Устройства на симисторах: () NXP Semiconductors —

Содержание

Управление мощной нагрузкой переменного тока / Хабр

Все знают, насколько ардуинщики гордятся миганием лампочками
Так как мигать светодиодами не интересно, речь пойдет про управление лампой накаливания на 220 вольт, включая управление её яркостью. Впрочем, материал относится и к некоторым другим типам нагрузки. Эта тема достаточно избита, но информация об особенностях, которые необходимо учесть, разрозненна по статьям и темам на форумах. Я постарался собрать её воедино и описать различия между схемами и обосновать выбор нужных компонентов.
Выбор управляемой нагрузки
Существует много различных типов ламп. Не все из них поддаются регулировке яркости. И, в зависимости от типа лампы, требуются разные способы управления. Про типы ламп есть хорошая статья. Я же буду рассматриваться только лампы, работающие от переменного тока. Для таких ламп существует три основных способа управления яркостью (диммирование по переднему фронту, по заднему фронту и синус-диммирование).
Иллюстрация в формате SVG, может не отображжаться в старых браузерах и, особенно, в IE
Отличаются они тем, какая часть периода переменного тока пропускается через лампу. О применимости этих методов можно прочитать тут. В этой статье речь пойдет только о диммировании по преднему фронту, так как это самая простой и распространенный способ. Он подходит для управления яркостью ламп накаливания (включая галогенные), в том числе подключенных через ферромагнитный (не электронный) трансформатор. Эта же схема может применяться для управления мощностью нагревательных элементов и, в некоторой степени, электромоторов, а также для включения/выключения других электроприборов (без управления мощностью).
Выбор элементной базы
Различных вариантов схем управления нагрузкой в интернете много. Отличаются они по следующим параметрам:Первые два пункта определяются элементной базой. Очень часто для управления нагрузкой используют реле, как проверенный многолетним опытом элемент. Но, если вы хотите управлять яркостью лампы, её необходимо включать и выключать 100 раз в секунду. Реле не рассчитаны на такую нагрузку и быстро выйдут из строя, даже если смогут переключаться так часто. Если в схеме используется MOSFET, то его можно открывать и закрывать в любой момент. Нам нем можно построить и RL, и RC, и синус димер. Но так как он проводит ток только в одну сторону, понадобится два транзистора на канал. Кроме того, высоковольтные MOSFET относительно дороги. Самым простым и дешевым способом является использование симистора. Он проводит ток в обоих направлениях и сам закрывается, когда через него прекращает течь ток. Про то, как он работает можно прочитать в статье DiHalt’а. Далее я буду полагаться на то, что вы это знаете.
Фазовая модуляция
Чтобы управлять яркостью лампы нам нужно подавать импульсы тока на затвор симистора в моменты, когда ток через симистор достигает определенной величины. В схемах без микроконтроллера для этого применяется настраиваемый делитель напряжения и динистор. Когда напряжение на симисторе превышает порог, при котором открывается динистор, ток проходит на затвор симистора и открывает его.

Если же управление ведется с микроконтроллера, то возможны два варианта:
  1. Подавать импульсы равно в тот момент времени, когда нужно. Для этого придётся завести на микроконтроллер сигнал с детектора перехода напряжения через ноль
  2. К затвору симистора подключить компаратор, на который завести сигнал с делителя напряжения и с аналогового выхода микроконтроллера
Первый способ хорош тем, что позволяет легко организовать гальваническую развязку высоковольтной части и микроконтроллера. О её важности будет сказано позже. Но любители arduino будут огорчены: чтобы лапа горела ровно, не вспыхивая и не погасая, импульсы нужно подавать вовремя. Для этого управлять выводом нужно из прерывания таймера, а моменты перехода напряжения через ноль фиксировать с помощью «input capture». Это «недокументированные» функции. Проблема решается отказом от библиотек arduino и внимательным чтением datasheet’а на процессоры avr. Это не так сложно, как кажется.
Второй способ управления симистором крайне прост в программном плане, но из-за отсутствия гальванической развязки я бы не стал его применять.
Гальваническая развязка
Самый простой способ управлять симистором — это подключить к затвору ножку микроконтроллера. Есть даже специальная серия симисторов BTA-600SW управляемых малыми токами.Но тогда контроллер и вся низковольтная часть не будет защищена от помех, гуляющих по бытовой сети. Некоторое из них могут быть достаточно мощными, чтобы сжечь микроконтроллер, другие будут вызывать сбои. Кроме того, сразу возникают проблемы со связью микроконтроллера с компьютером или другими микроконтроллерами: нужно будет делать развязку в линии связи или использовать дифференциальные линии, ведь, чтобы управлять симистором прямо с ноги микроконтроллера, нулевой потенциал для него должен совпадать с потенциалом нуля в бытовой сети. У компьютера или другого такого же микроконтроллера, подключенного в другой точке сети, нулевой потенциал почти наверняка будет другим. Результат будет плачевным.
Простой способ обеспечить гальваническую развязку: использовать драйвер симистора MOC30XX. Эти микросхемы отличаются:
  1. Расчетным напряжением. Если для сетей 110 вольт, есть для 220
  2. Наличием детектора нуля
  3. Током, открывающим драйвер
Драйвер с детектором нуля (MOC306X) переключается только в начале периода. Это обеспечивает отсутствие помех в электросети от симистора. Поэтому, если нет необходимости управлять выделяемой мощностью или управляемый прибор обладает большой инерционностью (например это нагревательный элемент в электроплитке), драйвер с детектором нуля будет оптимальным выбором. Но, если вы хотите управлять яркостью лампы освещения, необходимо использовать драйвер без детектора нуля (MOC305X) и самостоятельно открывать его в нужные моменты.
Ток, необходимый для открытия важен, если вы хотите управлять несколькими нагрузками одновременно. У MOC3051 он 15 мА, у MOC3052 10мА. При этом микроконтроллеры stm могут пропускать через себя до 80-120 мА, а avr до 200 мА. Точные цифры нужно смотреть в соответствующих datasheet’ах.
Устойчивость к помехам/возможность коммутации индуктивной нагрузки
В электросети могут быть помехи, вызывающие самопроизвольное открытие симистора или его повреждение. Источником помех может служить:
  1. Нагрузка, управляемая симистором (обмотка мотора)
  2. Фильтр (snubber), расположенный рядом с симистором и призванный его защищать
  3. Внешняя помеха (грозовой разряд)
Помеха может быть как по напряжению, так и по току, причем более критичны скорости изменения соответствующих значений, чем их амплитуды. В datasheet’ах соответствующие значения указаны как:
V — максимальное напряжение, при котором может работать симистор. Максимальное пиковое напряжение не намного больше.
I — Максимальный ток, который может пропускать через себя симистор. Максимальный пиковый ток как правило значительно больше.
dV/dt — Максимальная скорость изменения напряжения на закрытом симисторе. При превышении этого значения он самопроизвольно откроется.
dI/dt — Максимальная скорость изменения тока при открытии симистора. При превышении этого значения он сгорит из-за того, что не успеет полностью открыться.
(dV/dt)c — Максимальная скорость изменения напряжения в момент закрытия симистора. Значительно меньше dV/dt. При превышении симистор продолжит проводить ток.
(dI/dt)c — Максимальная скорость изменения тока в момент закрытия симистора. Значительно меньше dI/dt. При превышении симистор продолжит проводить ток.
Подробно о природе этих ограничений и о том, как сделать фильтр, защищающий от превышения этих величин описано в Application Note AN-3008. К немо можно только добавить, что существуют 3Q симисторы, у которых значения dV/dt и dI/dt выше, чем у обычных за счет невозможности работать в 4ом квадранте (что обычно не требуется).
Выбор симистора

Максимальный ток коммутации
Максимальный ток коммутации ограничивается двумя параметрами: максимальным током, который может пропустить симистор и количеством тепла, которое вы можете от него отвести. С первым параметром все просто, он указан в datasheet’е. Но если посмотреть внимательно, то при токе в 16 ампер на BTA16-600BW выделяется около 20 ватт. Такую грелку уже не получится засунуть в коробку выключателя без вентиляции.
Минимальный ток коммутации
Симистор сохраняет проводимость до тех пор, пока через него идёт ток. Минимально необходимый ток указан в datasheet’е под именем latching current. Соответственно, слишком мощный симистор не сможет включать маломощную лампочку так как будет выключаться, как только с затвора пропадёт управляющий сигнал. Но так, как этот сигнал мы самостоятельно формируем микроконтроллером, то можно удерживать управляющий сигнал почти до самого конца полупериода, тем самым убрав ограничение на минимальную нагрузку. Однако, если не успеть снять сигнал, симистор не закроется и лампа не погаснет. При плохо подобранных константах лампы, работающие на не полной яркости периодически вспыхивают.
Изоляция
Симисторы в корпусе TO-220 могут быть изолированными или не изолированными. Я сначала сделал ошибку и купил BT137, в результате радиаторы охлаждения оказались под напряжением, что в моем случае нежелательно. Симисторы с маркировкой BTA изолированы, с маркировкой BTB нет.
Защита от перегрузки
Не стоит полагаться на автоматические выключатели. Посмотрите на спецификацию, при перегрузке в 1.4 раза автомат обязан выключиться не ранее, чем через час. А быстрое размыкание происходит только при перегрузке в 5 раз (для автоматов типа C). Это сделано для того, чтобы автомат не отключался при включении приборов, требующих при старте значительно больше энергии, чем при постоянной работе. Примером такого прибора является холодильник.
Симистор нужно защитить отдельным предохранителем, либо контролировать ток через него и отключать его при перегрузке, давая остыть.
Защита от короткого замыкания
При перегорании лампы накаливания может образовываться искровой разряд, имеющий очень низкое сопротивление. В результате цепь фактически замыкается накоротко, что приводит к выгоранию симистора.
Симистор может выгорать из-за двух причин:
  1. Превышение dI/dt. Симистор не успевает открыться полностью, ток идет не через весь кристалл, образуются локальные горячие области, выжигающие кристалл. 2t. Задает количество теплоты, накопление которой в кристалле приведет к разрушению кристалла.
dI/dt ограничивается индуктивностью проводки и внутренней ёмкостью симистора. Так как dI/dt достаточно велика (50 А/с для BTA16), может хватить индуктивности подводящей проводки, если она достаточно длинная. Можно подстраховаться и добавить небольшую индуктивность в виде нескольких витков провода вокруг сердечника.
С превышением интеграла Джоуля можно бороться либо уменьшая время прохождения тока через симистор, либо ограничивая ток. Так как симистор не закроется, пока ток не перейдет через ноль, не вводя дополнительных размыкателей нельзя сделать время прохождения тока менее одного полупериода. В качестве такого размыкателя можно использовать:
  1. Быстродействующий плавкий предохранитель. Обычный предохранитель не подойдет так как симистор сгорит до того, как он сработает. Но стоят такие предохранители дороже новых симисторов.
  2. Геркон/реле. Если удастся найти такое, чтобы выдерживало кратковременные большие токи.
Можно пойти по другому пути. BTA16-600 может выдержать ток в 160 амер в течении одного периода. Если сопротивление замыкаемой цепи будет порядка 1.5 Ом, то полупериод он выдержит. Сопротивление проводки даст 0.5 Ом. Остается добавить в цепь сопротивление в 1 Ом. Схема станет менее эффективной и появится еще одна грелка, выделяющая при штатной работе до 16 Вт тепла (0.45 Вт при работе 100 ваттной лампы), зато симистор не сгорит, если успеть его вовремя выключить и позаботиться о хорошем охлаждении, чтобы оставался запас на нагрев во время КЗ.
Из этого сопротивления можно извлечь дополнительную выгоду: измеряя падение напряжения на нем, можно узнавать ток, протекающий через симистор. Полученное значение можно использовать для того, чтобы определять короткое замыкание или перегрузку и отключать симистор.
Заключение
Я не претендую на абсолютную верность всего написанного. Статья писалась для того, чтобы упорядочить знания, прочитанные на просторах интернета и проверить, не забыл ли я чего. В частности раздел, касающийся защиты от перегрузок я еще не опробовал на практике. Если я где-то не прав, мне было бы интересно узнать об ошибках.
В статье нет ни одной схемы: знакомые с темой и так знают их наизусть, а новичку придётся заглянуть в datasheet к MOC3052 или в AN-3008 и, возможно, он заодно узнает что-то еще и не будет бездумно реализовывать готовую схему.

Реле или симисторы в электрических котлах отопления на основе ТЭНов

09-10-2019

Особенности электрических водонагревателей на основе ТЭНов

Больше всего электрических водонагревателей (80%) выпускается на основе ТЭНов. Это, по сути, просто чайники, в которых нагрев теплоносителя происходит по всем известному из школьного курса физики принципу – нихромовая спираль разогревается под действием электрического тока и передаёт тепло теплоносителю. А дальше нагретый теплоноситель применяется либо как вода для бытовых нужд, либо для нагрева батарей отопления. Вот собственно и вся «физика». Однако не всё так просто…

 Для того чтобы сделать воду в душе нужной температуры или радиаторы отопления разогреть до комфортного уровня, нам необходимо периодически включать и выключать ТЭНы. А как это сделать? Для этого и применяются в электрических водонагревателях элементы, которые то включают, то выключают нагреватели (ТЭНы).

Особенность эксплуатации водонагревателей состоит в том, что эти выключатели должны быть рассчитаны на большое количество срабатываний. Это не просто выключатели света в комнате, которыми мы пользуемся 3-5 раза в день, когда приходим вечером. Выключатели ТЭНов должны быть рассчитаны на количество включений в 10-100 и даже 1000 раз больше. И вот мы подошли к самому главному – какие это должны быть выключатели, чтобы электро-водонагреватель (котёл) работал долго и не доставлял хлопот? Как правило, для управления ТЭНами применяются реле или симисторы.

Реле

Реле – это те же выключатели, аналогичные бытовым, которыми мы пользуемся для управления освещением в квартире. Размыкая или замыкая контакты реле под управлением регулятора температуры, мы включаем или выключаем нагрев котла. Реле есть везде, где требуется что-то включить или выключить.

Релейный способ переключения самый распространённый и дешёвый для замыкания/размыкания цепи.

Именно поэтому такой способ управления ТЭНами применяется в большинстве электрических водонагревателей. Способ, как было сказано выше, достаточно простой и дешевый, НО…

Как у любой медали есть две стороны, так и в рассматриваемом нами вопросе есть свои плюсы и минусы. И, зная их, вы сможете правильно выбрать водонагреватель.

Релейные котлы более традиционны, имеют невысокую стоимость, достаточно легко ремонтируются, однако и обладают всеми недостатками, присущими реле как способу переключения, а именно:

  • ограниченное количество переключений;
  • опасность подгорания контактов;
  • износ механических частей реле;
  • переключение сопровождается слышимым щелчком.

Поэтому выбирая котёл, где в качестве управления ТЭНами используются реле, вы должны быть готовы к возможным неприятным сюрпризам.

ТЭН

Симисторы

Симисторы – это электронные выключатели, т.е. замыкание цепи происходит не с помощью физического контакта, а электронно. В основе принципа действия симисторных устройств замыкания/размыкания электрической цепи лежит свойство полупроводниковых материалов пропускать электрический ток при подаче управляющего напряжения на один из элементов симистора. В этих устройствах отсутствует механическая часть и контакты, поэтому нет негативных последствий, присущих релейным устройствам.

Преимущества симисторных приборов:

  • переключение происходит абсолютно бесшумно;
  • отсутствуют контакты, соответственно не может быть подгорания;
  • отсутствуют механические части и как следствие их износ:
  • неограниченный срок службы.

Минусы:

  • более высокая стоимость, чем у релейных;
  • меньшее распространение;
  • устройства, в состав которых входят симисторы сложнее и стоят дороже, чем релейные.       

Решение от компании БАСТИОН – электрический котёл револьверного типа с симисторным управлением и модуляцией мощности Teplodom iTRM Silver

 

 

В компании БАСТИОН реализован инновационный подход к управлению ТЭНами в электрических котлах. В качестве устройства включения/отключения применяются  симисторы, управляемые с помощью микропроцессора.

Такое сочетание даёт возможность не только максимально использовать все преимущества симисторного управления, но и за счёт применённых математических алгоритмов сделать электрический котёл по-настоящему интеллектуальным.

В котлах Teplodom iTRM Silver в полной мере используются возможности электронного симисторного управления ТЭНами. Важным преимуществом симистора является короткое время включения/выключения – оно может достигать долей секунды, за счёт этого обеспечивается постепенный прогрев ТЭНов перед выводом их на максимальную мощность.

Симисторные устройства имеют неограниченный период эксплуатации и практически не имеют недостатков.

Симисторные устройства управления мощностью, наряду с другими инновациями, применяемыми в бытовых котлах серии Teplodom i-TRM, сделали продукцию компании БАСТИОН вне конкуренции на рынке отопительных приборов нового поколения.

Читайте также по теме:

Товары из статьи


Тех. поддержка

Бастион в соц. сетях

Канал Бастион на YouTube

Зарядное устройство на симисторе — КульбакиМастер.ru

 

Зарядное устройство на симисторе для зарядки 12 вольтовых автомобильных аккумуляторов емкостью до 100 А\Ч.


Схема этого устройства представлена на рисунке.

Нажмите на рисунок для просмотра.

Устройство обеспечивает широкие пределы регулирования зарядного тока — практически от нуля до 10 А — и может быть использовано для зарядки различных стартерных батарей аккумуляторов на напряжение 12 В.

В основу устройства положен симисторный регулятор с дополнительно введенными маломощным диодным мостом VD1. ..VD4 и резисторами R3 и R5.
После подключения устройства к сети при плюсовом ее полупериоде (плюс на верхнем по схеме проводе) начинает заряжаться конденсатор С2 через резистор R3, диод VD1 и последовательно соединенные резисторы R1 и R2. При минусовом полупериоде сети этот конденсатор заряжается через те же резисторы R2 и R1, диод VD2 и резистор R5 В обоих случаях конденсатор заряжается до одного и того же напряжения, меняется только полярность зарядки.

Как только напряжение на конденсаторе достигнет порога зажигания неоновой лампы HL1, она зажигается и конденсатор быстро разряжается через лампу и управляющий электрод симистора VS1. При этом симистор открывается. В конце полупериода симистор закрывается. Описанный процесс повторяется в каждом полупериоде сети.

Общеизвестно, что управление тиристором посредством короткого импульса имеет тот недостаток, что при индуктивной или высокоомной активной нагрузке анодный ток прибора может не успеть достигнуть значения тока удержания за время действия управляющего импульса. Одной из мер по устранению этого недостатка является включение параллельно нагрузке резистора.

В описываемом зарядном устройстве после включения симистора VS1 его основной ток протекает не только через первичную обмотку трансформатора Т1, но и через один из резисторов — R3 или R5, которые в зависимости от полярности полупериода сетевого напряжения поочередно подключаются параллельно первичной обмотке трансформатора диодами VD4 и VD3 соответственно. Этой же цели служит и мощный резистор R6, являющийся нагрузкой выпрямителя VD5, VD6. Резистор R6, хроме того, формирует импульсы разрядного тока, которые продлевают срок службы батареи.

Основным узлом зарадного устройства на симисторе является трансформатор Т1. Его можно изготовить на базе лабораторного трансформатора. ЛАТР-2М, изолировав его обмотку (она будет первичной) тремя слоями лакоткани и намотав вторичную обмотку, состоящую из 80 витков изолированного медного провода сечением не менее 3 мм2, с отводом от середины.

Конденсаторы С1 и С2 — МБМ или другие на напряжение не менее 400 и 160 В соответственно. Резисторы R1 и R2 — СП 1-1 и СПЗ-45 соответственно. Диоды VD1-VD4 -Д226, Д226Б или КД105Б. Неоновая лампа HL1 — ИН-3, ИН-3А; очень желательно применять лампу с одинаковыми по конструкции и размерам электродами — это обеспечит симметричность импульсов тока через первичную обмотку трансформатора.

Диоды КД202А можно заменить на любые из этой серии, а также на. Д242, Д242А или другие со средним прямим тоном не менее 5 А. Диод размещают на дюралюминиевой теплоотводящей пластине с полезной площадью поверхности. рассеяния не менее 120 см2. Симистор также следует укрепить на теплоотводящей пластине примерно вдвое меньшей площади поверхности. Резистор R6 — ПЭВ-10; его можно заменить пятью параллельно соединенными резисторами МЛТ-2 сопротивлением 110 Ом.

Устройство собирают в прочной коробке из изоляционного материала (фанеры, текстолита и т.п.). В верхней ее стенке и в дне следует просверлить вентиляционные отверстия. Размещение деталей в коробке — произвольное. Резистор R1 («Зарядный ток») монтируют на лицевой панели, к ручке прикрепляют небольшую стрелку, а под ней — шкалу. Цепи, несущие нагрузочный ток, необходимо выполнять проводом марки МГШВ сечением 2,5…3 мм2.

Зарядное устройство на симисторе настраивают следующим образом. Сначала устанавливают требуемый предел зарядного тока (но не более 10 А) резистором R2. Для этого к выходу устройства через амперметр на 10 А подключают батарею аккумуляторов, строго соблюдая полярность. Движок резистора R1 переводят в крайнее верхнее по схеме положение, резистора R2 — в крайнее нижнее, и включают устройство в сеть. Перемещая движок резистора R2, устанавливают необходимое значение максимального зарядного тока.

Заключительная операция — калибровка шкалы резистора R1 в амперах по образцовому амперметру.

В процессе зарядки ток через батарею изменяется, уменьшаясь к концу примерно на 20%. Поэтому перед зарядкой устанавливают начальный ток батареи несколько большим номинального значения (примерно на 10%). Окончание зарядки оправляют по плотности электролита или вольтметром — напряжение отключенной батареи должно быть в пределах 13,8. ..14,2 В.

Вместо резистора R6 можно установить лампу накаливания на напряжение 12 В мощностью около 10 Вт, разместив ее снаружи корпуса. Она индицировала бы подключение зарядного устройства к аккумуляторной батарее и одновременно, освещала бы рабочее место.

Читать далее — Тиристорное зарядное устройство

Популярные схемы зарядных устройств:

Схема простого тиристорного зарядного устройства

Десульфатирующее зарядное устройство

Простое зарядное устройство

Схема автомата включения-выключения зарядного устройства


Симистор — это… Что такое Симистор?

Обозначение на схемах Эквивалентная схема симистора Фото современных симисторов

Симиcтop (симметричный триодный тиристор) или триак (от англ. TRIAC — triode for alternating current) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока. В электронике часто рассматривается как управляемый выключатель (ключ). В отличие от тиристора, имеющего катод и анод, основные (силовые) выводы симистора называть катодом или анодом некорректно, так как в силу структуры симистора они являются тем и другим одновременно. Однако по способу включения относительно управляющего электрода основные выводы симистора различаются, причём имеет место их аналогия с катодом и анодом тринистора. На приведённом рисунке верхний по схеме вывод симистора называется выводом 1 или условным катодом, нижний — выводом 2 или условным анодом, вывод справа — управляющим электродом.

Для управления нагрузкой основные электроды симистора включаются в цепь последовательно с нагрузкой. В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой. Характерно, что симистор в открытом состоянии проводит ток в обоих направлениях. Другой особенностью симистора, как и других тиристоров, является то, что для его удержания в открытом состоянии нет необходимости постоянно подавать сигнал на управляющий электрод (в отличие от транзисторa). Симистор остаётся открытым, пока протекающий через основные выводы ток превышает некоторую величину, называемую током удержания. Отсюда следует, что выключение нагрузки происходит вблизи моментов времени, когда напряжение на основных электродах симистора меняет полярность (обычно это совпадает по времени со сменой полярности напряжения в сети).

Симистор был изобретен в г. Саранске на заводе «Электровыпрямитель» в 1962-1963 г. начальником конструкторского бюро Василенко Валентиной Стефановной. Запатентован в СССР с приоритетом от 22 июня 1963 года, на полгода ранее, чем в США[1].

Структура

Симистор имеет пятислойную структуру полупроводника. Упрощённо симистор можно представить в виде эквивалентной схемы (см. рис.) из двух триодных тиристоров (тринисторов), включённых встречно-параллельно. Следует, однако, заметить, что управление симистором отличается от управления двумя встречно-параллельными тринисторами.

Управление

Для отпирания симистора на его управляющий электрод подаётся напряжение относительно условного катода. Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток.

Ограничения

При использовании симистора накладываются ограничения, в частности при индуктивной нагрузке. Ограничения касаются скорости изменения напряжения (dU/dt) между основными электродами симистора и скорости изменения рабочего тока di/dt. Превышение скорости изменения напряжения на симисторе (из-за наличия его внутренней ёмкости), а также величины этого напряжения, могут приводить к нежелательному открыванию симистора. Превышение скорости нарастания тока между основными электродами, а также величины этого тока, может привести к повреждению симистора. Существуют и другие параметры, на которые накладываются ограничения в соответствии с предельно-допустимыми режимами эксплуатации. К таким параметрам относятся ток и напряжение управляющего электрода, температура корпуса, рассеиваемая прибором мощность и пр.

Опасность превышения по скорости нарастания тока заключается в следующем. Благодаря глубокой положительной обратной связи переход симистора в открытое состояние происходит лавинообразно, но, несмотря на это, процесс отпирания может длиться до нескольких микросекунд, в течение которых к симистору оказываются приложены одновременно большие значения тока и напряжения. Поэтому, даже несмотря на то, что падение напряжения на полностью открытом симисторе невелико, мгновенная мощность во время открывания симистора может достигнуть большой величины. Это сопровождается выделением тепловой энергии, которая не успевает рассеяться и может привести к перегреву и повреждению кристалла.

Одним из способов защиты симистора от выбросов напряжения при работе с индуктивной нагрузкой является включение варистора параллельно основным выводам симистора. Для защиты симистора от превышения скорости изменения напряжения применяют так называемую снабберную цепочку (RC-цепь), подключаемую аналогично.

Примечания

Ссылки

Литература

  • 1. Э.Кадино «Цветомузыкальные установки» -М.: ДМК Пресс, 2000.
  • 2. Кублановский. Я. С. Тиристорные устройства. — 2-е изд., перераб. и доп. — М.: Радио и связь, 1987. — 112 с.: ил. — (Массовая радиобиблиотека. Вып. 1104).

Что такое DIAC — Схемы применения »Электроника

DIAC — это двунаправленный полупроводниковый переключатель, который может быть включен как в прямой, так и в обратной полярности выше определенного напряжения: он часто используется для обеспечения определенного переключения для симистора.


Triac, Diac, SCR Учебное пособие включает:
Основы тиристоров Конструкция тиристорного устройства Работа тиристора Затвор отключающий тиристор, ГТО Характеристики тиристора Что такое симистор Технические характеристики симистора Обзор Diac


DIAC — это двухполупериодный или двунаправленный полупроводниковый переключатель, который можно включать как в прямой, так и в обратной полярности.

Название DIAC происходит от слов DI ​​ ode AC switch. DIAC — это электронный компонент, который широко используется для помощи даже в срабатывании TRIAC при использовании в переключателях переменного тока, и в результате они часто встречаются в диммерах, таких как те, которые используются в домашнем освещении. Эти электронные компоненты также широко используются в цепях стартера люминесцентных ламп.

Хотя этот термин встречается нечасто, DIAC также можно назвать симметричными триггерными диодами — термин, обусловленный симметрией их характеристической кривой.

DIAC бывают разных форматов. В качестве дискретных компонентов они могут содержаться в небольших корпусах с выводами, их можно получить в корпусах для поверхностного монтажа, в больших корпусах, которые крепятся болтами к шасси, или во множестве других корпусов. Поскольку они часто используются как комбинация DIAC TRIAC, они часто интегрируются в тот же кристалл, что и TRIAC.

Символ DIAC

Символ DIAC, используемый для изображения этого электронного компонента на принципиальных схемах, можно запомнить как комбинацию двух диодов, параллельных друг другу, но соединенных в противоположных направлениях.

Обозначение цепи DIAC

Из-за того, что DIAC являются двунаправленными устройствами, выводы не могут быть обозначены как анод и катод, как для диода. Вместо этого они могут быть помечены как A1 и A2 или MT1 и MT2, где MT означает «Главный терминал».

Работа DIAC

В схемах

DIAC используется тот факт, что DIAC проводит ток только после превышения определенного напряжения пробоя. Фактическое напряжение пробоя будет зависеть от технических характеристик конкретного типа компонента.

Когда возникает напряжение пробоя DIAC, сопротивление компонента резко уменьшается, что приводит к резкому уменьшению падения напряжения на DIAC и соответствующему увеличению тока. DIAC будет оставаться в проводящем состоянии до тех пор, пока ток, протекающий через него, не упадет ниже определенного значения, известного как ток удержания. Когда ток падает ниже тока удержания, DIAC переключается обратно в свое высокое сопротивление или непроводящее состояние.

Вольт-амперная характеристика DIAC

DIAC широко используются в приложениях переменного тока, и было обнаружено, что устройство «сбрасывается» в непроводящее состояние каждый раз, когда напряжение в цикле падает так, что ток падает ниже тока удержания.Поскольку поведение устройства примерно одинаково в обоих направлениях, оно может обеспечить способ обеспечения равного переключения для обеих половин цикла переменного тока, например для TRIAC.

Большинство DIAC имеют напряжение пробоя около 30 вольт, хотя точные характеристики будут зависеть от конкретного типа устройства. Интересно, что их поведение несколько похоже на поведение неоновой лампы, хотя они предлагают гораздо более точное переключение напряжения и тем самым обеспечивают гораздо лучшую степень выравнивания переключения.

Структура Diac

DIAC может быть двухслойной или пятислойной. В трехслойной структуре переключение происходит, когда переход с обратным смещением испытывает обратный пробой. Трехслойная версия устройства является более распространенной и может иметь напряжение отключения около 30 В. Работа почти симметрична из-за симметрии устройства.

Также доступна пятиуровневая структура DIAC. Это не действует точно так же, хотя создает кривую I-V, которая очень похожа на трехслойную версию.Его можно рассматривать как два переключающих диода, соединенных спина к спине.

Структура DIAC

Для большинства приложений используется трехуровневая версия DIAC. Это обеспечивает значительное улучшение коммутационных характеристик. Для некоторых приложений может использоваться пятиуровневое устройство.

Приложения DIAC

Одно из основных применений DIAC в схемах TRIAC. TRIAC не срабатывают симметрично из-за небольших различий между двумя половинами устройства.

Несимметричное срабатывание и результирующие формы волны вызывают генерацию нежелательных гармоник — чем менее симметрична форма волны, тем выше уровень генерации гармоник.

Комбинация DIAC TRIAC

Для решения проблем, возникающих из-за несимметричной работы, DIAC часто размещается последовательно с затвором. Это устройство помогает сделать переключение более равномерным для обеих половин цикла. Это связано с тем, что характеристика переключения DIAC намного более ровная, чем у TRIAC.

Поскольку DIAC предотвращает протекание любого тока затвора до тех пор, пока напряжение срабатывания триггера не достигнет определенного напряжения в любом направлении, это делает точку срабатывания TRIAC более равномерной в обоих направлениях. Ввиду их полезности DIAC часто могут быть встроены в терминал затвора TRIAC.

DIAC — широко используемый электронный компонент. Основное применение DIAC — использование вместе с TRIAC для выравнивания их коммутационных характеристик. Путем выравнивания характеристик переключения этих TRIAC можно уменьшить уровень гармоник, генерируемых при переключении сигналов переменного тока.Несмотря на это, для больших приложений обычно используются два тиристора. Тем не менее, комбинация DIAC / TRIAC очень полезна для приложений с низким энергопотреблением, включая регуляторы освещенности и т. Д.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор FET Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

Использование симисторов для управления индуктивными нагрузками

Здесь мы пытаемся исследовать несколько усовершенствованных схем фазового регулятора на основе симисторов, которые можно рекомендовать для управления или эксплуатации индуктивных нагрузок, таких как трансформаторы и двигатели переменного тока, намного безопаснее, чем более ранние традиционные схемы диммеров на основе симисторов.

Использование симисторов для управления нагрузками переменного тока

Симистор — это полупроводниковое устройство, используемое для переключения нагрузок переменного тока. Обычно рекомендуется, чтобы нагрузки, которые должны управляться через симисторы, были резистивными по своей природе, то есть следует избегать нагрузок, которые включают в себя обмотки или конденсаторы.

Поэтому, как правило, нагрузки, которые преобразуют энергию в тепло, такие как лампы накаливания, нагреватели и т. Д., Подходят только с симисторами, поскольку переключатели и устройства, такие как трансформаторы, двигатели переменного тока и электронные схемы, являются большим НЕТ!

Однако недавние разработки и исследования значительно улучшили ситуацию, и сегодня новые симисторы и соответствующие улучшенные схемы схем сделали абсолютно безопасным даже использование симисторов для переключения чисто индуктивных нагрузок.

Я не буду обсуждать технические аспекты конфигураций, имея в виду новых любителей электроники и ради простоты.

Давайте проанализируем несколько из исследованных конструкций, которые могут поддерживать симисторы с индуктивной нагрузкой.

Цепь управления симистором, подходящая только для резистивных нагрузок

Первая схема показывает общий способ использования симистора и диакритической комбинации для реализации требуемого управления конкретной нагрузкой, однако эта конструкция просто не подходит для индуктивных нагрузок.

Схема включает в себя принцип запуска с синхронизацией через симистор.Конфигурация является самой простой по форме и имеет следующие преимущества:

Дизайн очень простой и дешевый.

Использование только двух оконечных клеммных проводов и отсутствие внешнего источника питания.

Но одним большим недостатком этой конструкции является ее неспособность работать с высокоиндуктивными нагрузками.

Схема управления симистором, подходящая для работы с индуктивными нагрузками

Однако небольшое размышление показывает, что вышеупомянутую схему можно просто изменить в конструкцию, показанную на следующей диаграмме.

Принцип здесь теперь трансформируется в срабатывание симистора с синхронизацией по сетевому напряжению.

Идея в значительной степени нейтрализует вышеуказанную проблему и очень хорошо согласуется даже с индуктивными типами нагрузок.

Обратите внимание, что в приведенной выше конструкции очень интересно то, что положение нагрузки и подключения резистора было изменено для получения желаемых результатов.

Достоинства можно оценить следующим образом:

Опять простая конструкция и очень низкая стоимость.

Лучшее управление равномерными нагрузками, которые по своей природе являются индуктивными.

Как правило, для работы не требуется внешний источник питания.

К недостаткам можно отнести использование трех оконечных концов проводов для предполагаемых подключений.

Операции становятся очень асимметричными, и поэтому схему нельзя использовать для управления высокоиндуктивными нагрузками, такими как трансформаторы.

Цепь управления симистором

идеально подходит для высокоиндуктивных нагрузок, таких как трансформаторы и двигатели переменного тока

Интеллектуальная настройка вышеупомянутой схемы делает ее очень желательной даже с самыми табуированными индуктивными нагрузками, такими как трансформаторы и двигатели переменного тока.

Здесь был изобретен еще один небольшой чувствительный симистор для устранения основной проблемы, которая в первую очередь ответственна за то, что симисторы не подходят для индуктивных нагрузок.

Второй малый симистор гарантирует, что симистор никогда не отключится и не заблокируется полностью, генерируя последовательность импульсов, поддерживая симистор в рабочем состоянии и постоянно «толкаясь».

Преимущества вышеуказанной окончательной конструкции можно отметить следующими пунктами:

Очень простая конструкция,

Превосходная точность при управлении высокоиндуктивными нагрузками,

Отсутствие использования внешнего источника питания.

Вышеупомянутая схема была эксклюзивно разработана лабораторией приложений SGS-THOMSON Microelectronics и успешно использовалась в широком спектре оборудования.

ПРЕДОСТАВЛЕНИЕ:

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

Опто-симисторы и твердотельные реле

  • Изучив этот раздел, вы сможете:
  • Опишите типичное использование оптических симисторов:
  • • Электрическая изоляция.
  • • Коммутационная способность.
  • • Типовая конструкция.
  • Опишите типичные особенности твердотельных реле:
  • • Электрическая изоляция.
  • • Переключение нагрузок постоянного и переменного тока.
  • • Типовые параметры.
  • Опишите типичные функции безопасности, используемые в твердотельных реле (SSR):
  • • Защита от обратной полярности.
  • • Защита от перенапряжения.
  • • Подавление переходных напряжений.
  • • Демпферные цепи.
  • • Переход через нулевое напряжение.
  • Опишите основные меры для тестирования оптопар на основе ИС.
  • • Основные тесты.
  • • Меры безопасности для устройств среднего и высокого напряжения.

Опто-симисторы

Устройства, которые используются для управления высоковольтным / высокомощным оборудованием, должны иметь хорошую электрическую изоляцию между их выходом высокого напряжения и входом низкого напряжения.Использование слоя оксида кремния толщиной в несколько атомов для обеспечения необходимой изоляции в таких условиях нереально. Когда возникают неисправности (а они более вероятны в цепях большой мощности), результаты могут быть катастрофическими не только для компонентов схемы, но и для пользователей такого оборудования. Физическая изоляция (то есть отсутствие электрического соединения между входом и выходом) — вот что необходимо. К счастью, есть легко доступные решения этой проблемы.Многие цепи высокой мощности сегодня управляются низковольтными, слаботочными цепями, такими как микропроцессоры, с использованием оптоэлектронных устройств, таких как опто-симисторы, опто-тиристоры и твердотельные реле, для изоляции цепей низкой и высокой мощности.

Устройство управления должно быть способно справляться с высокими напряжениями, включая очень высокие скачки напряжения, которые могут возникать в выходных цепях переменного или постоянного тока из-за обратной ЭДС от индуктивных нагрузок, и скачки напряжения, которые могут случайным образом присутствовать в сети (линии) поставка.Также высокие значения импульсного тока (намного превышающего нормальный « рабочий ток »), которые возникают, например, при включении таких нагрузок, как двигатели или лампы накаливания, могут потребовать, чтобы устройство управления было рассчитано на работу с импульсными токами до 40 или В 50 раз превышающий нормальный «рабочий» ток. Выбранное устройство управления должно также обеспечивать электрическую изоляцию между входными и выходными цепями. В дополнение к этим критериям цепь вокруг устройства управления должна также обеспечивать защиту от опасных ситуаций.Например, подходящие радиаторы для используемых твердотельных устройств. Также необходимы специальные быстродействующие предохранители или автоматические выключатели, чтобы предотвратить повреждение полупроводников из-за токовых перегрузок.

Рис. 6.6.1 Опто-симистор и опто-тиристор

В этой группе оптопары, фототиристоры, фототиристоры или комбинации фотодиод / МОП-транзистор заменяют фотодиоды и фототранзисторы, описанные в модуле 5 опто-сопряженных устройств, а также доступны в интегральных схемах (I.C.) форма для переключения относительно маломощных нагрузок переменного или постоянного тока. В полупроводниковых реле высокой мощности (SSR), показанных на рис. 6.6.2, используются микросхемы, подобные показанным на рис. 6.6.1, с дополнительной «встроенной» схемой для безопасной и надежной работы с высоковольтными и сильноточными нагрузками.

Рис. 6.6.2 Типичный SSR высокой мощности

Твердотельные реле

Опто-симисторы и опто-тиристоры используются для переключения нагрузок переменного тока, но также доступны твердотельные реле, использующие силовые полевые МОП-транзисторы, которые могут переключать переменный или постоянный ток.Твердотельные реле малой мощности, состоящие в основном из опто-симисторной схемы, такой как тип, показанный на рис. 6.6.1, могут использоваться как обычные интегральные схемы, установленные на печатной плате. В качестве альтернативы эти маломощные оптопары могут быть заключены в изолированный корпус вместе с мощными симисторами или тиристорами и дополнительными компонентами безопасности, такими как радиаторы и компоненты подавления импульсов, в более крупных твердотельных реле (SSR), монтируемых в стойку, всего с четырьмя или пятью винтами. клеммы для тяжелых условий эксплуатации, которые можно рассматривать как выключатели сетевого (линейного) питания и могут заменить многие типы электромеханических реле.

Рис. 6.6.3 Твердотельное реле MOSFET

Одной из наиболее важных особенностей SSR является то, что оптопара обеспечивает полную гальваническую развязку между входной цепью малой мощности и выходной цепью высокой мощности. Когда выходной переключатель находится в «разомкнутом» состоянии (т. Е. Полевые МОП-транзисторы выключены), SSR имеет почти бесконечное сопротивление на своих выходных клеммах и почти нулевое сопротивление в «замкнутом» состоянии (т. Е. Полевые МОП-транзисторы имеют большую проводимость). Даже в этом случае некоторая мощность будет рассеиваться полупроводниковым переключателем, когда он находится в состоянии «включено» или «выключено» с переменным или постоянным током.По этой причине требуются соответствующие радиаторы для предотвращения перегрева.

Типичная схема базового MOSFET SSR показана на рисунке 6.6.3. Ток около 20 мА через светодиод достаточен для активации полевых МОП-транзисторов, которые заменяют контакты механического реле. (Инфракрасный) свет от светодиода падает на фотоэлектрический блок, который состоит из нескольких фотодиодов. Поскольку один фотодиод будет производить только очень низкое напряжение, диоды в фотоэлектрическом блоке расположены последовательно / параллельно, чтобы обеспечить достаточное напряжение для включения полевых МОП-транзисторов.

Рис. 6.6.4 Использование микросхемы реле MOSFET для переключения
переменного или постоянного тока

На рисунке 6.6.4 представлен базовый пример MOSFET SSR, показывающий, как можно организовать выходы, чтобы позволить SSR переключать нагрузки переменного или постоянного тока. Для удовлетворения различных требований к выходному напряжению и току переменного и постоянного тока доступен ряд подобных SSR, типичным примером является PVT412 SSR от International Rectifier (теперь часть Infineon Technologies), выпускаемый в нескольких версиях в виде 6-контактного DIL-корпуса и способный заменить однополюсное механическое реле для переключения переменного или постоянного напряжения до 400 В (пиковое) с токами до 140 мА переменного тока или 210 мА постоянного тока.Доступны другие микросхемы, которые действуют как двухполюсные, нормально замкнутые (NC), нормально разомкнутые (NO) и переключающие реле с широким спектром дополнительных возможностей. SSR также производятся в диапазоне выходных напряжений и номинальных значений тока, с диапазоном типов корпусов, начиная от небольших компонентов для поверхностного монтажа и заканчивая сложными многополюсными микросхемами и примерами больших сильноточных устройств для монтажа в стойку в электрических шкафах управления. Более подробную информацию о SSR можно найти, выполнив поиск по твердотельным реле на веб-сайтах производителей, таких как Infineon Technologies, или у поставщиков полупроводников, таких как RS Components

.

Рис.6.6.5 Функции безопасности твердотельного реле

Функции безопасности SSR

ТТР

состоят в основном из оптопары, управляющей некоторыми мощными переключающими устройствами, такими как силовой симистор, полевые МОП-транзисторы или тиристоры, но, поскольку их назначение — переключение мощных электрических нагрузок, часто в критических для безопасности ситуациях ТТР производятся с широким спектром функций. , разработан для обеспечения безопасной и надежной работы. Некоторые из них показаны на схеме, показанной на рис. 6.6.5:

.

Защита от обратной полярности.Если входные клеммы подключены с неправильной полярностью, диод D1 проводит и снижает напряжение в нижней части R1 примерно до 0,7 В, тем самым спасая светодиод оптопары от повреждения. Обратите внимание, что номинальная мощность диода и токоограничивающего резистора R1 должна быть способна выдерживать ток обратной полярности при максимальном входном напряжении без повреждений, в противном случае входной предохранитель подходящего номинала может быть вставлен между входным положительным контактом и токоограничивающим резистором.

Защита от перегрузки по току.Обычно SSR могут работать в диапазоне входных напряжений постоянного тока, например от 5 до 24 В. Эти более высокие напряжения могут привести к тому, что ток через светодиод оптопары превысит требуемый максимум, в этом случае схема защиты от перегрузки по току срабатывает для поддержания подходящего уровня тока через светодиод. R2 — резистор низкого номинала для измерения тока; это значение выбрано таким образом, чтобы в нормальных рабочих условиях Tr1 смещен чуть ниже порога отсечки, но если ток через светодиод входа оптопары увеличивается из-за чрезмерного входного напряжения, дополнительный ток через R2 заставит Tr1 проводить, отклоняя часть тока светодиода через Tr1 снижает напряжение в нижней части R1 и ток через светодиод до безопасного уровня.

Рис. 6.6.6 Подавление переходного напряжения

Диод подавления переходных напряжений (TVS). SSR, используемые в ситуациях управления, могут быть подвержены повреждениям, вызванным внезапными и кратковременными (то есть переходными) скачками напряжения, которые могут быть вызваны внешними событиями, такими как импульсы обратной ЭДС при переключении индуктивных нагрузок; также удаленные грозовые разряды и другие электромагнитные или электростатические разряды представляют собой случаи высокого риска для полупроводниковых устройств. Такие всплески напряжения могут быть очень короткими по продолжительности, но могут достигать сотен или тысяч вольт по амплитуде, и хотя создаваемый ими ток может быть очень небольшим, напряжение, вызванное такими напряжениями, может вызвать полный отказ полупроводниковых устройств, используемых в SSR.Одним из способов уменьшить эти опасные события является использование диода-ограничителя переходного напряжения (TVS), подключенного параллельно с чувствительными устройствами, такими как оптопара, как показано на рис. 6.6.5.

На рис. 6.6.6 показано действие TVS-диода и показан выходной синусоидальный сигнал, наложенный на характеристики TVS-диода. Двунаправленный TVS-диод работает скорее как два встречных стабилитрона, где выше определенного обратного напряжения происходит пробой тока, и диод проводит сильную проводимость.Поскольку TVS-диод в этом случае является двунаправленным, пробой происходит как в прямом, так и в обратном направлении.

При использовании TVS-диод должен иметь напряжение пробоя выше пикового напряжения волны переменного тока, которое составляет 1,414 x V RMS , поэтому TVS-диод с напряжением пробоя примерно в 1,5 раза больше, чем RMS-напряжение синусоидальной волны. обычно используется. Скачок напряжения, превышающий этот предел, вызывает сильную проводимость диода, ограничивая его напряжение до напряжения пробоя диода.Заметное различие между стабилитроном и TVS-диодом состоит в том, что TVS-диод имеет более прочную область перехода, чтобы справиться с внезапным сильным выбросом тока во время всплесков. Однако после того, как всплеск закончился, диод перестает проводить (за исключением небольшого обратного тока утечки) и больше не влияет на выходную волну, пока не появятся новые всплески. TVS-диоды также доступны в однонаправленных типах, которые также могут использоваться на входной стороне оптопары в SSR с использованием входа постоянного тока, если существует высокий риск возникновения всплесков.Однако, поскольку на вход постоянного тока обычно подается сглаженный источник питания постоянного тока, обычно ожидается, что это минимизирует риск, поэтому использование TVS-диодов на входных компонентах редко считается необходимым.

Рис. 6.6.7 RC демпферные цепи

RC демпферные цепи. Эти схемы обеспечивают способ уменьшения разрушающего воздействия скачков напряжения в сети переменного тока или очень больших и быстрых изменений напряжения, которые могут возникнуть при включении или выключении индуктивной нагрузки (коммутации).В более старых типах симисторов или тиристоров эта RC-цепь (R5 и C1) подключается через выходной симистор или тиристор, как показано на рис. 6.6.5 и рис. 6.6.7. Его эффект заключается в замедлении быстрого увеличения или уменьшения напряжения во время всплеска. Использование демпфирующей схемы также может уменьшить радиопомехи, вызванные переключением симистора или тиристора. Если выбрать подходящую постоянную времени для R5 / C1, конденсатор не успеет зарядиться при повышении пикового напряжения, прежде чем напряжение снова снизится и разрядится конденсатор.Таким образом уменьшается амплитуда любых быстрых скачков напряжения. Типичные значения R составляют от 39 до 100 Ом для R5 и от 22 до 47 нФ для C1. Конденсатор также должен быть импульсного типа с очень высоким максимальным рабочим напряжением, намного превышающим пиковое значение выходной волны, чтобы учесть дополнительное напряжение, вызываемое любыми скачками напряжения. Однако конструкция демпферных цепей более сложна, чем простой выбор типичных значений R и C, и должна учитывать ряд факторов, которые будут уникальными для цепи или компонента, который защищает демпфер, и для нагрузок, которые цепь может управлять. .

Полезное примечание по конструкции демпфера и калькулятору компонентов можно найти в сети HIQUEL (High Quality Electronics).

Генераторы переменного тока

В качестве альтернативы доступны современные симисторы, которые также можно назвать «альтернисторами» или «альтернисторными симисторами», которые гораздо менее подвержены повреждению или случайному ложному срабатыванию, вызванному быстрыми переходными напряжениями. Несколько производителей полупроводников имеют свой собственный ассортимент устройств, например, серию «Snubberless TM » от ST Microelectronics или «Hi-Com TM » от WeEn Semiconductors, которые способны справляться как с скачками напряжения, так и с быстрым События dV / dt, возникающие при коммутации (отключении) с индуктивными нагрузками.Внутренняя конструкция этих симисторов отличается от оригинальных типов, что позволяет им лучше справляться с быстрыми изменениями высокого напряжения, которые могут произойти при отключении индуктивных нагрузок из-за разности фаз между током и напряжением в индукторах. В этом случае возможно, что при отключении симистора, когда сетевой (линейный) ток проходит через ноль вольт, сетевое напряжение на симисторе может достигать максимального значения. Хотя такие события в оригинальных схемах симисторов могут вызвать проблемы с неконтролируемым повторным запуском, в современных конструкциях это значительно уменьшено.

Рис. 6.6.8 SSR Zero Crossing Action

Переход через нулевое напряжение. Некоторые SSR включают схемы «пересечения нуля» или «синхронного переключения», которые уменьшают возможность введения быстро изменяющихся «всплесков» в сетевом (линейном) питании, гарантируя, что их выход будет включаться только тогда, когда цикл сетевого напряжения проходит через нулевое напряжение. . Как показано на рис. 6.6.8, если управляющее напряжение требует включения в то время в течение цикла напряжения, когда напряжение переменного тока не проходит через 0 В, действие переключения задерживается до тех пор, пока напряжение не перейдет через 0 В в конце текущей половины. цикл.Однако схема пересечения нулевого напряжения не играет никакой роли в выключении выхода; это управляется действием симистора или тиристора, который при включении выключится только тогда, когда выходной ток нагрузки упадет ниже заданного удерживающего тока симистора или тиристора, что будет происходить при прохождении формы волны тока через ноль.

Приведенные выше описания функций безопасности предназначены для ознакомления пользователей SSR с некоторыми необходимыми ограничениями безопасности при выборе правильного SSR для любой конкретной операции.Однако этот список не предлагается в качестве исчерпывающего руководства, важность или неважность любого из этих факторов будет во многом зависеть от предполагаемого использования SSR. Поэтому рекомендуется, особенно при рассмотрении вопроса о безопасной эксплуатации цепей, получить рекомендации, относящиеся к предполагаемому проекту, многие производители или национальные и международные агентства по безопасности могут легко дать квалифицированный совет относительно пригодности SSR для конкретных целей. Вам также предлагается продолжить изучение, пройдя по некоторым из рекомендованных ссылок внизу этой страницы.

Твердотельное и механическое переключение в сравнении с

Твердотельные реле

(SSR) имеют ряд преимуществ перед электромеханическими реле, некоторые из которых являются очевидными преимуществами, а некоторые будут оспариваться приверженцами (и производителями) электромеханических реле. Однако, какой тип реле лучше для конкретного приложения, зависит больше от приложения, а не от типа реле. Поэтому это следует внимательно учитывать при чтении следующих списков.

Преимущества ТТР перед электромеханическими реле.

  1. Поскольку твердотельные реле не имеют индуктивных катушек или подвижных контактов, они не создают электромагнитных помех.
  2. ТТР
  3. не вызывают потенциально опасного искрения.
  4. SSR
  5. работают бесшумно.
  6. ТТР
  7. не подвержены механическому износу, поэтому потенциально могут выполнять гораздо больше операций переключения, чем электромеханические реле (однако любой тип может быть спроектирован для выполнения большего числа операций, чем требуется в течение срока службы оборудования, в котором они используются).
  8. SSR не страдают от дребезга контактов.
  9. ТТР
  10. имеют более быстрое время переключения, чем электромеханические реле.
  11. Для коммутации переменного тока доступны SSR с переходом через ноль, которые включаются только в тот момент или близко к тому времени, когда форма сигнала переменного тока проходит через нулевое напряжение, что снижает вероятность возникновения скачков напряжения, которые возникают, если цепь включается при напряжении переменного тока. на максимум.
  12. SSR
  13. могут быть физически меньше, чем электромеханические реле сопоставимых типов.

Недостатки ТТР перед электромеханическими реле.

  1. Когда SSR включены, между выходными клеммами существует измеримое сопротивление, поэтому SSR выделяют некоторое количество тепла, а также вызывают падение напряжения во включенном состоянии.
  2. Когда SSR находятся в выключенном состоянии, на выходе все еще протекает небольшой обратный ток утечки. В отличие от электромеханических реле, SSR не являются ни полностью включенными, ни выключенными. Поэтому их использование может быть запрещено некоторыми правилами техники безопасности.
  3. Потому что SSR могут очень быстро (за миллисекунды) включать случайные всплески помех во входных цепях или внезапные быстрые изменения напряжения на их выходах, что может вызвать нежелательное переключение некоторых SCR или симисторов.
  4. Отказ SSR обычно вызывает короткое замыкание (включение), тогда как отказ электромеханического реле обычно вызывает обрыв цепи (выключение). Из-за этого использование SSR может вызвать некоторые опасения в критических для безопасности системах.

Дополнительная информация

Твердотельные реле и электромеханические реле — Примечания по применению Твердотельные реле США

Как правильно выбрать реле — National Instruments

Технические советы по реле — Crydom Inc.

Поставщики и ресурсы беспроводной связи RF

О мире беспроводной связи RF

Веб-сайт RF Wireless World является домом для поставщиков и ресурсов радиочастотной и беспроводной связи. На сайте представлены статьи, руководства, поставщики, терминология, исходный код (VHDL, Verilog, MATLAB, Labview), тестирование и измерения, калькуляторы, новости, книги, загрузки и многое другое.

Сайт RF Wireless World охватывает ресурсы по различным темам, таким как RF, беспроводная связь, vsat, спутник, радар, волоконная оптика, микроволновая печь, wimax, wlan, zigbee, LTE, 5G NR, GSM, GPRS, GPS, WCDMA, UMTS, TDSCDMA, bluetooth, Lightwave RF, z-wave, Интернет вещей (IoT), M2M, Ethernet и т. Д.Эти ресурсы основаны на стандартах IEEE и 3GPP. В нем также есть академический раздел, который охватывает колледжи и университеты по инженерным дисциплинам и MBA.

Статьи о системах на основе Интернета вещей

Система обнаружения падений для пожилых людей на основе Интернета вещей : В статье рассматривается архитектура системы обнаружения падений, используемой для пожилых людей. В нем упоминаются преимущества или преимущества системы обнаружения падений Интернета вещей. Узнать больше➤
Также обратитесь к другим статьям о системах на основе Интернета вещей следующим образом:
• Система чистоты туалетов самолета. • Система измерения столкновения • Система отслеживания скоропортящихся продуктов и овощей • Система помощи водителю • Система умной торговли • Система мониторинга качества воды. • Система Smart Grid • Система умного освещения на базе Zigbee • Система интеллектуальной парковки на основе Zigbee. • Система интеллектуальной парковки на основе LoRaWAN


RF Статьи о беспроводной связи

В этом разделе статей представлены статьи о физическом уровне (PHY), уровне MAC, стеке протоколов и сетевой архитектуре на основе WLAN, WiMAX, zigbee, GSM, GPRS, TD-SCDMA, LTE, 5G NR, VSAT, Gigabit Ethernet на основе IEEE / 3GPP и т. Д. .стандарты. Он также охватывает статьи, относящиеся к испытаниям и измерениям, по тестированию на соответствие, используемым для испытаний устройств на соответствие RF / PHY. УКАЗАТЕЛЬ СТАТЬИ ДЛЯ ССЫЛКИ >>.


Физический уровень 5G NR : Обработка физического уровня для канала 5G NR PDSCH и канала 5G NR PUSCH рассмотрена поэтапно. Это описание физического уровня 5G соответствует спецификациям физического уровня 3GPP. Читать дальше➤


Основы повторителей и типы повторителей : В нем объясняются функции различных типов ретрансляторов, используемых в беспроводных технологиях.Читать дальше➤


Основы и типы замирания : В этой статье описаны мелкомасштабные замирания, крупномасштабные замирания, медленные, быстрые и т. Д., Используемые в беспроводной связи. Читать дальше➤


Архитектура сотового телефона 5G : В этой статье рассматривается блок-схема сотового телефона 5G с внутренними модулями 5G. Архитектура сотового телефона. Читать дальше➤


Основы помех и типы помех: В этой статье рассматриваются помехи в соседнем канале, помехи в совмещенном канале, ЭМ помехи, ICI, ISI, световые помехи, звуковые помехи и т. Д.Читать дальше➤


5G NR Раздел

В этом разделе рассматриваются функции 5G NR (New Radio), нумерология, диапазоны, архитектура, развертывание, стек протоколов (PHY, MAC, RLC, PDCP, RRC) и т. Д. 5G NR Краткий указатель ссылок >>
• Мини-слот 5G NR • Часть полосы пропускания 5G NR • 5G NR CORESET • Форматы DCI 5G NR • 5G NR UCI • Форматы слотов 5G NR • IE 5G NR RRC • 5G NR SSB, SS, PBCH • 5G NR PRACH • 5G NR PDCCH • 5G NR PUCCH • Эталонные сигналы 5G NR • 5G NR m-последовательность • Золотая последовательность 5G NR • 5G NR Zadoff Chu Sequence • Физический уровень 5G NR • Уровень MAC 5G NR • Уровень 5G NR RLC • Уровень 5G NR PDCP


Учебные пособия по беспроводным технологиям

В этом разделе рассматриваются учебные пособия по радиочастотам и беспроводной связи.Он охватывает учебные пособия по таким темам, как сотовая связь, WLAN (11ac, 11ad), wimax, bluetooth, zigbee, zwave, LTE, DSP, GSM, GPRS, GPS, UMTS, CDMA, UWB, RFID, радар, VSAT, спутник, WLAN, волновод, антенна, фемтосота, тестирование и измерения, IoT и т. Д. См. УКАЗАТЕЛЬ Учебников >>


Учебное пособие по 5G — В этом руководстве по 5G также рассматриваются следующие подтемы по технологии 5G:
Учебное пособие по основам 5G Полосы частот руководство по миллиметровым волнам Волновая рамка 5G мм Зондирование волнового канала 5G мм 4G против 5G Тестовое оборудование 5G Сетевая архитектура 5G Сетевые интерфейсы 5G NR канальное зондирование Типы каналов 5G FDD против TDD Разделение сети 5G NR Что такое 5G NR Режимы развертывания 5G NR Что такое 5G TF


Этот учебник GSM охватывает основы GSM, архитектуру сети, элементы сети, системные спецификации, приложения, Типы пакетов GSM, структура кадров GSM или иерархия кадров, логические каналы, физические каналы, Физический уровень GSM или обработка речи, вход в сеть мобильного телефона GSM, установка вызова или процедура включения питания, MO-вызов, MT-вызов, VAMOS, AMR, MSK, модуляция GMSK, физический уровень, стек протоколов, основы мобильного телефона, Планирование RF, нисходящая линия связи PS и восходящая линия связи PS.
➤Подробнее.

LTE Tutorial , охватывающий архитектуру системы LTE, охватывающий основы LTE EUTRAN и LTE Evolved Packet Core (EPC). Он обеспечивает связь с обзором системы LTE, радиоинтерфейсом LTE, терминологией LTE, категориями LTE UE, структурой кадра LTE, физическим уровнем LTE, Стек протоколов LTE, каналы LTE (логические, транспортные, физические), пропускная способность LTE, агрегация несущих LTE, передача голоса по LTE, расширенный LTE, Поставщики LTE и LTE vs LTE продвинутые.➤Подробнее.


RF Technology Stuff

Эта страница мира беспроводной радиосвязи описывает пошаговое проектирование преобразователя частоты RF на примере преобразователя RF UP от 70 МГц до диапазона C. для микрополосковой платы с использованием дискретных радиочастотных компонентов, а именно. Смесители, гетеродин, MMIC, синтезатор, опорный генератор OCXO, колодки аттенюатора. ➤Подробнее.
➤Проектирование и разработка радиочастотного трансивера ➤Конструкция RF фильтра ➤VSAT Система ➤Типы и основы микрополосковой печати ➤Основы работы с волноводом


Секция испытаний и измерений

В этом разделе рассматриваются контрольно-измерительные ресурсы, испытательное и измерительное оборудование для тестирования DUT на основе Стандарты WLAN, WiMAX, Zigbee, Bluetooth, GSM, UMTS, LTE.ИНДЕКС испытаний и измерений >>
➤ Система PXI для T&M. ➤ Генерация и анализ сигналов ➤Измерения слоя PHY ➤Тест устройства на соответствие WiMAX ➤ Тест на соответствие Zigbee ➤ Тест на соответствие LTE UE ➤Тест на соответствие TD-SCDMA


Волоконно-оптическая технология

Оптоволоконный компонент , основы, включая детектор, оптический соединитель, изолятор, циркулятор, переключатели, усилитель, фильтр, эквалайзер, мультиплексор, разъемы, демультиплексор и т. д.Эти компоненты используются в волоконно-оптической связи. Оптические компоненты INDEX >>
➤Учебник по оптоволоконной связи ➤APS в SDH ➤SONET основы ➤SDH Рамочная конструкция ➤SONET против SDH


Поставщики, производители радиочастотных беспроводных устройств

Сайт RF Wireless World охватывает производителей и поставщиков различных радиочастотных компонентов, систем и подсистем для ярких приложений, см. ИНДЕКС поставщиков >>.

Поставщики радиочастотных компонентов, включая радиочастотный изолятор, радиочастотный циркулятор, радиочастотный смеситель, радиочастотный усилитель, радиочастотный адаптер, радиочастотный разъем, радиочастотный модулятор, радиочастотный трансивер, ФАПЧ, ГУН, синтезатор, антенну, генератор, делитель мощности, сумматор мощности, фильтр, аттенюатор, диплексор, дуплексер, чип-резистор, чип-конденсатор, чип-индуктор, ответвитель, оборудование для ЭМС, программное обеспечение для проектирования RF, диэлектрический материал, диод и т. д.Производители RF компонентов >>
➤Базовая станция LTE ➤RF Циркулятор ➤RF Изолятор ➤Кристаллический осциллятор


MATLAB, Labview, встроенные исходные коды

Раздел исходного кода RF Wireless World охватывает коды, связанные с языками программирования MATLAB, VHDL, VERILOG и LABVIEW. Эти коды полезны для новичков в этих языках. ИНДЕКС ИСХОДНОГО КОДА >>
➤3-8 декодер кода VHDL ➤Код MATLAB для дескремблера ➤32-битный код ALU Verilog ➤T, D, JK, SR коды labview flipflop


* Общая информация о здоровье населения *

Выполните эти пять простых действий, чтобы остановить коронавирус (COVID-19).
ДЕЛАЙ ПЯТЬ
1. РУКИ: Часто мойте их
2. КОЛЕНО: Откашляйтесь
3. ЛИЦО: Не трогай его
4. НОГИ: держитесь на расстоянии более 3 футов (1 м) друг от друга
5. ЧУВСТВОВАТЬ: Болен? Оставайся дома

Используйте технологию отслеживания контактов >>, соблюдайте >> рекомендации по социальному дистанцированию и установить систему видеонаблюдения >> чтобы спасти сотни жизней. Использование концепции телемедицины стало очень популярным в таким странам, как США и Китай, остановить распространение COVID-19, поскольку это заразное заболевание.


RF Беспроводные калькуляторы и преобразователи

Раздел «Калькуляторы и преобразователи» охватывает ВЧ-калькуляторы, беспроводные калькуляторы, а также преобразователи единиц. Сюда входят беспроводные технологии, такие как GSM, UMTS, LTE, 5G NR и т. Д. СПРАВОЧНЫЕ КАЛЬКУЛЯТОРЫ Указатель >>.
➤ Калькулятор пропускной способности 5G NR ➤5G NR ARFCN против преобразования частоты ➤Калькулятор скорости передачи данных LoRa ➤LTE EARFCN для преобразования частоты ➤ Калькулятор антенны Яги ➤ Калькулятор времени выборки 5G NR


IoT-Интернет вещей Беспроводные технологии

Раздел IoT охватывает беспроводные технологии Интернета вещей, такие как WLAN, WiMAX, Zigbee, Z-wave, UMTS, LTE, GSM, GPRS, THREAD, EnOcean, LoRa, SIGFOX, WHDI, Ethernet, 6LoWPAN, RF4CE, Bluetooth, Bluetooth Low Power (BLE), NFC, RFID, INSTEON, X10, KNX, ANT +, Wavenis, Dash7, HomePlug и другие.Он также охватывает датчики Интернета вещей, компоненты Интернета вещей и компании Интернета вещей.
См. Главную страницу IoT >> и следующие ссылки.
➤ НИТЬ ➤EnOcean ➤Учебник по LoRa ➤Учебник по SIGFOX ➤WHDI ➤6LoWPAN ➤Zigbee RF4CE ➤NFC ➤Lonworks ➤CEBus ➤UPB



СВЯЗАННЫЕ ЗАПИСИ


Учебники по беспроводной связи RF



Различные типы датчиков


Поделиться страницей

Перевести страницу

% PDF-1.3 % 64 0 объект > endobj xref 64 68 0000000016 00000 н. 0000001725 00000 н. 0000001867 00000 н. 0000002006 00000 н. 0000002523 00000 н. 0000002754 00000 н. 0000002834 00000 н. 0000002958 00000 н. 0000003064 00000 н. 0000003170 00000 н. 0000003224 00000 н. 0000003331 00000 н. 0000003385 00000 н. 0000003536 00000 н. 0000003590 00000 н. 0000003687 00000 н. 0000003741 00000 н. 0000003829 00000 н. 0000003912 00000 н. 0000003966 00000 н. 0000004071 00000 н. 0000004125 00000 н. 0000004179 00000 п. 0000004283 00000 п. 0000004337 00000 н. 0000004471 00000 н. 0000004525 00000 н. 0000004578 00000 н. 0000004660 00000 н. 0000004762 00000 н. 0000004815 00000 н. 0000004868 00000 н. 0000004922 00000 н. 0000005004 00000 н. 0000005101 00000 п. 0000005154 00000 н. 0000005208 00000 н. 0000005409 00000 н. 0000005615 00000 н. 0000006302 00000 п. 0000006412 00000 н. 0000006628 00000 н. 0000006724 00000 н. 0000006940 00000 н. 0000007635 00000 п. 0000007657 00000 н. 0000008402 00000 п. 0000008424 00000 н. 0000008537 00000 н. 0000008843 00000 н. 0000008930 00000 н. 0000009632 00000 н. 0000009654 00000 н. 0000009767 00000 н. 0000010474 00000 п. 0000010496 00000 п. 0000011208 00000 п. 0000011230 00000 п. 0000011411 00000 п. 0000012124 00000 п. 0000012146 00000 п. 0000012819 00000 п. 0000012841 00000 п. 0000013413 00000 п. 0000013435 00000 п. 0000013514 00000 п. 0000002068 00000 н. 0000002501 00000 п. трейлер ] >> startxref 0 %% EOF 65 0 объект > endobj 66 0 объект B- | [Bd) / U (& E 䱃 -rZY} [] «9« / V) / П-12 >> endobj 67 0 объект > endobj 130 0 объект > ручей ǬN} ~ {:}, R گ Ҋp` ۇ GɐRc) 95RfC ~ o.»QFic» «> Dq :: r Y ٮ og% _j¶xr {gH [@ GB $ 7? R * +. (Pq ژ * kC

Использование периферийного устройства Zero Cross Detect (ZCD) для срабатывания симистора

Переключить навигацию

  • Инструменты разработки
    • Какие инструменты мне нужны?
    • Программные инструменты
      • Начните здесь
      • MPLAB® X IDE
        • Начните здесь
        • Установка
        • Введение в среду разработки MPLAB X
        • Переход на MPLAB X IDE
          • Переход с MPLAB IDE v8
          • Переход с Atmel Studio
        • Конфигурация
        • Плагины
        • Пользовательский интерфейс
        • Проектов
        • Файлы
        • Редактор
          • Редактор
          • Интерфейс и ярлыки
          • Основные задачи
          • Внешний вид
          • Динамическая обратная связь
          • Навигация
          • Поиск, замена и рефакторинг
          • Инструменты повышения производительности
            • Инструменты повышения производительности
            • Автоматическое форматирование кода
            • Список задач
            • Сравнение файлов (diff)
            • Создать документацию
        • Управление окнами
        • Сочетания клавиш
        • Отладка
        • Контроль версий
        • Автоматика
          • Язык управления стимулами (SCL)
          • Отладчик командной строки (MDB)
          • Создание сценариев IDE с помощью Groovy
        • Устранение неполадок
        • Работа вне MPLAB X IDE
        • Другие ресурсы
      • Улучшенная версия MPLAB Xpress
      • MPLAB Xpress
      • MPLAB IPE
      • Программирование на C
      • Компиляторы MPLAB® XC
        • Начните здесь
        • Компилятор MPLAB® XC8
        • Компилятор MPLAB XC16
        • Компилятор MPLAB XC32
        • Компилятор MPLAB XC32 ++
        • Кодовое покрытие MPLAB
      • Компилятор IAR C / C ++
      • Конфигуратор кода MPLAB (MCC)
      • MPLAB Harmony версии 2
      • Гармония MPLAB v3
      • среда разработки Atmel® Studio
      • Atmel START (ASF4)
      • Advanced Software Framework v3 (ASF3)
        • Начните здесь
        • ASF3 Учебники
          • ASF Audio Sine Tone Учебное пособие
          • Интерфейс LCD с SAM L22 MCU Учебное пособие
      • Блоки устройств MPLAB® для Simulink®
      • Утилиты
      • Инструменты проектирования FPGA
      • Аналоговый симулятор MPLAB® Mindi ™
    • Аппаратные средства
      • Начните здесь
      • Сравнение аппаратных средств
      • Средства отладки и память устройства
      • Исполнительный отладчик
      • Демо-платы и стартовые наборы
      • Внутрисхемный эмулятор MPLAB® REAL ICE ™
      • Эмулятор SAM-ICE JTAG
      • Внутрисхемный эмулятор
      • Atmel® ICE
      • Power Debugger
      • Внутрисхемный отладчик MPLAB® ICD 3
      • Внутрисхемный отладчик MPLAB® ICD 4
      • Внутрисхемный отладчик PICkit ™ 3
      • Внутрисхемный отладчик MPLAB® PICkit ™ 4
      • MPLAB® Snap
      • MPLAB PM3 Универсальный программатор устройств
      • Принадлежности
        • Заголовки эмуляции и пакеты расширения эмуляции
        • Пакеты расширения процессора и отладочные заголовки
          • Начните здесь
          • Обзор PEP и отладочных заголовков
          • Требуемый список заголовков отладки
            • Таблица требуемых отладочных заголовков
            • AC162050, AC162058
            • AC162052, AC162055, AC162056, AC162057
            • AC162053, AC162054
            • AC162059, AC162070, AC162096
            • AC162060
            • AC162061
            • AC162066
            • AC162083
            • AC244023, AC244024
            • AC244028
            • AC244045
            • AC244051, AC244052, AC244061
            • AC244062
          • Дополнительный список заголовков отладки
            • Дополнительный список заголовков отладки — устройства PIC12 / 16
            • Дополнительный список заголовков отладки — устройства PIC18
            • Дополнительный список заголовков отладки — Устройства PIC24
          • Целевые следы заголовка отладки
          • Отладочные подключения заголовков
      • SEGGER J-Link
      • Решения для сетевых инструментов K2L
      • Рекомендации по проектированию средств разработки
      • Ограничения отладки — микроконтроллеры PIC
      • Инженерно-технические примечания (ETN) [[li]] Встроенные платформы chipKIT ™
  • Проектов
    • Начните здесь
    • Преобразование мощности
      • AN2039 Четырехканальный секвенсор питания PIC16F1XXX
    • 8-битные микроконтроллеры PIC®
    • 8-битные микроконтроллеры AVR®
    • 16-битные микроконтроллеры PIC®
    • 32-битные микроконтроллеры SAM
    • 32-разрядные микропроцессоры SAM
      • Разработка приложений SAM MPU с MPLAB X IDE
      • Примеры программного пакета SAM MPU
    • Запланировано дополнительное содержание.

Добавить комментарий

Ваш адрес email не будет опубликован.