Электродвигатель однофазный: Однофазный электродвигатель 220в. Схема, подключение, преимущества

Содержание

Однофазный электродвигатель 220в. Схема, подключение, преимущества

Однофазный двигатель представляет собой электрическое устройство, которое питается от сети. Его особенностями являются наличие 1-фазной обмотки и способность функционировать без преобразователя частот. Наиболее распространённый и популярный пример – это мотор на 220 В. Его используют преимущественно для оснащения оборудования бытового назначения небольшой мощности.

Особенности конструкции и схема однофазного электродвигателя 220в.

Основные элементы двигателя однофазного типа – это ротор и статор. Первая комплектующая во время эксплуатации подвижна, вторая находится в состоянии покоя. Статор оснащён двумя типами обмотки: основная и вспомогательная. Иначе их называют рабочая и пусковая. Оба вида расположены под углом в 90 градусов в сердечнике и надёжно закреплены в пазах.

Основная обмотка составляет большую часть, а вспомогательной отводится всего 30–35%. Что касается конструкции ротора, он представляет собой стержни из цветных металлов. На торцах элементы замкнуты специальными кольцами. Свободное пространство между стержнями заполнено сплавом алюминия. Из-за своего полого вида специалисты и конструкторы назвали ротор 1-фазного мотора «беличьей клеткой».

Преимущества механизма двигателя однофазного типа.

Среди достоинств 1-фазных двигателей отмечают следующие:

  • простота конструкции;
  • долговечность – при своевременном техническом обслуживании двигатель способен служить годами;
  • надёжность;
  • экономичность – потребление небольшого количества энергии;
  • доступная стоимость;
  • ремонтопригодность – в случае выхода из строя можно легко заменить повреждённые или сгоревшие детали;
  • минимальный уход;
  • возможность работы от сети со стандартным напряжением 220 В без преобразователей энергии.

Большинство современных бытовых приборов оснащены именно однофазными моторами. Причина объясняется их простотой и невысокой себестоимостью. Такими моторами оснащают крупную и мелкую бытовую технику.

Кроме того, они нашли применение в создании оборудования для промышленных и производственных предприятий.

Но есть ли недостатки у однофазного двигателя? Их немного. Практически все они обуславливаются простотой конструкции. Итак:

  • малый коэффициент мощности. По этой причине они используются для создания большинства бытовых приборов;
  • высокий показатель пускового тока;
  • возможность ограничения скорости движка при колебаниях в сети.

Основным недостатком считается отсутствие пускового момента. Тем не менее, для бытовых приборов и несложных устройств этот минус не является существенным и не влияет на работу.


Принцип работы однофазного электродвигателя 220 В.

В статоре однофазного электродвигателя 220 В вырабатывается магнитное поле. Именно оно является импульсом, который приводит в работу ротор. Чтобы представить, как функционирует электродвигатель, стоит смоделировать следующую ситуацию.

Например, в пусковой обмотке напряжения нет. Образование магнитного поля можно запустить, подключив основную обмотку к сети. Его работа основывается на пульсировании, при этом пространство остаётся в состоянии покоя. Магнитное поле разделяется на две части, каждая из которых вращается в стороны, противоположные друг другу, при одинаковой частоте. При задании ротору начального вращения двигатель со временем будет его наращивать. При этом частота элемента и самого магнитного поля различается. Разницу показателей определяют как скольжение.

Из магнитных потоков возникает движущая сила. Это закон электромагнитной индукции. Движущая сила формирует два типа тока. Один из них обратный, второй – прямой. Частота вращения ротора прямо пропорциональна показателю скольжения. По закону Ампера, магнитное поле при взаимодействии с обратным током создаёт вращение.

Особенности подключения однофазного электродвигателя 220 В.

Для приведения асинхронного однофазного электродвигателя используется пусковое сопротивление. Такой метод задействован в устройствах с расщеплённой фазой. В электрической цепи мотора присутствуют ротор и статор. Обмотка второго смещена относительно основной. При этом рабочий элемент обладает меньшим сопротивлением, чем вспомогательный. Омический сдвиг фаз обеспечивается благодаря намотке бифилярным способом. Подключение без резистора невозможно.

Особенностью однофазного двигателя является соединение вспомогательной обмотки с конденсатором. Работа начинается только после возникновения пускового момента. Конденсатор необходим для получения максимального значения. Благодаря ему и возникает пусковой момент, который приводит в работу все механизмы.

Советы при покупке однофазного электродвигателя 220 В.

При покупке однофазного электрического двигателя стоит учесть следующие характеристики оборудования:

  • частота;
  • мощность;
  • способ установки;
  • размер;
  • потребляемая энергия.

Производители обычно предоставляют гарантию на бесперебойную работу моторов.

Подключение однофазного двигателя. Видео урок.

Подключение однофазного двигателя : с конденсатором, схемы, видео

Как правило, наши дома, гаражи и другие хозяйственные постройки подключены к источнику 220V, представляющую однофазную сеть. В связи с этим все потребители рассчитываются для работы от однофазной сети, выполненной двумя проводами, один из которых является нулевым, а другой фазным. В работе многих электрических приборов задействованы однофазные электрические двигатели, подключение которых связано с некоторыми тонкостями.

Как определиться с типом двигателя

Если двигатель новый, то особых проблем не будет, поскольку на его табличке указан тип двигателя и другие данные. Если двигатель подвергался ремонту, то определение его типа связано с некоторыми трудностями: табличку могли просто потерять или повредить ее механически. Поэтому в таких случаях лучше знать, как самостоятельно определить тип двигателя.

Коллекторные двигатели

Коллекторный двигатель

Определить, двигатель коллекторный или асинхронный, совсем несложно, поскольку они имеют разное строение. Характерное отличие коллекторного двигателя – это наличие щеток, которые находятся неподвижно, а также коллектора, который вращается и представляет набор медных пластин. К этим пластинам прижимаются щетки, передающие электрический ток на обмотку якоря двигателя.

Достоинство таких двигателей заключается в том, что они быстро разгоняются и позволяют получить большие обороты. К тому же, поменяв полярность, допустимо сменить направление вращения устройства. Не менее важным можно считать тот фактор, что можно легко организовать контроль частоты вращения двигателя, с его регулировкой в широких пределах.

К существенному минусу коллекторных двигателей следует отнести их повышенную шумность в работе, особенно на повышенных оборотах. Что касается небольших оборотов, то работу этих двигателей можно считать вполне приемлемой.

Следует учитывать также тот факт, что трение щеток и коллектора приводят к тому, что изнашиваются, как щетки, так и коллектор. В результате приходится менять щетки или протачивать коллектор. Если не осуществлять постоянного контроля за состоянием щеток и коллектора, то имеется высокая вероятность того, что устройство придется ремонтировать.

Асинхронные двигатели

Строение асинхронного двигателя

Конструкция асинхронного двигателя несколько отличается от конструкции коллекторного двигателя несмотря на то, что у него также имеется статор и ротор (якорь), при этом асинхронные двигатели могут быть, как однофазными, так и трехфазными. Как правило, бытовые электроприборы оснащаются однофазными асинхронными двигателями.

Достоинство асинхронных двигателей заключается в том, что они более бесшумные, поэтому их устанавливают в бытовых приборах, работа которых связана с критическими уровнями шумов при длительной работе.

Различают два типа асинхронных двигателей – конденсаторные и с пусковой обмоткой (бифилярные). Пусковая обмотка необходима лишь для запуска двигателя, после чего она отключается и в работе двигателя никакого участия не принимает.

Конденсаторные двигатели отличаются тем, что дополнительная конденсаторная обмотка работает постоянно. Эта обмотка смещается по отношению к рабочей обмотке на 90 градусов. Благодаря такому построению, возможно менять направление вращения двигателя. Наличие конденсатора на двигателе свидетельствует о том, что это конденсаторный двигатель.

Если измерить сопротивление пусковой и рабочей обмоток, то можно легко определить тип асинхронного двигателя. Как правило, пусковая обмотка выполняется более тонким проводом и ее сопротивление больше в несколько раз, по сравнению с рабочей обмоткой. Нормальная работа таких двигателей обеспечивается за счет специального включающего устройства. Конденсаторные двигатели запускаются обычным выключателем, тумблером или кнопкой.

Варианты подключения однофазных асинхронных двигателей

Двигатели с пусковой обмоткой

Чтобы управлять работой асинхронным двигателем, имеющим пусковую обмотку, разработана специальная кнопка. Она состоит из трех контактов, один из которых отключается после включения устройства. Называется эта кнопка «ПНВС» и включает в себя средний контакт, который не фиксируется после включения и два крайних контакта с фиксацией.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена

Если двигатель с пусковой обмоткой, то у него может быть 3 или 4 вывода. Измерив их сопротивление, можно узнать, какой из концов или каких 2 конца имеют отношение к пусковой обмотке.

У двигателя, имеющего 3 вывода, один из концов пусковой обмотки уже соединен с рабочей обмоткой. Как уже было сказано выше, рабочая обмотка всегда имеет меньшее сопротивление, по сравнению с пусковой. У двигателя с 4-мя выводами пусковую обмотку придется соединять с рабочей самостоятельно, на пусковой кнопке. В результате, получится также 3 вывода, которые принимают участие в работе двигателя:

  • Один конец от рабочей обмотки.
  • Другой конец от пусковой обмотки.
  • Третий конец общий (соединение рабочей и пусковой обмотки).

Поэтому подключение таких двигателей ничем не отличается друг от друга, достаточно найти обмотки и соответствующим образом подключить их на реле ПНВС.

  • Подключение однофазного двигателя с пусковой обмоткой посредством кнопки ПНВС.

Правильное подключение:

Три провода, выходящие из двигателя, подключаются так: провод, представляющий пусковую обмотку, крепится к среднему контакту (верхнему), а остальные два на крайние (тоже верхние) контакты. Питание 220 V подается на крайние контакты (нижние), при этом средний нижний контакт соединяется перемычкой с боковым контактом (нижним), который включает рабочую обмотку, но не общую, представляющую соединение рабочей и пусковой обмотки. В противном случае двигатель просто не запустится.

Конденсаторные двигатели

Существует три варианта (схемы) подключения конденсаторных двигателей к сети 220V. Без конденсаторов двигатель работать не будет. Он не запустится и будет гудеть. Такая длительная работа может привести к перегреву и выходу его из строя.

Первая схема связана с включением конденсатора в цепь питания конденсаторной обмотки. Подобная схема легко запускает двигатель, но его работа связана с низким К.П.Д. Схема, где конденсатор включен к цепи питания рабочей обмотки обладает лучшими показателями к.п.д., но при этом возникают проблемы с пуском двигателя. Поэтому первая схема используется для условий с тяжелым пуском, если при этом не требуются высокие рабочие характеристики.

Схема с двумя конденсаторами

Третий вариант подключения связан с установкой 2-х конденсаторов, поэтому схема представляет что-то среднее между вышеописанными двумя вариантами. Схема располагается в середине и более детально ее подключение представлено на фото ниже. Для реализации такой схемы включения потребуется кнопка ПНВС. Она необходима лишь для того, чтобы кратковременно подключать второй конденсатор, на время разгона двигателя. После отключения пускового конденсатора в работе останется две обмотки, причем пусковая обмотка должна быть подключена через конденсатор.

Подключение с двумя конденсаторами

Другие схемы подключения не требуют кнопки ПНВС, поскольку подключение конденсаторов фиксированное, на все время работы электродвигателя. Поэтому достаточно воспользоваться обычным автоматическим выключателем с фиксацией включенных контактов.

Подбор емкости конденсаторов

Чтобы точно определить емкость конденсаторов для конкретного двигателя, придется заняться серьезными вычислениями и знаниями школьного уровня здесь не обойтись. При этом, на основании многолетних опытов установлено:

  • Рабочие конденсаторы подбирают по емкости из расчета 70-80 мкф на 1 кВт мощности двигателя.
  • Емкости пусковых конденсаторов должны быть, как минимум в 2 раза больше.

Очень важно позаботиться о том, чтобы их рабочее напряжение было, как минимум в полтора раза больше напряжения питающей сети. Для сети в 220V наиболее подходящими окажутся конденсаторы с рабочим напряжением в 400V. Пуск двигателя окажется менее проблемным, если применить специальные конденсаторы, хотя в основном применяются обычные конденсаторы. При этом следует знать, что для работы в сети переменного тока нельзя использовать электролитические конденсаторы.

Как изменить направление вращения двигателя

Двигатели с пусковой и конденсаторной обмотками характеризуются тем, что можно легко поменять их направление вращения. Для этого нужно взять и поменять подключение концов вспомогательной обмотки, сохранив схему подключения двигателя в целом.

В заключение

В настоящее время, как ни странно, но все усложняется, в том числе и электродвигатели. Встречаются двигатели, особенно в стиральных машинах, которые самому подключить вряд ли удастся. Существуют и другие устройства со сложными двигателями, с количеством выводов, больше, чем 3 или 4. Остается только думать о том, какое их предназначение. Если нет соответствующих навыков, то очередное подключение такого двигателя может просто вывести его из строя, причем после этого вряд ли кто возьмется за его восстановление.

Что касается электроинструментов, в которых применяются в основном коллекторные двигатели, то устройство их настолько простое, что их может подключить любой человек, не будучи профессионалом в этом деле. При этом следует заметить, что их работой управляет электронная схема, которая позволяет регулировать частоту вращения. Что касается электронной схемы, то здесь не каждый может разобраться, хотя ее после поломки можно легко заменить на исправную.

В настоящее время тенденции развития бытовых электроприборов связаны с тем, чтобы их ремонтом занимались профессионалы. Скорее всего, что это правильно, поскольку каждый должен заниматься своим делом.

Однофазный асинхронный двигатель схема подключения

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Схема подключения двигателя через конденсатор

Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

  • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
  • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
  • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Схема подключения трёхфазного двигателя через конденсатор

Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

Онлайн расчет емкости конденсатора мотора

Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Реверс направления движения двигателя

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

Однофазный электродвигатель 220в. Схема, подключение, преимущества

Однофазный двигатель представляет собой электрическое устройство, которое питается от сети. Его особенностями являются наличие 1-фазной обмотки и способность функционировать без преобразователя частот. Наиболее распространённый и популярный пример – это мотор на 220 В. Его используют преимущественно для оснащения оборудования бытового назначения небольшой мощности.

Особенности конструкции и схема однофазного электродвигателя 220в.

Основные элементы двигателя однофазного типа – это ротор и статор. Первая комплектующая во время эксплуатации подвижна, вторая находится в состоянии покоя. Статор оснащён двумя типами обмотки: основная и вспомогательная. Иначе их называют рабочая и пусковая. Оба вида расположены под углом в 90 градусов в сердечнике и надёжно закреплены в пазах.

Основная обмотка составляет большую часть, а вспомогательной отводится всего 30–35%. Что касается конструкции ротора, он представляет собой стержни из цветных металлов. На торцах элементы замкнуты специальными кольцами. Свободное пространство между стержнями заполнено сплавом алюминия. Из-за своего полого вида специалисты и конструкторы назвали ротор 1-фазного мотора «беличьей клеткой».

Преимущества механизма двигателя однофазного типа.

Среди достоинств 1-фазных двигателей отмечают следующие:

  • простота конструкции;
  • долговечность – при своевременном техническом обслуживании двигатель способен служить годами;
  • надёжность;
  • экономичность – потребление небольшого количества энергии;
  • доступная стоимость;
  • ремонтопригодность – в случае выхода из строя можно легко заменить повреждённые или сгоревшие детали;
  • минимальный уход;
  • возможность работы от сети со стандартным напряжением 220 В без преобразователей энергии.

Большинство современных бытовых приборов оснащены именно однофазными моторами. Причина объясняется их простотой и невысокой себестоимостью. Такими моторами оснащают крупную и мелкую бытовую технику. Кроме того, они нашли применение в создании оборудования для промышленных и производственных предприятий.

Но есть ли недостатки у однофазного двигателя? Их немного. Практически все они обуславливаются простотой конструкции. Итак:

  • малый коэффициент мощности. По этой причине они используются для создания большинства бытовых приборов;
  • высокий показатель пускового тока;
  • возможность ограничения скорости движка при колебаниях в сети.

Основным недостатком считается отсутствие пускового момента. Тем не менее, для бытовых приборов и несложных устройств этот минус не является существенным и не влияет на работу.

Принцип работы однофазного электродвигателя 220 В.

В статоре однофазного электродвигателя 220 В вырабатывается магнитное поле. Именно оно является импульсом, который приводит в работу ротор. Чтобы представить, как функционирует электродвигатель, стоит смоделировать следующую ситуацию.

Например, в пусковой обмотке напряжения нет. Образование магнитного поля можно запустить, подключив основную обмотку к сети. Его работа основывается на пульсировании, при этом пространство остаётся в состоянии покоя. Магнитное поле разделяется на две части, каждая из которых вращается в стороны, противоположные друг другу, при одинаковой частоте. При задании ротору начального вращения двигатель со временем будет его наращивать. При этом частота элемента и самого магнитного поля различается. Разницу показателей определяют как скольжение.

Из магнитных потоков возникает движущая сила. Это закон электромагнитной индукции. Движущая сила формирует два типа тока. Один из них обратный, второй – прямой. Частота вращения ротора прямо пропорциональна показателю скольжения. По закону Ампера, магнитное поле при взаимодействии с обратным током создаёт вращение.

Особенности подключения однофазного электродвигателя 220 В.

Для приведения асинхронного однофазного электродвигателя используется пусковое сопротивление. Такой метод задействован в устройствах с расщеплённой фазой. В электрической цепи мотора присутствуют ротор и статор. Обмотка второго смещена относительно основной. При этом рабочий элемент обладает меньшим сопротивлением, чем вспомогательный. Омический сдвиг фаз обеспечивается благодаря намотке бифилярным способом. Подключение без резистора невозможно.

Особенностью однофазного двигателя является соединение вспомогательной обмотки с конденсатором. Работа начинается только после возникновения пускового момента. Конденсатор необходим для получения максимального значения. Благодаря ему и возникает пусковой момент, который приводит в работу все механизмы.

Советы при покупке однофазного электродвигателя 220 В.

При покупке однофазного электрического двигателя стоит учесть следующие характеристики оборудования:

  • частота;
  • мощность;
  • способ установки;
  • размер;
  • потребляемая энергия.

Производители обычно предоставляют гарантию на бесперебойную работу моторов.

Подключение однофазного двигателя. Видео урок.

Как подключить однофазный двигатель

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими

    Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

{SOURCE}

Однофазные двигатели | Элпром Харманлы

Однофазные электродвигатели, которые производит Эльпром Харманли, бывают двух основных типов: AR и ASR / ESR

.

Технические_ДАННЫЕ

АР — электродвигатели однофазные с рабочим конденсатором

Рабочий конденсатор постоянно включен на обмотку конденсатора.Эти двигатели отличаются очень хорошими рабочими характеристиками. Передаточное отношение пускового крутящего момента составляет: 0,5-0,7. Они подходят для работы в не столь жестких пусковых условиях в таких приложениях, как: вентиляторы, гидравлические насосы, центробежные насосы, пильные станки, токарные и фрезерные станки в производстве оправок. . Однофазные двигатели с рабочим конденсатором подходят для использования в машинах, где требуется частое включение / выключение.

ASR, ESR — электродвигатели однофазные с пусковым и рабочим конденсатором

Пусковой конденсатор включается во время пуска двигателя и отключается, когда двигатель достигает примерно 70% своей номинальной скорости.Эти двигатели характеризуются высоким пусковым крутящим моментом и подходят для машин, где требуется высокий пусковой крутящий момент, таких как: компрессоры, гидравлические насосы, которые запускаются с высоким давлением, центробежные насосы, в которых валу требуется высокий крутящий момент для запуска, и другие.

Базовое напряжение питания — 230 В + -5% (218-242 В)

Частота: 50 Гц + -0, 5% (49,75-50,25 Гц)

Рабочий цикл: S1 непрерывный — EN 60034-1, S2, S3, S6

Степень защиты — IP 54, IP 55 или выше по запросу.

Класс изоляции: класс F (155 градусов Цельсия), класс H (180 градусов Цельсия)

Температура окружающей среды: -10 +40 градусов Цельсия

Высота: до 1000 м

По запросу Эльпром Харманли может изготовить:

-Двигатели с разным напряжением питания и частотой.

-Настроенный конец ведущего вала.

-Второй конец ведущего вала.

-Встроенный термовыключатель в обмотке статора.

-Моторы повышенной точности.

Для получения дополнительной информации свяжитесь с нами в любое время.

Однофазные асинхронные двигатели



ЦЕЛИ

• описать основные операции следующих типов асинхронных двигателей:

  • Двухфазный двигатель (одно- и двухполярный)
  • конденсаторный пуск, асинхронный двигатель (одинарное и двойное напряжение)
  • конденсаторный пуск, конденсаторный двигатель с одним конденсатором
  • конденсаторный пуск, конденсаторный двигатель с двумя конденсаторами
  • конденсаторный пуск, конденсаторный двигатель с автотрансформатором с один конденсатор

• сравните двигатели в списке цели 1 в отношении запуска крутящий момент, скоростные характеристики и коэффициент мощности при номинальной нагрузке.

Два основных типа однофазных асинхронных двигателей — это двухфазные двигатель и конденсаторный двигатель. Оба типа однофазных асинхронных двигателей обычно имеют дробную оценку мощности. Используется двигатель с расщепленной фазой для работы с такими устройствами, как стиральные машины, небольшие водяные насосы, масляные горелки и другие типы небольших нагрузок, не требующие сильного пускового момента. Конденсаторный двигатель обычно используется с устройствами, требующими сильного пуска. крутящий момент, например, в холодильниках и компрессорах.Оба типа однофазных асинхронные двигатели относительно невысоки в стоимости, имеют прочную конструкцию; и демонстрируют хорошие производственные показатели.

КОНСТРУКЦИЯ ИНДУКЦИОННОГО ДВИГАТЕЛЯ С РАЗДЕЛЕННОЙ ФАЗКОЙ

Асинхронный двигатель с расщепленной фазой в основном состоит из статора, ротора, центробежный выключатель, расположенный внутри двигателя, корпус с двумя торцевыми щитками подшипники, поддерживающие вал ротора, и стальная литая рама в к которому прижимается сердечник статора.Два торцевых щита прикручены к стальной литой каркас. Подшипники, размещенные в торцевых щитках, удерживают ротор. центрируется внутри статора, так что он будет вращаться с минимальным трением, без ударов и трения сердечника статора.

Статор двигателя с расщепленной фазой состоит из двух удерживаемых на месте обмоток. в пазах ламинированного стального сердечника. Обе обмотки состоят из изолированных катушки распределены и соединены в две обмотки, разнесенные на 90 электрических градусы друг от друга.Одна обмотка — это бегущая обмотка, а вторая обмотка это пусковая обмотка.

Ходовая обмотка состоит из изолированного медного провода. Он находится по адресу дно пазов статора. Сечение провода в пусковой обмотке меньше, чем у бегущей обмотки. Эти катушки размещены сверху катушек ходовой обмотки в ближайших к ротору пазах статора.

Пусковая и рабочая обмотки подключены параллельно к однофазная линия при пуске двигателя.После того, как мотор разгоняется до скорости, равной примерно от двух третей до трех четвертей номинальной скорости, пусковая обмотка автоматически отключается от линии с помощью центробежного переключателя.

Ротор электродвигателя с расщепленной фазой имеет такую ​​же конструкцию, как и трехфазного асинхронного двигателя с короткозамкнутым ротором. То есть ротор состоит цилиндрического сердечника, собранного из стальных пластин. Медные прутки устанавливается у поверхности ротора.Прутки припаиваются или привариваются к два медных концевых кольца. В некоторых двигателях ротор выполнен из литого алюминия. Блок.

илл. 1 показан типичный короткозамкнутый ротор для однофазной индукции. мотор. Этот тип ротора требует минимального обслуживания, так как нет обмотки, щетки, контактные кольца или коммутаторы. Обратите внимание на рисунок, что роторные вентиляторы являются частью ротора с короткозамкнутым ротором. Эти ротор вентиляторы поддерживают циркуляцию воздуха через двигатель, чтобы предотвратить большое увеличение по температуре обмоток.


ил. 1 Ротор с короткозамкнутым ротором из литого алюминия.

Центробежный выключатель установлен внутри двигателя. Центробежный переключатель отключает пусковую обмотку после достижения ротором заданного скорость, обычно от двух третей до трех четвертей номинальной скорости. Переключатель состоит из неподвижной части и вращающейся части. Стационарная часть установлен на одном из торцевых щитов и имеет два контакта, которые действуют как однополюсный однонаправленный переключатель.Вращающаяся часть центробежного переключатель установлен на роторе.

Простая схема работы центробежного выключателя приведена в рисунок 2. Когда ротор остановлен, давление пружины на волоконном кольце вращающейся части удерживает контакты замкнутыми. когда ротор достигает примерно трех четвертей своей номинальной скорости, центробежное действие ротора заставляет пружину сбрасывать давление на оптоволоконном кольце и контакты размыкаются.В результате пусковая обмотка цепь отключена от линии. ill 3 — типичный центробежный переключатель, используемый с асинхронными двигателями с расщепленной фазой.


ил. 2 Схема показывает работу центробежного выключателя: ротор при остановке центробежный выключатель замкнут; ротор с нормальной скоростью центробежный усилие, установленное в механизме переключателя, заставляет воротник двигаться и позволяет переключать контакты для открытия. ил. 3 Механизм центробежного переключателя с переключатель удален.

Принцип работы

Когда цепь к асинхронному двигателю с расщепленной фазой замкнута, оба пусковая и ходовая обмотки запитываются параллельно. Потому что бег обмотка состоит из провода относительно большого сечения, его сопротивление составляет низкий. Напомним, что ходовая обмотка размещена внизу прорезей. сердечника статора. В результате индуктивное сопротивление этой обмотки сравнительно высока из-за массы окружающего его железа.Поскольку бегущая обмотка имеет низкое сопротивление и высокое индуктивное сопротивление, ток бегущей обмотки отстает от напряжения примерно на 90 электрические степени.

Пусковая обмотка состоит из проволоки меньшего сечения; поэтому его сопротивление высокое. Поскольку обмотка размещена в верхней части статора пазов, масса железа, окружающего его, сравнительно мала, а индуктивная реактивное сопротивление низкое. Следовательно, пусковая обмотка имеет высокое сопротивление и низкое индуктивное сопротивление.В результате ток пускового обмотка почти синфазна с напряжением.

Ток ходовой обмотки отстает от тока пусковой обмотки. примерно на 30 электрических градусов. Эти два тока разнесены на 30 электрических градусы друг от друга проходят через эти обмотки и вращающееся магнитное поле разработан. Это поле движется по внутренней части сердечника статора. Скорость магнитного поля определяется с использованием той же процедуры. дано для трехфазного асинхронного двигателя.

Если асинхронный двигатель с расщепленной фазой имеет четыре полюса на обмотках статора и подключен к однофазному источнику с частотой 60 Гц, синхронная скорость Оборотного поля:

S = 120 x f / 4

S = синхронная скорость

f = частота в герцах

S = 120 x 60/4 = 1800 об / мин

Поскольку вращающееся поле статора движется с синхронной скоростью, оно сокращает медные шины ротора и индуцирует напряжение в стержнях беличьей клетки обмотка.Эти наведенные напряжения создают токи в стержнях ротора. Как в результате создается поле ротора, которое реагирует с полем статора на развивают крутящий момент, который заставляет ротор вращаться.

Когда ротор разгоняется до номинальной скорости, центробежный выключатель отключается. пусковая обмотка от линии. Затем двигатель продолжает работать. используя только ходовую обмотку. На рисунке 4 показаны соединения центробежного выключателя в момент запуска двигателя (выключатель замкнут) и когда двигатель достигает своей нормальной скорости вращения (выключатель разомкнут).

Двигатель с расщепленной фазой должен иметь под напряжением как пусковая, так и рабочая обмотка. при запуске мотора. Двигатель похож на двухфазный асинхронный двигатель. в котором токи этих двух обмоток составляют примерно 90 электрических градусов не в фазе. Однако источник напряжения однофазный; следовательно, двигатель называется двухфазным двигателем, потому что он запускается как двухфазный двигатель от однофазной сети. Как только двигатель разгонится до значения, близкого к его номинальная частота вращения, он работает на ходовой обмотке как однофазный индукционный мотор.

Если контакты центробежного переключателя не замыкаются при остановке двигателя, тогда цепь пусковой обмотки все еще разомкнута. Когда цепь двигателя снова запитана, двигатель не запускается. Двигатель должен иметь как пусковая и рабочая обмотки находятся под напряжением в момент замыкания цепи двигателя для создания необходимого пускового момента. Если мотор не запускается, но просто издает низкий гудящий звук, а затем цепь пусковой обмотки размыкается. Либо контакты центробежного переключателя не замкнуты, либо есть обрыв катушек пусковых обмоток.Это небезопасное состояние. Бегущая обмотка потребляет чрезмерный ток и, следовательно, двигатель должен быть отключен от сети.


ил. 22-4 Подключения центробежного переключателя при пуске и работе. Асинхронный двигатель с расщепленной фазой: центробежный переключатель размыкается примерно при При 75% номинальной скорости пусковая обмотка имеет высокое сопротивление и низкое индуктивное сопротивление. Ходовая обмотка имеет низкое сопротивление и высокое индуктивное сопротивление.(обеспечивает фазовый угол 45-50 градусов для запуска крутящий момент.)

Если механическая нагрузка слишком велика при запуске двигателя с расщепленной фазой, или если напряжение на клеммах двигателя низкое, двигатель может не достичь скорости, необходимой для работы центробежного переключателя.

Пусковая обмотка предназначена для работы от сетевого напряжения в течение всего три или четыре секунды, пока двигатель ускоряется к его номинальной скорости.Важно, чтобы пусковая обмотка была отключена. от линии центробежным выключателем, как только двигатель разгонится до 75 процентов номинальной скорости. Работа двигателя при его запуске обмотка более 60 секунд может привести к сгоранию изоляции на обмотке или вызвать перегорание обмотки.

Чтобы изменить направление вращения двигателя, просто поменяйте местами провода пусковая обмотка (5). Это приводит к тому, что направление поля устанавливается обмотками статора на обратное.В результате направление вращения обратное. Направление вращения двигателя с расщепленной фазой также можно изменить местами, поменяв местами два провода ходовой обмотки. Как обычно, пусковая обмотка используется для реверса.

Однофазные двигатели часто имеют двойное номинальное напряжение 115 и 230 Вольт. вольт. Для получения этих номиналов ходовая обмотка состоит из двух секций. Каждая секция обмотки рассчитана на 115 вольт. Один участок бега обмотка обычно обозначается T и T, а другая часть обозначается T и T. Если двигатель должен работать от 230 В, две обмотки по 115 В. соединены последовательно через линию 230 В.Если мотор должен быть работает от 115 вольт, затем две 115-вольтовые обмотки подключаются в параллельно линии 115 В.


ил. 5 Изменение направления вращения при двухфазной индукции мотор.

Пусковая обмотка, как правило, состоит только из одной обмотки на 115 В. В выводы пусковой обмотки обычно имеют маркировку T и T. Если двигатель должен работать от 115 вольт, обе секции ходовой обмотки подключены параллельно пусковой обмотке (6).

Для работы от 230 В в клемме заменены перемычки. коробку так, чтобы две 115-вольтовые секции ходовой обмотки были соединены последовательно по линии 230 В (7). Обратите внимание, что 115 вольт пусковая обмотка подключена параллельно одной секции ходовой обмотка. Падение напряжения на этом участке ходовой обмотки равно 115 вольт, и напряжение на пусковой обмотке тоже 115 вольт.


ил.6 Электродвигатель с двойным напряжением, подключенный на 115 В.


ил. 7 Двигатель с двойным напряжением, подключенный на 230 В.


ил. 8 Обмотка двухвольтного двигателя с двумя пусковая и две ходовые обмотки

Некоторые двухфазные двигатели с двойным напряжением имеют пусковую обмотку с двумя секции, а также ходовая обмотка с двумя секциями. Бегущая обмотка секции помечены T1 и T2 для одной секции и T3 и T4 для другой. раздел.Одна часть пусковой обмотки имеет маркировку Т5 и Т6, а вторая секция пусковой обмотки имеет маркировку Т7 и Т8.

Национальная ассоциация производителей электрооборудования (NEMA) имеет цветовую кодировку клеммы. Если используются цвета, их следует кодировать следующим образом: Т1 — синий; Т2 — белый; Т3 — оранжевый; Т4 — желтый; Т5 — черный; и Т6 — красный.

илл. 7 показано расположение обмоток для двухвольтного двигателя с две пусковые обмотки и две ходовые обмотки.Правильные соединения для режима 115 В и для режима 230 В приведены в таблице проиллюстрировано в 8.

У асинхронного двигателя с расщепленной фазой очень хорошее регулирование скорости. Это имеет быстродействие от холостого хода до полной нагрузки, аналогичное этому трехфазного асинхронного двигателя с короткозамкнутым ротором. Процент скользит по большинству дробная мощность двигателей с разделенной фазой составляет от 4 до 6 процентов.

Пусковой момент двигателя с расщепленной фазой сравнительно низкий.В низкое сопротивление и высокое индуктивное сопротивление в цепи бегущей обмотки, а также высокое сопротивление и низкое индуктивное сопротивление в пусковой обмотке цепи приводят к тому, что два значения тока будут значительно меньше 90 электрических градусы друг от друга. Токи пусковой и ходовой обмоток во многих электродвигатели с расщепленной фазой имеют сдвиг по фазе только на 30 электрических градусов с каждым Другие. В результате поле, создаваемое этими токами, не развивается. сильный пусковой момент.

КОНДЕНСАТОР ПУСК, ВПУСКНОЙ ДВИГАТЕЛЬ

Конструкция конденсаторного пускового двигателя почти такая же, как и у двигателя. асинхронного двигателя с расщепленной фазой. Однако для конденсаторного пускового двигателя конденсатор включен последовательно с пусковыми обмотками. Конденсатор обычно устанавливается в металлическом кожухе наверху двигателя. Конденсатор может быть установлен в любом удобном внешнем положении на раме двигателя и, в некоторых случаях может быть установлен внутри корпуса двигателя.Конденсатор обеспечивает более высокий пусковой момент, чем можно получить со стандартной расщепленной фазой мотор. Кроме того, конденсатор ограничивает пусковой выброс тока. до более низкого значения, чем у стандартного двигателя с расщепленной фазой.

Асинхронный двигатель с конденсаторным пуском применяется в холодильных установках, компрессорах, масляные горелки и для небольшого машинного оборудования, а также для приложений которые требуют сильного пускового момента.


ил.9 Два соединения ходовой обмотки и одна пусковая обмотка схема подключения.

Принцип работы

Когда конденсаторный пусковой двигатель подключен для более низкого напряжения и запущен, как ходовая, так и пусковая обмотки подключены параллельно через линейное напряжение при замыкании центробежного выключателя. Пусковая обмотка, однако он подключен последовательно с конденсатором. Когда мотор достигает При значении 75 процентов от его номинальной скорости центробежный выключатель размыкает и отключает пусковую обмотку и конденсатор от сети.В тогда двигатель работает как однофазный асинхронный двигатель, используя только обмотка. Конденсатор используется для улучшения пускового момента и не улучшает коэффициент мощности двигателя.

Для создания необходимого пускового момента вращающееся магнитное поле должно настраиваться обмотками статора. Пусковой ток в обмотке приведет к рабочий ток обмотки на 90 электрических градусов, если конденсатор имеет правильная емкость подключена последовательно с пусковой обмоткой.В результате магнитное поле, создаваемое обмотками статора, почти идентичен таковому у двухфазного асинхронного двигателя. Пусковой момент для двигателя с конденсаторным пуском, таким образом, намного лучше, чем у стандартного двухфазный двигатель.

Неисправные конденсаторы — частая причина неисправностей в конденсаторах. пусковые, асинхронные двигатели. Возможны следующие отказы конденсаторов:

• конденсатор может закоротить сам себя, о чем свидетельствует более низкий пусковой ток. крутящий момент.

• конденсатор может быть «открыт», в этом случае цепи пусковой обмотки будет открыт, в результате чего двигатель не запустится.

• конденсатор может вызвать короткое замыкание и вызвать срабатывание предохранителя для вторичная цепь двигателя на обрыв. Если номиналы предохранителей достаточно высоки и не прерывают подачу питания на двигатель достаточно быстро, запуск обмотка может перегореть.

• пусковые конденсаторы могут вызвать короткое замыкание, если двигатель многократно включается и выключается за короткий промежуток времени.Чтобы предотвратить выход из строя конденсатора, многие производители двигателей рекомендуют запускать двигатель с конденсаторным пуском. не более 20 раз в час. Поэтому этот тип двигателя используется только в тех приложениях, где относительно мало запусков в коротком временной период.


ил. 10 Подключения для конденсаторного пуска, асинхронный двигатель

Скоростные характеристики двигателя с конденсаторным пуском очень хорошие. Возрастание в процентном скольжении от холостого хода до полной нагрузки составляет от 4 процентов до 6 процентов.В этом случае быстродействие такое же, как у стандартного двухфазный двигатель.

Провода цепи пусковой обмотки поменяны местами на реверс направление вращения конденсаторного пускового двигателя. В результате направление вращения магнитного поля, создаваемого обмотками статора в сердечнике статора меняется на противоположное, и вращение ротора меняется на противоположное. (См. Рисунок 9 для изменения подключения проводов.)

ил 10 — схема подключения конденсаторного пускателя. электродвигатель перед заменой проводов пусковой обмотки, чтобы направление вращения ротора.Схема на рисунке 11 показывает схемы подключения двигателя после замены выводов пусковой обмотки для изменения направления вращения.

Второй способ изменения направления вращения пускового конденсатора двигатель должен поменять местами два провода ходовой обмотки. Однако этот метод редко используется.

Конденсаторный пуск, асинхронные двигатели часто имеют двойное напряжение 115 вольт и 230 вольт. Подключения для конденсаторного пускового двигателя такие же, как для асинхронных двигателей с расщепленной фазой.


ил. 11 Соединения для реверсирования конденсаторного пуска, индукционные запустить мотор.

КОНДЕНСАТОР ПУСК, КОНДЕНСАТОР ЗАПУСК ДВИГАТЕЛЯ

Конденсаторный пуск, конденсаторный двигатель аналогичен конденсаторному пуску, асинхронный двигатель, за исключением того, что пусковая обмотка и конденсатор постоянно подключен к цепи. У этого мотора очень хороший пуск крутящий момент. Коэффициент мощности при номинальной нагрузке составляет почти 100 процентов или единицу. из-за того, что в двигателе постоянно используется конденсатор.

Для этого типа двигателя существует несколько различных конструкций. Один тип конденсаторный пуск, конденсаторный двигатель имеет две обмотки статора, которые разнесены на 90 электрических градусов. Подключена основная или ходовая обмотка непосредственно через номинальное сетевое напряжение. Конденсатор подключен последовательно с пусковой обмоткой и эта последовательная комбинация также связана по номинальному сетевому напряжению. Центробежный переключатель не используется, потому что пусковая обмотка находится под напряжением в течение всего периода работы мотор.

ил 12 иллюстрирует внутренние соединения для запуска конденсатора, конденсатор запускает двигатель с использованием одного значения емкости.


ил. 12 Разъемы для конденсаторного пуска, конденсаторного двигателя.

Чтобы реверсировать вращение этого двигателя, проводные соединения пускового обмотку необходимо поменять местами. Этот тип конденсаторного запуска, конденсаторный запуск двигатель работает бесшумно и используется на масляных горелках, вентиляторах и небольших деревообрабатывающие и металлообрабатывающие станки.

Второй тип конденсаторного запуска, конденсаторный двигатель имеет два конденсатора. Рис. 13 представляет собой схему внутренних соединений двигателя. В в момент запуска двигателя два конденсатора включаются параллельно. когда двигатель достигает 75 процентов номинальной скорости, центробежный переключатель отключает конденсатор большей емкости. Затем двигатель работает с меньший конденсатор подключен только последовательно с пусковой обмоткой.


ил.13 Подключения для конденсаторного пуска, конденсаторного двигателя: МАЛЫЙ КОНДЕНСАТОР, ИСПОЛЬЗУЕМЫЙ ДЛЯ ЗАПУСКА И РАБОТЫ; КОНДЕНСАТОР БОЛЬШОГО РАЗМЕРА ДЛЯ ЗАПУСК.

Этот тип двигателя имеет очень хороший пусковой момент, хорошую регулировку скорости и коэффициент мощности почти 100 процентов при номинальной нагрузке. Заявки на К этому типу двигателей относятся топочные топки, холодильные агрегаты и компрессоры.

Третий тип конденсаторного пуска, конденсаторный двигатель с автотрансформатором. с одним конденсатором.Этот двигатель имеет высокий пусковой момент и высокую рабочую фактор силы. Рис. 14 представляет собой схему внутренних соединений для этот мотор. При запуске двигателя центробежный переключатель подключает обмотку 2 в точку А на отводном автотрансформаторе. Поскольку конденсатор подключен через максимальное количество витков трансформатора, он получает максимальное напряжение вывод при запуске. Таким образом, конденсатор подключается с номиналом примерно 500 вольт. В результате в обмотке имеется большое значение ведущего тока. 2, и развивается сильный пусковой крутящий момент.

Когда двигатель достигает примерно 75 процентов номинальной скорости, центробежный выключатель отключает пусковую обмотку от точки A и снова подключает эту обмотку к точке B на автотрансформаторе. Применяется меньшее напряжение к конденсатору, но двигатель работает с обеими обмотками под напряжением. Таким образом, конденсатор поддерживает коэффициент мощности, близкий к единице, при номинальной нагрузке.

Пусковой момент этого двигателя очень хороший, а регулировка скорости удовлетворительно.Приложения, требующие этих характеристик, включают большие холодильники и компрессоры.


ил. 14 Соединения для конденсаторного пуска, конденсаторного двигателя с автотрансформатором

НАЦИОНАЛЬНЫЙ КОД ЭЛЕКТРИЧЕСКОГО КОДА

Раздел 430-32 (b) (1) Национального электротехнического кодекса гласит, что любые двигатель мощностью в одну или менее лошадиных сил, который запускается вручную и находится в пределах вид с места стартера, считается защищенным от перегрузка устройством максимального тока, защищающим проводники ответвления цепь.Это устройство максимального тока ответвления не должно быть больше указанного. в статье 430, Часть D (Ответвительная цепь двигателя, короткое замыкание и замыкание на землю Защита). Исключением является то, что любой такой двигатель можно использовать при напряжении 120 вольт. или менее в ответвленной цепи, защищенной не более 20 ампер.

Считается, что расстояние более 50 футов находится вне поля зрения стартовая локация. Раздел 430-32 (c) распространяется на двигатели мощностью в одну лошадиную силу или меньше, запускаются автоматически, вне поля зрения со стартовой точки или стационарно установлен.

Раздел 430-32 (c) (1) гласит, что любой двигатель мощностью в одну или менее лошадиных сил который запускается автоматически, должен иметь отдельное устройство максимального тока который реагирует на ток двигателя. Этот блок перегрузки должен быть установлен для отключения при не более 125% номинального тока полной нагрузки мотор для моторов с маркировкой на превышение температуры не более 40 градусов Цельсия или с коэффициентом эксплуатации не менее 1,15 (1,15 или выше) и не более 115 процентов для всех других типов двигателей.

РЕЗЮМЕ

Однофазный асинхронный двигатель — один из наиболее часто используемых двигателей в жилых и легких коммерческих целях. Каждое приложение подскажет правильный мотор стиль для использования. Все двигатели используют концепцию использования одной фазы или одной фазы. синусоиды, и смещение эффектов токов через катушки на создают движущееся магнитное поле. Расщепленная фаза и конденсаторный пуск в двигателе используется пусковой выключатель для отключения пусковых обмоток от линия, когда двигатель наберет скорость.Двухконденсаторные двигатели используют несколько конденсаторов или варианты конденсаторов двух номиналов для создания пусковой и работающей цепи. Все те же правила NEC, которые применяются к трехфазному двигатели по-прежнему применимы к однофазным двигателям. Есть много исключений, применимо только к двигателям малой мощности.

ВИКТОРИНА

1. Перечислите основные части асинхронного двигателя с расщепленной фазой.

2. Что произойдет, если контакты центробежного переключателя не включатся повторно при мотор останавливается?

3.Объясните, как направление вращения асинхронного двигателя с расщепленной фазой обратный.

4. Асинхронный двигатель с расщепленной фазой имеет номинальное значение двойного напряжения 115/230 вольт. Двигатель имеет две ходовые обмотки, каждая из которых рассчитана на 115 вольт и одну пусковую обмотку на 115 вольт. Нарисуйте принципиальную схему этого асинхронного двигателя с расщепленной фазой, подключенного для работы на 230 В.

5. Нарисуйте принципиальную схему подключения асинхронного двигателя с расщепленной фазой. в вопросе 4 подключен для работы от 115 В.

6. Асинхронный двигатель с расщепленной фазой имеет номинальное значение двойного напряжения 115/230. вольт. Двигатель имеет две ходовые обмотки, каждая из которых рассчитана на 115 вольт. Кроме того, есть две пусковые обмотки, и каждая из этих обмоток рассчитан на 115 вольт. Нарисуйте принципиальную схему подключения этой разделенной фазы. асинхронный двигатель подключен для работы от 230 В.

7. В чем основное отличие асинхронного двигателя с расщепленной фазой от конденсаторного двигателя с индукционным пуском?

8.Если центробежный переключатель не размыкается при ускорении двигателя с расщепленной фазой до его номинальной скорости, что будет с пусковой обмоткой?

9. Какое ограничение у конденсаторного запуска асинхронного двигателя?

10. Вставьте правильное слово или фразу для завершения каждого из следующих заявления.

а. Двигатель мощностью не более одной лошадиных сил, который запускается вручную и который находится в пределах видимости от стартовой точки, считается защищенной ______

г.Двигатель мощностью в одну или менее лошадиных сил, запускаемый вручную, считается в пределах видимости места стартера, если расстояние не превышает _________

г. Конденсатор используется с конденсаторным пуском, используется асинхронный двигатель. только для улучшения ______

г. Конденсаторный пуск, асинхронный двигатель имеет лучший пусковой момент чем _________

Однофазные двигатели

Однофазные двигатели

Обзор однофазных двигателей

667

элементов найдено

Уточните результаты

Цена
Наличие
Мощность
Фаза
Напряжение
Рама
Диапазон об / мин
Марка

❮Сверху

{{#Недавние заказы}}

Ожидаемая доставка до

{{etaWeekDay}}

{{etaDay}}

{{etaMonth}} {{etaYear}}

Номер заказа: {{orderKey}}

Отслеживание №

{{#trackingList}} {{#trackingNo}} {{#trackingUrl}} {{trackingNo}} {{/ trackingUrl}} {{^ trackingUrl}} {{trackingNo}} {{/ trackingUrl}} {{/ trackingNo}} {{^ trackingNo}} {{#trackingUrl}} Отслеживать свой заказ {{/ trackingUrl}} {{/ trackingNo}} {{/ trackingList}} {{/Недавние заказы}} {{#deliveredOrders}}

{{orderStatus}}

{{etaWeekDay}}

{{etaDay}}

{{etaMonth}} {{etaYear}}

Номер заказа: {{orderKey}}

{{#trackingList}} {{#trackingNo}}

Отслеживание №

{{/ trackingNo}} {{/ trackingList}} {{#flagReturn}}

{{/ flagReturn}} {{/ deliveryOrders}}
Глобальный помощник
{{#flagQuoteAlert}}

{{quoteAlerts}}

Котировки срок истечения

{{/ flagQuoteAlert}} {{#flagOrderAlert}}

{{orderAlerts}}

Заказы в ожидании утверждения

{{/ flagOrderAlert}} Икс
Глобальный помощник
Быстро проверить заказ

Номер заказа недействителен.

Почтовый индекс недействителен.

Заказ на

не найден.

Номер заказа (обязательно)

Почтовый индекс (обязательно)

Найти мой заказ

Классификация электродвигателей — Часть третья ~ Электрические ноу-хау


В предыдущей теме »Классификация of Electric Motors — Part Two “, я объяснил Бесщеточный двигатель постоянного тока (BLDC) и первый тип однофазного двигателя, с короткозамкнутым ротором, асинхронный двигатель; Асинхронные двигатели с экранированными полюсами.

Сегодня я объясню другие типы асинхронных двигателей с короткозамкнутым ротором, а также типы асинхронных двигателей с фазным ротором следующим образом.

Вы можете просмотреть следующие связанные темы для ознакомления и хорошей подписки.


1- Однофазный, с короткозамкнутым ротором, асинхронный двигатель:




В этой категории есть много типов, как показано на изображении ниже.


B- Двухфазный асинхронный двигатель переменного тока



Конструкция и принцип работы:



Электродвигатель с расщепленной фазой также известен как электродвигатель с индукционным пуском / индукционным ходом.У него две обмотки: пусковая и основная. Пусковая обмотка сделана из провода меньшего диаметра и с меньшим количеством витков по сравнению с основной обмоткой, чтобы создать большее сопротивление, таким образом, поле пусковой обмотки расположено под другим углом, чем у основной обмотки, что заставляет двигатель начать вращение. Основная обмотка из более толстого провода обеспечивает работу двигателя в остальное время.

Преимущества и недостатки:


  1. Пусковой крутящий момент низкий, обычно от 100% до 175% номинального крутящего момента.
  2. Двигатель потребляет высокий пусковой ток, примерно от 700% до 1000% номинального тока.
  3. Максимальный создаваемый крутящий момент составляет от 250% до 350% от номинального крутящего момента.

Приложения:

Хорошие применения для двигателей с разделенной фазой включают небольшие измельчители, небольшие вентиляторы и воздуходувки, а также другие приложения с низким пусковым моментом и потребляемой мощностью от 1/20 до 1/3 л.с. Избегайте использования этого типа двигателя в любых приложениях, требующих высокой частоты циклов включения / выключения или высокого крутящего момента.

Типы:



Двухфазные двигатели предназначены для использования индуктивности, емкости или сопротивления для развития пускового момента, поэтому их несколько типов:
  1. Конденсаторный пуск.
  2. Асинхронный двигатель переменного тока с постоянным разделенным конденсатором (работа конденсатора).
  3. Асинхронный двигатель переменного тока с конденсаторным пуском / конденсаторным запуском.
  4. Сопротивление-Старт.

1- Конденсаторный пуск



Конструкция и принцип работы:




Двухфазный асинхронный двигатель переменного тока с конденсаторным пуском
Статор состоит из основной обмотки и пусковой (вспомогательной) обмотки.Пусковая обмотка подключена параллельно основной обмотке и физически размещена под прямым углом к ​​ней. Разность фаз между двумя обмотками составляет 90 градусов, что достигается последовательным соединением вспомогательной обмотки с конденсатором и пусковым выключателем.

При первом включении двигателя пусковой выключатель замыкается. Это помещает конденсатор последовательно со вспомогательной обмоткой. Конденсатор имеет такую ​​емкость, что вспомогательная цепь фактически представляет собой резистивно-емкостную цепь (называемую емкостным реактивным сопротивлением и выражаемую как XC).В этой цепи ток опережает линейное напряжение примерно на 45º (потому что X C примерно равно R). Основная обмотка имеет достаточное сопротивление-индуктивность (называемое индуктивным сопротивлением и выражаемое как XL), чтобы ток отставал от линейного напряжения примерно на 45º (потому что X L примерно равно R). Таким образом, токи в каждой обмотке сдвинуты по фазе на 90º, как и генерируемые магнитные поля. Эффект заключается в том, что две обмотки действуют как двухфазный статор и создают вращающееся поле, необходимое для запуска двигателя.

Когда достигается почти полная скорость (75% номинальной скорости), центробежное устройство (пусковой выключатель) отключает пусковую обмотку. Затем двигатель работает как простой однофазный асинхронный двигатель. Поскольку вспомогательная обмотка представляет собой только легкую обмотку, двигатель не развивает достаточный крутящий момент для запуска тяжелых нагрузок. Поэтому электродвигатели с расщепленной фазой бывают небольших размеров.

Преимущества и недостатки:


  1. Поскольку конденсатор включен последовательно с цепью запуска, он создает больший пусковой крутящий момент, обычно от 200% до 400% от номинального крутящего момента.
  2. Пусковой ток, обычно от 450% до 575% номинального тока, намного ниже, чем при расщепленной фазе, из-за большего провода в пусковой цепи.
  3. Размеры варьируются от дробной до 10 л.с. при 900 — 3600 об / мин.

2- Постоянный разделенный конденсатор (конденсаторная работа) Асинхронный двигатель переменного тока



Конструкция и принцип работы:



Постоянный разделенный конденсатор (конденсаторная работа) Асинхронный двигатель переменного тока

Двигатель с постоянным разделенным конденсатором (PSC) имеет рабочий конденсатор, постоянно включенный последовательно с пусковой обмоткой.Это делает пусковую обмотку вспомогательной обмоткой, когда двигатель достигает рабочей скорости.

Так как рабочий конденсатор должен быть рассчитан на непрерывное использование, он не может обеспечивать пусковой импульс пускового конденсатора.

Типичный пусковой момент двигателя PSC низкий, от 30% до 150% от номинального момента.

Двигатели

PSC имеют низкий пусковой ток, обычно менее 200% номинального тока, что делает их идеальными для приложений с высокой частотой включения / выключения.

Преимущества


  1. Конструкцию двигателя можно легко изменить для использования с регуляторами скорости.
  2. Они также могут быть разработаны для обеспечения оптимального КПД и высокого коэффициента мощности (PF) при номинальной нагрузке.
  3. Они считаются самыми надежными из однофазных двигателей, главным образом потому, что не требуется центробежный пусковой выключатель.

Применения

Двигатели с постоянными разделенными конденсаторами имеют широкий спектр применения в зависимости от конструкции. К ним относятся вентиляторы, воздуходувки с низким начальным крутящим моментом и периодические циклы использования, такие как регулирующие механизмы, приводы ворот и устройства открывания гаражных ворот.

3-конденсаторный пуск / конденсаторный асинхронный двигатель переменного тока



Конструкция и принцип работы:

Пуск с конденсатором / Работа от конденсатора Асинхронный двигатель переменного тока с разделенной фазой

Этот двигатель имеет конденсатор пускового типа, соединенный последовательно со вспомогательной обмоткой, такой как конденсаторный пусковой двигатель, для высокого пускового момента.Как и двигатель PSC, он также имеет конденсатор рабочего типа, который включен последовательно со вспомогательной обмоткой после того, как пусковой конденсатор отключен от цепи. Это допускает высокий момент перегрузки.

Преимущества


  1. Этот тип двигателя может быть рассчитан на более низкие токи полной нагрузки и более высокий КПД.

Недостатки
  1. Этот двигатель дорогостоящий из-за пусковых и рабочих конденсаторов и центробежного переключателя.

Приложения

Он может обрабатывать приложения, слишком требовательные для любого другого типа однофазного двигателя.К ним относятся деревообрабатывающее оборудование, воздушные компрессоры, водяные насосы высокого давления, вакуумные насосы и другие устройства с высоким крутящим моментом, требующие от 1 до 10 л.с.

4- Начало сопротивления



Конструкция и принцип работы:

Сопротивление пуску Двухфазный асинхронный двигатель переменного тока

Модифицированной версией конденсаторного пускового двигателя является пусковой двигатель с сопротивлением.В этом типе двигателя пусковой конденсатор заменен резистором. Этот двигатель также имеет пусковую обмотку в дополнение к основной обмотке. Он включается и выключается из цепи так же, как и в электродвигателе с конденсаторным пуском. Пусковая обмотка расположена под прямым углом к ​​основной обмотке. Электрический фазовый сдвиг между токами в двух обмотках достигается за счет того, что полное сопротивление обмоток становится неравным. Основная обмотка имеет высокую индуктивность и низкое сопротивление. Следовательно, ток отстает от напряжения на большой угол.Пусковая обмотка имеет довольно низкую индуктивность и высокое сопротивление. Здесь ток отстает от напряжения на меньший угол.

Например, предположим, что ток в основной обмотке отстает от напряжения на 70º. Ток во вспомогательной обмотке отстает от напряжения на 40º. Следовательно, токи сдвинуты по фазе на 30º. Магнитные поля не совпадают по фазе на такую ​​же величину. Хотя идеальная угловая разность фаз составляет 90º для максимального пускового момента, разность фаз в 30 градусов по-прежнему создает вращающееся поле.Это обеспечивает достаточный крутящий момент для запуска двигателя. Когда двигатель набирает обороты, переключатель с регулируемой скоростью отключает пусковую обмотку от сети, и двигатель продолжает работать как асинхронный. Пусковой момент не такой большой, как при конденсаторном пуске.

Приложения, преимущества и недостатки:



Двигатель с резистивным пуском используется в приложениях, где требуемый пусковой момент меньше, чем тот, который обеспечивается конденсаторным пусковым двигателем.Помимо стоимости, этот двигатель не имеет каких-либо серьезных преимуществ перед двигателем с конденсаторным пуском.
На изображении ниже показано сравнение популярных типов двигателей с расщепленной фазой.



C- Универсальный двигатель:

Универсальный двигатель
Универсальные двигатели в основном работают от переменного тока, но они могут работать как от переменного, так и от постоянного тока.Инструменты и приспособления — одни из самых частых применений.

2- трехфазный, с короткозамкнутым ротором, асинхронный двигатель:



Почти 90% трехфазных асинхронных двигателей переменного тока относятся к типу с короткозамкнутым ротором. Здесь используется ротор типа «беличья клетка», и он работает, как объяснялось ранее. Номинальная мощность трехфазных двигателей составляет от одной трети до нескольких сотен лошадиных сил. Двигатели этого типа мощностью одну или больше лошадиных сил стоят меньше и могут запускать более тяжелые нагрузки, чем их однофазные аналоги.

Трехфазные асинхронные двигатели с короткозамкнутым ротором классифицируются по применению с буквой конструкции, которая указывает основные рабочие характеристики двигателя, эта классификация производится NEMA и IEC. Основные классификации трехфазных асинхронных двигателей с короткозамкнутым ротором показаны на рисунке ниже.

Трехфазный, с короткозамкнутым ротором, асинхронный двигатель

3- однофазный асинхронный двигатель с обмоткой ротора



В этой категории есть много типов, как показано на изображении ниже.


A- Отталкивающий двигатель



Строительство:

Отталкивающий двигатель

У двигателя есть статор и ротор, но между ними нет электрического соединения, и ток ротора генерируется за счет индукции. Обмотка ротора соединена с коммутатором, который находится в контакте с парой короткозамкнутых щеток, которые можно перемещать для изменения их углового положения относительно воображаемой линии, проведенной через ось статора.Двигатель можно запускать, останавливать и реверсировать, а скорость можно изменять, просто изменяя угловое положение щеток.


Принципиальная разница между двигателем переменного тока и отталкивающими двигателями заключается в способе подачи энергии на якорь. В двигателях серии переменного тока якорь получает напряжение по проводимости через источник питания. Но в отталкивающих двигателях якорь запитывается индукцией от обмоток статора.

Недостатки отталкивающего двигателя:

  1. Возникновение искр на щетках.
  2. Коммутатор и щетки быстро изнашиваются. В первую очередь это происходит из-за дуги и тепла, выделяемого при сборке щеток.
  3. Низкий коэффициент мощности на низких скоростях.
  4. Без нагрузки скорость очень высокая и опасная.

Применение отталкивающих двигателей:

Благодаря отличным пусковым и разгонным характеристикам, отталкивающие асинхронные двигатели идеально подходят для:

  1. Операторы стоимости.
  2. Приложения для сельскохозяйственных двигателей.
  3. Подъемники.
  4. Машины для ухода за полом.
  5. Воздушные компрессоры.
  6. Прачечное оборудование.
  7. Горное оборудование.

Типы:

Различные типы двигателей, которые работают по принципу отталкивания:

  1. Отталкивающий двигатель Асинхронный двигатель.
  2. Отталкивающий Асинхронный двигатель.

A- Индукционный запуск с отталкиванием


Асинхронный двигатель с отталкивающим пуском — это однофазный двигатель, имеющий те же обмотки, что и отталкивающий двигатель. Когда асинхронный двигатель приводит в движение жесткую пусковую нагрузку, такую ​​как компрессор, высокий пусковой крутящий момент отталкивающего двигателя может быть снижен. использовать.Обмотки ротора асинхронного двигателя выведены на сегменты коммутатора для запуска парой закороченных щеток. На скорости, близкой к рабочей, центробежный переключатель закорачивает все сегменты коллектора, создавая эффект ротора с короткозамкнутым ротором. Щетки также можно поднять, чтобы продлить срок службы втулки. Это означает, что они запускались как отталкивающие двигатели, но работали как асинхронные. Пусковой крутящий момент составляет от 300% до 600% от значения полной скорости по сравнению с менее 200% для чисто асинхронного двигателя.

B- Отталкивающий асинхронный двигатель



Отталкивающий асинхронный двигатель представляет собой разновидность отталкивающего двигателя, который имеет короткозамкнутую обмотку в роторе в дополнение к обмотке отталкивающего двигателя.Двигатель этого типа может иметь либо постоянную, либо переменную скорость.

4- трехфазный асинхронный двигатель с обмоткой ротора



Трехфазный, ротор с обмоткой, асинхронный двигатель

  • Трехфазный асинхронный двигатель этого типа имеет высокий пусковой крутящий момент, что делает его идеальным для применений, где стандартные двигатели NEMA не работают.Двигатель с фазным ротором особенно эффективен в приложениях, где использование двигателя с короткозамкнутым ротором может привести к пусковому току, слишком высокому для мощности системы питания.
  • Кроме того, двигатель с фазным ротором подходит для нагрузок с большим моментом инерции, имеющих длительное время разгона.
  • Электродвигатель с фазным ротором или электродвигатель с фазным ротором является разновидностью асинхронного электродвигателя с короткозамкнутым ротором. Хотя статор такой же, как у двигателя с короткозамкнутым ротором, он имеет набор обмоток на роторе, которые не замкнуты накоротко, а соединены с набором контактных колец.Это полезно при добавлении внешних резисторов и контакторов.
Ротор с обмоткой
  • Скольжение, необходимое для создания максимального крутящего момента (крутящий момент отрыва), прямо пропорционально сопротивлению ротора. В электродвигателе с контактным кольцом эффективное сопротивление ротора увеличивается за счет добавления внешнего сопротивления через контактные кольца. Таким образом, можно получить более высокое скольжение и, следовательно, тяговый момент на более низкой скорости.
  • Особенно высокое сопротивление может привести к возникновению крутящего момента отрыва почти при нулевой скорости, обеспечивая очень высокий крутящий момент отрыва при низком пусковом токе. По мере ускорения двигателя значение сопротивления может уменьшаться, изменяя характеристики двигателя в соответствии с требованиями нагрузки. Когда двигатель достигает базовой скорости, с ротора снимаются внешние резисторы. Это означает, что теперь двигатель работает как стандартный асинхронный двигатель.
  • Этот тип двигателя идеально подходит для очень высоких инерционных нагрузок, когда требуется создать крутящий момент отрыва при почти нулевой скорости и разогнаться до полной скорости за минимальное время с минимальным потреблением тока.


Приложения:



Обычно они используются для привода высокоинерционных нагрузок (например, больших насосов, кранов, шлифовальных машин).

В следующем разделе я продолжу объяснение Типы синхронных двигателей . Итак, продолжайте следить.

Примечание: эти темы о двигателях в этом курсе EE-1: Курс электрического проектирования для начинающих является введением только для новичков, чтобы получить общую базовую информацию о двигателях и насосах как типе силовых нагрузок.Но на других уровнях наших курсов по электрическому проектированию мы будем показывать и подробно объяснять расчеты нагрузок на двигатели и насосы. Однофазный асинхронный двигатель

— Инженерные проекты

Привет, друзья! Надеюсь, у вас все в порядке, и у вас все хорошо в жизни. Сегодня я собираюсь представить вам — Введение в однофазный асинхронный двигатель . Как я ранее упоминал в своей статье «Введение в асинхронные двигатели», существует два основных типа асинхронных двигателей: однофазный асинхронный двигатель и трехфазный асинхронный двигатель.Для получения информации о трехфазных двигателях вы можете прочитать мою статью о трехфазных асинхронных двигателях. Теперь поговорим об определении однофазного асинхронного двигателя.

Однофазный асинхронный двигатель — это двигатель, который работает от однофазного источника переменного тока. Этот двигатель используется в приложениях с низким энергопотреблением. Он обычно используется в домашних условиях из-за ограниченного размера и меньшей мощности. Некоторые из применений включают вентиляторы, стиральные машины, насосы, игрушки, пылесосы, компрессоры холодильников и станки.

Сначала расскажу о конструкции, принципах работы и преимуществах. И в последних разделах этой статьи я поделюсь некоторыми знаниями о проблеме запуска однофазного асинхронного двигателя и дам сравнение трехфазных и однофазных асинхронных двигателей. Теперь давайте посмотрим на конструкцию однофазного асинхронного двигателя.

Конструкция однофазного асинхронного двигателя

  • Базовая конструкция однофазного асинхронного двигателя аналогична конструкции всех других двигателей.
  • Ротор и статор — два основных компонента однофазного асинхронного двигателя.
  • Ниже мы посмотрим на статор и ротор по очереди.
  • Итак, в первую очередь ознакомьтесь с функциональностью статора однофазного асинхронного двигателя:
Статор однофазного асинхронного двигателя
  • Статор однофазного асинхронного двигателя является неподвижной частью, как и в других двигателях.
  • Стационарный статор двигателя питается от однофазного источника переменного тока.
  • Статор представляет собой цилиндрическую раму с прорезями.
  • Внутри рамы статора расположен цилиндрический сердечник ротора с небольшим воздушным зазором между ними.
  • Назначение прорезей — перенос цепи обмотки.
  • Схема обмотки статора называется обмоткой статора, которая в случае данного конкретного двигателя является однофазной.
Вы также можете прочитать:
Ротор однофазного асинхронного двигателя
  • Вторая основная часть двигателя — это ротор.
  • Как и во всех других двигателях, ротор является вращающейся частью.
  • Ротор имеет цилиндрическую форму и соединен с выходным валом двигателя.
  • Другими словами, это деталь, которая обеспечивает вращение на выходе. Нагрузка подключена к валу ротора.
  • Ротор однофазного асинхронного двигателя по конструкции аналогичен трехфазному асинхронному двигателю с короткозамкнутым ротором. Я объяснил его конструкцию в своей статье о трехфазном асинхронном двигателе.
  • Ротор имеет прорези по всей поверхности для проводов, которые представляют собой медные или алюминиевые шины.
  • Эти токопроводящие шины закорочены друг с другом двумя концевыми кольцами. По одному концевому кольцу с каждой стороны ротора.
  • Как и ротор трехфазного асинхронного двигателя с короткозамкнутым ротором, он не имеет контактного кольца и щеточного узла.
  • Это все о базовой конструкции статора и ротора, теперь я перехожу к следующему разделу этой статьи.

Работа однофазного асинхронного двигателя

Принцип работы однофазного асинхронного двигателя основан на законе электромагнитной индукции Фарадея.Электропитание переменного тока подается на обмотки статора, которые являются однофазными, ток, протекающий через обмотку, создает магнитное поле, которое называется магнитным полем статора. Силовые линии этого магнитного поля пересекают проводники ротора. Поскольку поток изменяется из-за изменения магнитного поля источника переменного тока со временем, в роторе будут индуцироваться ЭДС и ток. Индуцированный ток вызовет другое магнитное поле, которое называется магнитным полем ротора. Однофазный асинхронный двигатель отличается от трехфазного асинхронного двигателя тем, что он не может создавать вращающееся магнитное поле.Вместо вращающегося магнитного поля он создает магнитное поле, которое пульсирует из-за колебаний переменного тока между 0 и 180 градусами. Другими словами, магнитное поле не вращается, а разворачивается на 180 градусов. Взаимодействие двух магнитных полей или магнитных потоков, одно от статора, а второе от ротора, будет создавать крутящий момент.

Преимущества однофазного асинхронного двигателя

В этом разделе я выделю некоторые из преимуществ однофазного асинхронного двигателя, перечисленные ниже.

  • Однофазный асинхронный двигатель более экономичен там, где требуется меньшая мощность.
  • Такой двигатель прост в конструкции из-за отсутствия контактных колец и щеток.
  • Благодаря простой конструкции его очень легко обслуживать и ремонтировать.
  • Этот мотор дешевый по стоимости.
  • Кроме того, однофазные асинхронные двигатели надежны и прочны.

Проблема пуска однофазного асинхронного двигателя

Начальный крутящий момент или пусковой момент однофазного асинхронного двигателя очень низкий, поэтому этот двигатель не может запускаться самостоятельно.Для трехфазного асинхронного двигателя пусковой момент высокий, поэтому он может запускаться самостоятельно. Теперь, чтобы преодолеть эту проблему запуска, можно использовать конденсатор для создания пускового момента. Этот конденсатор создает разность фаз между потоком ротора и потоком статора. Конденсатор используется с пусковой обмоткой, которая отключается при запуске двигателя.

Сравнение однофазных и трехфазных асинхронных двигателей

В этом сегменте моей статьи я собираюсь провести небольшое сравнение однофазных и трехфазных асинхронных двигателей, чтобы вы могли понять, какой из них лучше всего подходит для вашего приложения.Оба они сравниваются на основе их характеристик, конструкции, поставки и использования.

  • Выходная мощность, производимая однофазным асинхронным двигателем, примерно вдвое меньше выходной мощности трехфазного асинхронного двигателя.
  • Однофазный асинхронный двигатель используется там, где требуется меньшая мощность по сравнению с трехфазным асинхронным двигателем.
  • КПД и коэффициент мощности также низкие в случае однофазного асинхронного двигателя.
  • Однофазные двигатели более просты и дешевле при малой мощности по сравнению с трехфазными асинхронными двигателями.
  • Пусковой крутящий момент у однофазного двигателя низкий по сравнению с трехфазным асинхронным двигателем.
  • Однофазные асинхронные двигатели используются в домашних условиях, а трехфазные асинхронные двигатели используются в промышленности.
  • Техническое обслуживание однофазного двигателя очень просто по сравнению с трехфазным асинхронным двигателем.
  • Еще один важный момент — это конструкция. Однофазный асинхронный двигатель легко сконструировать по сравнению с трехфазным асинхронным двигателем.
  • Однофазный асинхронный двигатель надежен и экономичен по сравнению с трехфазным асинхронным двигателем.
  • Трехфазный асинхронный двигатель самозапускается, а однофазный асинхронный двигатель не самозапускается.

Двигатели переменного тока — Магазин электрических двигателей переменного тока от Bodine Electric Company

Мотор-редукторы и двигатели переменного тока

Bodine — это недорогое приводное решение, не требующее обслуживания. Линия двигателей переменного тока и мотор-редукторов Bodine включает пять типоразмеров (30R, 34R, 42R и 48R и K2), при этом все стандартные модели разработаны и рассчитаны на работу в непрерывном режиме. Обмотки синхронных и несинхронных двигателей доступны для использования с источниками питания 115, 230 и 460 В переменного тока.Поскольку в них нет щеток или пружин, двигатели переменного тока являются отличным выбором для приложений, где не требуется техническое обслуживание и бесшумная работа. Типичные области применения включают промышленную автоматизацию, конвейеры, оборудование для пищевой промышленности, лабораторные или медицинские устройства, а также основные приложения для перекачивания и измерения.

Bodine производит четыре основных типа двигателей переменного тока:

Постоянный разделенный конденсатор (PSC) Редукторным двигателям требуется непрерывный рабочий конденсатор двигателя для обеспечения пускового момента.Модели Bodine типа «CI» и «YC» предназначены для односкоростных (фиксированных) приложений с использованием однофазного переменного тока. Они рекомендуются для приложений с непрерывным режимом работы или для приложений Start-Stop с частотой до 10 запусков в минуту.

Двухфазные мотор-редукторы и двигатели (типы «SI» и «SY») используют вспомогательную обмотку для обеспечения пускового момента, а не конденсатор. Пусковая обмотка будет отключена центробежным переключателем, когда двигатель достигнет 70% своей номинальной рабочей скорости.Эти двигатели в основном используются в приложениях с непрерывным режимом работы, но могут быть найдены приложения с запуском-остановом до шести пусков в час.

Трехфазные мотор-редукторы с фиксированной скоростью (типы «PP» и «YP») и моторы могут использоваться на заводах и в других средах, где доступно 230/460 В переменного тока. Они обеспечивают более высокий пусковой крутящий момент и более высокую эффективность, чем модели с постоянными разделенными конденсаторами, и рекомендуются для приложений в непрерывном режиме или для приложений с пусковой остановкой с частотой до 10 пусков в минуту.

Bodine также предлагает полную линейку трехфазных мотор-редукторов переменного тока с инверторным режимом и согласованные инверторные регуляторы скорости для применения с регулируемой скоростью.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *