Удельное сопротивление алюминия ом м: Удельное сопротивление меди и алюминия для расчетов

Содержание

Электрическое сопротивление r (Ом) 1м проволоки (провода…) в зависимости от ее диаметра d и материала.





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Физический справочник / / Электрические и магнитные величины / / Электрическое сопротивление и проводимость проводников, растворов, почв….  / / Электрическое сопротивление r (Ом) 1м проволоки (провода…) в зависимости от ее диаметра d и материала.

Поделиться:   

Электрическое сопротивление r (Ом) 1м проволоки (провода…) в зависимости от ее диаметра d или сечения и материала при 20 °С.

Электрическое сопротивление r (Ом) 1м проволоки (провода…) в зависимости от ее диаметра d и материала при 20 °С..
d, мм

сечение, мм2

Материал проволоки

алюминиевая

медная

вольфрамовая

стальная

никелиновая

нихромовая

0,05

0,001963

13,68

8,66

28

51

204

510

0,10

0,00785

3,42

2,16

7,0

12,7

51

128

0,30

0,0707

Электрическая проводимость металлов таблица — booktube. ru

Электрическое сопротивление 1 метра провода (в Ом), сечением 1 мм², при температуре 20 С°. Формула: ρ = Ом · мм²/м.

Материал проводникаУдельное сопротивление ρ в Ом
Серебро0.015
Медь0.0175
Золото0.023
Латунь0,025. 0,108
Хром0,027
Алюминий0.028
Натрий0.047
Иридий0.0474
Вольфрам0.05
Цинк0.054
Молибден0.059
Никель0.087
Бронза0,095. 0,1
Железо0.1
Сталь
0,103. 0,137
Олово0.12
Свинец0.22
Никелин (сплав меди, никеля и цинка)0.42
Манганин (сплав меди, никеля и марганца)0,43. 0,51
Константан (сплав меди, никеля и алюминия)0,44-0,52
Копель ( медно-никелевый сплав с 43% никеля и 0,5% марганца)0.5
Титан0.6
Ртуть0.94
Хромель (хром 8,7—10 %; никель 89—91 %; кремний, медь, марганец, кобальт — примеси)1.01
Нихром (сплав никеля, хрома, железа и марганца)1,05. 1,4
Фехраль1,15. 1,35
Висмут1.2
Хромаль (Сплав 4.5 – 6% алюминия, 17%-30% хрома, остальное железо)1,3. 1,5

Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро — лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r — сопротивление проводника в омах; ρ — удельное сопротивление проводника; l — длина проводника в м; S — сечение проводника в мм².

В связи с тем, что существует два типа электрических сопротивлений –

В связи с электромагнитными явлениями, возникающими в проводниках при прохождении через него переменного тока в них возникает два важных для их электротехнических свойств физических явления.

Два последних явления делают неэффективным применение проводников радиусом больше характерной глубины проникновения электрического тока в проводник. Эффективный диаметр проводников (2RБхар): 50Гц -7 Ом. Используя микроомметры, можно определить качество электрических контактов, сопротивление электрических шин, обмоток трансформаторов, электродвигателей и генераторов, наличие дефектов и инородного металла в слитках (например, сопротивление слитка чистого золота вдвое ниже позолоченного слитка вольфрама).

Для расчета длины провода, его диаметра и необходимого электрического сопротивления, необходимо знать удельное сопротивление проводников ρ.

В международной системе единиц удельное сопротивление ρ выражается формулой:

Оно означает: электрическое сопротивление 1 метра провода (в Омах), сечением 1 мм 2 , при температуре 20 градусов по Цельсию.

Таблица удельных сопротивлений проводников

Материал проводникаУдельное сопротивление ρ в
Серебро
Медь
Золото
Латунь
Алюминий
Натрий
Иридий
Вольфрам
Цинк
Молибден
Никель
Бронза
Железо
Сталь
Олово
Свинец
Никелин (сплав меди, никеля и цинка)
Манганин (сплав меди, никеля и марганца)
Константан (сплав меди, никеля и алюминия)
Титан
Ртуть
Нихром (сплав никеля, хрома, железа и марганца)
Фехраль
Висмут
Хромаль
0,015
0,0175
0,023
0,025. 0,108
0,028
0,047
0,0474
0,05
0,054
0,059
0,087
0,095. 0,1
0,1
0,103. 0,137
0,12
0,22
0,42
0,43. 0,51
0,5
0,6
0,94
1,05. 1,4
1,15. 1,35
1,2
1,3. 1,5

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм 2 обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм 2 . Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм 2 обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов.

Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм 2 .

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм 2 .

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм 2 .

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм 2 . Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм 2 и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Если при температуре t сопротивление проводника равно r, а при температуре t равно rt, то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Значения температурного коэффициента для некоторых металлов

Металлα
Серебро
Медь
Железо
Вольфрам
Платина
0,0035
0,0040
0,0066
0,0045
0,0032
Ртуть
Никелин
Константан
Нихром
Манганин
0,0090
0,0003
0,000005
0,00016
0,00005

Из формулы температурного коэффициента сопротивления определим rt:

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

Удельное сопротивление металлов и сплавов таблица

Электрическое сопротивление 1 метра провода (в Ом), сечением 1 мм², при температуре 20 С°. Формула: ρ = Ом · мм²/м.

Материал проводникаУдельное сопротивление ρ в Ом
Серебро0.015
Медь0.0175
Золото0.023
Латунь0,025. 0,108
Хром0,027
Алюминий0.028
Натрий0.047
Иридий0.0474
Вольфрам0.05
Цинк0.054
Молибден0.059
Никель0.087
Бронза0,095. 0,1
Железо0.1
Сталь0,103. 0,137
Олово0.12
Свинец0.22
Никелин (сплав меди, никеля и цинка)0.42
Манганин (сплав меди, никеля и марганца)0,43. 0,51
Константан (сплав меди, никеля и алюминия)0,44-0,52
Копель ( медно-никелевый сплав с 43% никеля и 0,5% марганца)0.5
Титан0.6
Ртуть0.94
Хромель (хром 8,7—10 %; никель 89—91 %; кремний, медь, марганец, кобальт — примеси)1.01
Нихром (сплав никеля, хрома, железа и марганца)1,05. 1,4
Фехраль1,15. 1,35
Висмут1.2
Хромаль (Сплав 4.5 – 6% алюминия, 17%-30% хрома, остальное железо)1,3. 1,5

Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро — лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r — сопротивление проводника в омах; ρ — удельное сопротивление проводника; l — длина проводника в м; S — сечение проводника в мм².

Представлены таблицы значений удельного электрического сопротивления сталей различных типов и марок в зависимости от температуры — в диапазоне от 0 до 1350°С.

В общем случае, удельное сопротивление определяется только составом вещества и его температурой, оно численно равно полному сопротивлению изотропного проводника, имеющего длину 1 м и площадь поперечного сечения 1 м 2 .

Удельное электрическое сопротивление стали существенно зависит от состава и температуры. При повышении температуры этого металла увеличивается частота и амплитуда колебаний атомов кристаллической решетки, что создает дополнительное сопротивление прохождению электрического тока через толщу сплава. Поэтому, с ростом температуры сопротивление стали увеличивается.

Изменение состава стали и процента содержания в ней легирующих добавок значительно сказывается на величине электросопротивления. Например, углеродистые и низколегированные стали в несколько раз лучше проводят электрический ток, чем высоколегированные и жаропрочные, которые имеют высокое содержание никеля и хрома.

Углеродистые стали

Углеродистые стали при комнатной температуре, как уже было сказано, имеют низкое удельное электросопротивление за счет высокого содержания железа. При 20°С значение их удельного сопротивления находится в диапазоне от 13·10 -8 (для стали 08КП) до 20·10 -8 Ом·м (для У12).

При нагревании до температур более 1000°С способность углеродистых сталей проводить электрический ток сильно снижается. Величина сопротивления возрастает на порядок и может достигать значения 130·10 -8 Ом·м.

Удельное электрическое сопротивление углеродистых сталей ρэ·10 8 , Ом·м
Температура, °ССталь 08КПСталь 08Сталь 20Сталь 40Сталь У8Сталь У12
1213,215,9161718,4
201314,216,917,11819,6
5014,715,918,718,919,821,6
10017,81921,922,123,225,2
15021,322,425,425,726,829
20025,226,329,229,630,833,3
25029,530,533,433,935,137,9
30034,135,238,138,739,843
35039,340,243,243,84548,3
40044,845,848,749,350,554
45050,951,854,655,356,560
50057,558,460,161,962,866,5
55064,865,768,268,969,973,4
60072,573,475,876,677,280,2
65080,781,683,784,485,287,8
70089,890,592,593,293,596,4
750100,3101,1105107,9110,5113
800107,3108,1109,4111,1112,9115
850110,4111,1111,8113,1114,8117,6
900112,4113113,6114,9116,4119,6
950114,2114,8115,2116,6117,8121,2
1000116116,5116,7117,9119,1122,6
1050117,5117,9118,1119,3120,4123,8
1100118,9119,3119,4120,7121,4124,9
1150120,3120,7120,7122122,3126
1200121,7122121,9123123,1127,1
1250123123,3122,9124123,8128,2
1300124,1124,4123,9124,6128,7
1350125,2125,3125,1125129,5

Низколегированные стали

Низколегированные стали способны чуть более сильно сопротивляться прохождению электричества, чем углеродистые. Их удельное электросопротивление составляет (20…43)·10 -8 Ом·м при комнатной температуре.

Следует отметить марки стали этого типа, которые наиболее плохо проводят электрический ток — это 18Х2Н4ВА и 50С2Г. Однако при высоких температурах, способность проводить электрический ток у сталей, приведенных в таблице, практически не различается.

Удельное электрическое сопротивление низколегированных сталей ρэ·10 8 , Ом·м
Марка стали2010030050070090011001300
15ХФ28,142,160,683,3
30Х2125,941,763,693,4114,5120,5125,1
12ХН233365267112
12ХН329,667116
20ХН324294666123
30ХН326,831,746,968,198,1114,8120,1124,6
20ХН4Ф36415672102118
18Х2Н4ВА4144587397115
30Г220,825,942,164,594,6114,3120,2125
12МХ24,627,440,659,8
40Х3М33,148,269,596,2
20Х3ФВМ39,854,474,398,2
50С2Г42,94760,178,8105,7119,7124,9128,9
30Н327,1324767,999,2114,9120,4124,8

Высоколегированные стали

Высоколегированные стали имеют удельное электрическое сопротивление в несколько раз выше чем углеродистые и низколегированные. По данным таблицы видно, что при температуре 20°С его величина составляет (30…86)·10 -8 Ом·м.

При температуре 1300°С сопр

Удельное электрическое сопротивление — ООО «Эстив»

Алюминий

0,028

Вольфрам

0,055

Графит

13

Железо

0,1

Золото

0,024

Латунь

0,07-0,08

Магний

0,045

Медь

0,017

Никель

0,073

Олово

0,12

Платина

0,1

Ртуть

0,96

Свинец

0,21

Серебро

0,016

Сталь

0,10-0,14

Цинк

0,061

Чугун

0,5-0,8

Антимонид индия

0,23 x 104

Бор

0,17 x 105

Германий

0,47

Кремний

0,58 x 10-4

Селенид свинца

9,1 x 10-6

Сульфид свинца

1,7 x 10-5

Воздух

1015-1018

Кварц

109

Резина

1011-1012

Слюда

1011-1015

Стекло

109-1013

Сухое дерево

109-1010

Трансформаторное масло

1010-1013

Гетинакс

109-1012

Капрон

1010-1011

Лавсан

1014-1016

Органическое стекло

1011-1013

Пенопласт

1011

Поливинилхлорид

1010-1012

Полистирол

1013-1015

Полиэтилен

1015

Стеклотекстолит

1011-1012

Текстолит

107-1010

Целлулоид

109

Эбонит

1012-1014

Удельное сопротивление материалов таблица

Закон Ома устанавливает связь между силой тока в проводнике и разностью потенциалов (напряжением) на его концах. Формулировка для участка электрической цепи (проводника), не содержащего источников электродвижущей силы (ЭДС): сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника. Законы Ома для замкнутой неразветвлённой цепи: сила тока прямо пропорциональна электродвижущей силе и обратно пропорциональна полному сопротивлению цепи. Закон Ома справедлив для постоянных и квазистационарных токов. Был открыт немецким физиком Георгом Омом в 1826 году. * Современная энциклопедия

В случае переменного тока, величины, входящие в расчётные формулы – становятся комплексными.

Закон Ома в дифференциальной форме – описывает исключительно электропроводящие свойства материала, вне зависимости от геометрических размеров.

Удельное электрическое сопротивление вещества есть электросопротивление изготовленного из него куба со сторонами, равными единице (1метр), когда ток идёт перпендикулярно двум его противоположным граням, площадью 1 квадратный метр каждая. 2/м] (SI – Ω·m, рус. – Ом-метр, англ. – ohm-meter). Для измерения проводниковых материалов разрешается использовать внесистемную единицу –
Ом·мм2/м (для миллиметрового сечения проводника, длиной 1 м., то есть – миллионную часть Ом-метра).

Физический смысл удельного сопротивления: материал (однородный и изотропный*) имеет удельное электрическое сопротивление один Ом·м, если изготовленный из этого материала куб со стороной 1 метр имеет сопротивление 1 Ом при измерении на противоположных гранях куба.
* Изотропность – идентичность физических свойств во всех направлениях.

Удельное сопротивление характеризует способность вещества проводить электрический ток и не зависит от формы и размеров вещества, но меняется, при отличии его температуры от 20 °C (то есть, от комнатной, при которой определялись табличные значения для справочников).

На практике, в технике чаще применяется единица, в миллион раз меньшая (миллиметровое токоведущее сечение), чем Ом·м:

1 мкОм·м (SI – µΩ·m, рус. -9 Ом•м)

Металлы высокой проводимости (не более 0,1 мкОм.м) – используются для изготовления проводов, токопроводящих жил кабелей, обмоток электрических машин и трансформаторов и т. п. Металлы и сплавы высокого сопротивления (не менее 0,3 микроом-метр) – применяются для производства образцовых резисторов, реостатов, электроизмерительных приборов, электронагревательных устройств, нитей ламп накаливания и т. п. Нагревательные сплавы должны выдерживать длительную работу на открытом воздухе – без разрушения при температурах не менее 1000 °С.

Таблица значений удельного электрического сопротивления,
мкОм·м (микроом-метр) = Ом·мм2/м (равные числовые величины)

при температуре окружающей среды 20 градусов по Цельсию

Серебро – 0,015-0,016
Медь – 0,0172-0,0180
Золото – 0,024
Алюминий – 0.026-0.030
Вольфрам – 0,053-0,055
Цинк 0,053-0,062
Никель – 0.068-0,073
Латунь (сплав меди с цинком) – 0,043 – 0,108
Железо – 0,098
Сталь – 0,10-0,14
Олово – 0,12
Оловяно-свинцовый припой – 0,14 – 0,16
Бронзовые сплавы – 0,02 – 0,2
Свинец – 0,217 – 0,227
Никелин – 0,4
Манганин – 0,42 – 0,48
Константан – 0,48 – 0,52
Нихром – 1,05-1,40
Фехраль – 1,15-1,35
Угольно-графитовые щётки для электрических машин – 20-50
Угольный сварочный электрод – 50-90 мкОм·м

Минералка (с минерализацией воды – 2-7 грамм на литр) – 1-4 *10^6 мкОм·м = 1-4 Ом•м
Вода грунтовая – 10-50 *10^6
Влажная / сырая садовая земля (верхний слой почвы, грунта – после поливки) – 20-60 *10^6

Почему в электросетях применяется высокое напряжение

В линии электропередачи, при постоянной передаваемой мощности её потери растут прямо пропорционально длине ЛЭП и обратно пропорционально квадрату ЭДС. Таким образом, считается желательным, увеличение напряжения до величин в десятки (внутригородские воздушные и кабельные сети электропередач на 380 вольт, 6, 10, 20, 35, 110, 220 и 330 кВ) и сотни киловольт (магистральные электросети сверхвысокого – ЛЭП500-750 кВ и ультравысокого напряжения, 1150кВ и выше) на линиях переменного и постоянного (150, 400, 800 кВ) тока. Но, при таких параметрах эксплуатации, постоянно растущем потреблении электрической энергии и частых пиковых перегрузках, износ оборудования, отсутствие резервных мощностей, погодные аномалии, локальные несоответствия требованиям безопасности, непрофессионализм и элементарное разгильдяйство – могут стать причиной нештатных ситуаций и системных аварий (называемых теперь, на английский манер – блэкаут). По этой причине, муниципальные власти любого посёлка и города – имеют постоянную головную боль по обеспечению резервными источниками питания (аккумуляторами и дизель-генераторами) для бесперебойного электроснабжения социальных объектов по резервной схеме.

Спецсплавы на медной основе, в электротехнике

При больших токах, до 10 А – применяют проволочный резистор большой мощности, называемый реостатом. В качестве обмотки используют проволоку, изготовленную из термостабильного (с минимальным температурным коэффициентом) сплава с большим удельным сопротивлением, например, из константана (40% Ni, 1,2% Mn, 58,8% Cu). Если напряжение между соседними витками не превышает 1 вольта – такую проволку можно наматывать плотно, виток к витку, без особой изоляции между витками, благодаря наличию естественной плёнки окисла, образующейся на поверхности данного металла, при быстром (не более трёх секунд) нагреве до достаточно высокой температуры (порядка 900 °С).

В приборах высокого класса точности – применяется манганин (3%Ni, 12%Mn, 85%Cu), менее термоустойчивый, но, в отличие от константанового провода, имеющий очень малую термоЭДС (контактную разность электрических потенциалов) в паре с медью.

Обозначения рекомендуемых кратных и дольных величин от единиц СИ

10^9 Ом – гигаом ГОм GΩ
10^6 Ом – мегаом МОм MΩ
10^3 Ом = 1000 Ом – килоом кОм kΩ. -9 Ом – наноом нОм nΩ

Зависимость сопротивления от температуры.

При нагревании, электрическое сопротивление металлических проводников – возрастает, а при охлаждении – уменьшается. Для вычисления, по формуле, электросопротивления при определённой температуре – используют, так называемый, «температурный коэффициент сопротивления» (ТКС). Расчёты ведутся от некоторого начального уровня температуры. Для интервала температур, в пределах обычных погодных условий (в зимнее и летнее время года) окружающей среды, зависимость для проводника описывается математической формулой:

R2 = R1 * (1 + α * (t2 – t1)),

где R1 (начальное, известное значение, при нуле или 20 градусов по Цельсию, измеренное или посчитанное) и R2 (искомое) – сопротивления резистора соответственно при температурах t1 (0°С или 20°С) и t2; α – температурный коэффициент сопротивления (из справочной таблицы), равный относительному изменению электр. сопротивления (удельного или абсолютного) при изменении температуры на 1 °С. Так как значения ТКС очень малы, то в справочниках их указывают в единицах тысячных или миллионных долей (ppm/°С – Parts Per Million) относительного изменения сопротивления на градус.

Обычно, исходные, табличные значения различных физических постоянных – приводятся или к нормальной комнатной температуре +20 °С или к нулевой (в справочных таблицах проводниковых и реостатных материалов, применяемых в электрических аппаратах).

В металлических термометрах, изготавливаемых из медной или платиновой проволоки – электросопротивление, с повышением температуры (без экстремально высоких, для этих материалов, значений) увеличивается почти линейно. Но, при чрезмерно сильном нагреве, к примеру, тонкого медного провода до температуры красного каления, его активное электрическое сопротивление постоянному току возрастает многократно.

Пример расчёта для стометрового алюминиевого шинопровода, радиусом 40 мм, нагретого на 95°С:
R = (R1 * (1 + α * (t2–t1))) * L / S =
= 2,62*10 -8 Ом•м * (1 + 0,0042*95) * 100 / (3,14 * 40 2 * 10 -6 ) = 7,3 * 10 -4 Ом
где:
S – площадь сечения в м 2 (с вычетом толщины слоёв изоляции),
L – длина проводника в метрах.

Температурный коэффициент сопротивления х10 -3 , 1/градус:
Алюминий – 4,2
Бронза оловянистая твёрдотянутая – 0,6-0,7
Вольфрам – 4,2
Графит – -1,3
Дюраль – 2,2
Константан – 0,003-0,005
Латунь – 1,5
Манганин – 0,03-0,06 (при температуре до 250-300°С)
Медь – 4,3
Нихром – 0,14
Серебро – 4,0
Сталь – 9,0
Цинк – 4,2

2

Постоянные резисторы и их маркировка

В буквенно-цифровой (кодовой) маркировке резисторов – на их корпус наносится числовое значение электрического сопротивления и буквы, первая из которых обозначает множитель (R или Е – Ом,&nbsp K – килоом,&nbsp M – мегаом) и, заодно, определяет положение разделительной запятой десятичного знака. 2)/4
с помощью своего калькулятора, находится диаметр (в миллиметрах) = корень квадратный из (4 * S / 3.14)

Длина провода, в единицах системы СИ (переводим в метры):
80 см = 0.8 м

Находим электр. сопротивление по формуле:
R = (p * L) / S = (0.017 * 0.8) / 0.2 = 0.068 Ом

Ответ: с точностью до второго знака после запятой, R = 0.07 Ом

Электромонтажные работы – монтаж электрики, подключение и обслуживание электропроводки. | Минисправочник по электрическим параметрам: соотношения Ом х мм2/м и мкОм x м (микроом), в технических расчётах.

Представлены таблицы значений удельного электрического сопротивления сталей различных типов и марок в зависимости от температуры — в диапазоне от 0 до 1350°С.

В общем случае, удельное сопротивление определяется только составом вещества и его температурой, оно численно равно полному сопротивлению изотропного проводника, имеющего длину 1 м и площадь поперечного сечения 1 м 2 .

Удельное электрическое сопротивление стали существенно зависит от состава и температуры. При повышении температуры этого металла увеличивается частота и амплитуда колебаний атомов кристаллической решетки, что создает дополнительное сопротивление прохождению электрического тока через толщу сплава. Поэтому, с ростом температуры сопротивление стали увеличивается.

Изменение состава стали и процента содержания в ней легирующих добавок значительно сказывается на величине электросопротивления. Например, углеродистые и низколегированные стали в несколько раз лучше проводят электрический ток, чем высоколегированные и жаропрочные, которые имеют высокое содержание никеля и хрома.

Углеродистые стали

Углеродистые стали при комнатной температуре, как уже было сказано, имеют низкое удельное электросопротивление за счет высокого содержания железа. При 20°С значение их удельного сопротивления находится в диапазоне от 13·10 -8 (для стали 08КП) до 20·10 -8 Ом·м (для У12).

При нагревании до температур более 1000°С способность углеродистых сталей проводить электрический ток сильно снижается. Величина сопротивления возрастает на порядок и может достигать значения 130·10 -8 Ом·м.

0,050,070,10,20,30,40,50,711,522,54611
Наибольший допустимый ток, А0,711,32,53,545710141720253054
Удельное электрическое сопротивление углеродистых сталей ρэ·10 8 , Ом·м
Температура, °ССталь 08КПСталь 08Сталь 20Сталь 40Сталь У8Сталь У12
1213,215,9161718,4
201314,216,917,11819,6
5014,715,918,718,919,821,6
10017,81921,922,123,225,2
15021,322,425,425,726,829
20025,226,329,229,630,833,3
25029,530,533,433,935,137,9
30034,135,238,138,739,843
35039,340,243,243,84548,3
40044,845,848,749,350,554
45050,951,854,655,356,560
50057,558,460,161,962,866,5
55064,865,768,268,969,973,4
60072,573,475,876,677,280,2
65080,781,683,784,485,287,8
70089,890,592,593,293,596,4
750100,3101,1105107,9110,5113
800107,3108,1109,4111,1112,9115
850110,4111,1111,8113,1114,8117,6
900112,4113113,6114,9116,4119,6
950114,2114,8115,2116,6117,8121,2
1000116116,5116,7117,9119,1122,6
1050117,5117,9118,1119,3120,4123,8
1100118,9119,3119,4120,7121,4124,9
1150120,3120,7120,7122122,3126
1200121,7122121,9123123,1127,1
1250123123,3122,9124123,8128,2
1300124,1124,4123,9124,6128,7
1350125,2125,3125,1125129,5

Низколегированные стали

Низколегированные стали способны чуть более сильно сопротивляться прохождению электричества, чем углеродистые. Их удельное электросопротивление составляет (20…43)·10 -8 Ом·м при комнатной температуре.

Следует отметить марки стали этого типа, которые наиболее плохо проводят электрический ток — это 18Х2Н4ВА и 50С2Г. Однако при высоких температурах, способность проводить электрический ток у сталей, приведенных в таблице, практически не различается.

Удельное электрическое сопротивление низколегированных сталей ρэ·10 8 , Ом·м
Марка стали2010030050070090011001300
15ХФ28,142,160,683,3
30Х2125,941,763,693,4114,5120,5125,1
12ХН233365267112
12ХН329,667116
20ХН324294666123
30ХН326,831,746,968,198,1114,8120,1124,6
20ХН4Ф36415672102118
18Х2Н4ВА4144587397115
30Г220,825,942,164,594,6114,3120,2125
12МХ24,627,440,659,8
40Х3М33,148,269,596,2
20Х3ФВМ39,854,474,398,2
50С2Г42,94760,178,8105,7119,7124,9128,9
30Н327,1324767,999,2114,9120,4124,8

Высоколегированные стали

Высоколегированные стали имеют удельное электрическое сопротивление в несколько раз выше чем углеродистые и низколегированные. По данным таблицы видно, что при температуре 20°С его величина составляет (30…86)·10 -8 Ом·м.

При температуре 1300°С сопротивление высоко- и низко- легированных сталей становится почти одинаковым и не превышает 131·10 -8 Ом·м.

Удельное электрическое сопротивление высоколегированных сталей ρэ·10 8 , Ом·м
Марка стали2010030050070090011001300
Г1368,375,693,195,2114,7123,8127130,8
Г20Х12Ф72,379,291,2101,5109,2
Г21Х15Т82,495,6104,5112119,2
Х13Н13К1090100,8109,6115,4119,6
Х19Н10К4790,598,6105,2110,8
Р1841,947,262,781,5103,7117,3123,6128,1
ЭХ123136537597119
40Х10С2М (ЭИ107)8691101112122

Хромистые нержавеющие стали

Хромистые нержавеющие стали имеют высокую концентрацию атомов хрома, что увеличивает их удельное сопротивление — электропроводность такой нержавеющей стали не высока. При обычных температурах ее сопротивление составляет (50…60)·10 -8 Ом·м.

Удельное электрическое сопротивление хромистых нержавеющих сталей ρэ·10 8 , Ом·м
Марка стали2010030050070090011001300
Х1350,658,476,993,8110,3115119125,3
2Х1358,865,38095,2110,2
3Х1352,259,576,993,5109,9114,6120,9125
4Х1359,164,678,894108

Хромоникелевые аустенитные стали

Хромоникелевые аустенитные стали также являются нержавеющими, но за счет добавки никеля имеют удельное сопротивление почти в полтора раза выше, чем у хромистых — оно достигает величины (70…90)·10 -8 Ом·м.

Удельное электрическое сопротивление хромоникелевых нержавеющих сталей ρэ·10 8 , Ом·м
Марка стали201003005007009001100
12Х18Н974,389,1100,1109,4114
12Х18Н9Т72,379,291,2101,5109,2
17Х18Н97273,592,5103111,5118,5
Х18Н11Б84,697,6107,8115
Х18Н9В7177,691,6102,6111,1117,1122
4Х14НВ2М (ЭИ69)81,587,5100110117,5
1Х14Н14В2М (ЭИ257)82,495,6104,5112119,2
1х14Н18М3Т89100107,5115
36Х18Н25С2 (ЭЯ3С)98,5105,5110117,5
Х13Н25М2В2103112,1118,1121
Х7Н25 (ЭИ25)109115121127
Х2Н35 (ЭИ36)87,592,5103110116120,5
Н2884,289,199,6107,7114,2118,4122,5

Жаропрочные и жаростойкие стали

По своим электропроводящим свойствам жаропрочные и жаростойкие стали близки к хромоникелевым. Высокое содержание в этих сплавах хрома и никеля не позволяет им проводить электрический ток, подобно обычным углеродистым с высокой концентрацией железа.

Значительное удельное электросопротивление и высокая рабочая температура таких сталей делают возможным их применение в качестве рабочих элементов электрических нагревателей. В частности, сталь 20Х23Н18 по своему сопротивлению и жаростойкости в некоторых случаях способна заменить такой популярный сплав для нагревателей, как нихром Х20Н80.

В данной статье мы подробно разберем что такое удельное сопротивление и электропроводность, ясно опишем все формулы с помощью примеров задач, а так же дадим вам таблицу удельных сопротивлений некоторых проводников.

Описание

Закон Ома гласит, что, когда источник напряжения (V) подается между двумя точками в цепи, между ними будет протекать электрический ток (I), вызванный наличием разности потенциалов между этими двумя точками. Количество протекающего электрического тока ограничено величиной присутствующего сопротивления (R). Другими словами, напряжение стимулирует протекание тока (движение заряда), но это сопротивление препятствует этому.

Мы всегда измеряем электрическое сопротивление в Омах, где Ом обозначается греческой буквой Омега, Ω. Так, например: 50 Ом, 10 кОм или 4,7 МОм и т.д. Проводники (например, провода и кабели) обычно имеют очень низкие значения сопротивления (менее 0,1 Ом), и, таким образом, мы можем пренебречь ими, как мы предполагаем в расчетах анализа цепи, что провода имеют ноль сопротивление. С другой стороны, изоляторы (например, пластиковые или воздушные), как правило, имеют очень высокие значения сопротивления (более 50 МОм), поэтому мы можем их игнорировать и для анализа цепи, поскольку их значение слишком велико.

Но электрическое сопротивление между двумя точками может зависеть от многих факторов, таких как длина проводников, площадь их поперечного сечения, температура, а также фактический материал, из которого он изготовлен. Например, давайте предположим, что у нас есть кусок провода (проводник), который имеет длину L, площадь поперечного сечения A и сопротивление R, как показано ниже.

Электрическое сопротивление R этого простого проводника является функцией его длины, L и площади поперечного сечения A. Закон Ома говорит нам, что для данного сопротивления R ток, протекающий через проводник, пропорционален приложенному напряжению, поскольку I = V / R. Теперь предположим, что мы соединяем два одинаковых проводника вместе в последовательной комбинации, как показано на рисунке.

Здесь, соединив два проводника вместе в последовательной комбинации, то есть, к концу, мы фактически удвоили общую длину проводника (2L), в то время как площадь поперечного сечения A остается точно такой же, как и раньше. Но помимо удвоения длины, мы также удвоили общее сопротивление проводника, дав 2R как: 1R + 1R = 2R.

Таким образом , мы можем видеть , что сопротивление проводника пропорционально его длину, то есть: R ∝ L. Другими словами, мы ожидаем, что электрическое сопротивление проводника (или провода) будет пропорционально больше, чем оно длиннее.

Отметим также, что, удваивая длину и, следовательно, сопротивление проводника (2R), чтобы заставить тот же ток I, чтобы течь через проводник, как и раньше, нам нужно удвоить (увеличить) приложенное напряжение I = (2 В) / (2R). Далее предположим, что мы соединяем два идентичных проводника вместе в параллельной комбинации, как показано.

Здесь, соединяя два проводника в параллельную комбинацию, мы фактически удвоили общую площадь, дающую 2А, в то время как длина проводников L остается такой же, как у исходного одиночного проводника. Но помимо удвоения площади, путем параллельного соединения двух проводников мы фактически вдвое сократили общее сопротивление проводника, получив 1 / 2R, поскольку теперь каждая половина тока протекает через каждую ветвь проводника.

Таким образом, сопротивление проводника обратно пропорционально его площади, то есть: R 1 / ∝ A или R ∝ 1 / A. Другими словами, мы ожидаем, что электрическое сопротивление проводника (или провода) будет пропорционально меньше, чем больше его площадь поперечного сечения.

Кроме того, удваивая площадь и, следовательно, вдвое увеличивая суммарное сопротивление ветви проводника (1 / 2R), для того же тока, чтобы I протекал через параллельную ветвь провода, как раньше, нам нужно только наполовину уменьшить приложенное напряжение I = (1 / 2V) / (1 / 2R).

Надеемся, мы увидим, что сопротивление проводника прямо пропорционально длине (L) проводника, то есть: R ∝ L, и обратно пропорционально его площади (A), R ∝ 1 / A. Таким образом, мы можем правильно сказать, что сопротивление это:

Пропорциональность сопротивления

Но помимо длины и площади проводника, мы также ожидаем, что электрическое сопротивление проводника будет зависеть от фактического материала, из которого он изготовлен, потому что разные проводящие материалы, медь, серебро, алюминий и т.д., имеют разные физические и электрические свойства. Таким образом, мы можем преобразовать знак пропорциональности (∝) вышеприведенного уравнения в знак равенства, просто добавив «пропорциональную константу» в вышеприведенное уравнение, давая:

Уравнение удельного электрического сопротивления

Где: R — сопротивление в омах (Ω), L — длина в метрах (м), A — площадь в квадратных метрах (м 2 ), и где известна пропорциональная постоянная ρ (греческая буква «rho») — удельное сопротивление .

Удельное электрическое сопротивление

Удельное электрическое сопротивление конкретного материала проводника является мерой того, насколько сильно материал противостоит потоку электрического тока через него. Этот коэффициент удельного сопротивления, иногда называемый его «удельным электрическим сопротивлением», позволяет сравнивать сопротивление различных типов проводников друг с другом при определенной температуре в соответствии с их физическими свойствами без учета их длины или площади поперечного сечения. Таким образом, чем выше значение удельного сопротивления ρ, тем больше сопротивление, и наоборот.

Например, удельное сопротивление хорошего проводника, такого как медь, составляет порядка 1,72 х 10 -8 Ом (или 17,2 нОм), тогда как удельное сопротивление плохого проводника (изолятора), такого как воздух, может быть значительно выше 1,5 х 10 14 или 150 трлн.

Такие материалы, как медь и алюминий, известны низким уровнем удельного сопротивления, благодаря чему электрический ток легко проходит через них, что делает эти материалы идеальными для изготовления электрических проводов и кабелей. Серебро и золото имеют очень низкие значения удельного сопротивления, но по понятным причинам дороже делать из них электрические провода.

Тогда факторы, которые влияют на сопротивление (R) проводника в омах, могут быть перечислены как:

  • Удельное сопротивление (ρ) материала, из которого сделан проводник.
  • Общая длина (L) проводника.
  • Площадь поперечного сечения (А) проводника.
  • Температура проводника.

Пример удельного сопротивления № 1

Рассчитайте общее сопротивление постоянному току 100-метрового рулона медного провода 2,5 мм 2 , если удельное сопротивление меди при 20 o C составляет 1,72 x 10 -8 Ом метр.

Приведенные данные: удельное сопротивление меди при 20 o C составляет 1,72 x 10 -8 , длина катушки L = 100 м, площадь поперечного сечения проводника составляет 2,5 мм 2 , что дает площадь: A = 2,5 x 10 -6 м 2 .

Ответ: 688 МОм или 0,688 Ом.

Удельное электрическое сопротивление материала

Ранее мы говорили, что удельное сопротивление — это электрическое сопротивление на единицу длины и на единицу площади поперечного сечения проводника, таким образом, показывая, что удельное сопротивление ρ имеет размеры в Ом-метрах или Ом · м, как это обычно пишется. Таким образом, для конкретного материала при определенной температуре его удельное электрическое сопротивление определяется как.

Электрическая проводимость

Хотя как электрическое сопротивление (R), так и удельное сопротивление ρ, являются функцией физической природы используемого материала, а также его физической формы и размера, выраженных его длиной (L) и площадью его сечения ( А), Проводимость или удельная проводимость относится к легкости, с которой электрический ток проходит через материал.

Проводимость (G) является обратной величиной сопротивления (1 / R) с единицей проводимости, являющейся сименсом (S), и ей дается перевернутый символ омов mho, ℧. Таким образом, когда проводник имеет проводимость 1 сименс (1S), он имеет сопротивление 1 Ом (1 Ом). Таким образом, если его сопротивление удваивается, проводимость уменьшается вдвое, и наоборот, как: Сименс = 1 / Ом, или Ом = 1 / Ом.

В то время как сопротивление проводников дает степень сопротивления потоку электрического тока, проводимость проводника указывает на легкость, с которой он пропускает электрический ток. Таким образом, металлы, такие как медь, алюминий или серебро, имеют очень большие значения проводимости, что означает, что они являются хорошими проводниками.

Проводимость, σ (греческая буква сигма), является обратной величиной удельного сопротивления. Это 1 / ρ и измеряется в сименах на метр (S / m). Поскольку электропроводность σ = 1 / ρ, предыдущее выражение для электрического сопротивления R можно переписать в виде:

Электрическое сопротивление как функция проводимости

Тогда мы можем сказать, что проводимость — это эффективность, посредством которой проводник пропускает электрический ток или сигнал без потери сопротивления. Поэтому материал или проводник, который имеет высокую проводимость, будет иметь низкое удельное сопротивление, и наоборот, поскольку 1 сименс (S) равен 1 Ом -1 . Таким образом, медь, которая является хорошим проводником электрического тока, имеет проводимость 58,14 x 10 6 Симен на метр.

Пример удельного сопротивления №2

Кабель длиной 20 метров имеет площадь поперечного сечения 1 мм 2 и сопротивление 5 Ом. Рассчитать проводимость кабеля.

Приведенные данные: сопротивление постоянному току, R = 5 Ом, длина кабеля, L = 20 м, а площадь поперечного сечения проводника составляет 1 мм 2, что дает площадь: A = 1 x 10 -6 м 2 .

Ответ: 4 мега-симена на метр длины.

Таблица удельных сопротивлений проводников

ПроводникУдельное сопротивление
ρ
Температурный коэффициент α
Алюминий0,0284,2
Бронза0,095 — 0,1
Висмут1,2
Вольфрам0,055
Железо0,16
Золото0,0234
Иридий0,0474
Константан0,50,05
Латунь0,025 — 0,1080,1-0,4
Магний0,0453,9
Манганин0,43 — 0,510,01
Медь0,01754,3
Молибден0,059
Нейзильбер0,20,25
Натрий0,047
Никелин0,420,1
Никель0,0876,5
Нихром1,05 — 1,40,1
Олово0,124,4
Платина0. 1073,9
Ртуть0,941,0
Свинец0,223,7
Серебро0,0154,1
Сталь0,103 — 0,1371-4
Титан0,6
Фехраль1,15 — 1,350,1
Хромаль1,3 — 1,5
Цинк0,0544,2
Чугун0,5-1,01,0

Где: удельное сопротивление ρ измеряется в Ом*мм 2 /м и температурный коэффициент электрического сопротивления металлов α измеряется в 10 -3 *C -1 (или K -1 ) .

Краткое описание удельного сопротивления

Мы поговорили в этой статье об удельном сопротивлении, что удельное сопротивление — это свойство материала или проводника, которое указывает, насколько хорошо материал проводит электрический ток. Мы также видели, что электрическое сопротивление (R) проводника зависит не только от материала, из которого сделан проводник, меди, серебра, алюминия и т.д., но также от его физических размеров.

Сопротивление проводника прямо пропорционально его длине (L) как R ∝ L. Таким образом, удвоение его длины удвоит его сопротивление, в то время как последовательное удвоение проводника уменьшит вдвое его сопротивление. Также сопротивление проводника обратно пропорционально его площади поперечного сечения (A) как R ∝ 1 / A. Таким образом, удвоение его площади поперечного сечения уменьшило бы его сопротивление вдвое, тогда как удвоение его площади поперечного сечения удвоило бы его сопротивление.

Мы также узнали, что удельное сопротивление (символ: ρ) проводника (или материала) связано с физическим свойством, из которого он изготовлен, и варьируется от материала к материалу. Например, удельное сопротивление меди обычно дается как: 1,72 х 10 -8 Ом · м. Удельное сопротивление конкретного материала измеряется в единицах Ом-метров (Ом), которое также зависит от температуры.

В зависимости от значения удельного электрического сопротивления конкретного материала его можно классифицировать как «проводник», «изолятор» или «полупроводник». Обратите внимание, что полупроводники — это материалы, в которых их проводимость зависит от примесей, добавляемых в материал.

Удельное сопротивление также важно в системах распределения электроэнергии, так как эффективность системы заземления для системы электропитания и распределения сильно зависит от удельного сопротивления земли и материала почвы в месте расположения системы.

Проводимость — это имя, данное движению свободных электронов в форме электрического тока. Проводимость, σ является обратной величиной удельного сопротивления. Это 1 / ρ и имеет единицу измерения сименс на метр, S / m. Проводимость варьируется от нуля (для идеального изолятора) до бесконечности (для идеального проводника). Таким образом, сверхпроводник имеет бесконечную проводимость и практически нулевое омическое сопротивление.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Удельное сопротивление алюминия ом мм2 м

В связи с тем, что существует два типа электрических сопротивлений –

В связи с электромагнитными явлениями, возникающими в проводниках при прохождении через него переменного тока в них возникает два важных для их электротехнических свойств физических явления.

Два последних явления делают неэффективным применение проводников радиусом больше характерной глубины проникновения электрического тока в проводник. Эффективный диаметр проводников (2RБхар): 50Гц -7 Ом. Используя микроомметры, можно определить качество электрических контактов, сопротивление электрических шин, обмоток трансформаторов, электродвигателей и генераторов, наличие дефектов и инородного металла в слитках (например, сопротивление слитка чистого золота вдвое ниже позолоченного слитка вольфрама).

Для расчета длины провода, его диаметра и необходимого электрического сопротивления, необходимо знать удельное сопротивление проводников ρ.

В международной системе единиц удельное сопротивление ρ выражается формулой:

Оно означает: электрическое сопротивление 1 метра провода (в Омах), сечением 1 мм 2 , при температуре 20 градусов по Цельсию.

Таблица удельных сопротивлений проводников

Материал проводникаУдельное сопротивление ρ в
Серебро
Медь
Золото
Латунь
Алюминий
Натрий
Иридий
Вольфрам
Цинк
Молибден
Никель
Бронза
Железо
Сталь
Олово
Свинец
Никелин (сплав меди, никеля и цинка)
Манганин (сплав меди, никеля и марганца)
Константан (сплав меди, никеля и алюминия)
Титан
Ртуть
Нихром (сплав никеля, хрома, железа и марганца)
Фехраль
Висмут
Хромаль
0,015
0,0175
0,023
0,025. 0,108
0,028
0,047
0,0474
0,05
0,054
0,059
0,087
0,095. 0,1
0,1
0,103. 0,137
0,12
0,22
0,42
0,43. 0,51
0,5
0,6
0,94
1,05. 1,4
1,15. 1,35
1,2
1,3. 1,5

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм 2 обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм 2 . Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм 2 обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм 2 .

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм 2 .

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм 2 .

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм 2 . Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм 2 и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Если при температуре t сопротивление проводника равно r, а при температуре t равно rt, то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Значения температурного коэффициента для некоторых металлов

Металлα
Серебро
Медь
Железо
Вольфрам
Платина
0,0035
0,0040
0,0066
0,0045
0,0032
Ртуть
Никелин
Константан
Нихром
Манганин
0,0090
0,0003
0,000005
0,00016
0,00005

Из формулы температурного коэффициента сопротивления определим rt:

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r, то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Материалы высокой проводимости

К наиболее широкораспрстраненным материалам высокой проводимости следует отнести медь и алюминий (Сверхпроводящие материалы, имеющие типичное сопротивление в 10 -20 раз ниже обычных проводящих материалов (металлов) рассматриваются в разделе Сверхпроводимость).

Преимущества меди, обеспечивающие ей широкое применение в качестве проводникового материала, следующие:

  1. малое удельное сопротивление;
  2. достаточно высокая механическая прочность;
  3. удовлетворительная в большинстве случаев применения стойкость по отношению к коррозии;
  4. хорошая обрабатываемость: медь прокатывается в листы, ленты и протягивается в проволоку, толщина которой может быть доведена до тысячных долей миллиметра;
  5. относительная легкость пайки и сварки.

Медь получают чаще всего путем переработки сульфидных руд. После ряда плавок руды и обжигов с интенсивным дутьем медь, предназначенная для электротехнических целей, обязательно проход

Что такое единицы удельной проводимости и удельного сопротивления?

Электропроводность измеряет способность раствора проводить электрический ток между двумя электродами. В растворе ток протекает за счет переноса ионов. Следовательно, с увеличением количества ионов, присутствующих в жидкости, жидкость будет иметь более высокую проводимость. Если количество ионов в жидкости очень мало, раствор будет «сопротивляться» току. Переменный ток используется для предотвращения полной миграции ионов к двум электродам.

Электропроводность измеряет способность раствора проводить электрический ток между двумя электродами. В растворе ток протекает за счет переноса ионов. Следовательно, с увеличением количества ионов, присутствующих в жидкости, жидкость будет иметь более высокую проводимость. Если количество ионов в жидкости очень мало, раствор будет «сопротивляться» току. Переменный ток используется для предотвращения полной миграции ионов к двум электродам.

Введение в измерения и единицы измерения


Проводимость измеряет способность раствора проводить электрический ток между двумя электродами.В растворе ток протекает за счет переноса ионов. Следовательно, с увеличением количества ионов, присутствующих в жидкости, жидкость будет иметь более высокую проводимость. Если количество ионов в жидкости очень мало, раствор будет «сопротивляться» току. Переменный ток используется для предотвращения полной миграции ионов к двум электродам.

Проводимость = 1 / сопротивление
Единица проводимости: mho = Siemen
Нормальная единица измерения электропроводности:
1 микромо (мкСм) = 1 микросименс (мкСм)
1 миллимхо (ммхо) = 1 миллиСименс (мСм) = 1000 микросименс (мкСм)

Единица сопротивления: Ом
Нормальная единица измерения удельного сопротивления:
МОм = 1000000 Ом

Преобразование единиц проводимости.


20 микросименс (мкСм)
= 20 х 10-6 S
= 2 х 10-5 S
= 2 x 10-5 мхо>

Преобразование единиц удельного сопротивления


1 Ом / 2 x 10-5
= 1 / проводимость
= 1/2 x 10-5 Ом
= 0,5 х 10-5 Ом
= 5 x 10 4 Ом

Электропроводность и удельное сопротивление (растворы NaCl и CaCO 3 при 25 ° C)

ppm как CaCO 3 частей на миллион NaCl Электропроводность мкмос / см Удельное сопротивление, МОм / см
1700 2000 3860 0.00026
1275 1500 2930 0,00034
850 1000 1990 0,00050
425 500 1020 0,00099
170 200 415 0.0024
127,5 150 315 0,0032
85,0 100 210 0,0048
42,5 50 105 0,0095
17,0 20 42.7 0,023
12,7 15 32,1 0,031
8,5 10 21,4 0,047
4,25 5,0 10,8 0,093
1,70 2.0 4,35 0,23
1,27 1,5 3,28 0,30
0,85 1,00 2,21 0,45
0,42 0,50 1,18 0,88
0.17 0,20 0,49 2,05
0,13 0.

Единицы электропроводности и удельного сопротивления и теория измерений.

Введение в измерения и единицы измерения

Электропроводность измеряет способность раствора проводить электрический ток. между двумя электродами.В растворе ток течет по ионам транспорт. Следовательно, с увеличением количества присутствующих ионов в жидкости жидкость будет иметь более высокую проводимость. Если количество ионов в жидкости очень мало, раствор будет быть «резистентным» к току. Переменный ток используется для предотвращения полная миграция ионов к двум электродам.

В этой статье более подробно объясняется, как измеряется проводимость.

Проводимость = 1 / сопротивление
Единица проводимости: mho = Siemen
Нормальная единица измерения проводимости:
1 микромо (мкСм) = 1 микросименс (мкСм),
1 миллимхо (ммхо) = 1 миллиСименс (мСм) = 1000 микросименс (мкСм)

Единица измерения сопротивления: Ом
Нормальная единица измерения удельного сопротивления:
мегом = 1000000 Ом

Преобразование единиц проводимости:

20 микросименс (мкСм)
= 20 х 10-6 S
= 2 х 10-5 S
= 2 x 10-5 мхо >

Преобразование единиц удельного сопротивления:

1 Ом / 2 x 10-5 = 1 / проводимость
= 1/2 x 10-5 Ом
= 0.5 x 10-5 Ом
= 5 x 10 4 Ом

Электропроводность и удельное сопротивление (растворы NaCl и CaCO3 при 25 ° C)

частей на миллион как CaCO 3

частей на миллион NaCl

Электропроводность микромос / см

Удельное сопротивление мегом-см

1700

2000

3860

0.00026

1275

1500

2930

0,00034

850

1000

1990

0.00050

425

500

1020

0,00099

170

200

415

0.0024

127,5

150

315

0,0032

85.0

100

210

0,0048

42,5

50

105

0.0095

17,0

20

42,7

0,023

12.7

15

32,1

0,031

8,5

10

21.4

0,047

4,25

5,0

10,8

0.093

1,70

2,0

4,35

0,23

1.27

1,5

3,28

0,30

0,85

1.00

2,21

0,45

0,42

0,50

1.18

0,88

0,17

0,20

0,49

2.05

0,13

0,15

0,38

2,65

.085

0,10

0,27

3,70

0,042

0.05

0,16

6,15

0,017

0,02

0.098

10,2

0,012

0,015

0,087

11.5

0,008

0,010

0,076

13,1

0.004

0,005

0,066

15,2

0,002

0.002

0,059

16,9

0,001

0,001

0.057

17,6

нет

нет

0,055

18.3

Константы датчика

Постоянная зонда определяет объем между электродами. Решения с чрезвычайно высокой проводимостью требуется датчик с зондом константа больше 1.0. Решения с чрезвычайно низкой проводимостью требуется датчик с константой зонда менее 1.0. Чем больше чем расстояние между электродами, тем меньше токовый сигнал.

Электропроводность
(Микромос / см)

Удельное сопротивление
(Ом-см)

Растворенный Твердые вещества
(частей на миллион)

.056

18 000 000

. 0277

.084

12 000 000

0.417

. 167

6 000 000

0,833

1,00

1 000 000

.500

2,50

400 000

1,25

20,0

50 000

10.0

200

5000

100

2000

500

1 000

20 000

50

10 000

Электропроводность | Сопутствующие товары

MTI Corp — ведущий поставщик лабораторного оборудования и современных кристаллических подложек

Керамические подложки из AlN изготавливаются методом ленточного литья.Его теплопроводность в 4-5 раз выше, чем у Al 2 O 3 . Это идеальная подложка для электронных толстых и тонких пленок
.

Свойства керамических подложек из нитрида алюминия

Арт. № АЛН-140 АЛН-170 АЛН-180 AN5113 AN5116
Чистота (мас.%) 99% 99% 99% 98% 99%
Плотность (г / см 3 ) 3.24 3,31 3,31> 3,25> 3,26
Теплопроводность (Вт / м · К) 140 +/- 10> = 170 180 +/- 10 100-300> 170
Тепловое расширение (x10 -6 / o C) <5,6 4.4 <5,6 <4,3 <4,2
Диэлектрическая прочность (кв / мм) > = 25> = 15> 20> 15> 15
Диэлектрическая постоянная (при 1 МГц) 8,6 9 8,6 8,7 8.7
Касательная потери (x10 4 @ 1 МГц) 5 2 5 3-7 3-7
Объемное сопротивление (Ом-см) > 10 12 > 10 14 > 5×10 12 > 10 14 > 10 14
Прочность на изгиб (кг f / мм2) 35.7> 35,7> 30,6> 25> 30
Шероховатость поверхности (микрон), Ra после полировки: 0,05 мкм или 2 микродюйма Ra после полировки: 0,1 мкм или 4 микродюйма Ra после обжига: 0,3
при притирке: 0,075
после полировки: 0,025
после обжига: 0,3
при притирке: 0,075
после полировки: 0,025

Для получения паспорта безопасности керамики AlN щелкните здесь.

Отображение продуктов 1–9 из 9 результатов Показать: 30 60 90 200 Сортировать: По умолчанию Цена по убыванию Цена по убыванию Имя (А-Я) Имя (Я-А) Новейшие

Ваша корзина пуста.

Пожалуйста, очистите историю просмотров перед заказом продукта. В противном случае доступность и цена не гарантируются.
Спонсорство MTI:
MTI Спонсоры Семинар по термоэлектричеству

MTI-UCSD Лаборатория по производству аккумуляторов 12
12
932 932 12
9128 VISTEC Cylindrical Cell Pilot Line

MTI спонсирует награду за докторскую степень

Объявление:
MTI KJ Group подает иск против Shangdong Gelon LIB Group за нарушение авторских прав и продажу продукции MTI контрафактные товары

MTI и Celgard успешно достигли мирового соглашения по судебному разбирательству по патенту и товарному знаку

Предстоящие выставки:





ВЫСОКОКАЧЕСТВЕННЫЕ АЛЮМИНИЕВЫЕ ПРУТКИ

Riyadh Cables предлагает высококачественные алюминиевые стержни 9.Катушки 5 мм.

  • Типичные свойства алюминиевого прутка
    Диаметр 9,5 мм ± 0,5 мм
    Чистота 99,5% Алюминий
    Плотность 2,7 г / см³
    Удельное сопротивление 0,02801 Ом мм² / м при 20 ° C.
    Проводимость 61.5% IACS при 20 ° C.
    Предел прочности 8,3 кг / мм² (типичное значение).
    Удлинение 4% (мин.) При длине колеи 250 мм
  • Упаковка

    Пруток алюминиевый поставляется в бухтах по 2000 кг. Бухты упакованы на прочные деревянные поддоны, надежно закреплены четырьмя стальными ремнями и покрыты толстым листом полиэтилена.

  • Артикул

    Каждая катушка должна иметь следующую заметную маркировку:

    1. Производитель / Торговая марка
    2. Оценка
    3. Вес нетто / брутто
    4. Заводской номер катушки
    5. Заводской номер
  • Контроль качества

    Все важные параметры постоянно проверяются для обеспечения контроля качества.Следующие ниже тесты гарантируют, что произведенная удочка неизменно высокого качества.

    1. Вес одного метра (г / м)
    2. Анализ химического состава — измерение% Fe, B, Mg, Si, V, Zn, Ti, Cr, Na, Mn, Cu, Ga, Al.
    3. Объемное сопротивление при 20 ° C.
    4. Проводимость — прецизионный прибор для измерения проводимости алюминия.
    5. Испытание на удлинение и растяжение — стержень испытывают на удлинение при разрыве и прочность на разрыв.
    6. Проверка диаметра — это гарантия того, что стержень имеет правильную круглую форму и необходимый диаметр.

Закон Ома

  • Ресурс исследования
  • Исследовать
    • Искусство и гуманитарные науки
    • Бизнес
    • Инженерная технология
    • Иностранный язык
    • История
    • Математика
    • Наука
    • Социальная наука
    Лучшие подкатегории
    • Высшая математика
    • Алгебра
    • Базовая математика
    • Исчисление
    • Геометрия
    • Линейная алгебра
    • Предалгебра
    • Предварительный расчет
    • Статистика и вероятность
    • Тригонометрия
    • другое →
    Лучшие подкатегории
    • Астрономия
    • Астрофизика
    • Биология
    • Химия
    • Науки о Земле
    • Наука об окружающей среде
    • Здравоохранение
    • Физика
    • другое →
    Лучшие подкатегории
    • Антропология
    • Закон
    • Политология
    • Психология
    • Социология
    • другое →
    Лучшие подкатегории
    • Бухгалтерский учет
    • Экономика
    • Финансы
    • Менеджмент
    • другое →
    Лучшие подкатегории
    • Аэрокосмическая техника
    • Биоинженерия
    • Химическая инженерия
    • Гражданское строительство
    • Компьютерные науки
    • Электротехника
    • Промышленное проектирование
    • Машиностроение
    • Веб-дизайн
    • другое →
    Лучшие подкатегории
    • Архитектура

Состав манганина, свойства, удельное сопротивление, использование, шунт

Манганин — это торговая марка сплава, состоящего из трех металлических элементов — меди, никеля и марганца.Этот сплав используется в различных отраслях промышленности. Читайте дальше, чтобы узнать больше о составе, свойствах и использовании этого материала.

История Манганина

Эдвард Уэстон, американский химик, был первым, кто открыл «манганин» в 1892 году, работая над улучшением другого металлического сплава. Этот сплав, ранее известный как «Сплав № 2», был обнаружен Уэстоном, который переименовал его в «Константин».

Состав манганина

Этот металлический сплав состоит из следующих металлов в следующих пропорциях:

  • Медь (Cu): 86%
  • Марганец (Mn): 12%
  • Никель (Ni): 2%

Химическая формула манганина

Химическая формула этого вещества — CuMnNi.Он состоит из формул всех составляющих металлов, а именно CU для меди, Mn для марганца и Ni для никеля.


Рисунок 1 — Манганин
Источник — o-digital.com

Свойства манганина

Ниже приведены некоторые из основных свойств этого сплава:

  • Его вес по формуле (сумма молекулярных масс атомов в формуле) составляет 177,18 г / моль.
  • Этот сплав имеет низкий температурный коэффициент сопротивления (относительное изменение физических свойств вещества при изменении температуры на 1 К).
  • Удельное сопротивление этого сплава сопротивления составляет 4,55 × 10 9 10 21 -5 9 10 22 Ом сантиметр.
  • Он электропроводен.
  • Он имеет температуру плавления 960 ° C.
  • Предел прочности на разрыв этого вещества составляет 300-600 МПа.
  • Удельное электрическое сопротивление этого сплава варьируется от 43 до 48 мкОм · см.
  • Плотность этого сплава 8,4 г / см 3 .
  • Он имеет удельный вес 8,5.
  • Его электрическое сопротивление остается постоянным в диапазоне температур.

Использование манганина

Манганин с момента открытия использовался в различных промышленных целях. Свойства этого материала делают его наиболее эффективным для определенных применений. Он широко используется в промышленности для производства различных веществ, таких как:

Шунты

Проволока и фольга из этого материала в основном используются для изготовления различных резисторов, в основном амперметрических шунтов. Шунт — это устройство, контролирующее прохождение электрического тока в разных точках цепи.Этот металлический сплав имеет очень низкий температурный коэффициент сопротивления. Он также имеет долгосрочную стабильность. Эти свойства делают его очень полезным для изготовления шунтов.

Катушка этого вещества обычно имеет ширину 150 мм и толщину 0,025 мм.

Калибры

Это вещество имеет низкую чувствительность к деформации (деформация вещества из-за приложенного к нему напряжения или деформации) и высокую чувствительность к гидростатическому давлению (давление, прикладываемое жидкостью в состоянии равновесия в результате действия силы тяжести). .По этой причине он очень полезен в манометрах для изучения ударных волн высокого давления (волна, несущая энергию, возникает из различных сред, таких как газ, жидкость, твердое тело, а также через различные поля под высоким давлением).

Манометры

широко используются в исследованиях ударных волн высокого давления в диапазоне от 1 до 400 килобар (1 бар = 100 000 Н / м2 или 14,5 фунтов на квадратный дюйм). В обычных применениях датчик крепится между двумя плоскими полимерными пластинами или металлическими пластинами.

Манганин-константановые термопары

более эффективны, чем медно-константановые термопары в блоках термометрии (измерения температуры) коммерческих ультразвуковых гипертермических систем.

Манганиновая проволока также может использоваться в качестве электрического проводника в криогенных системах. Его использование сводит к минимуму передачу тепла между точками, требующими электрических соединений.

Артикул:

http://www.ncbi.nlm.nih.gov/pubmed/7714367

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *