Модуль зубьев зубчатого колеса: расчет, стандартные, определение
Зубчатая передача впервые была освоена человеком в глубокой древности. Имя изобретателя осталось скрыто во тьме веков. Первоначально зубчатые передачи имели по шесть зубьев — отсюда и пошло название «шестерня». За многие тысячелетия технического прогресса передача многократно усовершенствовалась, и сегодня они применяются практически в любом транспортном средстве от велосипеда до космического корабля и подводной лодки. Используются они также в любом станке и механизме, больше всего шестеренок используется в механических часах.
Зубчатое колесоЧто такое модуль зубчатого колеса
Современные шестерни далеко ушли от своих деревянных шестизубых предков, изготавливаемых механиками с помощью воображения и мерной веревочки. Конструкция передач намного усложнилась, тысячекратно возросли скорость вращения и усилия, передаваемые через такие передачи. В связи с этим усложнились и методы их конструирования. Каждую шестеренку характеризует несколько основных параметров
- диаметр;
- число зубьев;
- шаг;
- высота зубца;
- и некоторые другие.
Одним из самых универсальных характеристик является модуль зубчатого колеса. Существует для подвида — основной и торцевой.
Скачать ГОСТ 9563-60
В большинстве расчетов используется основной. Он рассчитывается применительно к делительной окружности и служит одним из важнейших параметров.
Для расчета этого параметра применяют следующие формулы:
m=t/π,
где t — шаг.
Параметры зубчатых колес
Модуль зубчатого колеса можно рассчитать и следующим образом:
m=h/2,25,
где h — высота зубца.
И, наконец,
m=De/(z+2),
где De — диаметр окружности выступов,а z — число зубьев.
Что же такое модуль шестерни?
это универсальная характеристика зубчатого колеса, связывающая воедино такие его важнейшие параметры, как шаг, высота зуба, число зубов и диаметр окружности выступов. Эта характеристика участвует во всех расчетах, связанных с конструированием систем передач.
Формула расчета параметров прямозубой передачи
Чтобы определить параметры прямозубой шестеренки, потребуется выполнить некоторые предварительные вычисления. Длина начальной окружности равна π×D, где D — ее диаметр.
Расчет модуля зубчатого колеса
Шаг зацепления t – это расстояние между смежными зубами, измеренное по начальной окружности. Если это расстояние умножить на число зубов z, то мы должны получить ее длину:
π×D=t×z,
проведя преобразование, получим:
D=(t /π)×z
Если разделить шаг на число пи, мы получим коэффициент, постоянный для данной детали зубчатой передачи. Он и называется модулем зацепления m.
t/π=m,
размерность модуля шестерни — миллиметры. Если подставить его в предыдущее выражение, то получится:
В=m×z;
выполнив преобразование, находим:
m=D / z.
Отсюда вытекает физический смысл модуля зацепления: он представляет собой длину дуги начальной окружности, соответствующей одному зубцу колеса. Диаметр окружности выступов De получается равным
De=d+2× h’,
где h’- высота головки.
Высоту головки приравнивают к m:
h’=m.
Проведя математические преобразования с подстановкой, получим:
De=m×z+2m = m(z+2),
откуда вытекает:
m=De/(z+2).
Диаметр окружности впадин Di соответствует De за вычетом двух высот основания зубца:
Di=D-2h“,
где h“- высота ножки зубца.
Для колес цилиндрического типа h“ приравнивают к значению в 1,25m:
h’ = 1,25m.
Устройство зубчатого колеса
Выполнив подстановку в правой части равенства, имеем:
Di = m×z-2×1,25m = m×z-2,5m;
что соответствует формуле:
Di = m(z-2,5m).
Полная высота:
h = h’+h“,
и если выполнить подстановку, то получим:
h = 1m+1,25m=2,25m.
Иначе говоря, головка и ножка зубца относятся друг к другу по высоте как 1:1,25.
Следующий важный размер, толщину зубца s принимают приблизительно равной:
- для отлитых зубцов: 1,53m:
- для выполненных путем фрезерования-1,57m, или 0,5×t
Поскольку шаг t приравнивается к суммарной толщине зубца s и впадины sв, получаем формулы для ширины впадины
- для отлитых зубцов: sв=πm-1,53m=1,61m:
- для выполненных путем фрезерования- sв= πm-1,57m = 1,57m
Характеристики конструкции оставшейся части зубчатой детали определяются следующими факторами:
- усилия, прикладываемые к детали при эксплуатации;
- конфигурация деталей, взаимодействующих с ней.
Детальные методики исчисления этих параметров приводятся в таких ВУЗовских курсах, как «Детали машин» и других. Модуль шестерни широко используется и в них как один из основных параметров.
Для отображения шестеренок методами инженерной графики используются упрощенные формулы. В инженерных справочниках и государственных стандартов можно найти значения характеристик, рассчитанные для типовых размеров зубчатых колес.
Исходные данные и замеры
На практике перед инженерами часто встает задача определения модуля реально существующей шестерни для ее ремонта или замены. При этом случается и так, что конструкторской документации на эту деталь, как и на весь механизм, в который она входит, обнаружить не удается.
Самый простой метод — метод обкатки. Берут шестерню, для которой характеристики известны. Вставляют ее в зубья тестируемой детали и пробуют обкатать вокруг. Если пара вошла в зацепление — значит их шаг совпадает. Если нет — продолжают подбор. Для косозубой выбирают подходящую по шагу фрезу.
Такой эмпирический метод неплохо срабатывает для зубчатых колес малых размеров.
Для крупных, весящих десятки, а то и сотни килограмм, такой способ физически нереализуем.
Результаты расчетов
Для более крупных потребуются измерения и вычисления.
Как известно, модуль равен диаметру окружности выступов, отнесенному к числу зубов плюс два:
m=De/(z+2)
Последовательность действий следующая:
- измерить диаметр штангенциркулем;
- сосчитать зубцы;
- разделить диаметр на z+2;
- округлить результат до ближайшего целого числа.
Зубец колеса и его параметры
Данный метод подходит как для прямозубых колес, так и для косозубых.
Расчет параметров колеса и шестерни косозубой передачи
Расчетные формулы для важнейших характеристик шестерни косозубой передачи совпадают с формулами для прямозубой. Существенные различия возникают лишь при прочностных расчетах.
методика построения для любой CAD системы
Про моделирование и печать шестеренок здесь написано достаточно. Однако, большинство статей предполагают использование спец. программ. Но, у каждого пользователя есть своя «любимая» программа для моделирования. Кроме того, не все хотят устанавливать и изучать дополнительный софт. Как же моделировать профиль зуба шестерни в программе, где не предусмотрено вычерчивание эвольвентного профиля? Очень просто! Но муторно… 🙂Нам понадобится любая программа, которая может работать с 2D графикой. Например, ваша любимая программа! Она работает с 3D? Значит и с 2D сможет! 😉 Строим профиль эвольвентного зуба без коррекции. Если кому-то захочется построить корригированный зуб, он может с этим разобраться самостоятельно. Информации полно — и в интернете, и в литературе. Если в вашей шестеренке зубьев больше 17-ти, то вам коррекция не понадобится. Если же зубьев 17 или меньше, то без коррекции возникает «утоньшение» ножки зуба, а при чрезмерной коррекции возникает заострение вершины зуба. Что выбрать? Решать вам.
1 шаг.
Определяем делительную окружность шестерни. Зачем это нужно? Чтобы определить межосевое расстояние. Т.е. где у вас будет располагаться одна шестерня, а где другая. Сложив диаметры делительных окружностей шестеренок и разделив сумму пополам, вы определите межосевое расстояние.
Чтобы определить диаметр делительной окружности нужно знать два параметра: модуль зуба и количество зубьев. Ну, с количеством зубьев – тут всем все понятно. Количеством зубьев на одной и другой шестерне определяется нужное нам передаточное отношение. Что такое модуль? Чтобы не связываться с числом «пи», инженеры придумали модуль. 🙂 Как вы знаете из курса школьной математики: D= 2 «Пи» R. Так вот, что касается шестеренок, там D = m* z, где D – это диаметр делительной окружности, m – модуль, z – количество зубьев.
2 шаг.
Чертим делительную окружность. У кого нет подходящей «проги», чертит на бумаге, фанере или металле! 🙂 От делительной окружности «откладываем» наружу на величину модуля (m) окружность вершин зубьев. Внутрь откладываем модуль и еще четверть модуля (1,25 m) — получаем окружность впадин зубьев. Четверть модуля дается на зазор между зубом другой шестерни и впадиной этой шестерни.
3 шаг:
Строим основную окружность. Основная окружность – это окружность, по которой «перекатывается» прямая линия, своим концом вычерчивая эвольвенту. Формула для расчета диаметра основной окружности очень простая: Db = D * cos a, где а – угол рейки 20 градусов. Эта формула нам не нужна! Все гораздо проще.
4 шаг:
Прямую линию, которую мы получили, будем поворачивать вокруг центра шестерни маленькими угловыми шагами. Но, самое главное, при каждом повороте против часовой стрелки будем удлинять нашу линию на длину той дуги основной окружности, которую она прошла. А при повороте по часовой стрелки наша линия будет укорачиваться на ту же величину. Длину дуги или мерим в программе, или считаем по формуле: Длина дуги = (Пи * Db * угол поворота (в градусах)) / 360
5 шаг
«Прокатываем» прямую линию по основной окружности с нужным угловым шагом. Получаем точки эвольвентного профиля. Чем точнее хотим строить эвольвенту, тем меньший угловой шаг выбираем.
К сожалению, в большинстве программ автоматического проектирования (CAD) не предусмотрено построение эвольвенты. Поэтому эвольвенту строим по точкам либо прямыми, либо дугами, либо сплайнами. При построении эвольвента заканчивается на основной окружности. Оставшуюся часть зуба до впадины можно построить дугой того же радиуса, который получается на трех последних точках. Для 3D печати я рисовал эвольвенту сплайнами. Для лазерной резки металла мне пришлось рисовать эвольвенту дугами. Для лазера нужно создать файл в формате dwg или dxf (для некоторых, почему-то, только dxf). «Понимает» лазер только прямые, дуги и окружности, сплайны не понимает. На лазере можно сделать только прямозубые шестерни.Делим окружность на такое количество частей, которое в 4 раза больше количества зубьев шестерни. Эвольвенту отзеркаливаем относительно оси зуба и копируем с поворотом нужное количество раз.
Чтобы получить шестерню в объеме, то задаем толщину и получаем прямозубую цилиндрическую шестерню:
Если нужна косозубая шестерня, то вводим наклон зубьев и получаем:
Для получения шевронной шестерни, нужно отзеркалить косозубую шестерню относительно нужной торцевой поверхности:
Как смоделировать коническую шестерню, придумайте сами. 🙂К вопросу о точности шестеренок. Те шестеренки, которые я распечатал на 3D принтере, сначала вращались, издавая легкое поскрипывание. Прошло некоторое время, и звук прекратился. Шестеренки «притерлись». 🙂
Для вакуумной машины смоделировал пару – «шестерня-рейка». Их вырезали на лазере:
Рейка будет перемещать прижимную рамку с материалом (листовой АБС) из области нагрева в область вакуумного формования. Рейка и шестерня еще не испытывались. Возможно, придется «дорабатывать напильником». На рейке и шестерне видны «волны» от лазера – слишком толстый металл. Они то и могут заклинить. А, может, разработается. 🙂 Время покажет!Косозубые шестерни
Что такое косозубые шестерни?
Косозубая шестерня отличается формой нарезки зубьев. Они располагаются не параллельно, а под углом к оси вращения детали. Поверхность шестерни напоминает часть спирали. Применяется в механизмах, к которым предъявляются более жесткие требования к плавности хода и уровню создаваемого при работе шума.
Косозубые шестерни отличают следующие преимущества:
- Способна передавать более высокий крутящий момент за счет большей площади зацепления шестерней.
- Отсутствие рывков при запуске механизма в работу. Возможность применения в приводах и механизмах, работающих с переменной нагрузкой.
- Меньший уровень шума даже при работе в режимах с максимально допустимой нагрузкой.
-
Увеличенная площадь зацепления обуславливает возросшие значения силы трения.
- Повышенный нагрев и несколько сниженный коэффициент полезного действия.
- На вал с косозубой шестеренкой действуют более значительные силы, поэтому требуется установка на опорный подшипник.
Что такое модуль зуба шестерни
Модуль зуба шестерни — один из основных параметров, на который следует обращать внимание при выборе. Это универсальная линейная характеристика, позволяющая связать воедино все основные параметры шестерни — количество зубьев и их высоту, шаг, диаметр делительной окружности шестерни.
Именно от этого показателя прочность шестерни, чем большим будет модуль, тем меньше зубья подвержены износу, благодаря чему существенно увеличивается рабочий ресурс детали.
Модуль зацепления шестерни может быть рассчитан по нескольким формулам. Чаще всего используют отношение шага зубьев к числу Пи. Но это значение можно выразить и через высоту зуба, при этом модуль будет в 2,25 раз меньше высоты. Нередко для расчета определяют значение делительного диаметра и делят его на количество зубьев, увеличенное на 2.
Чем отличается зубчатое колесо от шестерни
Еще один момент, на который следует обратить внимание. Конечно, в разговорной речи эти понятия идентичны, но с технической точки зрения шестерня отличается от зубчатого колеса. И различие в основном связано не с особенностями конструкции, а функцией, выполняемой в механизме.
Согласно перечню основных терминов, приведенных в ГОСТ 16530-83, шестерня — зубчатое колесо с меньшим числом зубьев для редукторов и большим числом для мультипликаторов. Если в механизм входят детали с одинаковым количеством зубьев, то шестерней считается ведущая деталь, а зубчатым колесом — ведомая. Отметим, что на практике применяется еще одна разновидность — вал-шестерня, которая представляет собой вал с нарезанными непосредственно на нем зубьями. Все перечисленные детали являются основными элементами механических зубчатых передач.
Конструкция зубчатой передачи
Зубчатая передача представляет собой механизм для изменения скорости вращения и величины крутящего момента. Вращательно движение передается между валами, оси которых могут быть параллельными, скрещивающимися или пересекающимися. Различают несколько основных типов зубчатых передач, использующихся в различных механизмах:
Каждый из приведенных видов отличается сферой применения и техническими характеристиками. Один из самых распространенных типов зубчатой передачи — цилиндрическая. Она наиболее проста по конструкции, позволяет передавать значительный крутящий момент. Следует отметить, что цилиндрические зубчатые передачи обладают одним из самых высоких показателей КПД и широким диапазоном передаточного числа. Чтобы уменьшить диаметры используемых шестерней и зубчатых колес, используют многоступенчатую схему конструкции.
Для уменьшения негативного воздействия сил трения зубчатые передачи чаще всего монтируются в закрытом корпусе, который заполнен смазочными материалами. Это позволяет увеличить срок службы механизма.
Что такое модуль шестерни?
Данная статья носит характер образовательный и вспомогательный для людей занимающихся моделизмом и творчеством в различных кружках или дома самостоятельно. Статья не претендует на звание научного трактата и вся предоставленная в ней информация носит лишь ознакомительный характер для понимания и определения такой важной характеристики как «модуль шестерни»
Ведущие и ведомые шестерни в коробках передач и редукторах для различных радиоуправляемых моделей имеют определенное количество зубьев с конкретным модулем и шагом (pitch).
Модуль является самым главным параметром. Через него выражаются все остальные параметры. Он стандартизирован во всем мире и определяется из прочностного расчёта зубчатых передач.
Для тех моделистов, которым покажется сложными все точные выкладки и расчеты достаточно будет в своей практике постройки различных моделей руководствоваться простыми правилами, которые будут звучать примерно так. Для любых шестеренчатых передач важно подбирать ведомые и ведущие шестерни с одинаковым модулем. При этом число зубьев в любой из подбираемых шестерен (ведомая или ведущая в шестеренчатой передаче) можно варьировать подбирая нужное соотношение мощности и оборотов, но характеристика «модуль шестерни» должна оставаться одинаковой для любых шестеренок входящих в непосредственное зацепление друг с другом. Проще говоря понятие модуль шестерни это международная стандартная характеристика обозначения формы зубца любой шестеренки (тут заложены и эвольвента и размеры по высоте и т.д.). Если модули шестерен совпадают, а количество зубьев и диаметры например различные, то можете быть уверены в том, что при правильной установке (зазоры, соосность и т. д.) эти две шестеренки будут работать правильно. Но если параметр модуля различный у шестерен участвующих в передаче, то как их не выставляй они все равно будут «выедать» одна другую и со временем шестеренчатая передача выйдет из строя.
Производители радиоуправляемых моделей машин и бренды, выпускающие тюнинг и запчасти для автомоделей, часто (но не всегда) используют дюймовую маркировку ведущих и ведомых шестерен (32 Pitch, 48 Pitch, 64 Pitch). Это такие бренды как, LOSI, TRAXXAS, RRP, VENOM и др. В ней указывается количество зубьев на 1 дюйм диаметра.
Например: шестерня с 32 pitch будет иметь 32 зуба на 1 дюйм диаметра, а шестерня с 64 pitch будет иметь 64 зуба на 1 дюйм диаметра. То есть, чем больше значение модуля, тем ближе зубья друг к другу
Различия между модулями для визуального сравнения вы можете оценить по следующей иллюстрации:
На фото представлены ведущие шестерни с одинаковым количеством зубьев 21, но разными модулями.
Самым ходовым модулем для радиоуправляемых автомоделей является модуль 48 Pitch.
В редукторах радиоуправляемых моделей самолетов, электрических мини вертолетах и квадрокоптерах ( мультикоптерах ) обычно используют шестерни с метрической маркировкой (0.3 Module, 0.4 Module, 0.5 Module, 1.0 Module и др.).
При метрической маркировке, чем больше модуль, тем крупнее зуб. Различия между метрическими модулями для визуального сравнения вы можете оценить по следующей иллюстрации:
Поэтому покупая и заказывая запчасти в магазинах или через интернет, всегда обращайте внимание не только на количество зубьев, но и на указанные в характеристиках товара значения модуля шестерни (pitch) или (module). Эта величина модуля должна обязательно быть одинаковой у всех шестерен в зацеплении, а также обратите внимание на величину диаметра посадки шестерни на вал. При этом материалы, из которых изготовлены шестерни, могут быть абсолютно различными от пластика до высокопрочной стали.
На фото показан пример редуктора автомодели в сборе. Модуль ведущей шестерни (Pinion Gear) и ведомой шестерни (Spur Gear) – 48 Pitch.
На фото показан пример редуктора в сборе для радиоуправляемой модели самолета паркового класса. Модуль ведущей шестерни (Pinion Gear) и ведомой шестерни (Spur Gear) – 0.4 Module.
При покупке в магазинах радиоуправляемых моделей или на сайтах различных продавцов в интернете еще можно разобраться и все несколько раз перепроверить.
На фото представлены ведущие (сверху) и ведомые (ниже) шестерни разных фирм производителей в упаковках.
Буквой T обозначено общее количество зубьев на шестерне (от англ. Tooth — Зуб). Буквой P обозначено значение шага зубьев Pitch. Непосредственно значение модуля обозначено словом Module. Причем Вам при покупке пары для имеющейся у вас шестерни необходимо помнить правило: Единый Pitch для пары шестерней или единый модуль это не важно. Важно если вы подбираете пару для шестеренчатой передачи зная значение Pitch, то и продавцу задаете вопрос употребляя значение ( Pitch ), а если у вам известен модуль ( Module ), то и заказывать у продавца парную шестерню необходимо используя значение именно модуль шестерни — Module.
А вот как быть в том случае когда шестеренка уже требует замены или планового апгрейда (Upgrade) для увеличения скажем мощности. Или имеется обломок (часть шестерни) присланный, например, другом моделистом из другого региона России с просьбой достать точно такую же или «примерно такую». Для этих «сложных» случаев можно воспользоваться информацией приведенной ниже, чтобы точно определить нужный модуль шестерни перед покупкой ее в магазине или перед заказом через интернет из «забугорного» сайта. Для этой задачи необходимо вооружится необходимыми знаниями и точным измерительным инструментом (особенно если шестеренка маленькая).
Итак, начнем понемногу.
Модуль зацепления (модуль шестерни) — это отношение делительного диаметра шестерни к числу зубьев, выраженное в миллиметрах. То есть модуль шестерни равен числу миллиметров диаметра приходящееся на один зуб.
m — модуль (обозначается в англоязычных магазинах на упаковочном пакетике как module)
d — делительный диаметр (диаметр, измеренный по половине высоты зуба)
z — число зубьев (в англоязычных магазинах обозначается буквой T фрезеровкой или литьем на самой шестеренке и, как правило, на упаковочном пакетике с товаром)
p — шаг зубьев (в англоязычных магазинах обозначается как pitch иногда как P на упаковочном пакетике с товаром)
Например, если делительный диаметр d=120 мм, а число зубьев равно 60, то модуль будет равен 2 мм.
Модуль так же является и показателем высоты самого зуба — она равна 2 x m.
Например, если модуль шестерни равен 2 мм, то высота зуба будет равна 4 мм.
Надеемся эта информация поможет многим моделистам в определении, того какая именно шестеренка им необходима.
Как узнать модуль зубчатого колеса? Расчет в Excel.
Опубликовано 20 Янв 2014
Рубрика: Механика | 23 комментария
При поломке зубчатого колеса или шестерни в редукторе какого-либо механизма или машины возникает необходимость по «старой» детали, а иногда по фрагментам обломков создать чертеж для изготовления нового колеса и/или шестерни. Эта статья будет полезна тем,…
…кому приходится восстанавливать зубчатые передачи при отсутствии рабочих чертежей на вышедшие из строя детали.
Обычно для токаря и фрезеровщика все необходимые размеры можно получить с помощью замеров штангенциркулем. Требующие более пристального внимания, так называемые, сопрягаемые размеры – размеры, определяющие соединение с другими деталями узла — можно уточнить по диаметру вала, на который насаживается колесо и по размеру шпонки или шпоночного паза вала. Сложнее обстоит дело с параметрами для зубофрезеровщика. В этой статье мы будем определять не только модуль зубчатого колеса, я попытаюсь изложить общий порядок определения всех основных параметров зубчатых венцов по результатам замеров изношенных образцов шестерни и колеса.
«Вооружаемся» штангенциркулем, угломером или хотя бы транспортиром, линейкой и программой MS Excel, которая поможет быстро выполнять рутинные и порой непростые расчеты, и начинаем работу.
Как обычно раскрывать тему я буду на примерах, в качестве которых рассмотрим сначала цилиндрическую прямозубую передачу с наружным зацеплением, а затем косозубую.
Расчетам зубчатых передач на этом сайте посвящено несколько статей: «Расчет зубчатой передачи», «Расчет геометрии зубчатой передачи», «Расчет длины общей нормали зубчатого колеса». В них приведены рисунки с обозначениями параметров, используемых в данной статье. Эта статья продолжает тему и призвана раскрыть алгоритм действий при ремонтно-восстановительных работах, то есть работах, обратных проектировочным.
Расчеты можно выполнить в программе MS Excel или в программе OOo Calc из пакета Open Office.
О правилах форматирования ячеек листа Excel, которые применены в статьях этого блога, можно прочитать на странице «О блоге».
Расчет параметров колеса и шестерни прямозубой передачи.
Изначально полагаем, что зубчатое колесо и шестерня имеют эвольвентные профили зубьев и изготавливались с параметрами исходного контура по ГОСТ 13755-81. Этот ГОСТ регламентирует три главных (для нашей задачи) параметра исходного контура для модулей больше 1 мм. (Для модулей меньше 1 мм исходный контур задается в ГОСТ 9587-81; модули меньше 1 мм рекомендуется применять только в кинематических, то есть не силовых передачах.)
Для правильного расчета параметров зубчатой передачи необходимы замеры и шестерни и колеса!
Исходные данные и замеры:
Начинаем заполнение таблицы в Excel с параметров исходного контура.
1. Угол профиля исходного контура α в градусах записываем
в ячейку D3: 20
2. Коэффициент высоты головки зуба ha* вводим
в ячейку D4: 1
3. Коэффициент радиального зазора передачи c* заносим
в ячейку D5: 0,25
В СССР и в России 90% зубчатых передач в общем машиностроении изготавливались именно с такими параметрами, что позволяло применять унифицированный зубонарезной инструмент. Конечно, изготавливались передачи с зацеплением Новикова и в автомобилестроении применялись специальные исходные контуры, но все же большинство передач проектировалось и изготавливалось именно с контуром по ГОСТ13755-81.
4. Тип зубьев колеса (тип зацепления) T записываем
в ячейку D6: 1
T=1 – при наружных зубьях у колеса
T=-1 – при внутренних зубьях у колеса (передача с внутренним зацеплением)
5. Межосевое расстояние передачи aw в мм измеряем по корпусу редуктора и заносим значение
в ячейку D7: 80,0
Ряд межосевых расстояний зубчатых передач стандартизован. Можно сравнить измеренное значение со значениями из ряда, который приведен в примечании к ячейке C7. Совпадение не обязательно, но высоковероятно.
6-9. Параметры шестерни: число зубьев z1, диаметры вершин и впадин зубьев da1 и df1 в мм, угол наклона зубьев на поверхности вершин βa1 в градусах подсчитываем и измеряем штангенциркулем и угломером на исходном образце и записываем соответственно
в ячейку D8: 16
в ячейку D9: 37,6
в ячейку D10: 28,7
в ячейку D11: 0,0
10-13. Параметры колеса: число зубьев z2, диаметры вершин и впадин зубьев da2 и df2 в мм, угол наклона зубьев на цилиндре вершин βa2 в градусах определяем аналогично — по исходному образцу колеса — и записываем соответственно
в ячейку D12: 63
в ячейку D13: 130,3
в ячейку D14: 121,4
в ячейку D11: 0,0
Обращаю внимание: углы наклона зубьев βa1 и βa2 – это углы, измеренные на цилиндрических поверхностях вершин зубьев!!!
Измеряем диаметры, по возможности, максимально точно! Для колес с четным числом зубьев сделать это проще, если вершины не замяты. Для колес с нечетным числом зубьев при замере помним, что размеры, которые показывает штангенциркуль несколько меньше реальных диаметров выступов!!! Делаем несколько замеров и наиболее с нашей точки зрения достоверные значения записываем в таблицу.
Результаты расчетов:
14. Предварительные значения модуля зацепления определяем по результатам замеров шестерни m1 и зубчатого колеса m2 в мм соответственно
в ячейке D17: =D9/(D8/COS (D20/180*ПИ())+2*D4)=2,089
m1=da1/(z1/cos (β1)+2*(ha*))
и в ячейке D18: =D13/(D12/COS (D21/180*ПИ())+2*D4)=2,005
m2=da2/(z2/cos (β2)+2*(ha*))
Модуль зубчатого колеса играет роль универсального масштабного коэффициента, определяющего как габариты зубьев, так и общие габариты колеса и шестерни.
Сравниваем полученные значения со значениями из стандартного ряда модулей, фрагмент которого приведен в примечании к ячейке C19.
Полученные расчетные значения, как правило, очень близки к одному из значений стандартного ряда. Делаем предположение, что искомый модуль зубчатого колеса и шестерни m в мм равен одному из этих значений и вписываем его
в ячейку D19: 2,000
15. Предварительные значения угла наклона зубьев определяем по результатам замеров шестерни β1 и зубчатого колеса β2 в градусах соответственно
в ячейке D20: =ASIN (D8*D19/D9*TAN (D11/180*ПИ()))=0,0000
β1=arcsin (z1*m*tg (βa1)/da1)
и в ячейке D21: =ASIN (D12*D19/D13*TAN (D15/180*ПИ()))=0,0000
β2=arcsin (z2*m*tg (βa2)/da2)
Делаем предположение, что искомый угол наклона зубьев β в градусах равен измеренным и пересчитанным значениям и записываем
в ячейку D22: 0,0000
16. Предварительные значения коэффициента уравнительного смещения вычисляем по результатам замеров шестерни Δy1 и зубчатого колеса Δy2 соответственно
в ячейке D23: =2*D4+D5- (D9-D10)/(2*D19)=0,025
Δy1=2*(ha*)+(c*) — (da1-df1)/(2*m)
и в ячейке D24: =2*D4+D5- (D13-D14)/(2*D19)= 0,025
Δy2=2*(ha*)+(c*) — (da2— df2)/(2*m)
Анализируем полученные расчетные значения, и принятое решение о значении коэффициента уравнительного смещения Δy записываем
в ячейку D25: 0,025
17,18. Делительные диаметры шестерни d1 и зубчатого колеса d2 в мм рассчитываем соответственно
в ячейке D26: =D19*D8/COS (D22/180*ПИ())=32,000
d1=m*z1/cos(β)
и в ячейке D27: =D19*D12/COS (D22/180*ПИ())=126,000
d2=m*z2/cos(β)
19. Делительное межосевое расстояние a в мм вычисляем
в ячейке D28: =(D27+D6*D26)/2=79,000
a=(d2+T*d1)/2
20. Угол профиля αt в градусах рассчитываем
в ячейке D29: =ATAN (TAN (D3/180*ПИ())/COS (D22/180*ПИ()))/ПИ()*180=20,0000
αt=arctg(tg (α)/cos(β))
21. Угол зацепления αtw в градусах вычисляем
в ячейке D30: =ACOS (D28*COS (D29/180*ПИ())/D7)/ПИ()*180=21,8831
αtw=arccos(a*cos (αt)/aw)
22,23. Коэффициенты смещения шестерни x1 и колеса x2 определяем соответственно
в ячейке D31: =(D9-D26)/(2*D19) -D4+D25=0,425
x1=(da1— d1)/(2*m) — (ha*)+Δy
и в ячейке D32: =(D13-D27)/(2*D19) -D4+D25 =0,100
x2=(da2— d1)/(2*m) — (ha*)+Δy
24,25. Коэффициент суммы (разности) смещений xΣ(d)вычисляем для проверки правильности предыдущих расчетов по двум формулам соответственно
в ячейке D33: =D31+D6*D32=0,525
xΣ(d)=x1+T*x2
и в ячейке D34: =(D12+D6*D8)*((TAN (D30/180*ПИ()) — (D30/180*ПИ())) — (TAN (D29/180*ПИ()) — (D29/180*ПИ())))/(2*TAN (D3/180*ПИ()))=0,523
xΣ(d)=(z2+T*z1)*(inv(αtw) — inv(αt))/(2*tg(α))
Значения, рассчитанные по разным формулам, отличаются очень незначительно! Полагаем, что найденные значения модуля зубчатого колеса и шестерни, а также коэффициентов смещения определены верно!
Расчет параметров колеса и шестерни косозубой передачи.
Переходим к примеру с косозубой передачей и повторяем все действия, которые мы делали в предыдущем разделе.
Измерить угол наклона зубьев с необходимой точностью при помощи угломера или транспортира практически очень сложно. Я обычно прокатывал колесо и шестерню по листу бумаги и затем по отпечаткам транспортиром делительной головки кульмана производил предварительные измерения с точностью в градус или больше… В представленном ниже примере я намерил: βa1=19° и βa2=17,5°.
Еще раз обращаю внимание, что углы наклона зубьев на цилиндре вершин βa1 и βa2 – это не угол β, участвующий во всех основных расчетах передачи!!! Угол β – это угол наклона зубьев на цилиндре делительного диаметра (для передачи без смещения).
Ввиду малости значений рассчитанных коэффициентов смещения уместно предположить, что передача была выполнена без смещения производящих контуров шестерни и зубчатого колеса.
Воспользуемся сервисом Excel «Подбор параметра». Подробно и с картинками об этом сервисе я в свое время написал здесь.
Выбираем в главном меню Excel «Сервис» — «Подбор параметра» и в выпавшем окне заполняем:
Установить в ячейке: $D$33
Значение: 0
Изменяя значение ячейки: $D$22
И нажимаем OK.
Получаем результат β=17,1462°, xΣ(d)=0, x1=0,003≈0, x2=-0,003≈0!
Передача, скорее всего, была выполнена без смещения, модуль зубчатого колеса и шестерни, а также угол наклона зубьев мы определили, можно делать чертежи!
Важные замечания.
Смещение исходного контура при нарезке зубьев применяют для восстановления изношенных поверхностей зубьев колеса, уменьшения глубины врезания на валах-шестернях, для увеличения нагрузочной способности зубчатой передачи, для выполнения передачи с заданным межосевым расстоянием не равным делительному расстоянию, для устранения подрезания ножек зубьев шестерни и головок зубьев колеса с внутренними зубьями.
Различают высотную коррекцию (xΣ(d)=0) и угловую (xΣ(d)≠0).
Смещение производящего контура на практике применяют обычно при изготовлении прямозубых колес и очень редко косозубых. Это обусловлено тем, что по изгибной прочности косой зуб прочнее прямого, а необходимое межосевое расстояние можно обеспечить соответствующим углом наклона зубьев. Если высотную коррекцию изредка применяют для косозубых передач, то угловую практически никогда.
Косозубая передача работает более плавно и бесшумно, чем прямозубая. Как уже было сказано, косые зубья имеют более высокую прочность на изгиб и заданное межосевое расстояние можно обеспечить углом наклона зубьев и не прибегать к смещению производящего контура. Однако в передачах с косыми зубьями появляются дополнительные осевые нагрузки на подшипники валов, а диаметры колес имеют больший размер, чем прямозубые при том же числе зубьев и модуле. Косозубые колеса менее технологичны в изготовлении, особенно колеса с внутренними зубьями.
Подписывайтесь на анонсы статей в окнах, расположенных в конце каждой статьи или вверху каждой страницы.
Не забывайте подтверждать подписку кликом по ссылке в письме, которое тут же придет к вам на указанную почту (может прийти в папку «Спам»)!!!
Уважаемые читатели! Ваш опыт и мнение, «оставленные» ниже в комментариях к статье, будут интересны и полезны коллегам и автору!!!
Прошу уважающих труд автора скачивать файл после подписки на анонсы статей!
Ссылка на скачивание файла: modul-zubchatogo-kolesa (xls 41,0KB).
Другие статьи автора блога
На главную
Статьи с близкой тематикой
Отзывы
Изготовление шестерен на заказ — зуборезные работы в Москве
Что такое шестерня (зубчатое колесо)
Зубчатым колесом называют металлическое изделие в виде диска, по краям которого находятся острые зубья. Поверхность может быть конусообразной или цилиндрической. Колья одной шестерни работают только в паре с другим зубчатым колесом, создавая непрерывный крутящий момент. Как правило, шестерни используют парами, в каждой из которых одинаковое количество зубцов – для образования кручения с равным количеством оборотов на входе и на выходе.
Виды шестерней
— прямозубые шестерни – самые распространенные в применении. Их используют почти во всех крутящихся механизмах для образования поступательного кручения на валы, которые расположены на одной плоскости – то есть, параллельно друг другу.
— косозубые представляют собой доработанный вариант прямозубого зубчатого колеса. Их особенность в том, что зубцы имеют разные углы наклона. За счет такой конструкции можно уменьшить шум во время работы устройства и увеличить мощность.
— зубчатые диски с внутренним зацеплением отличаются тем, что зубья расположены внутри колеса. Шестерни данного типа применяют в работе малогабаритных механизмов, например, в насосах. В конструкциях, имеющие большие габариты, выполняют функцию поворотного механизма – например, поворот башен у танка или вращение кабины строительного крана.
— изделия, в которых зубцы устроены в виде винтовой линии, называются винтовыми шестернями. Они изготовлены в виде цилиндра. Применяются для вращения перпендикулярных валов.
— секторные зубчатые колеса являются, по сути, частью полной шестерни. Они используются в приборах, в которых не нужны полнооборотные вращения, например, рулевые рейки и шаговые конструкции.
— модели с круговыми зубцами могут выдерживать большую нагрузку и работают более плавно. Зубья в этих шестернях имеют незначительные изгибания.
— шестерни конического типа выпускают в разных вариантах (круговые, прямые, криволинейные тангенциальные). Часто конические типы используют попарно в дифференциальном вале автомобилей.
— шестерня-звезда имеет в своей конструкции дополнительный элемент – цепь. Их применяют в велосипедах в механизме кручения педалей.
Назначение и применение шестерней
Шестерни – универсальные металлические детали, которым нашлось применений почти в каждой отрасли. Диски с зубцами для передачи крутящего момента применяют в миллионах механизмах, которые должны вращаться и крутиться. Используют в судостроение, машиностроении, в работе механизмов горнодобывающей промышленности, в строительной технике, пищевой промышленности. Шестерёнки исправно крутятся в танках и автомобилях, в вагонах поездов и гидравлических машинах, в наручных и настенных часах, насосах и многих других механизмах.
Изготовление шестерней
Зубчатые колёса изготавливают из таких металлов, как сталь и чугун, железо и бронза, а также используют специальные смешанные сплавы с добавлением ванадия, никеля и хрома. Существует несколько методов производства шестерней. Самый популярный из них – метод обката одним из таких инструментов: долбяком, гребенкой, червячной фрезой. Методом деления детали изготавливали в начала прошлого века. Он иногда применяется и сейчас, но считается не очень практичным, так как диски выходят не одинаковыми. С помощью зубонакатного металлоизделия можно изготовить шестерню методом накатывания: горячим и холодным. Сначала заготовку нагревают, а затем формируют круг и зубья и дорабатывают холодным обкатыванием до получения нужной идеальной формы. Конические шестерни изготавливают на станках режущим способом.
Преимущества шестерней
Среди преимуществ зубчатых дисков можно назвать такие, как простота производства, небольшая себестоимость, долговечность и практичность в работе, многофункциональность применения, способность выдерживать большие нагрузки и беспрерывно работать длительное время без перегрева. Механизмы с шестернями реже ломаются и выходят из строя.
Зубчатая передача (специальные детали, изготавливаемые по индивидуальному заказу)
Швейцарский
традиции.
Качество
и высокие технологии
инженерное дело
решения.
EN
ЭНДЕРУФРЕЗИТ О компании- История развития
- Сотрудничество и агентские соглашения
- Анкеты
- ENCE GmbH презентации
- Оборудование для добычи нефти и газа
- Оборудование для химии, нефтехимии и нефтегазопереработки
- Горно-обогатительное оборудование
- Оборудование для металлургии
- Оборудование для энергетики
- Обрабатывающее оборудование
EN
ЭНДЕРУФРЕЗИТ- О направлении
- Интегрированные и автоматические линии
- Линии горячего цинкования арматурных стержней и металлических конструкций
- Автоматические линии по производству металлочерепицы
- Линии профилирования дорожных ограждений
- Линии продольной и поперечной резки рулонного металла
- Линии окраски стальной полосы
- Линия горячего цинкования стальной полосы
- Линия травления стальной полосы
- Фрезы и оборудование для них
- Аппараты электросварочные для труб
- Трубопрокатные станы
- Комплектующие и сменные узлы прокатных станов и приводов
зубчатые передачи — Перевод на французский — примеры английский
Эти примеры могут содержать грубые слова на основании вашего поиска.
Эти примеры могут содержать разговорные слова, основанные на вашем поиске.
Зубчатые передачи расположены между упомянутыми радиальными стенками.
04 … зубчатая передача включая расцепляющую зубчатую передачу
столбчатый элемент водила проходит через смещенные сквозные отверстия внешних зубчатых колес
un élément en forme de Colonne d’un Organe porteur Paste à travers les trous traversants décalés des engrenages dentés extérieicingВо внешнем зубчатом колесе (18X, 18Y) выполнены центральные сквозные отверстия и смещенные сквозные отверстия (19X, 19Y).
Централизованные траверсанты и образовавшиеся средние траверсанты (19X, 19Y) образовались на , образовав зубцы (18X, 18Y).Между радиально зубчатыми шестернями (124, 125 и 128) существует зазор, который преодолевается скручиванием вала (110), если приложенный крутящий момент достаточно велик.
Un jeu est ménagé entre les устанавливает зубные протезы radiale (134,125 и 128), ce jeu étant Compensé par la torsion de l’arbre (110) si le couple appliqé est suгуisamment important.первые сквозные отверстия выполнены в центрах зубчатых колес снаружи
06 … зубчатые колеса перемещаются за счет осевого смещения
Зубчатые передачи (42, 44) не имеют опорных подшипников и размещены в отверстиях (38, 40).
Ces roues dentées (42, 44) sont logées, sans paliers, dans des ouverture (38, 40) и sont chacune pourvues d’une denture hélicoïdale.Зубчатые передачи могут быть установлены на валах через указанное отверстие со снятой крышкой.
Lorsque ce couvercle est ôté, les roues dentées peuvent être montées sur les arbres par cette ouverture.Согласно процессу производства пластмассовых деталей с зубчатыми профилями, таких как зубчатые сегменты или зубчатые колеса , полуфабрикат растягивается под давлением.
Произведено производство пластических изделий с профилями зубов, сегментов в зубах или рулонов , полуфабрикатов является окончательное производство.Зубчатые колеса (11) содержат прямые зубья, а зубцы (30) представляют собой очень глубокие зубцы (31).
Selon l’invention, les roues dentées (11) sont à denture droite et la denture (30) est une denture haute (31).ролики приводятся в группы при помощи зубчатых ремней, верхние ножки которых проходят над зубчатыми передачами и входят в зацепление с ними
les rouleaux sont entraînés en groupes par des Courroies de synchronization dont les spiers supérieures enclenchent les roues dentéesДругой возможностью повышения эффективности заявляемой конструкции является электромагнитная, гидравлическая или механическая регулировка внутренних зубчатых колес, в которых зубчатые передачи эксцентрикового хода.
De manière alternate, l’efficacité du dispositif peut être améliorée par réglage électromagnétique, Hydraulique or mécanique des roues à denture intérieure contenant les roues dentées de l’excentrique.приспособление для установки зубчатого механизма и способ регулировки зазора между боковыми поверхностями зубьев пары зубчатых колес
монтаж для установки и обработки фланцев для одежды Roues dentées d’engrenage«Высокоэффективный привод» означает трансмиссию с использованием ремня, ширина которого как минимум в три раза превышает высоту ремня, зубчатого ремня или зубчатого колеса .
«Entraînement à haut rendement» означает передачу по принципу «Courroie dont la largeur est inférieure à trois fois sa hauteur», по цене roues dentées .зубчатые колеса соседних элементов входят в зацепление, так что вращательное движение одного элемента вызывает движение соседнего элемента
les roues dentées d’éléments adjacents sont en prie, de telle sorte que la rotation d’un élément entraîne la вращение соседнего элементаЛюфт также можно представить как разницу между реальным расстоянием между центрами валов, на которых установлены шестерни, и рабочим расстоянием, измеренным как сумма лучей шага двух зубчатых колес .
Le jeu de fonctionnement peut également être conçu Com la différence entre la distance réelle entre les center des arbres sur lesquels les engrenages sont montés et l’entraxe mesuré согласно somme des rayons primitifs des deux engrenages dentés .Изобретение относится к редуктору, в частности для стартера двигателя внутреннего сгорания, для понижающего соединения ведущего вала и ведомого вала, причем указанное соединение выполнено посредством по меньшей мере двух зубчатых шестерен , которые входят в зацепление с друг друга
l’invention Concerne un engrenage démultiplicateur destiné en specific au démarreur d’un moteur à сжигание интерн и слуга в l’accouplement avec réduction de régime d’un arbre d’entrée et d’un arbre de sortie au moyen d’au moins deux roues dentées qui s’engrènentПрофессиональный производитель больших шестерен, зубчатых колес от китайского производителя, завода, завода и поставщика ECVV.com
Экспортные рынки: | Северная Америка, Южная Америка, Восточная Европа, Юго-Восточная Азия, Африка, Океания, Средний Восток, Восточная Азия, Западная Европа |
---|---|
Место происхождения: | Цзянсу в Китае |
Детали упаковки: | деревянная коробка |
Краткие сведения
- Форма: Шестерня
- Стандартный или нестандартный: Нестандартный
- Обработка: Литье под давлением
- Материал: Сталь
- Имя бренда: FengHe
- Форма: 1
- Профиль зуба: Цилиндрическая шестерня
Технические характеристики
Собственный производственный цех площадью 20 000 м2 и кузнечный цех площадью 10 000 м2.
Шесть раз термообработка на протяжении всего производства.
Другие детали:
Диапазон диаметров: 200-7000 мм
Материал: 50Mn, 42CrMo
Тип уплотнения: Резиновая прокладка, железо или высокотемпературное уплотнение
Допустимая нагрузка: Heavy-Duty
OEM: Доступен
Сертификация: ISO9001: 2008 / ISO14001: 2004 / OHSAS 18001: 2007
Детали упаковки: Морская упаковка в деревянном ящике, загруженная в контейнер