Схема подключения через пускатель электродвигателя: Страница не найдена – Совет Инженера

Содержание

Пмл 1220 02б схема подключения

Приветствую. Подскажите схему подключения трехфазного асинхронного двигателя через пускатель ПМЛ, а также характеристики последнего?

и отзывы

  • QF – Автоматический выключатель на вводе.
  • ПР – Предохранитель для схемы управления.
  • «Пуск» и «С» – кнопки управления, первая осуществляет запуск электродвигателя, вторая – ее остановку.
  • КМ1 – Контакт блокирующий кнопку «Пуск».
  • КМ – Катушка магнитного пускателя.
  • P – Размыкающий контакт теплового реле.
  • КМ1.1 – Контактная группа магнитного пускателя.

Блок: 1/16 | Кол-во символов: 484
Источник: https://master-kleit.ru/origami/pml-1220-02b-shema-podkljuchenija/

Описание

Магнитный пускатель ПМЛ 1220 предназначен для запуска и остановки электродвигателя и его защиты от перегрузки и от пропадания фазы.
ПМЛ 1220 — магнитный пускатель, нереверсивный (т.е. включает электродвигатель для вращения ротора в одном напралении), в пластмассовом корпусе, с тепловым реле типа РТЛ, со степенью защиты IP54, с кнопкой — «пуск» и «стоп».

Блок: 2/16 | Кол-во символов: 365
Источник: https://master-kleit.ru/origami/pml-1220-02b-shema-podkljuchenija/

Для публикации сообщений создайте учётную запись или авторизуйтесь

Вы должны быть пользователем, чтобы

Блок: 2/4 | Кол-во символов: 135
Источник: https://www.chipmaker.ru/topic/189102/

Для каких электродвигателей применять ПМЛ1220?

Номинальный ток электродвигателя Iном, ( а этот ток указан на шильдике электродвигателя) должен быть равным или немного ниже тока несрабатывания теплового реле, которое установлено на магнитном пускателе, через который этот электродвигатель подключается к сети питания. На магнитный пускатель ПМЛ1220 могут быть установлены следующие тепловые реле типа РТЛ:

тока несрабатывания, А

Блок: 3/16 | Кол-во символов: 425
Источник: https://master-kleit.ru/origami/pml-1220-02b-shema-podkljuchenija/

Создать учетную запись

Зарегистрируйте новую учётную запись в нашем сообществе. Это очень просто!

Регистрация нового пользователя

Блок: 3/4 | Кол-во символов: 182
Источник: https://www.chipmaker.ru/topic/189102/

Схема подключения электродвигателя к магнитному пускателю

Для подачи питания на двигатели или любые другие устройства используют контакторы или магнитные пускатели. Устройства, предназначенные для частого включения и выключения питания. Схема подключения магнитного пускателя для однофазной и трехфазной сети и будет рассмотрена дальше.

Блок: 4/16 | Кол-во символов: 335
Источник: https://master-kleit.ru/origami/pml-1220-02b-shema-podkljuchenija/

Особенности монтажа пускателя

Неправильный монтаж магнитного пускателя, может иметь последствия в виде ложных срабатываний. Чтобы избежать этого, нельзя выбирать участки, подверженные вибрации, ударам, толчкам.

Конструкционно МП устроен так, что его можно монтировать в электрощите, но с соблюдением правил. Устройство будет работать надежно, если местом его установки будет поверхность прямая, плоская и расположенная вертикально.

Тепловые реле не должны подвергаться подогреву от посторонних источников тепла, что отрицательно скажется на функционировании устройства. По этой причине их нельзя размещать в местах, подверженных нагреву.

Устанавливать магнитный пускатель в помещении, где смонтированы устройства с током от 150 А, категорически нельзя. Включение и выключение таких устройств провоцирует быстрый удар.

Провода из меди до подключения нужно залудить. Если они многожильные, их концы перед лужением скручивают. У алюминиевых проводов концы зачищают надфилем, затем покрывают пастой или техническим вазелином

Чтобы не допустить перекоса пружинных шайб, находящихся в контактном зажиме пускателя, конец проводника загибают П-образно или в кольцо. Когда нужно подключить 2 проводника к зажиму, нужно чтобы их концы были прямыми и находились по две стороны зажимного винта.

Включению в работу пускателя должен предшествовать осмотр, проверка исправности всех элементов. Подвижные детали должны перемещаться от руки. Электрические соединения нужно сверить со схемой.

Блок: 4/8 | Кол-во символов: 1467
Источник: https://sovet-ingenera.com/elektrika/rele/sxema-podklyucheniya-magnitnogo-puskatelya.html

Устройство и назначение прибора

Сравнив подключение МП и контактора, можно сделать заключение, что первое устройство отличается от второго тем, что его применяют для запуска электродвигателя. Можно даже сказать, что МП — тот же контактор, с помощью которого управляют электродвигателем.

Отличие это настолько условно, что в последнее время многие производители называют МП контакторами переменного тока, но с малыми габаритами. Да и постоянное усовершенствование контакторов сделало их универсальными, потому они стали многофункциональными.

Назначение магнитного пускателя

Встраивают МП и контакторы в силовые сети, транспортирующие ток с переменным или постоянным напряжением. Действие их базируется на электромагнитной индукции.

Устройство оснащено контактами сигнальными и теми, через которые питание подается. Первые названы вспомогательными, вторые — рабочими.

Стартовые кнопки, которыми оснащают схему, обеспечивают удобную эксплуатацию. Если нужно отключить нагрузку, достаточно задействовать клавишу «Стоп». При этом поступление напряжения на катушку пускателя закончится и цепь разорвется

МП дистанционно управляют электроустановками, в том числе и электродвигателями. Их роль, как защиты, нулевая — только исчезает напряжение или хотя бы падает до предела ниже 50%, силовые контакты размыкаются.

После остановки оборудования, в схему которого вмонтирован контактор, оно никогда не включится самостоятельно. Для этого придется нажать клавишу «Пуск».

Для безопасности это очень важный момент, поскольку полностью исключены аварии, спровоцированные самопроизвольным включением электроустановки.

Пускатели, в схему которых включены тепловые реле, охраняют электродвигатель или другую установку от длительных перегрузок. Эти реле могут быть двухполюсными (ТРН) либо однополюсными (ТРП). Срабатывание наступает под воздействием тока перегрузки двигателя, протекающего по ним.

Конструкция и функционирование прибора

Для корректной работы МП необходимо придерживаться определенных правил монтажа, иметь понятие об основах релейной техники, грамотно выбрать схему питания оборудования.

Поскольку устройства предназначены для функционирования на протяжении небольшого временного промежутка, наиболее популярными являются МП с обычно разомкнутыми контактами. Наибольшим спросом пользуются МП серий ПМЕ, ПАЕ.

Первые встраивают в сигнальные цепи для электродвигателей мощностью 0,27 – 10 кВт. Вторые — мощностью 4 – 75 кВт. Рассчитаны они на напряжение 220, 380 В.

Вариантов исполнения четыре:

  • открытый;
  • защищенный;
  • пылеводозащищенный;
  • пылебрызгонепроницаемый.

Пускатели ПМЕ включают в свою конструкцию двухфазное реле ТРН. В пускателе серии ПАЕ количество встраиваемых реле зависит от величины.

Буквы обозначают тип устройства, следующие за ними цифры — от 1 до 6 —величину. Вторая цифра — исполнение. Единица указывает на нереверсивный МП без тепловой защиты, двойка — то же, но с тепловой защитой, три — реверсивный, не имеющий тепловой защиты, четыре — с тепловой защитой, реверсивный

При напряжении около 95% от номинального катушка пускателя способна обеспечить надежную работу.

Состоит МП из следующих основных узлов:

  • сердечника;
  • электромагнитной катушки;
  • якоря;
  • каркаса;
  • механических датчиков работы;
  • групп контакторов — центральной и дополнительной.

Также в конструкцию могут включать в качестве дополнительных элементов, защитное реле, электропредохранители, добавочный комплект клемм, пусковое устройство.

МП включает в свою конструкцию основание (1), контакты неподвижные (2), пружину (3), сердечник (4), дроссель (5), якорь (6), пружину (7), контактный мостик (8), пружину (9), дугогасительную камеру (10), нагревательный элемент (11)

По сути, это реле, но отключающее гораздо больший ток.

Поскольку электромагниты у этого устройства довольно мощные, оно отличается большой скоростью срабатывания.

Электромагнит в виде катушки с большим числом витков рассчитан на напряжение 24 – 660 В. Которая размещена на сердечнике, большая мощность нужна для преодоления усилия пружины.

Последняя предназначена для быстрого рассоединения контактов, от скорости которого зависит величина электрической дуги. Чем быстрее произойдет размыкание, тем меньше дуга и в тем лучшем состоянии будут сами контакты.

Нормальное состояние, когда контакты разомкнуты. Пружина при этом удерживает в приподнятом состоянии верхний участок магнитопровода.

Когда на магнитный пускатель поступает питание, через катушку проходит ток и формирует электромагнитное поле. Оно привлекает мобильную часть магнитопровода посредством сжатия пружины. Контакты замыкаются, на нагрузку поступает питание, в результате, она включается в работу.

В случае отключения питания МП электромагнитное поле исчезает. Выпрямляясь, пружина делает толчок, и верхняя часть магнитопровода оказывается вверху. Как следствие, расходятся контакты, и пропадает питание на нагрузку.

Некоторые модели пускателей оснащены ограничителями перенапряжений, которые применяют в полупроводниковых управляющих системах.

Можно вручную проконтролировать работу системы путем нажатия на якорь с целью почувствовать силу сокращения пружины. Как раз усилие сокращения справляется с магнитным полем. При полном опускании якоря, контакты, отбрасываемые пружиной, отключаются

Питание катушки управления после подключения магнитного пускателя реализуется от переменного тока, но для этого устройства род тока не имеет значения.

Пускатели, как правило, оснащены двумя видами контактов: силовыми и блокировочными. Посредством первых подключается нагрузка, а вторые предохраняют от неправильных действий при подключении.

Силовых МП может быть 3 или 4 пары, все зависит от конструкции устройства. В каждой из пар есть как мобильные, так и неподвижные контакты, соединенные с клеммами, находящимися на корпусе, посредством металлических пластин.

Первые отличаются тем, что на нагрузку постоянно поступает питание. Вывод из рабочего состояния происходит только после срабатывания пускателя.

На контакторы с контактами нормально разомкнутыми подается питание исключительно во время работы пускателя.

Различают два вида контактов блокировки: нормально закрытые, нормально разомкнутые. Первого вида контакт имеет кнопка «Стоп», а нормально открытый — «Пуск»

Нормально замкнутые отличаются тем, что на нагрузку постоянно поступает питание, а отсоединение наступает исключительно после срабатывания пускателя. На контакторы с контактами нормально разомкнутыми подается питание исключительно во время работы пускателя.

Блок: 3/8 | Кол-во символов: 6388
Источник: https://sovet-ingenera.com/elektrika/rele/sxema-podklyucheniya-magnitnogo-puskatelya.html

Контакторы и пускатели — в чем разница

И контакторы и пускатели предназначены для замыкания/размыкания контактов в электрических цепях, обычно — силовых. Оба устройства собраны на основе электромагнита, работать могут в цепях постоянного и переменного тока разной мощности — от 10 В до 440 В постоянного тока и до 600 В переменного. Имеют:

  • некоторое количество рабочих (силовых) контактов, через которые подается напряжение на подключаемую нагрузку;
  • некоторое количество вспомогательных контактов — для организации сигнальных цепей.

Так в чем разница? Чем отличаются контакторы и пускатели. В первую очередь они отличаются степенью защиты. Контакторы имеют мощные дугогасительные камеры. Отсюда следуют два других отличия: из-за наличия дугогасителей контакторы имеют большой размер и вес, а также используются в цепях с большими токами. На малые токи — до 10 А — выпускают исключительно пускатели. Они, кстати, на большие токи не выпускаются.

Внешний вид не всегда так сильно отличается, но бывает и так

Есть еще одна конструктивная особенность: пускатели выпускаются в пластиковом корпусе, у них наружу выведены только контактные площадки. Контакторы, в большинстве случаев, корпуса не имеют, потому должны устанавливаться в защитных корпусах или боксах, которые защитят от случайного прикосновения к токоведущим частям, а также от дождя и пыли.

Кроме того, есть некоторое отличие в назначении. Пускатели предназначены для запуска асинхронных трехфазных двигателей. Потому они имеют три пары силовых контактов — для подключения трех фаз, и одну вспомогательную, через которую продолжает поступать питание для работы двигателя после того, как кнопка «пуск» отпущена. Но так как подобный алгоритм работы подходит для многих устройств, то подключают через них самые разнообразные устройства — цепи освещения, различные устройства и приборы.

Видимо потому что «начинка» и функции обоих устройств почти не отличаются, во многих прайсах пускатели называются «малогабаритными контакторами».

Блок: 5/16 | Кол-во символов: 1977
Источник: https://master-kleit.ru/origami/pml-1220-02b-shema-podkljuchenija/

Тонкости подключения устройства на 220 В

Независимо от того, как решено подключить магнитный пускатель, в проекте обязательно присутствуют две цепи — силовая и сигнальная. Через первую подают напряжение, посредством второй управляют работой оборудования.

Особенности силовой цепи

Питание для МП подключают через контакты, обычно обозначаемые символами А1 и А2. На них попадает напряжение 220 В, если сама катушка рассчитана на такое напряжение.

Удобнее «фазу» подключать к А2, хотя принципиальной разницы в подключении нет. Источник питания подключают к контактам, находящимся ниже на корпусе.

Тип напряжения не имеет значения, главное, чтобы номинал не выходил за пределы 220 В.

Через магнитный пускатель, оснащенный катушкой 220 В, возможна подача напряжения от дизель- и ветрогератора, аккумулятора, других источников. Съем его происходит с клемм Т1, Т2, Т3

Минусом этого варианта подключения является тот момент, что для ее включения или отключения нужно совершать манипуляции с вилкой. Схему можно усовершенствовать путем установки перед МП автомата. С его помощью включают и отключают питание.

Изменение цепи управления

Эти изменения не касаются силовой цепи, модернизируется в этом случае лишь цепь управления. Вся схема в целом претерпевает незначительные изменения.

Когда клавиши находятся в одном кожухе, узел называется «кнопочным постом». Любая из них обладает парой входов и парой выходов. У клавиши «Пуск» клеммы нормально разомкнутые (НЗ), у прямо противоположной — нормально замкнутые (NC)

Клавиши встраивают последовательно перед МП. Первая — «Пуск», за ней идет «Стоп». Контактами магнитного пускателя манипулируют посредством управляющего импульса.

Источником его является нажатая пусковая кнопка, открывающая путь для подачи напряжения к управляющей катушке. «Пуск» не обязательно удерживать во включенном состоянии.

Оно поддерживается по принципу самозахвата. Заключается он в том, что параллельно кнопке «Пуск» подключаются добавочные самоблокирующиеся контакты. Они и снабжают напряжением катушку.

После их замыкания, катушка самоподпитывается. Разрыв этой цепи приводит к отключению МП.

Отключающая клавиша «Стоп» обычно красная. Стартовая кнопка может иметь не только надпись «Пуск», но и «Вперед», «Назад». Чаще всего она зеленого цвета, хотя может быть и черного.

Подсоединение к 3-фазной сети

Возможно подключение 3-фазного питания через катушку МП, функционирующей от 220 В. Обычно схему применяют с асинхронным двигателем. Сигнальная цепь при этом не изменяется.

Одну фазу и «ноль» подключают к соответствующим контактам. Проводник фазный прокладывают через стартовую и выключающую клавиши. На контакты NO13, NO14 ставят перемычку между замкнутым и разомкнутым контактами

Силовая цепь имеет отличия, но не очень существенные. Три фазы подают на входы, обозначенные на плане, как L1, L2, L3. Трехфазную нагрузку подключают к T1, T2, T3.

Ввод в схему теплового реле

В промежутке между магнитным пускателем и асинхронным электродвигателем последовательно подсоединяют тепловое реле. Выбор его осуществляют в зависимости от типа мотора.

Тепловое реле обезопасит электрический двигатель от неисправностей и аварийных ситуаций, которые могут возникнуть при пропадании одной из фаз

Подключают реле к выводу с магнитным пускателем. Ток в нем проходит к мотору последовательно, попутно нагревая реле. Верх реле оснащен придаточными контактами, объединенными с катушкой.

Нагреватели реле рассчитывают на предельную величину тока, протекающего через них. Делают это для того, чтобы, когда двигатель окажется в опасности из-за перегрева, реле смогло бы отключить пускатель.

Блок: 6/8 | Кол-во символов: 3567
Источник: https://sovet-ingenera.com/elektrika/rele/sxema-podklyucheniya-magnitnogo-puskatelya.html

Подключение асинхронного двигателя на 380 В через пускатель с катушкой на 220 В

Эта схема отличается только тем, что в ней подключаются к контактам L1, L2, L3 три фазы и также три фазы идут на нагрузку. На катушку пускателя — контакты A1 или A2 — заводится одна из фаз (чаще всего фаза С как менее нагруженная), второй контакт подсоединяется к нулевому проводу. Также устанавливается перемычка для поддержания электропитания катушки после отпускания кнопки ПУСК.

Схема подключения трехфазного двигателя через пускатель на 220 В

Как видите, схема практически не изменилась. Только в ней добавилось тепловое реле, которое защитит двигатель от перегрева. Порядок сборки — в следующем видео. Отличается только сборка контактной группы — подключаются все тир фазы.

Блок: 8/16 | Кол-во символов: 756
Источник: https://master-kleit.ru/origami/pml-1220-02b-shema-podkljuchenija/

Выводы и полезное видео по теме

Подробности об устройстве и подключении контактора:

Практическая помощь в подключении МП:

По приведенным схемам можно подключить магнитный пускатель своими руками как к сети 220, так и 380 В.

Необходимо помнить, что сборка не отличается сложностью, но для реверсивной схемы важно наличие двухсторонней защиты, делающей невозможным встречное включение. При этом блокировка может быть как механической, так и посредством блокировочных контактов.

Если у вас появились вопросы по теме статьи, пожалуйста, оставляйте свои в расположенном ниже блоке. Там же вы можете сообщить интересную информацию или дать совет по подключению магнитных пускателей посетителям нашего сайта.

Блок: 8/8 | Кол-во символов: 697
Источник: https://sovet-ingenera.com/elektrika/rele/sxema-podklyucheniya-magnitnogo-puskatelya.html

Реверсивная схема подключения электродвигателя через пускатели

В некоторых случаях необходимо обеспечить вращение двигателя в обе стороны. Например, для работы лебедки, в некоторых других случаях. Изменение направления вращения происходят за счет переброса фаз — при подключении одного из пускателей две фазы надо поменять местами (например, фазы B и C). Схема состоит из двух одинаковых пускателей и кнопочного блока, который включает общую кнопку «Стоп» и две кнопки «Назад» и «Вперед».

Реверсивная схема подключения трехфазного двигателя через магнитные пускатели

Для повышения безопасности добавлено тепловое реле, через которое проходят две фазы, третья подается напрямую, так как защиты по двум более чем достаточно.

Пускатели могут быть с катушкой на 380 В или на 220 В (указано в характеристиках на крышке). В случае если это 220 В, на контакты катушки подается одна из фаз (любая), а на второй подается «ноль» со щитка. Если катушка на 380 В, на нее подаются две любые фазы.

Также обратите внимание, что провод от кнопки включения (вправо или влево) подается не сразу на катушку, а через постоянно замкнутые контакты другого пускателя. Рядом с катушкой пускателей изображены контакты KM1 и KM2. Таким образом реализуется электрическая блокировка, которая не дает одновременно подать питание на два контактора.

Магнитный пускатель с установленной на нем контактной приставкой

Так как нормально замкнутые контакты есть не во всех пускателях, можно их взять, установив дополнительный блок с контактами, который называют еще контактной приставкой. Эта приставка защелкивается в специальные держатели, ее контактные группы работают вместе с группами основного корпуса.

На следующем видео реализована схема подключения магнитного пускателя с реверсом на старом стенде с использованием старого оборудования, но общий порядок действий понятен.

Пускатель ПМЛ-1220 0*2Б с кнопками в корпусе

Пускатели применяют для подключения мощной нагрузки – электродвигателей, ТЭНов, мощных ламп, и др. Область применения – там, где реле уже не справляются, а полупроводниковые силовые элементы либо малы по току, либо дороги.

Блок: 9/16 | Кол-во символов: 2102
Источник: https://master-kleit.ru/origami/pml-1220-02b-shema-podkljuchenija/

Контакторы (пускатели) электромагнитные

Следует внести немного порядка в терминологию. Часто путают пускатели и контакторы. Для некоторых это одно и то же, а некоторые говорят, что контактор – это просто большой мощный пускатель. Но насколько мощный – никто толком объяснить не может…

Раньше, во времена СССР, так оно и было. Теперь пускатели, которые выпускались или разрабатывались в те времена, так и называют пускателями (например, ПМЛ, который выпускается до сих пор на Украине), а новые и зарубежные модели называют контакторами.

Одни и те же устройства электрики называют пускателями, а продавцы – контакторами. Честно говоря, и мне привычней говорить именно пускатели.

Блок: 10/16 | Кол-во символов: 673
Источник: https://master-kleit.ru/origami/pml-1220-02b-shema-podkljuchenija/

Чем отличается контактор от пускателя?

На самом деле контактор – это устройство, состоящее только из электромагнитной катушки и контактов. При подаче напряжения на катушку контакты замыкаются (или размыкаются). Контактор не содержит приспособлений для защиты, фиксации, коммутации, индикации, и др. Пускатель – это устройство, содержащее в себе контактор как главный составляющий элемент. Кроме того, пускатель как правило содержит тепловое реле для защиты от перегрузки по току, кнопки ПУСК и СТОП, индикацию, может быть заключен в корпус, иметь автоматический выключатель для защиты от КЗ. Иначе говоря, пускатель служит для пуска (включения) различных потребителей электроэнергии.

Подробно о том, как трехфазный электродвигатель подключается к пускателю, различные схемы включения электродвигателя приведены в моей статье про подключение асинхронных двигателей. А ещё пример применения пускателей – в статье про схему гидравлического пресса. Различные схемы включения магнитных пускателей подробно рассмотрены здесь.

А если Вам вообще интересно то, о чем я пишу, подписывайтесь на получение новых статей и вступайте в группу в ВК!

Пускатель может содержать два контактора. Это бывает в случаях, когда применяется реверсивное управление двигателем, либо при плавном пуске, когда мощный двигатель включают сначала по схеме “звезда”, а затем – по “треугольнику”.

Хотя, такую схему нельзя назвать “плавной”, для плавного пуска существуют специальные устройства. Читайте мои статьи про Мягкий пускатель и про Реальную схему включения устройства плавного пуска.

Разобранный пускатель ПМЛ-1220 0*2Б. Видно контактор и тепловое реле.

Блок: 11/16 | Кол-во символов: 1622
Источник: https://master-kleit.ru/origami/pml-1220-02b-shema-podkljuchenija/

Характеристики и виды пускателей по характеристикам

Перед тем, как выбрать контактор, нужно определиться с нагрузкой, и выбор делать исходя прежде всего мощности нагрузки. Параметры контакторов можно уточнить на сайтах производителей или у торгующих организаций, а здесь мы приведем и рассмотрим самые важные. Основные параметры (ток, мощность нагрузки) обычно указывают на корпусе пускателя.

Величина (условный габарит) пускателя (контактора)

Самый главный параметр, величина характеризует условно мощность и габариты пускателя. Существуют такие величины пускателей:

  • нулевая величина – на максимальный ток до 6 А (через каждый рабочий контакт)
  • первая – на максимальный ток до 9 – 18 А (в зависимости от исполнения контактов)
  • пускатель 2 величины – до 25 – 32 А
  • пускатель 3 величины – до 40 – 50 А
  • пускатель 4 величины – до 65 – 95 А
  • пускатель 5 величины – до 100 – 160 А
  • шестая величина – от 160 А и выше

Имеется ввиду ток по категории применения АС-3 (для индуктивной нагрузки), для категории АС-1 (резистивная или малоиндуктивная нагрузка – например, ТЭНы) максимальный ток для того же пускателя будет в полтора – два раза выше. От величины пускателя зависит, какую мощность он может коммутировать (трехфазная цепь 380 В, индуктивная нагрузка).

  • 1 – до 2,2 – 7,5 кВт
  • 2 – до 11 – 15 кВт
  • 3 – до 18 – 22 кВт
  • 4 – до 30 – 45 кВт

Сразу надо сказать, что эта мощность – действительно максимальная, реально надо смотреть на величину тока конкретного пускателя (как правило, вторая и третья цифра в названии). Величина пускателя указывается в названии первой цифрой. При превышении тока или токе, близком к максимальному, количество срабатываний (надежность) резко уменьшается, поэтому пускатель надо выбирать с запасом по мощности.

Количество контактов (полюсов)

В основном выпускаются контакторы с тремя рабочими контактами (для коммутации) и одним дополнительным. Дополнительный, или блокировочный контакт нужен для блокировки, или “самопитания”, чтобы зафиксировать контактор во включенном состоянии при использовании стандартной схемы включения. Дополнительные контакты бывают нормально разомкнутые (чаще всего используются) и нормально замкнутые.

Для увеличения количества дополнительных контактов используют контактные приставки, применение которых существенно расширяет круг схемотехнических решений. В СССР такие дополнительные приставки назывались ПКИ, сейчас в продаже есть и другие модели, но суть одна.

Дополнительные контактные приставки ПКИ, и др.

Максимальный ток дополнительных контактов, как правило, равен (в пускателях первой и второй величин) или меньше максимального тока основных контактов. Существуют также дополнительные контакты (приставки) выдержки времени ПВЛ, в которых контакты включаются или выключаются через время задержки. Подробнее – в статье про пневматические реле выдержки времени.

Блок: 13/16 | Кол-во символов: 2791
Источник: https://master-kleit.ru/origami/pml-1220-02b-shema-podkljuchenija/

А что там свежего в группе ВК СамЭлектрик.ру?

Подписывайся, и читай статью дальше:

Напряжение электромагнитной катушки контакторов

Электромагнитные катушки контакторов, как правило, выпускаются на следующие напряжения: 24, 36, 110, 230, 380 Вольт. В пускателях большой величины используются катушки бОльшей мощности. Катушки продаются и отдельно, и её можно легко заменить в контакторе, если нужна другая величина напряжения.

Как правило, при наличии нулевого проводника целесообразно применять катушки контактора на напряжение 220 В, а при его отсутствии (чисто трехфазные потребители) – катушки на 380 В.

Блок: 14/16 | Кол-во символов: 602
Источник: https://master-kleit.ru/origami/pml-1220-02b-shema-podkljuchenija/

Виды пускателей по назначению

Теперь приведу пару примеров пускателей – реальных схем.

Эта схема пускателя собрана на трех контакторах второй величины и служит для подключения электродвигателя по схеме “звезда-треугольник”. Вверху слева подается три фазы, внизу – три фазы уходит на питания двигателя. Красные провода – питание катушек контакторов и проверка работы. Защита (мотор-автомат) не показана.

реверсивный пускатель с мотор-автоматом

Здесь – пускатель реверсивный, на двух взаимно блокированных контакторах. Мотор-автомат защиты двигателя – справа.

Блок: 15/16 | Кол-во символов: 553
Источник: https://master-kleit.ru/origami/pml-1220-02b-shema-podkljuchenija/

Бонус

В заключение – несколько фотографий контакторов, верой и правдой отслуживших свой век.

Пускатель 2 величины. Совнархоз Латвийской ССР, 1964 г.

пускатель ПМЕ 211

Пускатель ПМЛ, справа – его прототип Telemecanique

Страшно смотреть, но именно такие пускатели применялись в СССР…

…и такие. Не правда ли, очень похоже на музейный экспонат?

Где можно купить сейчас контакторы? Конечно, в соседнем электро магазине. И главное. Не забудьте сообщить продавцу напряжение катушки!

Блок: 16/16 | Кол-во символов: 468
Источник: https://master-kleit.ru/origami/pml-1220-02b-shema-podkljuchenija/

Кол-во блоков: 21 | Общее кол-во символов: 25589
Количество использованных доноров: 3
Информация по каждому донору:
  1. https://master-kleit.ru/origami/pml-1220-02b-shema-podkljuchenija/: использовано 13 блоков из 16, кол-во символов 13153 (51%)
  2. https://sovet-ingenera.com/elektrika/rele/sxema-podklyucheniya-magnitnogo-puskatelya.html: использовано 4 блоков из 8, кол-во символов 12119 (47%)
  3. https://www.chipmaker.ru/topic/189102/: использовано 2 блоков из 4, кол-во символов 317 (1%)

Схема реверсивного пускателя с кнопками. Как подключить магнитный пускатель

Содержание статьи

Технические характеристики и маркировка

Несмотря на то, что принцип работы всех магнитных пускателей одинаков, отдельные виды этого устройства, имеют ряд технических различий. Для идентификации конструктивных особенностей и рабочих характеристик существует система условных обозначений данных изделий. Для примера можно взять конкретную маркировку ПМ.

ПМ12-025 2 4 1 УХЛ 2 Б

ПМ12 – серия изделия. Все изделия этой серии имеют одинаковую конструкцию корпуса и исполнительного устройства. Габариты корпуса могут отличаться в зависимости от величины токовой нагрузки. Чем мощнее пусковое устройство, тем больше его размеры.

ПМ12-025 _ _ _ УХЛ _ _ (первые три цифры), 025 – номинальная нагрузка на силовых контактах – до 25 Ампер. ПМ с такой токовой характеристикой классифицируется, как магнитный пускатель 2 величины. ПМ12 в зависимости от величины могут обеспечивать работу электрических двигателей, токовый диапазон которых находится в пределах от 10 до 250 Ампер.

ПМ12 ___ 2 _ _ УХЛ _ _ (четвертая цифра), 2 пускатель нереверсивный, снабжен тепловым реле для защиты электродвигателя от длительных токовых перегрузок при обрыве одной фазы, а также в случае заклинивания привода или приводного механизма. Назначение пускателей и наличие тепловой защиты определяется следующей системой маркировки:

ПМ12 ___ _ 5 _ УХЛ _ _ (пятая цифра), 5 степень защиты IР20, открытого исполнения, без оболочки. Исключает попадание внутрь устройства посторонних механических предметов и случайное соприкосновение человека с действующими и токоведущими частями. Магнитный пускатель, выполненный с данной степенью защиты не защищен от попадания в него воды или другой жидкости, поэтому, как правило, размещаются в закрывающихся электрических щитах на дин рейках. Основная масса электрических приборов, которые находят наиболее широкое применение, обладает степенью защиты IP20.

ПМ12 ___ _ _ 1 УХЛ _ _ (шестая цифра) исполнение по количеству блок-контактов, 1 – 2 нормально открытых (разомкнутых) и 2 нормально закрытых (замкнутых).

ПМ12 ___ _ _ _ УХЛ 2 _ (УХЛ) исполнение электроаппаратуры для умеренно-холодного климата, УХЛ 2 – предназначения для работы в помещениях без отопления или под навесом.

ПМ12 ___ _ _ _ УХЛ _ Б (Б) характеристика исполнения по износостойкости. А – 320 тыс. циклов, Б – 100 тыс. циклов, В – 30 тыс. циклов.

Для удобства среднестатистического потребителя производитель зачастую в маркировке, установленной требованиями стандартизации, дополнительно указывает номинальные токовые характеристики пускателя, вид тока, а также рабочее напряжение магнитной катушки. Ниже выделенным текстом указана нагрузочная характеристика – 25А, напряжение – 380В и переменный ток – АС.

ПМ12-025 2 4 1-25А-380АС-УХЛ2-Б

Переменный ток обозначается символом AC, постоянный – DC. Втягивающие катушки пускателей ПМ12, в большинстве случаев рассчитаны для работы на переменном токе с напряжением 24В, 220В или 380В.

Устройство и назначение прибора

Сравнив подключение МП и контактора, можно сделать заключение, что первое устройство отличается от второго тем, что его применяют для запуска электродвигателя. Можно даже сказать, что МП — тот же контактор, с помощью которого управляют электродвигателем.

Отличие это настолько условно, что в последнее время многие производители называют МП контакторами переменного тока, но с малыми габаритами. Да и постоянное усовершенствование контакторов сделало их универсальными, потому они стали многофункциональными.

Назначение магнитного пускателя

Встраивают МП и контакторы в силовые сети, транспортирующие ток с переменным или постоянным напряжением. Действие их базируется на электромагнитной индукции.

Устройство оснащено контактами сигнальными и теми, через которые питание подается. Первые названы вспомогательными, вторые — рабочими.


Стартовые кнопки, которыми оснащают схему, обеспечивают удобную эксплуатацию. Если нужно отключить нагрузку, достаточно задействовать клавишу «Стоп». При этом поступление напряжения на катушку пускателя закончится и цепь разорвется

МП дистанционно управляют электроустановками, в том числе и электродвигателями. Их роль, как защиты, нулевая — только исчезает напряжение или хотя бы падает до предела ниже 50%, силовые контакты размыкаются.

После остановки оборудования, в схему которого вмонтирован контактор, оно никогда не включится самостоятельно. Для этого придется нажать клавишу «Пуск».

Для безопасности это очень важный момент, поскольку полностью исключены аварии, спровоцированные самопроизвольным включением электроустановки.

Пускатели, в схему которых включены тепловые реле, охраняют электродвигатель или другую установку от длительных перегрузок. Эти реле могут быть двухполюсными (ТРН) либо однополюсными (ТРП). Срабатывание наступает под воздействием тока перегрузки двигателя, протекающего по ним.

Конструкция и функционирование прибора

Для корректной работы МП необходимо придерживаться определенных правил монтажа, иметь понятие об основах релейной техники, грамотно выбрать схему питания оборудования.

Поскольку устройства предназначены для функционирования на протяжении небольшого временного промежутка, наиболее популярными являются МП с обычно разомкнутыми контактами. Наибольшим спросом пользуются МП серий ПМЕ, ПАЕ.

Первые встраивают в сигнальные цепи для электродвигателей мощностью 0,27 – 10 кВт. Вторые — мощностью 4 – 75 кВт. Рассчитаны они на напряжение 220, 380 В.

Вариантов исполнения четыре:

  • открытый;
  • защищенный;
  • пылеводозащищенный;
  • пылебрызгонепроницаемый.

Пускатели ПМЕ включают в свою конструкцию двухфазное реле ТРН. В пускателе серии ПАЕ количество встраиваемых реле зависит от величины.


Буквы обозначают тип устройства, следующие за ними цифры — от 1 до 6 —величину. Вторая цифра — исполнение. Единица указывает на нереверсивный МП без тепловой защиты, двойка — то же, но с тепловой защитой, три — реверсивный, не имеющий тепловой защиты, четыре — с тепловой защитой, реверсивный

При напряжении около 95% от номинального катушка пускателя способна обеспечить надежную работу.

Состоит МП из следующих основных узлов:

  • сердечника;
  • электромагнитной катушки;
  • якоря;
  • каркаса;
  • механических датчиков работы;
  • групп контакторов — центральной и дополнительной.

Также в конструкцию могут включать в качестве дополнительных элементов, защитное реле, электропредохранители, добавочный комплект клемм, пусковое устройство.


МП включает в свою конструкцию основание (1), контакты неподвижные (2), пружину (3), сердечник (4), дроссель (5), якорь (6), пружину (7), контактный мостик (8), пружину (9), дугогасительную камеру (10), нагревательный элемент (11)

По сути, это реле, но отключающее гораздо больший ток. Поскольку электромагниты у этого устройства довольно мощные, оно отличается большой скоростью срабатывания.

Электромагнит в виде катушки с большим числом витков рассчитан на напряжение 24 – 660 В. Которая размещена на сердечнике, большая мощность нужна для преодоления усилия пружины.

Последняя предназначена для быстрого рассоединения контактов, от скорости которого зависит величина электрической дуги. Чем быстрее произойдет размыкание, тем меньше дуга и в тем лучшем состоянии будут сами контакты.

Нормальное состояние, когда контакты разомкнуты. Пружина при этом удерживает в приподнятом состоянии верхний участок магнитопровода.

Когда на магнитный пускатель поступает питание, через катушку проходит ток и формирует электромагнитное поле. Оно привлекает мобильную часть магнитопровода посредством сжатия пружины. Контакты замыкаются, на нагрузку поступает питание, в результате, она включается в работу.

В случае отключения питания МП электромагнитное поле исчезает. Выпрямляясь, пружина делает толчок, и верхняя часть магнитопровода оказывается вверху. Как следствие, расходятся контакты, и пропадает питание на нагрузку.

Некоторые модели пускателей оснащены ограничителями перенапряжений, которые применяют в полупроводниковых управляющих системах.


Можно вручную проконтролировать работу системы путем нажатия на якорь с целью почувствовать силу сокращения пружины. Как раз усилие сокращения справляется с магнитным полем. При полном опускании якоря, контакты, отбрасываемые пружиной, отключаются

Питание катушки управления после подключения магнитного пускателя реализуется от переменного тока, но для этого устройства род тока не имеет значения.

Пускатели, как правило, оснащены двумя видами контактов: силовыми и блокировочными. Посредством первых подключается нагрузка, а вторые предохраняют от неправильных действий при подключении.

Силовых МП может быть 3 или 4 пары, все зависит от конструкции устройства. В каждой из пар есть как мобильные, так и неподвижные контакты, соединенные с клеммами, находящимися на корпусе, посредством металлических пластин.

Первые отличаются тем, что на нагрузку постоянно поступает питание. Вывод из рабочего состояния происходит только после срабатывания пускателя.

На контакторы с контактами нормально разомкнутыми подается питание исключительно во время работы пускателя.


Различают два вида контактов блокировки: нормально закрытые, нормально разомкнутые. Первого вида контакт имеет кнопка «Стоп», а нормально открытый — «Пуск»

Нормально замкнутые отличаются тем, что на нагрузку постоянно поступает питание, а отсоединение наступает исключительно после срабатывания пускателя. На контакторы с контактами нормально разомкнутыми подается питание исключительно во время работы пускателя.

Отличие магнитного пускателя от контактора

Часто при подборе коммутационного устройства возникает путаница между магнитными пускателями (МП) и контакторами. Эти устройства, несмотря на свою схожесть во многих характеристиках, все же разные понятия. Магнитный пускатель объединяет в себе ряд приборов, они соединены в одном управляющем узле.

В МП может быть включено несколько контакторов, плюс защитные устройства, специальные приставки, управляющие элементы. Все это заключено в корпус, имеющий какую-то степень влаго- и пылезащиты. С помощью этих устройств в основном управляют работой асинхронных двигателей.


Предельное напряжение, с которым работает магнитный пускатель, зависит от электромагнитной катушки индуктивности. Бывают МП небольших номиналов — 12, 24, 110 В, но наиболее часто применяют на 220 и 380 В

Контактор — моноблочный прибор с набором функций, предусмотренных конкретной конструкцией. Тогда как пускатели применяют в схемах достаточно сложных, контакторы в основном присутствуют в простых схемах.

Особенности монтажа пускателя

Неправильный монтаж магнитного пускателя, может иметь последствия в виде ложных срабатываний. Чтобы избежать этого, нельзя выбирать участки, подверженные вибрации, ударам, толчкам.

Конструкционно МП устроен так, что его можно монтировать в электрощите, но с соблюдением правил. Устройство будет работать надежно, если местом его установки будет поверхность прямая, плоская и расположенная вертикально.

Тепловые реле не должны подвергаться подогреву от посторонних источников тепла, что отрицательно скажется на функционировании устройства. По этой причине их нельзя размещать в местах, подверженных нагреву.

Устанавливать магнитный пускатель в помещении, где смонтированы устройства с током от 150 А, категорически нельзя. Включение и выключение таких устройств провоцирует быстрый удар.


Провода из меди до подключения нужно залудить. Если они многожильные, их концы перед лужением скручивают. У алюминиевых проводов концы зачищают надфилем, затем покрывают пастой или техническим вазелином

Чтобы не допустить перекоса пружинных шайб, находящихся в контактном зажиме пускателя, конец проводника загибают П-образно или в кольцо. Когда нужно подключить 2 проводника к зажиму, нужно чтобы их концы были прямыми и находились по две стороны зажимного винта.

Включению в работу пускателя должен предшествовать осмотр, проверка исправности всех элементов. Подвижные детали должны перемещаться от руки. Электрические соединения нужно сверить со схемой.

Нереверсивный магнитный пускатель

Если изменять направление вращения двигателя не требуется, то в цепи управления используются две не фиксируемые подпружиненные кнопки: одна в нормальном положении разомкнутая – «Пуск», другая замкнутая – «Стоп». Как правило, они изготавливаются в едином диэлектрическом корпусе, при этом одна из них красного цвета. Такие кнопки обычно имеют две пары групп контактов – одну нормально разомкнутую, другую замкнутую. Их тип определяется во время монтажных работ визуально или с помощью измерительного прибора.

Провод цепи управления подключается к первой клемме замкнутых контактов кнопки «Стоп». Ко второй клемме этой кнопки подключают два провода: один идет на любой ближайший из разомкнутых контактов кнопки «Пуск», второй – подключается к управляющему контакту на магнитном пускателе, который при отключенной катушке разомкнут. Этот разомкнутый контакт соединяется коротким проводом с управляемой клеммой катушки.

Второй провод с кнопки «Пуск» подключается непосредственно на клемму втягивающей катушки. Таким образом, к управляемой клемме «втягивающей» должно быть подключено два провода – «прямой» и «блокирующий».

Одновременно замыкается управляющий контакт и, благодаря замкнутой кнопке «Стоп», управляющее воздействие на втягивающую катушку фиксируется. При отпускании кнопки «Пуск» магнитный пускатель остается замкнутым. Размыкание контактов кнопки «Стоп» вызывает отключение электромагнитной катушки от фазы или нейтрали и электродвигатель отключается.

Реверсивный магнитный пускатель

Для реверсирования двигателя необходимо два магнитных пускателя и три управляющие кнопки. Магнитные пускатели устанавливаются рядом друг с другом. Для большей наглядности условно отметим их питающие клеммы цифрами 1–3–5, а те, к которым подключен двигатель как 2–4–6.

Для реверсивной схемы управления пускатели соединяются так: клеммы 1, 3 и 5 с соответствующими номерами соседнего пускателя. А «выходные» контакты перекрестно: 2 с 6, 4 с 4, 6 с 2. Провод, питающий электродвигатель, подключается к трем клеммам 2, 4, 6 любого пускателя.

При перекрестной схеме подключения одновременное срабатывание обоих пускателей приведет к короткому замыканию. Поэтому проводник «блокирующей» цепи каждого пускателя должен проходить сначала через замкнутый управляющий контакт соседнего, а потом – через разомкнутый своего. Тогда включение второго пускателя будет вызывать отключение первого и наоборот.

Ко второй клемме замкнутой кнопки «Стоп» подключаются не два, а три провода: два «блокирующих» и один питающий кнопки «Пуск», включаемых параллельно друг другу. При такой схеме подключения кнопка «Стоп» выключает любой из скоммутированных пускателей и останавливает электродвигатель.

Схема комбинации звезды и треугольника

Схемы «звезда» и «треугольник» являются наиболее распространенными при подключении двигателя к электрической линии. В первом случае он будет работать плавно, но не сможет развить полную мощность. Соединение треугольником, в свою очередь, не дает столь ровных оборотов, но позволяет развить полную мощность, вплоть до полуторакратной паспортной.

В двигателях большой мощности часто используют интересный ход: первоначальный плавный ввод организовывается по звезде, а после выхода на необходимые обороты, автоматически переходят на треугольник. Это позволяет в том числе значительно снизить потребляемые пусковые токи.

Реверсивная схема подключения магнитного пускателя

Для того, чтобы запускать электродвигатель в прямом и обратном направлении применяется реверсивная схема управления на магнитном пускателе.

В этой статье подробно рассмотрена пошаговая работа схемы. Схему, в которой двигатель работает только в одном направлении, без реверса, смотрите в статье нереверсивная схема подключения магнитного пускателя .

В заключении этой статьи смотрите видео, демонстрирующее детальную работу схемы реверсного пуска двигателя.

Вначале рассмотрим реверсивную схему подключения с катушкой магнитного пускателя на 220В, а затем работу схемы.

Фазы А,В и С питающего напряжения подводятся к клеммам асинхронного двигателя через:

— 3-х полюсный автоматический выключатель, который защищает всю схему и позволяет отключать питающее напряжение;

— поочередно через три пары силовых контактов магнитных пускателей КМ1 и КМ2;

— тепловое реле Р, которое служит для защиты от перегрузок.

Для того, чтобы изменить направление вращения трехфазного электродвигателя, необходимо поменять местами подключение любых двух фаз!

Для этого в цепь обмотки двигателя включены силовые контакты от двух пускателей, которые подключаются поочередно, меняя чередование фаз. В нашей схеме при вращении вперед последовательность фаз такая — А, В, С. При вращении назад — С, В, А. Т.е. чередование фаз А и С меняется местами.

Катушки магнитных пускателей с одной стороны  подключены к нулевому рабочему проводнику N через нормально-замкнутый контакт теплового реле Р, с другой, через кнопочный пост к фазе С.

Кнопочный пост состоит из 3-х кнопок:

1) нормально-разомкнутой кнопки ВПЕРЕД;

2) нормально-разомкнутой кнопки НАЗАД;

3) нормально-замкнутой кнопки СТОП.

К кнопке ВПЕРЕД параллельно подключен нормально-разомкнутый вспомогательный контакт пускателя КМ1, и соответственно, к кнопке НАЗАД — нормально-разомкнутый вспомогательный контакт пускателя КМ2.

Также в цепь питания обмотки пускателя КМ1 включен нормально-замкнутый контакт пускателя КМ2, а в цепь обмотки пускателя КМ2, включен нормально-замкнутый контакт пускателя КМ1. Это сделано для блокировки, чтобы предотвратить запуск двигателя назад, когда он вращается вперед, и наоборот. Т.е. запустить двигатель в любую из сторон можно только из положения останова.

Работа схемы

Переводим рычаг трехполюсного  автоматического выключателя во включенное положение, его контакты замыкаются, схема готова к работе.

Запуск вперед

Нажимаем кнопку ВПЕРЕД.  Цепь питания обмотки магнитного пускателя  КМ1 замыкается, якорь катушки втягивается, замыкает силовые контакты КМ1 и вспомогательный нормально-открытый контакт КМ1, который шунтирует кнопку ВПЕРЕД.

Одновременно вспомогательный нормально-замкнутый контакт КМ1 размыкает цепь управления магнитным пускателем КМ2, блокируя тем самым возможность запуска реверса двигателя.

Три питающих фазы в последовательности А,В,С подаются на обмотки двигателя и он начинает вращаться вперед.

Отпускаем кнопку ВПЕРЕД, она возвращается в исходное нормально-разомкнутое состояние. Теперь  питание на обмотку пускателя КМ1 подается через замкнутый вспомогательный контакт КМ1. Двигатель запущен и вращается вперед.

Останов двигателя из положения ВПЕРЕД

Для остановки двигателя или для запуска в другую сторону, необходимо сначала нажать кнопку СТОП. Питание цепи управления размыкается. Якорь магнитного пускателя КМ1 под действием пружины возвращается в исходное состояние. Силовые контакты размыкаются, отключая питающее напряжение от электродвигателя. Двигатель останавливается.

Одновременно с этим размыкается вспомогательный контакт КМ1 в цепи питания обмотки пускателя КМ1 и замыкается вспомогательный контакт КМ1 в цепи питания пускателя КМ2.

Отпускаем кнопку СТОП. Она возвращается в исходное, нормально-замкнутое положение. Но  поскольку вспомогательный контакт КМ1 разомкнут, питание на обмотку пускателя КМ1 не подается, двигатель остается выключенным и схема готова к следующему запуску.

Реверс двигателя

Чтобы запустить двигатель в обратном направлении, нажимаем кнопку НАЗАД.

Питание подается на обмотку пускателя КМ2. Он срабатывает, замыкая силовые контакты КМ2 в цепи питания двигателя, и вспомогательный контакт КМ2, который шунтирует кнопку НАЗАД. Одновременно с этим, другой вспомогательный контакт КМ2 разрывает цепь питания пускателя КМ1.

На обмотки двигателя подаются три фазы в порядке С,В,А, он начинает вращаться в другую сторону.

Отпускаем кнопку НАЗАД. Она возвращается в исходное положение, но питание на обмотку пускателя КМ2 продолжает поступать через замкнутый вспомогательный контакт КМ2. Двигатель продолжает вращаться в обратном направлении.

Останов двигателя из положения НАЗАД

Для останова повторно нажимаем кнопкуСТОП. Цепь питания обмотки пускателя КМ2 размыкается. Якорь возвращается в исходное положение, размыкая силовые контакты КМ2. Двигатель останавливается. Одновременно с этим, вспомогательные контакты КМ2 возвращаются в исходное состояние.

Отпускаем кнопку СТОП, схема готова к следующему пуску.

Защита от перегрузок

Работу теплового реле Р и назначение предохранителя FU я подробно рассмотрел в статье Нереверсивная схема пускателя , поэтому в этой статье описание опускаю. Для пускателей с обмотками, рассчитанными на 380В,  схема подключения будет следующая.

Обмотки пускателей подключается к любым двум фазам, на схеме к фазам В и С.

Для большей наглядности я записал видео, в котором поэтапно показан весь процесс работы схемы.

Различие пускателей на 220В и 380В

Катушки магнитных пускателей для работы в сетях 380В могут быть на 220 и 380 Вольт без особых переделок схемы. Во всех схемах, приведённых в этой статье, электромагнитные пускатели имеют катушку на напряжение 220 В. Что же делать, если в руки попал пускатель не на 220В, а на 380В?

Всё очень просто – надо нижний (по схеме) вывод катушки пускателя на 380В подключить не к нулю (N), а к L2 или L3. Эта схема даже более предпочтительна, так как вся схема с пускателем на 380В может быть собрана вообще без нуля. Три фазы приходят, и три фазы уходят на двигатель, не считая управления.

Подключение асинхронного двигателя на 380 В через пускатель с катушкой на 220 В

Эта схема отличается только тем, что в ней подключаются к контактам L1, L2, L3 три фазы и также три фазы идут на нагрузку. На катушку пускателя — контакты A1 или A2 — заводится одна из фаз. На рисунке это фаза B, но чаще всего это фаза С как менее нагруженная. Второй контакт подсоединяется к нулевому проводу. Также устанавливается перемычка для поддержания электропитания катушки после отпускания кнопки ПУСК.

Схема подключения трехфазного двигателя через пускатель на 220 В

Как видите, схема практически не изменилась. Только в ней добавилось тепловое реле, которое защитит двигатель от перегрева. Порядок сборки — в следующем видео. Отличается только сборка контактной группы — подключаются все три фазы.

Варианты нагрузок

К выходу магнитного пускателя можно подключить что душе угодно, не только двигателя, как в статье. Привожу примеры статей, в которых через пускатели включаются ТЭНы:

Советы и хитрости установки

  • Перед сборкой схемы надо освободить рабочий участок от тока и проконтролировать, чтобы напряжение отсутствовало тестером.
  • Установить обозначение напряжения сердечника, которое упоминается на нем, а не на пускателе. Оно может быть 220 или 380 вольт. Если оно 220 В, на катушку идет фаза и ноль. Напряжение с обозначением 380 – значит разные фазы. Это является важным аспектом, ведь при неверном подсоединении сердечник может сгореть или не будет запускать полностью нужные контакторы.
  • Кнопка на пускатель (красная)Нужно взять одну красную кнопку «Стоп» с замкнутыми контактами и одну черную либо зеленую кнопку с надписью «Пуск» с неизменно разомкнутыми контактами.
  • Учтите, что силовые контакторы заставляют работать или останавливают только фазы, а нули, которые приходят и отходят, проводники с заземлением всегда объединяются на клеммнике в обход пускателя. Для подсоединения сердечника в 220 Вольт на дополнение с клеммника берется 0 в конструкцию организации пускателя.

А ещё вам понадобится полезный прибор — пробник электрика, который легко можно сделать самому.

Источники

  • https://electricvdele.ru/elektrooborudovanie/elektrodvigateli/magnitnyj-puskatel-220v-380v.html
  • https://sovet-ingenera.com/elektrika/rele/sxema-podklyucheniya-magnitnogo-puskatelya.html
  • https://el-shema.ru/publ/skhemy_podkljuchenija/skhema_podkljuchenija_magnitnogo_puskatelja/13-1-0-429
  • https://elektrik-sam.info/reversivnaya-shema-podklyucheniya-magnitnogo-puskatelya/
  • https://SamElectric.ru/promyshlennoe-2/shemy-podklyucheniya-magnitnogo-puskatelya-2.html
  • https://stroychik.ru/elektrika/podklyuchenie-magnitnogo-puskatelya

[свернуть]

HowElektrik

Схема подключения реверса электродвигателя с помощью пускателей

Хотя реверсное включение трехфазных двигателей асинхронного типа применяется довольно часто, тем не менее, вопрос о том, как его реализовать, обыватели до сих пор задают.

Как выяснилось, подавляющее большинство электрических движков асинхронного типа как в быту, так и на производстве, подключаются через магнитные пускатели.

Это связано с тем, что подобная схема включения обладает достаточно неплохой надежностью, кроме того, в их питающие цепи очень легко встраиваются устройства защиты от перегрузки, обрыва фазного провода и перекоса фаз.

Проще говоря, реверсом называется вращение вала двигателя в противоположную сторону.

В этой статье я рассмотрю схему подключения двигателя на реверс при помощи пары магнитных пускателей и пульта на три кнопки.

Вариант схемы, приведенный в этой статье можно считать самым простым. Более сложные схемы реверсного включения могут содержать в себе несколько вариантов блокировки.

Блокировки эти могут быть как электрические, так и механические. Первые выполняются на кнопках, включающих пускатели, а вторая — на движущихся деталях пускателей.

Реализация реверса происходит с помощью смены фазировки напряжения питания движка.

К примеру, если обозначить клеммы питания двигателя, как 1, 2 и 3 (фазные же провода сети принято обозначать А, В и С), то при подключении А -> 1, B -> 2 и C -> 3 вал двигателя станет вращаться в одну сторону, а если подключить A — > 1, B -> 3 и C -> 2 – то в противоположную.

Выполнятся такая схема, как правило, при помощи пары магнитных пускателей таким образом, что фазировка включения их силовых контактов выполнена так, что их последовательность различается между собой.

То есть, например, когда срабатывает первый пускатель, то двигатель подключается к фазам в последовательности А, В и С, а при срабатывании второго – А, С и В.

Рассмотрим саму схему (рисунок 1). Схема эта выполнена на паре магнитных пускателей КМ1 и КМ2. Когда происходит срабатывание первого (предположим, что это будет КМ1), происходит замыкание его силовых контактов, в результате чего, обмотки двигателя оказываются запитанными в последовательности L1, L2, L3. Когда же срабатывает второй пускатель, то двигатель окажется запитанным через его контакты, но уже в фазировке L3, L2, L1.

Сами магнитные пускатели в этом варианте включены по абсолютно стандартной схеме, с той лишь разницей, что в разрыв цепи питания катушки каждого из пускателей подключен нормально закрытый блок-контакт второго пускателя (КМ2.4, КМ1.4). Сделано это для того, чтобы при нажатии на обе пусковые кнопки не произошло срабатывания обоих пускателей.

Рисунок 1

Кроме того, схема выполнена таким образом, что параллельно с каждой из пусковых кнопок (КП) подключен нормально открытый блок-контакт ее пускателя. Это делается для того, чтобы при нажатии на пусковую кнопку, контактор пускателя вставал на самоблокировку и кнопку можно было отпускать.

Стоповая же кнопка (КС) включена в разрыв цепи перед обеими пусковыми.

Кроме того, в схеме имеется еще один контакт, подключенный в разрыв питающей цепи. Это контакт связан с устройством тепловой защиты пускателя (РТ).

Работает такая защита вот каким образом: при чрезмерных нагрузках или (не дай Бог) перекосе фаз, происходит нагрев биметаллических пластин системы тепловой защиты, в результате чего последние размыкают связанный с ними контакт.

Возврат этого контакта в исходное состояние выполняется с помощью специальной красной кнопки на корпусе устройства тепловой защиты.

Переключение реверса без нажатия на кнопку «стоп» невозможно по той причине, что этого не позволят включенные в цепь блок-контакты противоположных пускателей. Сделано это по той причине, что такое переключение может оказаться опасным для двигателя, не говоря уже о том, что в момент перефазировки может запросто произойти перемыкание фаз.

Для двигателей небольшой мощности возможно выполнение реверса без нажатия на стоповую кнопку. Для этого требуется выполнить регулировку так, чтобы силовая группа контактов одного пускателя размыкалась раньше, чем сработают на замыкание вспомогательные нормально закрытые контакты второго.

Подобная система включения совершенно не является редкостью, а используется весьма широко как в бытовых, так и в производственных целях. Я сам встречаю такое подключение сплошь и рядом для реверсирования двигателей вентиляторов, насосов, различных станков, транспортеров и т.д. в силу специфики моей работы.

В бытовых же целях реверсное включение применяется для подключения двигателей сверлильных машин, электрических мельниц и мясорубок.

Я очень надеюсь, что материал моей статьи помог вам разобраться в принципах реверсного включения электрических движков при помощи пары магнитных пускателей и теперь вопросов на эту тему будет значительно меньше.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

стандартных схем управления двигателем — журнал IAEI

Время считывания: 6 минут.

Однофазные и трехфазные асинхронные двигатели переменного тока с короткозамкнутым ротором нуждаются в некотором типе цепи для запуска функции запуска или остановки. Обычно однофазные двигатели и трехфазные двигатели меньшей мощности могут запускаться при полном напряжении на линии. Однако трехфазные двигатели большей мощности требуют методов пуска с пониженным напряжением.

Силовые цепи и цепи управления

Обычно в управлении двигателем используются два типа цепей — цепь питания с линейным напряжением и цепь управления .Силовая цепь при полном напряжении при пуске через линию состоит из устройства защиты от сверхтока (OCPD), будь то предохранители или автоматический выключатель; линейные проводники, заканчивающиеся на выводах L1, L2 и L3; магнитный пускатель двигателя или твердотельное устройство; и проводники нагрузки, которые заканчиваются на клеммах T1, T2 и T3.

Цепь управления состоит из компонентов лестничной диаграммы, таких как кнопки пуска и останова, катушки реле, контрольные лампы и любые другие разнообразные устройства замыкания контактов, такие как концевые выключатели, реле давления, контроллеры температуры, датчики приближения или поплавковые выключатели.Схема управления может быть классифицирована как двухпроводная или трехпроводная в зависимости от области применения. Также важно отметить, что мощность силовой цепи рассчитывается в соответствии с номинальным напряжением нагрузки двигателя: 115 В, 200 В, 230 В, 460 В или 575 В. Схема управления может работать при том же напряжении, что и силовая цепь, но также может работать и при более низких напряжениях, используя трансформатор станка для понижения напряжения до более безопасных уровней.

Схема типичной цепи пуска через линию при полном напряжении показана на рисунке 1.На этой схеме показаны силовая цепь и цепь управления . Обратите внимание, что схема управления представляет собой схему управления с трехпроводной лестничной схемой, которая хорошо работает с трехфазными двигателями меньшей мощности. Электроэнергетика будет иметь правила, определяющие, насколько большой двигатель может быть запущен через линию. Если мощность двигателя превышает это значение, необходимо использовать методы пуска при пониженном напряжении. Двигатели — индуктивные нагрузки; следовательно, они имеют очень высокие пусковые токи в диапазоне 2.В 5-10 раз превышает рабочий ток двигателя при полной нагрузке. Этот чрезмерный пусковой ток, также называемый током заторможенного ротора, вызывает колебания напряжения в линиях. Вы, вероятно, наблюдали эффект броска тока всякий раз, когда свет в здании опускается при подключении оборудования HVAC. Когда этот чрезмерный пусковой ток потребляется от источника напряжения в течение нескольких секунд, он вызывает падение напряжения. Это падение напряжения означает, что для оборудования доступно более низкое напряжение; и осветительные приборы, в частности, будут мерцать.

Рисунок 1. Трехпроводное управление полным напряжением

Пускатели пониженные

Существует шесть основных типов пускателей пониженного напряжения: первичный резистор, реактор, автотрансформатор, неполная обмотка, звезда-треугольник и твердотельный. Твердотельные пускатели пониженного напряжения очень распространены, поскольку они хорошо взаимодействуют с частотно-регулируемыми приводами (VFD) и программируемыми логическими контроллерами (PLC).

Пускатели с первичным резистором используют резисторы, включенные последовательно с выводами двигателя во время функции пуска.Поскольку теперь это последовательная цепь, приложенное напряжение падает между последовательным резистором и обмоткой двигателя, вызывая более низкий пусковой ток. Реле времени управляет реле управления, контакты которого замыкают последовательные резисторы после запуска.

Пускатели реакторов работают аналогично, за исключением того, что вместо резисторов используются реакторы. Пускатели реакторов встречаются гораздо реже, чем раньше.

Пускатели автотрансформатора используют автотрансформаторы с ответвлениями, причем ответвления обычно устанавливаются на 50%, 65% от 80% доступного сетевого напряжения.Опираясь на концепцию «коэффициента трансформации» в трансформаторе, этот тип пускателя допускает меньшие токи на стороне сети, с точки зрения электросети, и большие токи на стороне нагрузки, с точки зрения двигателя во время запуска. Автотрансформатор отличается от двухобмоточного трансформатора тем, что не обеспечивает гальванической развязки между первичной и вторичной обмотками. Повышающий автотрансформатор часто называют «повышающим» автотрансформатором, а понижающий автотрансформатор — «компенсирующим» автотрансформатором.

Помните «коэффициент трансформации» трансформатора? Когда вы смотрите на напряжение, вы полагаетесь на следующую формулу:

В первичный / В вторичный = N первичный / N вторичный

Для тока вы полагаетесь на эту формулу:

I первичный / I вторичный = N вторичный / N первичный

Для иллюстрации рассмотрим простой пример. Трансформатор на 1 кВА имеет первичную обмотку 240 В и вторичную обмотку 120 В.Первичный ток составляет 4,17 А при 240 В, а вторичный ток — 8,33 А при 120 В. Трансформатор имеет соотношение 2: 1. Напряжение понижается в два раза, а ток увеличивается в два раза. Этот принцип позволяет работать пускателю автотрансформаторного типа.

Пускатель с частичной обмоткой разработан для работы с электродвигателем с частичной обмоткой, который имеет два набора идентичных обмоток. Вы можете использовать двигатели с двойным напряжением 230/460 В, но вы должны соблюдать особую осторожность.Идея заключается в том, что двигатель 230/460 В работает от 230 В с параллельными обмотками. Следовательно, половина обмоток двигателя находится в цепи во время пуска; затем, через несколько секунд, в цепь подключается другая половина обмоток двигателя. Серьезные проблемы могут возникнуть, если схема синхронизации не подключает другую половину обмоток двигателя сразу после запуска.

Пускатель звезда-треугольник работает, позволяя двигателю запускаться по схеме звезды и затем работать по схеме треугольник.Использование этой конфигурации позволяет снизить пусковой ток во время запуска при сохранении пускового момента примерно на 33%. Разомкнутый переход — важное соображение, о котором следует помнить при пуске по схеме звезда-треугольник, потому что между конфигурацией звезды для запуска и конфигурацией треугольником для работы будет период времени, когда обмотки двигателя будут отключены. Пускатели с закрытым переходом преодолевают этот недостаток, но имеют гораздо более высокую стоимость.

Твердотельные пускатели часто называют пускателями с плавным пуском, потому что они используют кремниевые выпрямители (SCR) для выполнения этой задачи.Газонаполненные вакуумные лампы, называемые тиратронами, были ранней версией семейства твердотельных тиристоров, которое включает в себя триаки, диаки и UJT (однопереходные транзисторы). SCR состоит из трех элементов: анода, катода и затвора. Подавая сигнал на элемент затвора точно в нужное время, вы можете контролировать, какой ток SCR будет пропускать или блокировать в течение цикла; это известно как фазовый контроль. Способность этого устройства обеспечивать частичную или полную проводимость в течение цикла дает проектировщику большую гибкость.Эта возможность позволяет точно контролировать ток нагрузки двигателя во время запуска.

Релейные схемы управления

Обычно используются два типа лестничных цепей управления: двухпроводная схема управления и трехпроводная схема управления. Двухпроводная схема управления использует устройства с поддерживаемым контактом для управления пускателем магнитного двигателя. В трехпроводной схеме управления используются устройства с мгновенным контактом, управляющие магнитным пускателем двигателя.

Двухпроводная схема управления показана на рисунке 2.Он состоит из нормально разомкнутого устройства с поддерживаемыми контактами, которое при замыкании приводит в действие катушку магнитного пускателя двигателя, которая, в свою очередь, питает подключенную нагрузку двигателя. Двухпроводная схема управления обеспечивает так называемый «расцепитель низкого напряжения». В случае сбоя питания магнитный пускатель двигателя отключится. После восстановления питания магнитный пускатель двигателя автоматически возобновит подачу питания при условии, что ни одно из поддерживаемых контактных устройств не изменило свое состояние. Это может быть очень полезно в таких приложениях, как охлаждение или кондиционирование воздуха, где вам не нужно, чтобы кто-то перезапускал оборудование после сбоя питания.Однако это может быть чрезвычайно опасно в приложениях, где оборудование запускается автоматически, подвергая опасности оператора.

Рисунок 2. Двухпроводное управление полным напряжением

Трехпроводная схема управления показана на рисунке 1. Она состоит из нормально замкнутой кнопки останова (СТОП), нормально разомкнутой кнопки пуска (ПУСК), уплотнительного контакта (М) и катушки пускателя магнитного двигателя. При нажатии нормально разомкнутой кнопки пуска катушка магнитного пускателя двигателя (M) находится под напряжением.Вспомогательный контакт (M) уплотняется вокруг кнопки пуска, обеспечивая фиксацию цепи. Нажатие нормально замкнутой кнопки останова приводит к нарушению цепи. Трехпроводная схема управления обеспечивает так называемую «защиту от низкого напряжения». В случае сбоя питания магнитный пускатель двигателя отключится. Однако в этом случае, как только питание будет восстановлено, магнитный пускатель двигателя не включится автоматически. Оператор должен нажать кнопку пуска, чтобы снова запустить последовательность операций.

По сравнению с двухпроводной схемой управления трехпроводная схема управления обеспечивает гораздо большую безопасность для оператора, поскольку оборудование не запускается автоматически после восстановления подачи электроэнергии. На рисунке 3 показана схема управления с несколькими кнопками пуска и останова. В этой схеме несколько нормально замкнутых кнопок останова расположены последовательно, а несколько нормально разомкнутых кнопок пуска размещены параллельно для управления пускателем магнитного двигателя. Это обычное применение трехпроводной схемы управления, в которой вам необходимо запускать и останавливать один и тот же двигатель из нескольких мест на предприятии.Трехпроводная схема управления может использоваться различными способами для соответствия конкретному применению схемы.

Рисунок 3. Схема управления несколькими остановками / пусками

Управление двигателями переменного тока

— очень интересный и специализированный сегмент нашей отрасли. Электромеханические магнитные пускатели двигателей были стандартом на протяжении многих лет. Твердотельные устройства позволили лучше контролировать параметры схемы, обеспечивая при этом полную интеграцию с частотно-регулируемыми приводами и программируемыми логическими контроллерами.

% PDF-1.6 % 1619 0 объект > эндобдж xref 1619 375 0000000016 00000 н. 0000011294 00000 п. 0000011549 00000 п. 0000011578 00000 п. 0000011627 00000 п. 0000011763 00000 п. 0000011800 00000 п. 0000011891 00000 п. 0000012768 00000 п. 0000012877 00000 п. 0000012986 00000 п. 0000013096 00000 п. 0000013206 00000 п. 0000013315 00000 п. 0000013424 00000 п. 0000013534 00000 п. 0000013644 00000 п. 0000013754 00000 п. 0000013864 00000 п. 0000013973 00000 п. 0000014082 00000 п. 0000014192 00000 п. 0000014302 00000 п. 0000014412 00000 п. 0000014521 00000 п. 0000014630 00000 п. 0000014740 00000 п. 0000014850 00000 п. 0000014960 00000 п. 0000015069 00000 п. 0000015178 00000 п. 0000015288 00000 п. 0000015397 00000 п. 0000015506 00000 п. 0000015616 00000 п. 0000015726 00000 п. 0000015836 00000 п. 0000015945 00000 п. 0000016055 00000 п. 0000016165 00000 п. 0000016275 00000 п. 0000016385 00000 п. 0000016494 00000 п. 0000016603 00000 п. 0000016713 00000 п. 0000016823 00000 п. 0000016932 00000 п. 0000017042 00000 п. 0000017152 00000 п. 0000017261 00000 п. 0000017370 00000 п. 0000017480 00000 п. 0000017590 00000 п. 0000017700 00000 п. 0000017809 00000 п. 0000017918 00000 п. 0000018026 00000 п. 0000018135 00000 п. 0000018244 00000 п. 0000018352 00000 п. 0000018461 00000 п. 0000018570 00000 п. 0000018679 00000 п. 0000018788 00000 п. 0000018897 00000 п. 0000019005 00000 п. 0000019114 00000 п. 0000019223 00000 п. 0000019331 00000 п. 0000019440 00000 п. 0000019549 00000 п. 0000019657 00000 п. 0000019766 00000 п. 0000019852 00000 п. 0000019938 00000 п. 0000020023 00000 п. 0000020108 00000 п. 0000020193 00000 п. 0000020278 00000 н. 0000020363 00000 п. 0000020448 00000 п. 0000020533 00000 п. 0000020618 00000 п. 0000020703 00000 п. 0000020788 00000 п. 0000020873 00000 п. 0000020958 00000 п. 0000021043 00000 п. 0000021128 00000 п. 0000021213 00000 п. 0000021298 00000 п. 0000021383 00000 п. 0000021468 00000 п. 0000021553 00000 п. 0000021638 00000 п. 0000021723 00000 п. 0000021808 00000 п. 0000021893 00000 п. 0000021978 00000 п. 0000022063 00000 н. 0000022148 00000 п. 0000022233 00000 п. 0000022318 00000 п. 0000022403 00000 п. 0000022488 00000 п. 0000022573 00000 п. 0000022658 00000 п. 0000022743 00000 п. 0000022828 00000 п. 0000022913 00000 п. 0000022998 00000 н. 0000023083 00000 п. 0000023168 00000 п. 0000023253 00000 п. 0000023338 00000 п. 0000023423 00000 п. 0000023508 00000 п. 0000023593 00000 п. 0000023678 00000 п. 0000023763 00000 п. 0000023848 00000 п. 0000023933 00000 п. 0000024018 00000 п. 0000024103 00000 п. 0000024188 00000 п. 0000024273 00000 п. 0000024358 00000 п. 0000024443 00000 п. 0000024528 00000 п. 0000024613 00000 п. 0000024698 00000 п. 0000024783 00000 п. 0000024868 00000 п. 0000024953 00000 п. 0000025038 00000 п. 0000025123 00000 п. 0000025208 00000 п. 0000025293 00000 п. 0000025378 00000 п. 0000025463 00000 п. 0000025548 00000 п. 0000025633 00000 п. 0000025718 00000 п. 0000025803 00000 п. 0000025888 00000 п. 0000025973 00000 п. 0000026058 00000 п. 0000026143 00000 п. 0000026228 00000 п. 0000026313 00000 п. 0000026398 00000 п. 0000026483 00000 п. 0000026568 00000 н. 0000026653 00000 п. 0000026738 00000 п. 0000026823 00000 п. 0000026908 00000 п. 0000026993 00000 п. 0000027078 00000 п. 0000027163 00000 п. 0000027248 00000 п. 0000027333 00000 п. 0000027418 00000 п. 0000027503 00000 п. 0000027588 00000 п. 0000027673 00000 п. 0000027758 00000 п. 0000027843 00000 н. 0000027928 00000 н. 0000028013 00000 п. 0000028098 00000 п. 0000028182 00000 п. 0000028266 00000 п. 0000028350 00000 п. 0000028434 00000 п. 0000028518 00000 п. 0000028602 00000 п. 0000028686 00000 п. 0000028770 00000 п. 0000028854 00000 п. 0000028938 00000 п. 0000029022 00000 н. 0000029106 00000 п. 0000029190 00000 п. 0000029274 00000 п. 0000029358 00000 п. 0000029442 00000 н. 0000029526 00000 п. 0000029610 00000 п. 0000029694 00000 п. 0000029778 00000 п. 0000029862 00000 н. 0000029946 00000 н. 0000030030 00000 п. 0000030114 00000 п. 0000030198 00000 п. 0000030282 00000 п. 0000030366 00000 п. 0000030450 00000 п. 0000030534 00000 п. 0000030618 00000 п. 0000030702 00000 п. 0000030786 00000 п. 0000030870 00000 п. 0000030954 00000 п. 0000031038 00000 п. 0000031122 00000 п. 0000031206 00000 п. 0000031290 00000 н. 0000031373 00000 п. 0000032547 00000 п. 0000033725 00000 п. 0000033792 00000 п. 0000033996 00000 п. 0000034205 00000 п. 0000035930 00000 п. 0000036010 00000 п. 0000036536 00000 п. 0000036583 00000 п. 0000037003 00000 п. 0000243872 00000 н. 0000244114 00000 н. 0000245292 00000 н. 0000245330 00000 н. 0000245367 00000 н. 0000258030 00000 н. 0000268507 00000 н. 0000268568 00000 н. 0000268684 00000 н. 0000268815 00000 н. 0000268986 00000 н. 0000269195 00000 н. 0000269358 00000 н. 0000269455 00000 н. 0000269573 00000 н. 0000269720 00000 н. 0000269819 00000 н. 0000269970 00000 н. 0000270113 00000 п. 0000270258 00000 н. 0000270422 00000 н. 0000270589 00000 н. 0000270753 00000 п. 0000270918 00000 н. 0000271109 00000 н. 0000271341 00000 н. 0000271492 00000 н. 0000271661 00000 н. 0000271814 00000 н. 0000272001 00000 н. 0000272186 00000 н. 0000272292 00000 н. 0000272461 00000 н. 0000272614 00000 н. 0000272772 00000 н. 0000272921 00000 н. 0000273034 00000 н. 0000273130 00000 н. 0000273234 00000 н. 0000273382 00000 н. 0000273509 00000 н. 0000273636 00000 н. 0000273811 00000 н. 0000273961 00000 н. 0000274109 00000 н. 0000274261 00000 н. 0000274431 00000 н. 0000274546 00000 н. 0000274705 00000 н. 0000274880 00000 н. 0000274990 00000 н. 0000275181 00000 п. 0000275266 00000 н. 0000275352 00000 н. 0000275522 00000 н. 0000275672 00000 н. 0000275796 00000 н. 0000275904 00000 н. 0000276016 00000 н. 0000276118 00000 н. 0000276263 00000 н. 0000276346 00000 н. 0000276437 00000 н. 0000276585 00000 н. 0000276691 00000 н. 0000276870 00000 н. 0000276947 00000 н. 0000277089 00000 н. 0000277202 00000 н. 0000277353 00000 н. 0000277459 00000 н. 0000277603 00000 н. 0000277732 00000 н. 0000277912 00000 н. 0000278019 00000 н. 0000278120 00000 н. 0000278229 00000 н. 0000278382 00000 н. 0000278489 00000 н. 0000278590 00000 н. 0000278686 00000 н. 0000278781 00000 н. 0000278948 00000 н. 0000279029 00000 н. 0000279207 00000 н. 0000279288 00000 н. 0000279460 00000 н. 0000279542 00000 н. 0000279668 00000 н. 0000279748 00000 н. 0000279818 00000 н. 0000279888 00000 н. 0000279969 00000 н. 0000280103 00000 п. 0000280206 00000 н. 0000280307 00000 н. 0000280416 00000 н. 0000280531 00000 н. 0000280634 00000 н. 0000280729 00000 н. 0000280928 00000 н. 0000281031 00000 н. 0000281126 00000 н. 0000281328 00000 н. 0000281431 00000 н. 0000281526 00000 н. 0000281661 00000 н. 0000281742 00000 н. 0000281859 00000 н. 0000282032 00000 н. 0000282221 00000 н. 0000282325 00000 н. 0000282420 00000 н. 0000282517 00000 н. 0000282624 00000 н. 0000282719 00000 н. 0000282817 00000 н. 0000282898 00000 н. 0000283141 00000 п. 0000283222 00000 н. 0000283303 00000 н. 0000283415 00000 н. 0000283499 00000 н. 0000283580 00000 н. 0000283672 00000 н. 0000283767 00000 н. 0000283848 00000 н. 0000283956 00000 н. 0000284104 00000 н. 0000284235 00000 н. 0000284371 00000 п. 0000284529 00000 н. 0000284610 00000 н. 0000284782 00000 н. 0000284876 00000 н. 0000284971 00000 н. 0000285139 00000 н. 0000285234 00000 н. 0000285318 00000 п. 0000285465 00000 н. 0000285633 00000 п. 0000285731 00000 н. 0000285829 00000 н. 0000285936 00000 н. 0000286041 00000 н. 0000286177 00000 н. 0000286355 00000 п. 0000286493 00000 н. 0000286639 00000 н. 0000286769 00000 н. 0000286896 00000 н. 0000287003 00000 н. 0000287129 00000 н. 0000287295 00000 н. 0000007796 00000 н. трейлер ] >> startxref 0 %% EOF 1993 0 объект > поток xYkT> 3y0 I! yE! h! E- * -A + R> * 4Z҂ «» «» h-z 랙 $ 3ksZp 朳} f

Двух- и трехпроводная схема управления двигателем | Схема цепи управления двигателем

Базовые схемы управления представляют собой комбинацию электрических логических образований проводов.Эти комбинации предназначены для того, чтобы машина могла выполнять определенные задачи. Некоторые из самых сложных схем в промышленности происходят от некоторых из самых простых схем управления, которые электрики должны выучить и уметь рисовать и подключать в любой момент.

Базовые схемы управления включают двухпроводные, трехпроводные схемы управления, ручное / автоматическое, последовательное управление, стоп / пуск, прямое обратное движение и цепи толчкового режима.

Двухпроводное управление

Двухпроводное управление , как показано в конфигурации 1, состоит из устройства управления, содержащего один набор контактов, используемых для облегчения включения / выключения пилотного устройства.

Двухпроводные регуляторы обычно рассчитаны на передачу небольшого тока. Этот тип системы управления не может в достаточной степени обрабатывать большие токи или управлять нагрузками, которые требуют более одного набора контактов, который требуется для однофазной цепи 240 В, 208 В или 480/277.

Двухпроводное управление может быть подключено не только для включения света, но и может быть подключено к управляющим двигателям.

Конфигурация 1 иллюстрирует переключатель, подключенный к катушке пускателя двигателя, которая включает двигатель или резистивную нагрузку, не показанную на схемах управления.Когда переключатель замкнут, напряжение передается на устройство релейного типа, запитывающее соленоид двигателя, втягивающий якорь, что приводит к тому, что главные контакты пилотного устройства обеспечивают полное линейное напряжение на управляемую нагрузку.

Подобно тому, как переключатель может использоваться в двухпроводной системе управления для ручного управления нагрузкой, устройство управления, которое используется для определения изменения давления или физического местоположения, может быть автоматической двухпроводной системой управления.

В этой системе, когда контакт устройства управления меняет состояние из-за внешнего события без вмешательства человека, этот тип схемы управления называется схемой автоматического управления .

Системы автоматического управления — это нагрузка в цепи, которая активируется событием в контролируемой среде без необходимости вмешательства человека. Эти системы управляются такими устройствами, как реле уровня жидкости, реле давления, поплавковое реле, реле расхода или любое другое устройство, которое автоматически регистрирует изменения в системе. Системы автоматического управления лежат в основе производства . По мере создания продукта появляется множество устройств управления, которые возвращаются в систему управления для обеспечения точности движения и времени.

Ручное и автоматическое управление

В основном называемая ручным выключением-автоматом, двухпроводная система управления сконструирована для облегчения ручного управления нагрузкой путем поддержания питания катушки с помощью тумблера, как показано на схеме ниже, или для автоматического управления с помощью элемента управления. устройство, похожее на датчик уровня жидкости.

Когда тумблер не активирован или не включен, устройство автоматического управления, такое как поплавок или концевой выключатель, подключается параллельно, так что какой-либо тип события может привести к тому, что устройство управления включит или выключит нагрузку без присутствия оператора.

Конфигурация 2. Двухпроводная схема

Двухпроводная схема в Конфигурации 2 работает следующим образом:

  • Если однополюсный переключатель замкнут, стартер двигателя запустится и останется включенным, пока замкнут однополюсный переключатель.
  • Если однополюсный переключатель, обозначенный S1, оставить разомкнутым, то реле уровня жидкости в цепи теперь будет устройством управления, которое включает или выключает пускатель двигателя.
  • В этой цепи нагрузка всегда будет включена, если только питание не будет потеряно для всей цепи управления, потому что либо однополюсный переключатель может быть фактором активации, либо в любой момент реле уровня жидкости может подать питание на катушку пускателя двигателя в цепь управления.

Трехпроводное управление

Самая простая трехпроводная схема управления — это цепь пуска / останова . Основная операция цепи останова / пуска заключается в обеспечении средств дистанционного управления нагрузкой с приводом от двигателя с панели, которая содержит только схему управления низкого напряжения.

Трехпроводная схема управления использует мгновенный контакт, станции пуска / останова и нормально разомкнутый контакт в контакте, подключенный параллельно кнопке пуска для поддержания напряжения на катушке.

Настройка трехпроводной схемы управления датчиком отличается от двухпроводной схемы, поскольку для работы нагрузки требуется меньше компонентов. Различные части трехпроводного устройства могут отличаться от переключателя от одного производителя к другому, но основная схема остается той же.

Работа цепи управления остановом / пуском

Конфигурация 3. Цепь останова / пуска

Цепь останова / пуска в Конфигурации 3 работает следующим образом:

  • Нажата кнопка пуска, подающая питание на катушку.
  • Когда на катушку подано напряжение, якорь пилотного устройства замыкается вместе с контактом памяти / герметизации.
  • Герметичный контакт поддерживает питание катушки, игнорируя необходимость продолжения нажатия кнопки пуска.
  • Нагрузка, подключенная к пускателю двигателя (M), получает полное напряжение от сети и будет продолжать работать до тех пор, пока не будет нажата кнопка останова или пока двигатель не перегрузится.
  • Нажатие кнопки останова прерывает управляющее напряжение через контакт памяти / герметизации, вызывая обесточивание катушки, что приводит к размыканию сетевого напряжения на нагрузки, отключая ее.

Несколько станций пуска / останова, управляющих двигателем

Иногда необходимо управлять нагрузкой из более чем одного места. На схеме ниже показана схема управления, необходимая для выполнения операции.

Сначала кнопки останова подключаются последовательно, чтобы сформировать логику ИЛИ-ИЛИ. Затем кнопки пуска подключаются параллельно, образуя логическую схему ИЛИ. Эта схема управления представляет собой разновидность трехпроводной схемы управления.

Конфигурация 4.Цепь многократного останова / пуска

Эта схема многократного останова / запуска в конфигурации 4 работает следующим образом:

  • Для подачи питания на катушку можно нажать любую кнопку пуска.
  • При подаче питания на катушку замыкается якорь пускателя двигателя и, вместе с этим, замыкающийся контакт, который обслуживает для поддержания питания катушки, отменяя необходимость нажатия пусковых кнопок.
  • Полное линейное напряжение подается на нагрузку, подключенную к пускателю двигателя.
  • Пускатель двигателя будет продолжать работать до тех пор, пока не будет нажата одна из кнопок пуска или пока не произойдет перегрузка.
  • Когда нажимаются кнопки останова, питание на контакт памяти / опломбирования теряется, в результате чего якорь катушки размыкает главные контакты.
Разъяснение по пускателям со звездой-треугольником

— Инженерное мышление

Стартеры звезда-треугольник. В этом руководстве мы собираемся обсудить, как пускатели со звезды на треугольник работают с трехфазными асинхронными двигателями.Затем мы рассмотрим, почему и где они используются, и, наконец, расскажем о том, как они работают, чтобы помочь вам понять.

Прокрутите вниз, чтобы просмотреть обучающее видео на YouTube о том, как работают стартеры Star-Delta.

ПРЕДУПРЕЖДЕНИЕ:

Помните, что электричество опасно и может быть смертельным, вы должны быть квалифицированными и компетентными для выполнения любых электромонтажных работ.

Ниже приведены два примера схем подключения пускателей со звезды на треугольник от промышленных поставщиков. К концу этого урока вы поймете, как это работает.

Всегда уточняйте у производителя, как и можно ли подключить двигатель к пускателю со звездой-треугольником.

Схема подключения звезда-треугольник от Siemens

Я собираюсь использовать старую цветовую кодировку красный желтый синий для фаз просто потому, что я думаю, что это легче увидеть. Однако мы кратко рассмотрим другие цветовые коды позже в статье.

Трехфазные двигатели используются почти во всех коммерческих и промышленных зданиях. Внутри трехфазного асинхронного двигателя есть 3 отдельные катушки, которые используются для создания вращающегося магнитного поля.Когда мы пропускаем переменный ток через каждую катушку, каждая катушка будет создавать магнитное поле, интенсивность и полярность которого изменяется по мере изменения направления электронов.

через GIPHY

Если мы подключим каждую катушку к другой фазе, электроны на каждой фазе будет менять направление между вперед и назад на разных раз по сравнению с другими фазами, поэтому магнитное поле изменится в интенсивность и полярность в другое время по сравнению с другими фазами.

Затем мы поворачиваем катушки на 120 градусов относительно предыдущей, затем объединяем их в статор двигателя, чтобы создать вращающееся магнитное поле.Это вращающееся магнитное поле заставляет вращаться ротор, который мы используем для привода вентиляторов, насосов и т. Д.

На верхней, а иногда и на боковой стороне двигателя есть электрическая клеммная коробка. Внутри этого электрического ящика есть 6 клемм. Каждому соответствует буква и номер U1, V1, W1 и W2, U2 V2.

Наша катушка фазы 1 подключена к двум клеммам U, катушка фазы 2 подключена к двум клеммам V, а катушка фазы 3 подключена к двум клеммам W. Клеммы катушки расположены по-другому сверху вниз.Через мгновение мы поймем, почему мы это делаем.

Мы всегда подключаем сторону питания к клеммам U1, V1 и W1.

Чтобы двигатель заработал, нам нужно замкнуть цепь. Там есть два способа сделать это.

Дельта-конфигурация

Первое — соединение по схеме «треугольник». Для этого подключаем через клеммы от U1 до W2, от V1 до U2 и от W1 до V2. Это даст нам наша дельта-конфигурация.

Когда мы пропускаем ток через фазы, электричество перетекает из одной фазы в другую, поскольку направление мощности переменного тока в каждой фазе меняется.Вот почему у нас есть клеммы в разных положениях, потому что мы можем подключаться и позволять электричеству течь между фазами, поскольку электроны меняют направление в разное время.

Узнайте, как работает электричество здесь и узнайте, как работает трехфазное электричество здесь

Звездная конфигурация

Другой способ подключения клемм — использование звездообразной конфигурации. В этом методе мы подключаемся между W2, U2 и V2 только на одной стороне клемм двигателя.Это дает нам наш звездный эквивалент дизайна.

Когда мы пропускаем ток через катушки, электроны распределяются между фазами на выводах.

Два только что рассмотренных способа настройки двигателя по схеме звезды или треугольника являются фиксированными. Чтобы изменить их, мы должны физически отключить питание, открыть клеммы двигателя и переставить их. Это непрактично.

Как это автоматизировать?

Чтобы автоматизировать это, нам нужно использовать некоторые контакторы. Они бывают разных конструкций, но основная операция — это переключатель, который может активироваться, чтобы включить или отключить цепь, чтобы управлять потоком электричества во всех трех фазах одновременно.

Мы берем наш главный контактор и подключаем трехфазное питание к одной стороне, а затем подключаем другую сторону к соответствующим клеммам в распределительной коробке асинхронных двигателей.

Затем мы берем второй контактор, который будет использоваться для схемы треугольника, и подаем на него наши три фазы. Отсюда мы подключаем нашу фазу 1 к клемме V2, которая является катушкой фазы 2. Затем мы подключаем нашу фазу 2 к клемме W2, которая является катушкой фазы 3. Наконец, мы подключаем наш провод фазы 3 к клемме U2, которая является катушкой фазы 1.

Теперь возьмем еще один контактор, который будет использоваться для нашей схемы звезды, и подключим к нему наши три фазы. Сверху просто соединяем все три фазы вместе.

Запуск двигателя

Мы запускаем соединение звездой и делаем это, активируя клеммы главного контактора и контактора звезды так, чтобы они замыкались для замыкания цепи.

via GIPHY

Теперь, когда мы пропускаем электричество через цепь, электричество проходит через каждую фазу и катушку, а затем выходит через клеммы двигателя и попадает в звездообразный контактор, где пути электронов разделяются.Это позволяет электронам переходить в другую фазу или выходить из нее при изменении их направления.

Это будет продолжаться несколько секунд перед переключением на дельту. Для соединения треугольником мы отключаем контактор звезды, а затем замыкаем соединение треугольником.

via GIPHY

Теперь у нас есть электричество, текущее и разделяющееся. Он протекает как в основной колодец, так и в контактор треугольника. Электроэнергия в цепи главного контактора будет течь в катушки двигателей, а электричество, прошедшее по схеме контактора треугольником, будет течь к противоположной стороне клемм двигателя и в другую фазу.Каждый будет течь между различными фазами, поскольку они меняют направление.

Элементы управления

Для управления переключением контакторов со звезды на треугольник мы просто используйте таймер, чтобы контролировать это. Он автоматически изменит конфигурация закончится через установленный промежуток времени. Дополнительно более продвинутый версия будет контролировать ток или скорость двигателя.

США

Если вы находитесь в США, вы можете найти эти цвета, это для трехфазного источника питания 208 В, но цвета будут другими, если с использованием трехфазного источника питания 480 В.

Европа

В Великобритании и ЕС эти цвета используются для фаз. Хотя в Великобритании вы, скорее всего, все еще встретите старые установки, в которых используются красно-желто-синие цвета.

Австралия

Почему мы используем звездную дельту?

Мы используем звезду-треугольник, которую в Северной Америке также называют звездой-треугольником, для уменьшения пускового тока при запуске двигателя. Когда большие асинхронные двигатели запускаются по схеме треугольника, их пусковой ток может быть более чем в 5 раз выше, чем ток полной нагрузки, который возникает, когда двигатель стабилизируется и работает нормально.

Этот огромный скачок тока может вызвать множество проблем. В Этот внезапно большой спрос ударит по электрической системе зданий. В электрическая инфраструктура будет быстро нагреваться, что приведет к отказ компонентов и даже электрические пожары. Внезапный спрос также вызывает падение напряжения во всей электрической системе здания, что мы можем визуально видеть, потому что свет будет падать, это может вызвать много проблем для таких вещей, как как компьютеры, так и серверы.

Итак, чтобы уменьшить пусковой ток, нам просто нужно уменьшить пусковое напряжение.

Конфигурация звезды снижает напряжение катушки примерно до 58% по сравнению с конфигурацией треугольника. Более низкое напряжение приведет к более низкому току. Ток в катушке при конфигурации звезды будет составлять около 33% от конфигурации треугольника. Это также приведет к снижению крутящего момента, крутящий момент в звездообразной конфигурации также будет около 33% по сравнению с треугольником.

Базовый пример того, что происходит внутри

Допустим, у нас есть двигатель, подключенный по схеме треугольника с типичным Европейское напряжение питания 400В.

Это означает, что когда мы используем мультиметр для измерения напряжения между любыми двумя фазами, мы получим показание 400 В. Мы называем это нашим линейным напряжением.

Кстати, если у вас нет мультиметра, я настоятельно рекомендую вам купить его в своем наборе инструментов, он необходим для поиска неисправностей в электрической сети и поможет вам лучше понять электричество. Лично я использую этот счетчик , здесь .

Если мы измеряем на двух концах катушки, мы снова измеряем межфазное напряжение 400 В.Допустим, каждая катушка имеет сопротивление или импеданс, поскольку это мощность переменного тока, равная 20 Ом. Это означает, что мы получим ток на катушке 20 ампер. Мы можем рассчитать это из 400 В / 20 Ом = 20 А. Но ток в линии будет другим, он будет 34,6 А, и мы получим это из 20 А x sqr3 = 34,6 А

Если мы затем посмотрим на соединение звездой. У нас снова есть межфазное напряжение 400 В, если мы измеряем между любыми двумя фазами. Но при соединении звездой все наши катушки встречаются в точке звезды или нейтрали.С этой точки мы можем провести нейтральную линию. Поэтому, когда мы измеряем напряжение на концах катушки, мы получаем меньшее значение 230 В, потому что катушка не подключена напрямую между двумя фазами, как в дельта-версии. Один конец подключен к фазе, другой конец подключен к общей точке, поэтому напряжение, таким образом, распределяется и будет меньше, потому что одна из фаз всегда обратная.

Мы можем увидеть показание 230 В, разделив 400 В на sqr3 = 230 В. Поскольку напряжение меньше, ток тоже будет.Если сопротивление катушки снова составляет 20 Ом, то ток рассчитывается по 230 В / 20 Ом, что составляет 11,5 А. Сила тока в линии тоже будет 11,5А.

Таким образом, при соединении треугольником катушка подвергается полной нагрузке. 400В между двумя фазами. Но соединение звездой подвергается только 230 В. между фазой и нейтралью. Итак, мы видим, что звезда потребляет меньше напряжения. и, следовательно, менее актуален по сравнению с дельта-версией, поэтому мы используем это первое.


В каких линиях или схемах подключения следует разместить реле перегрузки для пускателей трехфазных двигателей?

Какое количество тока, протекающего через человека мужского пола, вызовет мышечные сокращения, которые будут удерживать его…

EBK ЭЛЕКТРОПРОВОДКА ЖИЛОЙ

Какие действия вы бы порекомендовали, чтобы свести к минимуму возможные проблемы при запуске этой виртуальной группы?

Принципы информационных систем (Список курсов MindTap)

Отчет о нераспределенной прибыли Ниже перечислены события, которые влияют на акционерный капитал. Сообщенная чистая прибыль составляет 85 долларов …

Краеугольные камни финансовой отчетности

Обсуждая диагностику клапана рециркуляции ОГ: Техник А говорит, что если клапан рециркуляции ОГ не открывается, двигатель может заканчивать…

Автомобильные технологии: системный подход (список курсов MindTap)

Укажите, являются ли следующие утверждения верными или неверными. а. Эоловые почвы переносятся и откладываются ветром. б. Marbl …

Основы геотехнической инженерии (Список курсов MindTap)

Клапанный ключ сантехника используется для замены клапанов в сантехнической арматуре. Упрощенная модель гаечного ключа (см. …

Механика материалов (список курсов MindTap)

Сообщество из 25 000 человек хочет инициировать общедоступную сборку мусора.Если сбор будет хоть раз …

Твердые отходы

Опишите модульную конструкцию и объясните два основных метода прототипирования.

Системный анализ и проектирование (серия Shelly Cashman) (Список курсов MindTap)

Для чего используется OLE-DB и чем он отличается от ODBC?

Системы баз данных: проектирование, внедрение и управление

Группа проекта готова принять окончательное решение, выбирая между ROLAP и MOLAP. Что должно быть за основу…

Системы баз данных: проектирование, внедрение и управление

Какие варианты будет у Айрис, если она найдет стратегическую цель ИТ, которая, по ее мнению, снизит безопасность …

Управление информационной безопасностью

Полосы AB и Переменный ток соединены штырем на А и горизонтальным кабелем. Вертикальный кабель, несущий массу 200 кг …

International Edition — Engineering Mechanics: Statics, 4th Edition

Lockheed Martin, IBM и Accenture относятся к тем частным подрядчикам, которые помогают в разработке и внедрении…

Основы информационных систем

Удалите индекс с именем ITEM_INDEX3.

Руководство по SQL

Вы инструктор по компьютерной безопасности для 200 сотрудников и подрядчиков вашей компании. Каковы ключевые темы …

Основы информационных систем

Что такое планирование на случай непредвиденных обстоятельств? Чем это отличается от рутинного управленческого планирования? Каковы компоненты …

Принципы информационной безопасности (Список курсов MindTap)

Что используется для регулировки давления зажима зажимного устройства?

Технология прецизионной обработки (список курсов MindTap)

100 кг пара помещается в поршневой цилиндр, первоначально при 300 ° C и 5 бар.Он расширяется и охлаждается до 2 …

Основы термодинамики химической инженерии (Список курсов MindTap)

Для задач с 16.20 по 16.23 используйте показанные плоскости сечения, чтобы нарисовать разрезы. 16.20

Основы инженерного дела: Введение в инженерное дело (список курсов MindTap)

Повторите задачу 2.8, используя следующие данные. 2.8 Ниже приведены результаты анализа сита и ареометра …

Принципы геотехнической инженерии (список курсов MindTap)

Натяжной элемент, показанный на рисунке P3.4-л — 1 2 10 пластина из стали А36. Соединение осуществляется с диаметром 7 8 дюймов …

Steel Design (Активируйте обучение с помощью этих НОВЫХ игр от Engineering!)

Каковы основные различия между полноприводной системой, работающей полный и неполный рабочий день?

Automotive Technology

Как и в случае с процессорами, производители указывают тактовую частоту шины в герцах. (300)

Enhanced Discovering Computers 2017 (серия Shelly Cashman) (список курсов MindTap)

Что из следующего считается безопасным протоколом? а.FTP b. SSH c. Telnet d. HTTP

Сеть + Руководство по сетям (Список курсов MindTap)

Для фермы задачи 8.49 определите максимальную сжимающую осевую силу в элементе GH из-за серии …

Структурный анализ

Сила тока может быть описана как _____________ .

Сварка: принципы и применение (Список курсов MindTap)

Вы работаете в городском управлении автомобильных дорог. Ваша задача — проехать по его дорогам, чтобы определить их состояние…

Принципы информационных систем (Список курсов MindTap)

Если ваша материнская плата поддерживает память ECC DDR3, можете ли вы заменить память DDR3 без ECC?

A + Guide to Hardware (Автономная книга) (Список курсов MindTap)

Основы работы с пускателем двигателя: пускатели, контакторы и устройства защиты от перегрузок

  • Перегрузки предназначены для защиты от длительной перегрузки по току
  • Части состоят из: токоизмерительного устройства, механизма разрыва цепи
  • Часто имеют временную задержку, чтобы двигатели не отключились преждевременно

Выписка:

[0m: 4s] Привет, я Джош Блум, добро пожаловать в еще один видеоролик из образовательной серии RSP Supply.Сегодня мы поговорим о пускателях двигателей и основах управления двигателями. Основная цель пускателя двигателя — позволить нам безопасно запускать и останавливать двигатель. Это также позволяет запускать и останавливать двигатель из удаленного места. Таким образом, пускатель двигателя — это коммутационное устройство с электрическим приводом. В основном они состоят из нескольких компонентов. Первый — контактор, второй — перегрузка, и они обычно используются с какой-либо защитой цепи. Таким образом, контакторы на самом деле обеспечивают ток для нашего двигателя.Их работа — устанавливать и отключать питание в электрической цепи.

[0m: 46s] Защита от перегрузки защищает двигатель от потребления слишком большого тока в течение длительного периода времени, что может привести к перегреву и возгоранию двигателя.
[0m: 55s] Итак, давайте сначала поговорим о контакторе.
[0m: 57s] Контактор работает так же, как реле, в том смысле, что когда на катушку подается электричество, он закрывает контакт, позволяя току проходить через него, обеспечивая питание нашего двигателя.Для получения дополнительной информации о том, как работают реле и контакторы, посмотрите другое видео, на которое мы укажем ссылку в описании ниже. Магнитный контактор работает электромеханически без необходимости вмешательства. Это позволяет нам управлять контактором дистанционно, поэтому нам не нужно ставить операторов в опасные ситуации, которые могут возникнуть рядом с пускателем двигателя.
[1 м: 28 с] Таким образом, для правильной работы контактор использует небольшой управляющий ток для размыкания и замыкания контактора.Большинство контакторов обычно также имеют вспомогательные контакты. Эти контакты позволяют нам контролировать состояние контактора независимо от того, включен ли двигатель или нет. У некоторых подрядчиков есть несколько вспомогательных контактов для контроля других типов систем в контакторе. Далее поговорим о защите от перегрузки. Перегрузка предназначена для защиты двигателя от длительного перегрузки по току. Это означает, что если двигатель слишком долго работает при слишком высоком токе, он может перегреться и вывести двигатель из строя.Как перегрузка обеспечивает эту защиту, так это то, что в ней есть датчик тока, встроенный в саму перегрузку.
[2m: 11s] У нас есть электронный или тепловой датчик тока, в зависимости от типа перегрузки, которую мы используем. Так, например, при электронной перегрузке у нас есть возможность установить с помощью шкалы при перегрузке количество тока, которое мы хотим позволить нашему двигателю в течение определенного периода времени.

[2m: 29s] Таким образом, при тепловой перегрузке у нас есть возможность вставить термоэлемент в соответствии с нашим конкретным применением и потребностями.Таким образом, как только перегрузка обнаруживает, что двигатель потребляет слишком большой ток в течение длительного периода времени, он имеет возможность отключить ток, который проходит через пускатель. Таким образом, для удовлетворения потребностей в защите, перегрузки имеют временную задержку, позволяющую возникать небольшим перегрузкам без разрыва цепи. Это позволяет нам управлять двигателем без частого включения и выключения из-за небольших перегрузок.

[2m: 59s] И, наконец, устройства защиты двигателя, обычно используемые в пускателях двигателей.По сути, это автоматические выключатели, специально предназначенные для использования с пускателями двигателей. Они работают, предотвращая большие выбросы тока, которые могут быть вызваны коротким замыканием.
[3 м: 15 с] В устройствах защиты цепи двигателя используется форма магнитной защиты, специально разработанная для таких типов скачков напряжения. Для получения дополнительной информации о магнитной защите, пожалуйста, посмотрите наш видеоролик об автоматическом выключателе, в котором говорится об этом. Мы сделаем ссылку в описании ниже. Другой тип защиты, который используется вместо предохранителей цепи двигателя, — это некоторый тип разъединителя с предохранителем.Однако важно, чтобы мы использовали предохранители, предназначенные для этого типа применения.
[3m: 39s] Итак, давайте поговорим о нескольких вещах, которые мы хотим учитывать при покупке стартера двигателя. Во-первых, мы хотим определить, нужен ли нам стартер NEMA или пускатель IEC. Затем мы хотим убедиться, что наш двигатель соответствует конкретному типу стартера двигателя, который мы покупаем. Для этого нам нужно знать напряжение двигателя. Нам также необходимо знать ток или мощность двигателя при полной нагрузке.И мы также хотим убедиться, что знаем, какое нам нужно напряжение на катушке.
[4m: 3s] Зная эти вещи, мы можем лучше определить, какой тип стартера двигателя купить.
[4m: 7s] Для получения полной линейки контакторов, устройств защиты от перегрузок или защиты электродвигателей и тысяч других продуктов посетите наш веб-сайт. Для получения дополнительной информации или других обучающих видеороликов посетите RSPSupply.com, лучший в Интернете источник промышленного оборудования. Также не забывайте: ставьте лайки и подписывайтесь.

Пускатели двигателей постоянного тока

и принципиальная схема

Привет, читатели добро пожаловать в новый пост.В этом посте мы подробно рассмотрим пускатели двигателей постоянного тока и их принципиальную схему. Двигатель постоянного тока — это устройство, использующее постоянный ток для создания механической энергии. Существует множество типов двигателей постоянного тока, таких как параллельный двигатель постоянного тока, последовательный двигатель постоянного тока, составной двигатель постоянного тока. Эти двигатели описаны в соответствии с их конструкцией и крутящим моментом.

В этом посте мы рассмотрим различные методы, используемые для определения двигателя постоянного тока и их результирующих эффектов. Итак, давайте начнем с пускателя двигателей постоянного тока и принципиальной схемы

. Пускатели двигателей постоянного тока

и принципиальная схема

  • Для точной работы двигателя постоянного тока должна быть некоторая управляющая цепь и для работы требуются защитные устройства, связанные с ней.Эти устройства, подключенные к двигателю постоянного тока, имеют четыре основные цели.
  • Обеспечьте защиту двигателя от повреждений из-за короткого замыкания.
  • Обеспечивает защиту двигателя от состояния перегрузок на длительное время.
  • Защищает двигатель от пускового высокого тока.
  • Эти устройства помогают контролировать скорость двигателя самым простым способом.
Проблемы с двигателем постоянного тока при запуске
  • Для точной работы двигателя он должен иметь безопасную физическую конструкцию при запуске.
  • Когда двигатель находится в состоянии пуска, его ротор не движется, поэтому значение генерируемого внутри напряжения равно нулю.
  • Поскольку значение внутреннего сопротивления двигателя постоянного тока меньше его физических размеров, через него проходит большой ток.
  • Предположим, что у нас есть двигатель мощностью 50 л.с. с рабочим напряжением 2:50. Значение сопротивления якоря составляет 0,06 Ом, значение тока полной нагрузки составляет двести ампер, поэтому пусковой ток будет для этого двигателя.

IA = (VT-EA) / RA

(250В-0В) / 0,06

4167A

  • Значение этого тока в два раза больше номинального тока полной нагрузки двигателя. Этот ток может вызвать серьезные проблемы с двигателем.
  • Решение для этого высокого тока во время пуска состоит в том, чтобы подключить пусковое сопротивление последовательно к обмотке якоря, чтобы ограничить ток до точки, сгенерированной EA, которая уменьшит этот ток.
  • Подключенное сопротивление не должно быть в течение длительного времени, поскольку оно вызывает потери мощности, а также нарушает кривую крутящего момента-скорости с увеличением нагрузки.
  • Таким образом, сопротивление должно быть связано с сопротивлением якоря, чтобы остановить ток, а затем снимать его до тех пор, пока двигатель не наберет нужную скорость.
  • Используемое в настоящее время пусковое сопротивление состоит из различных частей, которые удаляются из схемы с приращением скорости двигателя.
  • На приведенном ниже рисунке показано соединение электродвигателя с шунтирующим сопротивлением стартера, которое будет удалено из схемы по частям с закрытыми таблицами содержимого как 1A, 2A, 3A.

  • Для использования запусков должны выполняться два условия.Первый — выбрать числа и части сопротивления, необходимые для создания схемы ограничения.
  • Второй — создать схему управления, выполняя подключение в точное время, чтобы устранить сегменты сопротивления.
  • В старых двигателях используются такие состояния, которые будут удалены из схемы вручную человеком, который поворачивает ручку.

  • Работа этого стартера зависит от человека, работающего с ним, независимо от того, поворачивает ли он ручку в точное время или нет.
  • Если он удалил стартеры очень рано, тогда двигатели наберут требуемую скорость, тогда в двигателе будет протекать большой ток.
  • В то время как человек очень медленно удалял сопротивление из цепи, сопротивление пусковой цепи могло сгореть.

Цепи пуска двигателя постоянного тока

  • После выбора пускового сопротивления для замыкания контактов используются различные методы, здесь мы обсуждаем два обычно используемых метода.
  • На рисунке ниже вы можете увидеть компоненты схемы управления двигателем.Здесь предохранитель, кнопочные переключатели реле, реле задержки времени и перегрузки являются основными частями схемы.

  • На рисунке, обозначенном как a , показано символическое представление предохранителя. Этот предохранитель поможет предотвратить короткое замыкание двигателя.
  • Эти предохранители представляют собой последовательно соединенные линии, по которым ток проходит к двигателю.
  • Если произойдет короткое замыкание, предохранитель в этой линии перегорит, разорвет цепь и спасет двигатель.
  • Цифра, обозначенная как b , указывает категорию пружины кнопочных переключателей. Здесь используются 2 основных типа переключателей: первый нормально разомкнутый, а второй нормально замкнутый.
  • Нормально разомкнутые контакты будут разомкнуты, когда кнопка открыта, и станут закрытыми, когда кнопка замкнута или нажата, а нормально замкнутые контакты замкнуты, когда кнопка нажата.
  • Реле можно увидеть на рисунке, обозначенном как c. Состоит из основной катушки и количества контактов.
  • Основная катушка обозначена кружком, а контакты показаны параллельными линиями.
  • Есть 2 категории контактов: первая — нормально замкнутые, а вторая — нормально разомкнутые.
  • Нормально разомкнутый контакт разомкнут, когда на реле подано напряжение, и нормально замкнутый контакт замкнут, когда реле обесточено
  • В случае, когда на реле подается питание, его контакты меняют свое состояние, нормально разомкнутые контакты становятся замкнутыми, а нормально замкнутые контакты становятся разомкнутыми.
  • На рисунке, обозначенном как e , показана перегрузка. Он состоит из змеевика нагревателя и нормально закрытых контактов. Ток, проходящий к двигателю, также протекает через обмотки этого нагревателя.
  • Если ток от двигателя очень высокий, то ток, проходящий через двигатель, нагревает нагреватель, в результате чего нормально закрытый контакт перегрузки становится открытым.
  • Контакты могут активировать различные категории цепей защиты двигателя.
  • На рисунке ниже схема пускателя двигателя, созданная с помощью описанных выше компонентов, показана на рисунке ниже.

  • В этой схеме серия замыкающих контактов реле времени, которые устраняют каждую часть пускового сопротивления в почти точное время, когда на двигатель подается питание.
  • Если мы нажмем кнопку пуска схемы, цепь якоря двигателя будет связана с источником питания, и двигатель начнет свою работу, все сопротивление в цепи.
  • Хотя реле 1TD запитывается при запуске двигателя после некоторой задержки, его контакты замыкаются и снимают часть пускового сопротивления со схемы.
  • С этим реле 2TD активируется после того, как вторые контакты задержки 2TD замыкаются и устраняют вторую часть сопротивления.
  • После замыкания контактов 2TD реле 3TD срабатывает.
  • Эта процедура повторяется снова, и, наконец, двигатель работает на полной скорости, и в цепях отсутствует сопротивление.
  • , если время задержки задано точно, пусковое сопротивление может быть удалено в точное время, чтобы ограничить ток двигателя на его расчетных параметрах.
  • Стартер другой категории можно увидеть здесь.

  • В этой схеме реле определяет значение EA двигателя и удаляет сопротивление из схемы, когда значение EA равно заданному значению.
  • Эта запущенная схема лучше, чем обсуждалось ранее, если двигатель подключен к высокой нагрузке и работает медленно, тогда нормальная скорость его RA удалит из схемы, когда ток упадет до определенного уровня.
  • Обратите внимание, что обе схемы стартера имеют реле в полевой схеме, обозначенное как FL.Он известен как реле потери поля.
  • Если по какой-либо причине пропадет ток возбуждения, реле потери возбуждения обесточится, что отключит питание реле М.
  • Когда реле M находится в обесточенном состоянии, оно обычно размыкает контакты и отключает двигатель от источника питания.
  • Это реле обеспечивает защиту двигателя в случае отсутствия IF.
  • Обратите внимание, что перегрузка существует в каждой цепи пускателя двигателя. Если мощность, поступающая от двигателя, становится высокой, разомкните нормально замкнутые контакты OL, это приведет к выключению реле M.
  • , когда реле M не находится под напряжением, нормально разомкнутые контакты размыкаются и отключают двигатель от источника питания, что обеспечивает защиту двигателя от повреждений из-за перегрузки.

Это подробный пост о пускателях двигателей постоянного тока и принципиальных схемах. Если у вас есть дополнительные вопросы, задавайте их в комментариях. Спасибо за прочтение. Хорошего дня.

Автор: Генри
http://www.theengineeringknowledge.com

Я профессиональный инженер и закончил известный инженерный университет, а также имею опыт работы инженером в различных известных отраслях.Я также пишу технический контент, мое хобби — изучать новые вещи и делиться ими с миром.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *