать тут. а особенности схемы его подключения раскрыты здесь.

Провод цепи управления подключается к первой клемме замкнутых контактов кнопки «Стоп». Ко второй клемме этой кнопки подключают два провода: один идет на любой ближайший из разомкнутых контактов кнопки «Пуск», второй – подключается к управляющему контакту на магнитном пускателе, который при отключенной катушке разомкнут. Этот разомкнутый контакт соединяется коротким проводом с управляемой клеммой катушки.

Второй провод с кнопки «Пуск» подключается непосредственно на клемму втягивающей катушки. Таким образом, к управляемой клемме «втягивающей» должно быть подключено два провода – «прямой» и «блокирующий».

Принцип работы магнитного пускателя в такой схеме следующий: при замыкании кнопки «Пуск» клемма втягивающей катушки соединяется с фазой или нейтралью, что вызывает срабатывание магнитного пускателя. При этом замыкаются пары подвижных контактов на якоре с неподвижными и на двигатель подается напряжение.

Одновременно замыкается управляющий контакт и, благодаря замкнутой кнопке «Стоп», управляющее воздействие на втягивающую катушку фиксируется. При отпускании кнопки «Пуск» магнитный пускатель остается замкнутым. Размыкание контактов кнопки «Стоп» вызывает отключение электромагнитной катушки от фазы или нейтрали и электродвигатель отключается.

Схема подключения реверсивного магнитного пускателя

Перед тем, как подключить реверсивный магнитный пускатель, необходимо разобраться в составных элементах предполагаемой цепи.

Для реверсирования двигателя необходимо два магнитных пускателя и три управляющие кнопки. Магнитные пускатели устанавливаются рядом друг с другом. Для большей наглядности условно отметим их питающие клеммы цифрами 1–3–5, а те, к которым подключен двигатель как 2–4–6.

Для реверсивной схемы управления пускатели соединяются так: клеммы 1, 3 и 5 с соответствующими номерами соседнего пускателя. А «выходные» контакты перекрестно: 2 с 6, 4 с 4, 6 с 2. Провод, питающий электродвигатель, подключается к трем клеммам 2, 4, 6 любого пускателя.

При перекрестной схеме подключения одновременное срабатывание обоих пускателей приведет к короткому замыканию. Поэтому проводник «блокирующей» цепи каждого пускателя должен проходить сначала через замкнутый управляющий контакт соседнего, а потом – через разомкнутый своего. Тогда включение второго пускателя будет вызывать отключение первого и наоборот.

В некоторых конструкциях магнитных пускателей есть только пять пар замыкаемых контактов. В этом случае провод блокирующей цепи одного пускателя подключается к постоянно замкнутым контактам кнопки «Пуск» другого. В результате она начинает работать в режиме «пуск – стоп».

Ко второй клемме замкнутой кнопки «Стоп» подключаются не два, а три провода: два «блокирующих» и один питающий кнопки «Пуск», включаемых параллельно друг другу. При такой схеме подключения кнопка «Стоп» выключает любой из скоммутированных пускателей и останавливает электродвигатель.

Все установочные и ремонтные работы в монтажных схемах подключения магнитного пускателя проводятся со снятым напряжением, даже если цепь управления коммутирует нейтраль.

Пример использования реверсивного магнитного пускателя — схема подключения на видео

Схема подключения пускателя

В основе всех или, по крайней мере, большинства схем запуска асинхронных электродвигателей, применяемых очень широко как в промышленности, так и в обычном быте, лежит очень простая схема. Плох тот электрик, который ее не знает.

Упрощенный вариант схемы пускателя.

Итак, вся схема, кроме электродвигателя, который установлен непосредственно на конкретном оборудовании или устройстве, монтируется либо в щитке, либо в специальной коробке (ПМЛ).

Кнопки ПУСК и СТОП могут находиться как на передней стороне этого щитка, так вне его (монтируются на месте, где удобно управлять работой), а может быть и там, и там, в зависимости от удобства. К данному щитку подводится трёхфазное напряжение от ближайшего места запитки (как правило, от распределительного щита), а с него уже выходит кабель, идущий на сам электродвигатель.

А теперь о принципе работы. На клеммы Ф1, Ф2, Ф3 подается трехфазное напряжение. Для запуска асинхронного электродвигателя требуется срабатывание магнитного пускателя (ПМ) и замыкание его контактов ПМ1, ПМ2 и ПМ3. Для срабатывания ПМ необходимо подать на его обмотку напряжение. Кстати, величина его зависит от самой катушки, то есть от того, на какое именно напряжение она рассчитана. Это также зависит от условий и места работы оборудования. Катушки бывают на 380, 220, 110, 36, 24 и 12 В). Данная схема рассчитана на напряжение 220 В, поскольку берётся с одной из имеющихся фаз и нуля.

Схема подключения магнитного пускателя через кнопочный пост.

Подача электропитания на катушку магнитного пускателя осуществляется по такой цепи. С ф1 поступает фаза на нормально замкнутый контакт тепловой защиты электродвигателя ТП1, далее проходит через катушку самого пускателя и выходит на кнопку ПУСК (КН1) и на контакт самоподхвата ПМ4 (магнитного пускателя). С них питание выходит на нормально замкнутую кнопку СТОП и после замыкается на нуле.

Для запуска требуется нажать кнопку ПУСК, после чего цепь катушки магнитного пускателя замкнётся и притянет (замкнёт) контакты ПМ1-3 (для пуска двигателя) и контакт ПМ4, который даст возможность при отпускании кнопки пуска продолжать работу и не отключить магнитный пускатель (называется самоподхватом). Для остановки электродвигателя требуется всего лишь нажать кнопку СТОП (КН2) и тем самым разорвать цепь питания катушки ПМ. В результате контакты ПМ1-3 и ПМ4 отключатся и работа будет остановлена до следующего запуска Пуска.

Для защиты обязательно ставятся тепловые реле (на нашей схеме это ТП). При перегрузке электродвигателя повышается ток и двигатель резко начинает нагреваться, вплоть до выхода из строя. Данная защита срабатывает именно при повышении тока на фазах, тем самым размыкает свои контакты ТП1, что подобно нажатию кнопки СТОП.

Данные случаи бывают в основном при полном заклинивании механической части или при большой механической перегрузке в оборудовании, на котором работает электродвигатель. Хотя и нередко причиной становится и сам движок, из-за высохших подшипников, плохой обмотки, механического повреждения и т.д.

Подключения пускателя по схеме реверс

Подключения пускателя по схеме реверс.

Вариант приведенной выше схемы пускателя по упрощенному варианту используется для запуска электродвигателей, работающих в одном режиме, т. е. не меняя вращения (насосы, циркулярки, вентиляторы). Но для оборудования, которое должно работать в двух направлениях (кран-балки, тельферы, лебедки, открывание-закрывание ворот и др.) необходима другая электрическая схема.

Для такой схемы нам понадобится не один, а два одинаковых пускателя и кнопка ПУСК-СТОП трехкнопочная, т. е. две кнопки ПУСК и одна СТОП. Могут в схемах реверс использоваться пульты и на две кнопки, на участках, где промежутки работы очень короткие. Например, для небольшой лебедки с промежутками работы 3-10 секунд. Для работы этого оборудования вариант на две кнопки более подходящий, но кнопки обе пусковые, т. е. только с нормально открытыми контактами, и в схеме блок-контакты (пм1 и пм2) самоподхвата не задействуются. Пока вы держите кнопку нажатой, оборудование работает, как отпустили кнопку — оборудование остановилось. В остальном схема реверс аналогична схеме упрощенный вариант.

Подключение пускателя по схеме звезда — треугольник

Подключение пускателя по схеме звезда — треугольник.

Переключение двигателя со звезды на треугольник применяют для защиты электрических цепей от перегрузок. В основном переключают со звезды на треугольник мощные трехфазные асинхронные двигатели от 30-50 кВт и высокооборотные

3000 об/мин, иногда 1500 об/мин.

Если двигатель соединен в звезду, то на каждую его обмотку подается напряжение 220 Вольт, а если двигатель соединен в треугольник, то на каждую его обмотку приходится напряжение 380 Вольт. Здесь в действие вступает закон Ома I=U/R: чем выше напряжение, тем выше ток, а сопротивление не изменяется.

Проще говоря, при подключении в треугольник (380) ток будет выше, чем при подключении в звезду (220).

Когда электродвигатель разгоняется и набирает полные обороты, картина полностью меняется. Дело в том, что двигатель имеет мощность, которая не зависит от того, подключен он в звезду или в треугольник. Мощность двигателя зависит в большей степени от железа и сечения провода. Здесь действует другой закон электротехники W=I*U.

Мощность равна силе тока, умноженной на напряжение, то есть чем выше напряжение, тем ниже ток. При подключении в треугольник (380) ток будет ниже, чем в звезду (220). В двигателе концы обмоток выведены на «клеммник» таким образом, что, в зависимости от того, каким образом поставить перемычки, получится подключение в звезду или в треугольник. Такая схема обычно нарисована на крышке. Для того чтобы производить переключения со звезды на треугольник, мы вместо перемычек будем использовать контакты магнитных пускателей .

Схема подключения трехфазного двигателя к однофазной сети с реверсом и кнопкой для подключения пускового конденсатора.

Схема подключения трехфазного асинхронного двигателя, в пусковом положении которого обмотки статора соединяются звездой, а в рабочем положении — треугольником.

К двигателю подходит шесть концов. Магнитный пускатель КМ служит для включения и отключения двигателя. Контакты магнитного пускателя КМ1 работают как перемычки для включения асинхронного двигателя в треугольник. Обратите внимание, что провода от клеммника двигателя должны быть включены в таком же порядке, как и в самом двигателе. Главное — не перепутать.

Магнитный пускатель КМ2 подключает перемычки для включения в звезду к одной половине клеммника, а к другой половине подается напряжение.

При нажатии на кнопку «ПУСК» питание подается на магнитный пускатель КМ. Он срабатывает, и на него подается напряжение через блок-контакт. Теперь кнопку можно отпустить. Далее напряжение подается на реле времени РВ, оно отсчитывает установленное время. Также напряжение через замкнутый контакт реле времени подается на магнитный пускатель КМ2, и двигатель запускается в «звезду».

Через установленное время срабатывает реле времени РТ. Магнитный пускатель Р3 отключается. Напряжение через контакт реле времени подается на нормально-замкнутый (замкнутый в отключенном положении) блок-контакт магнитного пускателя КМ2, а оттуда на катушку магнитного пускателя КМ1. И электродвигатель включается в треугольник.

Схема включения нереверсивного пускателя.

Пускатель КМ2 следует также подключать через нормально-замкнутый блок контакт пускателяКМ1 для защиты от одновременного включения пускателей.

Магнитные пускатели КМ1 и КМ2 лучше взять сдвоенные с механической блокировкой одновременного включения.

Кнопкой «СТОП» схема отключается.

  1. Автоматический выключатель.
  2. Три магнитных пускателя КМ, КМ1, КМ2.
  3. Кнопка пуск — стоп;- Трансформаторы тока ТТ1, ТТ2;- Токовое реле РТ;- Реле времени РВ.
  4. БКМ, БКМ1, БКМ2– блок-контакты своего пускателя.

Подключения магнитного пускателя и малогабаритных его вариантов, для опытных электриков не представляет никакой сложности, но для новичков может оказаться задачей над которой пройдется задуматься.

Магнитный пускатель является коммутационным устройством для дистанционного управления нагрузкой большой мощности.
На практике, зачастую, основным применением контакторов и магнитных пускателей есть запуск и остановка асинхронных электродвигателей, их управления и реверс оборотов двигателя.

Но свое использование такие устройства находят в работе и с другими нагрузками, например компрессорами, насосами, устройствами обогрева и освещения.

При особых требованиях безопасности (повышенная влажность в помещении) возможно использования пускателя с катушкой на 24 (12) вольт. А напряжение питания электрооборудования при этом может быть большим, например 380вольт и большим током.

Кроме непосредственной задачи, коммутации и управления нагрузкой с большим током, еще одной немаловажной особенностью есть возможность автоматического «отключения» оборудования при «пропадание» электричества.
Наглядный пример. При работе какого то станка, например распиловочного, пропало напряжение в сети. Двигатель остановился. Рабочий полез к рабочей части станка, и тут напряжение опять появилось. Если бы станок управлялся просто рубильником, двигатель сразу бы включился, в результате — травма. При управлении электродвигателем станка с помощью магнитного пускателя, станок не включится, пока не будет нажата кнопка «Пуск» .

Схемы подключения магнитного пускателя

Стандартная схема. Применяется в случаях когда нужно осуществлять обычный пуск электродвигателя. Кнопку «Пуск» нажали – двигатель включился, кнопку «Стоп» нажали – двигатель отключился. Вместо двигателя может быть любая нагрузка подключенная к контактам, например мощный обогреватель.

В данной схеме силовая часть питается от трехфазного переменного напряжения 380В с фазами «А» «В» «С». В случаях однофазного напряжения, задействуются лишь две клеммы.

В силовую часть входит: трех полюсный автоматический выключатель QF1, три пары силовых контактов магнитного пускателя 1L1-2T1, 3L2-4T2, 5L3-6T3 и трехфазный асинхронный электродвигатель М.

Цепь управления получает питание от фазы «А».
В схему цепи управления входят кнопка SB1 «Стоп», кнопка SB2 «Пуск», катушка магнитного пускателя КМ1 и его вспомогательный контакт 13НО-14НО, подключенный параллельно кнопке «Пуск».

При включении автомата QF1 фазы «А», «В», «С» поступают на верхние контакты магнитного пускателя 1L1, 3L2, 5L3 и там дежурят. Фаза «А», питающая цепи управления, через кнопку «Стоп» приходит на «3» контакт кнопки «Пуск», вспомогательный контакт пускателя 13НО и так же остается дежурить на этих двух контактах.

Обратите внимание. В зависимости от номинала напряжения самой катушки и используемого напряжения питающей сети, будет разная схема подключения катушки.
Например если катушка магнитного пускателя на 220 вольт — один ее вывод подключается к нейтрале, а другой, через кнопки, к одной из фаз.

Если номинал катушки на 380 вольт — один вывод к одной из фаз, а второй, через цепь кнопок к другой фазе.
Существуют также катушки на 12, 24, 36, 42, 110 вольт, поэтому, прежде чем подать напряжение на катушку, вы должны точно знать ее номинальное рабочее напряжение.

При нажатии на кнопку «Пуск» фаза «А» попадает на катушку пускателя КМ1, пускатель срабатывает и все его контакты замыкаются. Напряжение появляется на нижних силовых контактах 2Т1, 4Т2, 6Т3 и уже от них поступает на электродвигатель. Двигатель начинает вращаться.

Вы можете отпустить кнопку «Пуск» и двигатель не отключится, так как с использованием вспомогательного контакта пускателя 13НО-14НО, подключенного параллельно кнопке «Пуск», реализован самоподхват.

Получается так, что после отпускания кнопки «Пуск» фаза продолжает поступать на катушку магнитного пускателя, но уже через свою пару 13НО-14НО.

В случае если не будет самоподхвата, будет необходимо все время держать нажатой кнопку «Пуск» чтобы работал электродвигатель или другая нагрузка.

Для отключения электродвигателя или другой нагрузки достаточно нажать кнопку «Стоп»: цепь разорвется и управляющее напряжение перестанет поступать на катушку пускателя, возвратная пружина вернет сердечник с силовыми контактами в исходное положение, силовые контакты разомкнутся и отключат электродвигатель от напряжения сети.

Как выбрать автоматический выключатель (автомат) для защиты схемы?

Прежде всего выбираем сколько «полюсов», в трехфазной схеме питания естественно нужен будет трехполюсный автомат, а в сети 220 вольт как правило, двохполюсный автомат, хотя будет достаточно и однополюсного.

Следующим важным параметром будет ток сработки.

Например если электродвигатель на 1,5 кВт. то его максимальный рабочий ток — 3А (реальный рабочий может быть меньше, надо измерять). Значит, трехполюсный автомат надо ставить на 3 или 4А.

Но у двигателя, мы знаем, пусковой ток намного больше рабочего, а значит обычный (бытовой) автомат с током в 3А будет срабатывать сразу при пуске такого двигателя.

Характеристику теплового расцепителя нужно выбирать D, чтобы при пуске автомат не срабатывал.

Или же, если такой автомат не просто найти, можно по подбирать ток автомата, чтобы он был на 10-20% больше рабочего тока электродвигателя.

Можно и удаться в практический эксперимент и с помощью измерительных клещей замерить пусковой и рабочий ток конкретного двигателя.

Например для двигателя на 4кВт, можно ставить автомат на 10А.

Для защиты от перегрузки двигателя, когда ток возрастает выше установленного (например пропадания фазы) — контакты теплового реле RT1 размыкаются, и цепь питания катушки электромагнитного пускателя разрывается.

В данном случае, тепловое реле выполняет роль кнопки «Стоп», и стоит в той же цепи, последовательно. Где его поставить — не особо важно, можно на участке схемы L1 — 1, если это удобно в монтаже.

С использованием теплового расцепителя, отпадает надобность так тщательно подбирать ток вводного автомата, так как с тепловой защитой вполне должно справится тепловое реле двигателя.

Источники:

Схема подключения трехфазного электродвигателя к трехфазной сети

Всем электрикам известно, что трехфазные электродвигатели работают эффективнее, чем однофазные на 220 вольт. Поэтому если в вашем гараже проведена подводка питающего кабеля на три фазы, то оптимальный вариант – установить любой станок с мотором на 380 вольт. Это не только эффективно в плане экономичности работы, но и в плане стабильности. При этом нет необходимости добавлять в схему подключения какие-то пусковые устройства, потому что магнитное поле будет образовываться в обмотках статора сразу же после пуска двигателя. Давайте рассмотрим один вопрос, который сегодня встречается часто на форумах электриков. Вопрос звучит так: как правильно провести подключение трехфазного электродвигателя к трехфазной сети?

Схемы подключения

Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.

Существует две схемы подключения:

Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет. Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.

Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора.

Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит. Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.

Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда. Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт. При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.

Схема звезда-треугольник

Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.

Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.

Внимание! Одновременно включать второй и третий пускатели нельзя. Произойдет короткое замыкание между подключенными к ним фазами, что приведет к сбрасыванию автомата. Поэтому между ними устанавливается блокировка. По сути, все будет происходить так – при включении одного, размыкаются контакты у другого.

Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.

Подключение электрического двигателя через магнитный пускатель

В принципе, схема подключения 3 фазного двигателя через магнитный пускатель практически точно такая же, как и через автомат. Просто в нее добавляется блок включения и выключения с кнопками «Пуск» и «Стоп».

Одна из фаз подключения к электродвигателю проходит через кнопку «Пуск» (она нормально замкнутая). То есть, при ее нажатии смыкаются контакты, и ток начинает поступать на электродвигатель. Но тут есть один момент. Если отпустить Пуск, то контакты разомкнуться, и ток поступать не будет по назначению. Поэтому в магнитном пускателе есть еще один дополнительный контактный разъем, который называется контактом самоподхвата. По сути, это блокировочный элемент. Он необходим для того чтобы при отжатой кнопке «Пуск» цепь подачи электроэнергии на электродвигатель не прерывалась. То есть, разъединить ее можно было бы только кнопкой «Стоп».

Что можно дополнить к теме, как подключить трехфазный двигатель к трехфазной сети через пускатель? Обратите внимание вот на какой момент. Иногда после долгой эксплуатации схемы подключения трехфазного электродвигателя кнопка «пуск» перестает работать. Основная причина – подгорели контакты кнопки, ведь при пуске двигателя появляется пусковая нагрузка с большой силой тока. Решить эту проблему можно очень просто – почистить контакты.

Как правильно провести подключение электродвигателя звездой и треугольником

Подключение звезда и треугольник – в чем разница?

Схема подключения электродвигателя на 220В через конденсатор

СХЕМА ПОДКЛЮЧЕНИЯ МАГНИТНОГО ПУСКАТЕЛЯ

Прежде чем приступить к практическому подключению пускателя — напомним полезную теорию: контактор магнитного пускателя включается управляющим импульсом, исходящим от нажатия пусковой кнопки, с помощью которой подается напряжение на катушку управления. Удержание контактора во включенном состоянии происходит по принципу самоподхвата – когда дополнительный контакт подключается параллельно пусковой кнопке, тем самым подавая напряжение на катушку, вследствие чего пропадает необходимость удерживать кнопку запуска в нажатом состоянии.

Отключение магнитного пускателя в этом случае возможно только при разрыве цепи управляющей катушки, из чего становится очевидной необходимость использования кнопки с размыкающим контактом. Поэтому кнопки управления пускателем, которые называют кнопочным постом, имеют по две пары контактов – нормально открытые (разомкнутые, замыкающие, НО, NO) и нормально закрытые (замкнутые, размыкающие, НЗ, NC)

Данная универсализация всех кнопок кнопочного поста сделана для того, чтобы предвидеть возможные схемы обеспечения моментального реверса двигателя. Общепринято называть отключающую кнопку словом: «Стоп » и маркировать её красным цветом. Включающую кнопку часто называют пусковой, стартовой, или обозначают словом «Пуск », «Вперёд », «Назад ».

Если катушка рассчитана на срабатывание от 220 В, то цепь управления коммутирует нейтраль. Если рабочее напряжение электромагнитной катушки 380 В, то в цепи управления протекает ток, «снятый» с другой питающей клеммы пускателя.

Схема подключения магнитного пускателя на 220 В

Здесь ток на магнитную катушку КМ 1 подается через тепловое реле и клеммы, соединенных в цепь кнопок SB2 для включения — «пуск» и SB1 для остановки — «стоп». Когда мы нажимаем «пуск» электрический ток поступает на катушку. Одновременно сердечник пускателя притягивает якорь, в результате чего происходит замыкание подвижных силовых контактов, после чего напряжение поступает на нагрузку. При отпускании «пуск» не происходит размыкание цепи, поскольку параллельно этой кнопке выполнено подключение блок-контакта КМ1 с замкнутыми магнитными контактами. Благодаря этому на катушку поступает фазное напряжение L3. При нажатии «стоп» питание отключается, подвижные контакты приходят в исходное положение, что приводит к обесточиванию нагрузки. Те же процессы происходят при работе теплового реле Р – обеспечивается разрыв ноля N, питающего катушку.

Схема подключения магнитного пускателя на 380 В

Подключение к 380 В практически не отличается от первого варианта, различие лишь в питающем напряжении магнитной катушки. В данном случае питание осуществляется с использованием двух фаз L2 и L3, тогда как в первом случае — L3 и ноль.

На схеме видно, что катушка пускателя (5) питается от фаз L1 и L2 при напряжении 380 В. Фаза L1 присоединяется напрямую к ней, а фаза L2 – через кнопку 2 «стоп», кнопку 6 «пуск» и кнопку 4 теплового реле, соединенные последовательно между собой. Принцип действия такой схемы следующий: После нажатия кнопки 6 «пуск» через включенную кнопку 4 теплового реле напряжение фазы L2 попадает на катушку магнитного пускателя 5. Происходит втягивание сердечника, замыкающее контактную группу 7 на определенную нагрузку (электродвигатель М), при этом подается ток, напряжением 380 В. В случае выключения «пуск» цепь не прерывается, ток проходит через контакт 3 – подвижный блок, замыкающийся при втягивании сердечника.

При аварии в обязательном порядке должно сработать теплового реле 1, его контакт 4 разрывается, отключается катушка и возвратные пружины приводят сердечник в исходное положение. Контактная группа размыкается, снимая напряжение с аварийного участка.

Подключение магнитного пускателя через кнопочный пост

В данную схему включены дополнительные кнопки включения и остановки. Обе кнопки «Стоп» подключены в цепь управления последовательно, а кнопки «Пуск» соединяются параллельно.Такое подключение позволяет производить коммутацию кнопками с любого поста.

Вот ещё вариант. Схема состоит из двухкнопочного поста “Пуск” и “Стоп” с двумя парами контактов нормально замкнутых и разомкнутых. Магнитный пускатель с катушкой управления на 220 В. Питание кнопок взято с клеммы силовых контактов пускателя, цифра 1. Напряжение подходит до кнопки “Стоп” цифра 2. Проходит через нормально замкнутый контакт, по перемычке до кнопки “Пуск” цифра 3.

Нажимаем кнопку “Пуск”, замыкается нормально разомкнутый контакт цифра 4. Напряжение достигает цели, цифра 5, катушка срабатывает, сердечник втягивается под воздействием электромагнита и приводит в движение силовые и вспомогательные контакты, выделенные пунктиром.

Вспомогательный блок контакт 6 шунтирует контакт кнопки “пуск” 4, для того, чтобы при отпускании кнопки “Пуск” пускатель не отключился. Отключение пускателя осуществляется нажатием кнопки “Стоп”, цифра 7, снимается напряжение с катушки управления и под воздействием возвратных пружин пускатель отключается.

Подключение двигателя через пускатели

Нереверсивный магнитный пускатель

Если изменять направление вращения двигателя не требуется, то в цепи управления используются две не фиксируемые подпружиненные кнопки: одна в нормальном положении разомкнутая – «Пуск», другая замкнутая – «Стоп». Как правило, они изготавливаются в едином диэлектрическом корпусе, при этом одна из них красного цвета. Такие кнопки обычно имеют две пары групп контактов – одну нормально разомкнутую, другую замкнутую. Их тип определяется во время монтажных работ визуально или с помощью измерительного прибора.

Провод цепи управления подключается к первой клемме замкнутых контактов кнопки «Стоп». Ко второй клемме этой кнопки подключают два провода: один идет на любой ближайший из разомкнутых контактов кнопки «Пуск», второй – подключается к управляющему контакту на магнитном пускателе, который при отключенной катушке разомкнут. Этот разомкнутый контакт соединяется коротким проводом с управляемой клеммой катушки.

Второй провод с кнопки «Пуск» подключается непосредственно на клемму втягивающей катушки. Таким образом, к управляемой клемме «втягивающей» должно быть подключено два провода – «прямой» и «блокирующий».

Одновременно замыкается управляющий контакт и, благодаря замкнутой кнопке «Стоп», управляющее воздействие на втягивающую катушку фиксируется. При отпускании кнопки «Пуск» магнитный пускатель остается замкнутым. Размыкание контактов кнопки «Стоп» вызывает отключение электромагнитной катушки от фазы или нейтрали и электродвигатель отключается.

Реверсивный магнитный пускатель

Для реверсирования двигателя необходимо два магнитных пускателя и три управляющие кнопки. Магнитные пускатели устанавливаются рядом друг с другом. Для большей наглядности условно отметим их питающие клеммы цифрами 1–3–5, а те, к которым подключен двигатель как 2–4–6.

Для реверсивной схемы управления пускатели соединяются так: клеммы 1, 3 и 5 с соответствующими номерами соседнего пускателя. А «выходные» контакты перекрестно: 2 с 6, 4 с 4, 6 с 2. Провод, питающий электродвигатель, подключается к трем клеммам 2, 4, 6 любого пускателя.

При перекрестной схеме подключения одновременное срабатывание обоих пускателей приведет к короткому замыканию. Поэтому проводник «блокирующей» цепи каждого пускателя должен проходить сначала через замкнутый управляющий контакт соседнего, а потом – через разомкнутый своего. Тогда включение второго пускателя будет вызывать отключение первого и наоборот.

Ко второй клемме замкнутой кнопки «Стоп» подключаются не два, а три провода: два «блокирующих» и один питающий кнопки «Пуск», включаемых параллельно друг другу. При такой схеме подключения кнопка «Стоп» выключает любой из скоммутированных пускателей и останавливает электродвигатель.

Советы и хитрости установки

  • Перед сборкой схемы надо освободить рабочий участок от тока и проконтролировать, чтобы напряжение отсутствовало тестером.
  • Установить обозначение напряжения сердечника, которое упоминается на нем, а не на пускателе. Оно может быть 220 или 380 вольт. Если оно 220 В, на катушку идет фаза и ноль. Напряжение с обозначением 380 – значит разные фазы. Это является важным аспектом, ведь при неверном подсоединении сердечник может сгореть или не будет запускать полностью нужные контакторы.
  • Кнопка на пускатель (красная)Нужно взять одну красную кнопку «Стоп» с замкнутыми контактами и одну черную либо зеленую кнопку с надписью «Пуск» с неизменно разомкнутыми контактами.
  • Учтите, что силовые контакторы заставляют работать или останавливают только фазы, а нули, которые приходят и отходят, проводники с заземлением всегда объединяются на клеммнике в обход пускателя. Для подсоединения сердечника в 220 Вольт на дополнение с клеммника берется 0 в конструкцию организации пускателя.

А ещё вам понадобится полезный прибор — пробник электрика. который легко можно сделать самому.

Подключение трехфазного двигателя через магнитный пускатель

Подключаем магнитный пускатель

Схема подключения магнитного пускателя 380 в через кнопочный пост. Электротехническ ий аппарат, который предназначен для удалённого управления электрического двигателя, его защиты, поддержания работоспособност и — это и есть аппарат магнитного пускателя. Часто, такие пускатели используют для автоматического подключения освещающих линий и др. Как провести подключение толково магнитного пускателя своими руками. Возможно ли это.

Чтобы понять, каким образом осуществить подключение самостоятельно магнитного пускателя, в первую очередь нужно узнать об особенностях его работы, его характеристиках при приобретении.

В данной статье пойдёт речь о том, как запустить включатель своими руками, как правильно выбрать реверсивный пускатель с пластиковым корпусом. В принципе, кнопки управления расположены на крышке, поэтому остаётся лишь подключить кабеля от питания.

Для того чтобы приступить к работе по сборке и подключению магнитного пускателя нужно:

1. Отключить питание и проверить отсутствие напряжения.

2. Определить, какое рабочее напряжение у катушки, которая расположена на корпусе. Возможно два варианта. Когда напряжение равно 220 вольт, либо 380 вольт. В первом случае на контакты подают нуль и фазы. Если же напряжение равно 380, тогда разные фазы. Если сделать ошибку, то катушка перегорит, поэтому следует соблюдать внимательность.

3. Силовые контакты используют фазы для включения и выключения магнитного пускателя. А нули и фазы нужно между собой соединить.

Для того чтобы выполнить подключение пускателя необходимо

1. Контакты, в наличии 3 штук. Благодаря им будет подаваться питание.

2. Катушка, кнопки управления. Благодаря им будет поддерживаться блокировка ошибочных включений магнитного пускателя.

3. Использование схемы с одним пускателем. Для этого понадобится трёхжильный кабель и несколько контактов.

Если использовать схему подключения с катушкой на 380 вольт, то нужно использовать разноимённую фазу красного либо чёрного цвета. Также в контакте будет применяться свободная пара.

Чтобы подключить цепь магнитного пускателя, нужна одна зелёная фаза, которая будет идти к контакту катушки. А со второго контакта будет идти на кнопку «Пуск». С кнопки «Пуск» на кнопку «Стоп».

То есть при нажатии на «Пуск», будет подаваться 220 вольт, которые буду способствовать включению остальных контактов. Для отключения магнитного пускателя необходимо будет разорвать «ноль», а для включения обратно нажать «Пуск».

Для подключения реле необходимо последовательно подключить его, подобрав рабочий ток для конкретного двигателя.

Подключать его следует к магнитному выходу на электродвигатель. после на термореле и на электромотор.

Источники:

Коэффициент мощности — индуктивная нагрузка

Коэффициент мощности системы электроснабжения переменного тока определяется как отношение активной (истинной или реальной) мощности к полной мощности , где

  • Активная (действительная или истинная) мощность измеряется в ваттах ( Вт, ) и представляет собой мощность, потребляемую электрическим сопротивлением системы, выполняющей полезную работу
  • Полная мощность измеряется в вольт-амперах (ВА) и представляет собой напряжение в системе переменного тока, умноженное всем током, который в нем течет.Это векторная сумма активной и реактивной мощности.
  • Реактивная мощность измеряется в вольт-амперах реактивной ( VAR ). Реактивная мощность — это энергия, накапливаемая и разряжаемая асинхронными двигателями, трансформаторами и соленоидами.

Реактивная мощность требуется для намагничивания электродвигателя, но не выполняет никакой работы. Реактивная мощность, необходимая для индуктивных нагрузок, увеличивает количество полной мощности — и требуемую подачу в сеть от поставщика энергии к распределительной системе.

Увеличение реактивной и полной мощности приведет к уменьшению коэффициента мощности — PF .

Коэффициент мощности

Обычно коэффициент мощности — PF — определяют как косинус фазового угла между напряжением и током — или « cosφ »:

PF = cos φ

где

PF = коэффициент мощности

φ = фазовый угол между напряжением и током

Коэффициент мощности, определенный IEEE и IEC, представляет собой отношение приложенной активной (истинной) мощности — и полная мощность , и в общем случае может быть выражена как:

PF = P / S (1)

, где

PF = коэффициент мощности

P = активная (истинная или действительная) мощность (Вт)

S = полная мощность (ВА, вольт-амперы)

Низкий коэффициент мощности — это результат lt индуктивных нагрузок, таких как трансформаторы и электродвигатели.В отличие от резистивных нагрузок, создающих тепло за счет потребления киловатт, индуктивные нагрузки требуют протекания тока для создания магнитных полей для выполнения желаемой работы.

Коэффициент мощности является важным измерением в электрических системах переменного тока, потому что

  • общий коэффициент мощности меньше 1 указывает на то, что поставщик электроэнергии должен обеспечить большую генерирующую мощность, чем фактически требуется
  • Искажение формы сигнала тока, которое способствует снижению коэффициента мощности, составляет вызванные искажением формы сигнала напряжения и перегревом в нейтральных кабелях трехфазных систем

Международные стандарты, такие как IEC 61000-3-2, были установлены для управления искажением формы сигнала тока путем введения ограничений на амплитуду гармоник тока.

Пример — коэффициент мощности

Промышленное предприятие потребляет 200 A при 400 В , а трансформатор питания и резервный ИБП рассчитаны на 400 В x 200 A = 80 кВА .

Если коэффициент мощности — PF — нагрузки составляет 0,7 — только

80 кВА × 0,7

= 56 кВт

Система потребляет

реальной мощности. Если коэффициент мощности близок к 1 (чисто резистивная цепь), система питания с трансформаторами, кабелями, распределительным устройством и ИБП может быть значительно меньше.

  • Любой коэффициент мощности меньше 1 означает, что проводка схемы должна пропускать больший ток, чем это было бы необходимо при нулевом реактивном сопротивлении в цепи для передачи того же количества (истинной) мощности на резистивную нагрузку.
Зависимость поперечного сечения проводника от коэффициента мощности

Требуемая площадь поперечного сечения проводника с более низким коэффициентом мощности:

Коэффициент мощности 1 0,9 0.8 0,7 0,6 0,5 0,4 0,3
Поперечное сечение 1 1,2 1,6 2,04 2,8 2,04 2,8

Низкий коэффициент мощности дорог и неэффективен, и некоторые коммунальные предприятия могут взимать дополнительную плату, если коэффициент мощности меньше 0,95 . Низкий коэффициент мощности снизит распределительную способность электрической системы из-за увеличения тока и падения напряжения.

«Опережающий» или «запаздывающий» коэффициенты мощности

Коэффициент мощности обычно указывается как «опережающий» или «запаздывающий», чтобы показать знак фазового угла.

  • При чисто резистивной нагрузке полярность тока и напряжения изменяется ступенчато, а коэффициент мощности будет 1 . Электрическая энергия течет в одном направлении по сети в каждом цикле.
  • Индуктивные нагрузки — трансформаторы, двигатели и обмотки — потребляют реактивную мощность, форма кривой тока которой отстает от напряжения.
  • Емкостные нагрузки — конденсаторные батареи или подземные кабели — генерируют реактивную мощность с фазой тока, опережающей напряжение.

Индуктивные и емкостные нагрузки накапливают энергию в магнитных или электрических полях в устройствах во время частей циклов переменного тока. В течение остальных циклов энергия возвращается обратно в источник питания.

В системах с преимущественно индуктивными нагрузками — как правило, на промышленных предприятиях с большим количеством электродвигателей — запаздывающее напряжение компенсируется конденсаторными батареями.

Коэффициент мощности для трехфазного двигателя

Общая мощность, необходимая индуктивному устройству, например, двигателю или аналогичному, составляет

  • Активная (истинная или действительная) мощность (измеряется в киловаттах, кВт)
  • Реактивная мощность — Нерабочая мощность, вызванная током намагничивания, необходимая для работы устройства (измеряется в киловарах, кВАр)

Коэффициент мощности трехфазного электродвигателя может быть выражен как:

PF = P / [(3) 1/2 UI] (2)

где

PF = коэффициент мощности

P = приложенная мощность (Вт, Вт)

U = напряжение (В)

I = ток (А, амперы)

— или альтернативно:

P = (3) 1/2 UI PF

= (3) 1/2 U I cos φ (2b)

U, l и cos φ обычно указаны на паспортной табличке двигателя.

Типичный коэффициент мощности двигателя

903 1/2 нагрузки — 20
Мощность
(л.с.)
Скорость
(об / мин)
Коэффициент мощности (cos φ )
Без нагрузки 1/4 нагрузки 3/4 нагрузки полная нагрузка
0-5 1800 0,15 — 0,20 0,5 — 0,6 0,72 0,82 0,84
1800 0.15 — 0,20 0,5 — 0,6 0,74 0,84 0,86
20-100 1800 0,15 — 0,20 0,5 — 0,6 0,79 0,86 9015 9015 907 9015 100-300 1800 0,15 — 0,20 0,5 — 0,6 0,81 0,88 0,91

Коэффициент мощности по отраслям

Типичные неулучшенные коэффициенты мощности:

Отрасль Коэффициент мощности
Пивоварня 75-80
Цемент 75-80
Химический 65-75
Электро-химический Литейное производство 75-80
Поковка 70-80
Hospi tal 75-80
Производство, станки 60-65
Производство, краска 65-70
Металлообработка 65-70
— 80
Офис 80-90
Масляный насос 40-60
Производство пластмасс 75-80
Штамповка
9017 70 65-80
Текстиль 35-60

Преимущества коррекции коэффициента мощности

  • Снижение счетов за электроэнергию — отсутствие штрафа за низкий коэффициент мощности со стороны энергокомпании
  • увеличение производительности системы — дополнительные нагрузки можно добавить без перегрузки системы
  • улучшенная рабочая характеристика системы s за счет уменьшения потерь в линии — из-за меньшего тока
  • Улучшенные рабочие характеристики системы за счет увеличения напряжения — исключены чрезмерные падения напряжения

Коррекция коэффициента мощности с помощью конденсатора

9015 9015 9015 9015 9015 9015 9015 9015 9015 9015 9015 9015 9015 0,66 0,35
Поправочный коэффициент конденсатора
Коэффициент мощности до улучшения (cosΦ) Коэффициент мощности после улучшения (cosΦ)
1.0 0,99 0,98 0,97 0,96 0,95 0,94 0,93 0,92 0,91 0,90
1,44 1,40 1,37 1,34 1,30 1,28 1,25
0,55 1,52 1.38 1,32 1,28 1,23 1,19 1,16 1,12 1,09 1,06 1,04
0.60 9015 9015 9015 9015 9015 9015 9015 9015 9015 9015 9015 9015 9015 9015 1,01 0,97 0,94 0,91 0,88 0,85
0,65 1,17 1,03 0.97 0,92 0,88 0,84 0,81 0,77 0,74 0,71 0,69
0,70 1,02 0,88 1,02 0,88 0,62 0,59 0,56 0,54
0,75 0,88 0,74 0,67 0.63 0,58 0,55 0,52 0,49 0,45 0,43 0,40
0,80 0,75 0,61 0,54 0157 0,80 0,75 0,61 0,54 9015 0,54 0,32 0,29 0,27
0,85 0,62 0,48 0,42 0,37 0.33 0,29 0,26 0,22 0,19 0,16 0,14
0,90 0,48 0,34 0,28 9015 9015 9015 9015 9015 9015 9015 9015 9015 0,06 0,02
0,91 0,45 0,31 0,25 0,21 0,16 0,13 0.09 0,06 0,02
0,92 0,43 0,28 0,22 0,18 0,13 0,10 0,06 0,10 0,06 0,25 0,19 0,15 0,10 0,07 0,03
0,94 0.36 0,22 0,16 0,11 0,07 0,04
0,95 0,33 0,18 0,12 901 0,18 0,12 901 0,96 0,29 0,15 0,09 0,04
0.97 0,25 0,11 0,05
0,98 0,20 0,06
Пример — Повышение коэффициента мощности с помощью конденсатора

Электродвигатель мощностью 150 кВт имеет коэффициент мощности до улучшения cosΦ = 0.75 .

Для необходимого коэффициента мощности после улучшения cosΦ = 0,96 — коэффициент коррекции конденсатора составляет 0,58 .

Требуемая мощность KVAR может быть рассчитана как

C = (150 кВт) 0,58

= 87 KVAR

Рекомендуемые характеристики конденсаторов для двигателей с Т-образной рамой NEMA класса B

Рекомендуемые размеры блоков KVAR, необходимых для коррекция асинхронных двигателей до коэффициента мощности примерно 95%.

9 Линия редукции 19) Ток
(%) ,5 1260
Мощность асинхронного двигателя
(л.с.)
Номинальная скорость двигателя (об / мин)
3600 1800 1200
Номинальная мощность конденсатора
(
Номинал конденсатора
(кВАр)
Снижение линейного тока
(%)
Номинал конденсатора
(кВАр)
Снижение линейного тока
(%)
3 1.5 14 1,5 23 2,5 28
5 2 14 2,5 22 3 3 20 4 21
10 4 14 4 18 5 21
18 6 20
20 6 12 6 17 7.5 19
25 7,5 12 7,5 17 8 19
30 8 11
40 12 12 13 15 16 19
50 15 12 18 60 18 12 21 14 22.5 17
75 20 12 23 14 25 15
100 22.5 307 307
125 25 10 36 12 35 12
150 30 10 42 42 200 35 10 50 11 50 10
250 40 11 60 10 62.5 10
300 45 11 68 10 75 12
350 50 12 12 12
400 75 10 80 8 100 12
450 80 8 90 8 8 500 100 8 120 9 150 12

Схема подключения однофазного пускателя dol

Пускатель Dol к однофазному двигателю.Схема подключения однофазного двигателя с конденсатором — схема подключения однофазного двигателя Baldor с конденсатором, схема подключения однофазного двигателя вентилятора с конденсатором, схема подключения однофазного двигателя с конденсатором. Каждая электрическая схема состоит из различных уникальных частей. Схема подключения дает необходимую информацию для фактического подключения группы устройств управления или для физического отслеживания проводов, когда необходимо устранение неисправностей. 3-фазное питание переменного тока. Все остальные элементы управления и прямого пуска используются для трехфазных и однофазных асинхронных двигателей.13 17 с гибким проводом для подключения к клемме перегрузки 95. Оценка 5 из 5 по RJB53 от Сделала мою циркулярную пилу безопасной в использовании Блок DOL-переключателя оказался больше, чем ожидалось, но внутри есть место, чтобы добавить выключатель перегрузки перемонтируйте его для однофазного использования. Защита от перегрузки по току для 3-проводных цепей управления. Он состоит из корпуса из стали или пластика, контактора, пускового контакта, соединительных проводов и кнопок останова / пуска. Подходит для различных областей применения, включая деревообработку, пылеулавливание и оборудование для вторичной переработки металла.Как правило, работа стартера Direct Online может осуществляться в два разных этапа, а именно: цепь управления прямого стартера и цепь питания прямого стартера. ОБРАТИТЕ ВНИМАНИЕ, что единственная прилагаемая схема подключения находится на большой этикетке внутри крышки переключателя. Схема DD6 Схема DD7 M 1 ~ LN E Схема DD8 LN E L1 L2 L3 S / C Z1 U2 Z2 U1 Кол. Спасено ньяшахом верему. От стандартных стартеров, компонентов и аксессуаров до полностью настраиваемых промышленных решений и панелей управления BMS. Схема питания и управления Dol. Катушка контактора — 380 В переменного тока.Небольшой мотор можно запустить, просто подключив его к электрическому выключателю. L1. Пускатель двигателя с прямым включением питания (DOL) предназначен для переключения одно- или трехфазного асинхронного двигателя при номинальном напряжении. Схема подключения стартера Crabtree dol: 6А СТАРТЕР ДОЛ + ОТКЛЮЧЕНИЕ. Кроме того, Wiring Diagram дает вам временную шкалу, в которой проекты должны быть завершены. Нейтральный блок. На приведенной выше схеме стартера дол. Код продукта Производитель артикул £ INC НДС. Затем прочтите статью ниже и изучите простую электрическую схему стартера dol.DOL Запуск Дистанционного управления Кнопочная станция Остановка Пусковая линия Нейтраль Катушка 240 В Ручной сброс Перегрузка Контакт 230 В -1 фаза. На этом рисунке показано подключение трехфазного асинхронного двигателя и вся проводка прямого пуска в режиме онлайн с простыми шагами. Crabtree — Каталог продукции — Электроустановочные изделия и защита внутренних цепей — 2010. 9A STARTER DOL + DISCONNE. lectróiesk. Объяснение электрической схемы однофазного погружного пускателя двигателя. Схема подключения контактора трехфазного двигателя. В этом приводе нагрузка подключена последовательно к входным клеммам мостового выпрямителя, а ее выходные клеммы подключены к силовому полевому МОП-транзистору с ШИМ-управлением (схема подключения IGBT… Weg однофазного двигателя и 3 пуска-останова для двигателей.Каталоги продукции и брошюры. Однофазный 4-полюсный двигатель мощностью 2 л.с. (1) Следующие звенья предварительно установлены на стартер; 13-17 с выводом для подключения к клемме перегрузки 95; A2 — 14 — 18. Однофазный конденсаторный двигатель Двигатель, который будет приводиться в действие от потенциального реле стартера T1 и T2 — это **** на проводах (* буквы не читаются). Надеюсь, на фотографии четко видна маркировка клемм, если нет. они имеют маркировку T1 и T2, A1 и A2, Z1 и Z2. Мне сказали, что пускатель с потенциальным реле также известен как DOL (прямой пускатель в сети). Для всех других однофазных электрических схем обратитесь к данным производителя двигателя.Прочитанная электрическая схема трехпроводного погружного насоса. Пускатель прямого пуска используется для трехфазных и однофазных асинхронных двигателей. 27 апреля 2017 г. — Полное руководство по подключению однофазного двигателя со схемой выключателя и контактора. Обратите внимание, что электрическая схема однофазного стартера … Галерея электрических схем однофазного погружного насоса — Удивительная электрическая схема панели управления однофазным водяным насосом Frieze. Однофазные двигатели полного напряжения. N. DOL Motor Starter. Обратите внимание, что электрическая схема однофазного пускателя DOL также похожа на эту.Однофазный 2-полюсный двигатель Clarke 2 л.с. Назад к списку продуктов. Схема подключения — это упрощенное традиционное фотографическое представление электрической цепи. Электросхема представляет собой обтекаемое обычное графическое изображение электрической цепи. 18.09.2013. 27 апреля 2017 г. — Полное руководство по подключению однофазного двигателя со схемой выключателя и контактора. 27 апреля 2017 г. — Полное руководство по подключению однофазного двигателя со схемой выключателя и контактора. Например: 1) Двигатель 2,2 кВт с FLC 5 А при 415 В 1.29 лучших изображений для погружных насосов на Pinterest. Электромонтаж Электромонтаж Электротехника Электрическая схема Моторы Колледж Электроника Гор Места. Hylec DMS1-11D / S Автоматический пускатель прямого электродвигателя 5,5 кВт (8911G) Метод пуска электродвигателей. 6A СТАРТЕР DOL + ОТКЛЮЧЕНИЕ. Схема электрических соединений трехфазного двигателя Fresh Mem Dol Starter Схема подключения стартера двигателя Схема подключения пускового останова Эталонный пусковой выключатель Печатная плата от другого источника может использоваться для замены электроники в стандартном устройстве или для передачи данных на настраиваемый контроллер.Пускатель двигателя с прямым включением питания (DOL) предназначен для включения одного или трех 3. Пуск и останов … Разнообразие однофазных схем подключения двигателя 240 В. £ INC НДС. Схема подключения стартера DOl, да, этот пост собирается понять подключение проводки стартера трехфазного двигателя. 64. Маленький мотор можно запустить, просто подключив его к электрическому выключателю. Тепловая перегрузка поставляется отдельно. Контактор с присоединенным блоком защиты от тепловой перегрузки. Контактор L1 подключается от нормально разомкнутого (NO) к фазе R… Главные клеммы пускателя DOL подключаются между клеммами сетевого питания и клеммами двигателя, в то время как цепь управления запитана двумя клеммами трехфазного питания, как показано на рисунке.Схема подключения для I Ph. Схема подключения для Вольт 3 фазы с. Схема питания и схема управления трехфазным пускателем двигателя дольного двигателя показаны на рисунке. Название: Visio-1 Ph DOL Starting.vsd Автор: user Created Date: Трехфазные электродвигатели используют три разных электрических ножки с задержкой в ​​13 циклов между ними. Ребята, может кто-нибудь помочь с какой-нибудь проводкой стартера? Я не силен в трехфазных двигателях Я подключаю дробилку бутылок, она поставляется с eaton mem 28ADS1X dol, в ней написано, что катушка 230 В, но вилка к двигателю трехфазная и земля Мембрана измотана, и парень, который отдал ее моему товарищу, снова поставил мотопакет Crabtree 24MR, катушка 230 В Для трехфазного двигателя малой нагрузки обычным управляющим устройством является стартер.Что легко сделать мой 3-полюсный или 4-полюсный MCB (миниатюрный автоматический выключатель) или MCCB (литой-… Листы электрических схем Подробное описание: Название: электрическая схема однофазного пускателя двигателя pdf — электрическая схема однофазного однофазного стартера с Пускатель трехфазного двигателя; Тип файла: JPG; Источник: tommy-hilfiger.net.co; Размер: 137,56 КБ; Размер: 1240 x 1754 R, Y, B — трехфазный источник питания на 380 В. Однофазный двигатель Схема подключения пускателя показана на рисунке ниже Эта схема предназначена для управления однофазным двигателем.В Crompton Controls мы проектируем, производим и распространяем по всему миру на базе нашего централизованного управления … Стартер с изолятором 1) трехфазное питание Катушка 240 В — см. Электрическую схему в … На двигателе оборудование для сбора пыли и переработки металла должно быть подключено к Терминал. B — трехфазный пускатель с кнопками пуска и останова. Работа схемы в упрощенной форме, а также питание и вход сигнала. Пускатель двигателя с прямым включением (dol) с кнопками пуска и останова показан на рисунке Панель BMS… Выполняется в два разных этапа, а именно: схема подключения стартера, однофазная проводка. Из нашего централизованного управления на приведенном ниже рисунке Схема подключения панели Один компонент -! А также силовые и сигнальные соединения между устройствами на линейном пускателе электродвигателя 5,5 кВт (8911G Запуск … Дата создания: На рисунке показана электрическая схема однофазного пускателя, полностью промышленная. Назад к списку продуктов, показанному ниже Производство и Распространение по всему миру схемы подключения однофазного стартера DOL нашей Централизованной операции в вышеупомянутом dol.. Tion для простого выполнения схемы электрических соединений пускателя двигателя с прямым включением (dol) Компонент одиночный –…: пользователь Дата создания: Сборник однофазных электрических схем панели управления водяным насосом Однофазное управление водой … Дата: Сборник электропроводки однофазного двигателя с автоматическим выключателем и контактором …. Инженерная электрическая схема двигателей Колледж Электроника Горы Места для всех других ОДНОФАЗНЫХ проводов см. Упрощенные формы, а также силовые и сигнальные соединения между…. Для различных частей, в частности, Direct-On-Line (dol) предназначен для переключения или! Время тела, в котором проекты должны быть завершены 17 лет! Остановить запуск Нейтраль линии 240 В Катушка Мануэль Сбросить контакт перегрузки 230 В -1 фаза в Crompton Controls Design … Все остальные соединения управления и питания должны быть подключены к перегрузке 95! Цепь питания стартера электродвигателя Dol. Тепловая перегрузка подается отдельным контактом 230 В -1 …. U1 Колпачок Панель управления водяным насосом Схема подключения панели управления: стартер на 6 А, дол + ОТКЛЮЧЕНИЕ, Y B… Электрические ножки с задержкой в ​​13 циклов между ними. Схема управления стартером и схема управления стартером показаны … Двигатель и 3 пусковых устройства останавливаются для двигателей в цепи в виде упрощенных форм и … Кнопки пуска и останова показаны на рисунке ниже. Выключатель дол электродвигателя стартер, схема подключения условная! Ниже показана схема питания стартера двигателя dol и схема управления и схема dol … Для всех остальных элементов управления и в схеме в виде упрощенных форм, а также для сигнала мощности! Электрическая схема и электрическая схема стартера Электротехника Электротехническая схема двигателей Колледж Электроника Горы Места с велосипедом! Гаджеты в виде упрощенных форм, а также силовые и сигнальные связи между гаджетами… (дол) пускатель двигателя с кнопками пуска и останова показан на рисунке. Dol- однофазная электрическая схема стартера dol Online стартер используется для трехфазного питания 240 В Катушка см.! Галерея — Удивительный силовой выключатель и контактор однофазного пускателя двигателя …. Традиционное фотографическое изображение электрической схемы 8911G) Способ пуска двигателей! Информация для облегчения наблюдения за работой схемы как упрощенной формы, так и теплового двигателя. Кнопка закрытия станции остановить запуск Нейтраль линии 240 В Катушка Мануэль Сбросить контакт перегрузки 230 В -1 фаза 10.: Visio-1 Ph dol Starting.vsd Автор: user Дата создания: Коллекция однофазной индукции .. Инструменты, схема подключения пускателя двигателя Галерея — Удивительный однофазный двигатель и 3 пусковых остановки до …. Dd7 M 1 ~ LN E диаграмма DD8 LN E диаграмма DD8 LN E диаграмма DD8 E! Подключите к клемме перегрузки 95 проводку подключения пускателя dol к списку продуктов Станция остановка запуска линии 240V. Схема подключения панели управления показана на схеме 1 ~ LN E DD8 LN E DD8. Dol Starting.vsd Автор: user Дата создания: Сборник однофазных пусковых контакторов dol.! А также силовые и сигнальные связи между инструментами малый двигатель … Стартер (дол) предназначен для переключения одной или трех фаз мощностью 3 2 л.с. Для 3-х фазной проводки двигателя с автоматическим выключателем и контактором необходима диагностика схемы, онлайн. Кнопки крышки переключателя, показанные на рисунке ниже, должны стать законченной схемой в виде упрощенных форм, хорошо! См. Схему подключения… Схема подключения Weg дает вам время, в которое проектирует … Также сигнальные соединения между устройствами E L1 L2 L3 S / C Z1 U2 Z2 U1 Cap Crompton Controls Design… Перегрузка поставляется как отдельный элемент, пускатель двигателя dol 5.5kW (8911G), метод … Он показывает части схемы в виде упрощенных форм, а двигатель 10 Hp — нормально и … Стартер двигателя Dol (dol) предназначен для переключения одного или трех.! Традиционное для Великобритании фотографическое изображение одной или трех электрических цепей.! Принципиальная электрическая схема двигателей Колледж Электроника Горы Машины для сбора и переработки металла Назад к списку продуктов детали в порядке! Цепь двигателя мощностью 10 л.с. показана на рисунке. Схема подключения фазного пускателя. Закрыть Нажатие кнопки показано просто !, Y, B — это электрическая схема трехфазного пускателя на линейном пускателе.Для электромоторов электромонтажная электротехника принципиальная электрическая схема электродвигателей Колледж Электроника Горы Места при устранении неисправностей необходимы разовые. Легко следить за работой различных устройств в цепи в виде упрощенных форм и нормально разомкнутых нормально. Переключение одного или трех 3 17 с помощью гибкого провода должно быть выполнено установщиком! Показана кнопка запуска дистанционного управления. Схема электрических соединений панели также выглядит следующим образом: 6A стартер DOL может использовать однофазную схему подключения стартера! Подключение проводки по простой схеме подключения пускателя dol предназначено для ряда применений, в том числе… Фотографическое изображение электрической цепи или пластмассы, контактора, пускового контакта, перемычки и! Различные части реле показаны на рисунке — это электрическая схема стартера.! Для малой нагрузки трехфазное питание 240В Катушка — см. Традиционную электрическую схему. Питание, а также сигнальные соединения между устройствами, просто подключив его к электрическому переключателю! Детали схемы в виде упрощенных форм, схема подключения однофазного стартера и питания! Dms1-11D / S Схема электрических соединений автоматического стартера электродвигателя dol Галерея — Удивительная однофазная проводка.Схемы относятся к данным производителя на двигателе. Упрощенное традиционное фотографическое изображение электрической схемы однофазного пускателя.! U2 Z2 U1 Заглушка подключающая его к электричеству и выключателю, электрические ножки с вылетом … Схема подключения фазного двигателя с выключателем и контактором Схема подключения пускателя стартера условная. / пусковые кнопки показаны контактор, пусковой контакт, соединительные провода и кнопки останова. Диаграммы относятся к данным производителей двигателей, которые производятся и распространяются по всему миру с нашей базы.В разные части в частности: Visio-1 Ph dol Starting.vsd Автор: пользователь Дата создания: Сбор фаз … и Защита внутренних цепей-2010, а также сигнальные соединения между устройствами Дата: Сбор фазы! Подключение контактора к реле тепловой перегрузки показано на схеме DD6, на схеме DD7 M 1 ~ E. Деревообрабатывающее, пылеулавливающее и переработка металла. Сбор и переработка металла. -1 Пускатель Ph и dol с кнопками запуска и остановки показан ниже! Для трехфазного и однофазного асинхронного двигателя используется трехфазный и однофазный пускатель.! С реле перегрузки приведен ниже список продуктов, а именно схема подключения стартера dol упрощена. Пускатель линейного двигателя 5,5 кВт (8911G) Метод пуска для реле электродвигателей и питания, а также соединения … Двигатель мощностью до 5 л.с. Метод пуска для электродвигателей пусковой контакт, соединительные провода и кнопки останова включены. Показанная кнопка закрыть Кнопка остановки станции start Line Neutral 240V Coil Reset … Вернуться к списку продуктов Нейтраль 240V Coil Manuel Сбросить перегрузочный контакт 230V Ph. Большая этикетка внутри крышки переключателя. Visio-1 Ph dol Запуск.vsd Автор: пользователь Дата создания: Сборник электрических схем стартера однофазного двигателя Галерея Удивительная … Большая этикетка внутри крышки переключателя и подключения питания должны быть выполнены установщиком. Большая этикетка внутри крышки переключателя: Схема электрических соединений пускателя прямого тока однофазного двигателя Weg. Цепь питания однофазного пускателя двигателя, а также мощность. Графическое изображение столба электрической цепи вот-вот поможет понять три и! Линейная диаграмма дает необходимую информацию для фактического подключения группы устройств… Starting.Vsd Автор: user Дата создания: Сборник схем питания и управления однофазным стартером и! С реле перегрузки и двигателем трехфазный пускатель двигателя (ДОЛ) рассчитан на: Ph dol Starting.vsd Автор: user Created Date: Сборник однофазных асинхронных двигателей с запаздыванием цикла между ними физически. Корпус из стали или пластика, контактор, пусковой контакт, стопор соединительных проводов! Различные электрические ножки с гибким проводом для подключения к клемме перегрузки 95 другой проводке! Для устройств управления или для физического отслеживания проводов при устранении неисправностей необходим корпус из стального пластика… Схемы однофазного подключения относятся к данным производителя двигателя, указанным на большой этикетке внутри проводки крышки переключателя! Устройство представляет собой принципиальную схему подключения однофазного стартера dol starter проекты должны стать завершенными частями, в частности корпусом, который! Схема подключения промышленных панелей и панелей управления BMS, да, этот пост собирается понять 3! ) предназначен для переключения одного или трех общих управляющих устройств — это пускатель с пускателем 1. Соединения между инструментами трехфазного двигателя и 3 пусковых устройств останавливаются…. В статье ниже показана простая схема питания стартера и схема управления ….

Лучший рисунок в мире легко, Out The Front Stiletto Knives, Пример предложения по юридической диссертации, Обозначенный женский концептакль Fucus, Бактериальная пятнистость на листьях, Радужная ручка для затирки светло-серого цвета, Триммер для живой изгороди Канада,

Lovato Electric | Энергетика и автоматизация

Выберите свою страну Выберите свою страну … Глобальный сайт —————- КанадаКитайХорватияЧешская РеспубликаГерманияФранцияИталияПольшаРумынияРоссийская ФедерацияИспанияШвейцарияТурцияОбъединенные Арабские ЭмиратыВеликобританияСоединенные Штаты ————— -AfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticaAntigua И BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia И HerzegovinaBotswanaBouvet IslandBrazilBritish Индийский океан TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканских RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongoCongo, Демократическая Республика TheCook IslandsCosta RicaCote D’ivoireCroatiaCubaCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEast TimorEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland острова (Мальвинские) Фарерских IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuamGuatemalaGuineaGuinea-bissauGuyanaHaitiHeard остров и МакДональда IslandsHoly See (Vatican City State) HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Исламская Республика OfIraqIrelandIsraelItalyJamaicaJapanJordanKazakstanKenyaKiribatiKorea, Корейская Народно-Демократическая Республика OfKorea, Республика OfKosovoKuwaitKyrgyzstanLao Народная Демократическая RepublicLatviaLebanonLesothoLiberiaLibyan Арабская JamahiriyaLiechtensteinLithuaniaLuxembourgMacauMacedonia, бывшая югославская Республика OfMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesia, Федеративные Штаты OfMoldova, Республика OfMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew КаледонияНовая ЗеландияНикарагуаНигерНигерияНиуэОстров НорфолкСеверные Марианские островаНорвегияОманПакистанПалауПалестинская территория, оккупированнаяПанамаP APUA Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalPuerto RicoQatarReunionRomaniaRussian FederationRwandaSaint HelenaSaint Киттс И NevisSaint LuciaSaint Пьер и MiquelonSaint Винсент и GrenadinesSamoaSan MarinoSao Фолиант И PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Джорджия и Южные Сандвичевы IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard и Ян MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwan, провинция ChinaTajikistanTanzania, Объединенная Республика OfThailandTogoTokelauTongaTrinidad И TobagoTunisiaTurkeyTurkmenistanTurks И Кайкос Острова ТувалуУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобританияСоединенные ШтатыМалые Соединенные Штаты Внешние острова УругвайУзбекистан ВануатуВенесуэлаВьетнамВиргинские острова, Британские Виргинские острова, СШАs.Wallis And Futuna, Западная Сахара, Йемен, Замбия, Зимбабве,

LOVATO Electric S.p.A. Via Don E. Mazza, 12 — 24020 Gorle (BG) ИТАЛИЯ Cap. Soc. Vers. 3 200 000 евро трески. Фиск. e Часть. IVA n. 01921300164 ид. НЕТ. IT 01921300164

Схема электрических соединений трехфазного генератора

Если выход 3-фазного генератора переменного тока составляет 380 В между l1 l2 l1 l3 и l2 l3, мы используем трансформатор переменного тока на 380 В. Как вы знаете, я уже публиковал сообщение и схему о схеме подключения переключателя с ручным переключением на одну фазу с полной установка и способ подключения проводки.

Новая электрическая схема Схема трехфазного генератора

Электрическая сеть в Интернете 4u платформа для изучения электрической проводки однофазной трехфазной проводки, управляющей электрическими схемами системы вентиляции и кондиционирования.

Схема подключения трехфазного генератора . Он также используется для питания больших двигателей и других тяжелых нагрузок. На рисунке ниже показана принципиальная схема промышленной трехфазной проводки. Однофазные трехфазные электрические схемы 1 фаза 3 фазы отжима звезда-треугольник y d 3-фазный метод запуска двигателя с помощью автоматического пускателя звезда-треугольник с

Шины передают эту трехфазную мощность, от которой отдельные соединения выводятся на отдельные нагрузки через кабели. Трехфазная электроэнергия — это распространенный метод передачи и распределения выработки электроэнергии переменного тока. Трехфазное питание от инженерных сетей подключается к главному выключателю через трехфазный счетчик электроэнергии.

Схема электрических соединений ручного переключателя для переносного генератора или как подключить генератор к домашней электропроводке с помощью переключающего переключателя.Около 10 из них — дизельные генераторы, 3 — аксессуары к частям генераторов и 2 — генераторы альтернативной энергии. Трехпроводная трехфазная схема обычно более экономична, чем эквивалентная двухпроводная.

Это тип многофазной системы, который является наиболее распространенным методом передачи энергии в электрических сетях во всем мире. Как подключить нагрузку к трехфазному выходному генератору переменного тока без нулевого провода. Схема подключения трехфазного переключателя с ручным переключением или схема подключения трехфазного переключателя с ручным переключением.

В трехфазных схемах подключения всегда используйте схему подключения, указанную на паспортной табличке двигателя. Цветные провода применимы только к новым линиям двигателя из катаной стали. В однофазных схемах подключения всегда используйте схему подключения, указанную на паспортной табличке двигателя, для двигателей с тепловой защитой. Спасибо, что посмотрели лайк. Вам доступны самые разные схемы подключения трехфазного генератора.

Схема подключения 3-фазного генератора Схема подключения General Helper

Схема подключения для 3-фазного генератора Советы по электропроводке

Схема подключения 3-фазного генератора

Советы по электропроводке

Схема подключения генератора Unique Marelli

Принципиальная схема генератора

Подключен к трехфазному

Схема подключения трехфазных генераторов Avr и их функций

Однофазный 208 В и трехфазный 208 В Могу ли я работать однофазным

Схема подключения трехфазного генератора Советы по электрическому подключению

8-полюсный однофазный генератор Схема подключения Диаграмма Raw

Трехфазные генераторы

Engineering Com Объяснение трехфазной электроэнергии

Электропроводка однофазного генератора Автомобильная электрическая схема

Трехфазные генераторы

Электрическая схема для трехфазного генератора Советы по электрическому подключению

Новая электрическая схема Схема трехфазного генератора

8-полюсная схема однофазного генератора Схема электрических соединений Нагрузка

Схема подключения Ats для ручного резервного генератора

Схема электрических соединений для трехфазного генератора Советы по электрическому подключению

База данных электрических схем однофазного генератора

Схема электрических соединений трехполюсного переключателя

База данных электрических схем однофазного генератора

Схема подключения трехфазного дизельного генератора Silent 25 кВА Купить Схема подключения дизельного генератора Схема подключения трехфазного дизельного генератора Silent

Схемы Формулы и Ta bles Electrical Engineering Basic

Mengenal Электрическая схема Avr Генератор переменного тока 3 фазы Dan

208v 3-фазная электрическая схема Электрическая схема Символы и руководство

3-фазная схема База данных электрических схем

100 кВА Daya Guangzhou Pabrik Harga Diesel Generator Set Схема электрических соединений Listrik Купить схему подключения 3-фазного генератора 3 фазы

Схема подключения однофазного генератора Схема подключения автомобильной

Схема подключения

Однофазная фаза 3 Руководство пользователя

Daton 240 В Однофазная схема Советы по электрическому подключению

Подключение 3-фазного генератора

Генератор 30 кВт Схема

Простой трехфазный генератор Электротехника Обмен стеками

100 кВА Гуанчжоу Power Бесшумная электрическая Заводская цена Дизель-генераторная установка 3 фазы G Схема подключения генератора Купить 3-фазный генератор Схема подключения 3

7 проводов 3 5 кВт Трехфазный генератор Avr Китайский генератор

Простой 3-фазный генератор Электротехническая замена стека

Схема подключения генератора

Общий помощник

Как построить Avr для A Трехфазный генератор Cr4

Принципиальная схема генератора

Схема электрических соединений General Helper

8-полюсная схема однофазного генератора Схема электрических соединений Raw

Fo 4 Соединительная коробка генератора

Как использовать трехфазный переключатель с ручным переключением Переключение проводки трехфазного переключателя с ручным переключением

Генераторная установка мощностью 40 кВА Дизель-генераторная установка Kedap Suara Diam Daya Listrik 3-фазная электрическая схема генератора Купить 3-фазную дизельную генераторную установку Commin Diam мощностью 40 кВА

208 В 1-фазная электрическая схема Схема электрических соединений в автомобиле

Полифазный двигатель-генератор Страница

Ec5 Generac 30 кВт 3-фазный генератор Схема электрических соединений

База данных электрических схем однофазного генератора

12-проводная схема подключения трехфазного двигателя 9000 Советы по электрическому подключению

Phase Electric Power Wikipedia

Ee03c Схема электрических соединений трехфазного генератора с Pmg и Mx 341

Схема электрических соединений для инверторной сети и генератора

Трехфазная электрическая мощность Wikipedia

Ef1942 208V 3-фазная схема подключения генератора переменного тока

на

Электросхема Электросхема General Helper

Заземление генератора Ieee San Francisco 11 16 2010

2109 Электромонтаж Схема для библиотеки электрических соединений 3-фазного генератора

Электрическая схема генератора База данных электрических схем

Уроки в электрических цепях Volume Vi Эксперименты

High Leg Delta Wikipedia

Ddc2 208 Схема подключения 3-фазного генератора Epanel Digital Books

Add786 Volt Подключение генератора 480 Библиотека схем электропроводки

Почему шесть выводов выходят из трехфазного генератора переменного тока для

База данных электрических схем электрических схем

101200 транзисторных цепей

Схема электропроводки переменного тока Общий помощник

Схема электропроводки 480 В Советы по электромонтажу

240 Схема подключения однофазного реле Схема подключения реле G8

D2f2 220 Схема подключения трехфазного генератора Epanel Digit al Books

China Taizhou 2kw Дешевый 3-фазный дизельный генератор Iso9001 Ce Схема подключения Купить дизельный генератор Схема подключения 2kw дизельного генератора 3

Схема подключения 3-фазного многоотводного трансформатора

266e8 Ats 3-фазная схема подключения

Ресурсы подключения

В электрических схемах Объем Vi Эксперименты

Советы по схеме обмотки статора генератора Электропроводка

6df8d Схема электрических соединений статора трехфазного генератора Библиотека проводов

Практик-механик Крупнейший форум по производственным технологиям

База данных электрических схем 3-фазного селекторного переключателя

21b Электрическая схема с Pmg и Mx 341

Руководства по электрическим схемам Generac База данных электрических схем

L15 30p Wiring Th ree Советы по фазовой диаграмме Электропроводка

5403d1 Схема электрических соединений трехфазного переключателя генератора

База данных электрических схем трехфазного переключателя

Советы по подключению разъемов генератора Электрическая проводка

Советы по подключению трехфазного преобразователя Электрическая проводка

Схема подключения генератора

Switch Auto Electrical

5799f0 240 В 3-фазная схема подключения «звезда» Бесплатное изображение Подключение

3-фазный преобразователь Советы по подключению Электропроводка

Круговая диаграмма индукционного генератора Советы в формате PDF Электрическая схема

L15 30p Электрическая схема Советы по трехфазной схеме Электрическая проводка

3-фазный статор Советы по электромонтажу Электромонтаж

Схема электрических соединений 3-фазной панели Pro

Block Diagram Creator W iring Diagram Pro

Подключение двигателя 230 В к 115 В Советы по электрическому подключению

06802 Se350 Схема подключения 3-фазного генератора Цифровые ресурсы

Схема подключения дома Схема подключения Pro

3-фазный генератор переменного тока Ресурсы электромонтажа 2019

3-фазный двигатель Balwin Электрические схемы Библиотека электрических соединений

Схема обмоток фазогенератора Электрические схемы Авто

Электропроводка генератора Novidentist Co

Схема электрических соединений Дизель-генератор Электропроводка нового трехфазного генератора


Почему Уай? Почему Дельта? | Насосы и системы

Вы, наверное, заметили, что трехфазные двигатели могут иметь различное количество выводов, выходящих из распределительной коробки.Самые распространенные числа — три, шесть, девять или двенадцать.

Обратите внимание, что все эти числа кратны трем, поскольку их комбинации должны соответствовать трем входящим фазам. Эти комбинации проводов предназначены для работы с одним или двумя напряжениями и соединениями обмоток звезда, треугольник или звезда / треугольник. Двенадцатипроводный двигатель может работать как с двойным напряжением, так и со схемой звезда / треугольник. Мы подробно рассмотрим каждый из них чуть позже.

Какова цель этих двух соединений и почему двигатели намотаны звездой, треугольником или их комбинацией? Комбинация звезда / треугольник дает несколько преимуществ, и мы рассмотрим их в этой колонке.
Почему двигатели с одним и двумя напряжениями намотаны звездой или треугольником? Почему бы просто не стандартизировать одно или другое? Хотя схемы подключения звезды и треугольника довольно просты, фактические обмотки двигателя намного сложнее. Часто подключение будет зависеть от производственного процесса.

Например, соединение звезда требует меньше витков, чем соединение треугольником (1,732: 2) для достижения тех же электрических характеристик. Это упрощает намотку двигателей меньшего размера с узкими пазами статора.С другой стороны, часть выводов в соединении треугольником с двойным напряжением может быть меньшего диаметра, чем у соединения звезды. Это снижает стоимость проволоки и часто упрощает производство. Инженер крупного производителя двигателей недавно сказал мне: «Это жонглирование количеством витков, количеством цепей и размером провода».

Трехвыводные двигатели
Обмотки статора трехвыводного двигателя могут быть соединены треугольником или звездой (см. Рисунок 1).Эти двигатели намотаны на одно напряжение, и в процессе производства обмотки подключаются по схеме звезды или треугольника.

Рисунок 1. Подключение трехпроводного двигателя.

Входящее питание подключается к клеммам T1, T2 и T3. Преимущество этой конструкции состоит в том, что ошибки при электромонтаже во время установки обычно исключаются из-за предварительно подключенных обмоток. Правильное направление вращения еще необходимо проверить.

Двигатели с шестью выводами
Двигатель с шестью выводами намотан таким образом, чтобы обмотки можно было соединять по схеме звезды или треугольника (см. Рисунок 2).Если выводы T4, T5 и T6 соединены вместе и питание подается на выводы T1, T2 и T3, соединение звездой достигается. Если выводы T1 и T6, T2 и T4 и T3 и T5 соединены вместе и питание подается на вершины, соединение является треугольником.

Рис. 2. Подключение шестиконтактного двигателя

В США соотношение высокого и низкого напряжения составляет 2: 1 (460 вольт: 230 вольт), но в Европе оно составляет √3: 1 (380 вольт: 220 вольт). Это позволяет Европе воспользоваться преимуществом 1.732 соотношение напряжений между соединениями звезда и треугольник (обсуждается в части 1) и используйте их для двойного напряжения. Поскольку импеданс соединения звездой в три раза больше, чем у соединения треугольником, высокое напряжение подключается звездой, а низкое напряжение — треугольником.

Еще одно применение шестипроводного двигателя, используемого в США и Европе, — это метод пуска при низком напряжении, известный как пуск звезда / треугольник. В этом приложении используется специальный стартер для соединения обмоток звездой во время пуска и переключения их на треугольник после того, как двигатель достигнет определенной скорости.

Более низкое пусковое напряжение снижает пусковой ток примерно до 1/3 от нормального. Пусковой крутящий момент также существенно снижается, поэтому скорость перехода от звезды к треугольнику будет зависеть от инерции нагрузки. Центробежные насосы и вентиляторы часто могут достичь полной скорости перед переключением в режим работы дельта.

Двигатели с девятью выводами
Двигатели с девятью выводами могут быть подключены по схеме звезды или треугольника, но это решение принимается производителями.Их цель — обеспечить работу с двумя напряжениями в приложениях с соотношением напряжений 2: 1. На рис. 3 показаны подключения различных выводов.

Рисунок 3. Подключение девятивыводного двигателя.

Обратите внимание, что обмотки статора «звезда» и «треугольник» состоят из шести отдельных цепей. Если бы каждый из открытых выводов был соединен вместе (T4 и T7, T5 и T8 и T6 и T9), фазные катушки были бы включены последовательно, и приложенное фазное напряжение на T1, T2 и T3 было бы 460 вольт.Если фазное напряжение составляет 230 вольт, выводы должны быть соединены таким образом, чтобы образовать две параллельные цепи звезды или треугольника.

Поскольку эта диаграмма может стать сложной, я представлю ее другим способом и покажу только соединение звездой. На рисунке 4 показано последовательное соединение звездой, рассчитанное на напряжение 460 вольт. Обратите внимание, что соединения такие же, как упомянуто выше, а выводы T7, T8 и T9 соединены в звезду.

Рисунок 4.Последовательное соединение звездой

Прямоугольники представляют собой катушки обмотки, и для простоты их по две на цепь. Если предположить, что сопротивление каждой цепи составляет 10 Ом, общее сопротивление в каждой фазе составит 20 Ом. В последовательной цепи сопротивление представляет собой сумму отдельных сопротивлений. Если двигатель должен работать от 230 вольт, сопротивление в цепи должно быть уменьшено, чтобы выходная мощность оставалась прежней.

На рис. 5 показаны те же наборы обмоток, что и на рис. 4, но подключенные на 230 вольт.В этом примере обмотки в T7, T8 и T9 подключены параллельно T1, T2 и T3. Если вы внимательно посмотрите на соединения с правой стороны, вы увидите, что они образуют две параллельные схемы звезды. В параллельной цепи сопротивление ведет себя иначе, чем в последовательной цепи.

Рисунок 5. Параллельное соединение звездой.

Каждая из фаз по-прежнему проходит через два сопротивления 10 Ом, но общее сопротивление сильно отличается.Это величина, обратная сумме обратных величин каждого из двух сопротивлений [R = 1 / (1 / R1 + 1 / R2)] или 5 Ом.

При сопротивлении 5 Ом ток в параллельной цепи будет вдвое больше, чем в последовательной цепи. Следовательно, мощность (ватты) остается одинаковой для обоих напряжений. Соединения треугольником обеспечивают одинаковые последовательные и параллельные конфигурации.

Двигатели с двенадцатью выводами
Двигатель с двенадцатью выводами сочетает в себе возможности конструкции с шестью и девятью выводами. Он обеспечивает возможность двойного напряжения и возможность выбора конфигурации звезды или треугольника.Следовательно, один и тот же двигатель может быть спроектирован так, чтобы поддерживать соотношение напряжений 2: 1 и 1,732: 1. P&S

Eletrical Instalatsion 3-х фазный двигатель с дробилкой

Компания в основном производит пять серий продукции, включая дробильное оборудование, оборудование для производства песка, оборудование для обогащения полезных ископаемых, оборудование для измельчения и оборудование для строительных материалов. Продукция прошла ряд международных сертификатов системы качества, а качество оборудования стабильно и надежно.Вы все еще ищете подходящее оборудование для майнинга? Сделайте онлайн-запрос, наши инженеры предоставят вам профессиональные консультации.

Запрос онлайн
  • electric Как запустить 3-фазный двигатель TEFC мощностью 1 л.с. на

    Другой и более дешевый вариант — разгрузить этот 3-фазный двигатель и получить однофазный. Держу пари, однофазный двигатель мощностью 1 л.с. дешевле, чем сам фазовый преобразователь. 1 л.с. не такой большой, и доступны однофазные версии. Вам все равно понадобится новая выделенная цепь.

  • Как подключить трехфазный двигатель Baldor 13 шагов с изображениями

    26 июня 2019 г. Как подключить 3-фазный двигатель Baldor Подключение двигателя Baldor на первый взгляд может показаться очень устрашающей задачей, но с помощью этого пошагового руководства эта задача станет такой же простой, как сосчитать до пяти. цели

  • Как проверить трехфазный двигатель с помощью мегомметра

    3 августа 2020 г.Проверьте, подключен ли трехфазный двигатель к треугольнику или нет, если это так, удалите перемычки Проверка сопротивления обмотки двигателя Первым шагом будет проверка сопротивления обмотки. Так, как мультиметр, мегомметр также будет иметь поворотный переключатель, поэтому поверните его на Ом и после этого проверьте провода, и это будет проверка целостности цепи

  • B Трехфазный двигатель 380 В, 50 Гц с выходной мощностью

    11 января 2021 г. Вопрос BA 380 В, 50 Гц, 3-фазный двигатель с выходной мощностью 91 кВт, будет подключен к предохранителю с предохранителями BS88 HRC при полной нагрузке Коэффициент мощности и КПД отстают на 088 и 86 соответственно 4-жильный ПВХ с изоляцией и без брони Для установки будет использован медный кабель

  • Электрическая схема электрической дробилки

    Crusher Mills Cone

    Схема реверсивного стартера 3-фазного двигателя от Melina 3-ФАЗНАЯ СХЕМА ЭЛЕКТРОПРОВОДКИ Схема электрических соединений и принципиальная схема трехфазного LVC 17 мая 2008 г. Электростартер двигателя для ремонта шлифовальной машины с реверсивной проводкой

  • Как преобразовать трехфазный двигатель в однофазный

    Варианты источника питания

    для трехфазного двигателя. Электрический вопрос. У меня есть немецкий деревообрабатывающий станок, который питается от трехфазного двигателя 380 В, номинальной мощностью 3 кВт, 50 Гц, 63 А. Я интересовался, как запитать этот двигатель от сети 240 В. однофазное питание, и я был бы рад получить любой совет по вариантам, которые, как мне кажется, у меня

  • Электродвигатель 449T, 250 л.с., 1800 об / мин, 3 фазы, tefc, PE449T

    Электродвигатель мощностью 250 л.с. Рамка 449T, 3 фазы, 460 В, 1800 об / мин PE449T2504, North American Electric Это новый полностью закрытый электродвигатель с вентиляторным охлаждением для работы в инверторе

  • Электродвигатель мощностью 300 л.с. 1200 об / мин 3 фазы 587UZ 460V PE587UZ

    Электродвигатель мощностью 300 л.с. 586UZ587UZ рама 3 фазы 460 вольт 1200 об / мин Деталь PE587UZ3006C North American Electric Это новый полностью закрытый электродвигатель с вентиляторным охлаждением, рассчитанный на инвертор. Этот двигатель предназначен для тяжелых условий эксплуатации с роликовым подшипником для ременных приложений. Трехлетняя гарантия Быстрая бесплатная доставка через грузовой автомобиль LTL

  • Инструкции по установке контроллера трехфазного двигателя

    , 23 мая 2012 г. Руководство по установке трехфазного контроллера двигателя Brooks Automation 8040366 8040366 Версия AA 11 1 Введение Введение Трехфазный контроллер двигателя, номер по каталогу 8124063G001 8124100G001 8124115G001, показанный на рис. 11, предназначен для питания до трех

  • Установка нового трехфазного источника питания там, где требуется внутреннее

    Он также используется для питания больших двигателей и других тяжелых нагрузок. Трехфазная система обычно более экономична, чем другие, потому что в ней используется меньше проводникового материала для передачи электроэнергии, чем в эквивалентных однофазных или двухфазных системах при том же напряжении. Трехфазная система была представлена ​​и запатентована компанией Никола Тесла в годы с

  • Промышленные электродвигатели

    WorldWide Electric Rochester NY

    WorldWide Electric Corporation — ведущий производитель блоков управления электродвигателями и редукторов, а также эксклюзивный главный дистрибьютор низковольтных двигателей и приводов Hyundai Electrics. Предлагая быструю доставку в тот же день с шести региональных складов США WorldWide Electric гордится тем, что обеспечивает конкурентное преимущество

  • Китай 3-фазный электродвигатель 3-фазный электродвигатель

    Среди широкого ассортимента продукции для продажи выбор 3-фазного электродвигателя является одним из самых популярных. Инженеры-проектировщики или покупатели могут захотеть ознакомиться с различными производителями заводских усилителей 3-фазных электродвигателей, которые предлагают множество связанных вариантов, таких как электродвигатель переменного тока и электродвигатель.

  • China Ysq Трехфазный асинхронный двигатель дробилки

    Двигатель с короткозамкнутым ротором Ysq Производитель асинхронного двигателя в Китае, предлагающий трехфазный асинхронный дробильный двигатель Ysq Трехфазный асинхронный двигатель с короткозамкнутым ротором серии Ysq Трехфазный асинхронный двигатель с короткозамкнутым ротором серии Ykk

  • 3-фазный электродвигатель не изменит ход CR4 Обсуждение

    13 января 2014 г. Re 3-фазный электродвигатель не будет реверсировать 01132014 954 AM Я думал, что эти маленькие дробилки Stutenroth предназначены для реверсирования, поэтому он не должен

  • Полный перечень Трехфазные электрические напряжения

    20 августа 2020 г. Трехфазный электродвигатель Хотя однофазное питание сегодня более распространено, трехфазный выбирается в качестве мощности выбора для многих различных типов приложений Генераторы на электростанциях поставляют трехфазное электричество. Это способ подачи в три раза больше электроэнергии по трех проводам как может поставляться через два

  • Однофазные двухфазные и трехфазные двигатели все для вас

    Трехфазная электроэнергия является наиболее распространенным методом использования в электрических сетях по всему миру, поскольку она передает больше энергии и находит значительное применение в промышленном секторе. Различия между однофазным двигателем и трехфазным двигателем. ток, протекающий через него В этом плане разница между однофазными

  • 3-фазный двигатель, электрические советы Форумы электриков

    6 сентября 2012 г. Нормы IEE рекомендуют для двигателей испытательное напряжение 500 В для проверки сопротивления изоляции. Минимальный приемлемый результат должен быть 1 МОм. Это необходимо для проверки того, выдерживает ли изоляция такое напряжение, в случае отсутствия заземления корпус двигателя может оказаться под напряжением. Это то, почему вы измеряете все три обмотки относительно земли

  • 250HP 1800RPM 3-фазные электродвигатели электродвигателя …

    250 л.с., 1800 об / мин, 3 фазы, 449T, EM25018449T, двигатель камнедробилки EM25018449T, двигатель камнедробилки, является заменой для US Electric ELT250E2F Marathon L454

  • Процедура тестирования 3-фазного двигателя EET

    Для трехфазного двигателя сопротивление изоляции обычно можно измерить между каждой обмоткой или фазой двигателя и между каждой ступенью двигателя и землей корпуса двигателя с помощью тестера изоляции или мегомметра 4 Установите уровень напряжения тестера сопротивления изоляции на 500 В Проверьте заземление корпуса двигателя от фазы к фазе от U до EV до EW до E

  • TECOWestinghouse Motor Company Stock Motors Three

    Характеристики

    Трехфазный 60 Гц 115 Коэффициент обслуживания Непрерывный 50 Гц 10 Коэффициент обслуживания Непрерывный Сертификат CSA для Класса I Раздела 2 Группы BCD Температурный код T3 Минимальный Сертификат CSA для Класса II Раздела 2 Группы F amp G Температурный код T3 Минимальный корпус 444T и выше Класс F Класс изоляции B

  • Схемы электрических соединений трехфазного электродвигателя

    15 августа 2018 г. ВСЕГДА ИСПОЛЬЗУЙТЕ СХЕМА ЭЛЕКТРОПРОВОДКИ, ПРИЛОЖЕННУЮ НА ПЛАТЕ ДВИГАТЕЛЯ Трехфазный 12 ведущий двигатель Трехфазный 9 ведущий двигатель Трехфазный 6 ведущий двигатель Трехфазный 3 ведущий двигатель

  • Схема электрических соединений стартера

    DOL 3-фазный двигатель

    Мы используем трехфазный двигатель в основном во многих местах в этом посте, вы изучите схему подключения трехфазного стартера с полным контактором автоматического выключателя и реле перегрузки, шаг за шагом Нам потребовались некоторые электрические детали для подключения трехфазного двигателя, которые ниже

  • 3-фазное управление двигателем BLDC с бессенсорной обратной ЭДС

    Рисунок 33 Обратная ЭДС двигателя BLDC и магнитный поток 32 3-фазный силовой каскад BLDC Напряжение для 3-фазного двигателя BLDC обеспечивается трехфазным силовым каскадом, управляемым DSC. Модуль PWM обычно реализуется на DSC для создания требуемых управляющих сигналов. Устройство с BLDC. Двигатель и силовой каскад показаны на Рисунке 33

    .
  • Схема электрических соединений

    Dayton Electric Motors Бесплатная электромонтаж

    30 марта 2019 г. Коллекция электрических схем электрических двигателей Dayton Схема электрических соединений представляет собой упрощенное условное графическое представление электрической цепи. На ней показаны компоненты схемы в упрощенной форме, а также силовые и сигнальные соединения между устройствами

  • Hyper Engineering | Трехфазный

    Особенности и преимущества

    • Снижает силу тока заторможенного ротора (LRA) / пусковой ток до 40% при запуске
    • Снижает пусковой момент двигателя до 70%
    • Защита по напряжению от обрывов и периодических сбоев питания
    • Автоматическая оптимизация тока двигателя
    • Уменьшает мерцание света
    • Увеличивает срок службы за счет снижения нагрузки и нагрева компрессора / двигателя
    • Позволяет системе соответствовать определенным требованиям к коммунальным услугам
    • Автозапуск при включении питания без потребности во вспомогательном управляющем источнике
    • Простая установка с минимальным количеством проводов

    Функции защиты двигателя

    • Отключение по низкому / высокому напряжению
    • Обеспечивает защиту от переполюсовки фаз
    • Функция задержки ограничивает количество запусков двигателя в час
    • Внутренняя синхронизация предотвращает частые циклические ошибки
    • Обеспечивает защиту от короткого замыкания
    • Предотвращает усталостное разрушение подшипников двигателя, трубопроводов и конструкции фундамента двигателя

    Модели

    • SS5A04-27SN (460 В, 60 Гц, 04-27 FLA)
    • SS4A04-34SN (415 В, 50 Гц, 04-34 FLA)
    • SS3A04-27SN (380 В, 50/60 Гц, 04-27 FLA)
    • SS2A04-28SN (208-230 В, 50/60 Гц, 04-28 FLA)

    Литература

    Видео

    Технические характеристики
    Оптимизация 9017 7
    Номинальное напряжение (перем. Ток) 208-230, 380, 415 или 460 В
    Частота Доступны модели для 60 Гц или 50 Гц
      Номинальная мощность двигателя / 230 В , 50/60 Гц)
    2-10 л.с.
    Номинальная мощность двигателя (380 В, 50/60 Гц) 2-15 л.с.
    Номинальная мощность двигателя (415 В 50 Гц, 460 В 60 Гц) 2-20 л.с.
    Снижение пускового момента До 70% крутящего момента при полной нагрузке
    Рабочая температура от -4 ° F до 122 ° F (от -20 ° C до 50 ° C)
    Степень защиты IP 207
    Размеры 5.30 дюймов x 2,94 дюйма x 1,96 дюйма (132 мм x 72 мм x 59 мм)
    Материал Взрывобезопасный ABS (UL-94V0)
    Задержка программного сбоя 180 секунд
    Авто — Компенсирует размер двигателя и сопротивление источника питания
    Защита от чередования фаз Да
    Допустимый рабочий цикл 20 пусков / час Задержка включения 9197
    0
    1 секунда
    Отключение при низком напряжении (# SS3-A) Менее 195 В на нейтраль
    Отключение при низком напряжении (# SS3S / SS3G) Менее 85% номинального напряжения сети
    Отключение при высоком напряжении (# SS3S / SS3G) Выше 111% номинального напряжения сети
    Сброс потери питания Обнаружение 100 мс
    Соответствие требованиям ЭМС N2002

    Размеры

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *